SET CONTAINMENT INFERENCE

Paolo Atzeni December 1986
D. Stott Parker CSD-860012

Set Containment Inference
Paolo Atzeni
IASI-CNR, Viale Manzoni 30, 00185 Roma, ITALY

D. Stott Parker
UCLA Computer Science Dept., Los Angeles, CA, USA

ABSTRACT

Type hierarchies and type inclusion (isa) inference are now standard in many knowledge
representation schemes. In this paper, we show how to determine consistency and
inference for collections of statements of the form

mammal isa vertebrate.

These containment statements relate the contents of two sets (or types). The work here is
new in permitting statements with negative information: disjointness of sets, or non-
inclusion of sets. For example, we permit the following statements also:

mammal isa non{reptile)
non{vertebrate) isa non(mammal)
not(reptile isa amphibian)

We define general containment inference as the problem of determining the
consequences of positive constraints P and negative constraints not(P) on sets, where
positive constraints have the form

P: Xlﬁ (\XP c Yo UYq.

Each X;, Y; is either a set T or its complement non(7). This paper considers only the
binary case p=¢=1, with constraints like P: X €Y or equivalently
P: X nnon(Y) = &. Positive constraints therefore assert containment relations
among sets, while negative constraints assert that two sets have a non-empty intersection.

We show binary containment inference is solved by rules essentially equivalent to
Aristotle’s Syllogisms. The containment inference problem can also be formulated and
solved in predicate logic. When only positive constraints P are specified, binary
containment inference 1is equivalent to Propositional 2-CNF Unsatisfability
(unsatisfiability of conjunctive propositional formulas limited to at most two literals per
conjunct).

In either situation, necessary and sufficient conditions for consistency, as well as sound
and complete sets of inference rules are presented. Polynomial-time inference
algorithms are consequences, showing that permitting negative constraints does not result
in intractability for this problem.

1. Introduction

In this paper we are interested in exploring inference properties of collections of
statements like X isa ¥, where X and Y are rypes. For example, we can assert

mammal isa vertebrate
reptile isa vertebrate.

Statements of this kind form an interesting class of constraints for real knowledge
representation problems, since it permits declaration of containment relationships among
types. ‘Taxonomic’ knowledge of this kind is (apparently) basic to human intelligence.

This paper departs from previous work by permitting negation in two ways:

- First, we let the types X and Y represent complements of types. For example, we
permit statements of the form

mammal isa non(reptile)

where non(reptile) represents the complement of the type reptile. This statement
asserts that mammals are disjoint from reptiles.

« Second, we allow negative statements to be made. For example, we permit
statements like

not(reptile isa amphibian)

which asserts that a reptile is not a type of amphibian, or equivalently, that reptile
must intersect with non(amphibian). In other words, some non-amphibian reptiles
exist.

For example, with these containment statements we can express the following statements
about computer components:

heat sensitive_device isa component

axial_lead device isa component
resistor isa axial lead device
resistor isa non(heat_sensitive_device)
half watt _resistor isa resistor
diode isa heat sensitive_device
diode isa axial_lead device
microprocessor isa heat_sensitive_device
microprocessor isa non(axial lead device)
not(heat sensitive device isa mon(axial_lead_device))
not(axial_lead device isa non(heat sensitive_device)).

The last two statements say the same thing; namely, that the heat_sensitive_device and
axial_lead device types intersect. For example, diodes are in their intersection.
However, neither of these two types is contained in the other, since there are subtypes
(resistors and microprocessors) that are contained in one but not the other.

We are interested in developing inference systems for type containment statements, The
examples above are assertions that we would like to be able to store in a knowledge base
and derive inferences from. For example, we would like to be able to ask

Is half watt_resistor a heat sensitive_device ?

and have a system correctly infer that the answer is NO. In general we wish to be able to
make queries of the forms

X isa Y?
not(X isa Y)?

We call this problem the Binary Containment Inference Problem, a special case of a
general containment inference problem permitting inclusion statements (and their
negations) involving more than two types. It is a limited fragment of set theory of
practical use.

An initial purpose of this paper was to investigate how negation affects inference in
specific knowledge domains. In [1] we discussed a restricted version of the binary
containment inference problem. Generally, of course, permitting negation causes
inference to become computationally intractable; combinatorial explosions arise as soon
as a negation operator is introduced. This is puzzling, since humans deal with at least
certain kinds of negation without either becoming befuddled or taking long periods of
time to arrive at correct conclusions.

We were pleased to discover that, for the binary containment problem, negation does not
result in computational intractability. Thus binary containment assertions are at the same
time expressive, yet not general enough a fragment of set theory to cause complexity
problems.

Indeed, the binary containment problem can be solved somewhat elegantly. When all the
statements are inclusions, we show here that the inference problem is equivalent to
Propositional 2-CNF Unsatisfiability (the complement of the 2-SAT problem) [4]. More
generally, the binary containment problem can be expressed and solved efficiently with
predicate logic. We show that the problem is also solvable using a small set of inference
rules. O(n>) time, where n is the number of types, is sufficient in all cases.

Interestingly, syllogisms turn out to be precisely the rules for binary containment
inference. There are 24 valid syllogisms. These rules have been used for millenia, and
were actually held as synonymous with the word logic until the mid-nineteenth century
after the work of George Boole. While syllogisms were discarded eventually as being
‘less general® than boolean logic, they clearly fit here naturally.

It scems likely that all the results in this paper have been discovered by other researchers
at one time or another, in one form or another. After all, binary containment inference
has been studied for millenia. However we are not aware of a reference covering the
results here. Indeed, we were motivated by a study of existing knowledge representation
systems, which uniformly lacked general containment inference processing.

It is possible to focus exclusively on logic when studying containment inference, by
expressing the problem in predicate logic and then applying resolution proof techniques.
The approach of this paper is broader, developing several formal systems to handle
containment inference problems. This approach has certain benefits. First, it clarifies the
model theory of the binary set containment problem, the problem’s relationship to
syllogisms, and identifies degenerate cases of constraints precisely. Second, it sets the
foundation for fast algorithms not based directly on logic. Finally, it permits
generalization to formal systems handling more complex types of ‘syllogisms’. For
example, DeMorgan studied six different kinds of syllogisms [3], including ‘numerical’
syllogisms such as

100 Y's exist
70 X’sare Y's
40 Z’'s are Y’s

at least 10 X’s are Z’s.

The connection between sets, logic, syllogisms, and human intelligence is fascinating,
and deserves further investigation.

2, Terminology
2.1 Syllogisms

Aristotle apparently defined a syllogism to be any valid inference [3], but concentrated
on inferences that can be made from four kinds of propositions:

Every Sis P

No Sis P (i.e., Every S is not P)
Some Sis P

Some S is not P

A syllogism is composed of three propositions involving three rypes S, M, and P,
representing respectively its ‘Subject’, ‘Middle’, and ‘Predicate’. For example, the
following is a syllogism:

Major premise: every Pis M
Minor premise: some SisnotM

Conclusion: some SisnotP

Since the conclusion always involves the subject and predicate, while the premises use
the middle type M in 4 nontrivial ways (called ‘figures’ by Armistotle, although he
developed only the first three figures shown below), there are a total of

Ax4x4d4x4 = 256

possible syllogisms, of which 24 are valid. These 24 are listed below, divided into the
four figures:

S11: every § is P if every M s P and every S s M.
$12: some § s P if every M is P and every § i M.
S13: some § is P if every M is P and some § @ is M.
S14: every S isnot P if every M isnot P and every § is M.
S15; some § isnmot P if every M isnot P and every S is M.
S16: some S ismot P if every M isnot P and some § s M.
§21: every § isnot P if every P isnot M and every S s M.
§22: some § ismot P if every P isnot M and every S is M.
$23: some § isnot P if every P ismot M and some § @ is M.
§24: every § ismot P if every P s M and every S isnot M.
$25: some § isnmot P if every P is M and every § isnot M.
§26: some § isnot P if every P is M and some § isnot M.
531: some § is P if every M s F and every M is S.
§32: some § is P if every M is P and some M s §.
$33: some § is P if some M is P and every M s S.
$34: some § isnot P if every M isnot P and every M is S.
$35: some § isnot P if every M isnot P and some M is S.
§3: some § isnot P il some M isnot P and every M is §.
S41: every S ismot P if every P is M and every M isnot &
S42: some S isnot P if every P s M and every M isnot &
S43; some § isnot P if every P isnot M and cvery M s S.
S44: some § ismot P if every P isnot M and some M is S.
545: some § is P if every P is M and every M s S.
546: some § is P if some P is M and every M i S.

These 24 syllogisms are all valid under the assumption that the sets denoted by the types
S, M, and P are nonempty. If this assumption does not hold, the 9 entries above marked
with stars (*) are invalid. In other words, although we would normally assume that
whenever

every Xis Y
then also
some X is Y,
this inference is invalid when the set denoted by the type X is empty.

The structure of the syllogisms has fascinated philosophers and mathematicians for
millenia. At this point the reader may be asking questions such as:

+ Is the set of 24 rules (or 15, eliminating starred ones) complete?
» Is there a more compact presentation of these rules?
« Can the rules be used in an efficient inference system?

We address these questions later in the paper.
2.2 Syntax of Containment Propositions

Some readers will have noticed that syllogisms involve containment propositions.
Specifically, if X and Y represent sets, and non(Y) represents the set complement of ¥

everyXisY = XY

some XisY = XnY=d
notevery XisY = Xnnon(Y)=J
not some XisY = X cnon(Y)

This collection of syllogistic propositions is thus equivalent to the binary propositions
one can make up with the standard set predicates — and "=@. In an effort to follow [1],
as well as simplify notation ("= is tedious to write), we define the following two
predicates on type descriptors X, Y:

Definition

X isa Y if the set denoted by X is a subset of the set denoted by Y.

Definition
X int Y if the set denoted by X intersects the set denoted by Y. The intersection must
be nonempty.
Remark
XimY = not(X isa non(Y)).

The following table summarizes equivalences between notations to be observed for the
remainder of the paper:

X ¢ Y = X isa Y)

X n Y=+ = X int Y)

every X is Y = X isa Y)
some X is Y = X int YY)
every X is non(Y) = not X imt Y)
some X is non(Y) = not (X isa Y)

not every X 18 Y = not X isa Y)
not some X i858 Y = not (X int YY)
not every X is non(Y) = X it Y)
not some X is non(Y) = X isa Y)

In what follows we use isa and int.
2.3 The Set Containment Problem

Our goal in this section is to set up a framework for expressing containment problems.
We differentiate between the scheme of a containment problem, and its interpretations or
models. The scheme specifies the structure of the problem, while interpretations of the
scheme give instances of objects in the types in the scheme.

Definition

A type scheme T/U is a collection of type symbols (U, Ty ,..., T,}. The type
symbol U is a special symbol and is called the universe of the type scheme.

Each type symbol 7; will denote a subset of U/. The universe symbol U is needed in
order to define what we mean by complements non(T;) of types:

Definition

A type descriptor X of a type scheme T/U is either
1. atype symbol T; or U.
2. non(Y), where Y is a type descriptor of T/U.

Definition

An assignment I of a type scheme T/U = {U,Ty,...,T,} is a map associating to
each type symbol a possibly empty subset of a finite domain D, subject to the
following restrictions:

0. I(U) = Dy

1. I(non(U)) = &;

2. I(T;) c I(U),1<i<nm;

3. Imon(Ty) c I(U), 1<i<n

4. I(T;) N I(non(T))) = B,1<i<n.

For each i, I(T;) is a finite subset of D. We require finite assignments here for
simplicity.
An interpretation I is an assignment that satisfies the following additional

restrictions, where ‘=’ represents set difference:

5 I(T) =) -Inon(T))), 1 <i<nm;
6. Ilnond(T)) = I({U)Y-I(T;),1<i<n.

In other words, with an interpretation the type descriptor non(X) denotes the
complement under U of the set denoted by X.

Remark
In any interpretation, non{non(X)) denotes the same set as X.

Definition

A type descriptor X is trivial in interpretation [if I (X) = &.
The trivial interpretation I assigns I (X) = @ for every type descriptor X.

Definition

A positive constraint P has the form
P:Xyn- - nX, isa YU - UY,
where each X, 1<j<p, and each Y, 1<k<g, is a type descriptor.
The constraint is satisfied by the interpretation I if
IX)D)N - nIXy) ¢ IYw - VIT,).

Definition

A negative constraint has the form not(P), where P is a positive constraint. It is
satisfied if P is not.

Note that positive constraints can be rewritten as
P:nonX)w ---unonX,) Y U VY, = U

or, equivalently,

[
_

P: X1 X, N non(Y,;) --- nnon(Yq)
so the negative constraint not(P) is equivalent to
notP): X1 - nXy,nnon(Y)N - nnon(Y,) # %]
In other words, positive constraints make assertions about inclusions among types, while
negative constraints make assertions about intersections among types.

Definition

A containment scheme is a pair § = (T/U,C) where U is a universe symbol, T/U is a
type scheme {U, T1,..., T,), and C is a set of containment constraints on type
symbols in T/U.

Definition

A model of a containment scheme (T/U,C) is an interpretation / of T/U that satisfies
all constraints in C.

Containment constraints can be ‘degenerate’. Consider the various constraints below:

1. X isa non(X).
2. non(X) isa X.
3. not(X isa X).

The first constraint is satisfied only when X denotes &. Similarly, the second is satisfied
only when non(X) denotes &, so X denotes the same set as U. The first two constraints

-10-

together can be satisfied only when both X and U denote . In other words, the first two
constraints imply that there can be only one model: the trivial one.

The third constraint is the negation of (X isa X), which is true of every interpretation for
X. Thus, any scheme with the third constraint can satisfy no interpretation, and will have
no model.

Definition

A containment scheme is unsatisfiable if it has no model; otherwise it is satisfiable.
Now consider the following general problem:

Set Containment Problem

Input: a containment scheme (1/U,C), where C is a collection {C; | j=1,...,m} of
set containment constraints on the type symbols of T/U.

Question: Is the containment scheme satisfiable? That is, is there an interpretation
for T/U that satisfies each constraint C; in C?

Not surprisingly, the set containment problem is NP-complete in general. This is shown
in Appendix 1. However, in the special case in which all constraints are positive, the set
containment problem is always satisfiable. Specifically, the trivial interpretation (in
which I (U) = &) is always a model satisfying C.

In this paper we are interested only in the special case p = g = 1, where all constraints are
binary. This restricted version is called the Binary Set Containment Problem. In the
remainder of the paper we first consider the special case where all binary constraints are
positive, then study the general binary containment problem.

Example

Consider the containment scheme
S = ({pacifist, quaker, republican}/U, C)
where the constraint set C is:

republican isa non(pacifist)
republican int quaker
quaker isa pacifist.

The binary set containment problem for this scheme is to determine whether it is
satisfiable or not. It turns out this scheme is unsatisfiable, we will see why shortly.

2.4 Containment Inference

We first recall some terminology concerning inference rules. The reader unfamiliar with
this material may wish to consult texts in database theory, such as [6] and [7]. We
remind the reader that classes of constraints studied in database theory do not involve
negation, for the most part. That is, collections of data dependencies (functional

-11-

dependencies, join dependencies, etc.) do not imply that a specific data dependency does
not hold, but only that one does hold. These systems are always satisfiable.
Unsatisfiability can occur with containment, as we have already seen. Therefore, the
inference problem here is somewhat different than in these texts.

Implication and inference are important concepts in dealing with constraints of the
general kind proposed here. If we are given a set of constraints, we are frequently
interested in deducing whether other constraints must also hold.

A constraint ¢ is implied by a set of constraints C on a scheme S if it holds in all models
of S. Given C and ¢, the inference problem is to tell whether C implies c. Algorithms for
the solution of the inference problem (called inference algorithms) have correctness
proofs that are usually based on sound and complete sets of inference rules.

Definition

C E cif C implies ¢ (that is, ¢ must hold in every model of C).
If C is unsatisfiable, then C has no models, and the definition of E becomes vacuous.
Thus if C is unsatisfiable, then C k= ¢ for every constraint c.

Set Containment Inference Problem

Input: a containment scheme (7/U,C), and a constraint c.

Question: Is it true that C E ¢?

This problem can be reduced to the Set Containment Problem mentioned earlier simply
by determining satisfiability of the scheme with constraints C U {not (c)}.
Alternatively, we can approach the inference problem with inference rules.

Definition
An inference rule C | ¢ is a rule asserting that the constraint ¢ holds whenever the set
of constraints C holds. For example, the rule
XisaY, YisaZ - XisaZ
asserts that the inclusion predicate isa is transitive. X, Y, and Z represent arbitrary
type descriptors.
Definition

Relative to a specific set of inference rules, C F ¢ if ¢ can be derived from C using
applications of the rules.

The basic requirement for each inference rule is to be sound, i.e., that it derive from C
only constraints ¢ such that C k= c. Moreover, it is important to have sets of inference
rules that are complete, i.e., that allow the derivation of all the constraints ¢ such that

-12-

C k ¢. Thus, a set of rules is sound and complete when I is equivalent to k.

Definition

A scheme (T/U,C) is inconsistent if there is a constraint ¢ such that
C ¢ and C | not(c).

Otherwise the scheme is consistent.

Example

The constraint set C considered earlier

republican isa non{pacifist)
republican int quaker
quaker isa pacifist

can be shown to be inconsistent with the appropriate inference rules. The (sound)
inference rule

XimY,YisaZ -XimZ
implies that
republican int quaker, quaker isa pacifist & republican int pacifist.
However
republican int pacifist
is equivalent to
not(republican isa non{(pacifist)),
contradicting the first constraint in C,

Clearly, an inconsistent scheme is also unsatisfiable. We will see later that the converse
also holds.

-13-

3. Degenerate Properties of Containment Schemes

This section characterizes when a containment scheme has certain degenerate properties.
We show three things.

« First, a type X is trivial in every model of a scheme if, and only if, we can infer
X isa non(X).

» Second, a satisfiable scheme has only the trivial model if, and only if, for some type
descriptor X we can infer both X isa non(X) and non(X) isa X.

+ Finally, a scheme is unsatisfiable if, and only if, there is some type descriptor X for
which we can infer X int non(X).

With a reasonable inference mechanism, then, we will be able to detect unsatisfiability or
triviality of types. In later sections we develop such inference mechanism.

3.1 Model Extension Algorithm

We give first an algorithm useful in various proofs later. It takes as input a containment
scheme (T/U,C), an assignment I, and a constant ¢ (which / may or may not include in its
image), and produces an assignment /” which uses ¢ unless C is degenerate. It is called a
‘model extension’ algorithm since, as we show below, it always produces a model when
given one.

At various points the algorithm tests whether C k¢, given some C and ¢. The Model
Extension Algorithm therefore requires an algorithm for deciding implication. Such an
algorithm is suggested in Appendix I, where it is shown the Set Containment Problem is
in NP. Essentially, to decide whether C kE ¢, we need only look for models with domain
D of size at most the number of intersection constraints in C. This is not efficient, but
efficiency is not the issue here, since the Model Extension Algorithm is used only in
proofs.

Model Extension Algorithm

Input:

+» a3 containment scheme (T/U,C),

+ an assignment / from symbols in T/U to subsets of D,
« 2 symbol ¢ which may or may not be in D.

Output:
» an assignment 7 from symbols in 7/U to subsets of D U {t}.
The algorithm constructs !’ from [as follows:

1. Test for trivial universe.
If C & (U isa non(l/))), set I’ =1 and halt.

2. Preserve any previous use of t.
For all X with ¢ already in f (X), set

-14 -

Ir'e) = IX) v (1)

I'mon(X)) = I(non(X))
Note ¢ cannot be in both I(X) and /(non(X)), for then I would not be an
assignment.

3. Assign assignments for trivial types and their complements.
For all X (including non(U)) with I(X) currently undefined and
C k (X isa non(U)), set
r'e) 1(X)
I'(non(X)) I'(non(X)) U {¢}
We cannot find X at this point such that both X and non(X) are trivial, since these
would imply C k (U isa non(U)).

4. Propagate t through isa constraints.
For all X with ¢ in I'(X) at this point, for all Z with I'(Z) undefined such that
C E XisaZ, set

r'Z) 1Z) v {t}
I'(non(Z)) I (non(2))
5. Add t to some type permitting the addition.

If there is no X such that I'(X) is undefined, then halt: I’ is the completed
assignment.

Otherwise select 2 ‘minimal® X such that I’(X) is undefined. That is, find an X for
which there is no nontrivial Y such that C k Y isa Xand alsoC ¥ X isa Y. Such
an X must exist, since otherwise Step 4 would have already yielded a definition for
I'(X). Then set

r'ex) = I(X) v {1}
I'mon(X)) = I(mon(X)),
and go to step 4. Step 4 will then propagate definition of I’ for supertypes of X.
The construction is well defined, because the process always terminates. Moreover,
when it terminates /I” is a valid assignment, defined for all type descriptors X of T/U. In

particular the algorithm cannot assign 7 to both I(X) and I'(non(X)) for any X, since each
step assigns # to either one or the other, and I’(X) is defined at most once.

Lemma
If 7 is an interpretation with domain D, then I” is an interpretation with domain D v {t}.
If I is a model with domain D, then I’ is a model with domain D v {z}.

Proof

-15-

F must be an interpretation if [is, since each step of the algorithm guarantees then
that I'(Z) = I'(U) - I'(non(Z)) for each type descriptor Z. Also I’ satisfies all
constraints X int ¥ that I does. If I is a model, the only way I’ can fail to be a model
is that there be some constraint V isa W implied by C, where ¢ is in I'(V) but not in
I'(W). However, steps 4 and 5 of the construction explicitly prohibit this situation. [

3.2 Triviality in Containment Schemes

Theorem 1.
A type descriptor X is trivial in every model of C Hf C F X isa non(X).

Proof

Clearly if C' & X isa non(X) then C E X isa non(U) and X must be trivial in all
models. Conversely, let 7 be any model of C with I (X) = . Let ¢ be a symbol not in
I(U). If it is not true that C F X isa non(X), then C ¥ X isa non(U) and the
Model Extension Algorithm above can find a model I” with I'(X) = (¢}, showing X is
not trivial, [J

A corollary of Theorem 1 is that a pair of constraints

X isa non(X)
non(X)isa X

must be implied by any scheme with only the trivial model. (U, and consequently both X
and non(X), must denote &.)

3.3 Unsatisfiable Containment Schemes

We showed earlier that containment constraints can actually be unsatisfiable, giving as an
example not(X isa X). In fact, this constraint is not only sufficient for unsatisfiability, it
is also necessary:

Theorem 2.
A containment scheme (T/U,C) is unsatisfiable iff for some X, C E X int non(X).

Proof Clearly if the scheme is satisfiable, we cannot have C kX int non(X) for any X.
Conversely, if for every X it is true that C ¥ X int non(X), then we can exhibit a model
satisfying C. The model is built in two steps:

1. Define the assignment I3 as follows: For each type descriptor X in
(U, Ty,..., Ty,non(U), non(T,), ..., non(T,)} set
%) if C X isa non(U)
IyX) =))
{ {X,Y} I C EXimtY} otherwise.

I is not an assignment iff there is some X such that /4(X) N Iy(non(X)) # . But
this cannot arise, since Io(X) N Ig(non(X)) < { {X,non(X)} }, and the assumption
C ¥ X int non(X) implies this intersection must be empty.

-16 -

2. If Io(X)= for every X, then halt: at this point there can be no intersection
constraints in C and we have a (trivial) model / =7(. (Any intersection constraint
X int Y would imply X int X, which when combined with X isa non(X) implies
X int non(X), a contradiction.)

If Iy(X) = for some X, extend 7 to 2 model / by accumulatively applying the
Model Extension Algorithm for each element ‘¢’ in the set

{ (VVWYIC EViuWw}.
We argue that, when this process completes, / is a model of C. The first step guarantees
Iy meets all ‘intersection’ constraints implied by C, ignoring trivial types. Since /g is a

valid assignment, the second step extends it to an assignment 7 that also satisfies the
‘inclusion’ constraints implied by C. [J

Example

Consider the type scheme § = ({a,b,c,d }/U,C), where C is the set of constraints

a isa ¢
isa non(d)
int d
int non(c)

[2B o T

IHere
{ (XY} CEXimY} = {{cd}, {bnon(c)} }.

The model constructed for S evolves as follows:

a non{a) b non{®) c non(c) d non(d v non{l")
2 2 {{,non(c)}} @ {(ed)} {{Bnon(c)}} {{cd}} 2 2 &
@ {{cdl.(bnon(c}}} | ({bnon(e)}} o {(cd}} ([{bmon(c)}} {{ed}} 25 {{z.d).(bnon{c)}} 1%
& {{ed)lbnon(c)}} | [[(Bnon(e)}} {{cd}} | {{cd}} [{bmen(c)}} {{cd}} @ {{e.d}.[b.non(e)}} z
2 {{ed){bmon()}} | ({tmon())} {{cd)} | {{cd}} ({bmon(c)}} | {{cd].[B.non(c)}} g {{c.d).{bnon(c)}} 2

The first sequence shows 7, the assignment satisfying all intersection constraints implied
by C.

The second sequence shows the assignment created at step 4 of the Model Extension
Algorithm with ¢t = {c,d}. We have used the facts that C knon(c) isa non(a),
CEdisanon(a), CEbisaU,and C k¢ isa U.

The third sequence shows the final extension of I created by the Model Extension
Algorithm for t = {¢,d}. (Note this is only one possible extension; the type descriptor
non(b) was selected in step 5 of the algorithm.)

The fourth sequence shows the subsequent assignment obtained from the Model
Extension Algorithm for ¢ = {b,non{c)}. (The type descriptor d was selected in step 5 of
the algorithm,) This sequence can be verified to be a model of S.

-17-

We might have expected from the constraints c intd, b intnon{c) in C that both
C =non(c) int non(d) and C &= non(b) int ¢ would follow. The model just constructed
contradicts the first logical implication, and the other implication would also be violated
if in the third sequence b had been selected instead of non(b) by step 5 of the Model
Extension Algorithm,

- 18 -

4. Positive Binary Containment

Let us now devote our attention to the containment problem. Consider first the important
special case of the set containment inference problem where all constraints are of the
form

X isaY
with X and Y type descriptors denoting subsets of U.

In [1], a similar problem was studied and solved. A complete set of inference rules is
presented for two containment predicates, isa and dis. The proposition (X isa Y) states
that the type X denotes a subset of the type Y, while the proposition (X dis Y) states that X
and Y denote disjoint sets.

In [1] it is shown that, for arbitrary types X, ¥, Z, the following rules for isa and dis are
sound and complete:

I1. FXisaX.

12, XisaY,YisaZVX isaZ.
Ml. XdisY,ZisaXW+ZdisY.
M2, XdisX+XisaY.

Dl. XdisXkXdis?.

We can use set complementation to simplify these rules. Since, for example,
XdisY = Xisanon(Y)
we can informally replace the five rules above with

I1. FXisaX.
I2. XisaY,YisaZV-XisaZ.
Dl. Xisanon(X)-XisaY.

provided we let X, Y, Z be arbitrary type descriptors, and treat non(non(X)) as being
equivalent to X.

In the statements X isa Y, X dis Y of [1], X is required to be a type symbol (not a type
descriptor). Without this requirement the 5 rules above are incomplete. For example, the
rule

XisaY non(Y) isa non(X)
is not inferrable from the 5 rules, but is sound.

Consider, then, the following set of rules:

-19-

ISAQ. FXisaU.

ISAL. FXisaX.

ISA2. XisaY,YisaZ“Xisa Z.
ISA3. X isa Y non(Y) isa non(X).
TRIVO. Uisanon(U) i X isa non(lU).
TRIV1. Xisanon(X) X isa non(U).
TRIV2. Xisanon(U)HXisaY.

EQO. a(non(non(X))) F o(X) [cx any expression].
EQI1. o(X) F a(non(non(X))) [any expression].
Theorem 3.

The set of rules ISAQ-3,TRIV0-2,EQO0-1 is sound and complete for positive binary
containment inference. That is, if C contains only positive constraints and k- represents
derivability using these rules, then

ChXisaY) ifFCEXisaY).

Proof

We omit proofs of the soundness of the rules, as they follow from basic axioms of set
inclusions. Also, we use rules EQO and EQ1 implicitly throughout the proof here,

For each containment scheme S = (T/U,C), we show that isa constraints not derivable
from C by the rules cannot be implied by C. Suppose that c =X isaY) is a
constraint implied by C, but not derivable from the rules. We construct a
counterexample model 7 satisfying C but violating c.

First note that ¢ cannot be of the forms (X isa X) or (X isa U), since ISAQ and ISA1
preclude these. Also since (X isa ¥Y) is not derivable from the rules, then
(X isa non(l))) and (X isa non(X)) are not either, for otherwise (X isa ¥) would be
derivable with rules TRIV1 and TRIV2. Finally C K (U isa non(U)), since the
TRIV rules would yield (X isa Y).

We construct an assignment /o as follows: For each type descriptor Z, let [((Z) = {1}
if (X isa Z) is derivable from C, and [4(Z) = & if (X isa non(Z)) is derivable. In
addition, put I (Y) = & and I y(non(Y)) = {1}.

I will be a valid assignment if we can guarantee the following properties:
1. I{U)={t].
2. Itnon(U))=4.
3. I(mon(X))=4.
4. ‘There is no Z such that both (X isa Z) and (X isa non(Z)).

-20-

These properties must hold. Io(U) = {¢} since - (X isa U). If Io(non(V)) = D, then
we can derive (X isa non({))), contradicting our earlier observation. Similarly if
Iy(non(X)) # D, then we can derive (X isa non(X)), again contradicting our
observation. Finally, if there is a Z such that both (X isa Z) and (X isa non(Z)), we
can use rule ISA3 on the second constraint to infer (Z isa non(X)). Then ISA2 and
the first constraint derive (X isqa non(X)), contradicting our earlier observation that
this was not derivable. So [y is a valid assignment.

Now, extend this assignment to an interpretation [by applying the Model Extension
Algorithm, with E replaced by , to Iy and constant £. Since C X isa X, I (X)={t}.
Also, I does not satisfy X isa Y because I (Y) =Iy(Y) =©. We claim [is a model for
S. Suppose V isa W is a constraint in C. If I(V) = &, I satisfies the constraint. If
I(V) = {t}, then C X isa V. But then, by rule ISA2, C X isa W also, so I(W) =
{¢}, and [satisfies the constraint again. Since this is true for all such constraints, { is
a model. [

-21-

5. General Binary Containment

We show in this section that the 24 syllogisms listed earlier are essentially the rules we
need for general set containment inference. However, although these 24 rules are
elegant, they are also somewhat verbose. We show first that we can reduce the syllogism
rules to a set of 5 simple rules (involving really only two basic syllogisms, S11 and S§13).
We then show that an extension of these 5 rules dealing with degenerate conditions is a
sound and complete set for containment inference.

5.1 Compressed Syllogisms
Let X, Y, Z be type descriptors. Consider the following rules:

Rl: everyXisZ if everyYisZ and every X isY.
R2: some XisZ if every YisZ and some XisY.
R3: some XisY if every Xis Y.

R4: some X is Y if some Yis X.

RS5: every X is non(Y) if every Y is non(X).

R1 and R2 are syllogisms mentioned earlier. Rule R3 requires the assumption that types
are nonempty; this is actually necessary only where the existential quantifier ‘‘some™
implies actual existence of some object, as it often does in natural language. R4 and R5
state that both intersection and disjointness of types are symmetric relations.

Theorem 4. All valid syllogisms follow from the rules R1-R35.

Proof A simple case analysis shows this, and is instructive about the structure of the 24
syllogisms. Let Sij(M/mon(M)) denote the ij-th syllogism with type descriptor M
replaced by non(M), etc. We simply list the rules and the ‘variable substitutions” needed
to derive each syllogism.

S11: Rl
S12: R1&R3
S13: R2

S$14: S11(P/mon(P))
S§15: S12(P/non(P))
S16: S13(P/non(P))

S21: S11(P/mon(P)) & R5
S22: S21&R3

S23: S13(P/mon(P)) & R5
S24: S21(M/non(M))

S$25: 822(M/mon(M))

S26: $23(M/non(M))

S31:
$32:
S33:
S534:
S35:
S36:

S41:
S$42:
543:
S44.
S45:
S46:

O

This theorem saves us considerable effort in relating the results here to syllogisms.

S13& R3 & R4

513 & R4

S32(P/S,S/P)

S31(P/mon(P))
S32(P/mon(P))
S$33(P/mon(P))

-2 .

S1i(mon(S)/P.P/S) & RS

S41 & R3
R5 & S34
R5 & 535

S12(5/P,P/S) & R3
S13(5/P,P/S) & R3

5.2 Formal Containment Rules

Consider the following rules:

These tules extend the compressed syllogism rules R1-R5 to deal with trivial types and

INTO.
INTI.
INT2.
INTS3.
INT4.

INCO.
INC1.
ISAQ.
ISAL.
ISA2.
ISA3.

TRIVO.
TRIV1.
TRIV2.
EQV.
EQL.

XitYHXintU.
XimmYFXinmtX.
XintYFYintX.
XimY,YisaZ+-Xint Z.
XintU, XisaYFXintY.

Ximtnon(X) -YisaZ.

Ximtnon(X) HYint Z.

FXisalU.

FXisaX.

XisaY,YisaZFX isaZ.

X isa Y b~ non(Y) isa non(X).

U isa non(U) + X isa non(U).

X isa non(X) X isa non(U).

Xisanon(U) X isaY.

oa(non(non(X))} - o(X) [o any expression].
aX) F o(non(non(X))) [& any expression].

unsatisfiable constraint sets, but otherwise express the same information.

Theorem 5. The rules INT0-4,INCO-1,ISA0-3, TRIVO-2,EQO-1 are sound and complete
for general binary containment inference. That is, if C is set of binary constraints, ¢ is a

binary constraint, and + represents derivability using these rules, then

Chkciff CEc,

-923.

Proof For the containment scheme (T/U,C), we show that constraints not derivable from
C by the rules cannot be implied by C.

Suppose that ¢ is a constraint such that C' k ¢ but C 4 ¢. We know then that, for every X,
C ¥ (X intnon(X)) since otherwise INC1 or INC2 would give C Fc¢. Analogously,
C W (X intnon(l))), since otherwise ISAQ, ISA3, INT1 would derive
C (X int non(X)).

Let us consider the case where ¢ = (X intY). Then C E ¢ implies C must contain some
intersection constraints, In three steps we construct a counterexample model I satisfying
C but violating ¢, much like the model in Theorem 2:

1. Let ' be C with ¢ explicitly negated. That is,
C' = Cul{not(c)} = Cu{Xisanon(Y)}.

2. Define the assignment [y as follows: For each type descriptor V in

{U! Tl v ey Tnsnon(U)a non(Tl) LRI non(T,,)} by
& if ¢’ +V isa non(V
Ig(V) = , . . ™)
[(VVWYIC FVimeW} otherwise,

Notice that we define /¢ in terms of what can be derived from C’ by the rules.

3. Extend /{ to / by applying a variant of Model Extension Algorithm accumulatively
with the scheme (T/U,C”), each time picking a new element ‘¢’ from the set

{ (VWWYICRVimW],

The variant of the Model Extension Algorithm used here is exactly like the
algorithm, but replaces all uses of = with - Thus again the rules are used in
constructing /.

The Model Extension Algorithm with E replaced by + will generate an assignment
satisfying at least as many constraints as its predecessor, except when step 1 determines
that C’ + (U isa non{l))). If this were to happen, however, since we know C contains
some intersection constraint (V int W) we could show with INTO, ISAQ, ISA3, INT3 that
C’ - (V int non(V)). Bowever, since C H# (V int non(V)) we can obtain a contradiction.
The proof involves analysis of several cases, which we sketch here.

Recall C’=C U {X isa Y}. Since we can derive C’ (V int non(V)), either rules INT3
or INT4 must be used in the derivation. (INC1 may be ignored here without loss of
generality.) Use of INT3 implies that a Z exists such that

C'+WVint2)
C’'+ (Z isa non(V))

while use of INT4 implies

-24 -

CHViml)
C’ k (V isa non(V))

In either of these situations not(¢c) = (X isa non(Y)) must be used somehow in one or
both of the derivations, since C £ (V int non(V)).

1. In the INT3 case, depending upon whether (X isa non(Y)) is used in the first, the
second, or both derivations, and upon how it is used, we get several possibilities:

CH{Vint2), (Zisa X), (non(Y) isa non(V))}
CH{WVintZ), (ZisaY), (non(X)isa non(V))}
CF{(VintX), (nonY)isa Z), (Z isa non(V))}
CH{(VinY), mon(X)isa Z), (Z isa non(V))}
CH{(VimX), mon(Y)isa Z), (Z isa X), mon(Y) isa non(V))}
CHI{WVintX), mon(Y)isa Z), (Z isa Y), (non(X) isa non(V))}
CH{VimY), mon(X)isa Z), (Z isa X), (mon(Y) isa non(V))}
CH{(VintY), (non(X)isa Z), (Z isaY), (mon(X) isa non(V))}.

For each possibility ISA2, ISA3, INT2 and INT3 yield C (X intY). But then
C I ¢, a contradiction.

2, The INT4 case is simpler. We discover we must have
CH{(Vint),VisaX),VisaY)},
from which INT4, INT2, and INT3 again obtain C } ¢, a contradiction.
Hence C’ K (V int non(V)) for any such V, and the algorithm does not halt on its first
step.

Thus / has the right properties if it is a model. If it is not a model, there is some
constraint in C” that J violates.

1. This constraint cannot be (V int W). [is constructed to satisfy this constraint,
unless W is non(V); but we have just determined that C"H (V inf non(V)),
precluding this possibility.

2. The constraint cannot be (V isa W). If it were, clearly W could be neither V nor U,
since then ISAO or ISA1 would give a contradiction. Similarly W cannot be
non(U) or non(V), since the TRIV rules would force I (V) =& in the construction
of I, and I would satisfy the constraint. Thus W must be an ordinary type
descriptor, and there must be some element {{Z,Z;}} in 7 (V) that is not in / (W).
However step 4 of the Model Extension Algorithm precludes this possibility also.

Thus there can be no constraints in C that are violated, and [is a model of C.
The case where ¢ = (X isa Y) is similar. (J

Corollary A containment scheme (T/U,C) is unsatisfiable if and only if it is inconsistent.

Proof

-25.

If the constraint set C is inconsistent, there is some constraint ¢ such that both C } ¢ and
C Fnon(c). Clearly then C is not satisfiable.

Conversely, if C is unsatisfiable we know from Theorem 2 that C kE (X int non(X)) for
some X. By Theorem 5, then, C kX intnon(X)). But C k(X isaX), and
(X isa X) = not (X intnon(X)). So C is inconsistent, []

The rules listed above involve an amount of ‘overhead’ in dealing with trivial types and
unsatisfiable constraint sets. This overhead complicates ordinary use in making
inferences. In most real situations we would assume that:

1. the constraints are satisfable;
2. no type is trivial except non(U).

To close this section, we show that the rules simplify considerably if these assumptions
are known to be true.

Since the type descriptor non(U) is always trivial, we first introduce notation to
distinguish it from others.

Definition
X # Tiff X is none of the type descriptors { T, non(non(T)), - -+ }.

Now, if we verify that our containment scheme is satisfiable, and formally make the
non-triviality assumptions,

INTO. X # non(U)+XintU.
INT1. X#non() -XintX.
ISAO0. +XisaU.
ISAl. +XisaX.

then the rules analyzed earlier can be replaced with the following set:

INT2. XimY+YintX.

INT3., XimY,YisaZV-XintZ.

INT4, X# non(),XisaYFXintY.

ISA2, XisaY,YisaZVXisaZ.

ISA3., XisaY }l non(Y) isa non(X).

EQO. amon(non(X))) - a(X) [a any expression].
EQI1. o(X) + a(non(non(X))) [« any expression].

These rules are intuitive, and match the compressed syllogism rules R1-R5 closely.

-26 -

6. Containment and Logic

It is possible to map all containment constraints into first-order predicate logic. The table
below shows how this can be done, giving not only a logical equivalent, but also its
‘skolemized’ clausal form.

Constraint | Predicate Logic Equivalent | Clause Equivalent
XisaY Yx U)o X))o Y((x)) not U(x)vnot X (x) VY (x)
XinmY dx UAX @) AY (x) UNAXMAY Y

For example, we have the following translations from containment constraints to clauses:

mammal isa vertebrate not U/ (x) V not mammal (x) V vertebrate (x)
non(vertebrate) isa non(mammal) | not U (x) V not mammal (x) V vertebrate (x)
mammal isa non(reptile) not U (x) V not mammal (x) V not reptile (x)
not(vertebrate isa amphibian) U () A reptile () A not amphibian (y)

Here v is a (unique) skolem constant representing an object that is simultaneously a
member of the types X, Y, and U. Resolution can be used directly on the clauses to
derive inferences. For example, the resolvent of the clauses (notX (x)VY(x)) and
(not ¥ (x) VZ(x)) is (not X (x) V Z(x)), mirroring the inference rule ISA2. A thorough
introduction to resolution proof techniques may be found in [5].

The use of U in the clauses is necessary to handle degeneracy properly. The key problem
is that the predicate logic sentence

vx P(x)

is not well-defined when the quantification is over an empty domain. Including U in each
clause makes the domain of quantification explicit.

Specifically, with a set of positive constraints C' implying both (X isa non(X)) and
(non(X) isa X), we now know from Theorem 1 that U must be trivial, and only the trivial
interpretation is a model for C. However, if we were to omit the use of U(x) in the
clauses corresponding to C, resolution would be able to derive from C the clauses
(not X (x) Vnot X (x)) and (X (x) VX (x)), i.e.,

(not X (x)) and (X (x)).

The resolvent of these two clauses is false, indicating incorrectly that C is unsatisfiable.
By including U we obtain the clauses

(mot U (x) vnot X (x)) and (not U (x) vV X (x)),

with resolvent (not U (x)). This resolvent asserts there is no x for which U (x) is true. In
other words, U denotes &, as desired.

There are other connections between containment constraints and logic. Boole [2] points
out that containment constraints correspond to propositional logic equations. He gives
essentially the following table:

-27-

Containment constraint | Propositional equation
TiisaT, Ty = VAT,

T, isa non(T5) not7T, = VAT,
TintT, VAT, = VAT,

T int non(T) VAnotTy = VAT,
non(T)isa T, Ty, =VanotT,
non(T) isa non(T;) not7, = VAnotT,
non(T)int Ty VAT, = VanotT,
non(T () int non(T ;) VAnotT, = VAnotT,

A new propositional variable V is generated for each containment constraint. We can
infer then that (T'; isa T,) if we can show that Ty = W AT,, and infer (T'; int T5) if we
can show that W, ATy = W, AT,, where W, W, W, are conjunctions of zero or more
(possibly negated) variables.

In fact, when only positive constraints are considered, there is a direct connection
between containment inference and logic:

Theorem 6.

Positive Binary Set Containment Inference and Propositional 2-CNF Unsatisfiability are
equivalent. That is, for every scheme (7/U,C) there is a propositional formula f (C) in
conjunctive normal form with at most two literals per clause, such that

1. Cimplies (X isa Y) iff f(C)AX)A(notY) is unsatisfiable,
2. Chasonly the trivial model iff f(C) is unsatisfiable.
Proof

Propositional 2-CNF instances are formulas f on variables V,...,V, in conjunctive
normal form,

f=DyA - ADy
where each disjunct D; has one of the two forms

D; = (Liy)
D; = (L1 VL),

and each ‘literal” L;; is either a variable V or its complement not V.
Now in a containment scheme (T/U,C), C is a set of constraints
C = ((Xy isa Y1), Xg isa ¥3), *++ , X isa Yp)}.
Define a corresponding 2-CNF formula
n
fC)=MmotX; VY)A(motX, VYs)A - AotX, VY,)AUA _A1 (not T; v U).
=

We claim that f(C) is satisfiable iff C is nontrivially satisfiable. In fact, if C is
nontrivially satisfiable then it has a model I such that I (/) = {t}, a singleton set.

- 28 -

To see this, note that if C is nontrivially satisfiable, then all of the constraints in C are
satisfied. Since the i-th constraint

Xl' isa Y,‘
is equivalent to
mon(X;) v ¥;) = U.
It follows that the set expression
monX{) U YY) n(monX,) U YY) - N (non(X,) v Y,)

evaluates to U if, and only if, all constraints in C are satisfied.
We now assert that there is a nontrivial model / of C such that I (U) = (¢}, a singleton set.
To see this, note that we can use the Model Extension Algorithm given earlier on the
trivial interpretation, which is a model since we have only positive constraints. The
resulting interpretation 7 is a model with I(U) = (¢}, and I(T;) < (¢} for each type
symbol T; in T.
With this model we can construct a truth assignment

true if I(T;)={t

truth (T;)) = _ T =1e)
false if I(T)=0

Analogously, then, f (C) evaluates to true under this truth assignment if, and only if, the
interpretation [is a model satisfying all constraints in C. Hence C is nontrivially
satisfiable if and only if f (C) is satisfiable. [J

This theorem shows there is an inference procedure using resolution on the propositional
equivalent f (C) of a set of positive clauses. We check only for a proof of false from the
propositional logic equivalent of the containment constraints conjoined with the negation
of the constraint whose inferrability we wish to test. The algorithm is guaranteed to
complete in time at most O(n>), where n is the number of types in the scheme,

Example

Take the positive binary constraint set
C={aisanon), cisab, non(d)isac}.
The corresponding propositional formula f (C) is

f(C) = (mota Vnoth) A (notc Vb)A(@dVec)
AU ANMmota Vv U)AmotbVvU)A((motecVU)n (notd vV U).

Just as ISA2 and ISA3 imply
C F(aisad),

we determine that (not a Vv d) is a resolvent of f (C), whence

-29.

F(C) logically implies (nota Vv d)
or equivalently
F(C)YA(a)A(not d) is unsatisfiable.

-30-

7. Concluding Remarks

This paper generalizes the results in [1] to consider negation in various ways. The results
are encouraging, in that only a few rules are needed for complete binary containment
inference. As long as we are interested only in binary properties of containment among
sets, this gives us a complete inference system for set theory.

Perhaps the first work to be done is in developing algorithms using the inference systems
presented here. Algorithms are beyond the scope of what we wished to present here, but
the inference systems developed in this paper all run in polynomial time. A simple upper
bound is O(n>) where n is the number of types. Improved bounds will follow where
more is known about the type structure. For instance, few real type hierarchies seem to
be very deep. Even the standard biological taxonomy of living creatures is only about 10
levels deep.

When we begin to consider more complex forms of knowledge about types, such as
sentences like

(amphibian N non(tailed)) < (frog U toad)

the containment problem becomes NP-complete, and the inference problem co-NP-
complete. Still, it would be interesting to extend the binary rules in this paper for the
more general inference problem.

Other directions for further research lie in exploring graphical representations of the
constraints, as in [1], and in providing efficient algorithms for containment problems.
Also, there are a variety of ways to generalize the problems discussed here that the reader
has no doubt already considered. These include investigating alternative types of
‘syllogisms’, restricting values of U in interpretations (for example, specifying /(I/) in
advance), and so forth. The general area of containment inference is a new area in which
many problems wait to be studied.

Acknowledgement

Richard Huntsinger, Karen Lever, and Tom Verma gave the paper a careful reading and
suggested important improvements in the presentation.

-31-

Appendix I: NP-Completeness of the Set Containment Problem

NP-completeness of the Set Containment Problem can be shown by reducing the well-
known SAT problem [4] directly to it.

To show the problem is in NP, notice that a set containment scheme (T/U,C) has a model
if and only if it has a model over a domain D with cardinality at most N ;,,, the number of
intersection constraints in C. (Given a model 7 having domain D with cardinality greater
than N ;,;, a model I’ restricting I to a subdomain of cardinality N;,; can be constructed by
repeatedly discarding members of D that are not solely used to satisfy some intersection
constraint.} Thus we can solve the satisfiability problem for set containment schemes by
nondeterministically guessing an interpretation / having domain of size N;,, then
checking that [satisfies the scheme.

To make the reduction from SAT to set containment, suppose we are given a
propositional formula in conjunctive form,

f=DynA--+ AD,
on variables V,...,V,. Each disjunct D; is given by
Di = LV -+ Vi),
where each L;; is either some variable V or its complement not V.

We construct a corresponding set containment scheme S = (T/U,C) by putting T/U =
{U,Vy,..., V,}, and defining

C={UintU}U{C;11<i<m}

as follows,

For each literal L;; 1 <i €m, 1 £ j <r;,inthe disjuncts D; = (L;; V - -+ VL,), define
K, = { Vi if Lij =V,
non(V,) ifL;;=notVy
and let C; be the constraint
Cii Ky - UKy,) = U.
for 1 €i <m. Since any constraint
non(X;)u --- vnonX,)WY, v --- VY, = U
is equivalent to
X1 Xy isa Y10 - UY,,
C consists of the positive constraints C;, 1 £i <m, and the negative constraint U int U.

This defines S.

We claim that § is satisfiable if and only if the original formula f is satisfiable. If fis
satisfiable, then there is a truth assignment fruth satisfying f. Letting I(U) = {t} (a

-32.

singleton set),

1V, = {t} if truth(Vy)=true
Tl @ if ruh(vy) = false

for 1 £k < n. This interpretation can be seen to satisfy all the constraints in C since the
corresponding truth assignment satisfies f, and U int U is satisfied iff / (I/) is nonempty.

Conversely, if S has a model, then as shown above since it has one intersection constraint
it must have a model 7 that assigns 7 (/) = {¢], a domain of cardinality one. Reversing
the argument above, we find / induces a truth assignment satisfying f.

-33-

Acknowledgement

Richard Huntsinger, Karen Lever, and Tom Verma gave the paper a careful reading and
suggested important improvements in the presentation.

-34-

References

1.

Atzeni, P. and D. Stott Parker, Formal Properties of Net-based Knowledge
Representation Schemes, Proc. 2nd Conference on Data Engineering, Los
Angeles, CA, February 1986.

Boole, G., An Investigation of The Laws of Thought, Dover, 1958.
Gardner, M., Logic Machines and Diagrams, University of Chicago Press, 1982.

Garey, M.R. and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman and Co., San Francisco, 1979.

Loveland, D., Automated Theorem Proving, North-Holland, 1976.

Maier, D., The Theory of Relational Data Bases, Computer Science Press,
Rockville, MD, 1983.

Ullman, J.D., Principles of Data Base Systems, 2nd Ed., Computer Science Press,
Rockville, MD, 1984,

