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ABSTRACT OF THE THESIS

Analysis of Alternatives for a

Singular Value Decomposition Processor
by

Jaime H. Moreno
Master of Science in Computer Science
University of California, Los Angeles, 1935
Professor Tomds Lang, Chair

In this thesis we present an evaluation of different alternatives for the imple-
mentation of a digital system to compute the Singular Value Decomposition (SVD),
in terms of the throughput achievable with a given amount of hardware. An algo-
rithmic model which captures the properties of the SVD computation and a methodol-
ogy for the design of systems exploiting concurrency are presented and applied to the
SVD. ’

The model uses a directed graph as a description of the algorithm, where
nodes correspond to subcomputations and arcs to precedences among the subfunc-
tions. Each node is described by its execution time as a function of the number of
operation units used. This model is utilized to evaluate the cost and performance of
implementations with replication, pipelining and parallelism.

The methodology for the design is essentially an iterative procedure consisting
of top-down decomposition and bottom-up refinement of the nodes in the graph of the
algorithm.

Tt is shown here that, for throughput higher than a certain value which depends
on the computation, a pipelined approach for the implementation of the SVD algo-
rithm is more attractive than other alternatives currently proposed for such computa-
tion. The architecture devised is a multilevel pipelined processor, which exploits con-
currency at several levels through internal pipelines and the use of the parallelism in
the subcomputations. This scheme offers better performance characteristics for a
given amount of hardware than the other alternatives proposed, keeps the realization



at a level of complexity similar to those other alternatives, and is able to compute the
decomposition of matrices of any size without hardware modifications. However, im-
plementations with the scheme presented exhibit expansibility characteristics such
that they can be upgraded if higher throughput for larger matrices is desired.

The algorithm used is a parallel version of Hestenes’ one sided orthogonaliza-
tion method proposed by Brent et al, which is adapted for implementation with few
processors. The resulting scheme has the same characteristics of the original one re-
garding data transfers between units, and it is realizable with any number of parallel
processors.

»
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CHAPTER 1
INTRODUCTION AND MOTIVATION.

1.1 The Singular Value Decomposition and its Applications.

In modern science and engineering a frequently used mathematical tool is ma-
trix algebra, because data can often be represented by matrices and vectors and pro-
cessing this data as required by the applications corresponds to operations between
matrices and vectors. Examples exist in image processing, system theory, signal pro-
cessing, pattern recognition and other fields [Klema80, Andre76a, Golub77]. For
some of these fields (i.e. signal processing), it has been shown that the major compu-
tational requirements when processing the related data can be reduced to a common
set of basic matrix operations [Speis80].

Several of the more elaborate processing functions required are actually matrix
transformations and decompositions, where a given matrix is transformed into one or
more matrices with specific properties. Those functions are useful in varied applica-
tions [Golub77, Klema80, Andre76a]. Examples are the Householder transformation
to a bidiagonal form, the QR decomposition of a square matrix, the reduction of a
square matrix to its Jordan canonical form, the LU decomposition, the LL* (Choleski)
decomposition, and the Singular Value Decomposition (SVD), among others.

Basically, the Singular Value Decomposition [Nash79] of an m x n matrix A
consists of finding U, £ and V such that

A=UZV!

where U is an m x m orthogonal matrix, V is an n x n orthogonal matrix, and X is
an m x n matrix with non-negative elements on the main diagonal and zeros every-
where else. It is assumed that m2n, that is A has at least as many rows as columns.

In matrix algebra as well as in many applications, the evaluation of singular
values and singular vectors is of theoretical and practical interest. At the theoretical
level, the singular value decomposition (SVD) yields a fundamental representation
theorem that describes the basic properties of A . At the practical level, SVD is useful
for the solution of overdetermined linear systems of equations, for the solution of
least-squares problems, for the computation of eigenvalues and eigenvectors, among
many other applications. It is generally acknowledged [Klema&0] that the SVD is the



only generally reliable method for determining rank numerically; this is a crucial re-
quirement in many situations.

Many modern signal processing tasks in communications, radar, sonar,
speech, image processing, linear systems theory and others use the SVD [Golub77,
Klema80, Andre76a]. These applications have been devised around the SVD, as a
result of its particular characteristics. Speiser and Whitehouse [Speis80] have shown
that the SVD could be used in adaptive filtering and data compression. Andrews and
Patterson [Andre76a] demonstrated the use of the SVD in image enhancement and
restoration. Huang and Narendra [Huang75] and Shim and Cho [Shim81] did the
same, although their examples had less resolution (implying smaller data sets and
therefore smaller matrices). Andrews and Patterson also applied the SVD to image
coding [Andre76b]. Other applications available for this mathematical tool are rank
estimation and pseudo-inverse computation [Golub77].

Recently a flood of new applications have been suggested and/or proved.
Miao and Chen [Miao84] used the SVD in 2-D spectral estimation to extend some 1-
D techniques. Konstantinides and Yao [Konst84] considered the evaluation of the ord-
er of a linear system transfer function; they used the SVD for efficient determination
of the rank of a matrix, applying the SVD to system modeling in signal processing.
Sullivan and Liu [Sulli84] extrapolated a band-limited signal in discrete-time by solv-
ing an underdetermined system of linear equations with the SVD. Sibul {Sibul84a] re-
quired this tool to deal with the ill-conditioned data arising in adaptive beamforming.
Zhou et al [Zhou84] suggested the use of SVD and singular vectors for a discrete-
time, discrete-frequency model for image restoration.

This increasing use of the singular value decomposition is not surprising. Kle-
ma et al [Klema80] predicted such a situation when they stated that, within five to ten
years, SVD would be one of the most important and fundamental tools in many fields.
The list of applications and areas is even longer than what has been shown here and is
growing, as the recent developments indicated suggest.

All the examples and applications mentioned above have been computed on
mainframe computers and, in some particular cases, minicomputers [Luk80, Nash75,
Nash76, Busin69, Forsy77]. Some of these have only been simulations of the
corresponding problems, with reduced matrix size, (the SVD is a compute-bound al-
gorithm); therefore, they have been restricted just to show the feasibility of the
corresponding method or algorithm. Andrews [Andre76a] described the situation by
stating "the use of SVD techniques in digital image processing is of considerable in-
terest for those facilities with large computing power and stringent imaging require-
ments"; this assertion is equally valid for the other fields interested in the SVD. How-
ever, some of the described applications [Sulli84, Speis83] have shown that, thanks to



the SVD, the problem complexity may be reduced considerably. Perhaps Speiser and
Whitehouse assertion is one adequate example: "the computational wordlength re-
quirement for such problems can be reduced by about a factor of two by solving the
eigensystems problem indirectly via computing the singular value decomposition of
the data matrix".

Speiser et al [Speis80], when discussing signal processing applications in
some particular computing architectures, stated:

- matrix operations provide a large portion of the computational burden for
real-time signal processing; this burden has limited adoption or even the
comprehensive evaluation of new signal-processing algorithms, permitting
them to be applied only to small problems in off-line computation, or to limit-
ed data sets

- different techniques, including the SVD, have been thoroughly studied and
‘heavily used for non-real-time computation using conventional computers;
many applications have been extensively studied via simulation but have not
been implemented in real-time when the data block has more than a few de-
grees of freedom, because of the computational burden

- because of additional computational burden, certain methods have been ap-
plied so far only to low bandwidth signals or non-real-time analysis.

In the same work, they identified a set of basic matrix algorithms whose
hardware implementation could allow certain designated tasks to be performed in
real-time. Matrix algorithms which are of interest to compute in real-time but are not
available yet include the SVD.

Therefore, it is of interest to be able to implement the SVD in a real-time set-
ting, using dedicated hardware. Given the high requirements from the applications, a
useful SVD processor should be able to compute the decomposition of rather large
matrices. In image processing, for instance, matrix dimensions in the order of 100 by
100 or even larger are needed [Andre76a, Huang75, Shim8l]. However, some
simplifications may be achieved in certain problems, «s mentioned before. It is con-
sidered that for an SVD processor to be useful, it should compute at least the decom-
position of a 20 by 20 matrix [Tyree85].

Computation time characteristics for such processor are hard to state, due to
the lack of relevant related information. Most of the data available in the literature
deals with the computation time of the algorithm in implementations in mainframes or
minicomputers. For instance, an EISPACK SVD routine in an IBM 370/168 took



from 0.1 [sec] to compute the decomposition of a 16 by 16 matrix, to 30 [sec] fora
matrix with 128 columns [Luk80]. The same problems were solved in the ILLIAC IV
computer in 0.21 [sec] and 22 [sec] respectively, using Hestenes’ method [Luk80].
These experiments were used to report the suitability of Hestenes’ approach for paral-
lel implementations, especially for large matrices (larger than the experiments per-
formed).

In a different work, the decomposition of a 128 by 128 matrix took 3 [sec] in a
CDC7600 computer [Andre76a). Note that this implementation is different than the
ones above, with different data and routines, so that the computation times can not be
compared. Such data is given here only for illustrative purposes.

Most of the reported research about the SVD in the different fields presents the
suitability of the algorithm for those applications, but they fail to specify actual re-
quirements for them, particularly with respect to computation time. Perhaps the most
quantitative and representative assertion is Speiser statement [Speis83] that real-time
signal processing will increasingly require a hardware equivalent of the software run-
ning in the mainframes. As such hardware would not have the overhead involved in
the execution of the software, it should be possible to obtain an implementation
several times faster than those routines. Therefore, one approach is to target the
design for a speed at least two orders of magnitude better than what could be obtained
for a mainframe. That is, decomposition times of around 1 [msec] for a 20 by 20 ma-
trix and around 30 [msec] for a 128 by 128 matrix. Or, as Tyree states [Tyree85], the
speed requirement is simply "faster"”.

1.2 SVD Algorithms and Their Implementations

There are several algorithms for the computation of the SVD [Finn82a]. In
1958, Hestenes [Heste58] suggested a one-sided orthogonalization method. This algo-
rithm was replaced by what became the standard method, one introduced by Golub
and Kahan [Golub65] in 1965; it is currently known as the Golub and Reinsch
EISPACK algorithm [Golub70]. Other less successful approaches include various
Lanczos algorithms [Golub81].

The EISPACK algorithm has two basic steps: a Householder transformation to
bidiagonalize the given matrix and then the QR method to compute the singular
values of the resultant bidiagonal form [Luk80]. This method has been used the most,
essentially because there are libraries of high quality (robust, numerically stable)
software for it running on mainframe computers {Speis83].



Most applications described before would benefit substantially if fast dedicat-
ed hardware was available for the SVD, but this is a compute bound algorithm. Con-
sequently, the quest for real-time processing has resulted in a push for the develop-
ment of faster computing structures as well as algorithms of lower complexity, not
only for the SVD but for all matrix arithmetic and signal processing [Ahmed82].

Ahmed et al reviewed computing structures for matrix arithmetic and signal
processing applications [Ahmed82). They showed why general purpose uniprocessor
computers (specially microcomputers) have had little success in this area; they in-
clude, among others reasons, the inability to exploit the inherent parallelism in the al-
gorithms. Therefore, a hardware implementation for the SVD will have to resort to
concurrent computation capabilities if it is to be successful. Such approach is difficult,
since its computation is necessarily iterative [Speis83].

The Golub and Reinsch EISPACK algorithm is undesirable for concurrent
computation. Luk [Luk80] indicates three reasons why this method is not adequate:
"first, although the Householder transformation is inherently parallel, the effective
vector length decreases at each step causing inefficiencies; second, the parallel QR
method may be numerically unstable; and third, data movement across the parallel
processors memories can be very expensive”.

These problems have led to the search of new algorithms which could take ad-
vantage of concurrent processing capabilities. It turned out that the previously super-
seded Hestenes’ method was easily adapted to special purpose computations; it was
first suggested by Chartres [Chart62] and implemented in a minicomputer by Nash
[Nash75] because of its compactness. However, this application was still sequential
due to the underlying hardware characteristics. Luk [Luk80] finally showed that
Hestenes’ method was suitable for parallel-processing machines by implementing it in
the ILLIAC IV computer. He used the parallel capabilities of this machine to perform
the different elementary operations required by the algorithm.in the 64 available pro-
cessing elements; the time for those operations was reduced by an asymptotic factor
of 64 [Luk80). But this is a large machine, whose cost and turnaround properties res-
trict it from being widely used. Alternative schemes based on cheaper and dedicated
hardware to compute the decomposition have been sought extensively; actually, Nash
attempt in the minicomputer was already based on such premises [Nash75].

The advent of massively parallel computer architectures has aroused much in-
terest in parallel SVD procedures [Brent82a, Finn82a, Helle83, Kung82, Luk80,
Schre83]. Such architectures may turn out to be indispensable in settings where real-
time computation is desired [Brent83]. Speiser and Whitehouse [Speis80] surveyed
parallel processing architectures; they concluded that systolic architectures offer the
best combination of characteristics for utilizing VLSI/VHSIC technology to do real-



time signal processing.

As a result of those studies, systolic architectures have emerged as attractive
alternatives for VLSI implementation of some matrix computations [Kung82,
Ahmed82]. Their characteristics are: simple and regular data and control flows, sim-
ple and uniform cells, but above all, the ability to use each input data several times,
achieving high computation throughput with rather low input/output bandwidth re-
quirements.

Hestenes’ method is not readily suitable for a systolic array or other con-
current architectures for the computation of the SVD, with concurrency at levels
higher than the basic arithmetic operations between columns elements [Brent82a,
Finn82a]. The method is an iterative algorithm that forces pairwise column ortho-
gonality by orthogonal plane rotations; it essentially consists of a serial Jacobi pro-
cedure for finding an eigenvalue decomposition of the matrix A ‘A , without actually
forming it. At each step in the computation, two columns are made orthogonal; be-
cause of the iterative procedure, in the long run all columns will be orthogonal. This
process involves a significant number of operations not only on the elements of a
column pair but on different columns pairs of the matrix too, which could be per-
formed in some concurrent fashion.

Parallelism on the columns elements was exploited by Luk [Luk80] in his im-
plementation of the method in ILLIAC IV. However, some problems exist for con-
current computation of the orthogonalizations of different columns. When orthogonal-
izing columns i and j , the values of the inner products <g; a;>, <a; @;>, <a;,a;>
are required. But the rotation changes g; and a;; thus, any other inner product involv-
ing a; or a; must wait for this rotation to finish before it can start, introducing a serial
dependency in the process. Additionally, Hestenes’ method assumes that orthogonali-
zations are performed using the columns in the traditional Jacobi ordering, which is
essentially a serial process but it guarantees convergence. Therefore, this method has

to be adapted for concurrent computation of the SVD.

Several solutions have been suggested for these problems. Finn, Luk and Pot-
tle [Finn82a] developed two algorithms which are variants of Hestenes’ method. To
avoid the implicit serialization described, these two new algorithms essentially com-
pute approximations to the angle used in each rotation. Their first method is similar to
Hestenes one, except that all inner products are computed first and then the rotations
are performed; the second is a more complex approximation whose description is
based on the wavefront concept and distance metric [Finn82a, Kung82]. Unfortunate-
ly, there is no formal proof of convergence for either of these algorithms; only empiri-
cal evidence tested with different kinds of matrices, including both rank deficient and
full rank matrices [Finn82b].



The architecture proposed by Finn et al is based on a quadratic array of mi-
croprogrammed processing elements (PE); each of them is composed of an ALU, a
microprogram memory, control logic, some registers and working store. They stated
that an implementation with current technology would probably use byte, nibble or bit
serial PE to maximize integration, as also time multiplexed communication paths.
This architecture supposely should provide linear time computation for the SVD,
although no actual time complexity is discussed. The scheme’s attractiveness is re-
duced as a result of the lack of guaranteed convergence and also because of the
number of processing elements required.

The work by Brent, Luk and Van Loan has been the most extensively reported
so far and has received the most attention. It also includes two approaches to solve
the problem: the first one [Brent82a] uses a linear array with n/2 processors that re-
quires O (m n logn) time to compute the SVD; the second uses a square array of pro-
cessing elements, which takes O (m + n logn) to converge [Brent83]. There is also
some related work in [Brent82b] and [Schre82] but for the more restricted case of a
symmetric #n x n matrix.

Hestenes’ method is also used in [Brent82a] and [Brent83]. But, instead of
computing an approximation of the rotation angle as Finn et al to solve the implicit
serialization, an ordering for the column orthogonalizations different than the classic
Jacobi one is presented. The scheme suggested decomposes the iterative process into
steps; at each step all rotations can be performed in parallel, because there is no
dependency among the different columns involved. Data exchanges occur from one
step to the next and they are only with neighbor processors; this is very attractive be-
cause of its simplicity [Brent82a].

In [Brent83], a modification of a two-sided Jacobi SVD method for square ma-
trices is presented and it is shown how it can be implemented in a systolic array. The
array is very similar to the one proposed in [Brent82b], but a pre-processing step is
required to be able to handle m by n SVD problems; in it, the QR-factorization
A = QR is obtained and then the array computes the SVD of R.

The pre-nrocessing step can be done in O (m) time, using a different structure
for the systolic array; the proposed scheme computes the SVD of R in O(n logn)
time using O (n 2 processors [Brent83].

Of the two approaches, linear and quadratic arrays, the linear systolic array is
perhaps a more feasible architecture than the quadratic array, because it only requires
n/2 processing elements instead of O(n 2y, Ahmed et al arrived to this conclusion in
their study about computing structures for matrix operations and signal processing
[Ahmed82]. Furthermore, they showed that a linear array can be viewed as a cut



through a 2-D array along a computation wavefront; as a result, it enjoys higher aver-
age utilization than the 2-D array. However, the time complexity for a linear array is
necessarily larger than for the quadratic one.

~ In [Schre83], Schreiber points out that Brent, Luk and Van Loan linear systol-
ic architectures are the most promising idea for computing the SVD in real time,
although these arrays are only able to solve problems of fixed size. He presents two
modified algorithms and a modified array that do not have such disadvantage. There-
fore, Schreiber’s work deals with the issue of how to solve problems of arbitrary size
with an array of fixed size. However, his alternatives have some drawbacks. The first
method suggested implies that some columns pairs are orthogonalized several times,
introducing a 20% to 60% overhead, depending on the size of the matrix and the
number of processors available [Schre83]. The second method modifies the original
Brent-Luk array by converting it into a ring and performing only the required orthog-
onalizations, but in a different ordering; there is no evidence of how effective it might
be nor how the convergence characteristics of the method are affected.

Schreiber concerns should also be seen from another point of view: many
problems require the decomposition of large matrices [Andre76a] for which an n/2
linear array might be impractical. Therefore, a scheme will be successful as long as it
can deal with those matrices but in a smaller size array.

Symansky [Syman83] presented an experimental implementation of an SVD
processor, using a two-dimensional systolic array testbed; each processing element
(PE) consisted of an arithmetic processor, a general-purpose microprocessor, memory
and some support devices. This testbed was used, among other appiications, to com-
pute the SVD; only the linear systolic array alternative was tested although the
hardware was arranged as a quadratic array.

Symanski’s scheme mainly allows to prove the feasibility of a linear systolic
array but, because of the underlying hardware generality, no attempt was made to op-
timize it. Furthermore, the control function was implemented as a program stored in
each PE, with frequent interaction with the host system (actually, after every orthogo-
nalization).

One deviation from the schemes mentioned so far is the work by Sibul and
Fogelsanger [Sibul84b]. They discussed how the coordinate rotation algorithm
[Walth71] could be used to compute the SVD and described a basic cell for a proces-
sor. This scheme is attractive, as the hardware requirements are simple. However,
CORDIC is a serial procedure, and questions regarding the speed of a SVD processor
based on it have not been answered yet. Sibul and Fogelsanger did not include
time/cost evaluations for their proposal.



1.3 Research Objectives and Contributions

Most of the reported research about the design of an SVD processor has been
focused on the suitability of Hestenes’ method for parallel computation in a systolic
array, either linear or quadratic. Only some attention has been given to the actual
hardware implementation characteristics and how they affect the architectures. No
analysis has been reported regarding the actual complexity in computation time and
hardware resources required for those schemes. Therefore, there is no data on
time/cost characteristics for these approaches.

Systolic architectures are promising and the experimental results attractive.
However, a deeper analysis of the algorithm characteristics raises questions about the
optimality of systolic approaches for the SVD. Indeed, those schemes efficiently solve
communications and control problems between processing elements (PE), and these
PEs allow for simple and regular designs. Furthermore, they seem to satisfy Kung’s
[Kung82] criteria for systolic architectures: multiple use of each input data item, ex-
tensive concurrency, few types of simple cells and simple and regular data and control
flow.

However, the concept of simplicity at each cell is questionable in the architec-
tures proposed. Kung states that "a systolic system consists of a set of interconnected
cells, each capable of performing some simple operation”. The SVD implementations
using the systolic arrays, particularly the linear one, assume that each PE performs a
full orthogonalization between a pair of columns of the matrix. This task does not
seem to correspond to "some simple operation”, because it actually includes many ar-
ithmetic computations and several of them are complex, like division and square-root.
Furthermore, the concurrency, data transfers, and functions at the different steps vary
widely, making the orthogonalization not one but many operations, and not simple
ones.

None of the studies has actually considered the peculiar characteristics of the
algorithm, particularly the orthogonalization process; this has been seen as a sequence
of arithmetic operations to be performed in a general purpose arithmetic unit. No at-
tempt has been reported to try to exploit additional concurrency within PEs or in dif-
ferent architectures, although there are many issues in there which require considera-
tion. These issues are also important, and could produce a different architecture as a
better design alternative for a SVD processor.

Furthermore, there are some inherent inefficiences in systolic array techniques
for this type of applications, as pointed out by Speiser and Whitehouse [Speis83]. For
some architectures, at any time only a fraction of the cells is performing useful com-
putations. Although this fraction is independent of the size of the array, so constant



efficiency may be maintained as additional cells are added to increase throughput, the
schemes are inherently inefficient [Speis83].

Given the conditions described, in this work we contribute to the field by re-
viewing the SVD algorithm, the different subfunctions in the orthogonalization pro-
cess and their hardware related issues (i.e. resources required, computation times, data
communications, and control). From that analysis, relevant information regarding the
architectural features for the design of a digital system to compute the SVD is ob-
tained.

The goal has been to search for an efficient design alternative for a SVD pro-
cessor, in terms of the throughput achievable with a given amount of hardware, while
keeping the implementation.at moderate complexity. At the same time, information
regarding the characteristics and/or requirements for the devices needed in the particu-
lar design has also been sought.

Pipelined, parallel, and systolic array architectures are examined and com-
pared in terms of throughput and hardware required. The emphasis is in the arithmetic
hardware, since it is the predominant factor. This study considers matrices ranging
from 20 by 20 to 40 by 40, because these sizes represent a minimum for practical ap-
plications [Tyree85). However, the methodology and analysis performed are extensi-
ble to higher dimensions, as also the architectures devised.

To formalize the analysis, an algorithmic model which captures the charac-
teristics of the SVD process is presented. This model gives insight into the properties
of this type of computations and how to exploit them in different architectures. The
model uses a directed graph as a description of the algorithm, where nodes correspond
to subcomputations and arcs to precedences among the subfunctions. Each node is
described by its execution time as a function of the number of operation units used.
This model is utilized to evaluate implementations with replication, pipelining and
parallelism,

Cost and performance measures are defined for the evaluation of the different
schemes; these measures are computation time, hardware requirements, speedup with
respect to a reference system, efficiency and hardware utilization. The model assumes
that only one type of operation units are used for the implementations.

A methodology for the design is also suggested, in terms of the model; this
methodology is essentially an iterative procedure consisting of several steps of top-
down decomposition and bottom-up refinement of the implementation for the nodes in
the graph of the algorithm.
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The analysis and evaluation developed here show that, in most cases, a mul-
tilevel pipelined approach to compute the singular value decomposition is more con-
venient, because for a given amount of hardware it provides higher throughput with
better efficiency than other alternatives, including the linear systolic array. This pipe-
lined approach exploits concurrency at several levels in the implementation, through
pipelines and the use of the parallelism in the subcomputations of the algorithm.,

It is also shown that only the lowest cost linear systolic array (i.e. with one ar-
ithmetic unit per processing element) has better characteristics than a pipelined sys-
tem with a similar amount of hardware. However, if larger throughput than what is
achieved with that linear array is desired, any increase in hardware is better utilized in
the pipelined approach.

The data dependencies in the computation are solved with the ordering of
columns proposed in [Brent82a], but adapted for implementation with fewer proces-
sors. The resulting scheme presented here has the same characteristics of the original
one regarding data transfers between neighbor units, and it is useful for a system com-
posed of any number of parallel processors and stages per processor, including a sin-
gle pipelined processor.

It turns out that the linear systolic array approach to compute the SVD, which
has been regarded as the most promising architecture so far, is less effective than a
multilevel pipelined system. This last one can, for instance, achieve the decomposi-
tion of a 40 by 40 matrix in the equivalent to 19600 multiplication times (i.e. 1.96
[msec] at 100 [nsec] per floating point multiplication) with less than 80 pipelined ar-
ithmetic units; in contrast, a linear systolic array with similar hardware would take
29400 multiplication times. Furthermore, systems implemented using the proposed
scheme are not restricted to fixed size problems, but can be used to compute the SVD
of matrices of any size, without modifications (assuming the memory is large enough
to hold the data).

It is concluded that a multilevel pipelined approach for the SVD processor is
more convenient than other currently proposed alternatives, in terms of throughput
achievable and hardware required. The realization of such scheme has a level of com-
plexity similar to those other alternatives. For the matrix dimensions discussed here,
the speed-up factor obtained is 1.2 to 1.5 times larger than what is achieved in a linear
systolic array with similar hardware, depending on the matrix size and the amount of
hardware.
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To reach the results stated above, in Chapter 2 we present the SVD algorithm
according to Hestenes’ method properly adapted for parallel computation, as proposed
by Brent et al [Brent82a].

Then, in Chapter 3 we look at the characteristics of systems with concurrent
computation capabilities. The algorithmic model, the methodology for the design
which is used throughout the rest of the analysis, and the cost and performance meas-
ures for the evaluation of different alternatives are introduced here. In this chapter we
also study how the concurrent approaches apply to the computation of the SVD,
through the analysis of the time required to perform the decomposition in a system
with P processors, each consisting of § pipeline stages, and also in the linear systolic
array proposed by Brent et al [Brent82a]. This analysis is done in terms of the
number of orthogonalizations required. A scheme to exchange columns, which allows
Brent’s ordering of orthogonalizations to be used in systems other than the linear sys-
tolic array, is also presented here.

In Chapter 4 we look into the hardware requirements for the orthogonalization
process in the different architectures studied. We provide detailed information about
those alternatives in terms of throughput achievable and hardware needed, permitting
to identify and select suitable architectures according to these parameters. A pro-
cedure to select an architecture for the orthogonalization computation is introduced
here.

Finally, in Chapter 5 we present design considerations for the total system and
the individual components, according to the previous results. A procedure for the
design of architectures for the SVD is presented, which is applied to the alternatives
studied in implementations for matrices whose dimensions are 20 by 20 and 40 by 40.
As a result, a multilevel pipelined architecture for a digital system to compute the
SVD is proposed and evaluated in terms of the performance and cost measures
defined before, This architecture is compared with the linear systolic array, Hardware
requirements for each component in the system are outlined, as also the effects that
VLSI could have in the implementation, with current and near future technologies.

12



CHAPTER 2
SVD THEOREM AND ALGORITHM

In this chapter we present the Singular Value Decomposition theorem and one
algorithm suitable for concurrent computation, as described in [Brent82a). Actually,
there are several versions of the SVD theorem and also several algorithms, but
Brent’s approach is more adequate for the objectives pursued here.

2.1 SVD Theorem
Let A be a m x n real-valued matrix, where m=n . Then, A can always be
decomposed as [Nash79, Brent82a]
A(mxn)=U(mxn) E(nxn) V‘(nxn) (2'1)
where Z is a n x n non-negative diagonal matrix, V = [vaz»----,vn] isanxn

orthogonal matrix and U = [ul,uz,....,un] is a mx n matrix with orthonormal

columns. That is,

X =diag(o;) (2.2)
such that
(o3} 2 03] 2 O3 2.2 G, > 0 (2.3)
G4 = ereee. =0, = 0
and
viv =1, (2.4)
Ulu =1, (2.5)

where r is the rank of the matrix A, V* and U’ are the transpose matrices of I/ and
V, respectively and v;, u; are the column vectors of V and U, respectively.
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The o;,i=1,2,...,r are the singular values of A, while U and V are matrices
of left singular vectors and right singular vectors of A, respectively.

IA variation of equation (2.1) which is also found frequently in the literature is
expressed as {Brent83]

A(mxn)=U(mzm)z(mxn) V:(nxn) (2.6)

Here, the dimensions of the component matrices have been changed. Now, U
is a m x m orthogonal matrix, I is a m x n matrix with non-negative elements on the
main diagonal and zeroes everywhere else, and V is an » x n orthogonal matrix. This
expression is characterized by a non-square matrix Z.

As (2.1) instead of (2.6) has been used in the studies discussed here, the first
of these expressions will be used for the analysis.

2.2 Hestenes” Method According to Brent and Luk

From the several algorithms available to compute the singular value decompo-
sition [Finn82a], the one of interest here is Hestenes’ one-sided orthogonalization
method [Heste58] and its adaptation for parallel computation [Brent82a]. As Brent
and Luk research has received the most attention lately, their version of Hestenes’
method will be presented here.

Y

The aim of the one-sided algorithm is to find an orthogonal matrix 1} such that
AV =B = [bl,bz,---,b,,] 2.7

with the columns of B orthogonal. Hence, the inner product satisfies
<bi3bj> = b,’t b] = Gl'z 8‘] (2.8)

where §;; is the Kronecker delta ( 8;;=1 when i =j, and 0 otherwise). The singular
values of the matrix A (i.e. the o; values) may be considered as forming an n x n di-
agonal matrix so that B may be written

B=UZX with U'U-=I (2.9)
where r <n is the rank of A. Consequently
A=UZLV! (2.10)

Thus, if V can be constructed then (2.10) is the Singular Value Decomposition of A .
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Hestenes suggested that the orthogonal matrix V should be constructed as a
sequence of plane rotations [Brent82a) Q@ ;,0 7,...... such that

A¥l =A% 9, C(@2.11)
and
A*=B

where A ¥*! is the rotated matrix at the (k+1)#4 iteration and s is the number of itera-
tions necessary for convergence.

At any rotation only two columns of the current A* matrix are modified.
Therefore, equation (2.11) may be expressed as
cosd sin
[a,-“l, ajk"'l] = [a,-k, ajk} [—sinqé) Cos‘g] (2.12)

where aik, a j" are the {—rh and j—th columns of the matrix A at the k—th iteration

and ¢ is the angle of rotation. Thus:
a;**! = a;* cosd — a;* sino (2.13)

aj"“ = a;* sing + aj" cosd

The problem is to choose a rotation angle ¢ to make a,-’“’l and a j"” orthogo-
nal. To do this, Brent and Luk u‘sed the formulas given by Rutishauser [Rutis66] as
follows. Let

oc,-k =<a,~k,aik> (2.14a)
Ozjk =<aj",ajk> (2.14b)
and
'ijk =<aik,ajk> (2.14c)
If 'Y,-j" =0 then ¢ =0 ; otherwise
ajk_aik
_sign(y) _ (2.16)
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1
= 2.17
cosd 2 { )
sing =t cosd (2.18)

. . n . .
The rotation angle always satisfies |¢] < y which guarantees convergence if

the columns are rotated in the classical order (as in the traditional Jacobi algorithm) of
(1,2), (1,3), ..., (1,n), (2,3), 2,4), ...., (2,n), (3,4), ...., (3,n), ...., (n—1,n) [Brent82al].

The process above computes equation (2.11) which produces matrix B as in
equation (2.7), but the actual desired result is the decomposition stated in (2.10). Ap-
plying equation (2.9), matrix X is obtained by computing the singular values of B (as
the square-root of the norm of the columns) and matrix U is obtained dividing each
column of B by its corresponding singular value. However, V requires to accumulate
the plane rotations in one matrix. This accumulation can be achieved by letting
vi=y , where / is an identity matrix, and

vl =y g, (2.19)

Then the (k+1)th rotation will affect only two columns of V¥. Therefore, it is ‘possi-
ble to combine equations (2.12) and (2.19) into

[aikﬂ aj"“ _ a;* ajk [co_scb sincp] (2.20)
i.e. both matrices A¥ and V¥ are updated simultaneously [Brent82a].

Additionally, equation (2.15) states that at each rotation the columns norms
oy aj" are required to compute the rotation angle. Although possible to obtain
those values every time by performing the inner product, this overhead may be avoid-
ed by updating the current values after cos¢ and sin¢ have been computed [Finn82a].

Therefore:
k+1 k k .
0 _ |cos?p sinZo | [o — 2v;" cos¢ sing
[ocj"“} B [sinzcb cosztp ecj" + +27,-j" cosd sind (221)

-

Finally, some mechanism has to be defined to detect the end of the computa-
tion; such condition arises when, in one complete sequence of rotations (i.e. from
(1,2) to (n—1,n) ), no pair of columns is rotated because they are already orthogonal
(the orthogonality of the columns is defined by an error tolerance, as is usually done
in digital computations which have to compare values). A counter is used for this
purpose, which is set to the maximum number of rotations at the beginning of each of
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the sequences above. Every time an orthogonalization is skipped this counter is decre-
mented; if at the end of a the sequence the counter value is zero, it means that all
columns are orthogonal and the decomposition has been reached.

The only remaining steps are to compute the matrix X (i.e. the singular values)
by applying equation (2.9), and to compute matrix I/ (the left singular vectors) divid-
ing each column of the resulting matrix A by its corresponding singular value.

With rotations performed serially (i.e. with one processor) in the classical
Jacobi order, the following pseudo-code shows this algorithm to compute the SVD.

set error tolerance rol
Oc,-1=<a,-,a£> i=12,.,n
Al=A,vi=p
dok=1,2,...
count =n(n—-1)2
doi=12,.,n~1
doj=i+l,..n
Y=< ai" , ajk >
if ¥ < ol then count = count—1

else
) ajk_aik
Y= 2
r o sgn(y)
R +wf1+$1
cost = 1
V1+¢2

sind = ¢t cosd

aik+l ajk+1 aik ajk
v‘_k-i-l vjk+1 = v‘-k vjk

o F _ |cos’p sin%0 ot + [ 2y, cos sine

[coscb sing ]

—sind cosd
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endif
end j

end i

if count = 0 then end iterations

end k
doi=12,..,n
o; =V<a;*, a;° >
a;’
u; = o

end

The last step in the pseudo-code above, namely the computation of Z and U, is
not compute-bound as the rest of the algorithm. Consequently, it is assumed that such
operations are performed in a host processor and no dedicated hardware is introduced

for therm.

In order to perform the rotations in parallel, Brent and Luk [Brent82a] pro-
posed a new scheme; in it, the orthogonalization process is the same above and all
columns pairs are also rotated just once in a sequence of n(n—1)/2 rotations (called a
"sweep'"), but in an ordering different from the classical one. For the case of a matrix

with 8 columns, this ordering would be

step 1:
step 2:
step 3:
step 4:
step 5:
step 6:
step 7:

(1,2), (3,4), (5,6), (7.8)
(1,4), (2,6), 3.8), (5,7)
(1,6), (4,8), (2,7), (3,5)
(1,8), (6,7), (4.5), (2,3)
(1,7), (8,5), (6,3), (4,2)
(1,5), (7,3), (8,2), (64
(1,3), (5,2), (14), (8,6)

The characteristics of this approach are:

up to n/2 orthogonalizations (a step above) can be computed concurrently, be-

cause they are independent

input data for any step depends on the outcome of the previous step
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- if all orthogonalizations are done concurrently and their results are available
simultaneously, a new set of n/2 computations (i.e. a new step) can start im-
mediately after the previous one is done (there are no dependencies among
steps).

To take advantage of these facts, Brent and Luk proposed a scheme with /2
parallel processors, where each one of them performs a complete orthogonalization of
a column-pair; data is exchanged among neighbor processors before a new orthogo-
nalization starts, with a rather simple mechanism. Figure 2.1 depicts the data ex-
change process in this method.

1.2 3.4 56 e & 8 @ n-3n-2 n-t.n
NoxX X
AN /\ o \"\ PN
X e . s h
' \\\ ' N \ |
- )( > s > i
e 2N PN SN RN I
~ X “ K P K d X € v
[ 2,0 3,8 * o o o n-9Sn n-2n-1

Figure 2 1 - Columns Exchange Process

Very little is known about the convergerice properties of Brent and Luk’s
scheme [Brent82a). To enforce convergence, they adopted a threshold approach by
associating with each sweep a threshold value ¢4 ; when making the transformations of
that sweep, rotations are omitted if

<a,-k,ajk>

a,-" a.jk

< th (2.22)

that is, columns which are already orthogonal to each other, or their normalized inner
product is small, are not rotated further. Their method enjoys ultimate quadratic con-
vergence and numerical experience suggests that six to ten sweeps are required to
compute the decomposition [Brent82a].

As each processor is in charge of rotating a column-pair, it must perform the
following operations:

i Computation of Inner Product among both columns

ii. Computation of Angle for Rotation
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-

k+l k+1 k+1 k+1

iii, Rotation of four columns; that is, compute ;" ", ;" ", v;" , V;

; ‘ . k+1 k+1

iv. Columns Norms update; compute ;™" ", O.;

V. Exchange of columns for next orthogonalization between neighbor processors

An initial step is required to compute the norms of the columns of the original
matrix A and to initialize matrices A and V. These operations are outside the loop in
the pseudo-code shown above for the serial approach.

Now that the SVD algorithm has been described, the next step in the analysis
is to look at different implementation alternatives for it, particularly those using the
concurrent computation capabilities available. But first, it is convenient to formalize
the analysis by introducing an algorithmic model for the computation and a methodol-
ogy for the design. These tools can give insight into the characteristics of the algo-
rithm and its suitability for particular implementations. Then, it is convenient to look
into the throughput achievable for the orthogonalization process in different architec-
tures. Those are the subjects of the next chapter.
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CHAPTER 3
ARCHITECTURES FOR THE SVD

In this chapter we present the basic characteristics of architectures for algo-
rithms with concurrent computation capabilities and we discuss how such characteris-
tics apply to the design of a digital system for the SVD. An algorithmic model and a
methodology for the design and evaluation of such architectures is presented and
these techniques are applied in the design of a structure to compute the SVD. In doing
s0, the suitability of the SVD algorithm for concurrent computation is studied and a
scheme to solve the data dependencies in it is introduced.

3.1 Architectures with Concurrent Computation Capabilities

Parallelism and pipelining are two well-recognized methods, which can be
used separately or in combination, to improve the speed of execution of digital sys-
tems. In this section their characteristics are briefly reviewed and a methodology to
design a system which uses them is described. Since the objective is to apply this
methodology to the processor for the singular value decomposition, those aspects that
are relevant to this case are emphasized.

The topic at hand can be considered from two complementary and interrelated
angles. One aspect is the design of algorithms that are suitable for parallel and pipe-
lined implementations, and the other is to design the system for a given algorithm.
The first has been researched extensively, both in its general theory and in the search
for algorithms for specific applications. This aspect is not considered further since a
specific SVD algorithm will be used, to which only minor tuning can be applied to
make the implementation more effective.

3.1.1 Algorithmic Model and Methodology
Algorithm Representation

To design the system for a given algorithm it is necessary to have the algo-
rithm described in a suitable form. A graphical description is used here, in which
nodes correspond to subcomputations and arcs describe the precedences between
these subcomputations. Several models have been used to describe more precisely the
precedences, which can include conditionals and loops [Estri78, Patil72, Peter81].
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For the purposes here, it is sufficient to use AND-OR conditions as presented in Fig-
ure 3.1.

a b a b i ?
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Figure 3.1 - Graphical Descriptian Elements

The primitive subcomputations used in the algorithm can have any level of
complexity. Depending on this level (also called the granularity of the algorithm),
implementations of different degrees of parallelism/pipelining can be obtained. It is
clear that larger concurrency can be obtained for finer granularity, which would indi-
© cate that it is always convenient to consider the representation with the finest granu-
larity. However, this can lead to algorithms with a very large number of nodes, mak-
ing the design of the system complex and unstructured. In such cases many different
problems would have to be faced simultancously, such as communications between
the nodes, the control of the sequencing, the synchronization of nodes, and their indi-
vidual design; the complexity of ail these issues is directly related to the number of
nodes in the algorithm.

Therefore, it is convenient to resort to a more structured top-down design, in
which one begins with an algorithm consisting of a relatively small number of nodes
and then refines each of the nodes into subalgorithms. This top-down approach has
the limitations that it is possible to loose some potential concurrency and that the
characteristics of each of the nodes (execution time and number of operation units
needed) are not known until the node has been implemented. The alternative of first
implementing the nodes and then going up one level (bottom-up approach) is not to-
tally satisfactory either, because the use of parallelism and pipelining in the imple-
mentation of the node depends on how critical its execution time is in the overall al-
gorithm. Consequently, the design process consists of several iterations until a satis-
factory solution is found. Each of these iterations would be bottom-up and would con-
sist in modifying the implementation of those nodes that have been identified as criti-
cal in the previous iteration, and then going up to the next level. At a particular level
in a design iteration the algorithm is specified by a graph whose nodes are indivisi-
ble.
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Number of Instances

An important parameter that influences the design methodology: presented is
the number of times M that the algorithm is executed on independent data. In fact,
the pipelined implementation is effective only in cases in which this number is
significant with respect to the number of stages in the system. On the other hand, if
the algorithm is computed just once only parallelism is effective to reduce the compu-
tation time. Since the SVD process is composed of repeated invocation of orthogonal-
izations, the emphasis here is on implementations for significant number of instances.

The simplest model is to assume that all instances are independent. However,
this does not capture the characteristics of the SV algorithm and therefore is not
adequate for comparisons of implementations of this algorithm. A better model for
this case is to assume that the M instances are divided into groups of r instances
each and that instance p of group ¢ is dependent on instance p of group g-1, as il-
lustrated in Figure 3.2.

Group -/

Instance & :\\\
®
[

Group & o
Instance » @ -]

Figure 3.2 - Dependences among Instances

Types of Operation Units used in the Implementation

With regards to the alternative implementations, it is also important to specify
the set of operation units that can be used. Two extreme possibilities exist, namely to
require a different type of operation unit for each node (with no sharing among nodes)
or to require just one type of operation unit that can perform any of the nodes and,
therefore, can be shared among nodes. The effectiveness of the alternative implemen-
tations is completely different depending on which of these possibilities is chosen.
The analysis here considers that just one type of operation unit is used (since this is
the case for the SVD implementation described later). However, in a second level of
refinement the operation units themselves are composed of suboperations, each of
which is performed by a different suboperation unit. Consequently, this case will be
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considered briefly later.

Model of the Algorithm and the Implementation
From the previous considerations we can formalize the following model:

» The algorithm is described by a directed graph in which the nodes are indi-
visible for that level of the implementation.

« Just one type of operation unit is used to execute all nodes. Node i is
specified by its execution time ¢ and by the number of operation units required ;.
More in general, the node is specified by #;(j) corresponding to its time of execution
in an implementation with j operation units (denoted as (time/units)). This implies
that for each node there might be more than one alternative implementation, with dif-
ferent characteristics.

For realizable implementations it is necessary that for k> j,
£0) 2 530) 2 L6() 3.1

that is, an increase in the number of operation units reduces the computation time of
the node at best proportionally to the number of units.

In many cases, because of the algorithm characteristics, there might be imple-
mentations for a given node which are not convenient. These correspond to cases
where the use of some specific number of operation units, say /4, does not reduce the
computation time with respect to another implementation with fewer units. That is,
the time #;(k) is equal to the time of the implementation that uses a number of opera-
tion units g such that g<h. Consequently, some idle operation units exist. The
corresponding function #;(j) has the form shown in Figure 3.3.

+ The algorithm is executed for M instances. These instances are divided into
groups of r, and their dependencies are described by Figure 3.2.
Performance, Cost Measures, and Design Objective

Alternative implementations have to be compared using performance and cost
measures. The following measures are used here:
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Figure 3.3 - Node Time vs. Operation Units

« Time of execution of the computation ¢ (for M instances).
+ Number of operation units N.

« Speedup SU = ref / t. The reference implementation (whose time of execu-
tions is #,,r )} depends on the particular comparison being made. A particular reference
is the completely-sequential implementation, which uses only one operation unit
that is shared among all nodes.

N,
» Efficiency E = irg e .
ey t N
» Hardware Utilization HU = —&1—- Z here £; is the time that the units
. i
N; are used.

Note that if the reference implementation is the completely sequential, the
speedup of any alternative is less or equal to N and its efficiency is less or equal to 1.

In terms of these measures, the main objective of the design can be described
as selecting the implementation that for a given speedup (or computation time) has the
largest efficiency (or uses the minimum number of operation units). Of course, other
factors are also important in the selection of the best implementation. These factors
include interconnection complexity, data bandwidth requirements and expansibility,
among others.
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3.1.2 Characteristics of Replicated, Parallel, and Pipelined Systems

The characteristics, performance and cost measures of implementations of the
algorithmic model are considered now, in which the concepts of replication, parallel-
ism, and pipelining are applied. We first analyze the use of only one of these ap-
proaches in a given system and provide a comparison of the resulting measures. Then
we look at systems which use a combination of approaches.

Sequential Implementations

The sequential implementations are considered first, since they form the basis
for some of the others. An implementation of an algorithm is sequential if only
one node {(subcomputation) is executed at a time. To obtain this type of implemen-
tation the graph of the algorithm can be transformed by adding precedences to obtain
a total ordering of the nodes.

Note that this definition, in the context of the model, permits the use of several
operation units in a sequential implementation, since individual nodes can use more
than one unit and the nodes are indivisible. That is, there are a series of sequential im-
plementations using different number of operation units. We call #.,, (/) the execution
time of the sequential implementation that uses j operation units, and attach similar
qualifiers to the other measures. The implementation that uses just one operation unit
(i.e. the completely sequential implementation) plays a special role as reference and as
the basis for some implementations.

The following expressions describe the measures for the sequential implemen-
tations. The execution time for the M instances is

e (D =M T 1)

The speedup with respect to the completely-sequential implementation is
teq (1)
Leeg U)

SUsea () =

The efficiency with respect to the completely-sequential implementation is

t.\'eq ( 1)

Eet ) )
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Replicated Systems

For the purposes here, a replicated implementation of an algorithm per-
forms several instances of the computation simultaneously, using identical and
separate hardware resources (processors) for each instance. Consequently, the
approach is effective only when several independent instances have to be computed.
Because of the dependencies between instances assumed in the model, the number of
instances executing simultaneously should be less or equal to r, the number of in-
. stances of a group.

If the hardware required to process an instance (a processor) is replicated P

- times, the execution time of the M instances is

l—M 1P ]tseq(j)
M

since the instances are performed in sets of P, excepting the last set which might be

smaller than P. Note that the last instances in a group may be computed simultane-
ously with the first ones in the following group.

forP <r

trep G ,P) = [MIP V(teeg G VM) =

In particular, if P =7 then all instances in a group are processed at once and

Useq ()

r

e Ur)=

The speedup and efficiency with respect to the completely-sequential imple-
mentation are given now. The speedup is
tseq(l) _ l'seq(.j) tseq(]-) M
tepUP)  LepUP) tieqG)  IMI/P]

SUrepU’P)= SUseq(j)

and the efficiency,

zseq(l) _ r.'.'eqv(j).r'. tseq(l) - MiP
b UP)IP  trpGP) P taag() ] TMIP]

EpUP)= Eoeq ()

For the important case in which M >r, these expressions become
SU,ep P ) =P SUsey ()
and

Erep(j’P) zEseq )
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Consequently, the maximum speedup is 7 SUs,, (/). This is obtained with »
replications and the efficiency for this case is the same as for the sequential imple-
mentation which is being replicated. That is,

.SUrep(jsr) =r SUseq(J)
and

Erep(.j’r) =ES£q(j)

Parallel Systems

For the purposes here, a parallel implementation of an algorithm uses the
parallelism present in the graph to perform independent nodes concurrently.
Consequently, the time of execution of the sequential implementation might be re-
duced. This reduction may require additional operation units.

The speedup depends on the characteristics of the graph and on the scheduling.
To obtain the maximum speedup for a given number of operation units an optimal
schedule has to be devised. In general, the determination of this schedule requires an
exhaustive search, so several suboptimal heuristics and upper and lower bounds have
been developed [Gonza77, Ramam72a].

The following bounds are useful for the comparisons developed later. A lower
bound on the execution time with j operation units is

tparU) 2 Z ti(j)

crit.path

Note that the critical path (not only its length) might vary with j.
Consequently, an upper bound on the speedup (with respect to the completely

sequential case) is

X )

SU : s._i_.....__
par(]) z 1,(7)

crit path

Because of relation (3.1), this speedup is bounded by
SU parU) 57
and the efficiency by
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E.(j)<1

Without performing the actual scheduling it is not possible to know whether
the parallel implementation (with j operation units) is better than the corresponding
sequential one.

In this analysis it has been assumed that the time of execution is composed
solely by the execution time of the subcomputations. In a practical implementation,
there might be data transmission times and access to other shared elements, such as
datapaths and memories. This might add significantly to the total execution time. In
such cases, it is necessary to include these times in the evaluation and the shared
resources in the scheduling algorithm.

Pipelined Systems

A pipelined implementation of an algorithm is characterized by the fact that
several instances of the computation (on independent data) are executed simultaneous-
ly. For this, the algorithm is divided into stages, and the system is implemented so
that different instances are executed simultaneously at different stages. An exten-
sive literature exists on pipelined implementations. A reasonably complete treatment
is given in [Kogge81].

Since only the use of pipelining (without the parallelism of the graph) is con-
sidered for the moment, the algorithm to use should be sequential. Furthermore, since
each of the nodes of the graph is viewed at this point as indivisible, a stage is com-
posed of one node or of a set of consecutive nodes. This partitioning is done so that
the resulting stages have a (approximately) uniform delay since this is necessary for
an adequate flow through the pipeline. Additional delays might have to be added to
some stages to make the delay uniform. Also, the partitioning into some specific
number of stages might not be possible.

If the resulting system has S stages, up to S instances can execute simultane-
ously. Therefore, the number of stages is limited by the number of independent in-
stances. For the computation model considered here (instances divided into groups
and dependency between corresponding instances of consecutive groups) the pipeline
is kept full if

S<r

2%



In terms of the number of stages S and the stage delay g, the time to execute
M instances is

tpipe = [S + (M—l)] Ig

The speedup of a pipelined implementation, with respect to the completely
sequential case, is

- tseq(l)
SUpipe = [S + (M-1)] £

This can be written as

teen (1
U, = M seq (1)
PPE S+ M-1) S

To compute the actual speedup it is necessary to determine 7g. To do this, the
sequential implementation has to be partitioned. Assuming that the implementation
which uses j operation units is utilized for the partitioning and that this can be done
perfectly (i.e. into stages of uniform delay), then

 tsegU)
sU) ="
~ and the speedup is
. MS (D) MS .
SUpipe (,5) = —— = SUseq )

S+ M-1) t,,(j)  S+M-1)

To compute the efficiency we need to determine the number of operation units.
This number is larger than that of the corresponding sequential implementation since
now the units are not shared among stages. Consequently, the total number is the sum
of the units used in each stage. The simplest possibility is to use the same number of
units per stage, say j, which results in an efficiency with respect to the completely-
sequential case of '

M

Fore US)= 500

Eseq )

The efficiency of the sequential implementation is reduced as a result of the
startup time of the pipeline.
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Of special interest is the case in which M > . In such case, the speedup tends
to

SUpipe U:5) =S5 SUsey(j)
and the efficiency to
Epipe(j,s) = Escq(j)

These expressions are identical to those obtained for replicated systems.

However, implementations with larger efficiencies might be obtained if the
stages of the pipeline use different number of operation units. This is the case when
there is at least one stage that is formed of nodes for which

L) =15()) for h < j

In such case A operation units (instead of j) can be used for that stage without
changing its delay. This results in a reduction of the total number of operation units
and, therefore, in an increase of the efficiency. This can be extended to cases in which
it is possible to reduce the number of units for several stages. To make best use of this
possibility it is convenient to group the nodes into stages so that all nodes of a stage
"require” the same number of operation units (of course these nodes also have to be
consecutive in the graph).

_ The pipelined implementation requires staging registers between stages. The
addition to the cost and to the execution time that these registers produce is assumed
to be negligible. This is true if the cost and delay of the operation units are much
larger. Also, the control of the system becomes somewhat more complex since each
stage has to be controlled independently and the delays of the stages have to be made
equal.

We are concerned here only with simple pipelines in which all instances use
the pipeline in the same fashion, that is the data goes through the same path and the
delay of the stages is data independent. More complex situations are discussed in
[Kogge81]. Also presented there is the case in which stages are used several times by
the same instance. We do not consider these cases since they do not occur in the im-
plementation of the SVD.
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3.1.3 Comparison between Replicated, Parallel, and Pipelined Implementa-
tions.

The use of these techniques is compared now in terms of the measures dis-
cussed before and of the design objective of obtaining a given speedup with the
highest efficiency. At this point, we assume that only one of the techniques is applied
in a particular implementation. This is not realistic but gives insight into the con-
siderations, discussed later, used to determine an adequate combination.

To illustrate the choices that can be made regarding implementation, we con-
sider the algorithm described by the graph in Figure 3.4, which is executed for
M = 104 instances and with dependences in groups of » = 8. In this graph, each node
has several alternative implementations with different number of operation units, as

indicated by the descriptors x/y next to each node (x: computation time, y : number of
units).

M=l O
o 2) 271,172
g/ 2/1 g/ 1
472 /2 3/2
/% 23
2/4 145

173 L

sy comnp hime N2 umts)

Figure 3 4 - algorithm with Concurrent Computation
Capabihities

Note that this algorithm is characterized by diversity in the computation times
for the nodes and by some implementations for nodes which are not advantageous
since they do not reduce the time (i.e. node 3, case 2/5 with respect to 2/4). The com-

putation time for the completely sequential implementation, used later as a reference,
is 20M.
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M >r
Implementation " Speedup Efficiency Speedup Efficiency
Replicated M __su..() MIP_ g () | PSUG) | Ewl)
W seq W seq seq seq
Paraltel depends on graph and | depends on graph | SU,,(j)S/ | Epr()S1
scheduling and scheduling
o MS . M . , .
——— . . E
Pipelined sr o= V) | 5o B | S Vsl | Eugl)

Table 3.1 - Speedup and Efficiency for Systems with Concurrent Capabilities

Table 3.1 presents the expressions for speedup and efficiency for the three
cases described before. Since for a given speedup the alternative with the largest
efficiency is desired, from the expressions the following situations are identified:

-
»

a.- For speedups up to 7, replication of the completely-sequential implementation
is the best (since it has an efficiency of 1). For M large (M >>r), pipelining
can have similar characteristics if perfect pipelining is achieved, but it might
not be possible to do so for some values of S since there might be no suitable

partition.

This situation is illustrated in Table 3.2 for the algorithm presented in Figure
3.4. The table shows the speedup and efficiency for both approaches, replica-
tion and pipelining of the completely sequential implementation, and also the
nodes assigned to each stage in the pipelined case. As expected, replication
alone has speedup P and efficiency 1, while pipelining is less effective for this
example since perfect pipelining is not achieved. Furthermore, pipelining with
more than three stages is not advantageous since the throughput does not in-
crease, as a result of the long computation time of node 3. Consequently, only
implementations with up to three stages are considered.
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PorS | SUmp(P) | Evep(LP) | SU,ipe(15) | Eyipe(1,S) | Nodes per stage

1 1 all nodes
1.98 0.99 125|134
245 0.82 124135

00 Lh o BN =
[ T O T R N
[ S S TP P G

Table 3.2 - Replication and Pipelining of Completely
Sequential Implementation

For larger values of speedup it is necessary to select, among the following al-
ternatives, the one that produces the highest efficiency. The choice depends
on the characteristics of the graph.

. Replication of the sequential implementation that uses j operation un-
its. The number of operation units is Pj and the maximum speedup
that can be obtained under maximum efficiency conditions is rj. How-
ever, the efficiency is usually less than 1 because of the degraded
efficiency of the corresponding sequential implementation.

Table 3.3 depicts this alternative for the algorithm above, for different
values of j and P, up to the maximum replication P =r =8 defined by
the dependences between groups of instances. For every value of P,
the efficiency is constant and equal to the efficiency of the correspond-
ing sequential implementation.
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J | SUnp(Go1) | SUp(Go2) SUrep (i 18} | ErepU,P)

2 1.82 3.64 - 14.56 0.91
3 2.50 5.00 - 20.00 0.83
4 2.86 . 592 -- 22.88 0.71
5 333 6.66 - 26.64 0.66
8 4.00 8.00 -- 32.00 0.50

Table 3.3 - Replication of Sequential Implementations

Pipelining the sequential implementation that uses j operation units.
This produces an efficiency equal to that of the sequential implementa-
tion if j operation units are used in all stages, and a better efficiency
otherwise. Consequently, this approach would be preferred to replica-
tion whenever the efficiency of the pipelined case is high because of
the reduction of the number of units required by some stages.

Table 3.4 shows what is achievable with this approach in the algorithm
used as example. The table also indicates the number of units saved in
each case and the partitioning of the algorithm into stages. For each
stage, the nodes in it and the particular implementation used for each
node are given (i.e. 1(2/3): node 1, with 3 units and time 2).

As depicted in the table, the partitioning of the graph does not always
give perfect pipelining and therefore the efficiency is less than the
maximum, Furthermore, a larger number of stages and units per stage
does not necessarily increases the speedup and efficiency; only some
implementations are advantageous.
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§ SUplpt(J ’S) Epipg U’S) N.mvcd Nodes per Stage

2 3.30 0.83 0 1(2/2) 2(1/2) 5(3/2) | 3(4/2) 4(1/2)

3 4.90 0.32 0 1(2/2) 2(1/2) 4(1/2) | 3(4/2) | 5(3/2)
2 495 0.82 0 1(1/3) 2(1/2) 5(2/3) | 3(3/3) 4(1/2)

3 6.54 0.82 1 1(1/3) 2(1/2) 4(1/2) | 3(3/3) | 5{3/2)
2 495 0.83 2 102/2) 2(1/2) 4(1/2) | 3(2/4) 5(2/3)

3 6.54 0.82 4 1(2/2) 2(1/2) | 3(3/3) | 4(1/2) 5(2/3)
4 9.71 0.88 5 102/2) | 2(1/2) 4(1/2) | 3(24) 1 5(2/3)
2 6.60 0.83 P 1(1/3) 2(1/2) 4(1/2) | 3(2/4) 5(1/5)

3 9.80 0.82 3 1(1/3) 2(1/2) | 3(24) | 4(1/2) 5(/5)
2 6.60 0.83 8 1(1/3) 2(1/2) 4(1/2) | 3(2/4) 5(1/5)

3 9.80 0.82 12 1(1/3) 2{1/2) | 3(2/4) | 4(1/2) 5(1/5)
5 19.20 096 20 1(1/3) | 2(1/2) | 3(1/8) | 4(1/2) | 5(1/5)

Table 3.4 - Pipelining of Sequential Implementations

Using the parallelism of the graph is the only of the three approaches
that can be effective if there is only one instance. The speedup that is
obtained depends on the graph and on the scheduling. The efficiency
also depends on these factors, and is less than one in most cases.

The use of this approach in the case of multiple instances is suitable if
it provides the desired speedup at an efficiency that is larger than any
of the other cases.

This scheme is described in Table 3.5 for the graph above. A schedul-
ing was performed for each value of j, which resuited in some imple-
mentations where nodes are executed in parallel (marked with *), The
table also indicates the implementation chosen for each node.
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J | SUpe() | Epal) Implementation of Nodes
1 2 3 4 5

2 1.82 0.91 22 12 4R 172 32
3 2.50 0.83 V3 12 33 172 23
4 13 0.83 13 12 24 21* 3¢ =2
5 4.00 0.80 3 12 24+ 21* 15 =2
8 5.00 0.63 3 12 18 172 5% =1

* : nodes in parallel

Table 3.5 - Implementations Using Parallelism of the Graph

The values for speedup from the different implementation alternatives dis-
cussed up to now are summarized in Figure 3.5. Note that continuous curves are
shown but only discrete points exist. In the pipelined case, only those implementa-
tions which are convenient have been plotted (i.e. those which give higher speedup
with a larger number of units).

From the figure it can be inferred that, for the algorithm given in the graph in
Figure 3.4, replication of the sequential implementations with one and two units offer
the best efficiency. For larger speedups than what is achievable with such schemes,
pipelining offers better efficiency. This corresponds to the maximally pipelined imple-
mentations. Further speedup increases than the maximum obtained with pipelining
are possible through replication of sequential implementations with three or more un-
its, but with lower efficiency.

The next step is to study how these characteristics are affected when more

than one of the concurrency techniques is exploited simultaneously. Such issue is dis-
cussed now.
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Combination of approaches

In an implementation it is possible to combine two or all three of the ap-
proaches discussed previously. The characteristics of these combinations are
described now and the corresponding performance and cost measures are evaluated.

Replication and pipelining

In this case the pipelined processor is replicated. Because of the necessity of
having enough independent instances, the total number of processors and stages com-
bined is limited so that

PS £r

The following two situations arise:

. Replication of the pipelined implementation that uses one operation unit

' (completely-sequential case) in each stage. This alternative produces a speed-
up of PS and has efficiency 1 for large M and values of § that result in perfect
pipelining, or lower efficiency otherwise. Under perfect pipelining conditions,
it is equivalent in speedup and efficiency to the implementation that uses only
replication. Therefore, it is only effective when the number of processors re-
quired for the replicated implementation (up to r) is large and produces reali-
zation problems, such as interconnection among the processors.

For the example above, this approach corresponds to replications of the pipe-
lined implementations in Table 3.2, as long as P S £r. The possible imple-
mentations are shown in Table 3.6. For each case, the efficiency is the same as
the corresponding single pipelined processor, and the speedup is a multiple
also of the corresponding pipelined implementation.

. Replication of the pipelined implementations that use more than one operation
unit in some stages. These implementations increase the speedup of the single
pipelined processor and maintain its efficiency. They are therefore adequate
for higher speedups than that available with one (pipelined) processor.
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S| P=1|P=2{P=3|P=4] Epipipe(S.P)

2] 198 396 | 594 | 7.92 0.99
3| 245 | 49 - - 0.82

Table 3.6 - Replication of Completely-Sequential Pipelined Processor

For the algorithm above, this scheme corresponds to replication of the alterna-
tives in Table 3.4, as long as P § <r. The possible implementations are
shown in Table 3.7

S | jor | P=1 | P=2} P=3 | P=4 | Epppipe(S.P)

2 4 3.30 6.60 | 990 | 13.20 0.83
3 8 6.54 | 13.08 - - 0.82
4 1 11 9.71 | 1942 - - 0.88
5 20 ] 19.20 - - - 0.96

Table 3.7 - Replication of Pipelined Processor with more than one Unit

Replication and graph parallelism

In this implementation a processor which uses graph parallelism is repli-
cated. It provides an increase of speedup with an efficiency equal to that of the im-
plementation using only graph parallelism. Usually this efficiency will be significantly
smaller than 1. Consequently, this scheme is only effective if the speedup cannot be
achieved using a more efficient technique.
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For the example above, this approach is the replication of the entries in Table
3.5. The corresponding speedups are increased and the efficiency of the implementa-
tion without replication is preserved. Note that this efficiency is low for larger
number of units. This approach provides a wide range of speedup values. The max-
imum speedup achievable in the example with this scheme is

SUreplpar (P =§, f = 8) =40.0
and the corresponding efficiency is

E pipar®P =8,j = 8) =0.63

Pipelining and graph parallelism

In this case one or more of the stages of the pipeline uses graph parallel-
ism. The partitioning into stages has to be modified (with respect to the implementa-
tion using pipelining only) to obtain stages of equal delay.

This scheme might be effective in increasing the efficiency of the pipeline
since it can help to get stages of equal delay. The number of stages is defined by the
graph of the algorithm. Nodes may be moved (preserving the dependences, of course)
to achieve stages of (approximately) equal time. The smallest stage time possible is
defined by the node with the longest computation time.

For the example considered above, Table 3.8 shows implementation alterna-
tives for different stage times. Only two and three stages exist, given the characteris-
tics of the graph. This table indicates the nodes in each stage and their corresponding
implementations, with the same notation as Table 3.4; it also indicates which nodes in
each stage are computed in parallel (marked with *) or sequentially (those not
marked).
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S| ts | Jor | SUppUsS) | EpiplisS) Nodes per Stage

217 3 2.83 0.94 1(3/1) 2(2/'1) 4(21) | 3(4/2) 5(3/2)
3 5 4 392 098 1(3/1) 2(2/1} 1 3(4/2) 4(1/2) | 5(5/1)
2] 4 6 4.95 0.83 1(2/2) 2(172) 4(1/2) | 3(2/4) 5(2/3)
2 3 8 6.60 0.83 1(1/3) 2(1/2) 4(1/2) | 3(3/3)* 5(3/2)*
2| 2 11 990 0.90 1(1/3) 2(1/2) | 3(2d)* 4(2/1)* 5(23)*
3 1 20 19.61 0.98 1(1/3) | 2¢1/2) | 3¢1/8)* 4(1/2y* 5(1/5)*
Table 3.8 - Pipelining with Parallelism from the Graph
All three approaches

A possible application of this alternative is to replicate the processor obtained
by the use of a combination of pipelining and graph parallelism.

For the analysis of its effectiveness the same considerations apply as those dis-
cussed in the section on pipelining and graph parallelism and on replication and pipe-
lining.

For the example under discussion, the pipelined implementations in Table 3.8
are replicated as long as P § < r. Table 3.9 shows the possible implementations. The
system with the highest speedup obtained with this approach has the following param-
eters:

SUS =3,P =2, jiy =20)=39.22
and

E@S =3,P =2, j, =20)=0.98

This implementation of the algorithm offers a high speedup with high
efficiency.
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2.83 5.66 849 | 1132 | 094
392 7.84 - - 0.98
4.95 690 | 14.85 ; 19.80 | 0.83
6.60 | 13.20 | 19.80 | 26.40 | 0.83
11 990 | 19.80 | 29.70 | 39.60 | 0.90
20 | 19.61 | 39.22 - - 0.98
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Table 3.9 - Implementations with All Techniques

The results obtained in implementations with more than one concurrency tech-
nique for the example considered are summarized in Figure 3.6. From this figure it is
concluded that, for this algorithm, a combination af all techniques is better than the
other approaches, excepting in one point (at j=20). Furthermore, it can be noticed that
due to the discrete nature of each curve, some implementations of replicated
processors(i.e. rep /graph (2), rep /graph (3)) are also convenient.

Figure 3,7 shows the largest speedup achievable for different number of opera-
tion units, using either one concurrency technique or a combination of them. This
graph also shows the curve of optimal efficiency (i.e. E =1). This figure shows that
the selection of a particular implementation depends heavily on the characteristics of
the algorithm and the number of units available.

3.1.4 Pipelined Operation Units

As mentioned before, the algorithmic model considered here uses the same
type of operation unit for all nodes. Consequently, pipelining the processor requires
the replication of the operation units, at least one per stage. This results in implemen-
tations with efficiencies that are at most equal to 1.

In contrast to this there are algorithms that use a different type of operation
unit for each of its nodes. In such case, the sequential implementation cannot share
operation units among nodes and therefore requires at least one operation unit for
each node. Pipelining this implementation is done by adding staging registers but not
operation units. Consequently, the efficiency of the pipelined implementation is
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larger than 1 since there is a speedup without an increase in the number of operation
units. For a number of instances that is much larger than the number of stages, the
speedup and the efficiency are both equal to the number of stages. Note that this
higher efficiency comes from the increased number of operation units required for the
sequential implementation and not from a reduction in the number of units in the pipe-
lined case.

Moreover, for this algorithmic model, the implementation by replication still
has an efficiency of at most 1. Therefore, in such case pipelining is clearly superior to
replication.

This type of pipelining is used in the implementation of the SVD for the reali-
zation of the operation units themselves. This assumes, of course, that the nodes in
which these operation units are used require the execution of more than one operation
per instance.

Summary

This section has presented the characteristics of algorithms with concurrent
computation capabilities and how these can be utilized in an implementation, using
the different techniques suitable for such applications. Performance and cost measures
were defined and general characteristics in the evaluation of different alternatives for
algorithms- was presented. These approaches are now applied to the design of a digital
system to compute the SVD, where similar analysis and evaluations will be performed
for the particular architectures devised.

3.2 SVD Computation Time and Design Options

As described before, it is necessary to know the basic characteristics of an al-
gorithm and its computation time in a sequential implementation to serve as a refer-
ence system against which alternatives using ~oncurrency are compared. This issue is
studied first for the SVD algorithm and then the analysis moves into concurrent
schemes for it. .
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3.2.1 SVD Computation Time

It was shown in the previous chapter that the SVD computation according to
Brent’s version of Hestenes’ method consists of performing successive orthogonaliza-
tions in a predetermined order called a sweep, in an iterative manner. Due to the con-
vergence properties of the method [Brent82al, a worst case situation of ten sweeps is

normally assumed; each sweep consists of %(n — 1) column orthogonalizations.

Therefore, the SVD computation time #p can be stated in terms of the number of
orthogonalizations to be performed as

tD=10%(n—1)to=5n(n—-1)to (3.2)

where 1, is the time for each orthogonalization. This expression indicates that the
SVD computation corresponds to the repeated invocation of a particular algorithm, in
this case the orthogonalization process.

A description of the SVD algorithm using the top-down decomposition metho-
dology stated in section 3.1 is given in Figures 3.8 and 3.9. Figure 3.8d shows a
dependence graph for the orthogonalization process, as described in Chapter 2. The
figure illustrates the different subfunctions involved in such process and their relation-
ships. The columns-exchange subfunction has been excluded from the orthogonaliza-
tion graph because it can be done at the same time as the data transfers, and data
transfers may be done concurrently with the computations, in no extra time.

Figure 3.9 shows dependence graphs for each of the subfunctions in the
orthogonalization process, providing a second level of detail. These graphs allow to
infer information regarding the computation time for the orthogonalization process,
the concurrency available for the computation and how to exploit it.

3.2.2 SVD Computation Time in a Completely-Sequential Implementation

If the SVD algorithm described in Figures 3.8 and 3.9 is computed in a
completely-sequential implementation, that is one where the arithmetic operations are
performed using only one arithmetic unit such as those commercially available (i.c.
general-purpose floating-point co-processors or other similar device), the SVD com-
putation time is dependent on the orthogonalization time; in turn, this last one is the
sum of the times of its different subfunctions. For an m x n matrix, the orthogonali-
zation subfunctions times are

Inner Product: iy, =M gy +(M=1) gy
Computation of Angle: to =3 *t2an 200t 2 sqr00
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Frocess
Columns Rotation: t, =42m puy +m g4q)
Columns Norm Update: ¢,, =8 .0 +4 sa4

which results in a orthogonalization time of
to =tip +tgti,,tt,
=(Om+11),,,, + (5m+5) 444+ Zdh, + 2,q_mo,

In the equations above, #, is the time for the operations of subfunction x.
These expressions are given in terms of the number of operations required.

To get a simple expression, the following assumptions are made:
- the time to perform a multiplication or an addition is the same

- division and square-root are performed in the equivalent of 9 and 12 multiply
times respectively
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These assumptions will be discussed later and suitable reasons for them will
be provided. |

I . " 3 " -
Therefore, in :a completely-sequential implementation the orthogonalization
computation time in térms of multiply (or add) times becomes

to=14m +58 [ops] 3.3)

Substituting (3.3) in (3.2), the SVD computation time becomes
tp=5n(n-1)(14m +58) [ops] (3.4)

=70n (n—-1)(m+4) [ops]

This expression and the underlying hardware (one arithmetic unit) will be used
as the reference system to evaluate the performance of the architectures discussed
later.

3.2.3 Suitability of SVD Algorithm for Concurrent Computation

A completely-sequential implementation for the SVD algorithm will result in a
rather slow process, as the computation time above suggest; for instance, 20 by 20
and 40 by 40 matrices imply a decomposition time defined by 638,400 and 4,804,800
floating-point operations, respectively. If a lower computation time is desired, it is
possible to exploit the inherent concurrency that exists in the orthogonalization pro-
cess and the fact that this process is performed many times on independent data.

From the discussion in the previous subsection, considering the dependence
graphs in Figures 3.8 and 3.9 and the number of instances the orthogonalization is
computed, we infer that the algorithm has characteristics which make it attractive for
the different concurrent implementations described before, using one or more of those
techniques at several levels. Each technique by itself provides feasible alternatives. It
is possible to replicate a sequential implementation of the algorithm, to use the paral-
lelism of the graph or to combine both. There is also possibility for a pipelined
design; the orthogonalization process may be partitioned into stages and each one of
those stages can operate over a different pair of columns. Furthermore, it is also pos-
sible to combine all these different approaches at once.

The concurrency for any scheme derives from the fact that pairs of columns
can be processed independently. The existing dependencies are solved at the columns
exchange process, before new orthogonalizations start. However, there is a limit to
this independence which places a restriction on the maximum concurrency possible in
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the computation of the SVD. As described in Chapter 2, at most n/2 orthogonaliza-
tions may be in execution at any given time. Any successive one requires the result of
some of those n/2 pairs of columns. This implies that the instances of the computa-
tion are divided in groups of size r=n/2, with dependences between consecutive
groups.

However, any new orthogonalization depends on the outcome of two previous
specific ones (two columns are required); that is, actually the dependences are on
two instances of the previous group instead of one as was assumed in the algo-
rithmic model. This issue is discussed in the next section.

The linear systolic array [Brent82a] has been proposed for the SVD; in it
there are n/2 processors and each one of them is used to perform the orthogonaliza-
tion of one column pair. Figure 3.10 shows its structure; it corresponds to replication
of a sequential implementation of the algorithm. Data dependencies are solved impli-
citly at columns exchange time, because all columns are available to start a new
orthogonalization. Additional processors are useless, as there is no more concurrency
to exploit through this approach.

l
T4

|
]
|

Figure 3 10 - Fully Replicated Architecture
(Linear Systatic Array)

A pipelined-only system is also an alternative for this computation. It will be
shown later that it is possible to have up to (n/2 - 1) stages in a pipelined architecture;
more stages are useless, due to the data dependencies in the algorithm. Figure 3.11
shows a scheme for this system.

Between this two extremes, namely fully-replicated and pipelined-only sys-
tems, there is a whole set of possible options by combining the different techniques. It
has been stated that their combination might provide better efficiency, so it is con-
venient to look into it. The algorithm is attractive for both types of designs and also
for combined versions, that is one with P replicated processors each having § stages,
where the stages might also exploit further concurrency. In such case, a "processor”
is the hardware required to compute an instance of the problem, or in other words, to
perform a complete orthogonalization on a pair of columns. This is the topic of the
next section; the fully-replicated and pipelined-only versions are actually just particu-
lar cases of the general scheme presented there.
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3.3 A Replicated/Pipelined System for the SVD

Pipelining a fully replicated system to compute the singular value decomposi-
tion (i.e. one with n/2 processors) is not adequate for the same reasons that make
more replicated processors useless: the throughput would not increase as there is no
more concurrency to exploit. Recall that the computation is performed at most in
groups of r =n/2 instances. If the n/2 processors are plpehneq then only one stage
in each processor would be in use at any time and the others stages would be idle;
consequently, the throughput would remain the same.

However, the orthogonalization algorithm is a sequential one. Therefore, less
replication of pipelined units might be a reasonable architecture, which could have the
advantages of both replication and pipelining. Consequently, it is of interest to study
the throughput achievable in a system with a given number of replicated processors
and stages per processor. This structure is called here a P/S system, which stands
for a system with P processors and S stages each, as illustrated in Figure 3.12.

However, one problem exists in such scheme: the data dependencies intro-

duced by the columns-exchange process. This issue is studied before the throughput
characteristics are discussed.
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3.3.1 Columns Exchange Process in a Parallel/Pipelined System for the SVD

The algorithmic model described in section (3.1) considers that the M in-
stances of the computation are divided into groups of r instances and that there exists
a dependence between the same instance in two consecutive groups. As a result of
that, a system which uses replication and pipelining is required to satisfy the relation
PS <r.

In the computation of the SVD each instance corresponds to an orthogonaliza-
tion, which uses two columns of the matrix. The number of instances M corresponds
to the number of these orthogonalizations required for convergence, as inferred from
equation (3.2). The group size r corresponds to the number of successive independent
orthogonalizations, which is the number of orthogonalizations in one step in a sweep;
in turn, this number is defined by the number of columns in the matrix such that
r=n/l

However, the SVD algorithm is characterized by the fact that each new in-
stance depends on the outcome of two instances in the previous group instead of only
one as the model assumed, and the dependence is not identical for every instance.
Therefore, it is necessary to study this issue and modify the relation PS <r or
equivalently PS < n/2 accordingly.

In the P/S system, at any given time there are 2PS columns being processed
(two at each stage in each processor); assuming that P < n/2 and that the number of
columns » is a multiple of P, then these columns are orthogonalized in sets of 2P as

shown in Figure 3.13.
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If the columns are exchanged as described in Chapter 2 [Brent82a], the follow-
ing alternative situations arise regarding this process and the data dependencies for
each step in a sweep (the outputs of the system are the outputs of the last stage in each

processor):

a.- The outputs of the system correspond to the 2P leftmost columns of the ma-
trix, i.e. @, aq,...ap. To exchange these columns before performing
another orthogonalization one extra column is required, namely ajp.3, as
shown below (the first row represents the columns placement within the pro-

at a given time

cessors before the exchange, while the second after it is done).

Column a,p_; is not selected at this exchange time while column ajp 5 is the
extra one required. This column a,p ., belongs to the next set of columns be-
ing orthogonalized. Notice that column a; keeps its position in processor 1,

Proc. 1

Proc. P-1

ay [ da ag

- Qapa

- | @2p-s

aip_1  4d2p

Azp3  Aazps2

while all other columns change processor.
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The outputs of the system correspond to 2P internal columns of the matrix,
i.e. they do not contain any of the 2P leftmost or 2P rightmost columns. Ex-
changing these requires one column from the previous orthogonalized group
and one from the next group, as shown below (assuming this is the second
group of 2P columns):

Proc. 1 Proc. 2 Proc. P-1 Proc. P
dapyy  Gopyy | Q2p43  Q2pia | == | Quapa Gapp | Gapy Bap
@ap1 Qapsa | G2p41 G2p46 | = | Baps  fup Qspy A4ps2

Column a 4p_; is not selected at this exchange operation while columns a,p_;
and a,p., are the extra ones required. Column ap_; belongs to the previous
set of columns orthogonalized, while column a 4p 5 belongs to the next set of
columns being orthogonalized. All columns change processor.

The outputs of the system correspond to the 2P rightmost columns of the ma-
trix. To exchange these columns, only one column from the previous group is
required, as shown below. Therefore, this group does not have dependencies
because the data required is already available.

Proc. 1 Proc. 2 Proc. P-1 Proc. P’
An-2ps1  Tn-2Ps2 | Ga-2P43  Ga2prea | [Ga3 Gu-gz |Ga-1 Ga
Ay op-3 Auypsd | da—2Pst  Gu2P+6 |7 |[Fa-s Gn Qp3 Gy

Column a,,_sp_ is the one needed at this exchange and it belongs to the previ-
ous group of columns orthogonalized. All columns change processor, except
a,_; which exchanges position within processor P.
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At any given time, the columns-exchange function has to provide P new
columns pairs to start that many new orthogonalizations and keep all processors busy.
Considering case (b) in the discussion above, because it is the most stringent one, it
follows that with the P columns pairs input to the columns-exchange function at any
given time this function can only produce (P —1) new pairs and one of those pairs
uses a column from the previous set of columns orthogonalized. To produce the
remaining column pair, one column from the next set of columns being orthogonal-
ized is required and consequently the generation of such pair should be delayed until
the corresponding column becomes available. But, as stated above, the system re-
quires that P pairs be produced at each exchange time. Therefore, to keep all proces-
sors busy, this missing pair must be produced with data available to the exchange
function in advance to the particular exchange time.

This implies that the P /S system, which has 2PS columns under processing at
any time, will always have data available to process if the number of columns in the
matrix satisfies the relationship

n22PS +2 (3.5)

because, besides the columns within the system, at least one extra pair must always be
available to solve the dependencies at exchange time.

Notice that equation (3.5) modifies the corresponding expression for the algo-
rithmic model given in section 3.1 regarding the number of instances required to keep
the replicated pipelined processors busy, but the group size regarding dependences in
the computation is still » =n/2. In terms of » equation (3.5) becomes

PS+1sr (3.5b)

As an example, n =26 satisfies this relation for a P =4/5 =3 system. In such
case, columns are processed as shown in Figure 3.14 (where the double bar separates
different steps in a sweep).
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Processors Input

Processors Qutput

0 1 2 3 4 5 6 7 8
1 9 1011 12|13 14|15 16
217 18119 2021 22123 24
3125 26 1 4 2 6 3 8 1 2 3 4 5 6 7 8
4 5 10 7 12 9 14111 16 9 1011 12|13 14|15 16
5113 18|15 20|17 22|19 24|17 18|19 20721 22|23 24
6121 26|23 25 1 6 4 B|25 26 1 4 2 6 3 8

Figure 3.14 - Starting Orthogonalization Times in P =4, 85 =3, n =26 System

In this figure, step 1 of the first sweep starts at t=0, when four column-pairs
begin the orthogonalization process; other column sets are input at t=1 and t=2. The
situation at t=3 depicts a representative example of the discussion above: the first set
of four columns is available for exchange (at the output of the processors) and there-
fore to start a new step, but it can only produce three new pairs; the missing pair is
obtained using column-pair (25-26), which corresponds to the last pair from the previ-
ous step which has not been orthogonalized yet. As a result of this, four pairs are pro-
duced at this exchange time. Similar situations exist for every exchange time
thereafter, keeping all pipelined processors fully busy.

If n>26 in the example, then when the first group of columns is ready for the
exchange operations (i.e. at t=3 above) there are columns from the previous step still
waiting to be processed; therefore, those columns are used first and there are no limi-
tations in the data input to the processors as a result of the data dependencies in the
exchange process. )

This analysis indicates that the exchange columns function must be able to
store some columns internally to achieve its purpose, as it has to combine data from
different set of columns which become available at different times, the amount of
internal storage and its actual contents will be discussed later.

Notice that no requirement on the data bandwidth for the columns-exchange
process has been stated so far. However, this issue is important and is discussed now.
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In the linear systolic array [Brent82a] the data exchange process for a matrix
with n =40 is as shown in Figure 3.15; this figure depicts the input ordering of
columns in the first row and the corresponding output ordering in the second. In this
scheme, all exchanges are with neighbor processors only so it is very regular, simple
and reduces data communications bandwidth requirements, attractive characteristics
for hardware implementation. To obtain the same properties in systems with fewer re-
plicated processors, it is necessary to assign a special order to the columns within the
Processors.

Figure 3.15 - Columns Exchange for Matrix with 2 =40 in Linear Systolic Array

Figure 3.16 shows this special ordering for a four-processor system and
n =40, which is assumed to have a number of stages such that the relation n 22P5S+2
is satisfied (that is, there are enough columns to keep all processors fully busy and
solve all dependences). Each row in the left side of this figure represents the sets of
columns input to the columns-exchange function; these columns are output from the
replicated processors in the same order. The resulting ordering after the exchange pro-
cess must be as indicated in the right side of the same figure.

Columns Exchange Output
. P3 P4

Columns Exchange Input

P1 P2 P3 P4 P1 P2

16 15|14 13|12 11| 10 91118 13]16 11| 14 91 12 7
17 18|19 20|21 2223 23|15 20|17 22|19 24|21 26
32 31|30 29|28 27]2 25|34 29 (32 27|30 25|28 23
33 34135 36|37 38|39 40({31 36 (33 38|35 40|37 39

Figure 3.16 - Columns Ordering in P =4, n =40 System
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In this scheme, column 1 does not change its position within processor 1,
while all other columns change either processor or position within the same processor.
As a result of column 1 not changing its position, its new companion (i.e. column 4)
requires a special transfer; all other columns change their location in the same
manner, as follows:

- the left columns of P1, P2 and P3 go to the left columns of P2, P3 and P4,
respectively

- the right columns of P2, P3, P4 go to the right columns of P1, P2 and P3,
respectively

- the right column of P1 goes to the left column of P1, while the left column of
P4 goes to the right column of P4

Figure 3.17 depicts these exchanges. Notice that all data transfers are between
neighbor processors, in the same way as in the linear systolic array {Brent82a]. The
dashed lines represent the connections required to exchange columns 1 and 4, while
the solid lines are for all other exchanges.

Figure 3 17 - Columns Exchange Fracess in
# =4 System

The important feature of this scheme is that its behavior is the same for any
number of replicated processors.

The remaining issue to be solved relates to when columns are selected for ex-
change and how many columns must be stored at any time in the exchange logic to
solve the data dependencies in the process. Figure 3.18 illustrates this situation using
again the example with 4-processors and n =40, but including the time when columns
are input to and output from the exchange function. Again, it is assumed that the
number of stages is such that there are columns available to be orthogonalized in-
dependent from the columns-exchange output.
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t Columns Exchange Input Columns Exchange Output
P1 P2 P3 P4 P1 P2 F3 P4

0 2 1 3 4 5 6 7 8

116 15|14 13]12 11| 10 9 4 1 2 6 3 8 5 10
2117 1819 20|21 2223 2418 13|16 11 | 4 9| 12 7
3132 313 29|28 27|26 25|15 201017 227119 24 21 26
433 34|35 3637 38|39 40|34 2932 2730 25|28 23
5 4 1 2 6 3 38 5 10|31 3633 38|35 4037 39
618 13 )16 11| 14 91 12 7 6 1 4 8 2 10 3 12
7115 20f17 22{19 24|21 26|20 111 18 91 16 7114 5

Figure 3.18 - Columns Exchange Process for P =4, n =40 System

In this figure, at t=0 no columns are exchanged since there is not enough data
to produce the four pairs required. At each successive exchange time, a set of
columns is produced using data from the set of columns currently at the input of the
exchange logic plus the last two sets of inputs; actually, one column is used from the
set currently at the input, (2P —2) columns from the previous input, and one column
from the set two time periods before. The only exception is the first exchange for each
step in a sweep, which uses the data from the set currently at the input and the previ-
ous one only.

Therefore, this scheme requires the exchange logic in each processor to store
the last two sets of columns it has orthogonalized; that data plus the set currently at
the input of this logic are required to solve all data dependencies in the exchange pro-
cess.

Summary

This section has shown that, as in a linear systolic array, a P/S system can also have a
columns-exchange process that is simple, regular, and with nearest neighbor commun-
ications, attractive characteristics for hardware implementation. The only require-
ments for such exchange process are to store the columns of the matrix into the pro-
cessors in a particular order, and to provide the columns-exchange logic with memory
to store the last two sets of columns orthogonalized.
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3.3.2 Throughput Characteristics of a Replicated/Pipelined System for the SVD

Given then that n 22PS' +2, (i.e. equation (3.5) is satisfied) a replicated / pipe-
lined system for the SVD is always completely busy. Under these circumstances, the
time for the entire decomposition can be expressed by

N
tp = [S+ [31-1“:5 . (.6)

where
) :  decomposition time
ts :  pipeline stage time
No : number of orthogonalizations to perform
P :  number of replicated processors
h) :  number of stages per processor

The stage time is related to the time for a complete orthogonalization. Ideally,
it should be possible to partition the orthogonalization process into S stages of equal
time, as it would provide the highest throughput for that number of stages. If that is
the case, then

Iy
5= G3.7)

where t,, is the time of each orthogonalization.

Recalling that Ny = 10 —;—(n - 1) and substituting (3.7) in (3.6), the total time

for the decomposition is obtained as

= [—19%5—194(1—%)] o (3.8)
sem-n 1
= [ ps T S)}’O

From this expression it follows that, if it is possible to partition the orthogo-
nalization process into stages of equal length, the total SVD time is related to the pro-
duct PS (the number of replicated processors and pipeline stages), as long as condi-

tion (3.5) is satisfied. The term (1 —%) 1o corresponds to the pipeline latency and is
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negligible when compared to the other term in equation (3.8).

This means that, with n 22PS+2, replicated-only (i.e. S=1), pipelined-only
(i.e. P=1) or combined designs, all with the same value for the term PS, have the
same computation time for the SVD in terms of the orthogonalization time. This is
exactly the same conclusion stated in section 3.1, when the characteristics of replica-
tion and pipelining were studied for an algorithm which captured the properties of the
SVD computation.

The obvious question is how the computation time is affected when equation
(3.5) does not hold. If the number of computing units (i.e all stages in all processors)
is such that n < 2PS + 2, then there will be times when stages are idle because there
is no new data to process. An extreme example is n#/2 processors and S stages: after
the n/2 processors start performing the corresponding orthogonalizations, no more
data is available until the entire pipeline is completely traversed by the data; in this
case 2PS +2 =nS + 2 > n, for any number of stages.

In those situations, orthogonalizations will be started until no more columns
are available. The system will continue performing the computations for those sets of
data but some stages of the pipeline will be idle until data starts flowing out of the last
stage, columns are exchanged, and fed back into the pipeline inputs. This is equivalent
to extending the matrix dimensions such that equation (3.5) holds, i.e. n =2PS +2;
as a result of it, the problem size is extended.

Therefore, once the limiting condition given by equation (3.5) has been
reached, it doesn’t matter how much hardware is introduced in the form of more pipe-
line stages or replicated processors; the time to compute the decomposition is always
the same and the extra hardware is idle part of that time.

An example for the situation described is shown in Figure 3.19, where the
starting times of the orthogonalizations are given for P=4, $=3 and n=20. However,
instead of extending the matrix dimensions as described above, idle times have been
moved around to start the orthogonalizations as soon as possible; furthermore, to sim-
plify the example, the ordering of the columns within the processors is not the partic-
ular one presented before but a simple sequential one. Under these conditions, the
orthogonalizations are started in cycles such as the one shown in Figure 3.19. For the
example considered, the cycle takes thirteen time periods and then repeats itself.
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Figure 3.19 - Starting Orthogonalization Times in P =4, §=3, n=20 System
Including the case for n < 2PS + 2 described above, equation (3.8) becomes
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The last expression in this equation is obtained from the first one by substitut-
ing n =2PS+2. This is an upper bound for #p, because the columns introduced do not
need to be orthogonalized with the real columns of the matrix and equation (3.9) as-
sumes they are. It can be shown that if these extra columns do not take part of the
orthogonalization process (i.e. they are not orthogonalized with the real columns) but
are just idle times introduced for the stages, the starting times for orthogonalizations

produce cycles as in Figure 3.19; these cycles generate an average orthogonalization
. x 2(PS + 1)
timet g = —.

n

If t*o is used instead of z5 then the second expression in equation (3.9) be-
comes

_|10@-nEs+y 1 . n
fD—[ PS +(1 S) to 1fn<?J’S+2,P<2

. '| 3.10)
= [10(,1 - 1)+(1~§)J ‘0

For either expression ((3.9) or (3.10)), when equation (3.5) does not hold the
SVD time is approximately constant, independent of the values for P and S (ignoring
again the latency of the pipeline).

The case P = % has been excluded from the equations above, as it is a special

one. In such situation, all columns are orthogonalized simultaneously and the depen-
dences in the exchange process are solved implicitly. This corresponds to the linear
systolic array, which has already been shown as unable to use pipelining to increase
throughput. The decomposition time in this case is given by the total number of
orthogonalizations divided by the number of processors, which is

" =10(n -1y (3.11)
This is the same value obtained in (3.10), excluding the latency of the pipeline.
Figure 3.20 shows a graph of the throughput for an SVD system in terms of

the orthogonalization time, for different values of # and 1S < n/2, 1< P < n/2 and
as a function of the number of processing units PS. A special entry is provided for

n
= PR for the reasons stated above.
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This graph shows the gain obtained with more processing power in the system,
up to the limiting condition given by equation (3.5). It also shows that, after the
linear systolic array, the next fastest architecture is related to the number of columns
in the matrix. For instance, with n = 16 the best choice is PS =7, which can only be
achieved in a system with one processor and seven stages; with n =20, P§ =9 allows
two options: P =3/8=30orP=9/5=1.

These results could be expected, according to the characteristics for replicated
and pipelined systems presented at the beginning of this chapter. The P/S system
described so far corresponds to the case of replication of a pipelined implementation
of the orthogonalization algorithm. The analysis here has shown that this replication
is possible, because data dependencies can be solved with the columns exchange
scheme proposed.

It was also stated that exploiting the parallelism of the graph for an algorithm
might be convenient, particularly in implementations which replicate a pipelined pro-
cessor as it is the case here. With that approach, the orthogonalization throughput and
its hardware requirements are directly related to how the concurrency in the graph is
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exploited. Therefore, conclusions about the most adequate scheme in terms of actual
speed and resources required for the SVD can only be obtained after the orthogonali-
zation characteristics are studied. That is the subject of the next chapter.
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CHAPTER 4
ORTHOGONALIZATION THROUGHPUT

The previous chapter has shown that the SVD throughput is proportional to the
orthogonalization throughput, becoming necessary to study this last one. This
throughput is directly related to the amount of arithmetic hardware available to com-
pute each of the subfunctions and how those resources are used, because it is possible
to exploit the concurrency in the orthogonalization algorithm. To address these is-
~ sues, this chapter studies the orthogonalization subfunctions. The goal is to provide
the most efficient implementation, with highest throughput, for a given amount of
hardware. Only arithmetic hardware is considered here, because more units of this
kind are needed than other hardware resources (the algorithm is compute-bound), and
consequently they represent the highest cost in an implementation.

The concurrency possible during the orthogonalization process and the pre-
cedences between the different subcomputations have been exhibited in the
corresponding dependence graphs, which are shown again in Figure 4.1.

Of the different techniques described in Chapter 3 to increase throughput in a
digital system, an approach combining those techniques is more adequate for the
orthogonalization process. Two issues indicate that a scheme combining replication,
pipelining and parallelism of the graph is more convenient:

- the orthogonalization algorithm is a sequential one with different requirements
at different steps in the computation, as seen from the dependence graphs

- the computation has to be performed many times with different data.

According to the methodology described before, the subfunctions in the
orthogonalization algorithm are studied first to determine their computation time and
their characteristics towards a pipeline for the orthogonalization (i.e. number of opera-
tion units required for each and their individual throughput). Each stage in such pipe-
line is comprised of one or more subcomputation nodes, which are considered indi-
visible.
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A second step consists in studying the subfunctions, looking for possible im-
plementations of further concurrency within the subcomputations. This might result in
new levels of concurrency, internal to the nodes. Additionally, depending on the
nodes characteristics, it might be convenient to partition certain nodes into less com-
plex ones to have finer granularity in the orthogonalization algorithm. However, the
need for such refinements should arise in an evaluation of an initial architecture, and
their implementations should be part of a bottom-up iteration in the design process.

For this analysis, the hardware is implemented around arithmetic units (AU)
capable of performing one floating-point multiplication or addition at a time. It could
perform any of the two operations or be dedicated just to a particular one. Current
technology developments have made it possible to reach comparable speed for
floating-point addition and multiplication (for 32-bit values around 100 nsec is a
feasible figure nowadays for both operations) [AMDS84, Uya84]. Therefore, the
analysis is done in terms of the number of multiplications and additions, assumed of
equal computation time.

4.1 Computation Time and Throughput for the Orthogonalization Subfunc-
tions

Expressions for the computation time and throughput for each orthogonaliza-
tion subfunction are obtained now, in terms of the number of operations in each and
as a function of the number of arithmetic units required. The results reported here ac-
tually represent two steps in the top-down methodology, because nodes identified as
critical in a first design attempt have been studied further.

4.1.1 Columns Rotations

The computation in the columns rotation subfunction is described by the
corresponding dependence graph in Figure 4.1d. Such graph shows that there is no
dependence between the different operations involved besides what exists in the mul-
tiplication / multiplication / addition process. Unless the full parallelism available is
used, the two sequential steps in this computation are performed over subsets of the
input data, in a pipelined fashion. The fully parallel option is not studied, because its
cost in terms of the number of arithmetic units required is high (12m arithmetic units,
as inferred from the analysis below).

This subfunction is best implemented around G multiplier / multiplier / adder
units (M/M/A), as they take advantage of the concurrency in the node. Therefore, the
architecture for the node is the same as the dependence graph shown in Figure 4.1d,
but with G parallel units only. It becomes one stage of the orthogonalization pipeline,
with an internal pipeline of two stages: a level of multipliers and a level of adders.
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The amount of hardware resources is 3G AUs, as each M/M/A unit requires three
AUs.

The throughput of the node is given by the time required to rotate the four
columns (two from each matrix A and V) with m elements each. The computation
process consists in taking the 4m elements, dividing them into groups of G and pro-
cessing those groups sequentially. The time to perform this computation is
i3%1 (4.1)

z

G

The first term in equation (4.1) represents the time for the 4m elements to
traverse the multipliers in the G units, while the second is due to the time required to
perform the last addition.

The corresponding throughput is
1

T, = 4.2)
4m
G _

because there is no need to wait for one computation to finish completely (i.e. perform
the last addition) before the next one can start. The throughput for the internal pipe-
line is 1, i.e. the time between two successive data inputs is one operation.

4.1.2 Norms Update

‘ This subfunction is a serial set of operations, with some parallelism at each
step. Letting NU represent the number of AUs for it, from the dependence graph in
Figure 4.1c the time to compute this subfunction is

12 if NU =1
(=% 5 if NU=3 (4.3)
4 if NU 25

The throughput of this node is low, as can be inferred from equation (4.'3). To
increase the throughput of this subfunction, a refinement step was applied to it which
showed that it can be divided into any number of nodes up to the total number of
operations in it (assuming that precedences are added to the graph to make it as
sequential as necessary). These new nodes become nodes in the orthogonalization al-
gorithm and therefore they become stages in the orthogonalization pipeline. The
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resulting computation time depends on the partition into the new nodes and the
number of AUs in them.

Assuming that only one AU per node is used, then the partitioning is applied
to a completely-sequential implementation for the node and ¢,, = 12. Therefore, if
S .. is the number of stages for this subcomputation in the orthogonalization pipeline
(or in other words the number of nodes created), the throughput is

1
Tu= (4.4)

12
S

ni

because each new node must correspond to an integer number of operations; the
hardware requirements are § ,, AUSs.

4.1.3 Computaiion of Angle for Rotation

This subfunction is just a sequence of operations, as can be inferred from the
dependence graph in Figure 4.1b. Since division and square root operations are re-
quired in it and as the other subcomputations in the orthogonalization process are
based on fast AUs, it seems proper to use the same high-speed hardware to compute
these two operations through a multiplicative approach. It will be shown later that for
the data format considered here, it is possible to perform them in the equivalent to 9
and 12 multiply times, respectively. This approach reduces hardware diversity while it
provides adequate computation time for both operations.

Under this assumption and from the dependence graph, the time to compute
the angle for the rotation becomes:

tg=47 (4.5)

The throughput for this subfunction is also low and it can be improved by ap-
plying the same refinement technique used for the norms update node, namely divide
this subfunction into any number of stages or nodes up to the total number of opera-
tions, with one AU per node. If Sy is the number of nodes or stages created, then the
throughput T g is

1

Ta= 4.6
9 P (4.6)
Se

and the hardware requirements are S g AUs.
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The norms update and angle computation subfunctions have similar properties
regarding their capabilities to be partitioned into new nodes, which become stages of
the orthogorahzatmn pipeline. If both subfunctions are combined into one, the total
granularity of the resulting node is higher, with the same serial dependence. There-
fore, grouping them provides better resolution for the partition into stages or

refinement process.

Let the two subfunctions combined have the following parameters:

Semu : number of stages in the resulting subfunction
foma © computation time for the resulting subfunction
Tome : throughput for the resulting subfunction stages

The computation time for the two subfunctions combined is the sum of the in-
dividual subfunctions values so that

Lo = 12+47=59 (4.7)

The hardware requirements are one AU per node or stage with a total of Sgy,,
AUs and the throughput for the new nodes is

1
Totme= (4.8)
59 ,

S O/nu

This expression corresponds to the throughput obtained when the operations
are assigned to new nodes or stages, such that each stage has an integer number of
operations. For most choices of the number of stages the partitioning is not perfect
and delays have to be added to some stages so that all of them have equal latency.
Also, for Sg,, large (i.e. Sgu, > 10) the partition into certain number of stages does
not increase the throughput, again due to the need to have an integer number of opera-
tions per node and because the resolution in the partitioning is smaller (i.e. for both
S omy=10 and § g,,,,=11 the throughput is 0.166 or, in other words, there are six opera-
tions in each stage). This drawback is stronger for larger number of stages.
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4.1.4 Inner Product

The inner product computation, with respect to the dependencies, is 2 mixture
of the characteristics described for the other subfunctions: multiplications are in-
dependent but additions are not. There are several approaches for this unit’s architec-
ture [Cimin81, Swart78], particularly when all the concurrency in the dependence
graph is not exploited since it might be too expensive. Three schemes are presented
here, which take advantage of the concurrent capabilities in the computation.

Inner Product Computation with Multiplier/Adder Units

This scheme applies pipelining to the subfunction by dividing the input data
into several subsets and performs the accumulation of each subset in Multiplier /
Adder (M/A) units; after this process is done, the values obtained are added together
using either the same adders in the M/A units or different ones. Figure 4.2 shows a
dependence graph for this scheme. Pipelining is used for the addition part while paral-
lelism is possible by having several M/A units and combining their results as needed.

, a8y, 8 .~

X e o o (’-‘5

IRG (;{)
. N /f,

Figure 4.2 - Dependence Graph for Inner Product
with M/74a Units

If the same adders in the M/A units are used to reduce the partial summands
after all multiplications have been performed, then no extra hardware is needed be-
sides the M/A units themselves. In such case initially there is an internal pipeline of
two stages with stage time of one operation and later only additions are performed in
a tree reduction fashion, but using the same adders.

If there are I <m/2 M/A units, the execution time is:

m
Lp1 = {'}‘

+ [logz 1] +1 if 1< % (4.9)
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This expression is obtained as follows:

- [m/I'] + 1 represents the time to compute m multiplications in / units plus the
accumulation of those products

- ‘-logz I 1 represents the time to reduce the outputs of the / units to one.

For I > m/2, the hardware utilization is low. More than half the columns ele-
ments are used in the first multiply time, so in a second only some multipliers would
be required. Furthermore, the adders needed at later steps are less than / /2. Although
the throughput would be higher, the efficiency would be low and that is undesirable
for the purposes pursued here. Therefore, this variation of the scheme is not con-
venient and will not be considered further.

For the orthogonalization pipeline, this scheme is one stage with throughput

L ifr <2 (4.10)
m 2
H + foga]

as a new inner product can start while the last accumulation of the previous one is be-
ing computed. The hardware requirements are 2/ AUs.

T,

1=

Inner Product with M/A Units and Extra Adders .

If extra adders are provided to perform the reduction of summands (instead of
using the ones in the M/A units after multiplying the last subset of input data), it is
possible to have two stages in the orthogonalization pipeline: the first one performs
the accumulation of partial results in the M/A units, while the second one reduces
those values to one. The computation time for these stages depends on the number of
extra adders, the number of M/A units and the number of rows in the matrix. The
adequate choice is to have [1/2] extra adders such that the structure of this step is as
shown in Figure 4.3, where the same extra adders are used for the successive reduc-
tion steps. This approach is equivalent to modifying the node by dividing it into two
different ones. These two nodes become stages of the orthogonalization pipeline.

As in the previous case, this scheme is convenient only if / £ m/2. Additional-
ly, a necessary condition for efficiency is mirl+12 ﬁong , otherwise there

would be idle times for the M/A units. With this approach, the time to compute the
inner product is given by
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ty2= [—?—] + [mng] +1 (4.11)

which is the same as 1,,; . However, this scheme allows two stages in the orthogonali-
zation pipeline, with 2I MV/A units in the first stage and [7/2] adders in the second (a
total of [51/21 AUs), providing a throughput for this subcomputation of

S - (4.12)

Loy
1

Tipz

which is defined by the time to perform all multiplications and the corresponding ac-
cumulations in the M/A units. Note that the first stage has an internal pipeline of one
operation stage-time, while the second shares the same units for the different reduc-
tion steps (i.e. it exploits the maximum parallelism of the graph for its computation).

Inner Product Computation with Tree Structure

This scheme is based on a first level of multipliers and then as many levels of
adders as required to perform the reduction of the summands generated by the multi-
pliers. This approach has the same structure as the data dependency in the inner pro-
duct computation. However, implementing the entire tree might be too expensive
given the number of AUs required (m multipliers and m—1 adders). Alternatives with
less parallelism are considered where the number of multipliers is less than m, the
computation process is divided into groups which are processed sequentially and a
final accumulator is included, as shown in Figure 4.4. Because of its structure, this
scheme leads itself to an internal pipeline for this subcomputation.

76



3, a,
OREROROERONEEEOEES
" " o
¥ o &

—_ Jo—

Figure 44 - Inner Product with Tree Structure

Assuming there are F multipliers, the height of the tree L including the multi-
pliers is

L=2+ [logz F-| | (4.13)

This expression is obtained from one level for the multipliers, l-logz F -‘ for the

tree reduction of F summands, and one last level to accumulate the partial results.
Each level in the tree corresponds to one operation.

The time to compute the inner product is

3 = [%l +(L -1 L=2 (4.14)

where

m . -
?l represents the time for all the data elements to traverse the multipliers

and (L-1) is the time required to traverse the adders while accumulating the final
result.

The total hardware required is 2F units: F multipliers, F ~1 adders to reduce
the multipliers output to one, and an extra adder to accumulate previous partial results
if F <m . There are at least two units (one multiplier and one adder) and the tree
height is at least 2.
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This scheme also appears as one stage in the orthogonalization pipeline; its
throughput is

1
n
F

as there is no need to wait for the last set of data in one inner product to traverse the
entire tree before a new one can start. The tree is actually an internal pipeline of L
stages and stage time of one operation.

4.2 Comparison of Throughputs for the Orthogonalization Subfunctions

The previous expressions for the different subfunctions in the orthogonaliza-
tion process are summarized in Table 4.1, in terms of throughput and hardware
resources required. They are also shown in Figures 4.5 and 4.6 for systems with
m=20 and m=40 respectively, with different number of stages for angle computation
and norms update subfunctions combined ( 8/nu ). Although these graphs are shown
as continuous lines, each one of them represents discrete sets of points such that only
their trend and the actual points are meaningful.

An important characteristic of the throughput in the orthogonalization subcom-
putations is readily visible from the figures: their values are quite different for simnilar
hardware resources. Also, any attempt to match them requires a fairly large amount

“of hardware for the rotations subfunction. Some modification to the architecture
described so far has to be devised to improve those characteristics, if at all possible,
as discussed later.

Another issue worth noticing is that, of the three different schemes presented
for inner product computation, the tree structure provides the best throughput for the
same amount of hardware. This result is not surprising, because a tree naturally pipe-
lines the different operations, without introducing delays or idle times. @) Later
analysis will only use this alternative for the inner product node.

With the consideration above regarding the structure for the inner product unit,
the architecture devised for the orthogonalization process is a pipeline with § g/, +2
stages. Its characteristics in terms of throughput and hardware requirements are dis-
cussed in the next section.

(1) At the time of this research, a paper written by Smith and Tong [Smith85] was
published which also states that the tree scheme is the best alternative for a fast inner
product unit.
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Subfunction Throughput Stages Hardware
Required
lop™1 [in AUs
Rotations T, = —I-4Tn1/—GT 1 H, =3G
6/nu Te,u“ = 519 Semu Ha'm =8 B/mu
S oimu One AU per
stage
Tnner Product | T,,; = 1 1| By =2
mir] + |1°ng | 1 M/A units only
TiPZ = L 1 Hipz = i[
mil|+1 2 I M/A units plus
1727 adders
1 -
Tpa= Im/F] 1 Hypy=2F Tree structure,
L 22; F multi-
pliers and F
adders

Table 4.1 - Throughput for the Orthogonalization Subfunctions

4.3 Design Procedure for the Orthogonalization Hardware

The sets of curves obtained in the last section can be used as follows for the
design of a SVD processor with the largest efficiency for a given speed-up:

i. for a given number of columns in the matrix, an adequate combination for P
and S is chosen according to equations (3.5) or Figure 3.20

ii. for the chosen number of stages S, the plot for S g, =5 — 2 is selected in Fig-
ures 4.5 or 4.6, which gives the throughput for the orthogonalization with that
number of stages. This number of stages also corresponds to the number of ar-
ithmetic units for the 6/nu subfunction
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iii. the hardware requirements and throughput characteristics for the other sub-
functions are obtained by finding the intersection between the chosen 6/nu plot
with the other subfunctions curves, and moving from there to valid points on
thos\;: curves.

For example, if m=20 and the selected value for S is 6, then from Figure 4.5
the curve for S g, =4 gives a throughput of 0.067 fop ~11; proper points for the other
stages are

Subfunction Hardware Throughput
Inner Product: 2AUs T, =0050 [op7]
4AUs T, =0100 [op7}]
Rotations: 18AUs T, =0.072 [op7™}]

The final selection should be done using these values and the actual
throughput for the entire orthogonalization is the minimum for all stages. For in-
stance, choosing four AUs for the inner product node gives a final throughput defined
by the 0/nu step, ie. 0.067 [op ~11. With these values, recalling from equation (3.2)
that the orthogonalization algorithm is executed Sn(n—1) times (instances) and as-
suming n =20, then the performance measures are

M= 1900 instances ‘

Iseq = M tg =M (14m + 58) = 642,200 [ops]
tipe = (S +M —1)tg = 1905x 15 = 28575 [ops]
Nyipe = 24 [AUs]

SUpipe (S, N) = SUpipe(6,24) =22.5

EpipeS,N) = SU,,,(6,24) =0.94

where 7, is the computation time in a completely sequential implementation and
thipe 18 the time in the pipelined system.

Alternatively, some reduction in the number of AUs is possible by choosing
only two AUs in the inner product for a final throughput of 0.050 [op '1], although
such selection has a lower efficiency as a result of the extra throughput available in
the other subfunctions but not used.
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This approach can be used to provide the highest throughput for the orthogo-
nalization computation and correspondingly for the entire SVD by selecting the larg-
est number of stages possible, but this might be too expensive for a given application.
It is also possible to obtain lower cost alternatives from the graphs. In such cases, one
can assign a certain amount of hardware for the rotations subcomputation (which is
the one that requires the largest amount) and determine from the graphs intersecting
points with the other subfunctions, using the same procedure as above. Alternatively,
a desired throughput for the computation might be used as the starting point and from
it obtain the hardware requirements for the different subcomputations, again using the
graphs as before.

While these represent valid design alternatives for a SVD processor, the cost
issue necessarily has to be considered. The obvious question is whether these or simi-
lar throughput characteristics can be achieved, but at a lower cost. The next section
looks into that issue, again by exploiting concurrency in the computation. Since the
results of that section modify substantially the data obtained here regarding
throughput and hardware requirements for an implementation, the SVD throughput as
a function of the number of AUs for the cases described above is not presented.

4.4 Pipelined Arithmetic Units in the Orthogonalization Process

The most critical of the orthogonalization subfunctions are the 6/au and the ro-
tations computations since they have the lower throughput characteristics, particularly
the last one. As described above, the 6/nu node throughput is improved by decompos-
ing it into several new nodes which become stages of the orthogonalization pipeline.

The same approach applied to increase the throughput in the 8/nu node is not
convenient for the rotations subfunction, because its characteristics are not adequate
for such an attempt. The reasons for this are

i, it only has two sequential steps (multiplications and then additions), so that as
a maximum there would be two nodes

ii. the amount of data processed in this subfunction is high (4m elements). If the
subfunction is partitioned into new nodes, these new nodes operate on dif-
ferent instances of the computation (i.e. rotation of different column pairs) and
produce many results which would have to be passed from one stage to the
next. Therefore, many staging registers would be required to store the inter-
mediate results for the operations under computation.
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In searching for solutions to the limitations of the rotations subfunction, one
has to look at the characteristic of this subcomputation and the implementation for it
described so far, where replication has been used by duplicating the M/M/A units
(which have some degree of internal pipelining and parallelism). Although this ap-
proach is using both pipelining and parallelism, pipelining has been restricted by the
use of non-pipelined arithmetic units and therefore limited to only two stages in total.
This is not necessarily a requirement, because such units can also be pipelined.

Pipelining floating point multiplications and additions is possible and has been
extensively studied, as discussed later. In such case, the total hardware in a pipelined
unit is the same as for a non-pipelined one except for the addition of staging registers.
Therefore, the efficiency obtained when using pipelined AUs is larger than what is ob-
tained using parallelism, because the amount of extra hardware introduced for the
same speed-up is smaller (i.e. doubling the throughput of one M/M/A unit requires 3
additional AUs when replication is used, while pipelining each of the elements in the
M/M/A unit with two stages produces the same speed-up at the cost of the staging re-
gisters per AU only). This situation was briefly described in section 3.1 and now it is
discussed in detail.

Pipelining the AUs is advantageous as a result of the type of computation per-
formed at the rotations step, i.e. independent successive operations. This approach
can also be applied to the inner product computation, although some special con-
siderations are in order there due to the feedback in the accumulation process.

Pipelined arithmetic units seems to be a rather natural solution for the desire to
improve the throughput of the orthogonalization steps, with less hardware. This is
merely an extension of the architecture described so far, because the best design for
the inner product is already a pipelined tree, while the rotation step has been imple-
mented with pipelined M/M/A units. The suggestion now is to enlarge this feature by
allowing pipelined operators, therefore increasing the number of internal stages in
each subfunction. This corresponds to a new iteration in the design methodology, this
time applied to the individual operators.

The following analysis studies how the throughput is affected when the AUs at
each subfunction are pipelined. New expressions are obtained in terms of the opera-
tion time of regular (non-pipelined) AUs, as functions of the number of pipelined
AUs and the number of stages in them.
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4.4.1 Rotation Subfunction

For the analysis here it will be assumed that the number of stages in both mul-
tipliers and adders is the same, though this is not necessarily a restriction (the actual
parameter of interest is the total number of stages in the M/M/A units).

Given the structure of this subfunction, its throughput is incremented propor-
tionally to the number of stages in the AUs which is restricted only by their imple-
mentation properties. Letting s, represent the number of stages in the AUs used in the
rotation process, the throughput becomes

* Sr
T ,= (4.16)
am
G
and the computation time is
am
. G
= m—— 4+ (25, - 1) (4.17)
S!‘

The hardware requirements are 3G pipelined AUs.

4.4.2 Inner Product with Tree Structure

This subfunction involves a tree of adders to reduce the multipliers outputs to
one, including the accumulation of successive partial results. If the arithmetic opera-
tors are pipelined, the accumulation becomes a problem because of the feedback path.
Kogge [Kogge81] presents a solution for this situation, whose scheme is shown in
Figure 4.7. This structure allows the use of pipelined units of s stages (assuming s is
a power of 2), by decomposing the accumulation process in the addition of groups of
s elements performed two at a time. In such approach, logy s cascaded pipelined
adders compute the addition of each group independently and then partial results are
accumulated in one additional adder, also of s stages. If s is not a power of 2, the
structure is the same shown but the feedback path in the last adder must include a de-

lay block of (27 —s) where g = |logy s | .

Therefore, the one-level accumulation in the non-pipelined scheme is convert-
ed into | |log, 5;, |+ 1| levels of pipelined adders, where s, is the number of stages

in the AUs in the inner product step (it will be assumed again that this number is the
same for both adders and multipliers).
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Figure 4 7 - Pipelined Accumulator

However, the total number of summands must be a multiple of 2 [Iogz s,,,] be-
cause the computation is performed in groups of this size. A matrix whose number of
rows does not satisfy this condition is either extended by introducing rows of zeroes,
or those zeroes are generated by a controller in the inner product unit itself. This res-
triction may be stated as

my =b 2 I-logz S‘P] , b integer (4.18)

where my;, is the number of rows for the inner product computation.

In terms of number of internal AU stages, the new inner product tree height is
L*= [[long-‘+1]sip+ [1+ IVIngsip.[]Sl'p (4.19)

where the first term represents one level of pipelined multipliers and "logz F -1 levels

of pipelined adders to reduce the summands to one, while the last term corresponds to
the accumulation process. This expression may be rewritten as

L® = [ [logz F-‘ + [logz Sip ] + 2} Sip (4.20)

The time to compute an inner product, in terms of the operation time of non-
pipelined AUs, now is
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mi, L*
. —F— +(L -1
r = 4.21)

S;

T =75 (4.22)
mip
l F l

The total hardware for this subfunction now is 2F + {logz s‘-p-‘ pipelined

and the new throughput is

AUs.

Consequently, in both the rotations and the inner product subfunctions the
speed up is proportional to the number of stages in the AUs. The penalty in extra
hardware requirements is internal to the AUs and consists only of the registers re-
quired between the stages. Considerations about the maximum number of stages and
clock frequency for these units will be discussed later.

4.4.3 Rotation Angle and Norms Update

As seen in Figure 4.1b, the angle computation includes two divisions and two
square-root operations which are being implemented through a multiplicative ap-
proach. It will be shown later that this multiplicative scheme has two parallel multipli-
cations in its dependence graph which can also be pipelined. One pipelined AU allows
to compute division in 6 multiply times and square-root in 9, as will also be shown
later; two pipeline stages are enough for these two operations. Then, adding the times
for the operations in the graph in Figure 4.1b, the angle computation is performed in
the equivalent of 35 multiply times.

The norms update subfunction can also take advantage of pipelined AUs and
reduce its computation time by allowing the parallelism existing in it to be computed
through pipelining. One device with three stages allows to compute this subfunction
in the equivalent to 5 multiply times, as it can be inferred from the corresponding
dependence graph.

Therefore, the © and nu subfunctions combined are computed in the equivalent

of 40 multiplication times, with only one pipelined AU with 3 stages (note that only
two stages are actually needed for the angle part). In other words
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t*oma =40 , 1AU, 3 internal stages (4.23)

This subfunction can also become several stages in the orthogonalization pipe-
line, same as in the case with non-pipelined AUs described before. Each stage per-
forms part of the computation with its own arithmetic unit. Letting S oy TEPrEsent the
number of stages, the corresponding throughput is given by

1
40
N O/nu

T oy = (4.24)

and the hardware requirements are S g;,,;, AUs.

4.5 Comparison of Throughputs with Pipelined Arithmetic Units

The new expressions obtained above are summarized in Table 4.2. The
corresponding throughput graphs are shown in Figure 4.8 and 4.9, for m=20 and
m=40 as in the case for non-pipelined AUs.

Step Throughput Hardware
Required
lop™!] [in AUs]
Rotations T = o H, =3G
"~ TamiG] "
* 1
Angle/Norms Update | T g/, = p Homu = S oinu
0
N O/nu
S-
Inner Product T ., = d H., =2F + |logy s;
ip ip B2 Sip
m,-p IF
log; s,
mi, = b 2[ ’ 'P.I zm

Table 4.2 - Throughput of the Orthogonalization Subfunctions

with Pipelined AUs

38




T »10 -2

0 m=20
300 | ,
/ Si '/3 Sp2 /
280 '7' / ;e
Sip=d / S
i e
260 / / 2.7 Sadru=10
240 e -
] sip=t Ve 7
S Ve
220 / Vs
4 s 7 sofnu=8
200 - /7 )

/ Sr:ﬁ y //_,
P ’/
1897 / / - // So/ nu=7

160 ’ <
-1 ,/ -
Sr=4 7 So/nu=6

140 // / / So/nu=3
120 4 /// -
100 P So/nu=4
// // Sr=2 / So/mu=3
&0 | // /// / / / - So/nu=2

40 | /s r=1

// // So/ny=t
20 /'

30

|

lade]

Figure 4.8 - Orthogonalization Subfunctions Throughputs with
Pipelined AUs for m=20

89



T

210-3

430
Sip*S/ / / f/ m=40
420 /
) Sip=4 /
Sip= .
390 ! Sip2
260 —
/ So/mu=14
330 4 /
/ /
4
300 4
/ 4
270 - / s
/ /’/ /
240 - Slp— So/nu=10
210 / / - So/nu=8
180 / / Sr=s - So/’nu—?
150 _ / / // prd 7 So/n=6
Sr=4
So/mu=5
A ——" _
- So/ny=4
20
’ / //// / So/nu=3
60 - / // / /
//// Sr=t / S0/nu=2
30 A ___,_,.-—-—-—"’-’ So/nu=}
-
—
] I { 1 ' ! | b i H ! : i .
2 4 13 8 1Q 12 14 16 g 20 22 24 26 28
Jaus]

Figure 4.9 - Orthogonalization Subfunctions Throughputs with

Pipelined AUS for m=40

90



Some features of the plots are:

- the values for s, and s;, range from 1 to 5; for these, both values of m satisfy
equation (4.18), except m=20, s;,=5. The maximum number of stages per AU
chosen is discussed later and proper reasons for it are given

- the entries for one AU in the inner product plots were obtained independently,
because the tree assumes a minimum of two levels and two AUs

- as stated before, some values of Sg,,, are not advantageous because they do
not increase the throughput (i.e. S g,,,=9 with respect to S g/,,=8).

For a given number of AUs, now there are more intersecting points between
the curves for the different subfunctions than with non-pipelined AUs, which implies
more possible alternatives for the design of the SVD processor. Furthermore, similar
throughputs to the cases with non-pipelined AUs are achieved with less hardware, as
might have been expected. These intersections include high cost options, those with
higher throughput, and others less expensive.

As an example of the gains achieved with pipelined AUs, from Figure 4.8 we
infer that it is possible to obtain a similar throughput to the case presented with non-
pipelined units (ie. Ty = 0.063[ops ~11) but with only seven units instead of 24
(Semu=Hem =3; H, =3, 5, =5; Hyp, =1, 53, =3). Therefore, the same speedup in
the computation achieved there (i.e. SU =22.5) now implies an efficiency £ =3.2.
Indeed, this is an attractive gain. The upper bound for the speedup improvement is
the number of stages in the AUs.

In the next chapter, we study the throughput of the whole computation for al-
ternatives with different cost. In doing so, we provide insight towards the selection of
specific implementation alternatives.

Summary

In this chapter, we have studied the characteristics of the orthogonalization
subfunctions in terms of throughput and arithmetic hardware requirements. It has
been shown that significant gains are attainable with an architecture for the orthogo-
nalization algorithm which exploits pipelining up to the maximum possible, using this
technique at several levels. When pipelining reaches its limits (imposed either by im-
plementation issues or by the algorithm) then parallelism of the graph is used, creat-
ing a system which combines pipelining and parallelism. Therefore, the architecture
devised for the orthogonalization computation is a multilevel pipelined system, with
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parallelism at certain stages.

The resulting architecture is not surprising if one considers the issues dis-
cussed in section 3.1, which stated that using pipelining and graph parallelism might
be effective (as is the case here) in increasing the efficiency of a pipeline since it helps
to get stages of equal delay. Actual efficiency characteristics for particular implemen-
tations will be discussed later.

A methodology has been presented to design the multilevel pipeline, which
uses the data for each subfunction obtained in this chapter. Such methodology allows
to obtain the highest throughput system (which is also the most expensive one), but
also allows to design lower cost alternatives with lower throughput.

The next step in the design of a SVD processor consists to use the information

obtained here to actually implement it, which requires to consider also other issues
such as memories, control hardware, etc. That is the subject of the next chapter.
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CHAPTER 5
DESIGN OF A DIGITAL SYSTEM FOR THE SVD

The expressions derived in the previous chapter allowed to obtain architec-
tures and the corresponding throughputs for the different subfunctions in the orthogo-
nalization process. This information is used now to study alternatives for a digital
system to compute the SVD. First, the procedure used here for the design of such
system is described and then suitable architectures are chosen for schemes with twen-
'ty and forty columns. These systems are evaluated in terms of the performance meas-
ures defined in Chapter 3 and also compared with linear systolic array architectures.
Further details on the hardware for the chosen architectures are also discussed.

5.1 Design and Evaluation of Architectures for the SVD

The design procedure used here for a system to compute the SVD starts with
the information regarding the throughputs of the orthogonalization subfunctions and
the architectures for these subcomputations. Such architectures are inferred from the
corresponding graphs obtained in the previous chapter, with a procedure as described
in section 4.3. However, instead of using that approach to obtain only one alternative,
hardware requirements and throughput for the orthogonalization process implemented
with different number of stages are obtained. For each number of stages considered,
the orthogonalization plots are searched for configurations with the largest efficiency
for each of its subfunctions.

The architectures resulting from the procedure described above are combined
with equation (3.9) or equivalently with Figure 3.20 (these give the SVD throughput
in terms of the orthogonalization throughput), and used to obtain the characteristics
for systems with one or more parallel processors and with different number of orthog-
onalization stages (P/S systems). The procedure at this step consists in determining
from equation (3.9) the parameters corresponding to each P /S system considered, and
computing the throughput and hardware requirements for the P/S systems from those
parameters and the orthogonalization hardware requirements obtained before.

The characteristics obtained for the systems studied are summarized in tables,
where each row corresponds to configurations with a given number of stages and dif-
ferent number of parallel processors. These values are also plotted as curves for dif-
ferent number of parallel processors, with the number of stages as a parameter.
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Through a simple comparison, the resulting graphs allow to determine the best archi-
tectures for the SVD computation in terms of highest throughput for given hardware
TeSOUICes.

Alternatives with distinct cost characteristics are chosen from the graphs ob-
tained above. The resulting systems are evaluated further using the performance and
cost measures defined for these purposes in Chapter 3. With this evaluation, it is pos-
sible to state conclusions regarding the most adequate alternative for the implementa-
tion of a digital system for the SVD.

5.1.1 Alternatives for 20-by-20 and 40-by-40 Matrices

Following the procedure outlined above, digital systems to compute the SVD
for matrices with m=n=20 and m=n=40 are studied now. The corresponding data is
shown in Table 5.1 and Table 5.2. The information for these tables is obtained from
the graphs for the orthogonalization in Chapter 4 and the combination of those values
with equation (3.9) as described above. Although possible to include entries for every
number of stages, some of these are not considered because their efficiency charac-
teristics are not adequate (i.e. 9 stages for the 6/nu subfunction has the same
throughput as 8 stages, as shown before).

The tables give the hardware requirements and the throughput achieved in sys-
tems with up to three parallel processors. Further replication of processors is not con-
sidered, as it provides little throughput improvement with high hardware cost. Some
entries in the tables are not included for the same reason (they correspond to cases
where n << 2PS+2). Tables for linear systolic arrays which use the same techniques to
improve throughput (i.e. pipelined AUs) are also included. @

These values are plotted in Figure 5.1 and Figure 5.2. The graphs have exclud-
ed some points from the tables, because they are not attractive alternatives (they do
not offer significant gains with respect to other points, or equivalently little extra
hardware added to them provide large throughput gains).

Figures 5.1 and 5.2 indicate that, for throughputs higher than what is achiev-
able with replication of a completely sequential implementation for the algorithm, one
pipelined processor is the most adequate alternative for a SVD processor. It provides
the highest throughput for a given number of AUs, higher than what is obtained with
more parallel processors or with the linear systolic array architecture. The characteris-
tics of such systems are evaluated in detail in the next section.

(1) The orthogonalization time in the systolic array is the sum of the times for the
different subfunctions, as given by equations (4.17), (4.21) and (4.23)
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These results are not surprising if one considers the characteristics of the com-
putation for the SVD algorithm as described in the algorithmic model in Chapter 3. It
was shown there that for algorithms as the SVD it is more efficient a scheme combin-
ing all three approaches to exploit concurrency in a digital system, through replication
of a pipelined processor which exploits the parallelism in the graph for the algorithm.
The results obtained here are simply an example of those assertions.

8 S;P H‘P 5, H,, He,tu Ho TS to TDI 10_6
P=1 P=2 P=3
[AUs] [AUs] [AUs] | [op™1 | lop] | fop™1 | lop™1 | [op7']
3 1 1 2 3 1 5 0.025 120 13.2 263 395
419 2 1 4 3 2 6 0.050 20 264 52.6 60.7
511 3 1 3 6 3 10 0.072 70 376 68.3 704
61 5 1 4 6 4 11 0.100 60 5279 81.0 83.2
7113 4 5 6 5 15 0.125 56 65.7 87.6 89.6
8113 4 4 9 6 19 0.143 56 75.2 88.4 90.2
9| 4 4 5 9 7 20 0.167 54 87.7 924 940
104 4 4 4 12 8 24 0.200 50 956 | 1002 | 1020
12115 5 5 12 10 27 0250 48 1013 105.2
i6 ]| 4 6 5 18 14 38 0.333 48 103.1 106.3
§p . stages in inner product AUs Soma : Stages in O/nu subfunctions

Hy, : number of AUs in inner product Hg,, : number of AUs in O/nu subfunctions

5, : stages in rotations AUs Hoyme = S gimu
H, : number of AUs in rotations unit Hy @ number of AUs per processor
Ts : orthogonalization throughput
S : number of stages per processor 1o : orthogonalization time
S=Sam+2 Tp : decomposition throughput

Table 5.1.1 - Characteristics of Parallel/Pipelined System for m=n=20
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Sea | Ho {H | G | fam | & to | Tpxl10™®
lop] | lopl | lop] | [op) | [op™1
1 1 10 39 58 240 337 15.6
1 2 20 20 41 120 181 29.1
1 3 30 20 40 80 140 373
1 6 60 7 39 40 36 61.2
2 1 10 20 42 120 182 289
2 3 30 10 41 40 91 57.8
2 6 60 5 39 20 64 822
3 1 10 i4 40 81 135 39.0
3 3 30 14 40 27 81 65.8
3 6 60 7 39 14 60 87.7
4 1 10 11 40 60 | 111 474
4 K) 30 11 40 20 n 75.2
4 6 60 5 39 10 54 97.5
5 1 10 10 40 48 98 54.0
5 2 20 7 40 24 A\ 75.6
5 3 30 7 40 16 63 82.0
5 6 60 5 39 8 52 101.2

S.e .  Stages in systolic array AUs

Table 5.1.2 - Characteristics of Linear Systolic Array for m=n=20
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S || 5 H, 5, H, How || Ho T, to Tpx 107
P=1 P= P=3
[AUs] [AUs] [AUs] | [op™1 | lop] | [op™"1 | [op™1 | lop™']
3] 2 1 4 3 1 5 0.025 1 120 3.2 6.4 9.6
41| 4 1 4 6 2 1 0.050 80 6.4 12.8 19.2
5113 4 4 9 3 16 0.072 70 9.1 18.3 274
6 (| 4 4 4 12 4 20 0.100 60 12.8 256 38.5
71l 5 5 5 12 5 22 0.125 56 16.1 321 434
Bl 3 6 5 15 6 27 0.143 56 18.4 36.8 439
G 4 6 5 18 7 31 0.167 54 213 42.6 457
10 [{ 4 6 5 21 8 35 0.200 50 25.6 48.8 49.6
1215 7 5 24 10 41 0.250 48 32.1 51.2
16 1] 5 9 5 33 14 56 0.333 48 427 51.8
2s | 1 |[5]| 4 || 2 79 | 0500 | 44 | 557 | 570
42 11 5 19 5 96 40 155 1.000 42 59.6
Sip @ Stages in inner product AUs Seom © Stages in 8/nu subfunctions
H;, : number of AUs in inner product Hy,, : number of AUs in 8/nu subfunctions
5, 1 stages in rotations AUs Heomua=S ormu
H,. : number of AUs in rotations unit Hg : number of AUs per processor
Ts @ orthogonalization throughput
8 : number of stages per processor tp, . orthogonalization time
S=Sgn+2 Tp : decomposition throughput

Table 5.2.1 - Characteristics of Parallel/Pipelined System for m=n=40
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sa | H H | teme | & to | Tpx107®

{op] | lop] | [op] | lop] | [op™")

20 719 58 480 | 617 42
60 | 40 40 160 | 240 10.6
120 14 39 80 | 133 19.3
180 10 39 56 105 244
20 { 40 42 240 | 322 79
601 20 40 80 | 140 182
120 10 39 40 89 28.8
180 7 39 28 74 347
20 27 40 160 | 227 11.0
60 § 27 39 56 | 122 21.0
120 7 39 28 74 347
180 5 39 19 63 40.7
20 | 21 40 120 | 181 14.1
60 | 21 39 40 | 100 25.6
120 5 39 20 64 40.1
180 4 39 14 57 4.2
20 18 40 96 | 154 16.6
60 18 39 32 89 28.7
120 5 39 16 60 428
180 3 39 11 53 484

h h th o & b b B W W W W R R RN R e e e
OO W e DO W e OO WD = DD W = WO W e

5., ¢  Stages in systolic array AUs
H,: number of AUs per processing element

H :  iotal number of AUs

Table 5.2.2 - Characteristics of Linear Systolic Array for m=n=40
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5.1.2 Architectures for the SVD with Highest Throughput

For. the cases studied here, namely matrices with twenty and forty columns,
the suitable choices for designs with the highest throughput are

m=n=20case: one processor, 12 stages in total
27 AUs with 5 stages each
tp = 10.000[ops ]

m=n=40 case: two processors, 12 stages each
82 AUs with 5 stages each
tp = 19600[ops ]

In the case for m=n=40, the selection above indicates two processors instead
of one as the previous analysis had stated. Actually the best alternative uses one pro-
cessor as expected, with 22 stages, which can be inferred from Figure 5.2, The
throughput for such system is higher than what is obtained for the two-processors al-
ternative (although not much) and it requires less hardware (three AUs less). Howev-
er, it will be shown later that the two-processors scheme selected above can be ob-
tained as an extension of the architecture chosen for the m=n=20 case, becoming a
good example of expansibility for the system. Therefore, it has been selected for
those characteristics.

The largest systems in terms of processors and stages such that the criteria im-
pesed by equation (3.5) is satisfied (i.e. the number of columns is greater than 2PS+2)
have nine stages in the orthogonalization process. With that number of stages there
are no idle times for the stages as a result of exhausting the columns at the input. But
in such case the 6/nu subfunction does not allow to achieve perfect pipelining. This
subfunction is composed of forty operations which can not be equally divided into
certain numbers of stages, particularly seven as it would be the case. Therefore, some
inefficiency would exist from this source since delays would have to be inserted in

some stages.

Consequently, as the systems selected above have twelve stages, they do not
satisfy the criteria imposed by equation (3.5) and columns will be exhausted at the
processors input, producing idle times for the arithmetic hardware. However, this
number implies ten stages for the 6/nu subfunction and now perfect pipelining is pos-
sible for the orthogonalization process, as can be inferred from equation (4.24) There-
fore, in spite of the inefficiency from having n < 2PS+2, throughput gains obtained
from pipelining into stages of equal length make this scheme attractive.
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Choices beyond the points selected above offer small improvements in
throughput, as the idle times due to both few columns and non-perfect pipelining be-
come more significant.

The systems obtained above and also the linear systolic arrays with a similar
amount of arithmetic hardware are evaluated now, in terms of the performance meas-
vres defined previously. The reference system for these purposes is the sequential im-
plementation with one AU whose computation time was given by equation (3.4),
which is repeated here

tseq(,mxn)-—-'IOn (n-1)(m+4) [ops] 5.1
Therefore
Lseq (40 x 40) = 4,804,800 [ops]
feg(20x 20)= 638,400 [ops] (5.2)
and |
Ny (40 x 40)=N,,,(20x 20)=1 [AU] (5.3)

The corresponding performance measures for the indicated systems are given
in Table 5.3. In this table the entries for the linear systolic array with m=n=40 have
been obtained from the graph in Figure 5.2 rather than from an actual design alterna-
tive, because such scheme with an amount of hardware similar to the P/S system is
- not adequate (it implies four AUs per processor and that is not convenient as the AUs
can not be used efficiently in the rotations subcomputation). It is included only to al-
low the comparison with the pipelined processors system. The hardware utilization
for this alternative has not been computed for the same reason.
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m=n=20 m=n=40

P/S System | Linear Array | P/§ System | Linear Array
Computa- i [ops] 10,000 12,196 19608 29412
tion Time
Arithmetic N [AUs] 27 30 82 8O
Hardware
Speec-up SU 63.84 52.35 245,04 163.36
Efficiency E 2.36 1.745 3.00 2.04
Hardware HU 0.77 0.58 0.80 -
Utilization

Table 5.3 - Performance Measures for Highest Throughput Systems

The values for throughput and hardware requirements are obtained directly
from the graphs in Figures 5.1 and 5.2. Computation time is the inverse of
throughput. The remaining performance measures are obtained applying the expres-
sions defined for them in section 3.1.

The computation of hardware utilization requires further explanation. For both
P/S systems perfect pipelining has been achieved and the throughputs of all stages
are identical, which implies that the hardware is fully matched and no utilization de-
gradation arises from throughput differences among the stages. However, the condi-
tion n 2 2PS + 2 is not satisfied as stated before and idle times exist. In those cases,
(2PS+2)—n

2PS +2

putation and therefore it represents the idle time for the hardware. Then HU = 1-it
and such expression has been used in Table 5.3 for the P/S systems.

the ratio it = gives the number of times data is not available for com-

The linear systolic array hardware utilization for m=n=20 is computed dif-
ferently. We may assume that the inner product and the rotations subcomputations use
the arithmetic units fully (actually, there is some utilization degradation because
orthogonalizations are not pipelined and during both the start-up time and the final
steps in these subcomputations the internal stages in the AUs can not be used fully).
In contrast, the §/nu subcomputation does not use all the arithmetic hardware because
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this subfunction is performed in 40 operations time with only one pipelined AU. The
array selected above has three AUSs per processor; therefore, two of those AUs are idle
while the 8/nu subcomputation is being performed. Actually, the utilization is even
lower if those AUs have five stages, because most operations in the 8/nu node are per-
formed with only one or two stages in the AUs.

Neglecting the utilization degradation as a result of not using all the stages in
the AUs, the hardware utilization is obtained using the definition for it as follows

HU

1
syst.array (20 % 20) = N, |:H ip tip + Homu tomu + Hy ‘r]

1
T 30x 63
=0.58

where H, is the number of AUs in subcomputation x.

[30x 7+10x 40+ 30x 16}

Note that the efficiency values in Table 5.3 are larger than 1. This is due to the
utilization of pipelined arithmetic units in the concurrent computation systems, while
the reference one uses just one non-pipelined AU (the cost of pipelining the AUs has
been neglected). Systems with better hardware utilization are discussed later. |

Table 5.3 together with Figures 5.1 and 5.2 indicate that, for highest
throughput in the SVD computation, pipelining is more effective than replication be-
- cause it provides better efficiency. As stated before, these resuits are not surprising
due to the characteristics of the orthogonalization process: the last subfunction in it
demands many arithmetic resources while the first one needs a small amount and the
middle subfunctions require only one AU. A parallel processor doubles the
throughput but it also doubles the hardware required. If the replicated processors have
more than one AU each, they have some inherent inefficiency because the 6/nu sub-
function cannot use the extra arithmetic units. This inefficiency is carried to the repli-
cated processors.

On the other hand, the hardware requirements in the pipelined case are just
what is needed at each stage, such that the efficiency is always close to its maximum.
Furthermore, for larges throughput in the computation, the ©/nu subfunction is
modified by introducing more stages for it and the amount of hardware required to do
that is small; the throughputs of the other subfunctions are increased by increasing the
degree of pipelining within the AUs, which has a lower cost than extra units.
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If all steps in the orthogonalization were of the same complexity in time and
resources required, then parallelism or pipelining would be similar. But in the SVD
case, it is possible to take advantage of the different requirements at each subcompu-
tation by pipelining them as much as possible and only then adding the parallelism
needed. This is exactly the same reasoning behind the conclusions stated in Chapter 3
regarding the efficiency of parallel, pipelined or combined approaches to the design of
a digital system.

Once the limiting conditions regarding number of orthogonalization stages is
reached and the stages have also been extended to their limit (i.e. AUs can not be
pipelined further because of implementation restrictions such as clock frequency or
area requirements in VLSI, and internal parallelism of the nodes has reached the algo-
rithm or implementation limits), only then it is convenient to go to parallel processors
to increase the throughput further.

Note that in the linear systolic array scheme it is possible to obtain a max-
imum throughput higher than what is achievable in the pipelined systems. However,
such maximum requires a very large amount of arithmetic hardware, as the plots
above indicate.

5.1.3 Architectures for Lower Cost Alternatives

For some applications the amount of hardware resources involved in the
designs in the previous section might be too high. It is possible to have schemes with
less hardware and lower throughput if proper points are chosen in Figures 5.1 or 5.2.

Two examples of lower cost alternatives for each matrix size considered in the
previous section are evaluated now: one defined by the amount of arithmetic hardware
required in the smallest linear systolic array (i.e. with one AU per processing element
PE) and one intermediate solution between this minimum and the highest throughput
case studied above. The corresponding data for these examples is obtained in the same
way as for the highest throughput case, namely by reading the hardware requirements
and throughput from Figure 5.1 or 5.2 and the other performance measures are ob-
tained by applying the expressions for them. The results are shown in Table 5.4.

105



m=n=20 m=n=40

PiS System | Linear Array | P/S System | Linear Array
Characteris- P=1,85=6 | 1 AUperPE P=1,8=7 | 1 AU perPE
tics
Computa- tp lops] 18976 18519 62112 60241
tion Time
Arithmetic N [AUs] 11 10 22 20
Hardware
Speedup SuU 33.64 34.47 77.36 79.76
Efficiency E 3.06 3.45 3.52 4.00
Hardware HU 1 1 1 1
Utilization

Table 5.4 - Performance Measures for Lowest-Cost Alternative

As seen from Table 5.4, for the lowest cost linear systolic array (i.¢. only one
AU per processor) a difference arises with respect to the conclusions stated above. In
such case the array does not have the drawbacks in efficiency described above for
parallel systems, because it has only one AU which is used all the time. Furthermore,
in this architecture data dependencies do not exist and parallelism is exploited with
less restrictions. As a result, the linear array achieves larger throughput than the pipe-
lined processor, when the amount of arithmetic hardware is small. But its AUs should
be pipelined. This last fact has not been discussed in the literature up to now, although
it is quite obvious.

These results were predicted in Chapter 3, where it was stated that up to a cer-
tain speedup the best approach was replication of a completely sequential implemen-
tation of an algorithm, with the limit imposed by the algorithm itself. This is exactly
the case here, because the linear systolic array consists of replicating a simple proces-
sor n/2 times, which is the limit defined by the group size in the dependences among
instances of the computation.
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However, for systems with higher cost (i.e. more than one AU per processor)
and larger throughput than the minimum one, the efficiency and hardware utilization
of the linear systolic array are lower than the P/S system, implying that this last ar-
chitecture is more adequate. This fact is illustrated in Table 5.5. Actually, the linear
systolic array advantages exist only for the minimum cost system.

m=n=20 m=n=40

P1S System | Linear Array | P/S System | Linear Array
Characteris- P=1,5=9 | 2AUsperPE | P=1,8=16 | 3 AUs per PE
tics
Computa- tp [eps] 11403 13228 23420 34344
tion Time
Arithmetic N [AUs] 20 20 56 60
Hardware
Speedup SU 56 48.26 205.16 137.89
Efficiency E 2.8 241 3.66 23
Hardware HU 1 072 0.97 0.71
Utilization

Table 5.5 - Performance Measures for Medium Cost Alternatives

5.1.4 Effect of Matrix Dimension on Throughput Characteristics

Another important advantage of the pipelined scheme relates to its capability
to solve problems of a different size than the one for which it was designed, without
hardware modifications. Actually, the pipelined scheme can solve problems of any
size (assuming the memory is large enough to hold the data). Larger matrix dimen-
sions merely represent more data inputs to the system, although the throughput will
decrease correspondingly.
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In contrast, a linear systolic array is only able to compute decompositions for
matrices with a fixed number of columns, unless hardware changes are introcuced
(i.e. adding more processing elements). Only variations in the number of rows in the
matrix are possible, with throughput decrease evidently (assuming again tha: the
memory to hold the data is large enough).

Figure 5.3 shows the throughput variations when the matrix dimensions are
modified, for both P/S systems selected above and also for their systolic arrays coun-
terparts. This figure shows that the decrease in throughput when the number of rows
in the matrix changes is steeper for the pipelined processor system than for the fully
parallel one. This result could be expected, because of the characteristics of the
orthogonalization algorithm, In the pipelined case, when m increases the inner pro-
duct and rotations subcomputations take longer, decreasing the total throughput of the
system. While this extra time is needed by those subfunctions, the 8/nu stages do not
require it and are temporarily idle, decreasing the total efficiency of the system. On
the other hand, the systolic array only extends inner product and rotations computa-
tions times as needed.

The systolic array behavior is also less dependent than the pipelined scheme
when the number of rows in the matrix is smaller than the number for which the sys-
tem was designed, because in such cases the orthogonalization time decreases propor-
tionally (again, inner product and rotations computations take only the time needed).
The pipelined processor can not take advantage of such situation, because now the
throughput is limited by the 6/nu subfunction and the others are idle part of the time.
In this sense, the systolic array is less sensible to changes in the number of rows in
the matrix.

However, the pipelined design accepts any variation in the value of n, the
number of columns in the matrix; furthermore, fewer columns produce larger
throughputs because there are less orthogonalizations to perform. In contrast, the sys-
tolic array can only solve problems of the size for which it was designed or with a
smaller number of columns (with the same throughput). Actually, the systolic array
scheme can solve problems whose size is a multiple of the size for which it was
designed, if the columns ordering and exchange process proposed in section 3.2 is
used. But in such case it becomes a P/S system with § = 1, whose throughput charac-
teristics are lower than other alternatives with larger value of § as the previous
analysis has concluded.

Therefore, the pipelined processor offers more flexibility to changes in the ma-
trix dimensions than the systolic array. This flexibility is more important than the ad-
vantages outlined before regarding changes only in the number of rows. It can be ex-
pected that variations in the problem size affect both matrix dimensions similarly, rul-
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ing out the usability of the systolic array for those applications.

Furthermore, the architecture of the P /S system is such that it is always possi-
ble to add another parallel processor to deal with larger matrices, with the same
efficiency characteristics described above. The implementation of this expansibility
will be described later.

Now that the general architecture, in terms of parallel processors and pipelined
stages, to compute the SVD has been discussed, the next step is to study the actual
hardware implementation. That is the subject of the remaining of this chapter.

5.2 Implementation of a Digital System for the SVD

Given the results obtained in the previous section, it is of interest now to look
into some of the implementation issues in a digital system to compute the SVD whose
characteristics are those just determined. As in any design, important factors at this
time besides what is related to the functional characteristics of the system are, among
others, modularity, expansibility, interconnection complexity, control complexity, and
testability. These implementation issues are discussed now.

5.2.1 SVD System for a 20-Columns Matrix

Figure 5.4 shows the architecture for the m=n=20 case implemented accord-
ing to the conclusions obtained before, namely one processor, twelve stages, and com-
putation time for the SVD of 10.000 [ops]. This figure shows the computing
hardware and the memories existing in the system. The control function is discussed
later.

Components of the System

This system has the following components:

Inner Product Node: A unit with five AUs as shown in Figure 5.5, where
each AU has an internal pipeline of five stages.

©/nu Node: Pipelined unit with ten stages, where each stage has one
AU internally pipelined (with three stages). Further de-
tails for this node are discussed later.

Columns Rotation Node: A unit with twelve AUs, where each AU is internally
pipelined in five stages. The AUs are grouped into pairs
of M/M/A units, as shown in Figure 5.6.
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Internal Memory:

Global Memory:

Exchange Logic:

Multiplexer (Mx):

Operation of the System

Memory to store the columns elements and norms while
they are being used in the computation. It comprises
three blocks: one to store A, one to store V (blocks 1
and 3 in Figure 5.4 respectively), and one to store the
norms (block 2). Each block must hold the correspond-
ing data for as many orthogonalizations as there are
stages in the system (i.e. twelve in this case). Blocks 1
and 3 have the same capacity (2m elements per stage
with a total of 2dm elements) as they have to store the
entire columns for each orthogonalization in execution;
block 2 only stores two values for each orthogonaliza-
tion under computation (the norms of the corresponding
columns, which implies 24 elements).

Memory to store the columns elements and norms not
being processed at a given time, with the same distribu-
tion as the internal memory. The size of these memory
blocks is actually defined by expansibility considera-
tions, which are discussed later.

Logic to perform the columns exchange process, which
places the columns in the global memory in the order re-
quired for the next time they are used in the computa-

_ tion,

2-input, 4-output multiplexer to broadcast sin¢ and cosé
to the M/M/A units.

The operation of this system is as follows: a host processor loads the matrix A
into the system. While this data is being received and stored in the corresponding
memory (block 1 in both internal and global memory), the columns norms are com-
puted and stored in the block of memory for the norms (block 2 also in boti1 internal
and global memory). Simultaneously, the matrix V is initialized internally by setting
it to be a unitary matrix. After data has been transferred completely and everything
has been initialized, the actual decomposition starts to be computed through the itera-
tive orthogonalization process.
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Each individual orthogonalization consists of the following actions:

the elements of the columns-pairs to be rotated (of both A and V) and the
norms of the columns of A are moved from the blocks in the global memory
to the corresponding blocks in the internal memory. The columns of A are
also input to the inner product unit.

once the inner product is computed, the output of this unit and the columns
norms are used to compute the rotation angle (actually sin¢, cos¢ )

the rotations angle values are broadcasted to all M/M/A units in the rotations
stage

the rotations unit also receives the columns elements from the internal
memory, computes the updated ones, and transfers them to the columns ex-
change logic

the exchange logic receives the updated columns and transfers them to the glo-
bal memory in the order required for later computations, after solving the
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dependencies involved

All the process above is done in the twelve stages of the pipeline, so that
twelve sets of columns are under processing at any time.

Data transfers

Data transfers take place at a rate of m for every orthogonalization stage time
(m elements of each column have to be transferred through a data path one word
wide). As a result of the operation described above, the following data movements
occur at every transfer:

a. One element from each of the two columns of A whose inner product is being
computed (i.e. ai",ajk ) are moved from the global memory into the inner
product unit; they are also stored in the internal memory. The elements of
columns of V corresponding to those above (i.e. v,—"‘,vj"c ) are also transferred
simultaneously from the global to the internal memory.

b. One element of each of the columns of A and V which were transferred to the
internal memory §-2 stage-times before (i.e. a*,_,, a* j—ts v"i_,, vk j=ts
t=S—-2 ) are transferred to the rotation unit. These elements correspond to

columns whose rotation angle has been computed and whose norms have also

already been updated.

c. One element of each of the newly rotated columns (i.e. elements of a**!;_,,
a"“j_,, pk+l_ v’“’lj_, ) are moved into the exchange logic.

d. The exchange logic output is transferred to the global memory. This output

corresponds to elements from the newly rotated columns and from columns
rotated in the last two stage times, as described in section 3.3.

Organization of the memory

From the description above we infer that it is neccssary to read from a location
and write to a different one at the same time, both in the global and in the internal
memories. However, there is no possibility. of conflict (contention) for the same
memory location at any reference, as the columns accessed are entirely different.
Furthermore, columns and columns elements are always accessed sequentially, which
implies that each memory block can be implemented as two sequential-access banks
(one for read and the other for write) which exchange their function after every
column is transferred completely.
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Data paths

The rotation of every column element requires the corresponding elements of
both columns being computed as also sing and cos¢; this might imply that four words
must be provided at once to each M/M/A unit. However, sing, cos¢ are constant
values for the rotation of an entire column pair, so they are transferred at the begin-
ning and stored internally in the M/M/A units. This reduces the width of the data path
into these units to only two words. Therefore, all data paths shown in Figure 5.4 are
one word wide.

Mulriplexer

A multiplexer is introduced to simplify the transfer of sin¢ and cos¢ to the ro-
tations unit, With it, both values are simultaneously sent to all M/M/A units through
two busses. Note that each M/M/A unit requires both sind and cosd, but those values
are stored in different multipliers in each M/M/A pair. Therefore, both sin$ and cos$
are broadcasted once in each bus and the corresponding multipliers are selected at the
proper times to latch such values.

After those values are transferred, the multiplexer isolates the M/M/A pairs
such that thereafter they can operate on the columns of A and V independently and
simultaneously.

Columns Exchange Logic

Logic is required to perform the columns exchange procedure described in
Chapter 3. This unit involves some memory and an exchange network. Its characteris-
tics are described in detail later.

5.2.2 Expansibility of the System for 20-Columns Matrices

The processor described above can compute not only the SVD of a 20-
columns matrix as stated initially, but actually it can perform the decomposition of a
matrix of any size given that its total memory is large enough to store all columns.
However, larger matrices result in lower throughput. To process larger problems with
small or no throughput degradation, this implementation can be extended, as described
now.

Assume it is desired to modify the system discussed above to compute the
decomposition of matrices with 40 rows and 20 columns, with no throughput degrada-
tion. This increase in m represents an increase in the time for the inner product and
rotations subcomputations, unless extra hardware is provided. The total number of
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orthogonalizations is still the same, as it only depends on # .

To preserve the throughput of the rotations subfunction (which is the more
stringent one), it is possible to add a slice of hardware identical to the existing at both
sides of the processor (comprised of internal memory, rotation units, exchange
columns logic and global memory), as shown in Figure 5.7. Doubling the arithmetic
hardware in the rotations step allows to maintain the speed of the system by process-
ing two elements of each column in parallel at every time. The extra memory is re-
quired to store the increased number of elements in each column.

Additionally, it is necessary to preserve the throughput of the inner product
unit. This can be done by duplicating its computing power with two extra AUs added
at the input of the existing hardware for this unit, as shown in Figure 5.8. This
modification implies replacing the existing multiplier by an adder and placing two
multipliers whose outputs feed the new adder. The data path width into the inner pro-
duct unit is now four words.

It is also necessary to introduce an extra component which allows to broadcast
the values sing and cos¢ at the same time to both pairs of M/M/A units for each ma-
trix A and V. This component is a switch which isolates each pair of rotation units
during the rotation itself so that they can operate simultaneously on different data, and
connects them when transferring the values of the angle for the rotations.

Further increases in the number of rows in the matrix may be treated similarly.
Note that the number of data paths in such cases grows proportionally to the number
of additional slices of hardware introduced.

5.2.3 SVD System for a 40-Columns Matrix

The design of a system for m=n=40 according to the results at the beginning
of this chapter is very similar to the scheme just described. Alternatively, it is possible
to arrive to such system by expanding the previous one. Recall that for matrices of
that dimension, the choice was a two-processors system with twelve stages each. This
system is shown in Figure 5.9, where each processor has the same architecture and
operating characteristics as the one shown in Figure 5.7, but the columns exchange
process now must combine the outputs from both of them. Each processor orthogo-
nalizes different and independent pairs of columns. The corresponding exchange pro-
cedure was described in Chapter 3 and its implementation is discussed later.
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Further increases in the number of columns in the matrix may also be allowed
by introducing additional parallel processors. The performance characteristics of such
systems have been discussed in Chapter 4. Note that the throughput for such expanded
system would not be as good as what could be obtained in a system designed for a
larger number of columns, that is with more stages in the orthogonalization pipeline.

Throughout the discussion here it has been shown that the pipelined scheme
proposed has modularity and expansibility characteristics, in addition to its perfor-
mance advantages. These issues make it an attractive alternative for the realization of
a digital system to compute the SVD.

5.3 Implementation of the Columns-Exchange Process

The P/S system requires a columns-exchange process at the end of each
orthogonalization such that columns will be stored in the global memory in the proper
order for future rotations. The procedure used here was described in Chapter 3 for a
system with P processors and an example was presented with four processors. Now
the implementation for systems with one and two processors is described in more de-
tail.

According to the discussion in Chapter 3, the exchange process for the first
and last sets of columns in every step in a sweep is different from the remaining ex-
- changes in the step. Furthermore, the exchange process requires the output of succes-
sive orthogonalizations to generate the new pair(s). It was stated that the exchange
logic has to store the last two sets of orthogonalized columns; that data plus the set
currently being orthogonalized allow to solve the dependencies.
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For the cases studied here, the ordering of the columns in the processors is as
shown in Figure 5.10; this figure depicts the ordering before and after the exchange
process.

Columns Before Exchange Columns After Exchange
P=1 P=2 P=1 P=2
20 19 (40 39| 38 371119 17|39 37|40 35
17 18 | 33 3435 36415 2031 36|33 138
16 15 {32 31|30 29|18 13|34 29|32 27
13 1425 2627 28|11 16|23 28|25 30
12 11|24 23|22 21}|14 912 2t |24 19
9 10|17 18|19 20 7 12§15 20|17 22
8 7116 15| 14 13 {10 5118 13116 11
5 6 9 10,11 12 3 8 7 12 9 14
4 3 8 7 6 5 6 2110 5 8 3
2 1 2 3 4 4 1 4 6

Figure 5.10 - Columns Ordering During Excﬁange Process

The corresponding networks to perform the exchange are shown in Figure
5.11. The dashed lines represent the connection existing for the first set of columns
exchanged, while the solid lines are for all remaining ones. Implementation of this in-
terconnection network is simple.
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Figure 5.11 - Columns Exchange Network
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The remaining issue relates to how columns are selected from the internal
memory in the exchange logic and combined with the data from the set of columns
being orthogonalized. All this data may be regarded as a 3-row queue which acts like
a window into the data input to the columns exchange logic shown in Figure 5.10.
Each of the internal cells of the queue holds a column of the matrix; these cells are ad-
dressed as indicated in Figure 5.12. Therefore, row 3 in the window (or queue)
corresponds to the columns which are being rotated at a given time, row 2 to the ones
rotated in the last orthogonalization and row 1 to the columns rotated two orthogonali-
zations before.

i + — v ‘ ¥ . >

3.1 32 3,1 3.2 1 33 34

2.1 2,2 2.1 22 | 23 . 24 |

i1 1,2 1.1 1,2 L3 1

- be v v - +*
ane- processor system two - processor system

Figure 5.12 - Cells fiddresses in Exchange Logic Queue

For the exchange process, this array or queue is used as follows: as soon as the
first two sets of columns are available, i.e. only the two topmost rows of the queue
have data, the first set of exchanged columns is output. Data moves down one row and
a new column set gets in, providing the new output. For the n =20 and n =40 cases
the cells read at every data transfer are given in Figure 5.13.
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t P=1 P =2

10 | 11 22 21 22 | 13 24
9131 12 21 12 | 33 24
8| 11 32 21 32 |13 24
7131 12 21 12 | 33 24
6|11 32 21 32|13 24
5131 12 21 12 | 33 24
4111 32 21 32 |13 24
3131 12 21 12 | 33 24
2111 32 21 32|13 24
1131 22 21 22|33 24

Figure 5.13 - Addresses of Cells Read at Columns Exchange Time

There exists a high regularity in this process, as it might have been expected
from its characteristics; the only exceptions are the first and last exchanges. Again,
the implementation of this scheme is simple.

5.4 Division and Square-Root Algorithm and Implementation

It has been stated that, for high throughput, the SVD processor requires a fast
multiplier unit. Given this condition, it becomes attractive to use a multiplicative ap-
proach to compute division and square-root, as they can take advantage of such fast
hardware. While other approaches are also possible, this one is more convenient be-
cause it provides more flexibility in the design, as the multipliers involved can be
shared with the other operations in the 6/au subfunction. This is particularly adequate
when the 6/nu subfunction is partitioned into stages such that division and square-root
can eventually be partially performed in different stages. Actually, this corresponds
to replacing those operations by several multiplications, producing a finer granularity
in the algorithm to compute to angle for the rotation.

There are several schemes to perform division through a multiplicative ap-
proach. Among them, the most attractive one is Goldschmidt’s method [Ander67] as
it provides quadratic convergence. Ramamoorthy et al [Ramam72b] reviewed several
high-speed multiplicative algorithms for square-root. They showed that there also ex-
ists a method for square-root based on the same principle as Golschmidt’s division,
with quadratic convergence, which shares basically the same hardware.
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The basic idea in these methods is to successively multiply both numerator
and denominator of a rational expression by proper factors, such that the denominator
tends to 1 and the numerator to the corresponding result. Actually, the square-root
method computes ¥ /X and vX is obtained letting ¥ =X . However, the value 17X is
also needed at the angle computation subfunction and it can be obtained letting ¥'=1
without extra hardware requirements.

#

) Y Y
letX,=X and Y, =Y. Then, the recurrences for — and — are
’ ° XU
. k-1
Division X, =XT]d; Xer1 =X dg
i=0
k-1
Ye=Y]]4; Yer1=Ye dg
i=0
dk = 2 _Xk
k1o, , 2
Square-Root Xk =XHdi Xk+1 =Xk dk
i=0
k-1 :
Y, =Y]]d; Yevi=Ye dg
i=0

Xk
dk=1+—"i"', xk=l—X,c

The quadratic convergence characteristic guarantees that, at every iteration, the
number of leading ones in X, is doubled. The factors d; are easy to obtain with sim-
ple complement logic [Ramam72b]. In the square-root algorithm, the factor
di =1+ x,/2 is obtained from 1 + x; =2 - X, i.e. performing two’s complement of
X, and then right shifting the fractional part one bit.

There are several possible improvements to the basic algorithm [Ander67]. A
relevant one here is related to the selection of the first factor to guarantee that X | has
several leading 1’s; this is accomplished using a table lookup scheme instead of 2’s
complement logic. If X has four leading 1’s, then 4 iterations are necessary to
achieve 32 bits of precision in the result, because every time the number of leading
1’s is doubled; six initial leading 1’s will produce 24 bits of precision in only three
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iterations, adequate results for 32-bit floating point numbers.

Figure 5.14 shows the dependence graphs for the two operations according to
this method, assuming four leading 1’s after the table lookup operation. Due to the
parallel and independent nature of multiplying numerator and denominator, pipelined
multipliers with two stages are useful. Assuming that the table-lookup and the 2’s
complement operations are performed in half the multiplication time, division re-
quires the equivalent of 6 multiply times and square-root the equivalent of 9.

Implementations of these two operations might consider the use of the same
multipliers as in the other parts of the system, which for this analysis have been con-
sidered as having five stages. The additional stages in such AUs would not be used,
as there is no more concurrency in these computations.

5.5 Characteristics of Pipelined Arithmetic Units

It has been shown that pipelined AUs are useful for higher throughput in the
SVD computation. The analysis developed considered up to five stages in the arith-
metic units, though the feasibility of this value has not been discussed so far. The
characteristics of pipelined AUs are reviewed now in more detail, including the limits
of pipelining with current technologies.

It is interesting to note that the latest research efforts in the area of VLSI
design of multiplier units have been oriented towards fast devices, with multiply times
of around 100 [nsec] for 32-bit floating-point values. Ho et al [Ho84] designed a 24-
bit by 24-bit multiplier, which uses partial product generation in 4-bit nibbles fol-
lowed by parallel pseudo-counters for product term reduction. Their device performs
the computation in 70 [nsec] and is implemented using 1.5 micron CMOS technology.
Iwamura et al [Iwamu84] presents a CMOS/SOS 16-bit by 16-bit parallel multiplier
using a modified array technique, to achieve 27 [nsec] multiply time. Kaji et al
[Kaji84] designed a 16-bit by 16-bit CMOS parallel multiplier using Booth’s algo-
rithm, Wallace tree, and a final conditional sum adder to achieve 45 [nsec] time. Uya
et al [Uya84] have a 32-bit by 32-bit CMOS floating-point multiplier with 78.7 [nsec]
multiply time, using modified Booth’s algorithm, CSA array, and modified carry
select adder for the final step. Advanced Micro Devices [AMD84] has the Am29300
family, which includes a 3-port 32-bit multiplier able to operate in a single cycle of
less than 100 [nsec]; this device uses ECL circuitry internally, though its output is
TTL.
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However, some pipelined VLSI units have been also been implemented
although their degree of pipelining is low. Welten and Lohstroh [Welte84] designed
a 12-bit by 12-bit fully parallel multiplier/accumulator, able to operate at 50 Mhz in a
two-stage pipeline or at 25 Mhz in non-pipelined mode. Woo et al [Woo84] discuss
the Weitek WTL 1030 family, which has NMOS devices to perform addition and
multiplication in a 3-stage pipeline of 200 [nsec] per stage, or in flow-through mode at
600 [nsec] per operation.

The reasons why not much effort has gone into pipelined VLSI AUs are un-
clear; it seems that user demands have pushed for faster units, with low latency, in-
stead of requesting high throughput. Technologically, there are no real limitations to
the design of devices with clock rates in the order of 20 [nsec], as discussed later.

Larger degree of pipelining in arithmetic units is found in vector computers.
Some examples are mentioned here. Texas Instrument Advanced Scientific Computer
TI-ASC has a multiconfigurable pipeline with eight stages for floating-point and fixed
point operations [Siewi82, Kogge81], which runs at 60 [nsec]. The IBM 2938 Array
Processor arithmetic unit is a four-stage multiply-add pipeline which operates at a
staging rate of 200 [nsec] [Kogge81]. The CDC STAR-100 computer had two pipe-
lines, both of them with a 40 [nsec] clock: a four-stage adder / eight-stage multiplier
and a general purpose pipeline for floating-point operations [Kogge81]. The CRAY-1
computer has twelve functional units, all of them pipelined and ranging from two to
fourteen stages; it includes a six-stages floating-point adder, a seven-stages multiplier
and a fourteen stages reciprocal unit, all running at 12.5 [nsec] [Kogge81]. These im-
plementations indicate that highly pipelined AUs are feasible and practical for certain
applications, as is the case here.

Hallin and Flynn [Halli72] studied the effect of pipelining on system
efficiency for two addition and three multiplication algorithms, with 48-bit fixed

operands. They defined efficiency as e = where w is the number of bits in the

tS
operand, ¢, is the pipeline stage delay and g is the total number of gates including any
used for latches. Their analysis was based on the use of Earle latches [Earle65]. They
concluded that the most efficient algorithms among the ones studied were
conditional-sum adder and adder-tree multiplication (with recoding algorithm), both
maximally pipelined.

Because of the underlying hardware technology used in their study, i.e. the

Earle latch, each pipelined stage has to include at least four gates [Halli72, Kogge81].
Any smaller number of gates per stage would not increase the bandwidth.
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Hallin and Flynn concluded that the 48-bit multiplier was 32 gate delays long:
4 gate delays for the pre-encoder, 14 for the adder tree and 14 for the carry-
propagating adder {Halli72]. To use pipelining efficiently, the entire multiplier had to
be considered as one unit and partitioned into stages depending on the gates delay
only. That approach resulted in 8 stages for the maximally pipelined multiplier. For
32-bit floating-point values, the corresponding multiplier would have a delay of 30
gate delays: 4 gate delays for the encoder, 10 gate delays for the reduction of 12 ad-
dends, 12 gate delays for the final carry propagating addition, and 4 gate delays for
post-normalization. (1) Therefore, with this methodology and technology, it is possible
to have 7 stages for the multiplier unit (maximally pipelined). This assumes extra
hardware in parallel to handle the exponents.

Hallin’s fixed-point 48-bit conditional-sum adder has 3 stages and 12 gate de-
lays in total; the unit is implemented with 12-bit conditional-sum sections. For 32-bit
floating-point values, estimating again 4 gates delay each for pre-shifting and post-
shifting, and considering 10 gate delays for the fractional part addition, the total
reaches 18 gate delays. Therefore, 4 stages could be implemented in a maximally
pipelined adder.

Hallin and Flynn’s results allow to estimate the degree of pipelining possible
to include in multiplier and adder units, using Earle latches technology. Consequently,
the maximum of 5 stages per AU used in the analysis before is a reasonable amount,
although it is not the real maximum limit.

Current VLSI designs of pipelined units do not use Earle latches, since a better
alternative is to use dynamic circuits and registers: they are faster and require less
area and power. The design methodology is based on register-to-register transfers
through combinational logic, implemented with inverting logic and pass transistors,
respectively. Latches are implemented by charge stored on the input-gate capacitance
of the inverting logic stages, isolated by pass transistors controlled by clock signals.
This approach reduces area and power requirements significantly [Mead80].

Ideally, only pass transistors should be used to implement the logic functions.
As the inverting logic stages are connected through these pass transistors, inverter ra-
tios of k=8 are required; these inverters have a maximum delay of 8t (where T is the
transit time of the input gate in the inverter). To minimize the delay per stage, the to-
tal delay through the pass transistors is made equal to the inverter delay. Therefore,

(1) Pre-shifting and post-shifting can be performed fast (one gate delay) using barrel-
shifters [Mead80]. The remaining gate delays are for the detection of the amount of
shifting. However, this approach is somewhat expensive in area. Alternatively, a
normalization scheme proposed in [Uya84] performs this function in 5 gate delays,
with less hardware,
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the time available for logic functions in each stage is only 8T, which allows a max-
imum path length of about 3 pass transistors [Mead80]. This amount of logic could
implement a two level bool 2an expression (AND/OR) of medium complexity (about 3
terms with 3 to 4 literals esch). For higher-complexity subsystems, 2 PLA structure in
each stage could be used, as it provides similar timing characteristics [Mead80].

Mead and Conway state that a system of this type could run at a clock period
of =1001. Under these conditions, clocking periods of 20 [nsec] are achievable today
in carefully structured integrated systems, where successive stages are in close physi-
cal proximity. This figure may increase by a factor of 2-3 in the near future, as the
minimum feature size of transistors reduces to 1.5 microns [Mead80, Tyree85].

Arithmetic units implemented with this scheme can have larger number of
stages than those obtained from Hallin and Flynn limits, as the amount of logic re-
quired at each stage to match the delay of the latches is iess than the four gates stated
before. Therefore, it is feasible to think about highly pipelined arithmetic units, with
at least 5 stages each, running at 20 [nsec] clocking periods. These devices are critical
to the success of the SVD processor. For instance, devices with the characteristics
described above would allow to perform the decomposition of a 40 by 40 matrix in
the equivalent of 19600 multiply times, which corresponds to £ =1.96 [msec]. Alter-
natively, 100 and 200 [nsec] clocking periods would lead to 9.8 [msec] and 19.6
{msec] decomposition times respectively.

Larger number of stages in the AUs would allow to reduce the. number of units
required for a given speedup, increasing the efficiency of the implementation, as indi-
cated by the analysis performed in Chapter 4.

5.6 Control Logic Implementation Characteristics

The control function in the pipelined processor presented before has to be dis-
tributed throughout the different stages, given the particular characteristics of each
stage. The controller in each of them is essentially a finite-state machine which may
be implemented using a read-only-memory (where each ROM location contains the
actual control signals for the different components within the stage), or a
programmable-logic-array (PLA) which implements the combinational logic functions
for the states. A general scheme for such device is shown in Figure 5.15.

The architecture of this unit is the same for all stages, with the only differ-

ences found in the actual contents and possible the width of the ROM (or the func-
tions implemented and the width of the AND/OR planes in the PLA case).
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This scheme is feasible because the operations in each stage are a linear se-
quence of events (without branches). The only deviation from this sequential
behavior is found when columns are tested to verify if they are already orthogonal,
since in that case they do not have to be rotated. However, in such case the controller
still needs to traverse a sequence of no-operations of the same length as normal pro-
cessing, to keep the pipeline synchronization. This can be achieved by one status bit
inhibiting the transmission of the control signals to the stage units.

Using devices designed for this application, it should be possible to implement
the entire control function in each stage in only one VLSI device. The amount of logic
required and/or the size of the ROM are small (for the P/S systems described before,
the control function in each stage has to traverse a sequence of twenty states defined
by the same number of arithmetic operations in pipelined units with five .internal
stages). The number of external connections depends in the control signals required in
each stage; this issue requires further study.

5.7 Testability Considerations

Due to the complexity of the implementation, it is convenient to have some
form of support for testing to allow to verify the operating condition of the system, ei-
ther on-line or off-line. Some preliminary considerations regarding the feasibility of
testing are described here. A more detailed study is out of the scope of this work, but
it is adequate to point out some of the characteristics in the system devised which are
useful for this task.
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As inputs and outputs to the processor exist only at the ends of the orthogonal-
ization hardware, the entire system may be regarded as one component. Therefore, the
same principles applied to support testing of VLSI devices may be used here, which
involves the need to include some special functions or hardware in the implementa-
tion to improve its testability.

As the system is comprised of many devices, two levels of testing may be con-
sidered:

i. Internal Testing of Devices. For this, each device should include the hardware
required to allow for its own testing, providing an output to indicate its status.

ii. System Level Testing. The system includes the required hardware for testing
purposes. This may be on-line (i.e. one out of a number of orthogonalizations
is used for testing, for instance) or off-line (i.e. testing functions are per-
formed at power-up or when the processor is idle).

Assuming a design based on scheme (ii), and given the pipelined characteris-
tics of the processor, one approach is as follows:

a) Define the entire system as a set of register-to-register transfer blocks, that is,
successive stages of storage registers with logic between them.

b) Provide external reading and writing to/from each of the storage locations.

The proposed SVD processor suits this approach with little extra hardware.
Each of the stages has the described register-to-register transfer structure, being
necessary only to allow their direct reading/writing. The methodology in this case is
to test the storage locations first, for their ability to store data and control information.
After this is done successfully, each block between registers may be tested separately
[Mead80].

_ The logic at each internal block is rather complex and it might still require

some additional considerations for testing purposes. However, the relevant issue is
the need for access to the individual storage locations, as without it "testing rapidly
becomes hopeless”" [Mead80]. This requirement may be achieved in the proposed
system using the busses already existing in the processor(s) and providing the proper
connections with each storage register. The testing function may be assigned to a glo-
bal controller, which works together with the local controllers in each stage to per-
form this task. Figure 5.16 illustrates the connections for this scheme.
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In the bi-processor design, there is a simpler possibility for rapid testing of the
operating condition of the entire processor. It consists in providing both processors
with the same data and compare their results; if they do not match, then a deeper test-
ing mode is entered. Some extra logic is required to compare those outputs. This test-
ing can be done on-line (i.e. interspersed with actual computations).

Even more attractive is the fact that, in the bi-processor system, upon the
detection of fault in one processor and its proper recognition, the system may contin-
ue to work with only one of them by reconfiguring its input/output from the global
memory, though obviously the throughput will be reduced.

5.8 Custom Device Design in the Digital System for the SVD

A current realization of the digital system to compute the SVD would be based
upon the use of one arithmetic unit per device, such as those currently available.
Therefore, there would be many devices in the system leading to a board-level imple-
mentation. In addition to the arithmetic units, other devices are required to implement
memories, control functions, and columns exchange logic.

However, the design of special purpose devices could reduce significantly the
number of components in the system. Those special devices required have been sug-
gested or mentioned throughout the analysis, and can be listed as follows:

i, Highly pipelined adders, multipliers, and adder/multiplier units.

ii, ROM-based or PLLA-based controllers (finite-state-machines).

iii. Columns-exchange logic, as described in section 5.3.

iv, Sequential-access memories as two banks (one for read, one for write) which

exchange their function, as described in section 5.2.1.

V. Highly pipelined multipliers specially designed for fast computations of pro-
ducts between a constant and successive numbers, as needed in the rotation
unit.

Furthermore, potential density increase in VLSI technology could allow to in-
tegrate into one device subsystems of several of the devices above, with the
corresponding advantages regarding total number of components, speed, and power
consumption. Those subsystems are characterized for being self contained such that
their integration does not increase significantly the number of external connections, as
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is described next.

Besides what is achievable just from higher integration, there are parts in the
proposed system which could exploit some particular characteristics of the computa-
tion in the SVD algorithm, such as the following:

« The input data to the inner product unit (which are floating-point values) is
normally available before it is actually used (given that n 2 2PS + 2). Therefore, it is
possible to precompute the exponent of the result by adding the exponents of
corresponding elements of each pair of columns and saving the largest one, before
starting the inner product computation of the mantissa. Then, when data is transferred
to the unit, it could be properly denormalized, perform the computation only with the
mantissa, concatenate the previously obtained exponent and perform a final normali-
zation step if necessary.

Even if data is not available in advance, this same approach may be imple-
mented in a two-stage inner product unit where the first one precomputes the exponent
of the result, and the second performs the actual inner product and final normalization
for the mantissa.

« For the 6/nu subfunction it was assumed and shown that division and
square-root for the data format considered could be performed in 6 and 9 multiply
times respectively. The entire angle computation and norms update subfunctions were
partitioned into stages based on those assumptions, using regular floating-point multi-
pliers. With larger density in the devices, it might become possible to implement the
entire multiplicative algorithm for each of these two operations in one device, reduc-
ing their computation times. Some properties of the algorithm are useful for such
case. The scheme multiplies both numerator and denominator of a rational expression
by a factor in the range (1,2). At every iteration there could be a limited overflow only
in the numerator. If this condition is handled adequately, then it is possible to perform
this iterative algorithm only with the mantissa, subtract exponents in parallel and
compute the final normalization, reducing the time for these operations. Furthermore,
the speed of this process could be increased more if it is considered that the first itera-
tions do not require the full precision in the computation [Ander67].

« The rotations unit is the most compute-bound of the entire processor. As it is
based in M/M/A units, the obvious approach is to integrate the three operators in one
device. Full floating-point computations are required nhere and no precomputation
seems possible, though part of the data (i.e. the columns elements) is available well in
advance.
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This subfunction needs the most attention, as larger throughput requires a
large amount of hardware. To reduce VLSI area and be able to integrate several func-
tions in one device, it is convenient to consider the suggestion to use highly pipelined
multipliers taking advantage from the constant operand for successive operations.
Special multiplication algorithms suitable for this application should be devised, but
at least some gains are possible if the modified Booth’s algorithm is used. A higher
level of multiplier recoding can be used; the extra time and hardware required for the
recoding would allow faster computation of the operations and savings of area, since
there would be less addends to reduce.

Summary

This chapter has presented the implementation characteristics of a digital sys-
tem to compute the SVD. It has been shown that the P/S architecture is convenient
not only in terms of efficiency but it is also a regular structure, with expansibility pro-
perties for higher throughputs, and with capabilities to compute the decomposition of
a matrix of any size without hardware modification. All these characteristics make
this architecture a promising and attractive alternative for realization.
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CHAPTER 6
CONCLUSIONS

In this thesis we have studied the singular value decomposition (SVD) algo-
rithm according to Brent and Luk [Brent82a] version of Hestenes’ method, and its
characteristics for hardware implementation. The goal has been to search for an
efficient implementation in terms of highest throughput for a given amount of
hardware. ’

We first reviewed the developments in the field, particularly what has been
researched regarding systolic arrays for this algorithm. We concluded that most of the
reported research about the design of a digital system to compute the SVD has been
focused on the suitability of Hestenes’ method for concurrent computation, but no
analysis has been presented regarding the actual computation time and hardware re-
quirements for the schemes proposed (the systolic array architectures). We also ques-
tioned the suitability of those arrays for the algorithm under consideration, because
none of those schemes really considers the particular properties existing at the lower
levels of the algorithm.

To formalize the analysis, an algorithmic model for the computation was intro-
duced in Chapter 3 and cost and performance measures were defined. The model used
a directed graph as a description of the algorithm; nodes correspond to subcomputa-
tions and arcs to precedences among those subfunctions. The concepts of replication,
pipelining and parallelism of a graph were discussed with respect to this model. The
cost and performance measures used were computation time, hardware requirements,
speedup with respect to a completely sequential implementation, efficiency and
hardware utilization.

This model allowed to infer basic properties of architectures for these type of
computations, concluding that replication of a pipelined processor which also exploits
the parallelism of the graph of the algorithm was the alternative that offered the best
characteristics for higher throughput. However, this model also showed that for
speedup factors up to a certain value the best approach is replication of a completely
sequential implementation of the algorithm; the limit is imposed by the properties of
the algorithm. This model assumed only one type of operation units, as is the case for
the SVD.
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A methodology for the design of digital systems exploiting concurrency at
several levels of the algorithm was also presented in Chapter 3. This methodology is
essentially an iterative procedure consisting of top-down decomposition and bottom-
up refinement of the nodes in the graph of the algorithm.

One pipelined processor or a system with replicated processors requires a
mechanism to solve the data dependencies existing in the algorithm. The solution
presented here is based on an adaptation of the parallel ordering for the orthogonaliza-
tions of the columns of the matrix proposed by Brent et al [Brent82a]. The scheme
obtained has the same advantages as the original one regarding simplicity and com-
munications only with nearest neighbors in implementations with multiple processors,
but is not restricted to a particular number of processors and, therefore, is useful for a
system with any number of replicated units up to the limits imposed by the algorithm.
In contrast, Brent’s scheme assumes the existence of n/2 processors.

In Chapters 3 and 4 we applied to the SVD algorithm the design methodology
mentioned above, in a system with P replicated processors with § stages per proces-
sor; this scheme was called a P/S system. In this architecture, one pipelined proces-
sor and a linear systolic array are just particular examples. Chapter 3 discussed
throughput characteristics for the system in terms of the time for an orthogonalization.
It was shown that such throughput is proportional to the number of processors and to
the stages in them, as the algorithmic model predicted. A slight modification to the
mode] was required to account for the data dependencies, which are somewhat more
complex than what the model considered; however, that modification did not change
the results obtained.

In Chapter 4, implementations for the different subfunctions within the orthog-
onalization process were devised, discussing the throughput characteristics and
hardware requirements for them. It was shown that those subfunctions have very dif-
ferent characteristics and the implementations for them should pursue distinct ap-
proaches, including internal pipelines and exploiting the parallelism in their
corresponding graphs. It was also shown that the throughput characteristics are heavi-
ly dependent on the utilization of pipelined arithmetic units. A procedure for the
design of the hardware for the orthogonalization process was presented, according to
the results obtained.

Using the information obtained before, Chapter 5 presented a procedure for
the design of architectures for the SVD based on the P/S system. The architectures
devised were compared and evaluated in terms of efficiency, cost, and hardware utili-
zation as defined in the performance measures, placing emphasis on the arithmetic
hardware since this is the predominant requirement.
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The procedure used in the design allowed to obtain not only implementations
for high throughput but the most efficient architecture for a given throughput. In this
sense, it was shown that for throughputs up to a certain value;, the best approach is re-
plication of a completely sequential implementation for the orthogonalization algo-
rithm. The limit is imposed by the characteristics of the SVD computation, which ex-
hibits dependences for groups of instances of the computation. The lowest cost linear
systolic array corresponds to an implementation with that limiting number of replicat-
ed processors, with one arithmetic unit per processing element. However, for higher
throughput than what is achieved with such systolic array, a multilevel pipelined ap-
proach offers better efficiency and hardware utilization than any other alternative.
Such scheme exploits concurrency at several levels through pipelines and the use of
the parallelism in the subcomputations.

Implementations for systems to compute the SVD of 20 by 20 and 40 by 40
matrices were devised. It was shown that those architectures have modularity and ex-
pansibility characteristics, in addition to their performance advantages. Therefore,
they are attractive alternatives for realization. Furthermore, they are not restricted to
compute the decomposition of matrices of the dimensions given, but they can be used
for problems of any size as long as the memory in them is large enough to hold the
data. If higher throughput than what is achieved with a particular multilevel pipeline
implementation is desired, that implementation can be improved by introducing
hardware structures identical to the existing ones.

It is also suggested that the implementation of the scheme proposed might be
improved significantly (in terms of number of devices and interconnections among
them) if units specially designed for the application are used. This includes the in-
tegration of certain modules in the computation or exploiting some characteristics of
the implementation and the algorithm. In fact, this topic should be the focus of addi-
tional study: the research for VLSI implementation of devices suitable for the SVD
system described here, namely dual-port dual-bank sequential access memories, high-
ly pipelined arithmetic units, columns exchange logic and controllers for the stages of
the pipeline.

The results obtained here can be extended to algorithms with similar charac-
teristics to the SVD. Furthermore, the methodology presented can also be applied to
algorithms with characteristics different than the SVD, and be a convenient tool for
the analysis and evaluation of the most efficient architectures for such cases.
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