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Abstract

This is the third in a series of reports on continuing studies of discrete-event
simulation using distributed processing (e.g., on networks of minicomputers or networks
of microcomputer workstations), with application to performance prediction for data
communication networks. Issues examined include synchronization mechanisms, task
allocation algorithms, simulator implementation approaches, and deadlock prevention

methods.
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1. Introduction
1.1 Background

This is the third in a series of documents reporting on work in progress in the
project ‘‘Distributed Computer Simulation of Data Communication Networks’’
(DCSDCN). This is a continuing project, which was initiated with support from the
State of California and Doelz Networks, Inc., under the University of
California’Microelectronics Innovation and Computer Research Opportunities (UC-

MICRO) program.

The DCSDCN project is broadly directed toward understanding and
implementing discrete-event systems simulation via distributed processing in networks
of computers, with specific application to the simulation of data communication
networks, using as a test case the Doelz network architecture {Doel84] (an extended
slotted ring for communication). A long-range objective of the DCSDCN project is to
develop simulation tools, executable via distributed processing on microcomputer
workstations, usable in field-engineering situations where performance of proposed data

communication network installations must be estimated.

It is a well-known problem that discrete event simulation is very computer-time
consuming in general. As networks of microcomputer workstations are rapidly emerging
as a medium-scale computing resource, it is now possible to consider more detailed
simulations using these distributed environments. A number of different approaches to
distributed discrete event simulation have been discussed and compared in our previous
report [Cheu85]. The model partitioning method can exploit the inherent concurrency in
the model, and we believe that it is an appropriate approach to realize distributed

simulation of ring type communication networks. In our implementation, the roll back



mechanism in the Time Warp method invented by Jefferson and Sowizral [Jeff83,

Jeff85a, Jeff85b] is used to maintain the correctness of the event sequence.

The simulator is developed on the LOCUS system at UCLA. LOCUS is a
network-transparent version of UNIXf. When a simulation run begins, a number of
pipes are set up for inter-process communications. The processes are then forked and
migrated to different sites (computers) on the network. Hence the simulation is executed

in a genuine distributed environment.

1.2 Recent Progress in the Project

A heuristic algorithm for model! partitioning and load balancing has been
developed. An initial version of the user interface for simulation model preparation is
also completed. A significant portion of the simulator has already been built and tested
on LOCUS; the basic feasibility of distributed simulation on a network-transparent
operating system is therefore verified. In particulaf, the development tasks completed to
date include: the command generation, simulation forward, and roll back mechanism in
terminal nodes. We are planning to finish the implementation of host nodes, and the

response message handling mechanism in terminal nodes, in the near future.

In this report, we emphasize the: completed portions of the distributed simulator.
In Section 2, we compare alternatives in the roll back mechanism. Section 3 discusses
the differences between a regular model and a model for distributed simulation. The
model partitioning, load balancing, and object allocation problem and a proposed
solution are discussed in Section 4. In Section 5, the implementation is described. One
of the major difficulties in distributed systems in general is the deadlock problem,

usually due to the lack of centralized control. Several sources of deadlock in distributed

T UNIX is a rade mark of Bell Laboratories.



simulation have been identified, and suggested solutions are discussed in Sections 6.

Finally, -n Section 7, we outline our future plans for this project.

2. Alternatives in the Roll Back Mechanism
2.1 Side Effects of Selected Saved States at Check Points

Simulation is guaranteed to progress in Time Warp because, according to the
principle of causality, an event with a later simulation time cannot affect anather one
with an earlier simulation time. If we take a snapshot of the processes at any point in
real time, the event which has the earliest simulation time in that snapshot can never be
preempted at any point in the (real time) future. Therefore, the simulation progresses
after this event has beén simulated [Jeff83, Jeff85a]. Subsequently, the system will enter

a new snapshot, and another event will have the earliest simulation time.

One of the main problems with Time Warp is its potential for large memory
usage. A significant amount of memory is needed to save the previous states. As a
result, in actual implementations of Time Warp, the states of a process are usually saved
only ‘‘every so often’’ at certain check points, not after the completion of each event.
The tradeoff is that when a preemption occurs, on the average, the preempted process
will need to roll back further into the past to reach a saved state. The ‘‘optimal’’ spacing
of check points depends on a number of factors such as the amount of memory available,
the characteristics of the model, etc. There does not seem to be any straight-forward
algorithm to determine how often states should be saved. Unfortunately, there is a very
undesirable side effect when only selected states are saved: since an event can now cause
a roll back to a state prior to that event’s simulation time and generate anti-messages, a
preemption could initiate a chain of roll backs. This may be considered as a minor

violation of causality. An example of this problem is shown in Figure 1, where every



third state is saved. P, and P, are two processes; axes 7 and ¢, are their simulation

times.
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A circle indicates an event,
A darkened circle indicates an event whose state is saved.
The dashed arrows represent inter-process messages.
The axes are the simulation time of the processes.

Figure 1: Chain Roll Backs due to Selected Saved States

Assume that in real time, event £ ,5 is simulated on P, before message E |4 from
P arrives. (The relation between real and simulation time among several processes can
only be shown in a three-dimensional graph.) Since E | has an earlier simulation time, it
will preempt P, and cause a roll back to £ 25, the latest saved state before the preemption
time. During this roll back, an anti-message is sent for £ 5. This anti-message causes
P to roll back to £ |4 and send an anti-message to cancel £ 5, which causes P, to roll
back to £y, and so on. It is somewhat surprising that not only P, has to roll back past
E,s, but also P, which initiated the preemption, has to subsequently roll back too.
These unnecessary roll backs are clearly a waste of computation time. This problem is

worsened if this chain of roll backs reaches a point which is earlier than the current



global virtual time (GVT). T (In Figure 1, for example, the GVT of the two-process
system at the time of the preemption is the simulation time of E |o.) Since saved states
earlier than the current GVT are usually expunged as soon as possible to free up memory
spaces for future state saves, the old states which the simulation attempts to reach might
no longer be available, and anti-messages might have been sent to cancel old positive
messages which do not exist any more. These events, of course, are considered errors
and will cause the simulation to be aborted. Another possibility is that if the preemption
takes place early in the simulation, before and old saved state is expunged, the chain roll
back could reach as far back as the initial state. In this case, when the simulation finally
continues to simulate forward, it will repeat the previous forward steps, going though the
same events and roiling back again to the initial state without any real progress. This is
considered as a special type of deadlock. The problems described above would not occur
if every state was saved. Consider the example in Figure 1 again, the straggler sent by
E')g will cause P, to return to E,s No subsequent anti-message will be sent to P 10
(The positive message E 54 is sent before the corresponding state is saved. Therefore
restoring the saved state does not cause an anti-message to be sent for Ea6.) Py will
resume its forward simulation from E ., and P will simply continue from E 19 after

sending the straggler message.

2.2 Delayed Cancellation (Lazy Cancellation)

The concept of delayed cancellation (lazy cancellation) was introduced by
Jefferson er.al. [Jeff85c]. When a roll back occurs, it is not necessary to immediately
cancel every positive message which was sent after the restored state had previously

been reached. Instead, the process should simulate forward again. When a new outgoing

T A good description of the concept of global virtual time can be found in [Jeff85b]. We have also
provided a brief summary on it in a previous report [Cheu851.
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message is generated, the process will then need to check whether an identical message
has been sent before or not. If so, the new message should be discarded. Anti-messages
should be generated only for those messages sent before the roll back but would not have
been sent under the new condition. New positive messages should of course be sent too.
For example, in Figure 1, with delayed cancellation, when the preemption occurs, P,
will roll back to E s, but no anti-message will be sent for E 5 at this point. P, will
simulate forward again from £ 5. Since everything remains the same, a new E 26, Which
is identical to the previous one, will be generated and then discarded. No anti-message
will be sent for E 54 at all; hence no unnecessary roll backs will take place. This will not
only save computation time by reducing unnecessary roll backs but also avoid the
deadlock problems described in the previous section. However, in the cases where anti-
messages should be sent, the receiving processes will find out the ‘‘bad news’’ at a later
time due to the postponement in delayed cancellation. This is a small price to pay,

considering the advantages of delayed cancellation.

3. Model for Distributed Simulation
3.1 The Model of a Node

The model of a node contains an input queue, an arrival queue, a response queue,
and a node time. Except for the last node in a process where a special output queue for
delayed cancellation is created, the output queue of a node is the same as the input queue
of the following node on the ring. Therefore, the connection from one node to another in
a process is formed by these input/output queues. Moreover, an output from a node

autornatically enters the input queue of the following node.
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Figure 2: The Model of a Node in the Network

The terminal arrivals to a node are merged together and stored in the arrival
queue (in a non-decreasing time stamp order). Since several terminals may receive
inputs at the same time, commands in the arrival queue may have time stamps with the
‘same value. The node time indicates the time stamp of the last message leaving that
node. No message leaving the node from the output queue should have a time stamp less

than or equal to the value of node time.

3.2 Deadlock Due to Incorrect Modeling

Figure 3 shows a simple ring network with four nodes which send messages to
one another. Nodes 1 and 2 are assigned to computer I and nodes 3 and 4 are assigned to
computer [I. Assume that there is only one priority level for the messages, and a
message already on the ring has privilege over a newly arrived message on a siding

queue (not shown) to occupy an available slot. Consider the following situation: when

-7-



machine boundary

Figure 3: Deadlock Due to Interfereing Roll Backs

the simulation begins at time = 1, message A arrives node 1 and is heading for node 4
through nodes 2 and 3; at the same time, message B originates from node 3 and its
destination is node 2. When A arrives (from a terminal, for example), there is no other
message competing for the time slot at 1 so that it gets on the ring immediately.
Similarly, B gets on the ring without any delay and occupies the time slot at 1. When
message A arrives node 3, since it is a message already on the ring and occupies time
slot 1, an anti-message will be sent to cancel message B. A will continue occupying time
slot 1 and goes on to node 4. In the mean time, message B will preempt message A at
node 1 for the same reason, and an anti-message will be sent for message A. After both

cancellations have taken place, the simulation will be in its initial state again and this



cycle repeats. This deadlock problem is a consequence of incorrect modeling. In the
real network, there is a ‘‘conveyor belt’’ of fixed time slots. We may imagine this as one
time slot (frame) which goes around the ring. One possibility is that this time slot
originates from one node and cycles around. When it returns to the starting node, a new
slot will be put on the ring. This system is less fair because there are nodes which have
better chances to obtain resource, i.e., empty slots, than others. This reveals the solution
to our deadlock problem: the distributed simuilation model should not allocate slots by
considering which message is already on the ring during the simulation. It should
instead compare the originating node number of the messages. When arriving at the
same time, a message from a node where a time slot passes through earlier will have
priority to occupy that slot. For example, in Figure 3, if we assume that a time slot
originates from node 1 and goes around the ring through nodes 2, 3, and 4, message A,
which originates from node 1 would be able to preempt message B, but not vice versa.

Hence the deadlock condition described above would not occur.

4. Model Partitioning, Load Balancing, and Object Allocation
4.1 Process: The Basic Unit which Forms a Simulation

A convenient way to view a simulation model is to consider it as a group of
processes, or objects. Each one of these processes corresponds to one or several physical
objects in the model. These processes interact with one another through messages. Each
process has an input queue and an output queue for the incoming and outgong messages
respectively. A process also receives arriving messages from the outside world; within
the context of ring network simulation, these messages are commands from terminals or

responses from computers connected.



Figure 4: A Process which Contains a Number of Tandem Nodes

It is possible to have only one network node simulated by each processor
(physical CPU). (In fact, more than one processor may be used to simulate one node,
although a break down to such an extreme will normally slow down rather than speed up
the simulation due to a large number of inter-process messages and synchronization
overheads.) However, since the number of nodes in a realistic network is often much
larger than the number of processors in a distributed simulator, it is typically necessary
to assign several nodes to each processor. Each network node may be considered as an
independent unit and assigned to a process; a number of processes will therefore be
allocated to a computer (or processor). In a regular Time Warp implementation,
processes on the same computer interact with one another by sending messages, just as
do processes assigned to different sites. However, when the model is a ring network and
adjacent nodes in the ring are assigned to a common machine, it is possible to consider
all of these nodes as one process. (Object allocation will be discussed in the following
Section.) The main advantage of this grouping is that nodes assigned to the same
computer will communicate in a much simpler manner; hence the overhead involved is
significantly reduced. The tradeoff is that several nodes are now grouped into one unit
so that a preemption to the first node in a series will cause every node to roll back
together. (In fact, the first node is the only one which may be preempted. This problem
is discussed in Section 5.1.) We do not consider this as a serious disadvantage because

when several processes are connected in tandem, if the first one is preempted, it is very
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likely that the remaining ones will subsequently be preempted anyway.

4.2 The Load Balancing and Object Allocation Problem

In multi-processor applications, task (object) allocation is a common fundamental
problem. The main objective is to allocate the tasks to the processors so as to fully
utilize available resources and speed up the computation. Unfortunately, it has been
shown that the load balancing problem is NP-complete in terms of complexity theory;
i.e., the optimal allocation can only be determined after every possible alternative has
been checked and compared. Although there are schemes such as the branch and bound
method which can eliminate the cases which are *‘clearly’’ not leading to the optimal
allocation, the time it requires to consider the remaining possibilities even for a
medium-size simulation problem could still be much longer than the time to perform the

actual simulation, Therefore, efficient sub-optimal allocation methods are often desired.

4.2.1 Main Sources of Simulation Overhead

In distributed simulation systems using Time Warp for synchronization, the
major sources of overhead are roll backs and inter-processor communications. A roll
back occurs when a processor with small simulation time T sends a message to another
one with larger simulation time. The farther apart the two simulation times are, the more
the leading processor needs to roll back. Therefore, it is desirable to minimize the

differences of the simulation times among the processors.

Assume the real time needed to process each message is the same. Let A; be the

message arrival rate to object i. N is therefore the mean inter-arrival time; i.e., on the
i

T In Time Warp’s terminology, simulation time is usually referred to as Local Virtual Time
(LVT).

-11-



average, the simulation time of object i is advanced by 3 see for every incoming

1

message processed. This can also be regarded as the rate at which simulation time grows

on object i{. If several objects are assigned to processor p, the rate at which simulation

time grows on p is simply fl?«.— If the number of processors available is M, the ideal
i
i€p
simulation time growth rate is:

ideal growth rate = ﬁli’ where A = A
all i

Therefore, it is desirable to assign the objects to the processors in a way such that each

will have (almost) the same simulation time growth rate.

The need to minimize inter-processor communication in additional to load
balancing makes the allocation problem more complex. Several heuristic job allocation
methods for general distributed simulation using Time Warp for synchronization have
been suggested by Samadi [Sama85]. In a single-loop ring network model, there is
inherently a lot of communications, but they are possible only among neighboring nodes.
It is therefore reasonable to group adjacent nodes and assign them to the same processor
in order to minimize the inter-processor communications. This goal is best achieved, of
course, in a single-processor environment. An effective sub-optimal allocation scheme
should therefore find a good compromise between concurrency gained and

communication overhead in a distributed environment.

4.2.2 Guidelines for Object Allocation
We have made the following assumptions to simplify the allocation problem:

1. The number of objects, N, is much greater than the number of processors, M; i.e.,

-12-



N=>M.

2. There is a single loop in the network and all of the hosts are connected to the
same network node. This assumption will be relaxed so that ring networks with

more complex topologies can be considered.
3. No object has a very large load which dominates the computation time.

Since the host node has to process each request and then generate the corresponding
responses, it needs to process much more events than the terminal nodes. Therefore, one
(or more) processor(s) should be dedicated to simulate the events in the host node and
the computers connected. Each terminal node, however, processes relatively few events;
usually, several neighboring terminal nodes are assigned to one processor to balance the

load.

@ 1o - ol

(a) Partitioning N nodes into M processors

C:DC:D.@-"@.@

byat -3 baat -2 by iag-1

Figure 5: (b) Selecting M-1 balls from a set of N+M-1
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Assume M processors are left after dedicated processors have been assigned to
simulate the host node and there are N terminal nodes. With the host node removed, the
ring is broken and the remaining nodes are connected as tandem nodes in a line. These
N nodes should be assigned to the M processors such that all nodes assigned to a
processor are adjacent to at least one other node assigned to that processor. This
situation is shown in Figure 5a. The nodes are numbered ny through ny. M- 1
partitions are needed to separate these N nodes into M groups. This problem is
equivalent to selecting M - 1 balls from a set of N + M - 1 as shown in Figure 5b. The
balls selected are colored black. The number of ways to select M - 1 balls from a set of

N+M-1is:

[N+M—l]=w_-m
M-1 N!'(M-D!

_WN+EM-DHN+M=2) - (N+1)
a M-

=0 (NM-1

If N=64 and M=8, there are approximately 1.33x10° ways to partition the nodes. Assume
that a computer can perform 1000 partitionings and comparisons in a second; it requires
over two weeks to find the optimal allocation. If there are 16 processors instead of eight,
it requires over 100 centuries! Clearly, some more-efficient allocation methods are

needed.

4.2.3 A Heuristic Allocation Algorithm

Since the growth rate of simulation time involves reciprocals, let us use the
concept of ‘‘processor load”’ instead in the following discussion. The algorithm
provided can be applied, with some minor modifications, to minimize the simulation
time growth rate among the processors. As mentioned before, an ideal allocation

(without considering the communication overhead) is to assign exactly the same amount
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of load to each processor. However, this is usually not possible because the sizes of the
loads cannot always be grouped into M sets with equal sum. Optimal allocation is
therefore defined to be the feasible allocation which is closest to the ideal. (Currently,
we assume that the ‘‘closest’’ means the allocation which has the smallest variance. The

ideal allocation, according to its definition, always has zero variance.)

Our heuristic allocation method attempts to approach the ideal allocation by
assigning slightly above or below-average load to each processor (since the exact
average is not always possible). With the nearest neighbor constraint, the allocation
begins with either the first node, n,, or the last node, ny, which are both adjacent to the
host node in the network model. Nodes are assigned to a processor until the total load is
greater than or equal to the ideal. Allocation will then continue recursively with the next
node and the next processor in the same manner until either the nodes or the processors
are exhausted. Moreover, if the total load on the first processor is greater than average,
the algorithm also checks the below-average case by removing the last assigned node
from the first processor and then continue to the second processor. The algorithm has
been implemented as a procedure in C. Experimental results indicate that this algorithm
usually provides very near optimal allocations, especially when N >M. It should be
noted that the complexity of this algorithm is O (N x2), and it may become very time
consuming when M is large. However, the allocation of a 64-node, 16-processor example
only needs about one minute of computation time on a modern mini computer. A less

complex allocation algorithm will probably be needed if aver 20 processors are used.

5. Implementation of Distributed Simulator

A simplified flow chart for distributed simulation of ring networks is shown in

Figure 6. For each event in the simulation, the following steps are repeated: (1) The
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input queue of each process is checked; arrived input messages, if any, are read. (2) If
there are straggler messages, the process will roll back to a state prior to the time stamp
of the earliest straggler. (3) If the message is an anti-message, the corresponding
positive message will be deleted. (4) The process will then determine the most imminent

event, (5) simmulate it, and (6) send output messages if there are any.

5.1 Next Event Time (NET)

In discrete event simulation, sorting the event list usually takes up 2 significant
portion of the computation time. In distributed simulation, after the model has been
partitioned, the event list for each sub-model becomes much shorter. In the current
implementation, each process contains several network nodes. Therefore, the events
among these nodes need to be sorted, and the “‘earliest’’ one will be simulated next. The
sorting is achieved in a two-level manner: events in each node are sorted, which
generates the next event time (NET) for each node. The most imminent node is then

determined by sorting the nodes according to their individual next event time.

In the first level, the next event time of a node is determined by three factors: the
time stamp of the slot (message) at the front of the input queue, the time stamp of the
front element of the arrival queue, and the node time. Roughly speaking, the next event
time of a node is the smaller one of the time stamp values between the front elements of
the two incoming queues. But it must be strictly greater than the node time unless the
current node is the destination of the front element of the input queue. In the second
level of sorting, the nodes are checked in the order of their physical locations. If two or
more nodes in a process have the same NET, the node with the smallest node number
will be simulated first. This guarantees that there will not be any preemption caused by

one node to another inside a process. Internal preemption is prohibited when several
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Figure 6: The Flow Chart for a Process
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nodes are grouped into one process and their states are saved together, as in this
implementation. An internal preemption will cause all the nodes to roll back to a
previous state, unless an external straggler arrives to break this sequence, the simulation
will simply repeat the same events and cause an identical internal preemption; i.e., the

simulation is trapped in a deadlock.

5.2 Queues

There are five types of queues in each process representing a group of
neighboring terminal nodes: input/output queues, input queues, output queues, arrival
queues, and response queues. The first three types of queues form the connections
between nodes in the ring. Except for the input queue to a process, i.e., the input queue
to the first node in a process, or immediately after a roll back, messages will arrive a
queue in strictly increasing time stamp order. Hence each new element arriving a queue
will automatically become the tail element of that queue. Moreover, no anti-message
should ever enter these queues. Arrival queues are part of the command generation
mechanism; they are inherently different from those queues described above. Response

queues have not been implemented and will not be discussed in this report.

The model of a typical queue is shown is Figure 7. The front of a queue is
defined to be the next element to be dequeued. The tail is the last element enqueued. If
every element has been removed, the pointer gfront will be NULL. However, pointer
qtail will not be NULL unless nothing has ever been enqueued in the available history.
There is also a pointer ghead which points to the very first element (in the available
history) of that queue. Queues are implemented as linked lists. Hence memory can be
allocated in a flexible manner. Moreover, elements may be added to or removed from

the middle of a queue without much overhead. To save the state of a queue, it is not
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Figure 7: Queue Representation

necessary to copy each queue element once for each state saved; only two pointers gfront

and qtail which point to the current queue front and tail elements should be saved.

5.2.1 Input/Output (I/O) Queues

The queues between adjacent nodes in the same process are called input/output
queues because they form connections between each pair of nodes. Messages are sent

from one node to its successor node through the i/o queue in between.

When a roll back: occurs, the gfront and qtail pointers of each i/o queue in the
process will be replaced by the corresponding values for the saved state. Queue elements
which are after the restored qtail (the after-roll-back qtail) will be discarded. Some of
these discarded elements might be needed again later on in the simulation, but they will
always be regenerated by the previous nodes. In other words, the cancellations among
nodes in a process are not delayed. This is a consequence of having several nodes in a

process.
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5.2.2 Input Queues

An input queue is the connection between the input pipe and the first node of a
process. Unlike the i/o queues described in the previous section, messages arriving an
input queue are not necessarily in increasing time stamp order because the processes are
not synchronized and can roll back. Moreover, some arriving messages may be anti-

messages.

When a new message arrives, the process needs to determine whether a roll back
is needed. A simple way is to compare the time stamp of the arriving message with that
of the front element of the input queue. If the time stamp value of the new element is
smaller, a roll back may be considered necessary. (Note that this is a necessary but not
sufficient condition to require a roll back; however, a simulation which makes
unnecessary roll backs remains logically correct although wasteful of computation time.)
During a roll back, the entire process must return to a state whose time stamp is less than
(earlier than) that of the new element. It is an error if no saved state far enough into the
past is available. A straggler message which does not cause a roll back should be placed
in the middle of the input queue. (Therefore, the input queue may be considered to be a
FIFO device with respect to simulation time, but not with respect to real time.) It should
also be noted that in a roll back, only the old qfront pointer is restored; the qtail pointer
for the input queue remains unchanged. Hence no input queue elements will be

discarded during roll backs.

If the new arrival is an anti-message, the corresponding positive message will be
searched for and both messages will be canceled. However, if the positive message is
not found, an error has occurred and the simulation will be aborted because in this
implementation, there are no alternative paths for message transmission. Hence it is

impossible for an anti-message, which is always generated after the corresponding

-
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positive message, to arrive earlier. A remaining problem is that when a positive message
is canceled from the middle of an input queue, the pointers for the saved states should be
checked. Those pointing to the message to be deleted should be adjusted to the previous

Or next message.

5.2.3 Qutput Queues

An output queue forms the connection between the last node and the output pipe
of a process. The output queue serves both as a buffer for output messages leaving the
process and as a storage for previous output messages in saved states. Each message in
the output queue has a ‘“‘sent’’ tag which indicates whether that message has already
been sent or not. Messages join the output queue from its tail; the pointer ourgrail
always points to the last element enqueued. The process sendour copies messages
pointed by ourqfront and sends them to the next process. The “‘original’’ copies of these
messages remain in the output queue, but their sent tags are flipped to ‘‘1.”” Hence they
automatically become the past history of that queue. There is also a pointer /aszsent

which points to the last message sent.

Delayed cancellation complicates the mechanism for the output queue; each
output message sent needs to be marked. Normally, lastsent points to the predecessor of
the element pointed by outqfront, which is the next message to be sent. After a roll back,
previous pointers for outqfront and outqtail are restored; only those messages which
shonld not have been sent will be canceled. Output queue elements which have not been
sent and are between the after-roll-back outqtail and the before-roll-back outqtail will be
deleted. There are several different situations depending on the relative position of the
pointers; a typical case is shown in Figure 8. The number in each queue element is its

time stamp. An ‘‘S’’ in the box at the upper right hand corner indicates the “‘sent’’ flag
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has been set. An ‘‘A’’ signifies that it is an anti-message. Since messages must join the
output queue in increasing time stamp order, when the new version of the message with
time stamp 42 arrives after a roll back as shown in Figure 8(a), it also implies that
message 41 should not have been sent before. Therefore, its ‘‘sent’’ flag is turned off
and the ‘‘anti-message’’ flag is turned on as shown in 8(b). When an anti-message is
actually sent, the copy in the output queue is discarded. Hence no record of that message
would exist in the history of that process any more as shown in 8(¢). The new message

at time 42 is discarded because an identical copy has already been sent before.

5.2.4 Arrival Queues

Unlike the three types of queues described above, the arrival queue is for new
commands arriving the network through a terminal node. The number of elements in an
arrival queue is fixed and is equal to the number of terminals connected to that node.
Each element contains the next arriving command from a particular terminal, and these
elements are sorted in increasing time stamp order. The head element of the arrival
queue is the next command entering the node. After an command has ‘‘arrived,’” a new
arrival from that terminal will be generated randomly according to a predefined

distribution to replace the removed element, and the queue is resorted.

Old arrivals are saved in the oldarrival queue. These past values will be needed
again in two situations. After a roll back, rather than randomly regenerating command
arrivals for the roll-backed period, previous arrivals are reused. This is preferable when
delayed cancellation is used. If new random arrivals are generated, it is unlikely that
they will be identical to the arrivals generated before; hence the old messages will need
to be canceled before new messages are sent. Since both sets of arrivals are statisticaily

equivalent, it is therefore a waste of time to replace the old ones. These old arrivals are
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Figure 8: Delayed Cancellation at the Qutput Queue
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also needed when responses from computers arrive. The time stamps of both the

commands and the response messages are needed to calculate the *‘round-trip’’ delays.

5.3 Message Format

time stamp
source destination
+/-| prior | 8 message id

Figure 9: Message Representation

In the simulation, each message is represented as three consecutive unsigned
words as shown in Figure 9. The first word is the time stamp. The second word consists
of the source and destination addresses of the message; they are usually i.d. of terminals
or computers. The last word consists of a one-bit flag indicating whether the message is
regular (positive) or anti (negative), 2 two-bit priority value, another one-bit flag to show
whether the message has been sent or not, and the remaining part is the message i.d.,

which is a number needed to distinguish messages with the same source/destination pair.

6. Other Deadlocks and Flow Control

6.1 Pipe Read Deadlock

As mentioned before, pipes are used for inter-process communication in the
current implementation. Unfortunately, in UNIX (and hence LOCUS), when a process

reads from an empty pipe, it will wait idly until something is written into (the other end
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of) the pipe.t If every process in the ring happens to be reading from an empty pipe at a
certain point, clearly, each process will be waiting forever and the simulation deadlocks.
Although this problem is unlikely to occur frequently, it must be resolved. Moreover, it
is also undesirable for any process to remain idle for a long time and wait for a message
to arrive. One solution to this problem is to make the reading process responsible for
checking the input pipe before it executes a read command. For example, before a read,
the reading process can write a dummy token into the input end of its input pipe so that
there is always something to be read. Since the pipe is a FIFO device, if the first item
read is the dummy, then the pipe was empty before the dummy was entered. Otherwise,

the process should continue reading until the dummy finally appears.

6.2 Pipe Write Deadlock

There is a “‘dual’’ deadlock problem for pipe writes. When a process writes to a
pipe, if the pipe is full, the process will remain idle and wait until something has been
read from the other end of the pipe so that there is room available to complete the write.
Therefore, if every pipe is full when each process on the ring is attempting to write, the

processes will be waiting forever and the system deadlocks.

One way to limit the number of messages in a pipe is to use permission tokens.
These tokens are issued by the message-receiving process to the sending process; they
travel through a separate pipe in the opposite direction to the message pipes. Initially,
the maximum number of permission tokens is available; it should be less than the
number of messages the pipe can hold. Every time before the sending process puts a
message in its output pipe, it is required to obtain a premission token. If there is no

token available at a certain time, the process should postpone sending the message and

T The timeout function select is designed to avoid hang up during pipe reads, but it has not been
implemented on LOCUS for multipie-site applications.
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process some other events. It is very important that a process does not busy wait for a
token; otherwise, the pipe write deadlock problem is unchanged. A permission token
indicates that there is room in the output pipe and is discarded as soon as it is obtained.
During the simulation, every time after a process reads a message from its input pipe, it
will send a permission token back to its predecessor process. Therefore, the sum of the

number of available tokens and the number of messages in the pipe is a constant.

Permission tokens do not really introduce much additional overhead to the
simulation because it is necessary to acknowledged each message anyway if GVT is to
be calculated periodically for memory management purpose [Sama85]. The
acknowledgment message can simply serve as a token also so that no extra messages will

be sent in the ‘‘backward’’ direction.

6.3 Buffer Usage Deadlock

When the output queue of a process is full, this process should neither generate
any more arrivals nor accept any inputs unless the destination of the current front
element of the input queue happens to be n itself. If this problem appears all around the
network, the simulation will not be able to progress. This situation is similar to the
indirect store and forward deadlock problem described by Kleinrock [Klei76], and is a
result of having too many messages in the simulation. A possible solution to this
problem is to restrict the arrival of new commands once the output queue has been filled
up beyond a certain threshold. Before every buffer becomes full, command arrivals will
be reduced or even prohibited until a sufficient amount of messages have left the ring. It
will still be possible for individual queues to become full, but not for all of them to be
filled up at the same time. Hence packets will be able to move around and eventually

leave the ring. However, when there are “‘amplifying’’ devices such as computers which

-26-



accept one-packet commands and generate multiple-packet responses, the number of
packets may be multiplied by a significant factor when they pass through these devices.
It will be necessary to set up tighter thresholds or make available more buffers for
outputs from computers in the ring. This problem will be further investigated once the
implementation of the simulator has reached a point so that it can be understood more

thoroughly.

7. The Current Status of the Project and Upcoming Work

A significant portion of the distributed simulator has already been implemented
and tested. This includes the simulate forward, roll back, cancellation, and arrival
generation mechanisms for terminal nodes. We are planning to complete the
implementation of the simulator module for host nodes in the near future. In the mean
time, a special benchmark which contains terminal nodes only is used to test the
simulator. Messages are sent from one terminal to another. The nodes in the model are
separated into two processes. These processes are migrated to two VAX 11/750

computers so that the simulator can be tested in a real distributed environment.

Asynchronous distributed simulations are in general difficult to debug. The main
problem is that the sequences of the events assigned to different computers may be
executed in (slightly) different orders during separate runs. When an error is discovered,
there is no guarantee that it will appear again in subsequent simulation runs although the
initial conditions are the same. Therefore, it is both difficult to identify errors and to
correct them. Our current approach is to save a brief description of the intermediate
events into data files and then trace them manually afterwards. This method is rather

time consuming and tedious but seems to be effective.
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After the implementation of the simulator for host nodes, we are planning to
realize the memory management, deadlock prevention, and flow control functions.
These are necessary features for a realistic distributed simulator for networks. Finally,

we would like to add statistical analysis capabilities for simulation result studies.
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