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ABSTRACT OF THE DISSERTATION

Task Response Time and Module Assignment
for Real-Time Distributed Processing Systems
by
Kin Kwong Leung
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor Wesley W. Chu, Chair

Task response time is an important system performance measure for real-time
systems. An analytic model is introduced to estimate task response time for loosely
coupled distributed processing systems with real-time applications. The model con-
siders such factors as assignment of modules to computers, module precedence rela-
tionships, interprocessor communications, interconnection network delay and module
scheduling policy. Simulation experiments are used to validate the model assumptions

and to show the accuracy of the model.

The analytic model is first employed to investigate the effects of module pre-
cedence relationships on response times. Our study reveals that the distributions of

module execution times and the mean execution time ratio for a pair of consecutive

Xy



modules are major factors for the effects.

The task response time model is then used to study module assignment for dis-
tributed systems. Based on the model, a new local search algorithm for module as-
signment is developed. Firstly, each module is assumed to be allocated to a single
computer. Task response time is the optimality criterion, and the analytic model be-
comes the objective function. Search strategies are established to search for better
module assignments. Further, the algorithm is extended to handle module replica-
tions; that is, modules may be replicated on several computers. The design objective
for replicated module assignment is to minimize task response time with the thread
response time constraints. A new objective criterion which is the sum of task
response time and possible penalty delay to account for the violations of thread
response time constraints is introduced. With this objective function, not only module
copies are optimally assigned to computers, the proper module muitiplicities are also

iteratively determined by the algorithm so as to achieve the objective.

The algorithm is validated by applying to two distinct distributed systems for
space defense applications. One system does not require module replications while the
other does. The sub-optimal module assignments generated by the algorithm provide
excellent response time performance on both systems since the analytic model has
considered all major factors that affect task response time. Therefore, the algorithm

can serve as a valuable tool for distributed systems design.

xvi



CHAPTER 1

INTRODUCTION

1.1 REAL-TIME DISTRIBUTED PROCESSING SYSTEMS

In real-time systems, a task is a sequence of system functions which must
finish within a specified time period if the systems are to perform properly (e.g., pro-
cess control and space defense applications). To meet the real-time requirements, it is
desirable to share the processing workload among several computers (processors .
This technique is referred to as distributed processing. In addition to execution
speedup, distributed processing can also provide cost-effective system designs, incre-
mental system growth, better system reliability, and grace performance degradation in

case of failures, etc.

The spectrum of distributed processing systems ranges from multiprocessor
systems in which processors share common memory to sets of processors which are
geographically dispersed and communicate via message exchanges. Herein, we con-
sider real-time distributed processing system (RTDPS) (e.g., the Distributed Process-
ing Af;:hitecture Design (DPAD) System [GREES80]) which is commonly known as
loosely coupled distributed processing system. This system is solely dedicated for a

I "Computers” and “processors” are used interchangeably in this dissertation.



given real-time application task. The RTDPS consists of a set of processors connected
together by an interconnection network which may be a fully connected network, a
store-and-forward network or a local area network (e.g., a multi-access communica-
tion channel). Communications among processors are provided in the form of mes-

sage exchanges.

Each processor has its own memory and self-autonomy thus all processors are
equally important and no master-slave relationship among processors exists. A distri-
buted operaring sy.s::em (DOS) is residing on each computer. Besides performing the
functions such as memory allocation, scheduling and file management, the DOS also
participates in the concurrency control, interfaces with communication subsystems,
and exchanges information with other computers to guard against overloading and
system failures. A typical execution cycle on each computer runs in the following se-
quence: processing messages from remote computers, dispatching a job for execution,
sending output messages to remote computers, and other miscellaneous system
management work. For real-time applications, the DOS usually does not provide in-
terrupt facility as: (1) to eliminate interrupt overheads; (2) to avoid complicated data
inconsistency problems which may occur during interruptions; and (3) to keep the
variance of response time small, otherwise may be largelv increased due to program

interruptions.

In a RTDPS, the application task is partitioned into a set of software modules

(or simply, modules). The task is repeatedly invoked to meet the processing require-



ments (e.g., processing radar return signals). Task response time or port-to-port
(PTP) time is defined as the time from the task is invoked to the completion of the
task execution. In some cases, the response time for the executions of a sequence of
modules, which is referred to as a thread, is of interest. The thread response time (or
PTP Time of the thread®) is the time from the request for the first module to the com-

pletion of the last module execution in the thread.

During the task execution, modules need to communicate with other modules
via message exchanges. These messages are called intermodule communication
(IMC). For a specific application task, the volume of IMC messages among moduies
is determined by the process of rask parririoning. Therefore, it is desirable to parti-
tion the task to minimize the IMC among modules. In distributed systems, IMC is
usually facilitated by sharing common data files and/or direct message exchange. The
overhead for message exchanges on a local computer is usually small and can be as-
sumed to be negligible in most systems. However, if IMC messages are sent to a re-
mote computer via the interconnection network, the messages become interprocessor
communication (IPC). Clearly, the IPC load in a distributed system depend on the
IMC and the assignment of modules to computers. These [PC messages requires such
extra processing as communication protocol and management of the distributed data
files. IPC presents extra processing load on both the transmitting and the receiving
computers. Therefore, IPC has significant impact on the system performance and
response time. The importance of these impacts have been recognized by many

TUnless specified for a thread, PTP time is referred to the response time of the entire
application task.



researchers (JENN77, CHU78, MA32, CHU34].

If data are shared among modules residing on different computers, to provide
fast local accessing and to enhance file availability, some of the shared data files are
replicated on several computers. However, maintaining the data consistency of the re-
plicated copies requires the use of a concurrency control mechanism. A number of
consistency control techniques such locking, timestamp and exclusive-writer protocol
[BERNS8!,CHU85a] have been proposed. Besides the extra processing overhead due
to the concurrency control protocol, file replications also increase the total IPC on the
system because more than one file copy need to be updated. In the contrary, if a file is
not replicated on a local computer, accesses to the file during module executions be-
come read/write requests on remote computers where the file is located. These remote
file accesses as a form of IPC of course incur the interconnection network delay and

wait for response on the remote computers, thus degrading the task response time.

Therefore, planning a distributed system is complicated by many such com-
plex and inmﬂcmndcnt design issues as task partitioning, module and file assign-
ment, data base management algorithm, etc. Presently, there is no systematic metho-
dology for designing distributed systems. Existing system designs use ad hoc methods
which result in a trial-and-error approach. Since response time is an important perfor-
mance measure in real-time systems, we conduct this research to develop an analytic
model for estimating response time for distributed systems. The model can then be

used as a unified approach for studying various distributed design issues and explor-



ing the tradeoffs among different choices.

1.2 SOME RELATED DESIGN ISSUES OF RTDPS

The merits of distributed processing: response time, throughput, system avai-
lability and incremental system growth, have made this system architecture appealing
to many applications. However, the expected system performance and merits may not
be accomplished unless the distributed system is properly designed. Here we discuss
some important desig-n issues of RTDPS which are related to the main theme of this
research. The design issues discussed in the following include: (1) task partitioning,
(2) module assignment (or task allocation 1y, (3) module replication and (4) file alloca-

tion.
1.2.1 Task Partitioning

The main purpose of distributed processing is to fully utilize the available
computing resources by distributing the processing workload on several computers.
Thus, the first step to RTDPS design is to partition the application task into a set of
smaller and well-defined subtasks which are implemented in programming languages.
These software modules are ready for allocation to computers. In general, task parti-
tioning is strongly dependent upon the nature and inherited parallelism of the applica-
tion task under consideration. Although few results on this issue were published in the

literature, system designers usuaily find the following guidelines useful for task parti-

In this dissertation, "task allocation’ 1s to assign modules to computers. Thus we
refer this process as to module assignment. Nevertheless, "task allocation” is a
popular term.



tioning.

(a) It is desirable to exploit the inherited parallelism of the application task. That is to
partition the task such that synchronizations among modules are eliminated as
much as possible. Therefore, modules can be executed concurrently on several

computers.

{b) Modules’ execution times should not differ so much from each other because
similar module sizes often facilitate even load balancing among computers. In
addition, too large a module execution time may delay the response to the re-
quests of some urgent module executions if module execution is non-
interruptable. Too small a module usually wastes the computing capacity as
much operating system overhead is incurred in scheduling when comparing

with the amount of useful computation performed by the module.

{c) The data input and output characteristics of each module are determined by task
partitioning. It is advantageous to partition the task such that amount of IMC's
among modules is small. As a resuit, the total IPC on the system can be kept

small and most of the computing power is used for actual application process-

ing.

Clearly these design factors are interrelated with each other. For example, in
order to reduce IMC, in one extreme, one might keep the entire application task un-
partitioned as no IPC will be generated on the computers. However, it totally neglects

the possibility of concurrent module processing. In some situations, a large module



should not be further partitioned due to the nature of its processing requirements
and/or avoidance of generating a large volume of IMC. Although we know little about
the general approach to efficient task partitioning, a good task partitioning ought to be

a proper balance and tradeoff among these factors.

In this context, we shall assume that the task of the RTDPS under considera-
tion is well partitioned into moduies and the precedence relationships among them can

be represented by a task control-flow graph.

1.22 Module Assignment

The assignment of modules to processors affect the response time, throughput
and system reliability. Several approaches to module assignment in distributed pro-
cessing systems have been proposed {STON77, RAQ79, PRIC79, MA82, CHOU32,
EFES82, SHENSS, CHU85b, etc.]. These techniques include graph-theoretic,
mathematical programming, and heuristic approaches. Instead of doing a survey on
various module assignment strategies, here we discuss: (1) the key factors considered
in these methods, and (2) their shortcomings when applying to the RTDPS. These
drawbacks have motivated us to investigate some better approach to module assign-

ment for RTDPS.

The key parameters considered in these approaches mainly are (a) module exe-
cution times (costs) and (b) interprocessor communication times (costs). Their basic
notion in performing module assignment is to balance the computational load, includ-

ing (a) and (b), among the processors such that either the total system time (cost) is



minimized or computer loads are well balanced. Besides balancing the processing
load, logical and precedence relationships among modules, queueing effect and inter-
connection network delay also have significant influence on the performance of
module assignments. Especially for RTDPS where the response time i$ an important

performance measure, these effects should be considered in module assignment.

[STON77] and [RAO79] use graph-theoretic algorithms which are tractable
only for systems with two computers. Algorithms proposed in {(MAS82], [EFE82],
[CHOUB82) and [SHENS&S] balance the workload on computers but neglect the im-
pacts of module precedence relationships. Further, the approaches proposed in the
literature usually assume that the application task is invoked only once. As a result,
the queueing effect is ignored which affects the response time. This assumption used
in the algorithms do not represent the actual operating environment in a RTDPS.
Therefore, their "optimal® module assignment does not necessarily provide good
response time. Moreover, the interconnection network delay is disregarded in the
module assignment methods, but the network delay may have tremendous effect on
system response time, especially if the network bandwidth in the RTDPS is not
sufficiently large. In one extreme, modules may prefer to be allocated to a single pro-
cessor instead of several processors to avoid the prohibitively high network delay. In
summary, all these aforementioned factors substantiate that mere balancing the work-
load among processors is inadequate in module assignment to achieve a low system

response time.



1.2.3 Module Replication

More importantly, all module assignment algorithms proposed so far do not
consider module replications. This is, modules may be allocated to several processors
instead of a single processor for executions. Sometimes, certain modules need to be
replicated in RTDPS due to the considerations of response time requirements, system
reliability, and/or some other constraints. In general, module replications may im-

prove the system performance under one or more of the following circumstances:
(a) To meet strict response time specifications

In general, some moduies of a given real-time application task are more urgent
(or crucial) than others. And, these modules require rapid response from the proces-
sors. For example, the process of discrimination of offensive missiles is far more
critical in terms of response time than search op&ﬁons for new incoming objects in a
space defense application. Therefore, it is desirable to satisfy these urgent modules
with a much stringent response time requirement. Apparently, one way to meet the
requirements is merely to assign a high execution priority to these modules thus re-
ceiving quicker response at the expense of other moduies. However, if the requests for
the urgent module executions come in a bursty manner, this approach may violate
their real-time constraints. On the other hand, these modules may be replicated on
several processors in addition to being assigned with a high priority. Thus, bursty exe-
cution requests can be routed to and executed on several processors to share the pro-

cessing load for achieving the desired response times. Hence, besides load balancing,



module replication is also a good altermative to meet strict response time

specifications.
(b) To enhance system reliability

Module replication is similar to file replication in RTDPS in terms of enhanc-
ing system reliability. By replicating the important modules on several processors, re-
quests for these modules can be processed on more than a single site. Therefore,
module replications improve the system availability for the essential module execu-

tions in the presence of system failures.
(¢) To achieve load balancing

The loading on each computer depends on the execution times and invocation
rates for the residing modules. Clearly, the module execution times are pre-
determined by the task partitioning process in the early stage of system design. Of
course, these execution times cannot be changed at the phase of module assignment.
However, if modules are replicated, requests for these modules can be routed to the
several computers for executions. Thus replicating modules in effect reduces the in-
vocation rate for each replicated module copy on a computer. By adjusting the mult-
plicity of a replicated moduie, one can reduce the invocation rates for the replicated
modules on each computer to a desirable level. As a result, the processing load due to
the replicated modules can be evenly balanced on several computers. More impor-

tantly, module replications therefore do provide a new degree of flexibility for

10



efficient system design in the hope that the computing resources are better utilized and

the response time requirements can be satisfied.

The current module assignment algorithms neglect: repeated task invocations,
IPC, module precedence relationships, queueing effects, interconnection network de-

lays, and moduie replications. The new approach should remedy these drawbacks.

1.2.4 File Allocation

The other related design consideration for RTDPS is to replicate and distribute
data files so that they can be efficiently accessed and generate less amount of [PC.

This is commonly referred to as file allocarion (or file assignment).

The optimal file allocation problem for multiprocessor systems with multiple
files was firstly studied by Chu [CHUG69]. Chu considered storage and transmission
costs, file lengths, and read and update rates. The optimal allocation yiclds minimum
overall operating costs. Subsequently, a lot of research effort [CASE72, MORG77,
CHENS0, COFF81, RAMAGS3, etc.] has been dedicated to the problem. Most of them
partitioned the multiple file allocation problem to muitiple single file allocation sub-
problems. Minimizing the communication and storage costs is commonly used as an
optimality criterion. The allocation models are usually formulated in the form of a 0-
1 integer programming problem. In particular, both [CASE72] and [COFFB81] at-
tempted to determine the optimal number of copies of a data file. MORG77] con-
sidered the placement of files and programs which use these files. [RAMARS3]

showed the isomorphism between the simple file allocation problem (without

11



response time consideration) and the single commodity warehouse location problem
in operations research, therefore some results by operations researchers can be adopt-

ed for selving the file allocation problems.

In RTDPS design, module and file assignment problems are coupled together:
(1) since file accesses are generated by module executions, file access rates on each
computer are dependent upon how modules are assigned to computers; and (2)
module waiting tmes and processing loading on computers also depend on the
volume of [PC’s géncratcd due to file accesses. Morgan and Levin (MORG77] con-
sidered the assignment of program and data files to computers in which file accesses
are generated from program executions. However, the followings are their drawbacks

when applying to RTDPS environments:

(a) The model only considers the communication and storage costs for file accesses

and programs, but neglects IPC, processor loadings and queueing times.

(b) "Programs” in [MORG77] are equivaient to modules in our RTDPS. However,
[MORG77] does not take the logical and precedence relationships among

modules into consideration.

(¢) Communication and storag® costs are assumed to be known in the allocation
model. Since response time is an important performance measure in RTDPS, it
is desirable to approximate the response times by proper selections of com-
munication and processing costs. However, these costs are usually difficult to

estimate in a loaded snvironment like RTDPS.

12



Of course, it will be advantageous to perform module and file assignments at
the same time. As a result, the interactions among modules and data files can be con-
sidered and the task response time for the RTDPS can then be truly minimized. How-
ever, simultaneous assigning modules and files to computers in order to minimize the
task response time is very complicated because actuaily four design sub-issues are in-
volved in the problem: (1) to determine the optimal number of copies for each
module; (2) to allocate the module copies to computers; (3) to determine the optimal
number of copies of each data file; and (4) to allocate file copies to computers. Evena
simple module assignment problem in a2 multiprocessor system has been proved to be
a NP-compiete probiem [GARE77] for which a polynomial time bound algorithm is
very unlikely to exist Thus all four sub-issues together further increase the problem
complexity and make it more difficult to formulate. As a first step to this complex
problem, we concentrate ourselves on module assignment aspect. In this research, we
treat the file allocation aspect by assuming each data file which is shared by several
modules is stored (or replicated) on each computer which needs access (read and/or

write) to the file.

1.3 CONTRIBUTIONS OF THIS RESEARCH

The major contributions of this research lie in three areas: (1) a new analytic
model to estimate task response time for RTDPS is introduced; (2) the model is em-~
ployed to study the impacts of module precedence relationships on response times;
and (3) based on this model, a new module assignment algorithm for the distributed

systems is developed.
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Response time is an important design criterion for real-time systems. There-
fore, it is desirable to design a RTDPS such that its response times are minimized. In
general, either analytical or simulation techniques can be used to study response times
for RTDPS. However, simulation methods usually tend to be more expensive and
time-consuming. These shortcomings have led us to pursuing analytical approaches.
To overcome the inadequacies of current analytical approaches, a new analytic model
is introduced to estimate the task response time for the distibuted systems. The
model considers such factors as module precedence relationships, [PC, interconnec-
tion network delay, module scheduling policy, and assignment of modules and files to
computers. Simulation experiments are used to validate the model assumptions and

show the accuracy of the model.

The analytic model can be used in various design study for distributed sys-
tems. Firstly, the model is employed to study the importance and the effects of
module precedence relationships on response times. Secondly, since the analydc
model accurately estimates task response times for various module assignments, the
model can be used to perform module assignment. Based on the model, a new local
search algorithm for module assignment in RTDPS is developed. In this algorithm,
the task response time becomes the objecuve criterion which is optimized over the
solution space ~- module assignments, and the model is used as the objective function
for the problem. Search strategies are established in the algorithm to look for better
module assignments. We first consider the cases where each module is allocated to 2

single computer. Then, we extend the algorithm to handle cases where each module

14



may be replicated on several computers. For the distributed systems where module
replications are required, not only the module copies are optimally allocated to com-
puters, but the appropriate module multiplicities are also iteratively determined by the

algorithm.

The module assignment algorithm is applied to two distinct distributed sys-
tems. One of them requires module replications while the other does not. The solu-
tions from the algoﬁthm provide excellent response time performance because the
task response time model has considered all major factors that affect the task response
time in the distributed systems. Therefore, the module assignment algorithm can

serve as a valuable tool for distributed systems design.
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CHAPTER 2

TASK RESPONSE TIME MODEL FOR RTDPS

2.1 INTRODUCTION

With the advent of low-cost VLSI and communication technologies, distribut-
ed processing has become an economically and technologically attractive computer
architecture. The distributed system considered here consists of muitiple computers,
each with its own memory and peripherals, connected by an interconnection network.
This type of systems is commonly referred to as loosely coupled distributed process-

ing systems.

Recall that an application task in a RTDPS is often partitioned into several
sub-tasks (i.e., software modules) which are assigned to a set of computers for pro-
cessing. An example of a task consisting of fifteen modules assigned to a system with
three computers is shown in Figure 2.1. The logical structure and precedence rela-
tionships among the software modules may be represented by a task control-flow
graph. The task is repeatedly invoked to meet the processing requirements (e.g., pro-
cessing return signals from a radar). After a module completes its execution, it sends

messages to enable (invoke) its succeeding module(s) as indicated in the task
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control-flow graph. In addition, when a module finishes its execution, it may aiso send
messages to update the shared data files on other computers. Such message ex-
changes among modules are referred to as intermodule communication (IMC)
[CHU84]. The overhead for communications among modules that reside on the same
computer is usually small and can be assumed to be negligible. If messages are sent
between modules that reside on different computers, the messages are called interpro-
cessor communication (IPC). IPC requires such extra processing as communication
protocol and management of the distributed data files, and incurs interconnection net-
work delay. Therefore IPC has significant impact on the system performance and

response time.

If data are shared among modules residing on different computers, some of the
shared data files are replicated on several computers. However, maintaining the data
consistency of the replicated copies requires the use of a concurrency control mechan-
ism (e.g., locking, timestamp, cﬁclusive-writcr protocol). Therefore, planning a dis-
tributed system is complicated by many such complex and interdependent design is-
sues as module and file assignment [CHUSO0], module scheduling policy, database
management algorithm, ctc. Presently, there is no systematic methodology for
designing distribute? systems. Existing system designs use ad hoc methods which
result in a trial-and-error approach. Further, since RTDPS often are required to per-
form time critical functions, response time is an important performance measure.
Simulation techniques are used to estimate the response time, but such approaches arc

time-consuming and expensive. This motivates us to develop an analytic model for
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estimating the response time for these systems. The model can be used as a unified
approach for studying various RTDPS design issues and exploring the tradeoffs

among different design choices.

We shalil first present our task response time model based on module response
times and the weighted task control-flow graph. Next, we present a set of simulation
experiments to validate the assumptions used in the model for various types of logical
structures and precedence relationships among modules. Finally, we discuss the use
of the model to study the interrelationships among task response time, module assign-
ment, precedence relationships, scheduling policy for module executions, and data-

base management algorithms.

2.2 A TASK RESPONSE TIME MODEL

Queueing networks [BASK7S5, HEID82, LAZO84] are commonly used to
mode! distributed processing systems. In such models, computers are represented as
servers, modules as customers, and task invocations correspond to external arrivals.
Customers are routed for service in accordance with the task control-flow graph and
the module assignment. In distributed systems, a module may enable more than one
modules. This is referred to as a FORK in the graph. Alternatively, a .1odule may
have several immediate predecessor modules which must complete their executions
before the succeeding module can be executed. This is referred to as a JOIN. When a
control-flow graph consists of FORKs and JOINs, the routing scheme in the queueing

network model is inadequate to represent the logical relationships among modules.
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Thus the system cannot be represented by a tractable queueing network model.

Therefore, we introduce a new model to estimate the task response time.

Task response time, ot port-to-port (PTP) time, is the time from the request of
a task invocation to the completion of its execution. Since a task may be repeatedly
invoked and the modules are enabled according to the sequence as indicated in the
control-flow graph, task response time consists of module waiting times, module exe-
cution times and precedence waiting times. Module wairing time is the time from a
module invocation arrival until it starts its execution on a computer. This waiting
time is the time spent waiting for module executions and input IPC processings.
Module execution time is the sum of a module’s execution time and its output IPC
time. Let the sum of a module’s waiting time and exccution time be denoted as
module response time. The precedence waiting time is the intermodule synchroniza-
tion delay due to the precedence relationships among modules. OQur task response
time model consists of two sub-models: module response time model and weighted
control-flow graph model. The first sub-model computes the module response times,

while the latter considers the precedence waiting times.

2.2.1 Module Response Time Model

For a given module assignment, each computer will execute a fixed set of
modules. The response time of a module is the time from its invocation to the com-
pletion of its execution. Thus module response time includes waiting (queueing) time

and module execution time. If 2 module needs to send messages to other computers,
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the output IPC time is included as a part of the module execution time. Further, these
IPC’s are transmitted over the interconnection network, and eventually arrive at their
destinations. These input IPC’s on the destination computers can be viewed as a spe-
cial module which also contends for processing. Based on the module assignment and
IMC’s among modules, IPC processing times can be obtained. Let the module execu-
tion times be characterized by probability distribution functions (PDF’s). Then each
computer can be modeled as a queueing system with several modules (customers of
different types) wit‘h specified service distributions. Based on the logical structures
among modules and task invocation rate, the invocation rate of each module on the
computer can be determined. In queueing terminology, moduie invocations are custo-
mer arrivals. If several modules on the same computer are invoked simultaneously,

this results in a bulk module invocation.

In our model, we assume that (1) the module invocation arrival (single or
bulk) processes are independeat of each other, and (2) module invocation interarmival
times are Poisson distributed. To illustrate the concept, let us determine the modules’
response times on a computer that uses first-come-first-serve (FCFS) scheduling poli-

cy ! for module executions.

Consider a computer that has m distinct module invocations (single or bulk in-
vocations), and the arrival rate for the i module invocation be A; and the Laplace

Transform (L.T.) of the service requirement be U/ (s) for i=1,2,...m. One of these m

T The model can be applied to other module scheduling policies with the use of
appropriate queueing delay equations.
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module invocations (say the ¢ ™) represents the input IPC on the computer. Thus A,
and UJ(s) are the arrival rate and L.T. of processing time for the input [PC. For the
i"" bulk invocation that invokes a set §; of distinct modules (referred to as module

bulk), the corresponding service requirement is U,-'(s =I11X j‘(.s ), where X j-'(s) is
jes;

the L.T. of the service time of module ;.

Based on the assumptions 1 and 2, this queueing system is an extension of the

m
regular FCES M/G/1 queue with total arrival rate A= 3 A;, and the L.T. of service

i=]

. m A )
time for each invocation arrival is U (s)= ¥, T' U;'(s ). For the M/G/1 queue, the

=1

first two moments of the module bulk waiting time from the bulk invocation arrival

until its first module starts to execute are

S
7= i=l
2(1 - p) 2.1
Shiu?
d wli=2@)P+ o—
an w (W) 30 -p) 22

wiiere:

uf* = n* moment of service time for i** module invocation,

m ———
p = server utilization = ¥ A;u;!,

i=i
w = average module bulk waiting time.

From Egs.(2.1) and (2.2), we obtained the variance of module bulk waiting time as
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Eli‘:i_s EM"?
i=l =]
(1-p) 2(1-p) (2.3)

0‘3 =1;r-2-— (W)2=2(\7)2+

In a bulk invocation, a set of modules are invoked at the same time. Based on
the resource requirements, the operating system schedules the execution sequence for
these modules. Let the sequence be j | ,j7 ... je=1 Jk » e+l »--- The response time (2
random variable) for module j, is

k
tUp)=w+ X x(ji)
i=1 (2.4)
where:
w = module bulk waiting time,
x(j;) = execution time for module j; .
The average response time T (i) for module j, can be obtained by taking the expect-
ed values of Eq.(2.4). We have
k
TU=w+ T x(i)
i=1 (2.5)

Since w, x(j;) and x(j;) are independent random variables, the variance
0',2(;',,) of the response time for module j, is the sum of variances of each component
in Eq.(2.4). Hence

o) =o + f SZ(j;)
P (2.6)
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where cf(jk) is the variance of execution time for module j, and cf, is given in
Eq.(2.3). For the case of a single module invocation, there will be only a single

module in the execution sequence.

2.2.2 Weighted Control-Flow Graph Model

To take into consideration the precedence waiting times due to the intermodule
relationships as indicated in the task control-flow graph, we map the mean and vari-
ance of the module response times (computed by the module response time model)
onto the control-flow graph as arc weights (Figure 2.2). The response time for
module i is assigned as the weights for all arcs emerging from module i in the
control-flow graph. After the execution of module i, if it enables module j which is
residing on a different computer, the module enablement message is transmitted via
the interconnection network. Since the network delay is independent of moduie
response times, the mean and variance of network delay ! can be added to the weight
of the arc from module i to j. Then the task response time can be estimated from this

weighted control-flow graph model.

According to the logical structures and precedence relatonships among
software modules, there are four common types of control-flow subgraphs: sequential
thread, And-Fork to And-Join, Or-Fork to Or-Join, and loop (Figures 2.3 to 2.6). A
task control-flow graph may contain a combination of these basic logical relationships

T Network delays among any pair of computers may be different depending upon the
characteristics of the interconnection network.
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among modules. Each of these graphs can be reduced to a single node graph. Such

successive graph reductions yield the estimation of the task response time.

2.2.2.1 Sequential Thread Subgraph

Sequential thread subgraph (Figure 2.3) is a sequence of modules connected in
series in which each module (except the last) has a single successor. Modules execute
in the sequence indicated by the thread Assuming that module response times
represented by arc weights are random variables, then the total response time of the

thread is the sum of all arc weights of each module.

2.22.2 And-Fork to And-Join Subgraph

This subgraph begins from a module which simultaneously enables several
succeeding modules (an and-fork) and ends at a module which is enabled only when
all of its preceding modules have completed their executions (an and-join) as shown
in Figure 2.4. This subgraph may correspond to the case in which the modules as-
signed to different computers require concurrent processing. Since sequential threads
can be reduced to a single node as mentioned above, the and-fork to and-join sub-
graph can be aggregated into several nodes V; with response time y; for i=1,2,..n
(Figure 2.4). Because of the and-join function, the response time of the subgraph is

the maximum of y;’s.

Computing the response time for this subgraph requires the knowledge of the

PDF’s for y;'s, which is rather complicated. In this study, we shall emphasize mainly
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the average task response time, which usually can be determined by the first two mo-
ments of module response times. Therefore, these moments are derived from the
module response time model. According to the coefficients of variation of y;'s, they
can be approximated by either Erlangian or hyper-exponential distribution functions
[SAUES1]. Assuming that y;’s are independent, the joint PDF for y;’s can be com-
puted. Thus the mean and variance of the response time for the subgraph can be ob-

tained (See Appendix A).

2.2.2.3 Or-Fork to Or-Join Subgraph

This type of the subgraph consists of an or-fork and an or-join as depicted in
Figure 2.5. At the or-fork, the module enables one of its succeeding modules. This
type of subgraph facilitates the system to process one out of several threads based on
certain selection criteria. The branching probability to execute cach thread can be
measured or estimated from the IMC data. The response time for the subgraph is the

sum of all these threads’ response times weighted by their branching probabilities.

2.2.2.4 Loop Subgraph

Loops are often contained in a task control-flow graph for repeatedly process-
ing a set of modules for a task invocation. A loop may contain any of the aforemen-
tioned subgraphs. After aggregating these subgraphs, a loop may be represented by a
single cyclic node graph as shown in Figure 2.6. The arc weight is the response time
of executing a single loop. The response time of the loop subgraph can be computed

from the average number of times that the loop is executed multiplied by the time re-
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quired to execute a single loop.

2.2.3 Module Response Times With Dependent Module Invocations

In Section 2.2.1, module invocations are assumed to be independent and their
interarrival times are Poisson distributed (assumptions 1 and 2). Thus, the logical
dependency and the precedence relationships among modules are neglected when
computing the module response times. The independence assumption is based on the
following obscrvations. Each computer is allocated with several modules which are
enabled by modules residing on other computers. Since the operation of each comput-
er is independent of each other, the module invocation arrival processes at each com-
puter are random and thus can be approximated by independent Poisson processes.
However, if a module is invoked by another module residing on the same computer
(e.g., assigning a sequential thread to the computer), then the moduie invocations are
dependent and non-Poisson arrivals. The error introduced in computing the mean
module response times in such cases may be unacceptable. Therefore we introduce
the following generalized mode!l to compute the mean module response times for

dependent module invocations.

2.2.3.1 Partitioning the Control-Flow Subgraphs

Based on a module assignment, we partition the control-flow graph into a set
of subgraphs such that the modules of each subgraph are allocated to the same com-
puter. Each control-flow subgraph on a computer is invoked by other computers via

the interconnection network. Exampies of such subgraphs are shown in Figure 2.7.
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Due to the relationships among modules as indicated in the subgraphs, the invocations
of these modules are dependent upon each other. In addition, the dependency among
the modules at the forks and joins increases the computation complexity for module
response times. For tractability while considering the precedence relationships among
modules, we further partition the subgraphs into several smaller ones at the forks or
joins. As a result, the partitioned subgraphs become sequential threads (Figure 2.3).
Figure 2.8a is a special case where two sequential threads are invoked simultaneously
via bulk module invocations as they succeed an and-fork in the original control-flow
subgraph. Further, if a sequential thread has an or-fork (Figure 2.8f) and the control
branches to a module residing on another computer, then the execution terminates at

the or-fork.

2.2.3.2 Mean Module Response Times for Partitioned Subgraphs

Since computing the mean module response time is simpler than computing its
variance, we are able to relax assumptions 1 and 2. Let us refer to the first module of
each sequential thread in a subgraph as the entry module, and other modules as non-
entry modules. We assume: (1a) the invocations for the entry module(s) of each sub-
graph are independent of each other, (2a) the interarrival times of these invocations
are exponentially distributed (i.e., Poisson arrival processes). In this case, only the in-
vocations for the entry modules are independent and Poisson arrivals, and the invoca-

tions for non-entry modules may be dependent and non-Poisson arrivals. Thus the
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mean module response times ! computed under these relaxed assumptions include
such module precedence relationships as sequential threads, bulk module invocations

at and-forks, and branching at or-forks.

Let us consider the response times for entry modules. Due to Poisson arrivals,
the average waiting time for a given entry module is the processing time required to
execute all the module invocations existing (waiting or being executed) on the com-
puter upon the arrival of the entry module invocation. When several entry modules
are invoked simultan.eously, these modules are executed in a predefined sequence. Ex-
cept the first module in the sequence, the mean module waiting time for a given entry
module is the sum of the module bulk waiting time and the execution times of those

modules processed prior 10 the module (Same as Eq.(2.4)).

Let us now consider the waiting times for non-entry modules. After an entry
module finishes its execution, it enables its succeeding module as indicated in the sub-
graph. Since the invocatioﬁ arrivals for the non-entry modules no longer form a Pois-
son arrival process, we need to keep track of the ’history’ of the module executions
since the arrival of that entry module invocation. During the waiting time of the entry
module, new module invocations may arrive from other computers, and some of
modules waiting in front of the entry module may invoke their succeeding modules.
These module executions will become the waiting time for the non-entry module,
which can be divided into three components, and computed as shown in the Appendix

For mathematical tractability, the variances of module response times are computed
under the independent Poisson assumptions.
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B. The module response times can be obtained by summing the respective waiting

and execution times.

Our study reveals that for most subgraphs, the module response times based
on independent and Poisson module invocation assumptions are very close to those of
the dependent module invocations. The dependent module invocation approach pro-
vides more accurate module response times only when the modules assigned on a
computer form a long sequential thread. This reveals that assumptions 1 and 2 are

reasonable, and provide good approximations for most cases.

2.3 MODEL VALIDATION

To validate the proposed task response time model, simulation experiments
were performed via two simulation packages: a queueing network based simulation
package PAWS [BERR82], and a simulator of the Distributed Processing Architecture
Design (DPAD) System [GREES0] for real-time space defense applications. In the
PAWS simulation, computers are modeled as servers, and module invocations are
represented as customers which request services from the servers. The service times
correspond to the module execution times. After receiving service, a customer is
transferred to another server queue according to the task control-flow graph and the
module assignment. A customer goes through the interconnection network if it is
transferred from one server to another. The network is represented by a server which
always delays each customer according to the network delay distribution function be-

fore passing the customer to its destination server. As a result, the module invoca-
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tions are dependent upon each other, and their arrivals are non-Poisson distributed.
Further, the queueing discipline on a computer is aiso used for the corresponding
server queue. For an AND-FORK operation, the module invocation is split into
several modules and routed to their appropriate servers. For an AND-JOIN opera-
tion, the module following the join waits until all precedent modules complete their
executions. The precedence and logical relationships among modules are preserved in
the simuiation. Therefore, PAWS provides a flexibility for testing different types of
task control-flow graphs. However, it uses idealized external inputs (e.g., Poisson task

invocation arrivals) and does not include the detailed operating system overhead.

We have performed the simulation to obtain the mean PTP times for selected
types of task control-flow graphs. To reach the stcady state of the queueing systems,
the task is invoked ten thousand times for each simulation run. In order to aviod the
instability of computers due to overloading in the simulations, the maximum task in-
vocation rate is thus chosen that utilization of each computer is less than 80%. Furth-
er, each simulation experiment is repeated five times with different initial random
numbers to reduce the statistical fluctuation. Here let us consider the sample task
control-flow graph in Figure 2.1a with its parameters given in Table 2.1. It consists
of sequential threads, an And-Fork to And-Join, an Or-Fork to Or-Join, and a loop.
These modules are assigned to three identical computers for processing, and the sys-
tem has a constant network delay of 0.2 second for message exchanges among com-
puters. Figures 2.9 to 2.12 present the mean response times for these subgraphs and

the whole task for the module assignments (Table 2.2). We aggregate the response
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MEAN EXECUTION TIME
MODULES (in sec) DISTRIBUTION
1, 2, 3, 4, 5 1 EXPONENTIAL
6, 7, 8, 9, 10 2 EXPONENTIAL
11,12,13,14,15 3 EXPONENTIAL

Table 2.1 Module Execution Times for the Sample Control-Flow
(Figure 2.1a)
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Figure 2.9 Mean Response Time for the And-Fork to And-Join Subgraph
of the Sample Control-Flow Graph (Figure 2.1a)
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Figure 2.10 Mean Response Time for the Or-Fork to Or-Join Subgraph
of the Sample Control-Flow Graph
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Figure 2.11 Mean Response Time for the Loop Subgraph of the
Sample Control-Flow Graph
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Figure 2.12 Mean Task Response Time for the Sample Control-Flow Graph



times of sequential threads, the and-fork to and-join, the or-fork to or-join, and the
loop, and finally obtain the PTP time for the entire graph. The comparisons of analyt-
ical PTP time predictions to simulation measurements for all module assignments in
Table 2.2 are shown in Table 2.3. These simulation experiments reveal that the ana-
lytic estimations show a relative error of less than 10% even when the heaviest loaded
computer has a processor utilization up to 70%. Besides this control-flow graph, we
have also studied the performance of the analytical model for various types of
control-flow structures. The fact that mean response times from the analytical modei
compare closely with that of simulations reveals that the assumptions used in the
analytical model (independent and Poisson module invocation arrivals) are good ap-

proximations for response time estimations.

The PAWS simulation is very time-consuming. Depending on task invocation
rates and control-flow graphs, each simulation point requires five to ecight hours of
VAX-11/780 processing time. While for the analytical model, the response time com-
putation for a given module assignment under various loading environments requires
less that one minute of CPU time. This represents a reduction of three orders of mag-

nitude in computation time!

We now describe the model validation via the DPAD simulator!. The DPAD
system is a RTDPS which processes radar return signals for space defense applica-

tions. The DPAD simulator provides detailed operating system operations for module

'The DPAD simulator was originally developed at TRW and subsequently enhanced
at UCLA to include facilities for measuring IMC data, module execution ume and
invocation statistics.
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scheduling and IPC message exchanges among computers. Further, non-Poisson task
invocation arrivals are used. Its task control-flow graph is shown in Figure 2.13. The
module assignment and module prioritics are shown in Table 2.4. The processing
thread for precision track function is indicated by shaded modules in Figure 2.13. For
input data to the analytical model, we coilected the IMC data, module execution times
(Table 2.5) and invocation rates in every 100-msec time interval from the DPAD
simulator. Since the DPAD System uses a head-of-line (HOL) priority module
scheduling policy rather than FCFS, queueing formulas were dcﬁvéd to compute the
module response times for this scheduling discipline (See Appendix C). The PTP
time was generated for each of these time intervals. To obtain the 90% confidence in-
tervals for the task response time, the simulation was .rcpeated five times. From Fig-
ure 2.14, we note that the PTP time predictions are close to the simulation measure-
ments. This indicates that the model also provides a good response time estimation for
non-Poisson task invocation arrivals with priority module scheduling policy and IPC

overhead.

2.4 MODEL APPLICATIONS

The proposed model c.t be used to study the effect on response time of such
design issues as module assignment and precedence relationships, module scheduling
disciplines and database management algorithms. With the response time as a perfor-
mance measure, the model can be used to study the tradeoffs among various design

choices and to provide us insight into planning and evaluating distributed systems.



wNsAS qvdda W 1o} ydein mopy-jonuo) ysel, ayy, ¢1°z amdyg

HOLdHIHILINY
1THHDD
ONY ONINNYId
AdADHILINIT
WIVYHL IEYNI
Soua AV 30

({SONVHHOD)

ONISSII0Nd
IIVSHILNT
1vauua Hvavy
au [ 6t |
y [ ]
MOYHL
dpya
— &
(1)
%
| ot 5/
t
WIVHL p
51 NOIS133Hd § \
—¢
HOILYDIIIESSY 1D ONV NIVYML
(SHHN13Y)
NDEAVYNIWINISTD 133780 oN15$3304d ISUNDD

IIVAHIAING HYOAYY

av¥3uHL
WIVHL NOIS1D3Ud

n1 s3wnaon * 7] | Hvovy |
=/

47



COMPUTERS MODULE ASSIGNMENT

My (1), Mp(1), (1), Mg(1),

CPU 1
Mg(1), M;o(1), Myg(1), Myn(4)
Ma(1), Mg(1), Mg(l), My.(1),
— 3 5 9 17
Myg(l), M1g(5), Mpa(6), Mo (6)
Mo(1), My,(1), M,,(1), Mi4(3),
coU 3 7 11 12 13

Mq4(2), My5(1), Mga(4)

Mx(i) : Module x with priority 1i. Mx(i) has
higher priority than My(.]') if 1> 3.

Table 2.4 A Module Assignment for the DPAD System
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MEMAN EXECUTION SQUARED COEF.
MODULES TIME (ms) OF VARIATION
1 0.157043 0.00Q163
2 9.313522 0.023414
3 0.397477 3.000066
4 0.422061 0.885611
5 0.379187 0.000042
6 0.321836 0.252115
7 0.325322 0.178972
8 1.128163 0.007556
9 0.659989 0.000000
10 0.535785 0.000236
11 3.000000 6.000000
12 0.000000 0.300000
13 0.334381 0.002888
14 0.131086 0.003647
15 0.000000 0.000000
16 Q.717703 0.000090
17 1.017110 0.000000
18 0.656880 0.0022384
19 3.339637 0.000003
20 6.695341 0.000012
21 g.730000 ¢.000000
22 0.080373 0.017631
23 0.162269 0.00S263

Table 2.5 Module Execution Times (Including Qutput IPC) for the
DPAD System Averaged over 35 100-msec Time Intervals
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The assignment of modules to computers is an important problem in distribut-
ed processing system design. Module assignment affects the response time,
throughput, and system reliability. The factors that affect the module assignments
are: (a) computer processing capacities and their utilization factors, (b) IMC among
modules, and (c) logical and precedence relationships among modules. Several ap-
proaches to the assignment problem in distributed systems have been proposed
[STON77, RAO79, MAS82, CHOUS82, SHEN85]. However, each of these approaches
has its shortcomings such as neglecting queueing effect and precedence relationships.
Therefore, the ’optimal’ module assignments generated by them do not provide low
response tmes on the actual systems. Our proposed model takes both computer load
and precedence relationships into consideration. For a given module assignment, and
module scheduling policy, the task response time can be estimated from the proposed
model. In the following chapters, we shall use the proposed mode! to (1) investigate
the performance impacts in terms of response time due to module precedence relation-
ships; (2) develop a new module assignment algorithm for RTDPS. This study pro-
vides insight into the interrelationship among precedence relationships, module as-

signment and task response time.

2.5 SUMMARY

A new task response time model is presented for estimating the PTP time for
distributed processing systems. The model maps the module response times into the
task control-flow graph as arc weights and estimates the PTP time from the weighted

task control-flow graph model. Since this approach considers the queueing effects,
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the interconnection network delays, and the logical relationships among modules. the
model provides accurate PTP time prediction. Simulation experiments reveal that the
proposed model provides fairly accurate PTP time. The model can be used to study
module assignment problem and the effect of precedence relationships among
modules on the PTP time. In addition, it can be used to study other design issues
such as module scheduling policy, database management algorithm, etc. Thus this
model serves as a valuable tool for the systematic planning and designing of distribut-

ed processing systems.
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CHAPTER 3
PRECEDENCE RELATIONSHIP EFFECTS ON RESPONSE TIMES

3.1 INTRODUCTION

Precedence 'relationships (PR) among modules of an application task are inter-
module synchronization requirements which require each module not to start its exe-
cution until all its preceding modules have finished their executions. Some common
types of PR among modules such as sequential thread, and-fork to and-join, and or-
fork to or-join have already been discussed in the previous chapter. Here, we shall in-
vestigate the impacts of module PR on response time. The work that illustrates these
impacts for distributed systems was first documented in (LANSS]. By using simula-
tion experiments, [LAN85] demonstrates how PR affects response times. In this
chapter, we mainly use analytical techniques to portray the interrelationships between
PR and response times under different loading environments. And, we shall attempt to
interpret the reasoning behind these relations. Finaily, heuristic rules for module as-
signment are derived to account for the PR effects. A simulation experiment will be
presented as an example to show the importance of PR effects and the usefulness of

these rules in module assignment.
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3.2 PR EFFECTS FOR A CONSECUTIVE MODULE PAIR

There exists various types of module PR such as sequential thread, fork and
join. For the reason of mathematical tractability, here we shall concentrate on sequen-
tial threads which may possibly contain an or-fork as shown in Figure 2.8(F). To iso-
late the effect due to PR, we assume there is no IMC among modules and no IPC
overhead in the distributed system. Therefore, processing load on computers is solely
due to module executions. Given a module assignment, moduies are enabled on the
processors according to the sequence as depicted in the task control-flow graph. Each
processor has a distributed operating system to schedule modules for executions. The
modules’ response times on a processor will depend on the module scheduling policy.
Since first-come first-serve (FCFS) policy is the most commonly used scheduling dis-

cipline on computer systems, we shall focus on the PR effect under this policy.

In order to illustrate the PR effect, it is desirable to compare the response
times for two identical systems except one system possesses PR among modules
while the other does not. To start with a simple example, let us consider two proces-
sors in Figure 3.1. In this example, processor #1 is allocated with a sequential thread
of two modules, while processor #2 is assigned with another two independent
modules. Let M; denote module i. Suppose M and M 4, and M ; and M ; have ident-
ical execution time distributions and invocation rates respectively. On processor #1,
M | and M 5 have PR as, with probability p, M, is enabied and placed at the end of

the processor’s job queue (according to FCFS discipline) immediately after 2 M ’s
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execution is completed. For processor #2, M3 and M 4 are independently invoked by
different preceding modules or sources, thus they do not possess PR. Note that both
processors #1 and #2 have identical processing load as well as module execution time
distributions, any discrepancy in modules’ response times on these two processors is
solely due to the PR effect. The factors that cause the PR effect include: module exe-
cution time distributions, and ratios of average execution times for consecutive
module pairs (i.e., M| and M, on processor #1). These factors will be elaborated later

in this chapter.

Now, let us compute the modules’ response times on both processors. Accord-
ing to Section 2.2.3, M, M; and M, are entry modules and M, is a non-entry
module for this example. Invocations for these entry modules are assumed to be in-
dependent and their interarrival times have Poisson distributions. Let the invocation
rates for M; be A;. Thus we have A; =A3 =X and Ay =iy =pA. Suppose the mean
and second moment of execution time for M; are X; and J?'- respectively. Then the

processor utilization due to M; is p; =A; X;. In addition, let the coefficient of varia-

tion of execution time for M; be c;.

Clearly, processor #2 becomes a M/G/1 queueing system with two types of
‘customers’ M ; and M 4. Let us use W; to denote the average waiting (queueing) time

for M;. By M/G/1 queue results, the mean module waiting times are given by
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WoZ
Wi=W, =2 ——eor
: ¢ 1 =p3=ps (3.1)

where:

W,, = mean residual module execution time on processor #2

Nlr—-

(lgx?+l4x_42-)

[l( 1+C32)I—32+P)\.('1+C42).¥-'42]

T

By the method in Appendix B, the average waiting times W, and W on processor #1
can be obtained as foilows. The mean waiting time for M, under FCFS scheduling
policy is the average time to compiete the current moduie execution plus all module
invocations waiting in the job queue when the invocation for M, arrives. Thus, we

have

W1=WDI+EIEI+32;F2
(3.2)
where:

W, = mean residual module execution time on processor #1

0|

(Mx?+20yx7)

[IA(L+c2)yT2+pA(1+c} )T
2

B |-

n; = average number of invocations for M; waiting in the job queue.
To find the waiting time for M 5, we need to keep track of the queucing behavior since
the arrival of the invocation for M |. Let us consider a particular tagged invocation

for M ;. After the completion of this tagged M |’s execution, its succeeding tagged in-
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vocation for M 5 is placed at the end of the job queue. The waiting time for this tagged
M 5 invocation consists of three components. The first component is due to the new
invocations for M | that arrive during the waiting plus execution time of the tagged
M | invocation. The second component is due to the executions of all M, invocations
which are possibly enabled by M| invocations waiting in the job queue when the
tagged M | invocation arrives at the system. The last component is due to the execu-
tion of a M, invocation possibly enabled if the module in execution upon the arrival
of the tagged M, invocation is M ;. Thus, by adding these components together, we

have

Wo=(W +X | )AX +p A X2+p p1 X3
(3.3)

Apply Little’s result [LITT61} (i.e., a; = A; W;) and put p; =X, X; in Eq.(3.2) and

(3.3). Then, these equations become

Wi =W, +p W +pa W,

G.4)
and
Wa=(W +X )py+p2 W +p p1 Xy
(3.5)
From Eq.(3.4) and (3.5), W, and W, can be solved as
_Wo+p1pa (X +p X2)
Yo l-pi-p(pr*p2) (3.6)

and
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W, +p1p2(X +p X3) _ _
W, = — (Pr+pPy)+p (X +P Xq)
2% T pi-pz(p1tpa) PL+p2)+p1lix 2 a7

where W, = W, = W,, as the corresponding modules on both processors have ident-

ical execution time distributions.

Recall that processors #1 and #2 have equal processing load except processor
#1 has PR effect but not processor #2. To illustrate the PR effect, the thread response
time for M, and M,, which is W, + X, + W3 +X,, is compared with the sum of
response times for M3 and M 4, which is W4+ X3+ W, + X4 Since X =Xx3, X3=X2,
and these mean execution times are constants, we define the thread waiting rime ratio

Wl + Wz .
w = ——=_If R, # 1, then the modules’ response times on processor #1 are
Wi+ W,
shorter or longer than those on processor #2 solely due to the PR between the con-
secutive modules M | and M ,. Since W4 =W, the thread waiting time ratio can be

rewritten as

R 1+ Wzl Wl
W 2 W3 l Wl (3.8)
In the following, we shall separately consider these two factors of R,,;: W,/ W and

W,/ W, to examine the conditions under which PR effects provide better response

times (i.e., R, < 1).
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3.2.1 The Waiting Time Ratio: W2/W1

The ratio W,/W, can be obtained from Eq.(3.6) and (3.7). We put
W, =% [A(1+c,2)T2+pA(1+c,?)X,%] and after simplification, the ratio can
be expressed as

2(1+py/py )L —=py=pa(py+p2) ]
(1 +C12)+p-z/pl(1+622 )Ez/fl+2p2 (1+92/91 ) (3.9)

W 5
W—l-(91+9 )+

Let us define processor utilization for processor #l or #2 as p=p, + P23 =pP3+ P,

and the mean module execution time ratio r =x3/ x| =X4/%5. Then, it yiclds

/ = = = =—E—-— = =ﬂ. : -
P2/ P1=Pal/P3=pr, P1=P Tt and Py =Py o where p is the ena

bling probability from M, to M ;. To further simplify Eq.(3.9) with these relations,
we get

Wa oy 2[1+pr-p-prp?]
W, (1+¢2)+(1+c?)pri+2prp (3.10)

As expressed in the above equation, W, / W, is a function of p, r, p and ¢;’s. There-
fore, we shall discuss this ratio under three selected types of distributions of module

execution times below:

Case I: Deterministic Module Execution Times

As modules have fixed execution times, we put ¢ =¢c3 =0 into Eq.(3.10).

Then, we have



W2 epy 2Lspr—p-pro’)
W, L+pri+2prp G.11)

Given the values for p (enabling probability) and p (processor loading), it is desirable
to find r (execution time ratio for the consecutive module pair) such that
W,/ W, < 1. After some algebraic manipulation, the range of r such that

W,/ W, < 1 forall pel0,1]is that

re l+.\f1+--
P (3.12)

In case M, always cnables M, (a regular sequential thread), p = 1. Hence, if

r>1+vZ,then W,/ W, < L.

Case II: Exponential Module Execution Times

If modules’ execution times have exponential distributions, ¢ | =c5=1. Sub-

stitute these values in Eq.(3.10). We find

W 2
Wy pyltprop-prp
W,

1+pr2+prp (3.13)

From this equation, it can be shown that W,/ W <« 1 if r 21 for all p, p£[0,1].
This means that if W4/W | < ' is independent of the enabling probability p and pro-
cessor load p but only depends on the execution time ratio » for exponentiai module

execution times.

61



Case III: Hyper-Exponential Module Execution Times

Since hyper-exponential distributions have higher coefficients of variation than
those of exponential distributions, we select ¢ |2 = ¢,% =2 as an illustrative example.

From Eq.(3.10), we obtain

Wa . 2(1+pr-p=-prp?)

W, 3(1+pr2)+2prp (3.14)

With the squared coefficients of variation of module execution times equal to 2, it can
be shown from Eq.(3.14) that W,/ W, is always less than 1 for all p, p € [0,1] and
real positive r. In other words, the PR effect always yields less waiting time for M,

comparing with M | if modules have highly variating execution times.
3.2.2 The Waiting Time Ratio: W3/W1

From Eq.(3.1) and (3.6), the waiting time ratio W4/ W, is given by

Wi A +c3)T2 + pA(1 + ¢ 23T )1 = py — palpy + P2)]
Wi (1=py—plh(l+c )T 2+ pA(1 + c 3)T,% +2p1po(E) + pE)] (3.15)

After simplifying, Eq.(3.15) can be rewritten as

Wi [(l+cf)+pri(1+ci)1{1l+pr(l+p)]

Wi (l+pr)l(l+ci)+pri(1+cd)+2prp] (3.16)

Once again, we also compute the ratio W, / W | for three cases of module execution

time distributions as discussed above.
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Case I: Deterministic Module Execution Times

Substitute ¢; = 0 for i = 1 to 4 in Eq.(3.16). The ratio W3/W, is given by

W, _ (1+pr¥)Y[l+pr(l+p)]
Wy  (l+pr)[1+pri+2prp) 3.17)

Although Eq.(3.17) takes a different form from Eq.(3.11), it can be readily shown

from the above equation that W, /W > 1if r > 1 + 4 /1 +; for all p € [0,1]. Coin-

cidentally, this condition is exactly identical to that for W,/ W, < 1 if module execu-
tion times are deterministic. Similar coincidence also occurs in the following two

cases.

Case II: Exponential Module Execution Times

We substitute ¢; = 1 fori =1 to 4 into Eq.(3.16) and obtamn

Wy - (1+pr¥)[1+pr(1+p)]
Wi  (l+pr)[l+pri+prp] (3.18)

With exponential distributed execution times, we can show from Eq.(3.18) that

Wi/W,>1ifr > 1forallp,pe[0l].

Case [II: Hyper-Exponential Module Execution Times

Substituting ¢;> =2 for i =1 to 4 into Eq.(3.16), it yields
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Wi _ (3+3pr3)[1+pr(1+p)]
Wi (1+pr)[3+3pri+2prp] (3.19)

With ¢;2 = 2, the module execution times have higher variations than exponential dis-
tributions. Once again, it can shown that W,/ W > 1 for ail positive-valued r, and p

and p £ [0,1].
3.2.3 Cutting Points for the PR Effect

The three cases discussed above represent a spectrum of distributions for
module execution times. The thread waiting time ratio R,, for these cases can be com-

puted by substituting the values of W,/ W and W,/ W, into to Eq.(3.8). Clearly, if

W <1 and WoW, > LR, = W2 eres
2 1< an 3 1> LA, = 2W3/W1 < L. Creiore,

(a) for deterministic module execution times, if r > 1 + 4 /1 + -;- ,

(b) for exponential module execution times, if r > 1 ,

(c) for hyper-exponential module execution times with squared coefficients of varia-
tions greater than 2.0, foralir > 0

we have R, < | under any processor loading p €{0,1]. From the ranges of r

derived above, it can be concluded that whether the PR effect yields shorter response

times (i.e., if R, < 1) only depends upon the ratio of mean execution times for the

consecutive module pair 7, and the enabling probability p.

These relationships are depicted in Figures 3.2 to 3.4. In these figures, proces-

sor load is bounded by p=p; +p; S 1 by which the feasible loading environment is
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the triangular area at the lower left part of the quadrant. The dotted lines for various
enabling probability p divide this triangular area into two regions: the lower region
with R,, > 1 while the upper one with R,, < 1. This means that if p, / p; falls into the
upper region for a specific p value, the thread response time can be improved by the
PR effect; otherwise, the PR effect will prolong the thread response time. Further,
although whether R,, < 1 is only determined by r and p for the given module execu-
tion time distributions, the value of R,, does depend on r and p as well as the proces-
sor utilization p. To consider p = 1 (M; and M ; become a regular sequential thread),
the thread waiting time ratio versus computer utilization for some typical execution
time distributions and p, / p; values are plotted in Figures 3.5 to 3.7. These figures
also show the values of p/p; (i.c., Xo/x ) for p = 1) such that R, < 1 for the selected
types of module execution time distributions. Note that, due to the PR effect, the
response times have more variation with computer utilization if module execution

times have less variation.

3.3 INTUITIVE REASONING FOR THE PR EFFECT

Now we understand the major factors that cause the PR effect including: the
characteristics of module execution time distributions and mean execution time ratio

for the consecutive module pair.

If the module execution time distributions have large variations, PR effect
yields better response times than those without PR effect. As shown in Figure 3.1, this

is mainly due to M, invocations will never encounter any residual module execution,

68



sowT), UOTINDIXY OTISTUTWII)LQ I0J

id/?d pue uor3leZI{tiIN

a193ndwo) 310 uwor3idung B Se orley suwrl butritem peaayl 6°¢ 2anbty

“o00l

‘06 ‘08
! | I

Z NOTIYZI11lNn Y
‘0L 09 C0S

i
I

J1NdHOD

"0E
I

e

1=d -rqoxd buirqeulm

0:I
My ‘DILYY 3WIL ONILIUEM GHY3IHHL

(=}

8°0 8°0 h'0 2°0 C°0

"1

Rl

"1

0°2 8°1

69



sowt], uoTlndaxy terjuauodxy 103 1d/¥d pue uoTIRZTITIN
1a3ndwo) Jo uoijoung e se orley awyy butitem pesayl 9°t sanbrg

Z NOTLIHZIT1LN "Y31ndWo3D
‘0L "09 DS "Oh

‘001 ‘06 09 "DE e ‘01 "0
i L | { | | | | I .2
[ ]
O
ra
—
o I
= D
m
il{oe »
o U
o =
eo L B
AN D
v
N - L & - —
T T ———— o
l‘)jf. =z
1 S'0 |+
1°0 no
1d/7d - X
/ oM
- D
L D
fl—
1=d -qoig buriqrua | - mm
4] -
n pel
1. =
o

70



Zz 01 1enby uotrlerIEp JO S3URTOTIIS0) poaienbg yzrm souty
uoT3noaxy (erjusuodxdg-aaddy ao3y 'd/d pue uoreZITIIN

I9andwo) jo uotlound v se oriey awtl burjtem peaayy

‘oot

Z NOTLIHZT LN HILNdWOD
06 08 ‘0L ‘09 *0s "0Oh "0E “0e ‘ol ‘0
[ | i | | I ! I bt
o
. 2
Ny
e
I.nu
01
= o
S .
a3
G*T
(o}
_\l
R — *
s / S0
o
LI A
1d/2d -
[ =
[ >
1=d -qoxq burtqeulxy

g2 871

L't 2anbrg

"o QILWY 3IWIL ONILIGM QH34HL

71



which is possibly large for highly variating distribution functions, on processor #1 as
M 5 is only enabled immediately after a M ; invocation finishes its execution. Howev-
er, the waiting times for M 5 and M , invocations on processor #2 always include the

waiting for the current module in execution to complete.

Secondly, the mean module execution time ratio, 7, plays an important role in
the PR effect especially for modules which have more deterministic execution times.
In general, if ~ is larger than a certain threshold, which depends on the modules’ exe-
cution time distributions, PR effect will reduce response times. The reason for this
phenomenon is similar to the explanation for the superior performance in terms of
average customer waiting time of the shortest-job-first (SJF) scheduling policy which
minimizes the waiting time by serving the shortest job first. Consider the systems in
Figure 3.1. If r is small, then M, requires a longer execution time than M. Since
M | invocation arrivals are random, new M | invocation arrivals will most likely find a
M | invocation in execution. Including these two and other M | invocations waiting in
the job queue, the processor needs to process these long jobs (M| invocations) before
executing their succeeding M, invocations which require shorter execution times.
Therefore, the queueing behavior is opposite to that of SJF scheduling policy. Con-
versely, if r is large, the execution time for M| is shorter than M. According to the
PR requirement, M, invocations are exccuted prior to their succeeding invoca-
tions. Therefore, due to the similar reasoning for SJF scheduling discipline, the thread
response time for M, and M is improved because of the PR effect. In particular,

when the processor utilization is low, the queueing behavior closely resembles to that
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of SJF policy. Thus the PR effect is more profound under lightly loaded environment

as depicted in Figure 3.5.

3.3 PR EFFECT FOR SEVERAL CONSECUTIVE MODULES

Although we can extend the previous results to a sequential thread that con-
sists of more than two consecutive modules, the number of variables involved in the
thread waiting time ratio increases as the number of modulies in the thread increases.
Therefore, it is difficult to examine the PR effect and explore its tradeoffs with many
variables. However, the characteristics of PR effect on response times for consecutive

module pairs provides us understanding of the PR effect for a long sequential thread:

(1) If modules’ execution times are highly variant, PR of a long sequential thread that
is executed on a processor aiways yields shorter response times because invo-
cations for succeeding modules in the thread need not incur the waiting for a

large residual module execution time.

(2) If the ratio of mean execution times for two consecutive modules in the thread is
larger than a certain threshold, the mean execution times for a module is al-
ways larger than that of its preceding module. According to the module PR,
preceding modules with shorter execution times are processed before the
succeeding modules which have longer execution times. Under these situa-
tions, the queueing behavior is similar to that of shortest-job-first scheduling.

Therefore, PR among modules on a processor provides shorter response times.
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3.4 HEURISTIC RULES TO CONSIDER PR IN MODULE ASSIGNMENT

Based on the understanding on how PR among modules affect response times,
we shall discuss some heuristic rules for module assignment. We need to emphasize
that these rules are only based upon the considerations of PR effects. These module

assignment rules include:

Rule #1: If module execution times have large variances, consecutive modules should

be co-located on a same computer.

Rule #2: For the given module execution time distributions, if the mean execution
time ratio of two consecutive modules fall in the range specified in Section
3.2.3 such that R, < 1, the consecutive modules should be allocated to a same
computer. Otherwise, if R, > 1, these two modules should be separated on

two distinct processors to avoid the unfavorable PR effect.

To demonstrate the effect of PR and to validate these rules, let us consider a
task which consists of six modules and are assigned to three computers (Figure 3.8).
All modules have deterministic execution times, and form a long sequential thread.
By applying these rules to this task, we select three assignments: A, B and C as shown
in Figure 3.8. Assignment A is obtained based on Rule #2 to yicld favorable PR ef-
fect. In this assignment, the ratio r on each CPU is 10 which is far greater than the re-
quired threshold 1 + V2 for deterministic execution times to produce R,, < 1. Con-
versely, assignment B is so selected to demonstrate the unfavorable PR effect as 7 is

0.1 on CPU2 and CPU3 in this assignment. Assignment C is another load balanced
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assignment but with no PR effect on processors as ¢ach module is enabled by its
preceding module from a remote computer. The task response times for these three
assignments are measured from PAWS simulation {BERR82], and portrayed in Figure
3.9. Due to PR effects, assignment A yields the best response time performance. As-
signment B gives the worst task response time. And, assignment C provides moderate

task response time.

3.5 SUMMARY

In this chapter, our study reveals that PR does influence module response
times and thus affects the overall task response time. It is difficult to understand the
exact effects for various types of PR among modules. However, by considering two
consecutive modules, we are able to illustrate the PR cffects. Heuristic rules are
developed for considering PR effects in module assignment. Since other factors such
as load balancing and [PC also affect the performance of module assignments, a new
algorithm for module assignment which takes all these factors into considerations will

be introduced in the next chapter.
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CHAPTER 4

MODULE ASSIGNMENT WITHOUT MODULE REPLICATIONS

4.1 INTRODUCTION

Although distributed processing may provide such advantages over uniproces-
sor systems as response time improvement and grace degradation in case of failure,
there are additional design problems which require careful considerations. One of
these design probiems is the module assignment problem (MAP). The basic objective
of module assignment in a RTDPS is to allocate the set of modules of the application
task to computers such that the prescribed performance requirements such as response

times and system throughput can be satisfied.

A number of module assignment algorithms [STONT77, RAO79, PRIC7S,
MAS82, CHOUS2, EFES2, SHEN8S, CHU8Sb] have been proposed in the past decade.
These methods can be classified into three categories: graph-theoretic, integer pro-
gramming and heuristic approaches. The processing load on a distributed system is
due to both module executions (i.e., for application task) and IPC’s for file accesses
and control functions. Without careful considerations, 2 module assignment can cause

computer saturation [CHUZQ] due to excessive IPC. Therefore, a good module assign-
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ment should balance the processing workload among processors and generate

minimum amount of [PC in the system.

Since task response time! is an important performance measure for RTDPS,
minimizing the response time becomes the major goal of module assignment. The
key factors (parameters) that affect the task response time include IPC, processor
loading, module precedence relationships and interconnection network delay. Howev-
er, current module assignment techniques usually neglect one or more of these fac-
tors. These have motivated us to investigate the module assignment with these key
parameters and we shall use the task response time model for estimating task response

times for various module assignments.

In this chapter, we shall study the MAP without module replication; this is,
each module is allocated to a single processor. We shall first present our formulation
of the MAP. Next, we discuss the complexity and possible approaches for perform-
ing module assignment. Then a new module assignment algorithm will be introduced

and finally the application of the algorithm to DPAD System is presented.

4.2 ASSUMPTIONS AND PROBLEM FORMULATION

Let us make the following assumptions for the RTDPS:

(1) There is no memory space constraint on each processor in the system. This as-

sumption becomes acceptable due to the advents of semiconductor technology.

! In this Chapter, we use fask response time to refer to its mean response time unless
otherwise stated.

79



(2) A data file is stored (or replicated) on a processor where a resident module reads

and/or updates the file.

(3) The scheduling discipline (e.g., first-come first-serve, head-of-line priorities) for

module executions on each processor is given.

(4) All processors in the system are identical. Thus the execution time for each

module is the same on all processors.

(5) The network delay is independent of module assignment. Under this assumption,
although different module assignments may generate different volume of IPC
traffic in the network, we assume the network has sufficient bandwidth and the
delay remains unchanged.

Assumptions (4) and (5) can be relaxed by re-computing modules’ execution tmes

and the interconnection network delay for each module assignment.
Let us define the following system parameters:

n = total number of processors in the system,
m = total number of modules in the application task,

G

the control-flow graph of the application task;

X(i) = average execution time for module i;

o2(i) = variance of execution time for moduie i;

X =[x(i)] = vector of average module execution times where i € [1, m];

o%(x) = [62(i)] = vector of variances of module execution times where i € [1, m];
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D, = average interconnection network delay;

0'2,,,, = variance of interconnection network delay;

A = task invocation rate.

Upon the completion of execution, a module may require to communicate with other
modules. The processing time for sending message from a module i to another
module ;j is referred to as /IMC rime for the module pair. For some systems, IMC
time for a module pair which are co-located on a same processor is assumed to be
negligible. However, if the communicating modules are allocated on different proces-
sors, IMC becomes [PC which requires processing on both the transmitting and re-
ceiving computers. Then the processing time for the IPC on both processors is equal
to the IMC time plus the protocol processing overhead. Thus we define

t.(i,/) = average IMC time from module i to ; after a module i 's execution;

c,_.z(i ,J) = variance of IMC time from module i to j after a module {’s execution;

T. ={7.(i,j)] = average IMC time matrix where {,j £ {I, m};

0'2(c) = {cf(i,j)] = variance of IMC time matrix where i,j £ [1, m];

Let the module assignment matrix A = [A,-]-] such that

1 if module | resides on processor i
A4 =0  otherwise

wherei ef{l,n]and j g[1, m].
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Given the module assignment matrix A and all invariant system parameters |

as defined above, the task response time for the RTDPS can be computed by the task
response time model (See Chapter 2). The task response time T, can be expressed as
a function F of these system parameters. Therefore, the MAP for the RTDPS can be
formulated as a zero-one integer optimization problem which is to determine A in

order:

To minimize Top =F(G,A,X, (), T,,0%(¢), Dpgs Cnegs Aam, 1)
with constraints iAij =1 forall je[lm].
~

Note that the constraints represent each module residing on a single processor (i.e., no
module replication). Clearly, this optimization problem involves a non-linear objec-
tive function which does not possess an empirical form and can only be computed nu-

merically.
4.3 PROBLEM COMPLEXITY OF MAP

Many sequencing and scheduling problems for multiprocessor systems (See
Appendix in {GARA79]) have been proved to be NP-complete. It is believed that
these NP-complete problems are intractable in the sense that no polynomial time algo-
rithms can possibly solve them. In fact, the RTDPS under investigation involves re-
peated task invocation and the task consists of various logical and precedence rela-
T Based on the means and variances, the distribution functions for these parameters

are approximated by Erlangian or hyper-exponential distributions. Higher order
moments of these parameters are computed from the distributions.

82



tionships among modules. These factors increase the complexity of the MAP as com-
pared with the multiprocessor scheduling problems [GARA79]. Let us now prove

that the MAP is indeed a NP-complete problem.
Theorem : The MAP in the RTDPS is NP-compiete.

Proof : To prove the MAP is NP-complete, we shall first convert the MAP optimiza-

tion problem into the corresponding decision problem and then prove the decision

problem to be N'P-c:ampletc. The MAP decision problem is described as follows:

Instance: Given the system parameters of a RTDPS: G, X, oz(x h T, oz(r:), D,
O%nas A, m and n and a real positive value R . Each module is allocated to
a single processor. The task response time model is used to compute the
task response time.

Question: s there existing a module assignment (represented by matrix A) such that

the task response time

Top =F(G,A,X,0%x), T, 0HC), Dpegs Opugs My, n) SR 2

It is apparent that this decision problem is NP since a nondeterministic algo-
rithm need only guess an appropriate moduie assignment and check in polynomial

time if Ty, <R.

Next, we shall transform a well-known NP-compiete problem -- multiproces-
sor scheduling problem (MSP) (pp.65 in [GARA79]) to the MAP of 2 RTDPS. Con-

sider an instance of MSP: a finite set § of modules, a module execution time
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("length") I(a) e Z* for each a £ S, a number n € Z* of processors, and & "deadline”
D £ Z*. Let the RTDPS have n processors and the same module set S. We set 7,
a%(c), G*(x), D,y and 6%, to be zero matrices/values in the MAP because the MSP
does not consider these factors. Suppose |S | =m. We refer to the modules in § by
indices 1,2,...m. Thus the corresponding average module execution time vector X' can
be constructed from {(a) for each a £ S. In addition, let the task invocation rate in the
RTDPS A-»0" as the modules are invoked once in the MSP. Since the modules in the
MSP do not possess precedence relationship and are independent of each other, we
construct a task control-flow graph G (an and-fork to and-join graph) for the MAP as

shown in Figure 4.1.

Due to the and-fork function, all modules will be invoked simultaneously (i.e.,
there will be bulk module invocations) on the processors of the RTDPS. As modules
are independent of each other, the modules residing on a same processor can be exe-
cuted in any order. Further the task response time is only determined by the module
assignment regardless of the execution sequence. Therefore processors can execute
the bulk module invocations in an arbitrary sequence for the RTDPS. By the
definiion of and-fork to and-join control-low graph, the task response time
Tpp =max { £, 122, t,} where r; is the response time for module i. Hence T, of
this RTDPS is equai to the compietion time of ail module executions in the MSP. Fi-
nally, we set R =D. It is obvious that the MSP has been reduced to the MAP of 2

RTDPS and this transformation only requires a polynomial time algorithm. O
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The common methods to tackle these hard combinatorial optimization prob-
lems include approximation algorithms, probabilistic algorithms, branch-and-bound
and local search techniques [PAPA83]. Due to the complexity and characteristics of
the MAP, it is very difficult to pursue in using approximation and probabilistic ap-
proaches. Further, since the objective criterion in the MAP is task response time, it is
also inefficient to use branch-and-bound approach for the solution. It is because a
tight lower bound is difficult to obtain as the task response time can be computed only
after all modules have been allocated to computers. Therefore we use local search

technique for the solution for the MAP.

4.4 A NEW APPROACH TO MODULE ASSIGNMENT PROBLEM

The major factors that affect the performance of a module assignment in a
RTDPS are: (a) processor loading, (b) IPC, (c) logical and precedence relationships
among modules, and (d) interconnection network delay. The importance of each of
these factors on the task response time depends upon the specific distributed system
under consideration. Since our task response time model (Chapter 2) considers ail
these factors and can be used to compute task response time for a given module as-

signment, the model becomes the optimization function.

Let us now introduce our new module assignment algorithm which consists of

three components:

(a) to generate feasible initial module assignments,
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{b) to define the "search neighbor region" of each assignment, and

{c) to search for the best assignment in its neighbor region.
The algorithm repeats searching until it reaches a local optimum. The final suboptimal
module assingment is the one that gives the shortest task response time (computed by

the task response time model) from all the feasible initial solutions.

4.4.1 Algorithm for MAP

MODULE ASSIGNMENT ALGORITHM (WITHOUT MODULE REPLICATION)
1. Generate a random module assignment A as an initiai assignment.

2. Based on the invariant parameters: G, A, X, oz(x), T., ol(c), D e 02,,“, A, m
and », compute the assignment dependent parameters for assignment A (in-
cluding module execution times, IPC arrival rate & processing time for each

Processor).

3. Compute the processor utilization on each computer for assignment A. If any
computer(s) is saturated (i.e., its utilization 2 100%), stop; Otherwise, contin-

ue.
4. Invoke the task response time model:
4.1 Compute the task response time Tm, (A) for assignment A, and

4.2 Identify the computers with the longest and shortest average module wait-

ing times (Denote them as LWP (A ) and SWP (A ) respectively).
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5. Let S; be the set of modules residing on LWP (A). For each module { € S, per-

form

5.1 Temporarily reallocate module i from LWP (A4 ) to SWP (A) thus becomes

assignment A;;

5.2 Compute the assignment dependent parameters and processor utilization

factors for assignment A; (* As Steps 2 and 3 do *);

5.3 If computer(s) is saturated, set the task response time T, (A;) = o; other-
wise, invoke task response time mode! to compute and record T, (4;),

LWP (A;) and SWP (A;) (* As Step 4 does *).
6. If there exists Ty (A;) S Tpp(A) for any €Sy tested in Step 5, then perform:

6.1 Set A=4; TpA)=Ty(4), LWPA)=LWP(4;) and

SWP (A) = SWP(A;) where Ty (A;) = min { Ty (4;) ). (* Finalize
J e
the single module reallocation from LWP to SWP - A greedy step! *)
6.2 Go to Step 5.

7. Otherwise, stop. (* Reach a local optimal assignment A *)

For a given module assignment, the algorithm will identify the processors with
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the longest and shortest average module waiting (queueing) times !. The basic opera-
tion of this algorithm (Step 5) is to reallocate some module(s) from the longest aver-
age waiting time processor (LWP) to the shortest average waiting time processor
(SWP) and to hope for better load balancing among computers thus to yield a shorter
task response time. However, such module reallocations may not necessarily provide
a shorter response time because they may increase IPC on the system. Therefore, the
task response time is recomputed for each module reassignment (Step 5.3). If the
response time is improved after the reallocations of modules, the algorithm finalizes
the one that yields the shortest task response time -- a greedy step (Step 6). The aigo-
rithm continues to reassign module(s) from LWP to SWP until it cannot further
reduce the response time for the distributed system. In order to generate a better final
suboptimal module assignment, the algorithm is repeated with a number of randomly
selected initial assignments. The final assignment is the one that achieves the shortest

task response time among all the local optimal assignments.

By reducing the response time based on module reassignments, the algorithm
implicitly attempts to equally balance the computational load and decrease overall IPC
in the system. Other factors such as maximizing the parailelism among module execu-
tions and the effects due to precedence relationships and interconnection network de-

lay have also been considered in the process of searching for a shorter response time
assignment.

TIn case waiting times for distinct modules are different for the given scheduling
policy on a processor, the average module waiting time is taken to be the sum of
modules’ individual waiting times weighted by their invocation rates normalized to
the total module invocation rate on the processor.
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4.4.2 The Required Number of Random Initial Assignments

In order for the local search to generate a good module assignment, we need to
repeat the algorithm with randomly selected initial assignments. Such technique was
also used by {LIN65] for traveling salesman problem. The required number of initial
assignments depends on such system characteristics as loading, module execution
times and IMC of the RTDPS, and the expected performance of the final solution. In
the following, we discuss the desired performance of "good” module assignments.
Next, we illustrate how to estimate the required number of initial assignments for gen-

erating a suboptimal module assignment with the specified performance.

To find the best (global optimal) assignment that yields the minimum task
response time for a RTDPS is very time-consuming even if it is not impossible. Let
the probability distribution function of task response times T, ’s for all feasible
module assignments (i.e., assignments with finite task response times or do not cause

processor saturation) be A (r). That is,

H(t)=Pr[T,, St
@.1)

It is desirable to generate a module assignment which is ranked as top & percentile

{e.g., 0.1%) of the distribution H (z).

Let the task response time of a module assignment of the top & percentile be

less that T, (See Figure 4.2). This means
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dt
Top 2 Percentile
D ...
Y ; —h
0 Ty Ty

Task Response Time, t

To! Optimal Task Response Time

Ty, Maximum Task Response Time for a Toe a
Percentile Assignment

Figure 4.2 A Sample Distribution of Task Response
Times for Module Assignments
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HT)=Pr [Ty sTal=a
@4.2)

To start with a feasible initial assignment, the algorithm searches for better assign-
ments. During the search process, the algorithm will test out a large number of
module assignments with different task response times. Suppose the algorithm
records the task response time of a module assignment which is shorter than the best
obtained so far during the algorithm run. Let the sequence of these response times
recorded (a descending sequence) consist of / elements which are designated as
R{,R;,.., R Clearly, R, and R, are the task response times for the initial assign-
ment and the local optimum respectively. Note that the length of this sequence
depends on the characteristics of the algorithm and the RTDPS. Let P 4 be the proba-
bility that the task response time of the local optimal assignment is less than T, (i.e.,

within top o percentile of the distribution). Thus we have

Po=Pr( min (R} ST

=1—PF[R1>TwR2>Tw ...,R, )Ta]
(4.3)

Since R; > R; if j > i, the R;’s are dependent variables. However, given the events
that (R, > T o) (R3 > Ty), .., and (R; > T ), they do not have a significant influence
on the occurrence of event (R;,; > T ). And, the probability Pr[ R;,| > T ] is close
to unity when o is small (i.e., T4 is close to T,). Therefore, we can approximate the

probability in Eq.(4.3) as
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{
Pr(R,>Tq,Ry>Tg R >Tq]=[PriR; > T4l
i=1 (4.4)

Further, due to the search effort of the algorithm, R;’s form a descending sequence

(i.e., Ry 2 R;), we have

PriR; >Ty1sPr(R,>T4}
(4.5)

foralli =2tol. We substitute these inequalities into Eq.(4.4). It yields

Pr(R >T@uR3>Tg, R >Ty]l S{Pr[R >Tg1}
(4.6)

Since the inital - assignment is randomly selected, by definition we put
PrlR>T4]=1-H({Ty=1-c into Eq.(4.6) and then substitute (4.6) in (4.3).

We obtain

Pe2l-(l1-a)
@

Now, let us estimate the required number N, of feasible initial assignments to assure
that the suboptimal solution is within top & percentile with certain confidence P . For
the j* feasible initial assignment, suppose the sequence { R; J of the "improving"
task response times recorded by the algorithm consists of /; elements. By the same ar-
guments for the derivation of Eq.(4.7), the probability P,  that the suboptimal solu-

tion from these N, feasible initial assignments falls within top a percentile of H (z) is

Pcle-(l_a)lt+l:+ e +l~,
(4.8)

To find the number N; of required initial assignments (some of which may be infeasi-

ble), we conduct a pilot run of the algorithm with a small number (e.g., 20) of random

93



initial assignments. From this pilot run, the proportion r of initial assignments that
are feasible can be determined. In addition, the average sequence length I of the "im-
proving” task response times can be estimated from /;’s. Then, we have Ne=rN;
and /| +i;+ - - + Iy, =Ny l. Substituting these two relations in Eq.(4.8), it be-
comes

Pl21=-(1-a)™M

(4.9
Once the desired performance (in terms of o percentile) of the suboptimal solution

and the confidence probability P, to obtain such an assignment are given, the re-
quired number of initial assignments input to the algorithm, ¥, can be solved from

Eq.(4.9).
4.4.3 Weighted Task Response Time

In Chapter 2, task response time is defined as the time from a task invocation
until the completion of the task execution. Very often, the application task consists of
several processing threads. A task invocation may only branch to invoke a particular
thread. This branching to process a certain thread is represented by an or-fork in the
task control-flow graph and the task response time is the sum of thread response times
(PTP times of the threads) weighted by the threads’ invocation rates. However, the
importance of various threads in terms of responsiveness requirements may not be
necessarily proportional to their invocation rates. For example, processing a thread for
missile discrimination is far more important thus requiring rapid response than a

thread of detecting new incoming object in a space defense application, although the
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latter thread is more frequently invoked than the former one. Therefore, the task
response time can be redefined as the sum of threads’ response times weighted by
some constants properly chosen to reflect the importances of these threads for the par-
ticular application under consideration. With this new definidon of task response
time, the algorithm will search for module assignments to meet the expected response
times for various threads. In other words, system designers may have more flexibility
in defining the task response time so as to search for good module assignments for

their specific applications.
4.4.4 Application of the Algorithm to DPAD System

We apply the module assignment algorithm to the DPAD Systemn [GREES0,
LANS8S] which was used for model validation in Ch_aptcr 2. The task control-flow
graph of this system is shown in Figure 2.13. Since the system input load (medule in-
vocation rates and execution times) for the DPAD System is a time-variating function,
we collect the system parameters during the peak-load period (from 1.0 to 2.0
seconds) as input to the algorithm. These parameters include module invocation
rates, module execution times *, and IMC’s ! as shown in Tables 4.1 to 4.3. Due to the
complexity of the application task in DPAD System, its task response time is

redefined as

! Only the mean and second moments of these parameters are measured from the
DPAD simulator. Based on these measurements, the distribution functions for these
parameters are approximated by Erlangian distributions. Other moments of higher
orders are computed from these functions.
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4 li 7"5 l,' lw
Top =2 T; + . T a(5.6)+ 3 ~— T, + ~ T ana(16,17)
i=1 Mot tot i=7 Mot tot

where:

A; = the invocation rate for module i,

Aee = sum of A;’s for all i=1 to 23,

T; = response time for module i,

T 1ns(i.j) = response time for the and-fork to and-join subgraph formed by
modules { and /,

pi; = probability that module i enables module j upon the completion of exe-
cution,

0 if modules i and j resides on a same processor
ii = 1 otherwise

D, = average interconnection network delay.
In this definition, task response time is the sum of modules’ response times weighted
by their normalized invocation rates. To consider two and-fork to and-join subgraphs
(formed by modules S and 6, and 16 and 17 respectively) in the task control-flow
graph, the response times for the subgraphs, instead of individual .1odule response
times, are used in the task response time definition. The last summation term in the
definition represents the interconnection network delays incur by the module enable-
ment messages if the preceding and succeeding modules are residing on different

computers.
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Modules Invocation Rates Modules Invocation Rates
1 0.432 13 0.509
2 0.063 14 1.0
3 0.032 15 0.0
4 - 0.169 16 0.042
5 0.035 17 0.042
6 0.035 18 0.042
7 0.036 19 0.018
8 0.202 20 0.002
9 0.203 21 0.002

10 0.042 22 1.399
11 .0 23 1.0
12 0.0

Table 4.1 Module Invocation Rates (no. of enablements/msec)

for the DPAD System
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Squared Coetficients
Modules | Execution Times (ms)
of Execution Time
1 0.133 0.0
2 0.273 0.03536
3 0.335 0.00021
4 0.380 0.15240
5 0.333 0.00002
6 0.327 0.02875
7 0.312 0.05535
3 1.033 0.0
9 0.600 0.0
11 0.0 0.0
12 0.0 0.0
13 0.327 0.00071
14 0.112 0.00040
15 0.0 0.0
16 0.667 0.0
17 1.0 Q.0
18 0.628 0.00038
19 3.333 0.0
20 6.672 0.00001
21 0.6 0.0
22 0.078 0.00034
23 0.113 0.00041

Table 4.2 Module Execution Times During Peak-Load Period for DPAD System
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Sending | Receiving | Avg. IMC* | Varances of | File No.**
Modules | Modules | Times(ms) | IMC Times

2 3 0.01300 0.00017 114
3 13 0.03000 0.00000 115
4 5 0.01239 0.00054 116
4 6 0.0123% 0.00054 117
4 7 0.01239 0.00054 117
4 13 0.00443 0.00007 117
5 7 0.01200 0.00000 119
6 7 0.01200 0.00000 121
7 13 0.01257 0.00017 122
8 6 0.25766 0.00023 124
8 9 0.05166 0.00023 123
8 10 0.25766 0.00023 124
8 13 0.00204 0.00004 120
8 16 0.25766 0.00023 124
8 17 0.05166 0.00023 123
8 19 0.05166 0.00023 123
8 20 0.05166 0.00023 123
9 13 0.02600 0.00000 125
13 14 0.3979 0.22615 131
14 13 0.01200 0.00000 147
14 23 0.03346 0.00009 132
16 18 0.01600 0.00000 135
17 18 0.01600 0.00000 136
18 18 0.00569 0.00004 138
18 19 0.03619 0.00072 137
18 20 0.03856 0.00646 139
19 20 0.20600 0.00000 139
20 21 0.20600 0.00000 140
21 Radar 0.11200 0.00000 141
22 1 0.02188 0.00105 113
22 2 0.02188 0.00105 113
22 4 0.02188 0.00105 113
22 8 0.02183 0.00105 113
22 23 0.00115 0.00006 142
23 Radar 0.03400 0.00000 112
Radar | 22 0.07020 | 0.00000 111

*IMC’s between all other module pairs not listed here are zero.

** If a sending module communicates with several receiving moduies via
a same file and those receiving modules are co-locating on a remote pro-

cessor, the update message (IPC) is sent to the processor once.

Table 4.3 IMC’s for the DPAD System
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The algorithm is repeated for two cases: with 100 and 500 random initial as-
signments. Their respective algorithm times are about 20 and 93 minutes on a VAX
11/780 machine. Our study shows that about 60% of these initial assignments are
feasible solutions (i.e., they do not cause computer saturation thus do not stop at Step
3). The algorithm produces two suboptimal module assignments, A and B, for these
two cases as shown in Table 4.4, To evaluate their response time performance, we use
the DPAD simulator to simulate these two module assignments. Figures 4.3 and 4.4
depict the comparison of response times for two important processing threads for the
assignments. We note that the assignment B performs better than assignment A dur-
ing the peak-load period. It is because assignment B is the suboptimal solution gen-
erated from SO0 initial assignments, while assignment A is based on 100 initial as-
signments. However, due to the fluctuation of input loading, the performance of as-
signment B may not always be superior than that of A outside the peak-load period.
This can be observed from 0 to 1.0 second period for the Search/Verify thread in Fig-
ure 4.3. Therefore, system designers may have the flexibility to select system parame-
ters of a proper time period to input to the algorithm according to the requirements of
the system application. For the run with 500 initial assignments, the algorithm tested
out 12,285 feasible assignments and 195 infeasible assignments in total. The differ-
ence between these two figures reveal that the algorithm is very efficient in searching
for better assignments (most likely, feasible assignments) as module(s) are reallocated
from LWP to SWP. During the search for assignment B, our algorithm records that

N; =500, r =0.6 and I = 10 for Eq.(4.9). From this equation, these figures infer that,
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with probability more that 99%, the suboptimal assignment B is one of top 0.15% as-

signments.

Recently, another module assignment algorithm was proposed by [LANSS5]
which is based on co-locating heavily communicating modules on a same processor
and minimizing the utilization of most heavily loaded processor (referred to as
borttleneck). To find the minimum bottleneck assignment, it requires an exhaustive
search from all possible solutions which takes a prohibitively large amount of CPU
time. To reduce the CPU time, a heuristic search algorithm was also developed in
[LANS8S]. Figures 4.5 and 4.6 show the response time performance for assignment B
from our algorithm, the minimum bottleneck assignment based on exhaustive search
and that based on heuristic search reported in [LAN85]. We note the results are com-
parable which also serves as another validation of the analytic model as well as the al-
gorithm. The major advantages of our new algorithm over that proposed by [LAN8S]

are:

~ (1) Less computation time because a significant amount of CPU time is required to re-
peat the algorithm in [LANSS] for selecting the threshold values: o, f and ¥ to

yield good solutions.

(2) The new algorithm can be extended to handle module assignment with module re-
plications which have not been considered in the existing module assignment

algorithms. We shall discuss this extension in the following chapter.
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4.5 SUMMARY

In this chapter, the problem of module assignment without module replication
for RTDPS has been formulated as a zero-one integer optimization problem. The ob-
jective function of this problem does not posses an empirical form and can only be
computed numerically by the task response time model. A new aigorithm for the
MAP which is based on the response time model has been introduced. Application of
this algorithm to the DPAD System has demonstrated the efficiency of the algorithm,
and further validated the analytic model. Since module replications may be required
for some real-time applications, we shail discuss the extension of this MAP algorithm

for handling module replications in the following chapter.
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CHAPTER §
MODULE ASSIGNMENT WITH MODULE REPLICATIONS

5.1 INTRODUCTION

Another aiternative to share the processing workload among processors in a
distributed system is to replicate some modules on several processors instead of allo-
cating each module to a single proccssor; As a design aiternative for distributed sys-
tems, this technique is referred to as mo&de replicarion. Invocations for these repli-
cated modules are routed to and executed on their resident processors according to the
loading condition of the processors. Module replications may improve the system
performance in the following aspects. Firstly, the processing load on a computer
depends on the invocation rates and execution times of its residing modules. As invo-
cations for a replicated module are executed on a number of computers, processor
load due to cxecutiotis of replicated modulcs may be evenly balanced among comput-
ers by proper module replication and allocation. Secondly, with better balanced load
on processors, system response times can be improved to meet their strict require-
ments. Thirdly, if computer malfunction occurs, invocations for the replicated
modules still can be executed on other available computers. Thus, module replication

improve the system reliability and availability.
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To support module repiications, a distributed system should have a special al-
gorithm to route the invocations for a replicated module to its resident computers.
When a replicated module is invoked, if a copy of the module is located on a local
computer, then the module invocation will be executed locally. Otherwise, the en-
ablements for the moduie have to be routed to some remote computers for execution.
The routing algorithm ought to be properly designed so that it will not become the
bottleneck for the system. A simpie strategy is to route the invocations to their resid-

ing computers in a round-robin manner.

The replication and assignment of modules to computers in a distributed sys-
temn is referred to as the replicated module assignment problem (RMAP). Actually, a

RMAP consists of two sub-problems:

(1) To determine the optimal module multiplicities (i.e., number of copies for each

module), and

(2) To allocate these module copies to computers

such that the specified system performance requirements can be satisfied. Since both
module multiplicities and the assignment of module copies to computers will affect
the resultant system performance, these two issues cannot be considered separately.
For simplicity, we shall still refer the replication and assignment of modules to com-
puters in the replicated processing environments as module assignment (or module al-

locarion) in the following discussion.
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In this chapter, we shall first discuss the objectives for the RMAP and a new
objective function is constructed for efficient search of good module allocation. Next,
we extend the module assignment (without module replications) algorithm introduced
in Chapter 4 to handle module replications. Application of this algorithm for RMAP
to the Sentry System will be presented and finally the performance of the algorithm

will be discussed.

5.2 THE OBJECTIVE FUNCTION FOR RMAP

The primary goal of module assignment in distributed systems is to satis{y the
prescribed response time requirements with the considerations of IPC, module pre-
cedence relationships, load balancing and interconnection network delay. One way to
achieve this design goal is to minimize the mean task response time. In the previous
chapter, we have demonstrated the effectiveness of this objective in searching for
good assignments without module replication. Module replications provide us with
more flexibility in system design. The key question is to determine which modules

require replications, and how many copies of them are needed.

An application task is often decomposed into several threads of modules. To
respond to each external stimulus (task invocation), often only a single thread (or a
portion) of the task is invoked. Besides the response time requirement for the com-
plete task, users always specify the response time constraints for various threads of
the task. Therefore, for the case of module replications, the following are the objec-

tives for RMAP:
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(1) the average response time of the application task is minimized, and

(2) response time constraints for various threads are satisfied.

Depending on the definition of task response time for a RTDPS, minimizing
task response time does not assure that the threads’ response time constraints are
satisfied. For real-time applications, to satisfy the response time constraints is usually
more important than to merely minimize their task response times. Thus, thread
response time specifications should be satisfied before minimizing the task response
time. In other words, the goal of RMAP for a RTDPS is to minimize the task response

time with the conditions that thread response time specifications are met.

5.2.1 A New Objective Function

An algorithm for an optimization problem can perform more efficiently in
search of solutions if there exists an objective criterion (function) for the problem.
Now, the RMAP for RTDPS has two objectives. Therefore, it is desirable to combine

them into a single objective function.

One approach to combining these two objectives is to define a new objective

function for the RMAP as
{Tptp if all thread response rime constraints are met
Tosj = Tpp +aTpy  otherwise 5.1)
where:
T, = mean task response time (as defined in Section 4.2),

111



Tpq = A positive-valued penalty delay function (to be defined later),
a = a positive scaling constant to account for the impacts of violating thread
response time constraints.

This new objective criterion is the sum of mean task response time T, and the possi-
ble penality delay al,4. Both T,, and T,, depend upon the module assignment in
consideration. For a given module assignment, the penaity delay may be added to the
objective criterion to "penalize” the violations of thread response time requirements
for the assignment. Clearly, if the penalty delay a7,, is chosen to be sufficiently
large when compared with T, , the objective criterion T,,; will be largely increased
when some threads violate their response time specifications. Since any algorithm for
the RMAP will definitely search for a module assignment with the minimum value of
Ty, the algorithm will implicitly avoid those solutions which yield unsatisfactory

thread response times.

5.2.2 Properties of the Penaity Delay Function

Before we define the penalty delay function, let us define some variables and
discuss the properties of the function. Suppose the system performance specifications
consist of response time constraints for £ distinct threads. Let each thread be desig-
nated by indices from 1 to k. We define
r;(A) = the average response time for thread i for module assignment A,

t;(R) = the average response time requirement for thread i,
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{fi (A)=4(R)  thread i violates response time requirement

4;(4) 0 otherwise

response time discrepancy for thread i for module assignment A,

D(A)=[d;(A)] = thread response time discrepancies vector for module assignment
A.

For a given module assignment A, if the response time constraint for thread i is

violated; that is, #;(4) > ;;(R), then d;(A) represents the discrepancy between the

response time and its requirement. In addition, let thread i consist of a set of modules

S;. For each i g [1,k], we define the required mean module waiting rime for thread i

as

R) = T %

fES
“-’I'(R ) = 5 A
1S;1 (5.2)
where J'r'} = mean execution time for module ;. Let

W(R) =[w;(R)] = required mean module waiting times vector.

Given the response time requirement for thread i, the numerator in Eq.(5.2) is the
maximum allowable sum of waiting times for all modules of thread i. Thus, w;(R)
represents the average module waiting time for each module in the thread. Obviously,
the smaller value of w;(R) means that the faster response does thread i require from

the processor.
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To provide an efficient search for good module assignments, we define the
penalty delay function, 7,4, 2s a function of D (A) and W (R). Let us discuss the pro-

perties of T4 (D (A ),W (R)) in the following.

Property 1:

Toa(D(A LW (R)) is an increasing function of d;(A) forall i € [1,k].
The penalty delay increases as the amount of a thread response time exceeding its re-

quirement increases.

Property 2:

Foralli,j e{l,k]andi=j,ifd;(A)=d;(A)>0and W;(R) > w;(R), we have

0T p4{D (A),W (R)) B oT,q(D (A)W(R))

Provided that the threads’ response time discrepancies are the same, the thread with

the stricter response time requirement (i.c., with a smaller w;(R) ) yields a higher

penaity delay.

Based on these properties of the penalty delay function, the objective function,
T,p;» in Eq.(5.1) can be used to efficiently search for better module assignments
which reduce the thread response time discrepancies and attempt to firstly satisfy the
threads which have stricter response time constraints. Therefore, we define the penal-

ty delay function according to these properties as follows:
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k
T,iD AWR) =T I di(A)
i=1 (5.3)

R),..., we(R
where /; = max{ wiR), waRD, Wi R) ] for all i £ [1.k].
w;(R)

Apparently, this function satisfies Property 1. If w;(R) > w;(R), then [; < {;. Thus,
the function also satisfies Property 2. Further, by the definition of 4;(A )’s, when all
thread response time constraints are satisfied for the assignment A, T,4(D (A),W (R))
in Eq.(5.3) equals zero. Substituting Eq.(5.3) into (5.1), we obtain the objective func-
tion for the RMAP as

£
Topj(A)=Tpp(A)+a 3 [ di(A)
i=l - (5.4)

5.3 ANEW SEARCH ALGORITHM FOR RMAP

Given a module replication and assignment for a distributed system, each
computer will execute a fixed set of modules. Based on the task invocation rate and
the routing algorithm for replicated module invocations, module invocation rates on
each computer can be obtained. Therefore, with other system parameters (as defined
in Section 4.2), the response times for the complete task and various threads can be
computed by the task response time model. From the thread response times and their
requirements, the penalty delay is computed thus the value of the objectve function

for the module assignment.
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5.3.1 Problem Formulation

Using the same assumptions and definitions as in Section 4.2, the RMAP for

the distributed system is to determine the module assignment: To minimize

Tosj (A)=Top(A) +a Ty(D(A)W(R))

k
=F (G A X,0%(x),T,,0%(¢ .Dng O A ,n) +a T i di(A)
i=l (5.5)

) n
with constraints 1S YA;Sn  forall je[lm]

i=l
The constraint inequalities indicate that each module may be allocated to at least one
processor or replicated on as many as all processors in the system. Module assign-
ment with replications is much more complicated than that without module replication
as module multiplicitics are also key parameters that need to be determined. In the

following, we shall extend the MAP Algorithm to handle module replications.
5.32 Algorithm for RMAP

The RMAP algorithm consists of three major components:
(1) Module Reallocations from LWP to SWP

For a given module assignment, modules may be reallocated from the LWP to
the SWP without changing module multiplicities until a local optimal assignment is

reached. This portion is identical to the MAP Algorithm (Chapter 4) except the objec-
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tive function T, is replaced by T,,;. Actually, the MAP Algorithm becomes a sub-

routine in this RMAP Algorithm.
(2) Further Module Replications on SWP

After module reailocations from the LWP to the SWP has reached a local op-
timum, the algorithm attempts to balance the processing workload by further replicat-
ing certain modules on the SWP. In case some thread response time constraints are
violated, the modules for further replications on the SWP are the modules of those
threads which violate their response time requirements. If all thread response time
constraints are satisfied, those modules currently residing on the LWP becomes the
candidates for further replications on the SWP. If T,,; is improved by these replica-
tions, the single module replication on the SWP that yields the minimum T,,; is final-
ized. However, T,,; may not always be improved with these replications of modules
on the SWP because of the possible increase of [PC and/or the violations of thread

response time requirements.
(3) Module Deletions from LWP

If further module replications on the SWP does not improve T,,;, then the al-
gorithm tries to delete some modules from the LWP in the hope that (a) IPC in the
system is reduced, and/or (b) T,y; can be improved by deleting modules of some
threads with less stringent response time requirements. The algorithm also takes a

greedy step as finalizing the single module deletion from the LWP that yieids the
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lowest Typ;.

The RMARP algorithm is listed in the following:

REPLICATED MODULE ASSIGNMENT ALGORITHM

1. Determine the initial module multiplicities; Or, use the module multiplicities of the

previous local optimal assignment.
2. Generate a random module assignment A based on these multiplicities.

3. Invoke the task response time model to compute T,,;(A) for assignment A, and
reailocate module copies from LWP (A ) to SWP (A ) (without changing moduie
multiplicities) until reaching a local optimal assignment A,. (* As Steps 2 to

7 in the MAP Algorithm do except T, is replaced by Ty *)

>

Compute thread response time discrepancies d;(A,) for all threads i where

i €[1,k] and identify LWP (4,) and SWP (A, ) for assignment A,,.

5. If there exists d;(4,) > O for any i € [1,k], then let Sp be the set of modules of all
threads i where d;(4,) > O for all i € {1,k]; (* some thread response time con-
straints violated *)

Otherwise, let S be the set of modules residing on LWP (4,). (* all thread

response time constraints satisfied *)

6. For each module j & Sp not residing on SWP (4, ), perform
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6.1 Temporarily replicate j on SWP (4,) thus becomes assignment 4 ;;

6.2 Compute T, (A ;) and reallocate module copies from LWP(4;) to
SWP(A ;) until reaching a local optimal assignment A ,. (* As Step 3

does *)
7. If there exists T, (A ;) < Tpp;(A,) for any j € Sp from Step 6, then

7.1 Set Ao =Ajoi Tobj(Ao) "_"Tob}(Ajo)' LWP (Aa) =LWP (A]o)’ and

SWP(A,)=SWP(A,,) where T,(A;,) =;“éi§'{ Tosj(Ap) ) (* To
L4
finalize a single module replication on SWP *)
7.2 Go to Step 4.

8. Otherwise, let S; be the set of modules residing on LWP (4,). For each module

J €5; where j has more than one copy, perform
8.1 Temporarily delete j from LWP (4,) thus becomes assignment A;;
8.2 Repeat Step 6.2 to obtain the local optimal assignment A ;.

9. If there exists Top;(A ) < Typ;(A,) for any j € Sy from Step 8, then

9.0 Set A,=Ap, Taj(A,)=Tu;(d;,), LWP(A,)=LWP(4;,), and

SWP (A,) =SWP(A;,) where Tabj(Ajo)=,ﬂ:i?{Tobj(Aio)}; (* To
t o

finalize a single module deletion from LWP *)
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9.2 Goto Step 4.

10. Otherwise, Stop. (* Reach a local optimum *)

5.3.3 Initial Module Multiplicities

During the execution of the algorithm, module multiplicities are changed due
to the module replications and deletions in searching for better assignments. To pro-
vide a good sub-optimal module assignment as a final solution for a given distributed
system, the algorithm is re-iterated with a number of randomly selected assignments.
In additional, to explore different assignments with the same module muitiplicities,
the module multiplicities of a local optimal solution are used to generate the next ran-
dom module assignment (Step 1 in the RMAP Algorithm). However, the algorithm
should start with a set of feasible initial module multiplicides. Therefore, the selec-
tion of initial module multiplicities is important and will be discussed in the follow-

ing.

There are many ways to select the initial module multiplicities. The basic re-
quirement is to select these initial multipiicities such that the processing requirement
for each module copy does not saturate a processor. That is, the processor utilization
due to each module copy, which is the product of the invocation rate and the mean ex-
ecution time of the module copy, on each processor is less than unity. In addition, it
is desirable to select the initial module multiplicities so that the processing workload
can be easily balanced among the processors in the system. Based on these considera-

tions of processor utilization, the following procedure is used to determine the initial
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module multiplicites for the RMAP Algorithm:

1. Assume the system has m distinct modules. Let p; be the processor utilization of
module i where i € [1,m]. Based on the invocation rate and the mean execu-
tion time for module i, compute p; forall{ e [1,m].
m
2P

i=i

2. Compute the mean processor utilization due to a module, py; =

3. Let a; be the initial multiplicity for module . For each i € [1,m], perform

3.1 Seta; = &-l,
PM
32 If % > 1 then reset @; as the smallest integer such that %— <l
' i

Note that if there exists any a; such that a; > n (the total number of processors in the
system), then the system is bound to be saturated and no module assignment can pro-
vide satisfactory response times. Although the initial module multiplicities deter-
mined by the above procedure may not provide satisfactory thread response times at
the beginning, these multiplicities are subsequently modified in searching for the

module assignment with the minimum value of T,
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5.4 APPLICATION OF RMAP ALGORITHM TO THE SENTRY SYSTEM

The Sentry System [TITA85] is another real-time distributed system that
processes radar signals for space defense applications. In the following, we shall first
describe the system characteristics of the Sentry System. Then, we discuss the perfor-
mance of the RMAP algorithm when applied to the Sentry System for the selected

sets of thread response time requirements.

5.4.1 The Characteristics of the Sentry System

The Sentry System is a loosely coupled distributed system which consists of
six processors interconnected by a high-speed bus. The application task comprises of
12 modules and its control-flow graph is given in Figure 5.1. The task response time

for the system is defined as the weighted sum of the average module response times;

that is,
12 A 2 A 12 .
Top =_2""'- Ti+_2 —i;:- zpij 8;j D))
i=l i=] Jj=1
where:

A; = the invocation rate for M;,
Arpe = the total invocation rate for all M; fori = 1to 12.
T; = the mean response time for M; (averaged over the response times for all
copies if M; has several copies).
pij = probability that M; enables M; upon the completion of execution,
5 {1 if M; enabies M; on a remote processor
ij

=0 otherwise
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D,.{i.j) = average interconnection network delay incurred by messages from
M;toM;.

Among these modules, three modules (M g, M |; and M ;) are periodically enabled
by the system, while the rest of them are invoked according to the arrivals of radar re-
turn signals. When a return signai arrives, M | is invoked. After M |’s execution, con-
trol is branched to process a particular thread dependent upon the type of the retum
signal. The Sentry System gives names for various threads as shown in Figure 5.1.
The response time for a thread is defined as the time from the arrival of a return signal
at the system (i.e., M| is invoked) until the message sent by the last module of the
thread to M o is processed by the resident processor of M 15. Due to the thread
response time and the loading requirements of the system, modules require to be re-
plicated on several processors. In addition, since M ;; performs some special func-

tions, it is not allocated to any of the six processors in the system.

Data flow due to shared file access is presented in Figure 5.2. Each ellipse
represents a data file. An arc pointing from a module to a file indicates a file-update,
while pointing from a file to 2 module designates a file-read. An arc with double ar-
rows means that the module will perform read and update to the file during the

. module execution.

The Sentry System has a detailed operating system for module scheduling and
[PC processing. Module executions incur scheduling overheads. All moduie execution

times (including their scheduling overheads and file access times) are deterministic
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and shown in Tabile 5.1. Modules can communicate with other modules through shar-
ing common data files and/or direct message exchange. The processing time for the
IMC from M; to another M is referred to as IMC time (JMC; i) for the module pair.
The IMC times for various module pairs are tabulated in Table 5.2. If the communi-
cating modules (i and j) are located on distinct computers, the IMC becomes [PC
which requires processing on both the transmitting and the receiving processors. The
processing time for the IPC is cailed IPC rime (IPCy;). In the Sentry System, the IPC

times on transmitting and receiving processors are different as shown below:

80 Wsec on the transmirting processor
IPC;; = {IMC,-]- on the receiving processor
For the applications of the Sentry System, the invocation rates for the modules are
given in Table 5.3. The branching probabilitics of the control-flow graph can be
determined by the invocation rates of those modules involved at the or-forks. The in-
terconnection network delay is the bus delay in the Sentry System. This delay
depends on the length of the message being transferred via the bus, and ranges from

0.165 to 0.2 msec.

5.4.2 Performance of the RMAP Algorithm

To study the performance of the Algorithm, we repeat the Algorithm with the
selected sets of thread response time requirements, initial module multiplicities and
the penalty delay scaling constant. Four selected sets of thread response time require-

ments, which are designated by R,, Rz, Rc and Rp respectively, are shown in Table
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Exec. + Read Write Total

Modules | Scheduling | File/Time | File/Time | Exec.

Time Time

1 138 RCF/5 - 206

CNF/63

2 199 - CNF/98 297

3 1144 - - 1144

4 236 KOF/66 ODF/149 639
KOF/138

5 1049 QDF/64 KQF/138 1400
QODF/149

6 355 KOF/66 OTF/149 570

7 1406 OTF/64 QOTF/149 1752
KOF/133

2 1286 PDF/97 - 1383

9 981 - PDF/215 1196

10 660 RIF/16 RIF/94 770

11 1137 RIF/26 RIF/84 1247

12 269 CNF/102 - 371

Note: All times are in micro-second.

Table 5.1 Average Module Execution and File Access Times
for the Sentry System
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Sending Receiving | Fixed IMC
Modules Modules Times (us)

1 2 61

1 3 61

1 5 61

L 7 61

1 8 61

2 10 54

3 4 77

4 10 54

5 6 77

5 10 54

6 10 54

7 10 54

8 9 54

9 10 54

10 RADAR 127

Note: All other module pairs not listed here have zero IMC tume.

Table 5.2 IMC Times for Various Module Pairs
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Modules Invocation Rates

1 1.58
2 0.57
3 0.1695
4 0.1695
5 0.6795
6 0.0075
7 0.1015
8 0.0595
9 0.0595

10 0.2

11 0.01

12 0.2

Table 5.3 Module Invocations Rates (No. of Enablements/msec)

for the Sentry System
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5.4. Among these requirements, R, represents a set of less stringent response time
constraints, Rp is the most stricter one, and Rp and R are moderate. Besides the
thread response time requirements, the Algorithm also requires two other sets of ini-
tial parameters: initial module multiplicities, a;’s, and the penalty delay scaling con-
stant, a. Two different sets, &, and oz, of initial module multiplicities are tested,
which are displayed in Table 5.5. Set o, is obtained by the procedure discussed in
Section 5.3.3. For set ag, only M is selected to have two copies as the processor
utilization for M s is 95% which may easily saturate a processor, while other modules
have a single copy. The penaity delay scaling constant is chosen to be 1, 10 or 1000.
The Algorithm is repeated with 11 different combinations of these requirements, ini-
tial module multiplicities and scaling constant. The requirements and parameters for
these 11 experiments are presented in Table 5.6. Experiments #1 through #9 use set
o, as initial module multiplicities, while Experiments #10 and #11 use set otz. The
scaling constant for Experiment #1 is 1. Experiments #2 to #5 and #10 use 10, while
the rest use 1000 as the scaling constant. In each experiment, the RMAP Algorithm is
re-iterated with 500 or 1000 randomly selected initial module assignments. For each
initial assignment, the Algorithm generates a local optimal assignment. Dependent on
the thread response time requirements, only certain proportion of the local optimal as-
signments can satisfy the constraints. The final sub-optimal solution is the local op-
timum that yields the minimum T,,;. The performances of the final sub-optimal
module assignment generated for these these experiments, as well as some statistics

of the Algorithm runs are portrayed in Table 5.7. The sub-optimal module assign-
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.AP
oSy 74 Sets of Requirements
[t =) 4"9
0, 99 9
f.f,> Tl >
s 0’3,)(4)
2. 27
ey, R, Ry Re Ry
QS 2.5 1.8 1.75 1.7
ov 7.0 6.6 6.55 6.5
TI 4,0 3.2 3.15 3.1
oT 4.5 4.0 3.95 3.9
oD 5.5 5.0 4.95 4.9

Table 5.4 Selected Sets of Thread Response
Time Requirements
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Initial Multiplicities
Modules o, ag
1 2 L
2 1 1
3 1 1
4 1 1
5 5 2
6 1 1
7 1 1
8 1 1
9 1 1
10 1 1
11 1 l
12 1 1

Table 3.5 Two Sets of Initial Module Multiplicities
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ments for all these 11 experiments are shown in Table 5.8. We notice that since re-
quirement set Rp is so stringent that no module assignment which meets the thread
response time requirements can be generated for Experiments #5 and #9. During each
of these experiments, 19,500 to 45,000 module assignments with various module mul-
tiplicities are tested. The CPU time for the algorithm runs ranges from 1.48 to 3.48
hours on a VAX 11/780 machine. Further, from these experiments, we recognize the

following characteristics of the Algorithm:
(1) Higher T, for the more stringent requirements

For Experiments #2 to #4 and #6 to #8, T,,, (=T, ) is higher for the more
stricter thread response time requirements. The reason is because the modules of a
thread with a strict response time constraint need to be allocated to some lightly load-
ed processors, while other modules are residing on the relatively highly-loaded pro-
cessors. As a result, T, cannot be further reduced during the search of better module
assignments by either module reallocations, replications, or deletions; otherwise, the
stringent thread response time constraints are violated. Conversely, if the threads have
less stringent response time requirements, the Algorithm has more flexibility in

searching for better assignments with lower T, .
(2) Selections of the penaity delay scaling constant

Clearly, the selection of the scaling constant does not affect the performance

of the Algorithm if the threads have less strict response time requirements. But, the
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scaling constant should be properly chosen for stringent sets of constraints. By com-
paring the response time performance of the sub-optimal solution for Experiment #1
to its requirements (Table 5.4), we notice that TI thread violates its response time
specification. In fact, many local optimal assignments which satisfy the requirements,
Rp, have been generated in Experiment #1. However, the scaling constant of 1 is too
small for the Sentry System. Thus, although the TI thread slightly violates its
response time constraint, the "sub-optimal” assignment yields the minimum 7,,; and
is considered to be the "best” assignment. Therefore, the penalty scaling constant
should be chosen sufficiently large in order to correctly generate the sub-optimal solu-

tions.

The scaling constant should be so selected that T,,,; for an assignment which
meets the response time constraints should be less than that of another assignment
which violates some of the response time requirements. For the Sentry System, T,
is about unity and thread response times are a few times of T,,,. These cxperiments
indicate that setting the scaling constant equal to or greater than 10 is sufficient. Ex-
cept Experiment #1, all other experiments use 10 or 1000 as the scaling constant. Our
results show that the Algorithm is able to generate sub-optimal solutions with very
close response time performance. In addition, we also repeated the experiments with
a = 50, the Algorithm also generated sub-optimal assignments with similar response
time performance. Therefore, the experimental results show that the performance of
the Algorithm is insensitive to the selections of the penaity delay scaling constant

within this wide range from 10 to 1000.
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(3) Insensitivity of the initial module multiplicities

Experiments #10 and #11 use the set &tz as initial multiplicites, and the
threads have the moderately stringent set of response time requirements, Rp. The
results for Experiments #10 and #11 are closely compared to those of #3 and #7. It re-
veals that the performance of the Algorithm is also insensitive to the initial module
multiplicities, provided that no single moduie copy for the initdal multiplicities can sa-

turate a processor.

5.5 SUMMARY

The design objective for replicated module assignment in RTDPS is to minim-
ize the task response time with the constraints that thread response time requirements
are satisfied. A new objective function which is sum of the task response time and the
possible penalty delay to account for the violations of thread response time require-
ments has been introduced. Based on this objective function, the RMAP Algorithm
has been developed by extending the MAP Algorithm for handling module replica-
tions. The RMAP Algorithm consists of three components to: (1) reallocate module
from LWP to SWP, (2) further replicate modules on SWP, and (3) delete modules
from LWP. This new algorithm was applied to the Sentry System which is a loosedly
coupied distributed system with six processors interconnected by a bus. The algorithm
optimally allocates module copies to computers and the module multiplicities are
iteratively determined so as to achieve the design objective. The algorithm has been

validated and proved to be efficient for generating sub-optimal module assignments
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which meet the response time specifications while the overall task response time is
minimized. Further, the Algorithm is insensitive to the selections of initial module
multipliciies and the penalty delay scaling constant if they are properly chosen.
Therefore, the RMAP Algorithm is a robust tool for performing module assignment in

replicated processing environments.
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CHAPTER 6
CONCLUSIONS & FUTURE RESEARCH WORK

6.1 CONCLUSIONS

Response time is an important design criterion for real-time systems. There-
fore system designers have to design RTDPS such that the prescribed response time
specifications can be satisfied. In general, either analytical or simulation techniques
can be employed to study response times for RTDPS. However, simulation methods
usually tend to be expensive and time-consuming. These shortcomings have led us to
pursuing analytical approaches for the problem. To overcome the inadequacies of
current analytical approaches, a new analytic model has been introduced for estimat-
ing task response time for loosely coupled distributed processing systems. Our modei
considers such factors as IPC, module precedence relationships, module scheduling,
interconnection network delay, and assignment of modules and files to computers.
Simulation experiments have been used to validate the model assumptions and reveal

that our model can provide good task response time estimations.

Our model is applicabie in various design and performance studies of distri-

buted systems. First of all, we have used the analytic model to study the effects of PR
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on module response times, and the importance of PR effects in module assignment for
distributed systems. Our study reveals that the mean execution time ratio of a pair of
consecutive modules plays an important role in the PR effects. Besides PR effects,
IPC, load balancing and interconnection network delay also affect the task response
time for a distributed system. Since the analytic model considers all these factors, it

can accurately estimate task response times for various module assignments.

Based on the model, we have developed a new local search algorithm for
module assignment in RTDPS. In this algorithm, the task response iime modei be-
comes the objective function of the module assignment probiem. And, the task
response time is optimized over all possible module assignments. Search strategies
are established in the algorithm to look for moduie assignments which provide shorter
task response times. We first considered the cases where each module is allocated to
a single computer. Then, we have extended the algorithm to handle module replica-
tions; that is, modules may be replicated and processed on several computers. For the
distributed systems where module replications are required, not only the module
copies are optimally allocated to computers, but the appropriate module multiplicitics

are also iteratively determined by the algorithm.

The module assignment algonthm has been successfully applied to two distri-
buted systems for space defense applications: the DPAD and Sentry Systems. System
specifications do not require module replications for the DPAD System, while it does

require for the Sentry System. The applications of the algorithm to these systems have
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demonstrated the efficiency and versatility of the algorithm, and also served as anoth-
er validation of the analytic model. The module assignments generated by the algo-
rithm provide excellent response time performance because the algorithm is based on
the task response time model which has considered all the major factors that affect
task response time in the distributed systems. Therefore, the module assignment al-

gorithm should serve as a valuabie tool for designing distributed systems.

6.2 FUTURE RESEARCH WORK

A number of research areas which need further investigations. We shall

describe these research problems in the following:

6.2.1 Database Management Strategies

Distributed systems require protocols to ensure internal and mutual data con-
sistency for simultaneous access of replicated data files. These protocols require extra
IPC, processing, and increase module response delays. Common consistency controls
include locking, timestamp, and exclusive-writer protocol [BERN81, CHUS3Sal. In
the task response time mode!, the processing of IPC on a processor is treated as a spe-
cial module execution. If the module execution has to be delayed for handling the
data consistency problem, the module execution time is correspondingly prolonged. It
is desirable to incorporate these effects of concurrency controls into the response time
model. Hence, the model can be used to study the overhead in terms of task response
time of several commonly used database concurrency control algorithms such as lock-

ing, timestamping, and the exclusive-writer protocol. The results of these investiga-
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tions should provide insight into the performance as well as overhead of concurrency

control algorithms for distributed systems at various operating environments.

6.2.2 Module and File Allocations

In this research, we assume files are stored (or replicated) on a computer
where its residing modules may access to the files. However, for some applications,
this file allocation strategy may generate a large volume of IPC in the system because
a lot of files are replicated on a large number of computers and all these file copies re-
quire to be updated. To overcome this potential processor saturation, it is desirable to
replicate and allocate files such that both [PC and response times are minimized.
Since file access are generated from the module executions, module assignment and
file allocation need to be considered simultaneously. Therefore, we need to determine
both the module and file muitiplicities, and allocate these module and file copies to
computers in order to minimize the task response time and to satisfy the system

response time specifications.
6.2.3 Tightly Coupled Distributed Systems

Since the loosely and tightly coupled systems share a lot of common charac-
teristics such as data consistency requirements, module scheduling, precedence rela-
tionships and IPC, the task response time model can be generalized to be applicable to
tightly coupled distributed systems. In tightly coupled systems, processors communi-
cate via sharing common memory, which may cause memory access conflicts. The de-

lay due to these memory conflicts can be treated by prolonging the module execution
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time in the task response time model. In addition, our response time model needs to
be extended to model the generalized class of data concurrency and synchronization
mechanisms such as ADA’s rendezvous operations which are commonly used in

tightly coupied systems.
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APPENDIX A

RESPONSE TIME FOR AND-FORK TO AND-JOIN SUBGRAPH

Suppose the and-fork to and-join graph consists of n sequential threads as
shown in Figure 2.4. Let us use y; to denote the response time (a random variable)
for the i** thread, 7; and o7 its mean and variance respectively. Let Y be the
response time for the control-flow subgraph. Due to the and-join function, the
response time for this subgraph is the maximum of all threads response times y;’s.

That is

Y=m3x[)’p)’2,"' J’,,}
(A.1)

Let the probability density function (pdf) and distribution function (PDF) for the ran-
dom variable y, be f;(y) and F;(y) respectively. Assume that all y;’s are independent,

then we have

P(y)=Prob{Y sy ]

=Prmb[y Sy] - Prob{y,sSy]

= ﬁ F,0)
i=1 (A.2)

Hence the m* moment of the subgraph response time y™ can be computed by
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yE=[y"dP(y)
0 (A.3)

A.1 RESPONSE TIME FOR A TWO-THREAD AND-TO-AND SUBGRAPH

If F;(y) is a general distribution function or n>2, the computation of the mo-
ments of subgraph response time from Eq.(A.3) will become very complicated. To
overcome this difficuity, let us now consider a two-thread and-fork to and-join sub-
graph (i.e., n = 2). Based on the mean and variance (y; , 0',-2) of response time for the
i** thread, we can approximate the pdf for the response time by either a branch Erlan-
gian or a hyper-exponential distribution function. Therefore, if the coefficient of vari-
ation for the thread response time is less than 1, the pdf £;(y) for the i thread can be

approximated by the following branch Erlangian function:

"
- i -
fi0)=p e ™ + (1‘Pi)"'—‘l""'-)”"“l e ™

where:
n; = [0':’51')2-1
20,(G; 15, + n; =2 = JnF + & = an; (0,15, )"
i 2005+ 11 - 1)
n; = p; (n;=1)
Wi=———
¥i

In case the coefficient is greater than 1, then f;(y) can be approximated by 2 hyper-
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exponential function as

Fi0)=p; pip e MY + (1=p;) Pipe MY

(A.5)
where:
(@R + 1= ~f(G7F) = 1
a 2((c;/F7)? + 1]
2p;
i1 = -
2(1-19:)
Hiz=—_
Yi
Since n=2, Eq.(A.2) becomes
Py)=F ,()F,00)
(A.6)

Substituting P(y) from Eq.(A.6) in Eq.(A.3), the mean response time for subgraph can

be computed as

= [yF 10 20)dy + [ yF 20 1)y
] 0 (A

Suppose both £ ;(y) and f 5(y) are branch Erlangian distribution functions as shown
in Eq.(A.4). After some algebraic manipulation, we obtain the mean task response

time for the two-thread and-fork to and-join graph. That is

y=pp u«z[—l————-l-——l
2 i-'-zz (u1+uz)2
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nl

2
(’lz—l)!

q2=(1-p2)

Similarly, the second moment of the response time for the subgraph can be computed.
By the same token, we can compute the moments of a two-thread subgraph’s response
time for the cases where the pdf’s for thread response times are approximated by dif-

ferent combinations of the distribution functions shown in Eq.(A.4) and (A.5).

A.2 RESPONSE TIME FOR A N-THREAD AND-TQ-AND SUBGRAPH

Now, we consider an and-fork to and-join subgraph which consists of n
threads. Since the integrals for ¥y (See Eq.(A.8)) and y-z- may involve the incomplete
Gamma function, the integrals are mathematically intractable if the subgraph has
more than two threads (i.e., n > 2). However, the following shows a method to esti-

mate the mean and second moment of the response time for the n -thread subgraph.

Due to the fork and join functions, a n -thread subgraph can be re-organized as
shown in Figure A.1. The subgraph then contains another subgraph with two threads.
These two threads are firstly aggregated into one. To aggregate ail n threads, let us
define u; as the aggregated response time after aggregating the 1¥ up to the i h

thread. We have
=Y

1= MAx {U,Y; )
(A.9)

foralli =1,2,..,n—1. Recall that
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Y 2max {y .y " Y}
=mﬂx{mﬂx{}’p3’z},}’3t"'}'ﬂ}
=maX{u2,y3,‘ b ‘yﬂ}

As from Eq.(A.9), the mean and second moment of the aggregated response time
u;,, denoted as mand u,—ﬂ? can be computed from the approximated pdf’s for u;
and y;,,. This suggests that we can further approximate «;,’s pdf by another branch
Erlangian or hyper-exponential distribution function based on ::1- and L:F Thus
we can aggregate these two threads and yield the approximated pdf for the aggregated
response time as a result. After aggregating these two threads, the number of threads
in the subgraph is reduced by 1. Therefore, by repeating this two-thread aggregation
for n-1 times, the first two moments of the response time for this n-thread and-fork to

and-join subgraph, y and )v_l', can be computed.
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APPENDIX B

MEAN MODULE RESPONSE TIMES WITH DEPENDENT INVOCATIONS

Consider a computer allocated with modules of v distinct control-flow sub-
graphs. Each subgraph consists of one or more sequential threads which may be in-
voked simultaneously (See Figure 2.8(A)). Assume that the i subgraph consists of
b; sequential threads, and the j* sequential thread comprises d; () modules for
j=1,2,..b;. For a subgraph consists of a single sequential thread, then b; =1. Let
M; (k) be the k™ module (starting from the entry module) of the j th sequential
thread for the i*® subgraph. In addition, let P, (j;k,r) be the probability of invoking
M; (j;r) given that M; (j:k) is executed for i=12,..v, j=1,2,.5; and
| £ k<1<d; (j). Thus if a subgraph does not contain any or-fork, P; (j:k,t)=1 for
ail & and r. For a subgraph containing a branch of an or-fork, the modules in this
branch are not invoked if the control branches to the modules that do not reside on the

same computer. Thus we have,

Pi (J'k’k) =]
(B.1)
k+a~-1
and P, Gikk+a)= [] P; (ita+])
r=k (B.2)

for l £k< k+a <d; (j).
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B.1 MEAN WAITING TIME FOR ENTRY MODULES

Let W, (j;k) be the mean waiting time for module M; (j;k). According to the
assumptions la and 2a in Section 2.2.3, the mean waiting time for M; (1;1) (ie., an
entry module) for all i=1,2,...v under the first-come-first-serve discipline is the aver-
age time to complete the current module execution and all the modules in the job

queue on the computer when the invocation for M; (1;1) arrives. Thus we have

v b df(s)
W: (50)=W,+Y 3 T n.(s:t)x (s3t)
r=l s=] =1 (3_3)

where:
n, (s;t) = average number of invocations for M, (s ;r) waiting in the job queue,
x, (s;1) = average execution time for M, (s5:2),

W, = mean residual module execution time

r b d(s}) 1 =
=2 2 X EL(S:r)x , (552),

r=] s=] =]
x2, (s;2) = second moment of execution time for M, (s:t),
A, (s;2) = invocation rate for M, (s:z).

Based on Little’s result [LITT61] (i.e., . (s;1) =X, (s;2) W, (s:1)) and substituting
the computer utilizaton of M, (s;t), p, (s;¢) =X, (si1) X, (53t), into Eq.(B.3), we

have
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v b d(s)
W, (LD=W,+3 X Y p(sir)W,(sir)

r=l s=1 1=l (B.4)
For simplicity in notation, we can order the thread index j such that the execu-
tion sequence for the bulk module invocations is to execute module M; (j;1) before

module M; (s;1) for j<s. Thus the mean waiting ime W; (f;1) is

. 2
W, ;=W (LD+ 3 x(s;1)

s=1 (B.5)

fori=1,2,..v,and b; 2 j 22.

B.2 MEAN WAITING TIME FOR NON-ENTRY MODULES

Let us consider the waiting time for the non-entry modules M; (j:k) (i.e., with
k22). After completing its execution, a module invokes its succeeding module, if
any, and places the invocation at the end of the job queue. Since these invocation ar-
rivals are dependent and non-Poisson distributed, we need to keep track of the invoca-
tions generated from the modules residing on the local computer as well as the newly
arrived module invocation from other computers. The waiting time for the non-entry
modules can be divided into three components. The first component, W1; (j k), is
due to the executions of the succeeding modules invoked by the module invocations
which are being executed or waiting in the job queue upon the arrival of the invoca-
tion for M; (j;1). The second component, W2; (j:k), is due to the waiting for the
module executions invoked by the bulk module invocations (ie., M; (s:l),

s=1,---b; and s#j). The last component, W3; (j;k), is the waiting time due to the
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module invocations from other computers that arrive after the invocation for the entry

module and their succeeding modules. Thus,

v b d(s)k+l
WL Gk)=Y T T mEnP (s it r+k=1) X, (s;2+k-1)
r=l s=1 =1

>

r=| s=1 ]

b, d,(s)-k+l
P, (5:2) P, (s:t.0+k=1) X, (st +k—1)
=i

(B.6)
The first term of Eq.(B.6) is the total time for executing the succeeding modules in-
voked by M, (s;r) waiting in the job queue upon the arrival of the invocation for
M; (j;1). Similarly, the second term is the execution times of the modules succeeding
the module M, (s;z) which has probability p, (s:r) of being executed when the invo-

cation for M; (j;1) armives.

According to the definition of invocation probability P, (s;2,2+k-1),

A, (s;t+k=1) =R, (531} P, (s;8,0+k~1)
(B.7)

Applying Little’s resuit and substituting Eq.(B.7) and p, (sit) = Ar (s32) X, (s;r) into

Eq.(B.6), after some algebraic manipulation, it yields

v b, dls)kel
WL Gk)=3X T T o urk=D[W,(s:0)+X.(5:0)]
r=l s=1 =1 (B.8)

The second component of W; (j;k) is
i-1 _ b _
W2, (k)= P; (s:1Lk) xi(s:k) + 3 P; (5:1,k-1) x;(s:k-1)
s=1 s=j+l ‘ (B.9)

The first term in Eq.(B.9) is the execution times for the modules succeeding the entry
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module(s) (M; (s;1) for s <) that are executed before M; (j:1) in the bulk module in-
vocation. The second term is the execution times of those modules succeeding the en-

try module(s) (M; (s:1) for s >j) executed after M; (j;1).

The third component of W; (j:k) is used to keep track of the new module in-
vocations that arrive after the invocation for the entry module M; (j;1) and their
succeeding modules subsequently generated from the newly arrived invocations.
Thus, we have

v b
W3; Gik) =W, (k-1 + X Gk-D] T T A (551 5 (531)

r=l s=1

v b
HW.(k=D+504-DIT T AGDP (LD X (520
r=l s=1

d,(s)22

v b(
HW; GiD+5GGDIY Y A D P(s: k=D X (s:k-1)
r=l =1 (B]-O)
dy(s)2k-1

Due to the first-come-first-serve scheduling, those module invocations from other
computers arriving during the response time (waiting plus execution) of M; (j;k-1)
contribute a part of the waiting time for M; (j;k). Thus the first term of Eq.(B.10) is
the total time for executing those module invocations arriving during the response
time of M; (j;k—1). Likewise, the remaining terms of Eq.(B.10) are the times for ex-
ecuting those module invocations from the same computer where P, (5:1,1)
represents the probability that M, (s;1) invokes M, (s;t). After substituting A, (s:0)

=%, (5;1) P, (s;1,¢) and p, (531) = A, (s32) X, (s5¢) into Eq.(B.10), and simplifying,
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we have

k"'l v b'.
W3, ()= )W, Ut)+x; Gl L X pelssk—r)
=1 r=l s=1 (B.11)

d,(s)2k—~¢

Therefore, the mean module waiting time for M; (j;k) is

W, (j:k)=W1, (k) +W2; (k) +W3; (k)
(B.12)

fori=1,2,.v, j=1,2,.b;, and d; (j) 2 k 2 2.

The mean module waiting time for each module is expressed in Eq.(B.4),
(B.5) or (B.12). They can be determined by solving this set of linear equations. The
mean response time for each module is the sum of its mean waiting time and mean

execution time.
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APPENDIX C

MODULE RESPONSE TIMES FOR PRIORITY MODULE SCHEDULING

Consider that each computer schedules module execution on a predetermined
module priority basis. To study the module response times, the computer is modeled
as a non-preemptive head-of-line (HOL) priority queueing system. Recall that a
module arrival may be a bulk arrival which contains several invocations of different
moduies. To find the first two moments of the waiting time (from arrival until execu-
tion starts) for a particular module k requires the knowledge of the L.T. of the waiting
time. However, solving this queueing system is very complicated. In particular, we
know of no general solution for the system with more than two priority queues
(CHAUS83). Here we propose a new method using the notion of “rest period”

[SCHOS83] to find the L.T. of module waiting tims.

Without loss of generality, let us assume each type of module has a distinct
priority. Consider the waiting time of a particular module k. Suppose module k is con-
tained (invoked) in bulk arrival of type i and its arrival rate is A,. Since module bulk
arrivals are independent Poisson processes, all modules which are not contained in
bulk i but with a higher priority than module k can be grouped together as from a sin-
gle Poisson source with rate A, and the L.T. of execution time Bj(s). Similar for

those with a lower priority, the arrival rate is A; and B [ (s) is its L.T. of execution
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time. Figure C.1 illustrates the arrival processes of this queueing system. In general,
bulk i contains some modules of higher and lower priority than module k. The L.T.’s
of module execution times of these higher and lower priorities modules are B.(s)and
13,,‘ (s) respectively. To study the waiting time for module k, the equivalent queueing
system (Figure C.1) has three types of customers: types p, k and q. Type p customers
have the highest priority and type q customers have the lowest priority. Let B,(s)
and B; (s) be the L.T.’s of execution times for type p and q modules respectively. We

have

B,(s) +———— Bx(s)

B,(s)= T lt | .

Ak
A+
and

By(s )+ B/(s)

A A
q(S)— A A €2
Assume that module k is contained in a bulk arrival; otherwise, the invocation
arrivals are single amrivals and the module waiting time is readily solved in
[CONW&67]. Since subsequent arrivals with higher priority modules will get served
before module k, it is appropriate to use the delay cycle analysis technique [KLEI76]

to compute the L.T. of the waiting time. The computation consists of two steps:

(1) Suppose all arrival processes will be shut off (i.e., no more new arrivals) immedi-
ately after the bulk under consideration has arrived at the system. Find the

waiting time of module k as the initial delay.
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P 2
B,(s) ‘o K
B, (s
A K
8 (s)
b * q
Aq Bq(s)
ee——
B (s)
A 1

Prigrity(p) > Priority(k) > Zriority(q}
)Lp = Ah - Ak

Figure C.1 Arrival Processes and Service Times of
the HOL Jueuging System
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(2) To consider the effect of subsequent arrivals which have higher priorities than
module k, then the waiting time for module k is the delay cycle with initial de-

lay computed in Step (1).

Let us define the unfinished work of a queue as the time required by the server
to finish servicing ail customers currently waiting in the queue. To proceed Step (1),
let the unfinished work of queues p and k to be U,,. In addition, we define a sub-busy
period for Uy, to be the time interval from U, is increased from zero until Uy,

reaches zero again (i.e., all customers are completely served).

It is apparent that the initial delay for module k is given by the sum of Uy, the
execution time of the higher priority modules invoked in the same bulk arrival i and
the residual execution time of type q module if it is being serviced upon the bulk ar-
rival. Since queues p and k have higher priority than g, the computer (server) will
start servicing q module (if any) only when U, is zero. Consider the case that some
module arrival at queue p and/or k which starts the sub-busy period U, finds a q
module is being serviced. Due to the non-preemptive module execution, these arrivals
have to wait until the completion of execution for the q module under service. This
suggests that, to find the initial delay, the system may be viewed as a M/G/1 queue
with rest period [SCHOS83], in which the server will take a rest period with L.T.
B,(s) (ie., execution time for a q module) if Up; =0. The arrival rate and service

distribution of this M/G/1 queue are given by the following equations:
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A.:A.‘,‘Flk (cs)
A M

l B,(s)

By(s)Ba(s) +
A (C.4)

B (s)=

Following the arguments in [SCHO83], the L.T. of the sum of Uy, and the

residual execution time for a type q module is

(1= pe=pp)s  1-B4(s)
s=A+AB(s) X,

where
Xi» X, X, : respective mean execution time for types k, p and q modules,
Pe =Aex, and pp, = 4,5,
Since the bulk arrival has a module of higher priority than k with execution time

B; (s), the initial delay for module k is

I;(.s' | sub—busy period starts when a q module in execution )

1= pp= 1-8]
- (1= pg P,:)s 1(3) B(s)
s=A+AB (s) L (C.5)

In case the computer is idle when an invocation arrival arrives at queues p
and/or k, the computer will immediately start servicing the arrival. Therefore, the
module bulks subsequently arriving during a sub-busy period for Uy, which is started
with an idle system do not experience any delay due to servicing type q module.

Hence the system becomes a regular M/G/1 queue with arrival rate and service time
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distribution given by Eq.(C.3) and (C.4). Then the L.T. of the initial delay for module

k is given by

1= 0u—
( Pr p;:)s B;(S)
s —A+A8B (s) (C.6)

I,: (s | sub—busy period siarts when server idle )=

Let p, =A,%, and p =p, +p; +p,. Due to the randomness of Poisson ar-
rivals, the bulk arrival which starts the sub-busy period for U, will find the server ei-
ther executing a q module (taking a rest) or idle with probability 1 — p; — p,. Out of

this probability, p, is the probability that the server is executing a q module, and

Pq and l=-p
1—pk-pp 1—pt'pp

1 - p is that of the server being idle. Thus, are the

respective probabilities that the sub-busy period for Uy, starts when a g module is be-
ing executed or the system idle. To uncondition the L.T.’s in Eq.(C.5) and (C.6) with

these probabilities, we obtain the L.T. of the initial delay for module k as

. (1-pr=pyls 1-B(s) . P (1= Px=Pp)s . -
o) = —2 e 4 o) —t—  ——PE RS gy 2P
s=A+AB (s) s, 1-pg=pPp s—A+AB (s) 1= px~pPp
] 1-8,(s)
= Bl - p P ]
s=A+AB"(s5) &, (C.7

Let us proceed Step (2). Based on this initial delay, the L.T. W,(s) of the waiting
time for module k is the delay cycle which includes executing all higher priority

modules arriving during the waiting time. By the delay cycle analysis, we get

We(s)=1g(s +Ap =2, G,(s))
(C.®)
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where G,(s) =B, (s +X, =A,G,(s)), B;(s) and /¢(s) are given in Eq.(C.1) and
Eq.(C.7). The first two moments of the waiting time for module k may be obtained

by differentiating Eq.(C.38).

169



