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ABSTRACT OF THE DISSERTATION

Distributed Algorithms for Election in

Unidirectional and Complete Networks

by

Yehuda Afek
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor Leonard Kleinrock, Chair

Consider a data communication network of » nodes, each of which has a
unique identifier (id); otherwise the nodes are identical. The nodes are asleep and
have no global information about network topology, number and ids of other nodes,
etc. A distributed election algorithm is a means by which the nodes of the network

distinguish one among them as the leader .

The problem of distributively electing a leader in a network is viewed as a
problem of synchronization among potential candidates for leadership. Each candi-
date tries to capture all the nodes. To guarantee that only one succeeds, all but one
candidate are killed. Following this view election algorithms in a general, two com-
ponent framework are designed. Component one is a capturing and termination
detection mechanism, assuming only one candidate. Component two is a synchroni-

zation mechanism, to eliminate all but one candidate.
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In arbitrary networks the synchronization is complicated by the uncertainties
of nodes about the network topology and the relative location of candidates. Two
network models are considered: first, a complete network in which a bidirectional
communication link connects every node with every other, thus eliminating topologi-
cal uncertainties; and second, the opposite extreme in which topological uncertain-
ties are at maximum -- a strongly connected unidirectional network with some or all

links transmitting messages in one direction only.

The study produces an O (n-log n) messages O (log n) time synchronous and
O (n-logn) messages O (n) time asyachronous election algorithm in complete net-
works. For unidirectional networks we derive a distributed election algorithm whose
communication complexity is O(n-|E | + nzlog n) bits, where [E| is the total

number of links.

We also establish that Q(n-logn) is a lower bound on the total number of
messages transmitted for achieving election in synchronous complete networks.
Moreover, it is shown that the time complexity of message-optimal synchronous
algorithms is Q(logn), hence the optimality of our synchronous complete network
algorithm. It remains open whether a sublinear time, message-optimal, asynchro-

nous complete network election algorithm exists.
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CHAPTER 1.
INTRODUCTION

The rapid growth of computer networks and their applications in resource
sharing, data distribution and exploiting parallelism in complex calculations have
increased the demand for distributed network control algorithms. To enable reliable
and efficient use of networks, their computers have to be coordinated to coopera-
tively achieve common global objectives. In an effort to accomplish this, many dis-

tributed algorithms have been developed over the last decade.

The s'olution to the election problem, i.e., the problem of distributively distin-
guishing one computer from all the others is a basic building block in many distri-
buted algorithms and systems. For example, it is used to replace a faulty coordinat-
ing center in distributed algorithms, such as a routing center in routing algorithms, a
lock-coordinator in a distributed data-base, or a primary site in a replicated distri-

buted file system.

In this thesis we study distributed algorithms for election in two models of
data communication networks. First, we study a complete network in which every
node is connected to every other node. This network is, topologically, the most sim-
ple one, thus revealing basic principles of distributed election algorithms when the
topological uncertainties are removed. Second, we study arbitrary-topology,
strongly-connected unidirectional networks in which some or all the links can
transmit messages only in one direction. Unlike the complete network, the unidirec-

tional network topology is the most general one, since every other network topology
1



can be modeled as a unidirectional network. The study of these two models provides
insight into the basic elements of the design of distributed algorithms in general, and

election algorithms in particular.
1.1. Data Communication Networks

A data communication network (network, in short) consists of a set of auto-
nomous processors (nodes) connected by communication lines (links). Each auto-
nomous computer has its own memory and is capable of carrying out its own local
computations regardless of the status of any other computer in the network. Each
communication line connects a distinct pair of nodes, thus enabling these two nodes
to exchange messages. Message exchange is the only form of communication

between the nodes of the network.

An example of a data communication network is the ARPANET whose nodes
are dispersed throughout North America and Europe. Some of today’s super-
computers, are examples of a network of micro-computers, all situated in one room

(e.g. the Cosmic Cube [Sei85]).

Computer networks can be used to facilitate: (1) resource sharing; (2) data
distribution and; (3) the exploitation of parallelism in complex calculations. Exam-
ples of such tasks are: controlling a telephone system, connecting branches of a
bank, distributed data base systems and distributed simulation. To perform these
tasks, the nodes of the network are coordinated to achieve cooperation in solving a
common problem. The objective of most distributed algorithms is to control and
coordinate the nodes of the network. These algorithms are then used as building
blocks in the implementation of these distributed systems. Distributed algorithms

efficiently solve problems such as: finding all shortest paths in the network, distin-

2



guishing a unique node from all the others and constructing minimum weight span-
ning trees. Coordinating the nodes of a network is the major task of distributed algo-

rithms.
1.2. Distributed Algorithms

A distributed algorithm is a means by which the nodes of a network
cooperatively achieve a common objective. The algorithm itself is a collection of
identical programs, one copy in each node of the network. To perform the algo-
rithm, the programs communicate with each other via message exchange. Unlike
centralized algorithms, the execution of a distributed algorithm can be started by any
subset of the nodes at any time. Although started by a few nodes, the algorithm has a
unique objective, and all the nodes participating in the algorithm are coordinated to
efficiently achieve that objective. Thus, in a distributed algorithm, each node of the
network performs part of the total computation required to achieve the algorithm’s

objective.

Before a distributed algorithm starts executing, the nodes of the network are
assumed to have only local information about the network. Since networks are very
large and frequently change, no global knowledge is assumed at any one node. Ini-

tially, no node knows the total number of nodes in the network or the network topol-

ogy.

Nodes start their participation in a distributed algorithm in two ways, either
by being spontaneously awakened at an arbitrary time, in which case it is called an
initiator , or by receiving a message of the algorithm. The spontaneously awakened
nodes are awakened by an attached host, or a user operator, or some other event

which is external to the network.



Unlike centralized algorithms, distributed algorithms exhibit two forms of
non-determinism. First, an execution of the algorithm may be started by any subset
of the processors at different times. Second, once started, the distributed algorithm
progresses in a non-deterministic fashion. At any given time, neither the location

nor the time of arrival of the next message is known.

There are two simple, straightforward approaches in the design of distributed
algorithms: broadcasting and semi-centralized algorithms. With broadcasting, all
information required to solve the problem is broadcast througliout the network.
Each node then employs a centralized algorithm to solve the problem. In semi-
centralized algorithms, a particular node is selected ahead of time to synchronize and
coordinate the processors of the network. This central node collects all the required
information about the network, such as the topology, and uses centralized algorithms

to solve the problem locally and distribute the results to all the other nodes.

Considering that a new broadcast must be initiated for every node or link
failure in order to update the other nodes of the change, the broadcasting solution is
impractical. The result of this will be a huge flow of messages, which will degrade
the performance of any network, in particular of large networks where a high fre-

quency of failures is expected.

The semi-centralized approach has three drawbacks. First, the central proces-
sor becomes a critical element of the network. The correct and reliable operation of
the entire network then depends on the reliability, availability and correct function-
ing of one node. Second, the central processor serializes the operation of the distri-
buted algorithm in an environment specifically intended to support parallelism.
Third, the central processor and its neighborhood will be swamped with such mes-

sages as topology updates and service requests. The second and third problems
4



exacerbate each other since, consequently, the whole network operates at the rate of
the central processor. Henceforth, we will not consider broadcasting or semi-
centralized solutions in this work., Rather, we will consider algorithms in which
every node performs only part of the total computation. Before these algorithms
start no node is distinguished to play any special role in the algorithm. The amount
of communication in the algorithms that we consider is considerably less than that in

the broadcasting solution.
1.3. Election and Traversal

This dissertation addresses two problems in computer networking: (1) the
problem of distributively electing a leader, and (2) the traversal problem. We
present distributed algorithms for solving these prc;i)lems in comple_te networks (in
which every node is connected to every other néde) and unidirectional networks (in

which some or all the links can transmit messages only in one direction).
1.3.1. The Election Problem

In the election problem, a single node, called the leader, is to be selected
from a set of nodes which differ only by their identifiers (ids ). Initially, no node is
aware of ail the other ids. In the distributed election algorithm an arbitrai'y subset of
nodes wakes up spontaneously at arbitrary times and starts the algorithm by sending
messages over the network. When the message exchange terminates, a leader is dis-

tinguished from all other nodes.
1.3.2. The Traversal Problem

In the traversal problem, one node, called the root, initiates a single process

(which can be viewed as a token) which must visit all the nodes in the network, one

5



at a time. If necessary, the process may traverse any link or visit any node several

times.

Since every node is assumed to have knowledge only of its own incident
links, a traversal algorithm has (1) to detect the time when it has seen all the nodes,
and (2) to efficiently reach the nodes not yet visited. In order to do this, the traversal

process marks nodes visited and carries along some information.

Distributed algorithms for traversal and election are strongly related to each
other. On the one hand, four of the six election algorithms presented in this disserta-
tion use some sort of traversal algorithm as a building block. On the other hand, if
initiated only by one node, these election algorithms are turned into a traversal algo-
rithm. The other two algorithms, when initiated only by one node, are turned into a

traversal in which a few nodes are visited simultaneously by different tdkcns.

A modular technique to design efficient election algorithms on a network for
which a traversal algorithm is given was presented by Korach et al. [Kor85]. Apply-
ing their algorithm, which was developed independently of this study, to a complete
network yields algorithm B of Chapter 2. However, their algorithm lucks the

improvements which we have introduced in algorithm C of Chapter 2.
1.4. Models

Distributed algorithms for three different models of data communication net-
works are presented in this dissertation. The three models are: the synchronous com-
plete network, the asynchronous complete network, and the unidirectional strongly
connected network. The three models are based on the traditional message-passing
model of data communication networks [Bur80, Lyn81, Seg83]. In this Section we

first present the traditional model and then discuss the variations used in the
6



dissertation.

A computer communication network is a set of n processors (nodes) con-
nected by a set, £, of bidirectional communication lines (links). Each link connects
a distinct pair of processors. Each processor has a set of mput ports and output
ports. Each communication line is modeled by connecting an <output ; input> pair
of ports of one processor to an <input ; output> pair of ports of another processor.

The following assumptions are made:

1. Associated with each node is a unique identifier number (id). We assume

that every id can be written in, at most, O (logn )1'2 bits.

2. Within each processor, each input and each output port has a unique port id
which is known to the processor. Thus each port can be uniquely identified

by its processor.

3. Initially (before the algorithm starts), aside from its port ids each processor
knows nothing about the network. In particular, the ids of processors con-
nected on the other side of each link are not known to the processor. More-
over, processors initially have no global knowledge such as the network

topology or the total number of nodes.

4, The communication lines are reliable. Messages transmitted over the com-
munication lines incur an unpredictable, but finite, delay and arrive at the

input port in the order sent. Queueing delays are included in the messages

1- A function of n, T (n), is O (F (n)) ("is oh F (n)") if there are positive constants
¢ and ng such thatforn 2 ng, wehave T(n) <c'F(n).

2— Unless otherwise specified all logarithms are to the base 2. Note that O (logn)
does not depend on the base of the logarithm since log,n =c-log,n, where
¢ =log.b.



delay.

5. All messages received at a node are stamped with the identification of the
port (link) through which they arrived. Messages from all input ports are
transferred into a central queue. The processor receiving the messages

processes them one at a time in the order that they arrive at the central queue.

6. The processing time of a message is negligible compared to its communica-

tion delay.

Several variations on the above model are possible. In particular, we con-

sider the following variations:
1. Communication lines can be either unidirectional or bidirectional.

2. The underlying topology, which is known to the algorithm designer, can be
either arbitrary strongly connected umidirectional network topology, or

bidirectional complete network topology.
3. The communication mode can be either synchronous, or asynchronous.

Unlike a bidirectional communication link, a unidirectional communication
link from node v to node u, can carry messages only from v to . A unidirectional
network is a network in which some or all the links are unidirectional. In such net-
works a communication line is modeled by a connection of an <output> port of one
processor to an <input> port of another processor. A unidirectional network is
called strongly connected if there is a directed path from every node in the network
to every other node. A unidirectional link from v to u is called an outgoing link of

v and incoming link of u.



In practice, networks in which communication is unidirectional appear in a
few forms. For example, due to antenna power differences in packet radio networks,
the hearing matrix is not symmetric, i.e., some links are unidirectional [Kah78].
Examples of point to point unidirectional networks are found in fiber optic networks

and microwave communication networks,

Two topologies are considered in this work, the complete network, and the
strongly connected unidirectional network. In a complete network of n nodes, every
node is connected by n—1 bidirectional communication links to all other nodes. Ail
the links incident to a given node on which no message was sent or received are

indistinguishable to this node.

Considered here are two modes of communication, synchronous and asyn-
chronous . In the synchronous mode, a global clock is connected to all the nodes in
the network. The time interval between two consecutive pulses of the clock is a
round. At the beginning of each round, each node decides, according to its state,
what messages to send and on which links to send them. Each node then receives
any messages sent to it in this round and uses the received messages and its state to
decide on its next state. Spontaneously awakened nodes start a distributed algorithm
by entering an initial state and then waiting for the beginning of the next round.
Further variations on the assumptions in the synchronous mode are possible and are
discussed in more detail in Chapter 3. In the asynchronous mode there is no global

clock, and messages incur arbitrary but finite delay.

In Table 1.1 the different combinations of parameters used in this work are
summarized. In particular, we consider
(1) synchronous complete bidirectional networks,

(2) asynchronous complete bidirectional networks and
9



(3) arbitrary-topology strongly-connected unidirectional networks.

Dissertation Summary
Model-Parameters
Ch. Synchronous/ Uni-/Bi- Storage
Topology Problem
Asynchronous | Directional bits/node
32.2 Synch Bi Complete Election O(ogn) |
§2.3,2.4 Asynch Bi Complete Election O(logn)
Election
§3 Synch Bi Complete O (logn)
Lower bound
84.2,4.3 Asynch Uni Arbitrary Traversal O(logn)
4.4 Asynch Unt Arbitrary Traversal o)
85 Asynch Uni Arbitrary Election O(logn)
§Chapter.Section

1.5. Performance Measures

Table 1.1: Models Summary

The interesting performance measures of distributed algorithms are: the

amount of communication and the amount of time which are required in the execu-

tion of the algorithm. Hence, two measures of performance are used to analyze dis-

tributed algorithms -- communication complexity, and time complexity.

Communication complexity is the total number of messages sent, in the worst

case, by the algorithm. Each message is assumed to contain no more than O (logn}

bits. Thus preventing an algorithm from sending fewer but large messages. O(logn)

is the number of bits which we assume required to represent one node id.
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Alternatively we also use bit complexity as a measure of communication
complexity. The bit complexity of an algorithm is the total number of bits of all mes-

sages transmitted by the algorithm, in the worst case.

Time complexity is the worst case length of the time interval from the first to
the last message transmission due to the algorithm. As was stated before, processing
time is assumed to be zero and therefore we do not consider processing time com-

plexity in this study.

The time complexity of a synchronous algorithm is well defined by the above
definition; however the time complexity of an asynchronous algorithm is unbounded,
in the worst case, since messages can incur an arbitrary, but finite, delay. To analyze
the time complexity of asynchronous algorithms, our assumptions must be modified.
Thus, in the asynchronous mode of communication, and only for the purpose of time
complexity analysis, we assume that the transmission of a message over any link
incurs at most one time unit delay. In arguing the time complexity, we shall allow a
message to traverse a link in any fraction of the time unit. This enables us to con-
struct scenarios in which some messages are delivered as fast as we want relative to

other messages.
1.6. Previous Work

Distributed algorithms as a solution to the problem of distributively electing
a leader first appeared in 1977 in two different topologies. One group of researchers
[Dal77, Spi77, Gal77] tackled the problem for arbitrary-topology bidirectional net-
works, while another group [LeL77, Cha79] treated the problem for both bidirec-
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tional and unidirectional rings .
1.6.1. Election in Ring Networks

In [LeL77], Le Lann faced the problem of electing a leader in a unidirec-
tional ring while designing a scheme for mutual exclusion in a distributed environ-
ment. Le Lann studied a system of n controllers taking turns allocating resources to
users. The controllers, each of which has a unique id, are connected in a virtual uni-
directional ring. Mutual exclusion among the controllers is achieved by circulating a
single token around the ring. The problem is, then, to design an algorithm which
will elect one (unique) controller to initiate a new token in case the previous token is

lost. Le Lann proposed an O (n ) message algorithm for the problem.

Following Le Lann’s work, Chang and Roberts [Cha79] proposed an algo-
rithm with an average message complexity of O (n-logn); however, the worst case
complexity is O (n2) messages. Subsequently, Hirschberg and Sinclair [Hir80] gave
an O (n-logn) message, in the worst case, election algorithm for bidirectional rings.
Burmns [Bur80] proved a lower bound of Q(n -1ogn)2 messages for election in
bidirectional rings. In {Hir80], Hirschberg and Sinclair conjectured that, for uni-
directional rings, Q(nz) messages is the lower bound. However, Dolev et al.
[Dol32] and Peterson [Pet82] both disproved the conjecture by presenting a sequence
of unidirectional algorithms, each improving on the other. The last improvement,

given in [Dol82], obtained a 1.356n -logn message algorithm. A lower bound of

1- A ring topology is a circular arrangement of processors in which every processor
is connected by a link to each of its two neighbors.

2- A function of n, T(n), is Q(F (n)) ("is omega F (n)") if there exists a positive
constant ¢ such that T(n) 2 ¢-F (n) infinitely often (for infinite number of values of
n). This definition, taken from [Aho83] , is not symmetric to the big-oh notation.
Because an algorithm can be efficient on many but not all values of n. However in
this work the symmetric definition would be sufficient, i.e., there exist positive
constants ¢ and ngsuchthatT(n) Sc -F(n)forall n 2 n,.
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0.693n -log » messages for unidirectional rings was obtained by Pachi et al [Pac82].

Recently, Frederickson and Lynch [Fre84] addressed the problem of electing
a leader in synchronous rings. They showed that, for synchronous networks, one
should distinguish between two types of algorithms: general, in which nodes may
perform any computation on the values of their ids; and comparison, in which the
values of ids can be used only for comparison with each other. On the one hand,
they gave an Q(n-logrn) message lower bound for comparison algorithms. On the
other hand, they presented an O (n) general algorithm (which was also independently
discovered by P. Vitanyi [Vit84] ), thus showing that general algorithms are strictly
more powerful than comparison algorithms in synchronous rings. However, the time
complexity of the general algorithm is exponential in the value of the smallest id
around the ring. Noticing the discrepancy between the time complexity of the linear
message complexity general algorithm and the O(n-logn) message comparison
algorithm, they proved the following relation between three parameters of general
election algorithms in a synchronous ring which are: (1) the upper bound on the
time complexity, (2) the lower bound on the message complexity, and (3) the size of
T, the set of ids from which ids for nodes around the ring are selected. Specifically
they proved, that if the time complexity of a general algorithm is upper bounded by
d, then there exists T', such that the message complexity of the algorithm is lower
bounded by Q(n-logn). The relation they proved is such that the size of T, |T|,
grows very fast with both d and n. More recently, Gafni [Gaf83] presented an
O (nlog* n) message, O (G ~1(G (n))|T |) time general algorithm for election in syn-
chronous rings (G (n)=log*n )}, thus improving on the time complexity of Frederick-

son and Lynch’s algorithm.

1—log*n is the minimum number of times we have to take log from » to get a
number smaller than 1. Alternatively, it is the inverse of the function F (ln) which is
)

defined as follows: F(O) =1, F (@) =2F¢"D (e, G(n)=log*n =F(n)™).
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1.6.2. Election in General Networks

Fault tolerance and broadcast protocols motivated the development of distri-
buted election algorithms in arbitrary-topology bidirectional networks. In fault toler-
ance applications, a central controller of a distributed system sometimes need to be
chosen to replace a faulty one. For example, in the TYMNET public network
[Tym71, Rin77], at any given time there is one node, called SAM (Supervisor in
Active Mode), which allocates virtual routes for new sessions between users distri-
buted in the network. Periodically, all the nodes in the network update SAM with
the delays on their incident links. SAM uses this information to issue any newly
requested virtual routes while keeping the overall delay of the network down. When
SAM goes down, a new node is elected to make the routing decisions. Other exam-
ples of applications of the election algorithm are situations where a’ faulty primary
site in a replicated distributed file system [Als76] or a faulty lock coordinator in a

distributed data base system [Men78] need to be replaced.

Distributed algorithms for spanning tree construction, rather than distributed
election, were motivated by the design of efficient broadcast protocols. However,
any algorithm to construct a spanning tree can be transformed into an election algo-
rithm by sending O (n) more messages as described below. Hence, any efficient

algorithm for spanning tree construction is also an efficient election algorithm.

In a distributed spanning tree algorithm, every node marks some of its
incident links; the collection of marked links constitutes a spanning tree. Once a
spanning tree is constructed, an election phase is implemented by associating direc-
tions with each link in the tree. Every node, for which all incident links but one have
already been directed, directs that one link outward. This process starts at the leaves

and terminates when two nodes simultaneously try to direct the link connecting them
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in opposite directions. The highest id node of these two is then elected as the leader.

In his Ph.D. dissertation, Dalal [Dal77] addressed the problem of distribu-
tively constructing a spanning tree in the design of efficient network broadcast proto-
cols. One simple way to broadcast a message in a network is to send a copy of the
message over each link; however, in large networks this mechanism could be too
costly, in particular when considering frequent broadcastings by different nodes. To
reduce the message complexity of broadcasting, Dalal suggested first defining a
minimum weight spanning tree (MST) on the network (the link weights being the
cost of transmitting one message over each link) and then broadcasting by sending
one copy of the message over each link of the MST. Thus, for the price of one MST
construction, Dalal reduced the message complexity of broadcasting from O(|E |)
to O(n). In his dissertation, Dalal gives a distributed algorithm for'MST construc-
tion. The message complexity of the algorithm was not analyzed but is believed to be

worse than that of more recent algorithms.

Spira [Spi77] followed up on the algorithm of Dalal and obtained a distri-
buted MST algorithm with average message complexity of O(|E [+n-logn). In
[Gal83], Gallager, Humblet and Spira have further improved on the algorithms of
[Dal77, Spi77] to obtain an O (|E |+n-logn) worst case message complexity algo-

rithm.

In [Gal83], every awakened node starts to construct a subtree (fragment) of
the MST by iteratively selecting the minimum weight edge adjacent to its already
constructed fragment. A variable, called level, is associated with each fragment.
Whenever two growing fragments meet, the level variables are used to economically
combine them into one fragment. The algorithm terminates when the whole network

is spanned by one fragment.
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The time complexity of the algorithm in [Gal83] is O (n-logn). Recently,
Gafni [Gaf85] further improved the algorithm of Gallager et al. to reduce its ime
complexity to O (n-log* n) by modifying the definition of the level variables and the
mechanism by which fragments merge. The algorithm of Gafni has thus established
the best known time upper bound for message optimal election algorithms in asyn-

chronous general networks.

While the main goal in [Dal77, Spi77, Gal83] was to construct an MST, an
upper bound of O(|E {+n-logn) messages on the election problem was already
established by Gallager in 1977 [Gal77], when he presented an election algorithm
with this complexity. In [Gal77], each spontaneously awakened node starts a depth
first search process which tries to traverse all the links of the network. When two
traversing processes meet, the one which has already visited more ‘nodes kills the
other and continues. The depth first search process which survives all the others

elects its initiating node as the leader of the network.

Q(|E |) is clearly a lower bound for election in asynchronous general net-
works (also, in rings) since no algorithm may terminate before sending at least one
message over each link; otherwise, an untraversed link could be the only link con-
necting two parts of the network, each holding a separate election. Following
[Bur80], Q(n-logn) is also a lower bound. Thus, @(|E |+n -logn)1 is both the
upper and lower bound on the message complexity of the election in the asynchro-

nous general networks.

1— A function of n, T(n), is O(F (n)) ("is theta F (n)") if it is both O (F(n)) and
Q(F(n)), ie., there exist positive constants c¢;, c, and ng such that
c1F(n)<T(n)<cyF(n)foralln 2 n,.
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1.6.3. Election in Complete Networks

It was shown by Korach, Moran and Zaks [Kor84] that in complete net-
works, unlike in rings and general networks, the Q(| E |) lower bound does not hold.
The reason being that, in a complete network, an election algorithm can be ter-
minated once some node has communicated with all its neighbors. Subsequently,
Korach, Moran and Zaks presented a 5:n-logn+0(n) message O(n-logn) time
algorithm and an Q(n-logn) message lower bound for election in asynchronous
complete networks. Their algorithm is essentially the same as the MST algorithm of
Gallager et al. [Gal83] with the observation of the simplified termination detection

of complete networks.
1.6.4. Election in Unidirectional Networks

Prior to the algorithm given in this dissertation, no algorithm specifically
designed for election in strongly connected unidirectional networks has been
observed. However, two bidirectional distributed algorithms [Seg83, Gal76] can
easily be turned into unidirectional election algorithms. In [Seg83], Segall presents
a connectivity checking algorithm upon whose termination every node knows the ids
of all the other nodes connected to it. The shortest path algorithm in [Gal76] exhi-
bits the same property when it terminates. The communication complexity of the
two algorithms is O(n-|E |-logn) bits, and each node is assumed to have

O (n log n) bits of memory.

The unidirectional variation of the two algorithms proceeds in two phases: In
the first phase, every node acquires the ids of its incoming neighbors; in the second,
it acquires the ids of all the other nodes in the network. The details of this algorithm

are postponed to the introduction of Chapter 5. The communication complexity of
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the algorithm is O (| E |2-log n) bits; however, assuming that messages sent over one
link are received in the order transmitted, the communication complexity can be

reduced to O (n- | E |-logn) bits.

In looking for a lower bound on the problem of electing a leader in unidirec-
tional networks Gafni and Korfhage [Gaf84] designed an election algorithm for uni-
directional Eulerian networks. The message complexity of their algorithm is

O(|E |logn).
1.7. Dissertation Overview

In this dissertation we will present distributed algorithms for three different
models: complete synchronous networks, complete asynchronous networks and

asynchronous strongly-connected unidirectional networks (refer to Table 1.1).

Five algorithms for election in complete networks are presented in Chapter 2
(see Table 2.1). In Section 2.3, we present a 3-n-log n message, O (log #) time syn-

chronous algorithm.

In trying to apply the synchronous algorithm on an asynchronous network,
the time complexity degrades to O (n) and its message complexity to 5n-logn (Sec-
tion 2.4). The asynchronous algorithm is an improvement over the considerably
more complicated algorithm in [Kor84] , whose time complexity is O(n-logn) and

message complexity is 5-n-logn+0 (n).

In an effort to reduce the message complexity of the asynchronous algorithm
to 2n-logn while maintaining its linear time complexity, we present a sequence of
three more asynchronous algorithms (A, B and C, Section 2.5). The first two algo-

rithms present tradeoffs between time and message complexities. Algorithm A
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(which was also derived independently in [Hum8&4] ) has O (n) time complexity and
2.773-n-logn message complexity. Algorithm B has O (n-logn) time complexity
but 2-n-logn message complexity. Analyzing the communication and time com-
plexities of the two algorithms, we derive a third algorithm, algorithm C, whose time
complexity is O (n) and communication complexity is 2n-log n, an improvement on
the O (n-logn) time and 2n-logn message algorithm of [Pet84]. It remains an open
question whether a sublinear-time, message-optimal (O {n-logn) messages) asyn-
chronous algorithm exists. We conjecture that such an algorithm does not exist, i.e.,
that the time complexity of any asynchronous message-optimal election algorithm is

Q(n).

In Chapter 3 we prove two lower bounds on the problem of electing a leader
in synchronous complete networks. First, we prove a lower bound of Q(r-logn) on
the message complexity. Second, we prove that any message-optimal synchronous
algorithm requires (logn) time. In proving these bounds, we do not restrict the
type of operations performed by nodes. The bounds thus apply to general algorithms
and not just to comparison-based algorithms. This proves that the synchronous algo-

rithm of Chapter 2 is optimal.

We prove that the message complexity of any election algorithm, comparison
or general, in a complete synchronous or asynchronous network is @(#-logn). This
proves that, for the problem of election in complete networks (unlike rings), general
algorithms are not more powerful than comparison algorithms. The difference
between synchronous rings and synchronous complete networks stems from the fact
that in a ring all nodes can be distributively awakened with » messages, whereas in
the complete network the awakening problem is as hard as the election problem,

requiring (2(n-logn) messages. If all the nodes of a complete network could be
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awakened with n messages, then a general algorithm could take advantage of the
synchronous mode of communication to elect a leader in a linear number of mes-

sages by using the principles suggested in [Gaf85].

We also prove an Q(logn) lower bound on the time complexity of any
message-optimal election algorithm in synchronous complete networks.

Specifically, we show that, if the time complexity of an election algorithm (whether
comparison or general) is upper bounded by %-logcn rounds, then its message com-

c-1
2-logc

plexity is lower bounded by Q( n-logn).

In Chapter 4 three algorithms for traversal of unidirectional networks,
Traversal-1, -2 and -3, are presented. Traversal-1 is simple but inefficient. In many
networks, the process ‘of Traversal-1 hops over an exponential m‘1mbcr of links
before terminating. Traversal-2, which is based on the centralized depth first search
algorithm, makes at most O{(n-}E |) hops on any network. Furthermore, we show

that, in general, Q(n-|E |) is a lower bound on the number of hops.

In both Traversal-1 and -2 O (log n) bits of memory are required at each node
and that same amount is carried along with the traversing process (i.c., message size
is O(logn) bits). In some applications, such as VLSI, memory size and message
length are restricted, and a question then arises whether a unidirectional traversal
could be implemented using only a constant number of bits in every node, and on the
traversing process (i.c., in a unidirectional network of finite automata). In Chapter 4
we answer the question in the affirmative by presenting Traversal-3, a traversal algo-
rithm for unidirectional networks of finite automata. Traversal-3 makes at most
O |E !+n2-logn) hops, which is optimal in the worst case (dense networks, in

which |E |=Q(nlogn)).
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Both Traversal-2 and -3 yield two spanning trees, both rooted at the root of
the traversal, one an incoming tree and the other an outgoing tree. The structure
defined by the union of these two trees is shown to be useful in various applications

such as broadcasting, routing and termination detection.

In Chapter 5 we present a distributed algorithm for election in strongly-
connected unidirectional networks. The algorithm distinguishes a single processor
from all other processors in the network. The algorithm requires O (log ) bits of
memory in each processor, and its communication complexity is O (n- | E |+n 2log n)

bits.

As with Traversal-2 and -3, the election algorithm yields two directed span-
ning trees, both rooted at the elected leader; one an incor;ning tree and the other an
outgoing tree. The algorithm is an improvement on thcr connectivity checking algo-
rithm of Segall [Seg83] and the shortest path algorithm of Gallager {Gal76], both of
which can easily be modified to work on a unidirectional network (see Section
1.6.4). The communication complexity of the two algorithms is O(n-|E |-logn)
bits, and each node is assumed to have O (n log n) bits of memory. Furthermore,
unlike our algorithm, neither Segall’s nor Gallager’s algorithm provides the span-

ning trees.
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CHAPTER 2.
ALGORITHMS FOR ELECTION IN COMPLETE NETWORKS

In this and the next chapter we address the problem of electing a leader in
complete networks. In this chapter five election algorithms for synchronous and
asynchronous complete networks are presented (see Table 2.1), while tight lower
bounds on the message and time complexity for the synchronous case are given in

Chapter 3.

The message complexity of the five algorithms presented in .this chapter, is
O (n-logn), where n is the total number of nodes in the network. However, the time
complexity of the synchronous algorithm, O(logn), is considerably better than
O (n), the time complexity of the asynchronous algorithms, thus suggesting that the

synchronous mode of communication is more powerful than the asynchronous mode.

b Communication Messages Time

Mode Complexity | Complexity

2 Synchronous 3-n-logn O(logn)
3

Asynchronous 6'n-logn O(n)

4.1 Asynchronous 2.77n-logn O(n)

4.2 Asynchronous 2:n-logn O(n-logn)

43 Asynchronous 2:n-logn Of(n)

Table 2.1
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2.1. Introduction

In a complete network every node is connected to all the other nodes. Before
the algorithm starts, no node has any information on any of the other nodes. Thus,
the incident links of a node, on which no message was sent or received, are indistin-

guishable.

Consider the following straightforward election algorithm in complete net-
works. Every initiator starts the algorithm by sending messages, containing its id, to
all its neighbors. All the initiators then elect the highest id initiator as the leader.
The time complexity of this algorithm is two time units, and its worst case message
complexity is O (n 2) (the message complexity is k-n where k i§ the number of initia-
tors). In Section 2.4 the message complexity of this simple"algorith;n is reduced to
O(n-logn) by slowing-down the rate at which initiators send messages to their
neighbors to one message at a time. However, the reduced rate increases the time
complexity of the algorithm to O (r). In Section 2.2 we use the synchronous model
of communication to design an O (logn) time, message-optimal algorithm. This is
done by carefully selecting a dynamic rate at which initiators send messages to their

neighbors.
2.2. The Synchronous Algorithm

In this section we present a 2-logn rounds, 3n-logn messages synchronous
algorithm. In the next chapter we will show that this algorithm is message optimal

and is as fast as a message-optimal algorithm can be.
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2.2.1. Description of the Algorithm

The algorithm is initiated by any subset of nodes, each of which is a candi-
date for leadership. Each candidate tries to capture all other nodes by sending mes-
sages on all the links incident to it. The candidate that has succeeded in capturing alt
its neighbors elects itself as the leader. To guarantee that only one node succeeds,

all candidates but one are killed .

To simplify the algorithm every initiator node spawns two processes, the
candidate process and the ordinary process. The two processes are connected to
each other by a bidirectional logical link which behaves like a physical link. A node
awakened by receiving a message of the algorithm spawns only an ordinary process.
Candidate processes communicate only with ordinary processes a!ndr vice versa.
Thus, the communication topology is a complete bipartite graph, on one side the can-
didate processes and on the other side n ordinary processes. Henceforth, the term
candidate will be applied interchangeably to both the process and its initiating node.
All messages received by a node are tagged according to the type of their sending
process. Messages received from candidate processes are forwarded to the ordinary
process. Messages received from ordinary processes are forwarded to the candidate

process.

At every candidate the algorithm proceeds in levels. Every live candidate at
level i, i20, tries to capture 2 new ordinary processes by sending them messages
containing its level and id. If in the second round of level i the candidate receives
acknowledgments from all the ordinary processes it tries to capture, it proceeds as a
candidate to the next level. On the other hand, if not all the acknowledgments are

received, the process (and hence the node owning it) is eliminated form candidacy.
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Every candidate has a variable called level which is incremented by one
every two rounds. Every ordinary process has an owner—level and an owner—id
variable which contain the level and id of the highest-level candidate the process has
received a message from (level ties are resolved by selecting the highest id). In
every round, every ordinary process first increases its owner-level by one, to reflect
the owner’s actual level, and then inspects the newly received messages to update its
owner-level and owner-id if necessary. If an update occurred, the ordinary process

acknowledges its new owner.

A formal description of the algorithm is given in Figure 2.1. E is the set of
edges incident to a candidate process. Every candidate maintamns a list of edges,

called untraversed , which it has not yet traversed in any direction.
2.2.2. Time and Message Complexities

Let p be the largest id of a candidate from the set of oldest candidates (i.e.,

whose level is the largest). We observe the following three facts:

Fact I: The owner-level of every node strictly increases from one round

to the next.

Fact2 : Armost 2‘—: candidates reach level i, 1 <i <logn.
Fact3 : 2logn rounds after it has started the algorithm, candidate p has

captured all the nodes and is elected as the network leader.

Fact 1 follows immediately from the algorithm for ordinary node processes.
Fact 3 holds because all the messages of p get acknowledged, and once a node has

acknowledged p, it will not acknowledge any other message. Fact 2 follows from
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Candidate program:
untraversed «— E
level « -1;
Each round do:
level « level + 1;
If level is even
Then
If untraversed is empty
Then
ELECTED, STOP
Else
K « Minimum ( 2%*/2, | untraversed | ) ;
Send (level, id) over K links from untraversed, and
remove these links from untraversed ;
Else /* levelis odd */
Receive all acknowledgment type messages
If received less than K acknowledgments
Then
Stop /* Not a candidate any more */
End each round.

Ordinary program:
L* nil;
owner-level « -1;
owner-id « id ;
Each round do:
Send an acknowledgment over L* ;
owner-level « owner-level + 1 ;
Receive all candidate messages {(level,id) over link L};
Let {level*, id*) be the lexicographically largest
( level, id) candidate message, and
L * the link over which it arrived ;
If (level*, id *)>(owner—level , owner—id)
Then
(owner—level , owner—id ) « (level*, id*) ;
Else
L* &nil;
End each round.
Figure 2.1: The Synchronous Algorithm

fact 1 and the observation that every ordinary node acknowledges at most one mes-
sage in which the level is i, 0<i <logn, i.e., the sets of 2:"! nodes that are captured

by each candidate that has reached level i are disjoint.
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Following fact 3, the time complexity of the algorithm is 2logn. Since every
node sends at most one acknowledgment to a candidate in level i, the total number

of acknowledgments is n-logn, each of length O (1) bits. Due to fact 2, the total

. , logr 4, ] .
number of candidate messages 15 ), FZ' =2n-logn, each message containing
i=1

logn-+loglogn bits. The total communication complexity is thus 3-n-logn mes-

sages.

A continuum of algorithms can be devised to close the gap between the
trivial O (1) time, 0(n2) messages algorithm and the O (log n) time, 3n-logn mes-
sages algorithm. Each algorithm in the continuum is the same as the above, except
that a candidate in level i is trying to capture ¢’ neighbors, 2<c<n. The time com-
plexity of the algorithm is 2log.»n, and its message complexity is 2¢-n-log.n, thus
proving that the lower bounds that will be presented in Chapter 3 (Theorem 3.2) are
tight.

2.3. Asynchronizing the synchronous algorithm

In this section we apply the synchronous algorithm to an asynchronous com-
plete network. To maintain the @ (n'log n) message complexity in the asynchronous
communication mode, we are forced to increase the time complexity to O(n). The
increase in the time complexity seems unavoidable and it remains open whether a

sublinear time, message-optimal asynchronous algorithm exists.

There are two basic differences between the asynchronous and synchronous
modes of communication. First, in the asynchronous mode there is no global clock,
and second, messages incur an arbitrary but finite delay. The arbitrary delay of mes-
sages (and not the absence of the clock) is the source of the increase in the time com-

plexity of the algorithm. Essentially the synchronous algorithm could work without
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a global clock, if all messages incur exactly the same delay (in which also the queue-
ing and processing time are included). In such a model we assume that, if two
nodes, P and Q, send messages at the same time to the same two other nodes, u and
v, and the message of P arrives at u before the message of Q then, the message of

P will arrive before also at v.

To see that a straightforward application of the synchronous algorithm in the
asynchronous model will not work consider the following situation: There are two
competing candidates, C | and C ,, each had already successfully captured one node,
and both proceed to capture the nodes v and u at the same time. A message of C'y
was the first to arrive at v which is then captured by C ;, while a message of C, was
first to arrive at u. Following the rules of the synchronous algorithm, v positively
acknowledges only C; and u positively acknowledges only C,. Thus, both candi-
dates are killed since none had all of its messages positively acknowledged. In the
following section we present an algorithm which overcomes this and similar prob-

lems in the asynchronous case.
2.3.1. Description of the algorithm

As in the synchronous case, the asynchronous algorithm is started at arbitrary
times by an arbitrary set of nodes, each of which is a candidate for leadership. Each
candidate tries to capture the network by sending messages on all its incident links.
To guarantee that only one candidate is elected, all candidates but one are killed.
The candidate that has succeeded in capturing all its neighbors is elected as the

leader of the network.

The level variable of a candidate is a function of the number of nodes that the

candidate has already captured. A candidate at level [ has already successfully cap-
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tured 2'~1 nodes. As in the synchronous algorithm, every captured node has
owner—level and owner—id variables, which respectively are the highest level
among the candidates from which it has received a message, and the id of one of
these candidates (which is assumed to own it). The potential —id of a captured node

is the id of a candidate which tries to capture it. All variables are initially set to nil.

Every candidate at level /, sends 2'*!-1 messages containing its level and id,
O<l<logn, to the 2'—1 nodes it had already captured and on 2’ unused incident
links. Unlike the synchronous case, a candidate in this algorithm waits to receive
either positive or negative acknowledgment to each of these messages. If 2/+1-1
positive ack;novx-zledgmcnts are received the candidate proceeds to level /+1. On the
other hand, if any of the messages was acknowiedged negatively, the candidate is
killed. It then sends relinquish messages, containing its id, to all the nodes that it

had ever tried to capture, informing them of its elimination from candidacy.

When a message <level,, id.> from candidate C arrives at node v whose
variables are owner—~level,, owner—id,, and potential -id,, we distinguish between

three cases:

L Either <owner—level,, owner—id,> or <owner—level,, potential -id,> are
lexicographically greater than <level_, id.>, in which case the message is

acknowledged negatively.

2. owner-level, 1s smaller than level., in which case candidate C is ack-
nowledged positively, and the <level,,id.> pair replaces the

<owner —level,, owner—id,> pair.

3. owner—level, equals level, and id_ is greater than both owner—id, and the

potential —id,. In this case id, replaces potential ~id, and node v waits for
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one of the following two events to occur before acknowledging candidate C':

a. A relinquish message with the same id as owner—id, is received, in
which case C is acknowledged positively, and the <level,, id.> pair

replaces the <owner ~level,, owner—id, > pair, or

b. Another message whose <level ,id > is lexicographically greater than

<level_, id, , arrives, in which case C is acknowledged negatively.

Note that in none of the above cases does a node put on hold more than one
message. If a message arrives at a node which aiready holds one message then the

lexicographically smaller one is acknowledged negatively (case 3 b).
2.3.2. Time and Message Complexities

First we shall prove that the algorithm is deadlock-free. Candidate C'y can
cause another candidate, C,, to wait for it only if (1) both try to capture the same
node, v, at the same level, and (2) C | captures v while C'5 becomes v’s potential
owner (because idc <idc,). Then, C; is waiting to get either a positive or a nega-
tive acknowledgment from v. Node v will send a positive acknowledgement to C,
if it receives a relinquish message from C . On the other hand, if v receives a
higher level message, it will send a negative acknowledgement to C,. Hence, the ids
along any chain of waiting candidates must be increasing and the algorithm is

deadlock-free.

To analyze the message complexity of the algorithm we note the following

fact:
Fact: The sets of nodes captured at level /-1 by candidates which
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reach level /, are disjoint.

This fact follows from the observation that at most one candidate from all the
candidates which try to capture the same node at level { will proceed to level [+1

(this candidate gets a positive acknowledgment and does not send a relinquish at that

level). Thus, the maximum number of candidates at level / is . The total

n
21

number of messages due to capturing attempts is then the number of candidates at

level [ times 2'*1-1 times 2, since each message is also acknowledged, ie.,

logn
2y L «(2M*1-1). Similarly, the maximum number of relinquish messages is
=1 2'-1
logn
2 _2In ) {(2'*!-1) which is bounded by 2:n-logn. Hence, the message complexity
=1 -

of the algorithm is bounded by 6n-logn.

The total delay of the algorithm is composed of two terms; The delay
incurred by capturing messages, and the delay incurred while waiting for relinquish
messages (which is the overhead introduced by the asynchronous model of commun-
ication). While the former contributes O (log n) delay, we will show that the latter

takes O (n).

To prove that the time complexity of the algorithm is O (n) we first give a
scenario which attains this complexity, and then prove that O (n) is also the upper

bound on the worst case time complexity.

In the following scenario % candidates, C, . ..,C,, with ids id, . .., id,,
3 3
2
3
two time units after each other. The scenario starts with candidates, C | and C,,
31

such that, id; < id;,, =1, .. 1, try to capture the same two nodes, v and u



each of which has already captured one node and both try to capture nodes, v and u

at the same time (see figure 2.2 and Table 2.2).

Cnsa Cs Cs C, C,

Figure 2.2: The O (n) time scenario
The capturing message of C, arrives before the capturing message of C, at v, and

after at u. Thus, C, captures « and becomes the potential owner of v, and C cap-
tures v and becomes the potential owner of u. In the next two time units u sends a
negative acknowledgment to C; which then sends a relinquish message to v. At the
same time that C | sends the relinquish to v, candidate C 5 sends capturing messages
to v and «. The messages are scheduled such that the message of C4 arrives at v
Just before the relinquish of C ;. Thus, C 3 becomes the owner of v and the potential
owner of u (which is now owned by C5,). In the next two time units v sends a nega-
tive acknowledgment to C5 which then sends a relinquish message to u. But, at the
same time that C, sends a relinquish message to u, candidate C4 sends capturing
messages to v and u. The scenario proceeds in this pattern for 2/3-n time units at
which time all candidates except one are killed. In Table 2.2 the scheduling of the
messages in the scenario is given.
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Next we prove that O (n) is also the upper bound on the worst case time com-
plexity. To this end we claim that every two time units, either the highest level can-
didate increments its level by one, or one candidate is effectively eliminated. Since
there are at most n candidates, and the highest level is logn, the worst case time

complexity is at most O (n).

To prove the claim, consider the first time, T}, and the time interval, A;, in

which / is the highest level in the network i.e., A;=T;, |~T;.

Time
Events
Units
C’| captures v
C 5 captures u
: C 5 becomes v’s potential-owner
C, tries to capture u
2 u sends a negative acknowledgment to C
C 5 becomes v’s potential-owner
C, relinquishes v
’ C 5 captures v
C 3 becomes u’s potential-owner
4 v sends a negative acknowledgment to C,
C , becomes u’s potential-owner
C, relinquishes u
> C 4 captures u
C 4 becomes v’s potential-owner
6 u sends a negative acknowledgment to C'5

Table 2.2: The O (n) time scenario
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logn
Clearly, ¥ A; is the time complexity of the algorithm. In the next lemma we argue
i=0
that if [ persists as the highest level in the network for A; time, then a number of
candidates linearly proportional to A; have been effectively eliminated during this
time. The term "effectively” is used since it might be that the nodes are notified of

their elimination some time after T;,;. The extra period of time is also linearly pro-

portional to A; and hence the total time complexity is O (r).

Let Ny denote the number of live candidates in the network at time T. For-

mally, we claim:

Lemma 2.1: There exist positive constants k; and k; such that,
N7k, oA <NT,~ [kz-AI—-l]-i-U s, Where U, is the number of initiators (candidates)

which start the algorithm in time interval A.

Proof: Basically we claim that for every two time units in A; (where a time unit is
the maximum delay of a message), at least one candidate at level / is either killed, or
added to a chain of waiting candidates (a similar chain was used in the argument that
the algorithm is deadlock-free). If a long chain is created, then within some time
from T;,; at least half the candidates in the chain are killed. The constant &,
represents the time it takes the chain to unfold with at least half the candidates killed.
The time it takes the chain to unfold is at most the time it takes a message to pass
along the chain. If k =1 the time complexity is reduced by at most half, and thus we
will henceforth assume for convenience that £ =1. The constant k, represents two
parameters: The rate at which the chain of either waiting, or dead candidates is
created; and the fraction (at least half) of candidates in the above chain which get
killed. By appropriately scaling the time units we may assume without loss of gen-

erality (w.l.o.g.) that k,=1 as well.
34



Cm’2

M-

LEGEND
cO——O0v C owns v
cO-—-0Ov C potentially owns v

Figure 2.3: The waiting chain of lemma 2.1

Let us now prove that for every two time units in 4, at least one candidate is
either killed, or added to a chain of waiting candidates. If A;=2 we are done.
Assume A;>2, and let C; be the first candidate to reach level / at time T;. Then, at
time T;+2 there must have been candidate C, such that C, has captured a node
which C', tries to capture, and either C, already caused the death of Cy, or C is
waiting for C, to relinquish, or to advance to level [+1 (see figure 2.3). In the
former case the id of C is smailer than that of C, while in the latter it is larger. The
proof thus continues inductively by adding for each two time units in A; another can-

didate to a chain of either waiting or killed candidates.

When a chain of waiting candidates unfolds, at least half of the candidates
along the chain are killed. Since, if candidate C | is waiting for C, either C, relin-
quishes, in which case C; advances to level /+1 (unless it is waiting for another can-
didate), or C advances, in which case C; gets a negative acknowledgment from the

node they both tried to capture, and C | relinquishes. W

35



2.4. Algorithms for Election in Asynchronous Complete Networks

Qur aim in this section is to derive a 2'n-log n+0 (n) messages, lincar-time
asynchronous algorithm. To this end we present a sequence of three asynchronous
algorithms (A, B, and C), each devised to circumvent the problems of the previous,

so that algorithm C achieves the desired complexity.

The underlying mechanism for all three algorithms is similar. Each algo-
rithm is initiated by any subset of nodes, each of which is a candidare for leadership.
Each candidate spawns a process which tries to capture all the other nodes by suc-
cessfully traversing in both directions all the links incident to its initiator. The term
candidate will be applied interchangeably to both the process and its initiating node.
The candidate which has succeeded in capturing all its neighbors bccqmes the leader.

To guarantee that only one node is elected, all candidates but one are killed .

All candidates use a variable called leve! to estimate the number of nodes
they have already captured. The level variable is used by candidates to contest each
other. Captured nodes also have a level variable, which tracks the highest level can-

didate they have observed. All level variables are initialized to 0.

A candidate that arrives at a node with a larger level than its own is elim-
inated from candidacy. However, if the candidate’s level is larger or equal, the
node’s level is replaced by the candidate’s level. The candidate may then claim the
node and try to eliminate the previous owner of the node. Upon being killed, the ini-

tiating node of a candidate functions like a regular captured node.

The three algorithms differ mainly in two parts: (1) The way that candidates
determine their level, and (2) The rule candidates use to eliminate each other. In

algorithm A, the level of a candidate is the number of nodes it has already captured
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(following [Gal77]. ) In algorithm B, the level is the number of candidates it has
killed. Algorithm A achieves a better time complexity while algorithm B achieves a
better message complexity. In algorithm C, candidates use a combination of the
above two level functions to attain the time complexity of A and the message com-

plexity of B.

2.4.1. Algorithm A
Level: In this algorithm, the level of a candidate is the number of nodes it has
already captured.

Capturing and Elimination Rule: To capture node v; (1) the (level, id) of a candi-
date must be lexicographically larger than the (level, id) of the previous owner of v,

and (2) the previous owner must be killed.

When candidate P arrives at node v which is currently owned by candidate

Q, the following ruie is used:

If (Level (P),id(P)) < (Level(v),id(Q)), P is killed.
If (Level (P),id(P)) > (Level (v),id(Q)), (1) v gets P’s level, and (2) P is sent to
Q.

When P arrives at Q:

If (Level (P ),id(P)) < (Level (Q),id(Q)), P is killed.
If @ has been killed already then P captures v.
If (Level (P ),id(P)) > (Level (Q),id(Q)), then (1) Q is killed, and (2) P captures v.

Upon returning to its initiating node from a successful capturing, P increases its

level by one.
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Details

To keep track of its owning candidate, every captured node has two link
pointers, father and potential—father. The father pointer points to the link through
which the node was most recently captured, and the potential-father pointer points to
the link through which a candidate which tries to claim the node from its father, has

arrived.

A candidate, C, that arrives at an already captured node v whose level is
smaller than its own, replaces v’s level with its own and becomes v’s
potential—father . C is then sent to the father candidate of v. If C survives at v’s
father, and meanwhile no other candidate replaced C as the potential-father of v,
then C becomes v's father. If v has -not yet been captuted, the Potcntial-father

automatically becomes the father of v.

A formal description of algorithm A is given in Figure 2.4. As in the syn-
chronous algorithm every initiator spawns two independent processes, candidate and
ordinary. The two processes are connected by a bidirectional logical link which
behaves like a physical link.

Analysis

The algorithm is deadlock-free since candidates never wait for each other,
and the (level, id) pair is lexicographically increasing along any chain of candidates

which kill each other.

The time complexity of the algorithm is O (n) since candidates never wait for
each other and a candidate which has done more work is never killed by a candidate

which has done less work. Thus, each killed candidate spent, in the worst case, less
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Initially
level « owner—id ¢ 0 ;
untraversed « E ; father «nil ;

Candidate ( id ) :
while ( untraversed # &) do;
! & any( untraversed ) ;
send(id ,level) onl ;
R: receive(id’,level”) over !’ ;
if (id” =id) then /* successful capturing.*/
level «level +1 ;
untraversed ¢ untraversed - [ ;
else /*another candidate tries to eliminate candidate id */
if (level’,id’ < level ,id)  /* lexicographically*/
then Discard the message, goto R ;
else /* Candidate id is eliminated */
(1) send(id",level "y over I”;
(2) discard all future messages;
end while;
announce(ELECTED, terminate the algorithm) , STOP ;

Ordinary:
for_ever do;
recetve(id” level”) over I’ ;
case level’, id’ of :
(1) level’,id’ < level owner—id:
Discard message ;
(2) level’id” > level owner—id :
potential —father « 1’ ;
level « level’ ;
owner—id —id’ ;
if father = nil then father « potential—father ;
send(id’,level”) over the father link ;
(3) level’, id" = level ,owner—id :
father « potential —father ,
send(id’, level”) over the father link ;
end case ;
end for _ever;
Figure 2.4: Algorithm A

time than the one killing it.

To prove that the communication complexity of the algorithm is O (n-logn)

we use a Lemma which was introduced in [Gal77].

Lemma 2.2: For any given k, the number of candidates that own -% or more nodes
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isatmost k.

Proof: Let C; and C, be any two candidates which owned % nodes at some point

of time. We shall show that each of C; and C, must have owned at least % nodes

disjointly. If they never tried to claim a node from each other, we are done. The
first time that C ; (w.l.0.g.) tries to claim a node, say v, from C, either it causes the

death of one of them, or C, has been already killed. If C, w.l.o.g., caused the death

of C 5 then clearly it must have owned at least -—z— nodes disjoint from C,, at the time

of killing. If C, is already dead, C; must still own at least i;- nodes in order to

claim v to itself. W

Corollary 2.1: The largest candidate to be killed by another candidate owns at most

n n
> nodes, the next largest owns at most 3 nodes, etc.

Lemma 2.3: The message complexity of algorithm A is 4:n-ln n

(=2.773-nlogy n ) messages.

Proof: Since in capturing one node a candidate makes at most 4 hops, a candidate

which owned k& nodes incurs at most 4-k messages. By Corollary 2.1, the total cost

n
is then bounded by 4:n-3%; l messages. Note that each message of the algorithm
I

i=]

contains at most 2-logn bits. H

The number of candidates at a particular level was constrained by the dis-
jointness property. Hence, a candidate which captures many nodes from another
candidate, tries to eliminate that other candidate as many times as the number of

nodes it captures from it. This gives rise to the factor 4 in the message complexity.
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In the next algorithm we remove the disjointness requirement and change the level

function to reduce the message complexity to 2-n-log n messages.

24.2, AlgorithmB

Level: In this algorithm, the level of a candidate is the total number of other candi-
dates that it has killed.

Capturing and Elimination Rule: To capture node v the level of a candidate must
be strictly larger than that of v, in which case the candidate captures v without kil-

ling the previous owner of v.

When candidate P arrives at node v which is currently owned by candidate

Q, the following rule is used:

" If Level(P) < Level(v), P is killed.
If Level (P) > Level (v), v is captured by P, and v gets P’s level.
If Level(P) =Level{v), P issentto Q.

Upon arriving to QO

If (Level (P ),id(P}) < (Level (Q ),id(Q)), P is killed.

If Q@ has already been killed, P is killed too.

If (Level (f 1id(P)) > (Level (Q },id (Q2)), then (1) Q is killed, (2) P increases its

level by one, and (3) P captures v.
Details

A formal description of algorithm B is given in Figure 2.5. When a candi-
date arrives at node v whose level is the same as its own, and the id of v’s father, Q,
is smaller, it becomes v’s potential-father. The potential-father is then sent to Q in
an attempt to kill it. If another candidate at the same level with even higher id
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arrives at v before the potential-father returns from Q, then this other candidate is
killed. If the potential-father survives at Q it first increments its level by one, then
returns to v and captures it, and only then, returns to its initiating node. However, if
the potential-father finds that Q is already killed, it eliminates itself as well (since if

0O was killed, there exists a higher level candidate in the network).
Analysis

Since at most half of the candidates at level & go up to level & +1, the max-
imum level achievable during the algorithm is logn. Clearly, every time a node is
recaptured its level is increased by at least one. Hence, the total number of capture
messages possible is at most n-logn. Each capture uses 2 messages, which sums up
to a total of 2-n-logn messages. The extra messages spent by candi.da;ps which go
over father links to other candidates is at most 2-n, since each such traversal results
in the elimination of one live candidate. Thus, the message complexity of the algo-

rithm is 2-n-log n + 2-n messages, each of length log n + loglogn bits.

The time complexity of the algorithm is O(n-logn) by the following

scenario, in which % of the nodes are captured serially log (%) times. The algo-

rithm is started by node v which captures —;— nodes in level 0. Then, a new node,

v, spontaneously starts the algorithm, kills v, increases its level to 1 and recaptures

n

> nodes. After v has captured the 2 nodes, two new nodes spontane-

the same
2

ously start the algorithm, try to kill each other, and the one which survives, v,

reaches level 1. Node v, then kills v, and recaptures the % nodes at level 2. The

scenario continues until the entire network has been captured by Vi B which is
(o]
2

42



/* The variable size is for algorithm C only */

Inmitially:
level « size « O ; owner—id « potential —id « 0 ;
untraversed ¢ E ; father « potential —father ¢ nil ;

Candidate (id ) :
while ( untraversed # & ) do;
e « any( untraversed ) ;
send(level id)on e ;
R:  receive(level’,id”) over e’ ;
if (id’ = id) then /*successful capturing.*/
level « level’
untraversed < untraversed - ¢ ;
else-if (level’,id’ < level ,id) /* lexicographically*/
then Discard the message, gotoR ;
else (1) send(level’,id’) overe”;
(2) Discard all future messages;
end while;
announce(ELECTED, terminate the algorithm ), STOP ;

Ordinary:

level -1 ;

while (not terminated) do;
receive(level’ id”) over e’ ;
case level’ of :

(1) level’ < level : Discard message ;

(2) level” > level . /* Replace the father */
father « e’ ; level « level’ ; owner—id « id’ ;
potential —id « O; potential —father « nil ;
send(level’,id") over the father link ;

(3) level’ = level :
if  (id" < owner—id) then Discard message;
else-if (id” = potential—id ) then

father « potential —father :
level’ « level’ +1 ;
owner-id « id”’;
potential —-id « 0 ;
potential ~father « nil ;
send(level’ id") over the father link ;
else-if there is already a potential —father
then Discard message ;
else /* there is no potential —father */
potential —id « id’ ;
potential —father «— e’ ;
send(level’,id") over the father link ;
end case ;

end while ;
Figure 2.5: Algorithm B
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elected as a leader.

The increase in time complexity of the algorithm is because unlike algorithm
A, the level of a candidate here is not a function of the number of nodes it has
already captured. A candidate which spent a lot of work (and time) accumulating
nodes might be killed by a candidate which did not spend nearly as much. Although
algorithm A does not suffer from this problem, it has the problem that candidates
could be "killed" many times. In the next algorithm we eliminate both problems by

employing both techniques simultaneously in one algorithm.
2.4.3. Algorithm C

Here we make two modifications to algorithm B in order to achieve a linear-
time complexity with no increase in the communication cost. First, we incorporate
an estimate of the amount of work spent by each candidate into the level function of
algorithm B. Second, we enable candidates with a high level (>logn) to capture
many nodes in parallel (in one time unit). We start describing the algorithm with the
first modification. The second modification will be introduced during the perfor-

mance analysis.

Level: In this algorithm the level of a candidate is increased according to two rules.
First, the same rule as in algorithm B is used, and second after each capturing the
candidate increases its level to be at least log( total number of nodes captured ), i.e.,
after returning from a successful capture the level is set to MAX ( log (# nodes cap-

tured), present level).

Capturing and Elimination Rule: Same as in algorithm B.

Details



The formal description of the algorithm is similar to that of algorithm B. A
variable, called size, is used to count the number of nodes captured by a candidate.
The only change is to replace the first "then" clause, within the "while" loop of a

candidate program to:

then
size &« size+l ;
level « max( level’log size) ;

untraversed « untraversed - e ;

Analysis
To analyze its performances we will first show that:

Lemma 2.4: The maximum /eve! reachable during any execution of algorithm C is

logn +loglogn + 1.

Proof: Let N; be the total number of candidates that reach level i during the execu-
tion of the algorithm. Consider the maximum number of candidates which could
possibly pass from level i-1 to level i. There are two ways in which a candidate
can go from level i—1 to level i. First, by capturing 2°~! nodes at level i-1 for
i<log n, and second, by killing another candidate which is at level i—1. We note that

N; is maximized if as many candidates as possible pass from level i—1 to level i by

capturing other nodes (i.e., —2-'{%_7 candidates) and the rest of the candidates (i.e.,
n

—21—_1-) kill each other in pairs. Hence,

Ni
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! 2 zi—l (1)
Solving (1) for N; we get:
n
N; € =(i+1)
z 2)

Substituting N; = 1 in (2) and solving for i gives us the maximum level, which is

logn+loglogn+l. B

Using the same argument as in algorithm B we find that the message com-
plexity of algorithm C is 2-n-(logn-+loglogn+2) messages, each of length
log n+log (log n+log log n ) bits.

With the above modification it can be shown that the time complexity of
algorithm B is reduced to O (n-loglogn). In order to further reduce the time com-
plexity to O(n), processes at levels higher than logn will try to capture nilogn
nodes in parallel. Thus a candidate which has reached level logn will send mes-
sages over n/logn untraversed links incident to it. Each of these messages carries
the (level, id) of the candidate. When a message arrives at an adjacent node the node
compares its level to that of the message. If the message level is higher, the node
replaces its (level, id) with the message, thus making the candidate the new father of
the node. The node then sends the candidate an acknowledgment of successful cap-
ture. If the message level is smaller, it returns no message. Finally, if the message
level is the same as that of the node but the message id is higher, a notification to

that effect is sent back to the candidate.
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The candidate waits for all the n/logn acknowledgments. If all the ack-
nowledgments indicate a successful capture, the candidate proceeds to the next
n/logn untraversed incident links. If, on the other hand, some of the acknowledg-
ments indicate that they have encountered the same level, one of the links is arbi-
trarily chosen and a process that behaves as in algorithm B is sent along that link. If
the process returns, the candidate increases its level and proceeds to the next n/log n
untraversed links (links on which no successful capture was reported are not con-

sidered traversed).

To analyze the algorithm with this modification we make two
observations: First, the maximum attainable level in the algorithm is still bounded
by log nHoglogn+1. Second, by substituting i =logn in equation (2), we find that

the maximum number of candidates which reach level logn is logn. '

The last modification has increased the communication complexity of the
algorithm by at most O(n) messages. Each node is still captured at most
log n+loglog n+1 times, however the death of a candidate at level greater than log n
might be associated with at most 2-n/logn messages. Since there are at most logn

such candidates the increase due to killings is bounded by O (n).

To show that the time complexity of the algorithm is O (rn) we arrange the
candidates in a rooted tree. Each level of the tree corresponds to the candidates that
have reached that level in the algorithm, i.e., the nodes at level i in the tree
correspond to the candidates that have reached level i in the algorithm. The parent
of a candidate at level i in the tree is either the candidate that caused the death of the
given candidate or, the same candidate at the next level. The time delay of the algo-
rithm is the sum of the delays incurred by candidates along the path from the first

initiator (candidate) to wake up, at level 0, to the root.
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To evaluate this time delay we note that no candidate that either survives or
is killed at level i spends more than 2¢~1 time units in level i, i<logn. Inlevel i,
log n<i<log n+Hoglogn no candidate spends more than log~ time units since it

captures nodes at a rate of n/logn per time unit. Hence, the total time delay of the

logn .
algorithm is bounded by ¥ 2' + logn loglogn =n+logn-loglogn. Note that we

i=1
scale a time unit to be the maximum delay it takes to capture one node, which is a

constant.

In the above calculation we did not include the actual time it takes candidates
to kill each other. Since there are at most n candidates and no candidate tries to kill

a dead one (unlike algorithm A), this delay is also bounded by O (n).
2.5. Conclusions

An O (n-logn) messages O(logn) time synchronous and O (n-logn) mes-
sages O (n) time asynchronous election algorithms were presented. It remains open
whether a2 O(n-logn) messages sublinear time asynchronous election algorithm
exists. We conjecture that such an algorithm does not exist and hence that the syn-

chronous mode of communication is more powerful than the asynchronous mode.

Three asynchronous election algorithms (A, B, and C) were presented. The
simplicity of the complete network topology, and, hence, of termination detection,
enabled us to concentrate on the synchronization among contending candidates.
With each of the three algorithms we can associate an analogous algorithm for arbi-
trary topology networks, which uses the corresponding method to synchronize dif-
ferent initiations of the algorithm but a different method to traverse the network (i.e.,
to detect termination). The analogy to algorithm A is given in [Gal77]. In [Gal83]

the same level function as in algorithm B was used, however, there candidates merge
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their "territories” (rather than kill each other) when they meet. In [Gaf85) the time
complexity of [Gal83] is improved by replacing its level function with that of algo-
rithm C. Each of the methods can be applied to other classes of networks. For
example, applications of method B in different classes of topologies are presented in
[Kor85]. As in algorithm B, the time complexity of the algorithms in [Kor85] is
O (n'logn), whereas similar applications, but of methods A or C, improve the time

complexity of [Kor85] while maintaining the message optimality.
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CHAPTER 3.
LOWER BOUNDS FOR ELECTION IN COMPLETE NETWORKS

3.1. Introduction

Two algorithms for election in synchronous complete networks were dis-
cussed in the previous chapter. The first is a O (n 2y messages O (1) time algorithm
and the second is a O (n-logn) messages O (logn) time algorithm. The two algo-
rithms raise two questions: (1) Is Q(#nlogn) also the lower bound on the message
complexity of election in synchronous complete networks, and (2) If Q(n ;log n) is
the message complexity lower bound, then how fast can a message-optimal algo-
rithm be, i.e., is there a O (n-log n) messages O (1) time algorithm, or is Q(logn) is
the lower bound on the time complexity of any message-optimal synchronous algo-

rithm.

In this chapter we answer these question by proving first, that Q(n-logn) is a
lower bound on the worst case message complexity of a synchronous algorithm, and
second, by proving that Q(logn) is a lower bound on the time complexity of any
message-optimal synchronous algorithm. In proving these bounds we do not restrict
the type of operations performed by the nodes. The bounds thus apply to general
algorithms and not just to comparison based algorithms. This proves that the syn-

chronous algorithm of Chapter 2 is optimal.

2
Furthermore, in Chapter 2 we have presented a continuum of, o cc ‘n-logn

messages 2-log, n time, synchronous algorithms where, ¢ =2,...,n. In Section
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3.2.2 each algorithm in the continuum is shown to be optimal by proving that if an

algorithm (whether comparison or general) elects a leader in at most %-logc n

. o -1
rounds, then its message complexity is at Ieast ‘n-logn.
C

3.2. Lower Bounds

To show the lower bounds, a scenario in which any synchronous (and hence
also asynchronous) algorithm transmits at least %-logn messages, is constructed

using an adversary argument. A similar argument is then used to show that the delay

of any message-optimal algorithm is at least O (log n) rounds.

-

3.2.1. Definitions and Assumptions

Consider an arbitrary electioﬁ algorithm on the synchronous model defined
above. An evenr is the sending of a message over a previously unused link (Two
messages sent in the same round in opposite directions over a previously unused link
are considered two separate events). With each event we associate a pair (s,d),
where s is the source node and d is the destination node of the corresponding mes-
sage. With each round i of the algorithm we associate a set of events, R;. A
sequence E=(Ro,R|,---) is called an execution. An execution-prefix E;isa
prefix, (Rg,Ry,...,R i), of an execution E. With each run of the algorithm we
associate an execution, called a legal—execution, that includes all events which
occurred in the run, arranged in order of the corresponding rounds. Henceforth, any

mention of a message refers to an event.

A cluster in an execution-prefix E ; is a maximal subset of nodes spanned by

a connected subnetwork of links which were used by events which occurred in E 'z

51



The degree of anode v in an execution-prefix E; is the number of links incident to v
which were used by events in E;. The potential —degree of node v in an execution-
prefix E; is the degree of v in E; plus the number of times that v is a source node of
an event in R;,;. The potential—degree of a set of nodes is the maximum

potential-degree among its nodes.

For the purpose of proving the lower bounds we introduce a slightly different
model, called the stopping —model. The stopping model allows us to withhold the
clock pulse, at the beginning of round j from cluster, C, in E;_;, given that no node
in C is expected to receive a message in round j from a node not in C. The nodes in
C are then said to be frozen in round j. Therefore, a frozen node in a round neither
sends nor receives any message in that round; nor does it change its state. The
stopping-model will be used to prevent large differences in the clusters’ growth

rates.

A stopping —execution is an execution which corresponds to a run of the
algorithm in the stopping-model. A stopping-execution is called a
k stopping —execution if the cumulative number of pulses withheld over all clusters

throughout the run is k. Obviously, a O-stopping-execution is a legal-execution.

Lemma 3.1: For any & stopping-execution E , there exists a k-1 stopping-execution

E’ which contains exactly the same events as £ does.

Proof: Let !/ be the minimum index of a round in which any cluster is frozen, and
let C be a cluster which is frozen in /. An execution-prefix E’ which satisfies the
lemma can be obtained from E by shifting all events which occurred before round /
and involve nodes in C, one round forward. This affects neither any event in later

rounds nor any event which involves nodes not in C. Because, neither in £ nor in
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E’ there is an event connecting a node in C with a node not in C in any round
R; jsl, and because R, in E is identical to R, in E’, Notice that in E the nodes

in C are awakened one round later than in £. B

Corollary 3.1: For any stopping-execution there exists a legal-execution which con-

tains the same events.

In the next two sections we will prove the lower bounds on the stopping
model. Using Corollary 3.1, these bounds apply also to the non stopping model. In
our proofs we do not restrict the type of operations performed by the nodes, hence

proving the bounds for general algorithms.
3.2.2. A Lower Bound on Message Complexity

At the end of any election algorithm all nodes know who the leader is, hence
any such algorithm has to send messages along the links of a spanning subnetwork.
In other words, by the end of the algorithm the whole network is contained in one
cluster. Thus, no cluster in the algorithm can defer indefinitely the sending of mes-
sages to nodes not in the cluster, as the rest of the network might not wake up spon-

taneously.

In the following proof of the lower bound we will use an adversary argument
to construct a stopping-execution which contains at least %nlogn events. In the

beginning of each round, the adversary first determines which clusters to freeze and
then determines the destination of messages sent in this round over previously
unused links. The first feature is used to delay the formation of larger clusters until
later rounds in the run, thus avoiding large differences in the clusters’ growth rates;

the second feature is used to send as many messages as possible within one cluster,
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The second feature is possible since links incident to a given node on which no mes-

sage was sent or received are indistinguishable to this node.

Theorem 3.1: A stopping-execution of an election algorithm in a synchronous com-

. n .
plete network of n nodes contains at least -2—-log n events, in the worst case.

Corollary 3.2: The message complexity of any election algorithm in a synchronous

complete network of n nodes is at least —g—-log n.

Proof of Theorem 3.1: Assume w.l.o.g. that n =27. We define a sequence of par-
titions (P, . . - , P,) of the nodes such that each subset in partition P ¢ contains one
node, and each subset in P; contains two subsets from P;_,, 1<j<q. Hence, each

subsetin P f contains 2/ nodes.

We construct, in g phases, a sequence of stopping-execution-prefixes
(Eiy - - ,E,-'), i =0, each being a prefix of the next. E; is an empty execution-
prefix in which all nodes have been awakened and the potential-degree of each node
is at least 1. This is done by withholding the clock pulse from any node whose
potential-degree is at least 1 until there is no node with potential-degree 0. Induc-
tively we assume that: (1) Any cluster in E i is contained within one subset in P e
and (2) The potential-degree, in E;_of every subset in P; is at least 2/ Obviously,

E;  satisfies these assumptions.

Assuming that Ei,-_l has been constructed, we describe how the adversary
constructs E i j=1,...,q—-1. In each round of phase j, we freeze all the subsets in
P; whose potential-degree 2 2/, When all subsets are frozen, phase j is complete.

The source and destination nodes of any message sent in this phase are both in the
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same subset in P;. This is always possible since every node that has a potential-

degree = 2/ is frozen. Clearly, E,-J_ satisfies the inductive assumptions. In the g—zk

phase no freezing takes place. After that phase, the network is contained in one clus-

ter and the algorithm is assumed to produce no more events.

Clearly, there are at least n/2/ nodes whose degree at the end of the algo-

rithm is at least 2/, for j=0, ...,q-1. Thus, the total number of events is at least
n

—logn. W

> 08

Given that the message complexity of any election algorithm on a synchro-
nous complete network is {(n-logn), the question arises how fast can a message-
optimal algorithm be. In the next section we prove that the time complexity of any

message-optimal algorithm is Q(logn).
3.2.3. A Lower Bound on Time Compiexity

In this section we will extend the techniques of the previous section to prove
that the shorter the length of the execution the larger the lower bound on the number

of events it must contain,

Theorem 3.2: Any stopping-cxccutidn of an election algorithm in a synchronous

. . . 1
complete network of » nodes which terminates in less than -i—-logcn rounds, con-

c=1
‘loge

tains at least ‘n-logn events.

Corollary 3.3: The time complexity of any message-optimal election algorithm in a

synchronous complete network of n nodes is Q(log n) rounds.

Proof of Theorem 3.2: Consider an election algorithm whose time complexity is at
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most -;—-logcn. Assume w.l.o.g. that n=c?. A construction similar to the proof of

Theorem 3.1 will be used here. We construct, in ¢ phases, a sequence of stopping-
execution-prefixes (E;, ... ,E,-'), i4=0, each being a prefix of the next, and a
sequence of partitions (P, . - ., P,), the subset of each partition containing ¢ sub-
sets of the previous. Each subset of P contains one node, thus each subset of P f

contains ¢/ nodes. E;, is an empty execution-prefix in which all nodes are awak-
ened spontaneously. Inductively we assume that: (1) Any cluster in E,-J, is con-
tained within one subset of P}, and (2) The potential-degree in E;, of every subset in

P; is at least ¢/. Obviously, E;, and P satisfy these assumptions.

Assuming that Ei,--l has been constructed, the adversary constructs £;_ by first
defining the subsets of P;, and then constructing E; . Let (Sy, . - . S, k=nlci™!

be the subsets of P;_; indexed in nondecreasing order of their potential-degrees in

E Then the i—th subset of P; is defined as the union of S 41, - - - Sic

ij-l.
i=1,....n/c/. This implies that if subset S in P; contains one subset from P;_,
whose potential-degree is at least ¢/, then all subsets from P j-1 in S have potential-
degree at least cd , with the exception of at most one subset of P s called the boun-

dary subset.

In each round of phase j, j=1,...,q-1, we freeze all the subsets in P;
whose potential-degree 2 ¢/, When all subsets are frozen phase j is complete. The
destinations for messages to be sent by node v are selected from the subsets which
included v in partitions Py, . .., P, in that order of priority. This is always possi-
ble since every node that has a potential-degree 2 c! is frozen. Clearly, E i, and P;
satisfy the inductive assumptions. After the ¢—h phase, the network is contained in

one cluster and the algorithm is assumed to produce no more events.
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We now show that every node is the destination of at least %-(c—l)logcn

events in EI-'. As the time complexity is at most -g—, every node in E,-' must have

been frozen in all the rounds of at least -‘ZL phases. Otherwise, the legal-execution

corresponding to E,-q would contain more than 121- rounds, contradicting the assump-

tion on the time complexity. If node v is frozen in all the rounds of phase j, it will
later receive one message from every subset in P;_; which does not contain v and is
with v in a subset of P; (unless v is in a boundary subset). Thus, for each phase that

v is frozen in all its rounds, v is the destination of ¢—1 events. The total number of

events in E; is thus at least ‘n-logn-n-c. The term n'c is due to the nodes

c—-1
2-logc
in the boundary subsets (since due to thg boundary subset in phase j at most

c4=1-(c~1) events should be discounted). M
3.3. Conclusions

The effect of synchronous and asynchronous communication on the problem
of distributively electing a leader in a complete network was examined in the last
two chapters. On the one hand, it was proved that the message complexity is not
affected by the choice of the communication mode. In both modes of communica-
tion, the message complexity was shown to be ®(n-logn). On the other hand, it
remains open whether or not the choice of communication mode affects the time
complexity of a message-optimal algorithm. With synchronous communication, the
time complexity of message-optimal algorithms was proved to be ®(log n), whereas
with asynchronous communication, only an O (n) upper bound on the time complex-
ity was obtained. The lower bound on time for asynchronous communication

remains an open question and is the subject of the following conjecture:
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Conjecture: The time complexity of any message-optimal asynchronous elec-

tion algorithm on a complete network is Q(n).

The implication of the conjecture is that synchronous communication is fas-
ter by a factor of n/logn than asynchronous communication. An analogous result
was obtained in [Arj83], where a particular synchronous system of parallel proces-
sors was proved to be faster by a factor of logn than the corresponding asynchro-

nous system.
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CHAPTER 4.
TRAVERSAL OF UNIDIRECTIONAL NETWORKS

4.1. Introduction

In this chapter we address the problem of traversing a unidirectional network.
In the traversal problem, one node, called the root, initiates a single process (token)
which has to visit all the nodes in the network, one at a time. If necessary the pro-

cess may go over any link more than one time.

A ftraversal algorithm is an identical program residing at each hode in the net-
work. When the process arrives; to a node, the program decides which of its incident
links will be the next in the traversal. The algorithm also detects when the process
has visited all the nodes. To this end, the program in each node uses local variables
to mark the node and its incident links. The marks are used by the program upon the
next arrival of the process. In addition, the nodes of the network may use the pro-

cess to carry messages between them.

We consider two types of unidirectional networks. The two networks differ
in the amount of memory available for the algorithm at each node. In the first model
O (log n+d,,) bits of memory are available for the algorithm in node v, where n is
the total number of nodes in the network and d, is the degree of node v. In the

second model only O (d,,) bits of memory are available.
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Clearly, to be able to traverse a bidirectional network, the network has to be
connected. Similarly, to traverse a unidirectional network, the network has to be
strongly connected, i.e., there should be a directed path from every node to every
other node.

Q(]|E |) is obviously a lower bound on the number of messages transmitted
by any traversal algorithm. This is because every link in the network has to be
traversed, or otherwise an untraversed subnetwork could reside on the other side of

any untraversed link.

The problem of distributively traversing a bidirectional network is essentially
the same as the centralized problem of searching a graph under the restriction that
any two consecutively visited nodes are neighbors in the network. Ope search algo-
rithm which satisfies this restriction is" the Depth First Search (DFS) algorithm
[Tar72, Hop73] and thus it can be the basis for a distributed bidirectional network
traversal. In the resulting traversal the process makes 2-|E | hops, and the number

of memory bits it uses at each node is linear in the degree of the node.

In the bidirectional DFS algorithm, the root spawns a process which visits all
the nodes in the network. Upon arriving at node v for the first time, say through link
[, the process marks v and sequentially traverses each of v’s incident links, except /.
If the process arrives at an already marked node, it backtracks to the node from
which it came. After backtracking from all of v’s incident links, except /, the pro-
cess backtracks from v over link {. The traversal is completed when all the links

incident to the root were backtracked.

In solving the unidirectional traversal problem we would like to adapt the

bidirectional DFS traversal. However, it is not obvious how to backtrack in a uni-
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directional network. In spite of this difficulty, the final unidirectional traversal algo-
rithm presented in this chapter is based on the DFS algorithm. The difficulty of
backtracking is surmounted by constructing, on the fly, a structure called in-directed
forest. An in-directed-forest is a subnetwork in which there is a unique path from
any fully-backtracked node to exactly one visited node which is not yet fully-
backtracked. In conmstructing the forest we will use a technique similar to the one
used in the strongly connected components algorithm of Hopcroft and Tarjan
[Hop73].

In this chapter, three traversal algorithms are presented. Traversal-1 is sim-
ple but inefficient. In many networks the process of Traversal-1 hops over an
exponential number of links before terminating, Traversal-2, which is based on the
DES algorithm, makes at most O(n-|E |) hops on any network. Furthermore, we

show that Q(n-| £ |) is a lower bound on the number of hops, in general.

In both Traversal-1 and Traversal-2 O(logn +d,) bits of memory are
required at each node v and that much is also carried along with the traversing pro-
cess (i.e., messages size is O(logn +d nax) bits, where d, is the maximum

degree in the network).

In some applications, such as VLSI, memory size and message length are
restricted and the question then arises, could a unidirectional traversal be imple-
mented using only a constant number of bits in every node and with the traversing
process (i.e., in a unidirectional network of finite automata). We answer the question
positively by presenting Traversal-3, a traversal algorithm for unidirectional net-
works of finite automata. Traversal-3 makes at most O(n-|E |+n2-logn) hops

which is optimal in the worst case (dense networks, in which [E |=Q(nlogn)).
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Throughout the discussion we make a distinction between unidirectional and
directed networks. A unidirectional network, as defined before is a network in
which some or all the links are unidirectional links. A directed network is a bidirec-
tional network in which a unique direction is associated with each link. The link

directions are given as part of the problem definition.
4.2. Traversal-1: a simple traversal algorithm

The algorithm is composed from two mechanisms: a termination detection
mechanism, and a routing mechanism. The termination detection mechanism
enables the traversing process to detect that it has traversed all the links in the net-
work. The routing mechanism is used at each node to select the next link on which
to send the process such that in a finite number of hops the process will detect termi-

nation.

The termination detection mechanism is implemented by a counter, called the
debt —counter which is carried by the process. The counter is incremented by one
whenever the process arrives at a node for the first time. It is decremented by one
just before leaving a node through its last untraversed outgoing link. After leaving a
node at least once through each of its out-going links, the debt counter is never
changed again at this node. To start the traversal the root initiates the debt counter to

zero and sends the process to itself.

Lemma 4.1: The debt-counter returns to zero when and only when all links are

traversed.

Proof: Clearly, for each newly visited node the process increments the counter by
one. Similarly, for each visited node whose outgoing links have been all traversed,

the process decrements the counter by one. Hence, when all links are traversed, the
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counter has been incremented and decremented the same number of times and is

therefore back to its initial value. This proves the sufficient condition ("when").

To prove the "only when" assume that the counter has returned to zero but
not all the links in the network are traversed. Since the network is strongly con-
nected there must be an untraversed link { whose tail node, v, was visited. Hence,
the counter was incremented at least once more than it was decremented, which leads

to contradiction.

Using Lemma 4.1, the process may traverse a unidirectional network and tell
whether or not it has traversed all the links. However, to guarantee termination, the
process needs to employ a routing rule. The routing rule will route the process to
any remaining untraversed link. We present different routin; rulcs,l which lead to

different traversal algorithms, presented in this and the next section.

The routing rule used in traversal-1 is the following: Every node orders its outgoing
links cyclically, i.e., the first link in the order follows the last one. Each time that
the process arrives at a node it is sent out on the next outgoing link according to the

cyclical order.

Lemma 4.2: Using the above routing rule the process eventually traverses all the

links.

Proof: Assume the contrary. Then, since the network is strongly connected, there
must exist an untraversed link, /, leaving visited node, v, whose out degree is d.
Since v was visited once, and since the traversal cannot terminate, v will be visited
infinitely many times. Hence, following the above rule ! must be selected in the

d—th visit to v. Contradiction. B
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Figure 4.1: An example for the exponential complexity of Traversal-1

Lemmas 4.1 and 4.2 result in a correct traversal algorithm. Lemma 4.1 pro-
vides for termination detection while, Lemma 4.2 enables us to route the process in a
way which guarantees termination. However, the communication complexity of the

resulting algorithm is exponential, as will be argued next.

Figure 4.1 is an example of a network on which the algorithm requires 2n-1
link traversals. Let N, be the number of traversals over link / in some execution of
the algorithm. Clearly, Ng=2'N;=2:Np and Ny=2N. ) =2'Ngpr for
i=1--+-n=1. Since Ny and N, are both equal to 1 by the end of the traversal,

N0=2n-"1.



Response to receiving the process at node v.
If v is unmarked
then begin
mark v
increment the Debt-Counter on the process by 1.
end
else if Debt-Counter = 0 then stop
let / be the next link in the cyclic order of v
If / is unmarked
then begin
mark /
if I was the last unmarked link of v
then decrement the Debt-Counter by 1
end
Send the process over {

Figure 4.2: Traversal-1

The source of the traversal’s inefficiency is the routing procedure. In the
example of figure 4.1 the process hops over an exponential number of already
traversed links before traversing the last untraversed link. A different routing rule is

employed in the next section to derive a traversal which requires O (n-|E |) hops.

A semi-formal description of the algorithm is given in figure 4.2. Initially afl
nodes and links are assumed to be unmarked. To start the algorithm the root initiates
a process with a debt counter set to zero and sends the process to itself (i.e., it places

the process in its input queue).
4.3. Traversai-2: Simulating Directed Depth First Traversal

In Traversal-1, each time the process arrives at a node, we changed the link
through which the process leaves the node. In the following algorithm we modify

the routing strategy to use the same link to leave a node as long as the set of selected
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links does not contain a cycle. Upon detecting a cycle, we select another untraversed

outgoing link only at the node which was explored last.

We present the algorithm of Traversal-2 in three stages. First, a bidirectional
depth first traversal algorithm is described. Second, a unidirectional implementation
of the first algorithm is presented by assuming that a structure, called spanning in-
directed tree, is predefined. Finally, a mechanism to build the in-directed tree on the

fly is given, thus providing a unidirectional traversal algorithm.
4.3.1. Bidirectional directed depth first traversal

In a bidirectional directed network every link can be used to pass messages in
both directions, however an arbitrary direction is associated with it. Here we assume
that the directed graph resulting from the directions associated with the links is
strongly connected (i.e., there is a directed path form every node to every other node

in the network).

In the bidirectional directed depth first search algorithm [Hop73], the root
spawns a process which visits all the nodes in the network. Upon arriving at node v
for the first time, say through link {, the process marks v as active, [ as the father
link of v, and iteratively traverses each of v’s incident out-going links. If the pro-
cess arrives at an already marked node, it backtracks to the node from which it came.
After backtracking on all of v’s incident out-going links, the process marks v as
fully—backtracked and backtracks from v on the incoming link, {. The traversal is

completed when the root is marked fully-backtracked.

A formal description of the algorithm is given in figure 4.3. Note that the
process passed between the nodes is merely a token. It does not carry any informa-

tion except its actual location. Unlike this traversal, in the next sections we will use
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the process to carry essential information between the nodes.

Initially all nodes and links are unmarked.
To start, the root s performs:

mark s active ;

select a link, /’, outgoing from s ;
mark !’ active ;

send the process over {”;

Response to receiving the process at node v over incoming link /.

if v is marked
then
send the process back over [ ;
else
mark v active ;
mark [ father ;
select a link, /’, outgoing from v ;
mark !’ active ;
send the process over !’ ;
end

Response to receiving the process at node v over outgoing link /.

mark [ backtracked ;
If there is an unmarked outgoing link !’
then

mark [’ active ;

send the process over [’ ;
else

mark v fully —backtracked ;

if there is no father link

then stop ;

else send the process over the father incoming link ;
end

Figure 4.3: The bidirectional directed depth first traversal algorithm

The following two observations are used in the next section to implement the

unidirectional algorithm. Let the father node of every node v, except the root, be

the node from which the process arrived at v for the first time. At any given time,

the link through which the traversing process left an active node for the last time is
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called active link.

Observation 1: The active nodes together with the active links form a
simple directed path, called the acrive path. The first node on the active
path is the root and the last link in the path either closes a cycle of active
links (see figure 4.4), or leads to a fully-backtracked node. The most
recently marked node among the active nodes is called the focal point of

the traversal (e.g. see figure 4.4).

Observation 2: All backtrackings are over the last link of the active path,
i.e., either from an active node, or from a fully-backtracked node to the

last active node on the active path.

Observation 1 follows inductively from the fact that every node has at most
one active out-going link, and if it has one it must have an active incoming link (the
father link). Observation 2 follows immediately from observation 1 and the algo-

rithm.

For the sake of completeness a formal proof of the algorithm is included.
The proof is a simple modification to a proof given in [Eve79] , the proof there is for
the centralized undirected DFS algorithm. Let a forward traversal of a link be a
traversal in the direction associated with the link, and likewise, a backward traversal
of a link be a traversal in the opposite direction. First, we shall prove that no link is
traversed more than once in each direction and then, that if the underlying graph is

strongly connected then every link is traversed in every direction (similar to [Eve79]

).

Lemma 4.3: The bidirectional directed depth first process traverses every link in the
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Figure 4.4: The active path

network at most once in each direction.

Proof: By the algorithm definition the process is never sent forward more than once
“on the same link. Similarly, a non father link is traversed backward once for each

forward traversal. Hence, only the traversal of a father link in the backward direc-

tion still needs to be proved. Assume that link /, directed from v to u is the first

father link to be traversed backward twice. Since, the father link is traversed back-

ward only after the process has backtracked from another node to 4 and when all the

out-going links of u are marked, the process must have backtracked to u twice on

some link. However, it neither couid backtrack twice on a non father link (as argued

above) nor could it backtrack twice on any father link (by the assumption), contrad-
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iction. Hence, every link is traversed at most once in every direction. B
Corollary 4.1: The depth first traversal must terminate.

Lemma 4.4: The bidirectional depth first process traverses every link in the network

once in each direction.

Proof: Since the network is strongly connected it is enough to prove the following
claim: For every node all its incident out-going links are traversed once in each

direction.

The number of times node v is entered via its out-going and father links is
equal to the number of times v is left via these links. This is because whenever the
process arrives at v and v is marked, through an incoming link, it is sent back on
this incoming link and otherwise, v never sends the process over an incoming link
(except the father through which it was also entered). Since the algorithm ter-
minates, all the out-going links incident to the root, s, are marked. Obviously no
link can be traversed backward before it has been traversed forward, thus all the
incident out-going links of s were traversed forward. As the number of times s was
left through an out-going link equals to the number of times that s was entered on an
out-going link, and no out-going link could be entered twice (by lemma 4.3), the

claim holds for s.

Assume the claim does not hold for all the nodes. Let S be the set of nodes
for which the claim holds (see figure 4.5). Since the network is strongly connected
and s€S, there must be a link / from v to u such that / is the father link of u and
such that ve S and ueV-S. Hence u was backtracked but not ail of its incident
out-going links were traversed once in each direction. Since u’s father link was

backtracked all u#’s out-going links must have been traversed forward. But, the
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Figure 4.5
number of times the out-going links are traversed forward equals to the number of

times they are traversed backwards, thus by lemma 4.3 u€ S, contradiction. H

Corollary 4.2: The number of hops made by a traversing process in the bidirectional

depth first search is exactly 2- | E |.
4.3.2. Unidirectional depth first traversal, using a spanning in-directed tree

In this section we use the two observations of the previous section to imple-
ment the bidirectional depth first traversal on a unidirectional network in which an
in-directed spanning tree is defined. The traversal requires, in the worst case, n°|E |

hops (messages) of the traversing process.
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An in-directed rree (or, in-tree) is a subnetwork in which every node, except
one node, called the roor, has exactly one out-going link and the underlying
undirected graph is a tree. Since every node in the in-tree has exactly one outgoing
link, there is a unique path from every node in the in-tree to the root. An in-directed

spanning tree is an in-tree which spans the network.

The difficulty in implementing the depth first traversal on a unidirectional
network is that the traversing process cannot backtrack on any link. To overcome
this difficulty, we note that whenever the process wants to backtrack over link l,a
directed cycle, called the backtracking cycle is defined by concatenating: /, the
unique path in the in-tree from the head node of ! to the root, and the active path.
Thus, to backtrack over link / (from the head node of ! to its tail node) the process
goes along the backtracking cycle until it arrives at the tail node of 7. To this end,
the unique ids of each node are used by the process to identify the tail node of [.
Note that shortcuts are possible if the unique path of the in-tree intersects the active
path before reaching the root (i.e., whenever the cycle is not simple). In particular, if
the head node of / is active the process needs to follow only the active path in order

to backtrack to I’s tail node.

A formal description of the traversal algorithm is given in figure 4.6, ignor-
ing the lines marked with . The lines marked "T" are the code that the initiator has

to execute in order to start the traversal.

To implement the backtracking mechanism, whenever the traversing process
traverses link ! from node v to node u it carries the id of v. If u is unmarked
(unvisited yet) then node # remembers that v is its father. If node u is already
marked, the process follows the cycle until it arrives back to v. When node u

becomes fully-backtracked the traversing process is sent along the backtracking
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cycle to u’s father, v.

Lemma 4.5: The number of hops made by a traversing process in the unidirectional

depth first traversal is at most n-|E |.

Proof: In Lemma 4.2 we saw that every link is backtracked exactly once. The
lemma follows since in each such backtracking the process goes around a cycle of

length at most n. W

In Section 4.5 it will be shown that Q(n-]E |) is also the lower bound on the

number of hops.

The communication cost of the traversal has two components, one is due to
the hops that the process makes in the forward mode, and the other is due to the hops
that the process makes in the backtrack mode. The process backtracks over |E |
links. Each backtracking requires, in the worst case, the traversal of an O (n) long
cycle. In each hop that the process makes it carries O (logn) bits which are used to
identify the node which it wants to reach. The forward hops incur O ({E |‘logn)
bits, while the backtracking hops add O (n-|E |-logn) bits to the communication

complexity of the traversal (the number of bits transmitted by the algorithm).
4.3.3. On the fly in-tree construction

In this section the assumption of the previous subsection, that an in-tree is
predefined on the network, is relaxed. The assumption is relaxed by constructing the

in-tree on the fly, while the process is traversing the network.

The essential use of the in-tree in the previous section was to backtrack from
a fully-backtracked node. Backtrackings from active nodes could be accomplished

by using only the active path. Thus, every node decides on its unique out-going link
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in the in-tree, called intree , while it is active. While active a node might change the

intree mark a few times. The intree link of a fully-backtracked node does not change.

The basic idea of the in-tree construction is as follows; Every node
remembers whether or not its father incoming link has already participated in a back-
tracking cycle. When the father incoming link of node v participates in a backtrack-
ing cycle for the first time, all the active nodes from v to the end of the active path,
select their present active link as their in-tree link. In the rest of this chapter a father

link which has never participated in a backtracking cycle is called a bridge .

Aside form the in-tree construction, the traversal is the same as the depth first
traversal of the previous subsection. It is assumed here, that whenever a shortcut in
the backtracking cycle is possible it is done, i.e., the backtracking cycle is a simple

directed cycle.

The mechanism to construct the in-tree can be viewed as an approximation of
the mechanism to determine the low-points of vertices in a directed graph, which
was introduced by Hopcroft and Tarjan [Hop73] in their algorithm for strongly con-

nected components.

A formal description of the traversal algorithm, with the in-tree construction,
is given in figure 4.6. The lines of the algorithm are marked x, + and I, to indicate
the following; the x lines implement the in-tree construction, i.e., by taking out the
« lines one obtains the unidirectional traversal algorithm given an in-tree. The "T"
lines are the steps which the root executes in order to start the algorithm. The +
marks will be explained in the next subsection. Basically they indicate the lines in

which a variable of length O (log n) bits is used.
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In this algorithm node v knows which of its incoming links is the father link
by recording the id of the node on the other side of the father link, this is the father
node of v. The first time that a father incoming link of node v participates in a back-
tracking cycle is easily detected, as it is exactly the second time that the process
arrives at v through this link. To this end, a boolean variable, called BrgHd (Bridge
Head), is used at every node to indicate whether or not its father incoming link is a
bridge (i.e., if it has already participated in a backtracking cycle). Another boolean
variable, called XBrdg (crossed bridge), is used on the traversing process to indicate
whether or not a bridge is participating in the backtracking cycle. Whenever the pro-
cess arrives at an active node v, in the backtracking mode, and the XBrdg indicator
is on, v selects its active link to be its intree link. Aside from BrgHd, every node v
has the following fields: id which is the id of v, father which is thelid of the father
node of v, activelink which points to the activelink of v, intree which points to the
intree outgoing link of v. Aside form XBrdg, the traversing process, P, has the fol-
lowing fields: mode which indicates whether the process is now backtracking or
not, PreviousNode which is the id of the node that P visited last, FocalPoint which

is used in the backtracking mode and is the id of the backtracking destination node.

It remain to prove that the intree links selected by any fully-backtracked node

span all these nodes and always lead to an active node.
Let us define an in-directed forest as a collection of disjoint in-trees.

Lemma 4.6;: The intree marked links of the fully-backtracked nodes constitute an

in-directed forest.

Before proving the lemma we note the following two implications of its pro-

position; First, if there are still active nodes, then the roots of in-trees in the forest
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Response to receiving the traversal process, P, at node v:

If v is an unvisited node:

+ v .father « P .PreviousNode ;

* v.BrgHd « true ; {BrgHd since v s father link have not yet been on a cycle}
I v.activelink « any unused out-going link ;

I mark v active ;

I+ P .PreviousNode « v.id ;

1 send P over v.activelink ;

If v is an Active node and P is in the Forward mode:
P mode « backtrack ;

+ P FocalPoint « P .PreviousNode ;

+ P .PreviousNode « v.id ;
send P over v.activelink ;

If v is an Active node and P is in the backtrack mode:

* if P .XBrdg then v.intree « v .activelink ;
+ if v.id = P .FocalPoint
then begin { v is the destination of the backtracking }
* P XBrdg « false ;
if there are unused out-going links
then begin

v.activelink « any unused out-going link ;
P .mode « Forward
end
else begin; { No more unused out going links : }
mark v fully-backtracked ;
if v has no father then STOP ; { v is the root }
P FocalPoint « v father ;
end end
else {In the middle of backtracking, on the Active path }
if (v.BrgHd) and ( P .PreviousNode = v .father)
then begin {1-st time that v’s father link is on a backtracking cycle}
P XBrdg ¢« true ;
v.BrgHd « faise ;
end
P .PreviousNode « v.id ;
if v 1is still marked active
then send P over v.activelink ;
else send P over v.intree ;

+

+ ¥ KK KKK

If v is a Fully-Backtracked node:
if P .mode = Forward
then begin
P .mode « backtrack ;
+ P .FocalPoint + P .PreviousNode ;
end ;
send P over the intree link ;

Figure 4.6: Traversal-2, The unidirectional depth first traversal algorithm
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must be active nodes, which is exactly what we need for the backtracking process.
This is because all the fully-backtracked nodes have an intree out-going link which
obviously cannot lead to an unvisited node. Second, the proposition implies that
when the algorithm terminates the intree links constitute an in-directed tree rooted at

the traversal initiator, the root.

Proof of lemma 4.6: The claim will be proved by induction. Clearly, the lemma
holds when the algorithm starts at a time when no node is fully-backtracked.
Assume that the claim holds just before node v becomes fully-backtracked, and we

will prove that it holds after v becomes fully-backtracked.

If v is the root then the claim certainly holds, since v selects no in-tree link.
Henceforth v is not the root, and when v becomes fully-backtracked there is at least

one active node in the network.

Assume to the contrary that after v becomes fully-backftracked the claim does
not hold. Let T and S be the sets of nodes which were explored before and after v,
respectively (see figure 4.7). Let L be the set of links which are directed from a
node at S to a node at T. Clearly, L #{J since the network is strongly connected. By
the definition of S and T there is no traversed link from T to S except the father link
of v. Thus, all the in-trees in T are rooted at active nodes in T and the backtracking
cycle, C;, which is associated with each /€L, passes from T to § on the father link
of v. Clearly, at least one C; /€L passed on a bridge. Let the u tow link, /*, be
that link in L whose associated backtracking cycle, C;+, was the most recent to pass
over a bridge among the backtracking cycles associated with the links in L. Then,
all the links from v to w on C;+ must have been marked as intree links. By the
definition of /* none of these marks could be removed in the future. Contradiction.

|
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4.4. Traversal-3: an algorithm for a network of finite automata

In this section the assumption that every node has O (log n ) bits of memory is
relaxed. Instead, every node is assumed to be a finite automaton, i.e., to have con-
stant size memory regardless of the network size. Since each node has a constant
number of memory bits, the traversing process has to be of constant size too. We
will show that with a2 constant size process the traversal requires at most

O (n-|E |+n*logn) hops which is also the bit complexity of the algorithm.
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Traversal-3 is developed in two steps; First, the bit complexity of Traversal-2
is reduced to O (n-|E |+n2logn) ( from O (n-|E |-logn) ) and second, an imple-
mentation with constant size memory is presented. In the first step it is shown that
only in O(n 2) out of a total of O(n'|E |) hops the traversing process has to carry
O (log n) bits (in the rest it carries O (1) bits). In the second step the O (n 2) hops of

size O (log n) are replaced by O (n 2-log n) hops of a constant size process.

4.4.1. Reducing the communication complexity of Traversal-2 to

O (n*|E [+n%logn) bits

In this section Traversal-2 is modified so in at most 2n-2 of its backtrack-
ings the process will carry O (log n) bits around the backtracking cycle. In the rest
of the backtrackings the process need not carry more than a constant pumbcr of bits.
Thus reducing the bit complexity from O (n-|E |-logn) to O (n-|E |+n2logn). A
variation of the traversal presented hére is also presented at the end of Chapter 5 in a

much different setting.
The modification of the algorithm is as follows:

1. Every active node uses a boolean variable, called the focal point, to assert
whether or not it is the focal point of the traversal. If the focal point variable
of node v is false then v is not the focal point of the traversal. When v is
visited for the first time it sets its focal point to true. When v becomes

fully-backtracked it sets its focal point to false.

2. Whenever the process arrives in the forward mode at marked node, v, a two
phase backtracking is started. In the first phase the process is sent around the
backtracking cycle and back to v, counting whether there is one or more

nodes on the backtracking cycle whose focal point is true. To this end only a
79



constant number of bits has to be carried around by the process.

If only one node on the cycle has its focal point "on" then, this node must be
the node preceding v on the cycle (see figure 4.8 case 1), i.e., it is the back-
tracking destination. In this case, the process is sent around the backtracking
cycle again with a constant number of bits, to the unique node which asserts
to be the focal point. Hence, a complete backtracking is performed with the

process carrying only a constant number of bits.

® FOCAL POINT

Case1 Case2 .

Figure 4.8: Backtracking in Traversal-3
If more than one node on the backtracking cycle has its focal point "on" then
a bridge was included in the backtracking cycle (see case 2 figure 4.8), and a
backtracking identical to the one used in Traversal-2 is initiated by v (with
XBrdg set to true). In this phase of the backtracking all the nodes, aside from
the last one on the active path, set their focal point to false. A bridge is

included since the active link leaving any node whose focal point is true,
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aside from the last one, must have led to a new node (i.e., it is the father link
of the next node on the active path) and has never been on a backtracking

cycle before (otherwise the focal point would not have been true).

5. The backtrackings from a fully-backtracked node remains the same as in

Traversal-2 except that the focal point of the destination is set to true.
The main claim of this subsection is,

Lemma 4.7: By the above modification the process will have to carry O (log n) bits
around a backtracking cycle only 2n~-2 times.

Proof: The process has to carry O (logn) bits around the backtracking cycle either
when it backtracks from a fully-backtracked node to its father, or yirhen the back-
tracking cycle goes over some bridge for the first time. Thus we can associate one
such backtracking with each node that becomes fully-backtracked, and one with each
bridge. Clearly there are n—1 nodes which become fully-backtracked (except the
root from which the process never backtracks). Similarly, there are n—1 bridge links
since each such link is the unique incoming father link of some node (except the root

which has no bridge link entering it). W

In the remaining |E |-2n+2 backtrackings the process carries only a con-

stant number of bits. Since every backtracking requires at most n hops we get:

Corollary 4.3: The communication complexity of the modified Traversal-2 is

O (n-|E |+n*logn) bits.
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4.4.2. A finite automata implementation of Traversal-2

In this section we show how each of the backtrackings in L.emma 4.7 can be
implemented by a constant size process which will go around the backtracking cycle

O (logn) times.

In each of these backtrackings a designated node on the backtracking cycle
sends the process to the node preceding it on the cycle. The O (log n) bits were used
to identify the preceding node.

To recognize the preceding node on the backtracking cycle using a constant
size process, we use a solution to the following "last in the ring" puzzle: In a uni-
directional ring of finite automata, design an algorithm by which a designated node,

v, will distinguish the node preceding it, #, from all other nodes.

Lemma 4.8: The upper and lower bound on the bit complexity of the "last in the

ring” puzzle is Q(n-logn).

Proof: A solution to the puzzle works in phases. Initially, all nodes except v are
candidates for the position. In each phase we eliminate half of the remaining candi-
dates by sending a token around the ring, alternately marking the candidate nodes
even and odd. When the token arrives at v, it remembers the parity of the candidate
preceding v. In the next phase, the token eliminates all candidates whose parity
differs from the parity of the desired node. The last phase is detected by the token
when it sees that only one node has not been eliminated. Thus the token carries one
more bit to indicate whether there are one or more uneliminated nodes on the cycle.

Hence, O (n logn) is an upper bound on the bit complexity of the puzzle.
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To prove that this is also the lower bound we note that if all n links have
seen fewer than log n bits, then there are two distinct links, ug—u;, and vy—v,
such that both have seen the same sequence. Hence, u# and v are in the same state
and both have generated the same sequence on their out going links, which implies
that their down neighbors u, and v, are also in the same state. Continuing this argu-
ment inductively we conclude that the node preceding the designated one has to be at
an equal distance from both u 5 and v This is a contradiction; hence, Q(n logn) is

also the lower bound.l

Thus, whenever node v becomes fully-backtracked, or a backtracking cycle
with more than one focal point is closed at v, v starts the algorithm described in the
proof of Lemma 4.8 to send the process to the node preceding it. The total bit com-
plexity of the traversal does not change with this modification; however, the number
of hops made by the process is linear with the bit complexity of the traversal, i.e.,

O(n-|E |+n*logn).
4.5. Lower Bounds

Arriving at an upper bound of O (n- | E |+n2-logn) bits on the communica-
tion complexity for traversal, we wonder what is the lower bound. Much research is
still needed in establishing tight lower bounds on the unidirectional traversal prob-
lem in general. In this section we present one step in this direction. We show that
Q(n-|E |) is a lower bound on the number of hops required by a single token traver-

sal, i.e., when the traversal is restricted to send at most one message at a time,

Lemma 4.9: Q(n-|E |) bits is the lower bound to a single token traversal of a uni-

directional graph of arbitrary topology.

Proof : (by example, figure 4.9). The result follows since each traversal of a link
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Figure 4.9: A network for the Q(n-|E |) lower bound
from A to B must be followed by a traversal of the path C. H
Lemma 4.9 proves that our traversal algorithm is optimal for dense networks
(in which |E |=Q(n-logn)) and under the restriction that the traversal have at most
one outstanding message at a time. Furthermore, it suggests that the algorithm is

optimal in the general case.

4.6. Applications

Traversal-2 and -3, which are different implementations of the same algo-
rithm, can be modified to produce a useful structure, called infrastructure, on the

network. The infrastructure is the combination of an in-directed spanning tree and
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an out-directed spanning tree. The in-tree construction was detailed in section 4.3.3.
Here we will describe how an out-tree may be produced by Traversal-2. Note that
the defined infrastructure is a strongly connected subnetwork which spans the net-
work and has at most 2» links. The infrastructure proves to have several practical

applications.
4.6.1. Producing a spanning out-tree

An out-directed tree (or, out-tree) is a subnetwork in which every node,
except one, called the roor, has exactly one in-coming link and the underlying
undirected graph is a tree. Since every node in the out-tree has exactly one in-
coming link, there is a unique path from the root to every node in the out-tree. An
out-directed spanning tree is an out-tree which spans the network. An example of

an out-tree is given in figure 4.10.

Figure 4.10: An exampie of an out-tree
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We now explain how every node in the network marks some of its out-going
links outtree during the traversal algorithm such that, when the algorithm terminates
the collection of outtree marked links constitute a spanning out-tree of the network

rooted at the traversal initiating node.

To construct an out-tree we make the following observation: The collection
of father links constitute an out-tree. To prove it note the following: (1) Every
node, except the root, has exactly one father incoming link, and (2) Going backward
on the path defined by the father links from any node v we always arrive at the root.
Note (2) follows the fact that the incoming father link of any node v connects v to a
node which was explored before v thus, we cannot close a cycle and we must arrive

at the root.

To detect the father out-going links of node v we observe the following:
The traversing process leaves node v twice or more through link [ (in Traversal-2)
while v is active if and only if / is a father link. Thus, every active node counts
whether or not each of its out-going links has been on a backtracking cycle more
than once. If a link participated in a backtracking cycle more than once while v is

active then it is a father link and is marked outtree.
4.6.2. Applications of the traversal algorithm

In this section we show how the traversal algorithm and its resulting infras-
tructure can be used to solve other problems. In particular we apply the traversal
algorithm to perform broadcasting, route messages, and to systematically emulate
any bidirectional algorithm on a unidirectional network. Each of the applications
can be solved by a traversal; However, after executing the traversal once, the appli-

cation problems can be solved more efficiently by using the infrastructure produced
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by the traversal.
4.6.2.1. Broadcast with Echo

The problem of broadcasting with echo can be solved on a unidirectional net-
work by a traversal algorithm. In the broadcast with echo problem one node, the
root, has a piece of information which it sends to all the nodes in the network, and
the root gets a positive acknowledgment that all the nodes have received the infor-

mation.

A straightforward solution to the problem will use a traversing process to
carry the information on it. The message complexity of this solution is the message

complexity of the traversal algorithm, O(n-|E [).

After one traversal, the next broadcast with echo can be more efficiently per-
formed by traversing only the infrastructure links. Since the infrastructure defines a
strongly connected network any node (not only the root) may start a traversal for this
purpose. The complexity of this traversal is O (n 2) since the number of links in the

infrastructure is at most 2n — 2.

After one traversal was performed, a further improvement can be achieved as
follows: Every node which wants to start a broadcast with echo first sends the
information of the broadcast to the root node along the outtree marked links, and
then the root node starts a broadcast with echo as described below. After receiving

the echo, the root node will broadcast an echo on the out-tree links.

The infrastructure can be used for an efficient broadcast with echo from the
root as follows: The root sends the broadcast message on all its out-going links in

the infrastructure. Upon receiving the broadcast message for the first time, every
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other node sends the message to all its out-going neighbors in the infrastructure.
Any other copy of the broadcast message is discarded. This implements the broad-
cast part of the algorithm. To notify the root that all the nodes in the network have
received the broadcast message, every node v sends an echo as follows:  After
sending the copy of the broadcast message, v sends an echo over all of its infrastruc-
ture outgoing links except the link marked intree. Node v sends an echo over the
intree marked outgoing link only after an echo has been received on all of its infras-
tructure incoming links. When the root has received the echo over all of its infras-
tructure incoming links, the notification has been completed, and a message to this

effect is sent on the outtree marked links.

The average message complexity of the resulting broadcast with echo algo-
rithm is 6n (averaging out the first broadcast, which is a regular traversal). Sending
the broadcast message from the initiating node to the root costs at most n—1 mes-
sages. The broadcast message is then transmitted once over each infrastructure link
which adds at most 2n—2 messages to the complexity. The echo message is also
sent once over each infrastructure link, hence another 2rn—2 messages. Then, to echo
the initiating node, another n—1 messages are transmitted on the outtree marked

links.

4.6.2.2. Messages sending

The in- and out-trees which resulit from the traversal algorithm enable us to
efficiently send a message from every node to every other node. To pass a message
from node v to node u, node v sends the message along the intree marked links to
the root which then broadcast the message on the out-tree. Thus, at most 22—2 mes-
sages are sent in the routing mechanism, in order to send a message from any node

to any other node.
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4.6.2.3. Emulating bi-directional distributed algorithms

The above routing mechanism can be used as a means to emulate any bidirec-
tional distributed algorithm on a strongly connected unidirectional network. When-
ever a node has to send a message on an incoming link, it will use the above message
passing mechanism. Thus, if a problem has a bit complexity O (P (n)) on a bidirec-
tional network, then its complexity on the unidirectional network is upper bounded
by O(n-P(n)+ n2'10g n+n-|E|) (the last two terms are entailed by the construc-

tion of the infrastructure).

89



CHAPTER 5.
ELECTION IN UNIDIRECTIONAL NETWORKS

In this chapter we present a distributed algorithm for election in strongly con-
nected unidirectional networks. The algorithm requires O (log n) bits of memory in

each processor and its communication complexity is O (n-|E |+n Zlog n) bits.
5.1. Introduction

The strongly connected unidirectional network is the most general network
model, in the sense that every network topology, bidirectional or unidirectional, can
be modeled as a unidirectional network by replacing any bidirectional link with two
anti-parallel unidirectional links. Hence, any distributed algorithm for strongly con-

nected unidirectional networks is also an algorithm for any other network model.

To design an election algorithm for strongly connected unidirectional net-
works the traversal algorithms of Chapter 4 can be used in various ways. First, ina
straight forward approach, every initiator starts a traversal. When ever two traversals
meet, the lower id one is destroyed. The worst case communication complexity of
this algorithm is O ((n-|E [+n2~logn)‘n) bits, as O (n) traversals could be initiated
such that each spends O(n-|E |+n2'logn) bits. Second, the modular technique of
Korach et al. [Kor85] could be used to economically eliminate traversals. Using
their  technique the  communication complexity is  reduced to

O((n|E [+n*logn)-logn) bits.
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No algorithm for election in unidirectional networks has come to our atten-
tion prior to the one presented here. However, two bidirectional algorithms, the
shortest path algorithm of Gallager [Gal76] and the connectivity checking algorithm
of Segall [Seg83] can easily be modified into a unidirectional election algorithm. In
[Seg83], Segall presents a connectivity checking algorithm upon whose termination
every node knows the ids of all the other nodes connected to it. The shortest path
algorithm in [Gal76] exhibits the same property when it terminates. The communi-
cation complexity of the two algorithms is O(n-|E |-logn) bits, and each node is

assumed to have O (n log n) bits of memory.

The unidirectional variation of the two algorithms proceeds in two phases: In
the first phase, every node acquires the ids of its incoming neighbors; in the second,

it acquires the ids of all the other nodes in the network.

Let an incoming neighbor of node v be a node at the other end of an incom-
ing link of v, and let in—neighbors of v be the set of all the incoming neighbors of
v. Let the record of node v be a two-field data structure, of which the first contains
the id of v and the second the ids of v’s in-neighbors. In the first phase, every node
transmits its id on all its incident outgoing links. In the second phase, every node
broadcasts its record to all the other nodes in the network. For this purpose, each
node v maintains two sets of ids, the received set and the known set. The received
set contains the ids of the nodes whose records were already received by v. The
known set contains ids which appeared in a record of at least one node from the
received set, i.e., ids of nodes whose existence is known to v. Initially, the received
set of node v contains the id of v, and the known set contains the ids of v and of v’s
in-neighbors. Clearly, when the two sets in a node are identical, they contain the ids

of all the nodes in the network (which can easily be proved by induction),
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The communication complexity of the algorithm thus described is
O(|E |2‘logn) bits; however, assuming that messages sent over one link are
received in the order transmitted, the communication complexity can be reduced to
O (n*|E | -log n) bits by avoiding repeated transmission of the same id over the same
link. Note, that for these algorithms each node is assumed to have O (n-logn) bits

of memory.

In this chapter we present an election algorithm for general strongly con-
nected unidirectional networks, whose communication complexity is
O |E| + nz-log n)-bits , using O (log n) bits of memory in each node. The algo-
rithm yields two directed spanning trees, both rooted at the leader; one is an incom-
ing tree, and the other is an outgoing tree. The algorithm is thus an improvement on
the algorithms of Gallager and Segall both in terms of communication complexity
and in terms of the number of memory bits required at each node. Furthermore,
unlike our algorithm, neither Segaill’s nor Gallager’s algorithm provides the span-

ning trees.

The election algorithm presented here is a generalization of the traversal
algorithm from the previous chapter. On one hand, the unidirectional traversal algo-
rithm with a predefined in-tree (Section 4.3.2.) is a building block of the election
algorithm. On the other hand, the traversal algorithm with the in-tree construction
(traversal-2) can be seen as a special case of the election algorithm. The traversal
algorithm is the election algorithm, under the constraint that only one node starts the
algorithm. The resulting traversal algorithm incurs the same communication cost as

the election algorithm.
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5.2. A Unidirectional Election Algorithm

In this section we present a recursive distributed algorithm for election in

unidirectional strongly connected networks.

5.2.1. Definitions and Outline

The election algorithm is based on the following recursive properties of

strongly connected directed multigraphs:

1. The set of links, defined by selecting one outgoing link from every node,

contains a nonempty set of disjoint directed cycles.

2. The subgraph, obtained from G by contracting any of the cycles defined

above into one node, results in a strongly connected multigraph.

3. Repeated application of the operations in 1 and 2 contract G into a single

node.

The distributed algorithm proceeds in conceptual phases, which follow the
above contraction process. When a cycle is detected, its nodes are grouped into a
cluster. Similar phases are used in [Hum83). Initially we consider each node to be a
single node cluster. The phases of the algorithm are: selection of an ouigoing link
from each cluster, called a selected link; detection of cycles among clusters; and

contraction of cycles of clusters.

A cluster is recursively defined as follows:

1. A single node is a cluster.

2. A set of clusters that are joined in a ring by their selected outgoing links is a
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cluster.

Recursively we assume that every cluster satisfies the following 4 properties (see

figure 5.1):
1. A unique node in the cluster is distinguished as the cluster head.

2. All the nodes in the cluster know the id of the cluster head which is also the
id of the cluster.

3. Each node in the cluster, except the cluster-head, has one outgoing link
marked as inzree link. The collection of intree links forms a directed incom-

ing tree, spanning the cluster and rooted at the cluster-head.

4. A strongly connected subnetwork which spans the cluster, called the infras-

tructure of the cluster, is defined on the cluster.

Cleairly, a single node cluster satisfies the inductive assumptions. It is: the
cluster-head of itself; a single node in-tree; and a strongly connected subnetwork.
To describe the algorithm we will describe the inductive step, i.e., we assume that a
set of clusters which satisfy the assumptions already exists and explain how a bigger

cluster which satisfies the inductive assumptions is composed out of this set.

To select a cluster outgoing link, each cluster head initiates a Depth First
Traversal (DFT) process. The traversal process is used to search for a link which is
potentially outgoing from the cluster. For the depth first traversal algorithm we use

the traversal algorithm which was developed in section 4.3.2.

To detect a cycle, we use a simple aigorithm for election on a unidirectional

ring. Each cluster forwards the largest id it has seen. When a cluster receives the

%94



same id twice it has detected a cycle.

The contraction of a cycle is accomplished by first electing one of the
cluster-heads on the cycle to be the cluster-head of the expanded cluster. Then, the
newly elected cluster-head synchronizes the cluster by broadcasting the new cluster-
id to all the nodes and, constructing all the inductive requirements on the new clus-

ter.

The most costly phase is the DFT in a search for a cluster outgoing link. The
reason for this is that in the contraction phase we lose the DFT information accumu-
lated by all the clusters around the cycle except one. When the cluster-head initiates
a DFT in the next phase, the search will have to spend much effort regaining all the
lost DFT information. However, by selecting the cluster-head of the largest cluster
on the ring to be the new cluster-head, we minimize the amount of information lost.
Thus, we limit the rate of information loss to the rate of cluster growth. (i.e. if a
large cluster were contracted with a small one, the amount of information lost is pro-
portional to the size of the small one). In fact, we are able to show that the cost of
all the DFT’s conducted during the algorithm, is within a constant factor of the cost
of a single DFT. Since this point is critical in the complexity calculation, but rather
minor to the description of the algorithm, we postpone a detailed discussion of it

until the complexity section.

After a cluster is formed, its nodes are synchronized to search for an
untraversed link outgoing from the cluster. To achieve this synchronization, the in-
tree rooted at the cluster-head is used. When a cycle of clusters is contracted into a
bigger cluster, all their in-trees are merged into one in-tree, spanning the new cluster.
The operations of merging in-trees and searching clusters utilize each other alter-

nately. The structures left by the DFT"s are used to modify and merge the separate
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in-trees around the cycle into one in-tree. In turn, the in-tree in a cluster is used for

routing purposes, by its DFT process (see section 4.3.2.

In the next three subsections we present the three phases of the algorithm
starting with the cluster outgoing link selection (see figure 5.1). During the algo-
rithm, links are in one of three states: new, elementary or killed. A new outgoing
link is one which has not yet been traversed. An elementary link is a link which was
a cluster selected outgoing link during one of the previous stages. The set of ele-
mentary links within one cluster forms the infrastructure of the cluster. A killed link
is a nonelementary link already traversed during the algorithm (i.e., an intra cluster

nonelementary link).

5.2.2. Selection of a Cluster-Qutgoing Link

Once a cluster is formed, its head node initiates a DFT algorithm to search
the cluster’s infrastructure for a node with an untraversed outgoing link. The first
such link to be found is selected as the cluster’s outgoing link. If it turns out to be
an intra cluster link, the DFT continues where it was stopped in the search of another
untraversed outgoing link. If no cluster outgoing link is found, the cluster contains

all the nodes of the network, and the algorithm terminates.

For the completeness of the algorithm description we review the essential

details of the DFT from section 4.3.2.

5.2.2.1. Distributed Depth First Traversal of Unidirectional Networks

A building block of the election algorithm is the distributed Depth First
Traversal (DFT) of unidirectional networks in which an intree is defined. The root

node of the intree initiates the DFT by spawning a process which visits all the nodes
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Figure 5.1: Clusters in the Election Algorithm
in the network. Upon arriving at a node for the first time, the process marks the

node and recursively spawns one new child process, which sequentially visits each
of the node’s outgoing neighbors. If a process arrives at an already marked node, it
backtracks to its father. After its child process has backtracked from all the outgoing
neighbors, it is killed, and the process backtracks to its father. The traversal ter-

minates when the child process of the root node is killed.

To perform the backtracking in a unidirectional network, we use the given
intree and note two observations. Nodes on which live processes are located form a
simple directed path. In the sequel we call this path an active path and its links

active links. The active outgoing link of each process leads to its child process.
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The first node on the active path is the root of the intree. All backtrackings are from
the last node on the active path to its father. Thus, to accomplish backtracking, a pro-
cess follows the unique path of the predefined intree, from its location to the root.
From the root, the process follows the active path to its father (whose identity each

process remembers).

Each backtracking performed requires at most 2n messages of logn bits
each. Since there are | E | backtrackings, the total communication cost of the DFT is

O(n-|E |'logn) bits.

Note that at any given time, all but one of the live processes are waiting for
their child processes to terminate. The last process, which has no child and is
actively visiting nodes, is called the focal point of.the DFT. The focal point is
analogous to the stack pointer in the centralized Depth First Search algorithm
[Tar72].

We can view the DFT as a token traversal scheme in which the token location
is the focal point of the DFT. In the algorithm each cluster will employ a DFT to

choose one outgoing link as the cluster’s selected outgoing link.
5.2.2.2. Selecting a cluster outgoing link

The cluster outgoing link selection phase begins after the synchronization of
the cluster has terminated. The head node of the new cluster initiates a DFT token
on the cluster’s infrastructure. The token carries the id of the cluster which created it
and the maximum cluster-id observed so far (maximum-id). The cluster-id is used to
distinguish between inter- and intra-cluster links, and the maximum-id is used to
detect a cycle of clusters. The DFT token searches the cluster for a new link, ie., a

link never used by the algorithm. Doing so, the DFT token leaves behind a trail of
98



active links, which leads from the cluster-head to the token location (which is the

traversal focal point).

Upon finding a new outgoing link, /, the token traverses link / to node v on
the other end of /. If v belongs to the same cluster, the token returns to I’s tail via
the in-tree and the active path. Link / is then marked killed, and it will never again
be traversed. If, on the other hand, the token arrives at a different cluster, the infor-
mation it carries and the newly selected link it has established enable the cycle detec-

tion to continue as described below.
5.2.3. Cycle Detection

For the sake of simplicity, we have selected an inefficient algorithm for cycle
detection. Since its complexity is, in general, not the bottleneck, wé have avoided
discussing an improved mechanism for cycle detection (The improvements are a
generalization of [Pet82, Dol82], with which our algorithm will perform optimally

on rings).

After each cluster selects an outgoing link, the network contains at least one
cycle which consists of two or more clusters (see figure 5.1). Let each cluster send
its id on the cluster outgoing link. A cluster forwards another cluster-id only if it is
larger than all the cluster-ids it has received in the past. Eventually, one and only
one cluster in each cycle will receive the same cluster-id twice, thus detecting a

cycle. The cluster-head that detected the cycle synchronizes the new cluster.

The operation of cycle detection is carried out by the cluster-heads. To
implement it, each node receiving a message from a different cluster forwards it to
its cluster-head through the cluster’s in-tree. To forward a maximum-id from a

cluster-head to the next cluster, the cluster-head broadcasts the maximum-id over the
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infrastructure of its cluster. All nodes retain a maximum-id variable, which is
updated by the maximum-id of the broadcast message. The DFT token updates its
maximum-id to the largest it encounters along its way. If a cluster outgoing link has
been selected, the broadcast message is simply forwarded over the outgoing link to

the next cluster.

When a cluster-head receives a maximum-id which is equal to its own, it has

detected a cycle and it is elected to start the synchronization phase.

5.24. Cycle Contraction and Cluster Synchronization

In the previous phase a new cluster with an elected cluster-head was found.
In this phase the elected cluster-head satisfies the remaining three inductive assump-
tions on the new cluster. The elected cluster-head thus; (1) notifies all the nodes in
the clusters around the cycle of their new cluster-id, (2) It combines the in-trees of
all the clusters into one in-tree which spans the new cluster and is rooted at the
elected cluster-head, and (3) It combines the infrastructures into one infrastructure
spanning the new cluster. After receiving a positive acknowledgment that all the
nodes have completed these constructions, the elected cluster-head starts the next
phase of cluster outgoing link selection. The synchronization phase is carried out by

a broadcast with echo mechanism on the cluster new infrastructure.

Upon receiving the first copy of the broadcast message, every node performs
the following five operations in the following order: (1) updates its own cluster-id;
(2) It marks its cluster-outgoing link (if it has one) as elementary; (3) It updates (if
necessary) its intree mark; (4) It forwards copies of the broadcast message over its
elementary outgoing links; and (5) It acknowledges the reception of the message

through the in-tree. Any duplicate copies of the message are discarded.
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The second operation above, has combined the infrastructures into one infras-

tructure which spans the new cluster.
5.24.1. Merging the in-trees

To merge all the in-trees around the cycle, we use the active paths in each
cluster which lead from the cluster-heads to the head nodes of the selected outgoing
links. The active paths are constructed during the DFT in the clusters outgoing link

selection phase.

We notice that, if each node of a cluster that has an active outgoing link puts
its intree mark on the active link, then the incoming spanning tree is rerooted to the
head node of the cluster outgoing link (see figure 5.2). (Note that the head node of
the cluster outgoing link belongs to the next cluster on the cycle of clusters.) To
obtain a directed in-tree which spans all the clusters around the cycle, we perform
this operation in all the clusters around the cycle except for the elected cluster.
Thus, the in-tree formed is rooted at the elected cluster-head. This in-tree is used by

the nodes to notify their new cluster-head of the contraction termination.
5.2.4.2. Acknowledging the broadcast

To notify the cluster-head that all the nodes in the new cluster are aware of
their new cluster-id, every node sends an acknowledgment as follows: After
receiving the first copy and making all the necessary updates, every node sends an
acknowledgment over all the elementary outgoing links aside from the intree marked
link. An acknowledgment is sent over the intree marked outgoing link only after an

acknowledgment has been received on all the elementary incoming links.
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Figure 5.2: Rerooting an in-tree
When the elected cluster-head has received the acknowledgment message
over all of its elementary incoming links, the contraction has’terminated, and a new

' phase of cluster outgoing link selection is started.

5.2.5. Termination

The algorithm terminates when a cluster fails to select a cluster-outgoing
link. This cluster spans the whole network, its cluster-head is the elected node and

its maximum-id is the largest id.

5.3. Complexity of the Election Algorithm

Communication complexity analysis involves counting the total number of
bits transmitted over all the network links. The communication cost of the algorithm
has three components: the cost of cluster synchronizations, the cost of cycle detec-

tions and the cost of cluster-outgoing link selections,
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We observe the following two facts.
Fact I: The number of cycle detections is, at most, n—1.
Fact2 : In acluster of size k, there are, at most 2k—1 elementary links.

Fact 1 holds because the contraction of a cycle strictly reduces the network
size. Fact 2 follows from fact 1 and the observation that there exists a one-to-one

correspondence between clusters and elementary links.
5.3.1. Cluster Synchronization Cost

Lemma 5.1: The total cost of synchronizing the clusters is at most O(n?log n)

bits.

proof: According to fact 1 there are, at most, n—1 cluster synchronizations. The
synchronization messages propagate on the infrastructure of a cluster which con-
tains, at most, 2n—1 links. In each synchronization one broadcast message and one
echo message are transmitted on each elementary link. Since each message is of size

O (log n) bits the result follows. B
5.3.2. Cycle Detection Cost
Lemma 5.2: The total cost of all cycle detections is at most O (n2 log n) bits.

proof: Each time a new cluster head is elected a new maximum-id is sent around a
cycle of clusters. Thus, by fact 2, there are at most 2n—2 maximum-id initiations.
Each such initiation is sent over the infrastructure of some cluster. The same
maximum-id is forwarded at most three times on the same link in a particular clus-
ter; Once when it enters the cluster and the link is an in-tree link on which it was for-

warded to the cluster-head; Once when the cluster-head broadcasts the maximum-id;
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and once on its return to that cluster-head (which then detects a cycle). Since, a link
forwards the same maximum-id at most three times for each cluster it belongs to, the

result follows. W
5.3.3. The Cost of Cluster Qutgoing Link Selection

The cost involved in selecting outgoing links consists of the cost of killing

intercluster links and the cost of the DFT’s.

To kill link /, the algorithm transmits one message of O (log n) bits over l
and a kill message of size O(1) bits over a path from the head of / to its tail. The kill
message goes down the in-tree to the cluster-head and then along the active path to
the tail of /. This node is distinguished from other nodes on the active path since it
is the focal point of the DFT. Thus, the killing of one link costs O (n) bits. Since the
algorithm kills, at most, | E | links, the killing of intercluster links adds up to, at
most, O (n-|E |) bits.

As mentioned, the cost of one DFT on a network with # nodes and | E | links
is O(n-|E |'logn) since thgrc is one backtracking for each link of the network, and
each backtracking costs O (r log n). The DFT operation is employed in the election
algorithm to search the infrastructures of different clusters. Since there are at most
twice as many links as nodes in an infrastructure, the cost incurred by each DFT ofa
cluster with k nodes is O (k? log n). As the DFT could be used n—1 times by the
algorithm, the total cost of all DFT’s might be O (n3log n).

To reduce the total cost of all DFT’s from O (n3logn) to O (nzlogn) bits, a
special cluster head election phase is added after the cycle detection and before the
synchronization phases. In this phase the cluster head which is elected in the cycle

detection phase synchronizes the election of the cluster-head of the largest size
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cluster around the cycle. The new cluster-head then proceeds with the cluster syn-
chronization phase as described before. After synchronizing the cluster, the cluster-
head resumes its DFT process from the previous stage, i.e., from the head node of its
former cluster outgoing link, thus avoiding re-searching nodes that were already
searched. The head node of its former cluster outgoing link is now the last node on

the active path.
5.3.3.1. Cluster-Head Election

To elect a cluster-head of a largest size cluster (ties are resolved by cluster-
ids), the cluster-head detecting the cycle sends an elect-message around the alternat-
ing sequence of active paths and in-trees which form a directed cycle (see figure
3.1). On its way, the elect-message finds out which cluster has the greatest number
of nodes and what the total number of nodes in all the clusters around the cycle is.
This information is updated dn the elect-message by the cluster-heads along the
directed cycle.

Once the elect message retumns to the originating cluster-head, the control of
cluster synchronization is passed to the newly elected cluster-head. Any new and
larger maximum-id which arrives at the cluster-head detecting the cycle during the
election and the synchronization phase is held back by this node. It is forwarded to

the new cluster-head upon the reception of the synchronization broadcast.

After being elected, the new cluster-head resumes its DFT of the previous
cluster outgoing link selection phase. Doing so it uses the active path and the node
marks which its DFT had left. The algorithm thus can be viewed as a process in
which all the cluster-heads are candidates for leadership. When clusters owned by

different candidates form a cycle, the candidate which owns the largest size cluster
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eliminates all the other candidates. In doing so the candidate merely has enlarged its
cluster to include the clusters of the candidates it has eliminated. The DFT structures
it had previously are then extended to search the enlarged cluster. Henceforth, we
refer to the clusters which did not change their cluster-id as one cluster which has

consumed other clusters during the algorithm.

The above scheme is similar in principle to the capturing rule of algorithm A
in chapter 2 (Section 2.5). There we enabled the largest candidate, in terms of cap-
tured nodes, to kill and take nodes from a smaller candidate. To see that the above
scheme does not add more than a constant factor to the complexity of a single DFT,
we will use a lemma similar to Lemma 2.2 and which was introduced in a similar

context by Gallager: [Gal77]

Lemma 5.3: For any given k , the number of clusters that own n/k nodes or more

is, at most, k.

Proof: Let C; and C, be any two clusters which had size n/k at some point of time.
We shall show that each of C | and C, must have had »/k nodes disjointly. If they
have never consumed each other, we are done, since the clusters were certainly dis-
joint. If, w.l.o.g., C | has consumed C,, then C | must have already had n/k nodes at

the time of eliminating C,. R

Corollary : The largest cluster to be consumed by another cluster owns at most r/2

nodes, the next largest at most n2/3 , etc.
Thus, we arrive at the following:
Lemma 5.4: The total cost of the DFT’s is O (n? log n).

proof: The cost of traversing a cluster of size & is at most k2 log n bits. Hence, the
106



2
n n
total cost is bounded by 3 [%] messages. But, ¥, [%
i=1

i=1

2 tognl . [n PP
< ¥y 2=
i=0 2
log n] | 52 .
=3 -5;— <2 n*. Hence, the bit complexity of the depth first traversals is

i=0

O(n%log n) bits. A

Adding the bit costs of all three components, we arrive at a total communica-
tion complexity of O (n 2log n +n-|E|) bits for the whole algorithm. By the argu-
ments presented in section 4.5 we conjecture that this is also the lower bound on the
communication complexity of the election problem on arbitrary topology strongly

connected unidirectional networks.
5.4. The Traversal Algorithm as a Special Case of the Election Algorithm

In this section we show how Traversal-2 and -3 can be derived as a special
case of the election algorithm. Imagine the behavior of the election algorithm when
it is started by a single node. In this case, the initiator initiates a process which visits
all the nodes in the network and terminates. In the first subsection we show that the
process can be modified to behave exactly as the process in Traversal-2. In subsec-

tion 5.4.2 we show how Traversal-3 can be derived from the election algorithm.

The process of deriving the traversal algorithms from the election algorithm

provides a constructive proof of lemma 4.6.
5.4.1. Deriving Traversal-2 from the election algorithm

Assuming that only one node initiates the election algorithm, we make the

following observations:
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First, at any given time, at most one cluster is searched, i.e., no messages are

exchanged in any of the other clusters.

Second, all the clusters and their selected outgoing links form a simple
directed path in which each cluster is a node and each link is a selected outgoing
link. This path, called the clusters active path, occasionally closes on itself (see
figure 5.3). When the path closes either a cycle of clusters is formed, or the last link
on the path is an intra cluster link (in the last cluster on the path, see figure 5.3, cases

2 and 1, respectively).

Third, consider the cluster’s active path when it does not close on itself.
Then, the nodes at which the cluster’s active path enters clusters are the first nodes to
be explored in each cluster. Therefore, if these nodes were selccteq as the cluster-
heads of their clusters, the active paths of all the clusters would form a single con-

tiguous path at all times.

We now modify the election algorithm according to the above observations
namely, in each cluster the first node to be explored is elected as the cluster-head.
Cycle detection (case 2 in figure 5.3) occurs when the token leaves one cluster C
(by traversing its selected outgoing link for the first time) and arrives at another, pre-
viously explored, cluster C,. Recalling the third observation, the cluster-head of C'
is the "oldest" node on the newly formed cycle of clusters. This cluster-head (2)
synchronizes the cycle of clusters and, is elected to be the cluster-head of the new
cluster. Also, (from the third observation) the active paths around the cycle form a
single contiguous path. If the synchronization phase is modified to leave all the
active paths intact, the distinct DFT’s may be considered as one DFT. Thus the
newly elected cluster-head, & resumes a DFT which already has an active path going

through all the clusters around the cycle. As a result, no node in the network is
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searched more than once during the whole algorithm. The cluster-head resumes the
DFT at the node in which the cycle was detected (the LOOP node in figure 5.3, case
2).

The above variation of the election algorithm can be viewed as a traversal
process. One node spawns the process which terminates at the initiator after visiting
all the nodes in the network, one at a time. This traversal process can be further
modified to work on a unidirectional network of finite automata, as we show in the

next section.
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Figure 5.3: Clusters in the Traversal Algorithm
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5.4.2. Deriving Traversal-3 from the election algorithm

Two operations in the preceding traversal algorithm require O (log n) bits
memory in each node. The first is distinguishing an intra cluster from an intercluster
link. The second (which occurs during the DFT of the infrastructure) is backtracking

from the last node on the active path.

In the first operation, the O (log n) bits are used to distinguish between the
case that a newly traversed link, /, is an intra cluster link and the case that I closed a
cycle of clusters. This operation was accomplished in the preceding algorithm by
comparing the id carried by the token with the cluster-id of the head node of I. To
perform the operation without ids, we note that, in both cases, [ closed a directed
cycle of nodes and links (composed of an active path followed by a path in an in-
tree, see figure 5.3). In the first case, exactly one cluster-head resides on the cycle
while, in the second case, at least two cluster-heads reside on the cycle (see figure

5.3).

We now explain how the token decides whether there is more than one
cluster-head on the cycle. The last node on the active path in each cluster is marked
focal point (it is the focal point of that cluster’s DFT, see section 3.2). The head
node of a newly traversed link / is marked LOOP if it is an already explored node.
Upon arriving at a LOOP node, the token is sent around the cycle to find out whether
there is more than one cluster-head on it. Since there is exactly one LOOP node on
such a cycle, the walk around it utilizes a finite number of bits on the token. If
exactly one cluster-head was found, the LOOP mark is removed. The token then
walks around to the focal point, kills / and resumes the DFT. If on the other hand,
more than one cluster-head was found, a cycle of clusters was identified. The token

then makes another trip around the cycle in order to synchronize its clusters. On the
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second round, the token first erases all the focal point marks. Second, it erases all the
cluster-head marks, aside from the first. Third, the token modifies the in-trees of all
clusters, aside from the first one, to be rerooted at the LOOP node (in the same way
as was done in the election algorithm). Notice that the active path of the first cluster
lies between the first and the second cluster-head. Arriving at the LOOP node for
the second time, the synchronization phase terminates. The LOOP mark is removed,

the focal point mark is put on, and the DFT is resumed.

The backtracking in the DFT is performed without using node ids by using

the same solution that was suggested in section 4.4.2.

The communication cost of the cycle detection and synchronization phases
does not change in the modified algorithm. The cost of the clustex.' outgoing link
selection phases is O (n Zlog n) bits since the DFT searching for outgoing links
requires one backtracking for each link of the infrastructure. Thus, the communica-
tion complexity of the traversal algorithm is the same as that of the election algo-

rithm.
5.5. Concluding Remarks

The election algorithm can be modified to produce an out-tree in the same
way that Traversal-2 and -3 were modified in the previous chapter. The combined
structure of the in-tree and out-tree can be used in many different ways as was sug-

gested in the previous chapter.

As shown in [Gaf84], any algorithm which requires common knowledge is
equivalent to an election algorithm. Therefore, we expect the election and traversal
algorithms to serve as building blocks in many unidirectional network algorithms.

An example of such an application, which involves termination detection, can be
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found in [Mis83].

An interesting observation is that the amount of communication in the uni-
directional election algorithm, O (n-|E | + nz-log n) bits, is n times the number of
messages in the optimal bidirectional algorithm. We would obtain the same cost if
we were to simulate the bidirectional algorithm, [Gal83] with each acknowledgment
charged as n bits, on a unidirectional network. Together with lemma 4.9, this leads
to the conjecture that our election algorithm is as efficient as possible in terms of

communication cost.
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