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ABSTRACT OF THE DISSERTATION
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by
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This dissertation is composed of three studies having a common theme: the

strengthening of weak methods by improving the advice that guides them.

The first study examines the effects of removing some of the restrictions imposed on
A* and, reexamines whether A* is computationally optimal relative to other algo-
rithms that have access to the same heuristic information. It is shown that the wide
class of algorithms which, like A*, return optimal solutions when all cost estimates
are optimistic, does not contain an optimal algoritim. On the other hand A* is
optimal in a somewhat more restricted sense: either (1) relative to the set of instances
in which the heuristic estimates are consistent, or (2) relative to the subclass of algo-

rithms which are Best-First.

The second and third studies examine various means of mechanically generat-
ing heuristic advice for weak methods, using the paradigm that heuristics are gen-

erated by consulting a simplified model of the task domain.



The second study generates advice to help Backtrack solve Binary Constraint
Satisfaction Problems. The advice is generated automatically by consulting relaxed
models known to yield a backtrack-free solutions. The information retrieved from
these models induces a preference order among the choices pending in the original
problem. Optimal algorithms for solving easy problems are presented and analyzed,
and the utility of using the advice is cvaluated experimentally, using a synthetic

domain of CSP problem instances.

The last study is devoted to the analysis of optimization problems that are
solvable by Greedy algorithms since such easily solved problems are natural targets
for simplification. The contribution of this study is in dealing with ordering optimi-
zation problems in which a set of n elements should be crdered to minimize 2 certain
cost function. We give several necessary and sufficient conditions characterizing
order dependent cost functions which can be optimized by greedy schemes, and dis-
tinguish two types of greedily optimized ordering problems; dominant and non-

dominant.



CHAPTER 1
INTRODUCTION AND MOTIVATION

Many Al systems rely on weak methods [Newell 1969] for their problem solving
power. These are highly general methods that make weak demands on the task
environment (and hence their name [Laired 1983] ). Examples of weak methods
include generate-and-test, hill climbing, and the variety of heuristic search methods
(means-end analysis, depth-first search, best-first search, A*, etc.). Despite them
being highly general, weak methods are often guided by some shallow knowledge
of the domain to improve their performance. This knowledge, however, is used in
very specific functions of the method and, therefore, comes in highly prescribed for-
mat. For example, the evaluation function used in A* involves domain-specific
knowledge, but it is used only to compare states and select the best among them and

it is given in a very restrictive format (e.g., f =g +A in A¥).

On the other extreme there are what we normally call ‘‘strong methods”,.
which are more strongly dependent upon knowledge of the specific task domain.
Most Al expert systems (e.g [Shortliffe 1976]. ) constitute strong methods because
they rely heavily on specific knowledge that is not transferable to other domains.

A weak method becomes ‘‘stronger’’ when supplied with more domain-
specific advice (see figure 1.1): for example when A* is supplied with more accurate
h estimates. At present, the source of this advice almost always involves human

intervention, which has two shortcomings. First, it decreases the generality of the



method by having to rely on human expertise whenever a new domain is encountered
and often this expertise is not available. Second, the quality of human-derived infor-

mation is sometimes questionable: inhomogeneous, ad-hoc and error-prone.

CLASS
OF PROBLEMS

A WEAK
METHOD

HEURISTIC
ADVICE

Figure 1.1 - The relation between weak method and heuristic advice.

Understanding how heuristic information is acquired by people, and develop-
ing techniques for generating it mechanically should have several benefits. First, it
will permit us to strengthen the power of weak methods over a larger variety of
problem domains, including new domains where no expertise is available. Second,
such techniques may be used to improve the quality of the heuristic information sup-
plied by ﬁcoplc. Finally, understanding the processes involved in the generation of
heuristics may lead to machines that produce verbal explanations as to how a given
heuristic was generated, explicate the assumptions made in the process and argue

why the heuristic should work.

This dissertation is composed of three, largely independent, studies all of
which have a common theme: the strengthening of weak methods by improving the

advice that guides them.



The first study (presented in Chapter 2) examines the effects of removing
some of the restrictions imposed on the form of the evaluation function that guides
A*. We discuss the gencralization of A* into a class of algorithms called
Informed-Best-First, which, prior to each move, are permitted to examine all the
weights (costs and estimates) along each of the exposed search paths. Remarkably,
we show that in most cases this added degree of freedom cannot be converted into
improved performance.

Specifically, the last section of chapter 2 reexamines whether algorithm A* is
computationally optimal relative to other algorithms that have access to the same
heuristic information, where optimality is defined in terms of the number of nodes
in every applicable problem instance. We show that the wide class of algorithms
which, like A*, return optimal solutions (i.e. admissible) when all cost estimates are
optimistic (i.e. & < &*), does not contain an optimal algorithm. On the other hand A*
is optimal in a somewhat more restricted sense: cither (1) relative to the set of
instances in which A is consistent, or (2) relative to the subclass of algorithms which

are Best-First.

The second and third studies (chapters 3 and 4) examine various means of
mechanically generating heuristic advice for weak methods. The paradigm followed
is that heuristics are generated by consulting a simplified model of the task domain
[Pearl 1983], and involve three steps: simplification, solution, and advice-generation.
The implementation of these steps is examined and analyzed relative to two different
problem domains, each using a different weak method: (1) Binary Constraint-
Satisfaction problems (CSP), searched by informed Backtrack, and (2) Optimization

problems, solved by the use of Greedy schemes.



The second study (Chapter 3) investigates extraction of heuristic advice in the
context of Binary Constraint Satisfaction Problems i.c., problems that involve the
assignment of values to variables subject to a set of constraints. These problems are
normally solved by various versions of backtrack search which may be very
inefficient. Heuristic advice is ncedgd to guide the order by which the search algo-
rithm assigns values to the variables, so as to minimize the amount of backtracking.
The advice is generated automatically by consulting relaxed models of the subprob-
lems created by each value-assignment candidate. The relaxed problems are chosen
to yield a backtrack-free solutions, and the information retrieved from these models

induces a preference order among the choices pending in the original problem.

We identify a class of CSPs whose syntactic and semantic propertics make
them easy to solve. The syntactic properties involve the structure of the constraint
graph while the semantic properties guarantee some local consistencies among the
constraints. In particular, tree-like constraint graphs can be easily solved and are
chosen therefore as the target model for the relaxation scheme. Optimal algorithms
for solving easy problems are presented and analyzed. A scheme for constructing a
‘‘best’” constraint-tree approximation to a given constraint graph is introduced and,
finally, the utility of using the advice is evaluated in a synthetic domain of CSP prob-

lem instances.

The last study (Chapter 4) is devoted to the analysis of Greedy algorithms and
optimization problems that are solvable by such algorithms. It is motivated by the
need to extend the simplification-based generation of heuristics to optimization prob-
lems. In this domain the target normally chosen for the simplification step are casy
problems which can be optimally solved by a greedy algorithm, called Greedily

optimized. We therefore concentrate on characterization the properties of those



combinatorial problems which render them greedily optimized. Three kinds of
optimization problems are treated: selection problems, tree structuring problems, and

ordering problems.

A selection problem involves selecting a constrained set of elements with
maximum cost when the cost function is symmetric i.c. independent of the order by
which the elements were selected. An example is the minimum spanning tree prob-
lem. Many of these problems can be modeled as a matroid and the property of being
optimally solved by greedy algorithm is explained by the established relationship
between greedy algorithms and matroids. This work is presented in [Lawler 1976]
and a summary is given in section 4.3. Also presented in this section are problems of
structuring an optimal-cost tree such as finding communication codes and merging
schemes using the Huffman procedure which is a type of greedy procedure. We give
a brief summary of the work in [Parker 1980).

Finally, in section 4.4 we discuss ordering problems, that is, problems in
which a set of n elements should be ordered to minimize a certain order dependent
cost function. We give several necessary and sufficient conditions characterizing
cost functions which are greedily optimized. A compiled list of greedily optimized
problems is presented in section 4.5.

The results of this research can be summarized as follows: The first study set-
tles the long time issue surrounding the optimality of A*. We show that the common
belief that A* is optimal is true only in very restrictive cases when A* is compared
with a narrow class of algorithms and/or relative to a narrow class of problems
instances. In general, however, A* is not optimal, nor any other algorithm for that
matter. The second study showed that the paradigm of generating heuristic advice by



consulting relaxed models can be useful in the domain of Constraint-Satisfaction
problems. We provide the theoretical grounds for this approach and evaluate it
experimentally. The experiments, highlight the trade-offs between the strength of the
advice and the effort for generating it. Additionally, improved algorithms for solving
the classes of easy problems are presented, and analyzed. The main contributions in
the third part of this thesis is, first in providing a formal framework for characterizing
greedily optimized problems, and second in establishing conditions that delineate two
kinds of greedily optimized ordering problems, dominant and non-dominant.



CHAPTER 2
GENERALIZED BEST-FIRST SEARCH STRATEGIES
AND THE OPTIMALITY OF A*

This chapter reports several properties of heuristic bes:t-ﬁxst search strategies whose
scoring functions f depend on all the information available from each candidate
path, not merely on the current cost g and the estimated completion cost 4. We
show that several known properties of A* retain their form (with the min-max of f
playing the role of the optimal cost) which help establish general tests of admissibil-

ity and general conditions for node expansion for these strategies.

Using this framework we then examine the computational optimality of A¥,
in the sensc of never expanding a node that could be skipped by some other algo-
rithm having access to the same heuristic information that A* uses. We define 2
hierarchy of four optimality types, and consider three classes of algorithms and four
domains of problem instances relative to which computational performances are
appraised. For each class-domain combination, we then identify the strongest type of
optimality that exists and the algorithm achieving it. Our main results relate to the
class of algorithms which, like A*, return optimal solutions (i.e., admissible) when
all cost estimates are optimistic (i.e., A<h*). On this class we show that A* is not
optimal and that no optimal algorithm exists, but if we confine the performance tests
to cases where the estimates are also consistent, then A* is indeed optimal. Addi-

tionally, we show that A* is optimal over a subset of the latter class containing all



best-first algorithms that are guided by path-dependent evaluation functions.



2.1 INTRODUCTION AND PRELIMINARIES

Of all search strategies used in problem solving, one of the most popular
methods of exploiting heuristic information to cut down search time is the informed
best-first strategy. The general philosophy of this strategy is to use the heuristic
information to assess the "merit” latent in every candidate search avenue exposed
during the search, then continue the exploration along the direction of highest merit.
Formal descriptions of this strategy are usually given in the context of path searching
problems (Pearl, 1984), a formulation which represents many combinatorial prob-

lems such as routing, scheduling, speech recognition, scene analysis, and others.

Given 2 weighted directional graph G with a distinguished start node s and a
set of goal nodes I, the optimal path problem is to find a least-cost path from s to
any member of I where the cost of the path may, in general, be an arbitrary function
of the weights assigned to the nodes and branches along that path. A general best-
first (GBF) strategy will pursue this problem by constructing a tree T of selected
paths of G using the elementary operation of node expansion, ie., generating all
successors of a given node. Starting with s, GBF will select for expansion that leaf
node of T which features the highest “merit", and will maintain in T all previously
encountered paths which still appear as viable candidates for sprouting an optimal
solution path. The search terminates when no such candidate is available for further
expansion, in which case the best solution path found so far is iseed as a solution or,

if none was found, a failure is proclaimed.

In practice, several short cuts have been devised to simplify the computation
of GBF. First, if the evaluation function used for node selection always proﬁdcs

optimistic estimates of the final costs of the candidate paths evaluated, then we can



terminate the search as soon as the first goal node is selected for expansion without
compromising the optimality of the solution issued. This guarantee is called admis-
sibility and is, in fact, the basis behind the branch-and-bound method [Lawler 1966).
Second, we are often able to purge from T large sets of paths which are recognized
at an early stage to be dominated by other paths in T [Tbaraki 1977]. This becomes
particularly easy if the evaluation function f is order preserving, i.., if for any
two paths P and P ,, leading from s to n, and for any common extension P 5 of those
paths, the following holds:
FPy2fPy) F(PP3)2f(PPy).

Order preservation is a judgemental version of the so called principle of optimality
in Dynamic Programming (Dreyfus and Law, 1977) and it simply states that if P is
judged to be more meritorious than P ,, both going from s to n, then no common
extension of P, and P, may later reverse this judgement. Under such conditions
there is no need to keep in T multiple copies of nodes of G; each time the expan-
sion process generates a node » which already resides in T we maintain only the
lower f path to it, discarding the link from the more expensive father of n.

These two simplifications are implemented by the following best-first algo-
rithm, a specialization of GBF which we call BF* [Pear! 1984]

10



Algorithm BF*

1.
2.
3.

Put the start node, s, on a list called OPEN of unexpanded nodes.

IF OPEN is empty, exit with failure; no solution exists.

Remove from OPEN a node, n, at which f is minimum (break ties arbi-
trarily, but in favor of a goal node) and place it on a list called CLOSED to be
used for expanded nodes.

If n is a goal node, exit successfully with the solution obtained by tracing
back the path along the pointers from n to s, (pointers are assigned in Steps
5 and 6).

Expand node n, generating all its successors with pointers back to n.

For every successor n’ of n:

a Calculate f (n”)

b. If n’ was neither in OPEN nor in CLOSED, then add it to OPEN.
Assign the newly computed f (n") to node n”,

c. If n’ already resided in OPEN or CLOSED, compare the newly com-
puted f(n”) with that previously assigned to n’. If the new value is
lower, substitute it for the old (n’ now points back to n instead of to
its predecessor). If the matching node n’ resided in CLOSED, move it
back to OPEN.

Go to (2).
By far, the most studied version of BF* is the algorithm A* [Hart 1968]

which was developed for additive cost measures, i.e, where the cost of a path is

defined as the sum of the costs of its arcs. To match this cost measure, A* employs

an additive evaluation function f (n) = g(n) + h(n), where g(n) is the cost of the

currently evaluated path from s ton and 4 is a heuristic estimate of the cost of the

path remaining between 2 and some goal node. Since g(n) is order preserving and
h(n) depends only on the description of the node 5, f (r) too is order preserving and
one is justified in discarding all but one parent for each node, as in step 6¢ of BF*. If,

in addition, A (n) is a lower bound to the cost of any continuation path from n to T,

11



then f (n) is an optimistic estimate of all possible solutions containing the currently
evaluated path, and terminating A* upon the selection of 2 the first goal node (step 4)
does not compromise its admissibility("). Several other properties of A* can be esta-
blished if admissibility holds, such as the conditions for node expansion, node reo-
pening, and the fact that the number of nodes expanded decreases with increasing 4
(results 5, 6, and 7 in [Nilsson 1980a] ). These properties are essential for any quanti-
tative analysis of the performance of A* [Pear] 1984].

It has been found, however, that maintaining the admissibility of A* is too
restrictive; it limits the selection of heuristics to those which only underestimate
costs, and it forces A* to spend disproportionately long time discriminating among
roughly equal candidates. As a result, several attempts have been made to execute A*
with non-admissible estimates while simultaneously limiting the degree of subop-
timality [Pohl 1969, Pohl 1973, Harris 1974, Pearl 1982) and minimizing the com-
putational difficulties that overestimates may induce {Bagchi 1983] However, most
of our knowledge regarding the behavior of A* is still limited to additive cost meas-

ures and additive evaluation functions.

In this paper, our aim is to examine how the behavior of A* will change if we
remove both restrictions. The cost minimization criterion is generalized to include
non-additive cost measures of solution paths such as multiplicative costs, the max-

cost, (i.e., the highest branch cost along the path) the mode (i.c., the most frequent

DQur definition of A* is identical to that of [Nilsson 1980b] and is at variance with
[Nilsson 1980a]. The latter regards the requirement h < h* as part of the definition
of A*, otherwise the algorithm is called A. We found it more convenient to follow
the tradition of identifying an algorithm by how it processes input information rather
than by the type of information that it may encounter. Accordingly, we assign the
symbol A* to any BF* algorithm which uses the additive combination f = g+h,
placing no restriction on #, in line with the more recent literature [Barr 1981, Bagchi
1983, Pearl 1984]

12



branch cost along the path), the range (i.c., the difference between the highest and
the lowest branch costs along the path), the cost of the last branch, the average cost,
and many others. Additionally, even in cases where the minimization objective is an
additive cost measure, we now permit f (n) to take on a more general form and to
employ more claborate evaluations of the promise featured by a given path from s to
n, utilizing all the information gathered along that path. For example, one may wish

to consult the evaluation function f (n)=max{g(n"}+h(n )} where n’ ranges along
n

the path from s to n. Alternatively, the class of evaluation functions may now
include non-linear combinations of g and A in f=f(g,h) and, as a very special
example, the additive combination f =g+h with k an arbitrary heuristic function, not

necessarily optimistic.

We start by characterizing the performance of the algorithm BF* without
assuming any relationship between the cost measure C, defined on complete solution
paths and the evaluation function f, defined on partial paths. Later on, assuming a
monotonic relationship between f and C on complete solution paths, we establish a
relationship between the cost of the solution found and that of the optimal solution
(section 2.2). In section 2.3 we establish conditions for node expansion which could
be used for analyzing the performance of BF* algorithms. Finally, in section 2.4, we
will consider the performance of A* under the additive cost measure and will exam-
ine under what conditions A* (employing f =g+h) is computationally optimal over
other search algorithms which are provided with the same heuristic information 4

and are guaranteed to find solutions comparable to those found by A*.

For simplicity we shall present our analysis relative to the BF* algorithm with

the assumption that f is order preserving. However, all of our results hold for
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evaluation functions which are not order preserving if, instead of BF*, GBF is exe-

cuted, namely, all paths leading to a given node are maintained and evaluated

separately.

Notation:

G - directed locally finite graph, G=(V ,E)

C* - The cost of the cheapest solution path.

C(.) - the cost function defined over all solution paths

I" - a set of goal nodes, 'cV .

Py n, - A pathin G between node n; and n;.

P? - asolution path, i.c., a path in G from s to some goal node vyeT

¢(n,n”) - cost of an arc between # and n’, ¢ (n,n)28>0, where § is a constant.

f(.) - evaluation function defined over partial paths, ie., to each node n along a
given path P=s,,n,n4,...,n we assign the value fp(n) which is a short-
hand notation for f (s ,n,,74,...,n).

g (n) - The sum of the branch costs along the current path of pointers from # to s.

8% (n) - The cost of the cheapest path going from s to 2

gp(n) - The sum of the branch costs along path P from s to n.

h(n) - A cost estimate of the cheapest path remaining between n and T".

h*(n) - The cost of the cheapest path going from n to I"

k(n,n") - cost of the cheapest path between n and n’

M - the minimal value of M; overall ;.

M;; - the highest value of fp(n) along the j** solution path

n* - a node for which f (.) attains the value M.

§ - start node

T - A subtree of G containing all the arcs to which pointers are currently assigned.

14



For the sake of comparison, we now quote some basic properties of A*

[Nilsson 1980a, Pear] 1984] which we later generalize.

Result 1: If A<h*, then at any time before A* terminates there exists on OPEN a

node n’ that is on an optimal path from s to a goal node, with f (n)SC*.

Result 2: If there is a path from s to a goal node, A* terminates for every h20(G
can be infinite).

Result 3: If 5 <h*, then algorithm A* is admissible (i.c., it finds an optimal path).

Result 4: If h<h*, then any time a node n is selected for expansion by A* it must
satisfy: fp(n)SC* where P is the pointer path assigned to  at the time of

expansion.

Result 5: If & < h*, then every node in OPEN for which f (n) < C* will eventually
be expanded by A*.

15



2.2. ALGORITHMIC PROPERTIES OF BEST-FIRST (BF*) SEARCH

In locally finite graphs the set of solution paths is countable, so they can be

enumerated:

P},P3..... P} . (1)
and correspondingly, we can use the notation f;(n) to represent f Pj(")- Let M; be

the maximum of f on the solution path Pf, Le.

M;= %{f i) _(2)

and let M bctheminimumofa]lt.heMj’s:

The minmax value M can be interpreted as the level of the "saddle-point” in the net-
work of paths leading from s to . We shall henceforth assume that both the max

and the min functions are well defined.

Lemma 1:

If BF* uses an order-preserving f, and P, and P, are any two paths from s ton
such that the pointers from n to s currently lic along P and all the branches of P,
have been generated in the past, then

fp(n)SSfp(n) 4
In particular, if P, is known to be the path assigned to n at termination, then

fp(n)sSfp(n) ¥P eG, (5)
where G, is the subgraph explicated during the search, namely, the union of all past

traces of T.
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Proof:
The lemma follows directly from the order-preserving properties of f and the fact
that pointers are redirected towards the path yielding a lower f value. The former
guarantees that if at least one node on Py was ever assigned a pointer directed along
an alternative path, sjperior to the direction of P 5, then the entire P, path to n will
remain inferior to every alternative path to n, subsequently exposed by BF*.

g

2.2.1 Termination and Completeness

Lemma 2:
At any time before BF* terminates, there exists on OPEN a node ' that is on some
solution path and for which f (n M.

Proof:

Let M=M,, ic., the minmax is obtained on solution path P$. Then at some time
before termination, let n’ be the shallowest OPEN node on P3, having pointers
directed along P} (possibly i=7). From the definition of M;:

M; = max{f;(n)}, 6
; “H{f,(n)} (6)
therefore,

finYSM;=M. ™
Moreover, since all ancestors of n’ on P§ are in CLOSED and BF* has decided to

assign its pointers along P, Lemma 1 states

FRCHEFFICE 3
This implies
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filn)sM &)

which proves Lemma 2.
O
Lemma 3:
Let P} be the solution path with which BF* terminates; then
a  any time before termination there is an OPEN node 2 on P; for which

Proof:

fn)=fi(n)

b. M isobtained on P}, i.e., M=M;.

Let n be the shallowest OPEN node on P} at some arbitrary time ¢, before
termination. Since all ’s ancestors on P; are closed at time £, 7 must be
assigned an f at least as cheap as f;(n). Thus, f;(n) 2 f (n) with strict ine-
quality holding only if at time ¢ n is found directed along a path different
than P, However, since BF* eventually terminates with pointers along P$,
it must be that BF* has never encountered another path to n with cost lower
than f;(n). Thus, f (r)=f;(n).

Suppose BF* terminates on P7, but M;>M, and let n*e Pf be a node where
f;(.) atains its highest value, ie., fj(n*)=M;. At the time that n* is last
chosen for expansion its pointer must already be directed along P f and, there-
fore, n** is assigned the value f(n*)=f;(n*)}>M. At that very time there
exists an OPEN node n’ having f (n") S M (Lemma 2), and so

f(a)<f@ns. (10)
Accordingly, n’ should be expanded before n* which contradicts our
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supposition.

a
Theorem 1:

If there is a solution path and f is such that fp(n) is unbounded along any infinite

path P, then BF* terminates with a solution,i.e., BF* is complete.

Proof:
In any locally finite graph there is only a finite number of paths with finite length. If
BF* does not terminate, then there is at least one infinite path along which every
finite-depth node will eventually be expanded. That means that f must increase
beyond bounds and, after a certain time ¢, no OPEN nodes on any given solution path
will ever be expanded. However, from Lemma 2, f ()M for some OPEN node »’
along a solution path, which contradicts the assumption that n” will never be chosen
for expansion.
m
The condition of Theorem 1 is clearly satisfied for additive cost measures due

to the requirement that each branch cost be no smaller than some constant 8. It is

i
also satisfied for many quasi-additive cost measures {e.g., [z ef ] ), but may not
i

hold for "saturated" i:ost measures such as the maximum cost. In the latter cases, ter-
mination cannot be guaranteed on infinite graphs and must be controlled by special

means such as using iteratively increasing depth bounds.

We shall soon sce that the importance of M lies not only in guarantesing the
termination of BF* on infinite graphs but mainly in identifying and appraising the
solution path eventually found by BF*.
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2.2.2 Quality of the Solution, and the Admissibility of BF*

So far we have not specified any relation between the cost function C, defined
on solution paths, and the evaluation function f , defined on partial paths or solution-
candidates. Since the role of f is to guide the search toward the lowest cost solution
path, we now impose the restriction that f be monotonic with C when evaluated on
complete solution paths, ie., if P and Q are two solution paths with C(P) > C(Q),
then f (P) > £(Q). Since C(P) and C(Q) can take on arbitrarily close valucs over

our space of problem instances, monotonicity can be represented by:
f(s,nl,nz,...,7)=V[C(s,nl,n2,...7)] Y& T (11)

where  is some increasing function of its argument defined over the positive reals.
No restriction, however, is imposed on the relation between C and f on non-goal
nodes, that is, we may allow evaluation functions which treat goal nodes preferen-

tially, for example:

y[C(s,n,n9...,0)] ifnel
f(s.nyngpein) = F(s,n,n3...,0) ifnel (12)
where F () is an arbitrary function of the path P = 5,1 ,25,...n. The additive evalua-

tion function f = g+h used by A* is, in fact, an example of such goal—pfefcning
types of functions; the condition A (y)=0 guarantees the identity f=C oh solution
paths, while on other paths f is not governed by C since, in general, k could take on
arbitrary values. Other examples of goal-preferring f evolve in branch-and-bound
methods of solving integer-programming problems where the quality of a solution
path is determined solely by the final goal node reached by that path. Here f (n) may
be entirely arbitrary for non-goal nodes, but if » is a goal-node we have f (n)=C (n).
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We now give some properties of the final solution path using the relationship

stated above.

Theorem 2:
BF* is \v‘l(M y-admissible , that is, the cost of the solution path found by BF* is at

most Yy~ 1(M).

Proof:
Let BF* terminate with solution path P} = 5,...# where r & T. From Lemma 2 we
learn that BF* cannot select for expansion any node n having f(n)>M. This
includes the node re I and, hence, f;(t)SM. But (11) implies that
£;(t) =¥{C (P})] and so, since y and y~! are monotonic,
CPH sy (13)
which proves the Theorem.
o
A similar result was established by Bagchi and Mahanti [Bagchi 1983]
although they used W(C)=C and restricted f to the form f=g+h.

Theorem 2 can be useful in appraising the degree of suboptimality exhibited
by non-admissible algorithms. ° For example, [Pohl 1973] suggests a dynamic
weighting scheme for the evaluation function f. In his approach the evaluation func-

tion f is given by:

Fln)=g(n)+h(n)+e [1—%,’-‘1]%:) (14)

where d(n) is the depth of node n and N is the depth of the shallowest optimal goal
node. Using Theorem 2 we can easily show that if h(n)<h*(n) then BF* will
always find a solution within a (1+€) cost factor of the optimal, a property first shown
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by.

[Pohl 1973] In this case, the requirement i (y)=0 for ye I" and equation (11) together

dictate y(C)=C, and we can bound M by considering max fps(n) along any optimal
n

path P+. Thus,
M sz}g(_fp.(u) (15)
sﬂap;. g*(n)y+h* (n)y+eh* (n) I:l-%]]
=C*+eh*(s)

=C*(1+€)

On the other hand, according to Theorem 2, the search terminates with cost C, <M,

hence
C,<C* (1+€). (16)

This example demonstrates that any evaluation function of the form
£ )= g(n)+ ha) [14epp(m) am

will also return a cost at most (1+€)C*, where pp(n) is an arbitrary path-dependent
function of node n, satisfying pp(n)<1 for all n along some optimal path P+. For

4
example, the functions pp(n) = [ hin) ] or pp(n)= [1+d(n)]'x,K >0,

g(n)+h(n)
will qualify as replacements for [1-d(n) / N].

The main utility of Theorem 2, however, lies in studying search on graphs
with random costs where we can use estimates of M to establish probabilistic

bounds on the degree of suboptimality, C,-C*. An example of such an option arises
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in the problem of finding the cheapest root-to-leaf path in a uniform binary tree of
height N, where each branch independently may have a cost of 1 or O wiith probabil-

ity p and 1-p, respectively.

It can be shown {[Karp 1983] that for p > 1/2 and large N the optimal cost is
very likely to be near c*N where a* is a constant determined by p. Consequently, a
natural evaluation function for A* would be f (n)=g (n H#a* [N—d(a)] and, since it is
not admissible, the question arises whether C;, the cost of the solution found by A*,
is likely to deviate substantially from the optimal cost Cs. A probabilistic analysis
" shows that although in the worst case M may reach a value as high as N, it is most
likely to fall in the neighborhood of a*N or C*. More precisely, it can be shown
(see Appendix 2.1) that, as N —eo, P [M2( 1+€)C*] = 0 for every € > 0 Thus, invok-
ing Theorem 2, we can guarantee that as N =0 A* will almost always find a solution
path within a 1+€ cost ratio of the optimal, regardless of how small € is.

Theorem 2 can also be used to check for strict admissibility, ie., C,=C*; all
we need to do is to verify the equality w'(M) =C*. This, however, is more con-
veniently accomplished with the help of the next corollary. It makes direct use of the
facts that 1) an upper bound on f along any solution path constitutes an upper bound
on M and, 2) the relation between fp(n) and C* is more transparent along an
optimal path. For example, in the case of A* with & < 4*, the relation fpe(n) S C*

is self evident.

Corollary 1:
If in every graph searched by BF* there exists at least one optimal solution path
along which f attains its maximal value on the goal node, then BF* is admissible.
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Proof:
Let BF* terminate with solution path Pf =s,...,r and let P* =5,...,Y be an opumal

solution path such that ng fpe(n)=Ffpe(y). By Theorem 2 we know that
nE
fj(t) S M. Moreover, from the definition of M we have M < ma;g fi(nr) for every
n&r;
solution path 7. In particular, taking Pf=P*, we obtain

fit)sM S%f»(")=fr~(‘¥)- (18)
However, from (11) we know that f is monotonic increasing in C when evaluated on
complete solution paths, thus
VIC (P S w(C*) (19)
implying
CP)sce, (20)
which means that BF* terminates with an optimal-cost path.
a
By way of demonstrating its utility, Corollary 1 can readily delineate the
range of admissibility of Pohl’s weighted evaluation function f,, = (1-w)g + wh,
Oswsl (see [Pohl 1969) ). Here y(C)=(1-w)C which complies with (11) for
w<1. It remains to examine what values of w<1 will force £, to attain its max-

imum at the end of some optimal path P* =5,...,y. Writing

fpe(n)Sfpe(¥) 2n

we obtain
(1-w)g* (n) + wh(n) S (1-w)g* () = (1-w)[g* (r) + h*(n)], (22)
or
1=w h(n)
w 2 h*(n)’ (23)
Clearly, if the ratio h):‘((’::)) is known to be bounded from above by a constant [3, then
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1
w < F‘B- (24)

constitutes the range of admissibility of BF*. Note that the use of w > 1/2 may be

permissible if 4 is known to consistently underestimate ~¢ such that :4*(% sfel.

Conversely, if & is known to be non-admissible with 8>1, then the use of w = 1

143
will turn BF* admissible.

Another uscful application of Corollary 1 is to check whether a given combi-
nation of g and A, f =f(g,h), would constitute an admissible heuristic in problems
of minimizing additive cost measures. If A<h* and f is monotonic in both argu-

ments, then Corollary 1 states that f (g ,4) is guaranteed to be admissible as long as
f@.C-g)Sf(C,0) for0sg sC. (25)

Thus, for example, f = g *+h? is admissible while f = (g2 + %) is not. In gen-
eral, any combination of the form f = ¢[¢"1(g) + ¢o'l(h )] will be admissible if ¢ is

monotonic non-decreasing and concave.



2.3. CONDITIONS FOR NODE EXPANSION

In section 2.3.1 we present separate conditions of necessity and sufficiency
for nodes expanded by BF* on graphs. Further restricting the problem domain to
trees will enable us to establish in section 2.3.2 an expansion condition which is both

necessary and sufficient.
2.3.1 Expansion Conditions for Graphs

Lemma 4:

BF* chooses for expansion at least one node n such that at the time of this choice

fin=M.

Proof: Let BF* terminate with P} and let n*e P{ be such that £;(n*)=M;.
From Lemma 3, M j=M . Moreover, at the time that n ¢ is last expanded, it is pointed
along P;. Hence,

fr)=fi(n)=M; =M. 26)
O

Theorem 3:
Any node expanded by BF* has f (r )M immediately before its expansion.
Proof:
Follows directly from Lemma 2.
o
Theorem 4: .
Let n* be the first node with f (n*)=M which is expanded by BF* (there is at least
one). Any node which prior to the expansion of n* resides in OPEN with f (n)<M

will be selected for expansion before n *.
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Proof:
f(n) can only decrease through the redirection of its pointers. Therefore, once
satisfies f (n)<M , it will continue to satisfy this inequality as along as it is in OPEN.
Clearly, then, it should be expanded before  *.
]

Note the difference between Theorems 3 and 4 and their counterparts, results
4 and 5, for A*. First, M plays the role of C*. Second, the sufficient condition for
expansion in Theorem 4, unlike that of result 5, requires that 2 not merely reside in
OPEN but also enters OPEN before n* is expanded. For a general f, it is quite pos-
sible that a node n may enter OPEN satisfying f (n)<f (n*}=M and still will not be
expanded.

We will now show that such an event can only occur to descendants of nodes
ne for which f (n%)=M, ie., it can only happen to a node n reachable by an M-
bounded path but not by a strictly M -bounded path.

Definition: A path P will be called M-bounded if every node n along P satisfies
fp(n)<M. Similarly, if a strict inequality holds for every n along P, we shall say
that P is strictly M -bounded.

Theorem 5:

Any node reachable from s by a strictly M -bounded path will be expanded by BF*.

Proof:

Consider a strictly M -bounded path P from s to n (M cannot be obtained on 5). We
can prove by induction from s to n that every node along P enters OPEN before n*
is expanded and hence, using Theorem 4, 2 will be expanded before n*.
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O
In Section 4 we will use this result to compare the performance of A* to that

of other (generalized) best-first algorithms.

The final results we wish to establish now are necessary and sufficient condi-
tions for node expansion which are superior to Theorems 4 and 5 in that they also

determine the fate of the descendants of n .

Theorem 6:

Let P{ be the solution path eventually found by BF* and let #; be the depth-i node
along P{,i=0,1,... . A necessary condition for expanding an arbitrary node n in the
graph is that for some n;e P} there exists an L;-bounded path from »; to n where
L= max fj(n). In other words, there should exist a path P, _, along which

f(n')STgfj(nk) *h'e Py _, 27
Moreover, a sufficient condition for expanding n is that (27) be satisfied with strict
inequality.
Proof:

Assume that n is expanded by BF* and let n, be the shallowest OPEN node on P f at

time 1, when » is selected for expansion (see Figure 2.1).

Since P f is the solution path eventually found by BF* we know (sce proof of Lemma
3) that at time , n, is pointed along P} and, therefore,

F(n)Sf(n)=f;(m). (28)
We are now ready to identify the node #; on P} which satisfies (27). Let P,_, be the
path along which n’s pointers are directed at time ¢,, and let n; be the deepest com-

mon ancestor of n and n; along their respective pointer paths P,_, and Pf. Since n;
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i
Figure 2.1 - Used in the proc:f for node expansion in theorem 6

is an ancestor of n, we have i <k and so, f (n) < f;(n,) implies

£ (n) Smax f (). (29)
We now repeat this argument for every ancestor a° of n along the P,_, segment of
P._,. At the time it was last expanded, each such ancestor n’ may have encountered
a different n, in OPEN, but each such n, must have been a descendent of a; along
P§ satisfying f (3"} S f;(ng). Hence, (27) must be satisfied for all nodes n’ along
the P,_, scgment of P,_, which proves the necessary part of Theorem 6.

Sufficiency is proven by assuming that Tax fj(m) occurs at some node
>4

ny € P}g, K >i. Both n; and np are eventually expanded by BF* and so, if n is not
already expanded at the time ¢ when ny is last selected for expansion, then P,_,

should contain at least one OPEN node. We now identify n* as the shallowest OPEN

node on P, _, at time ’, for which we know that

f(sfp_ (n) (30)
However, since (27) is assumed to hold with strict inequality for any n” along Pp.p,
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we must conclude

f()sfp_(n) < f(m) (3D
implying that n’, not ;, should have been chosen for expansion at time ¢’, thus con-

tradicting our supposition that n remains unexpanded at time ¢”.
O
The expansion condition of Theorem 6 plays a major role in analyzing the
average complexity of non-admissible algorithms, where f is treated as a random
variable [Pearl 1984] This condition is rather complex for general graphs since many
paths may stem from P toward a given node a, all of which must be tested accord-
ing to Theorem 6. The test is simplified somewhat in the case of trees since (27)
need only be tested for one node, n;€ P}, which is the deepest common ancestor of n
and v. Still, the condition stated in Theorem 6 requires that we know which path will
eventually be found by the algorithm and this, in general, may be a hard task to deter-
mine a-priori. An alternative condition, involving only the behavior of f across the

tree, will be given in the next subsection.
2.3.2 Conditions for Expansion on Trees

Here we present a necessary and sufficient condition for node’s expansion by
algorithm BF* under the assumption that the graph to be searched is a tree and the tie
breaking rule is "leftmost-first”. This condition, unlike those in Section 2.3.1, do not
require knowing the solution path found but invokes only the properties of the search

graph and the evaluation function f.
The following notations and definitions will be used:

T, - atree rooted at node 5. The children of each node are ordered from left to
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P i)

Pir)

i

Figure 2.2 - The left and right values of ancestor n of k,
w.r.t the path P, ;.

right N denotes the depth of T,. Some of its leaf nodes are marked as goal
nodes.

a subtree of T, rooted at node r, r€T,.

the minimax value M associated with solution paths in subtree T,. If 7, con-

tains no goal nodes we will define M, =ss.

- the path from { to 7 (including, as usual, the two end nodes).
- the path from i to r excluding node i.

- the path from { to r excluding node r.

- the path from i to r excluding nodes i and r.

the despest common ancestor of nodes i and j for which i is not a descendent

of j and j is not a descendent of i.
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f(r) - the evaluation function fp ().

For any ancestor node n of a given node & we now define two parameters
called left value and right value to be the minimum among the M values of the left
and right subtrees rooted at n, respectively. The terms left and right are defined with

respect to path P,_; (see Figure 2.2).

Definition: Let k be a node at depth k (k<N) in T, and let n be a node on P ,_;),
with its sons n,25,...,m, ... ,n, ordered from left to right where n; is on path

P,_,. The left value of n with respect to k, VE(r), is given by

Vi(r)= min <M, 32
Similarly, the right value of n with respect to k11 is
Vi(n)= mi

Definition: We say that n; is to the left of n; if some ancestor of #; is 2 left sibling

of an ancestor of n;j.

Obviously for any two nodes in T, either one of them is a descendent of the
other or one of them is to the left of the other (but not both). This renders the execu-
tion of algorithm BF* on T, unique since, at any time, all nodes in OPEN are totally
ordered by both the size of f and the "left of" relationship.

Lemma §:

Let k be a node in T, which is expanded by BF* and let n be to the left of k with
n’=A . If the path P,_, is bounded above by f (k) then n will be expanded before
k (see Figure 2.3a).
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Proof:
Assume P,-_, is bounded above by f (k) but k is expanded before n. lmmediately
before k is expanded there is a node a“on P,._, which is on OPEN. Since we have
f (7)< f (k) and n”is to the left of k (since a is), n”should be selected for expansion
and not & which contradicts our supposition,

O

(a) (b)

Figure 2.3 - Used in the proof of lemma 5

We are now ready to present the condition for node expansion.

Theorem 7:

A node k at depth k of the search tree T, will be expanded by BF* if and only if the
f value for each ancestor n of k along the path P,_;, is lower than the minimum M
values of all subtrees stemming to the left of the path P,_,, and is not higher than the

minimum M values of all subtrees stemming to the right of P,_,. Formally:
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Foreveryn onP,_,

f(n) < min {Vf(n') |n"e P[,_,)} (34)

and
f(n)Smin {Vf(n') | n’e P[,_,,)} (35)

Proof:
In part (1) we show that the condition is necessary and in part (2) we prove its
sufficiency.

1. Assume to the contrary that node &k was expanded but there is a node on
P ;) which does not satisfy the corresponding inequality. Let n be the
first such node with this counter property, that is, either

(@) f(n)2min {vf(n') | n’e P<,..)}

(®) f(n)> min {V},‘(n') | '€ P }
Assume that (a) holds and let n* be a node on P (,_,), on which the minimum
of the right-hand side of (a) is attained, i.e.,

VE(n+) = min {Vf(n') | 5’ € Psen) } (36)
According to the definition of V£(n*), there is a path P,._, from n* to a goal
node ¢ that is situated to the left of n which is bounded by Vf(n*). Since
VE(n*)sf (n), the path P, _, is bounded by f (n) and thus, by Lemma 5 ¢
will be expanded before n and the algorithm will hait without expanding n



and & which contradicts our supposition that & is expanded by BF*,

Assume now that (b) holds. Using the same argument we should conclude
that exactly before # is chosen for expansion there is a path from an OPEN
node to 2 goal (situated to the right of 7 ) which is strictly bounded below
f(n). This path should be expanded before a and the algorithm will ter-

minate without expanding » or k.

Let & be a node at depth & that satisfies the condition. We will show that &
must be expanded by BF*. Let ¢ be the goal node on which BF* halts. If ¢
is a descendent of k then, obviously £ must be expanded. Otherwise, ¢ is
cither to the left of & or to its right.

case a: r is to the left of k. Let n’=4,,, n’ is on the path P, _,.

Let M be the max f value on Puy)and HEP . 4y with f (=M (see

figure 2.3a). Since ¢ is expanded, n’ must be expanded, and therefore, before

the algorithm expands n’there is always an OPEN node on P (n—]- From the
condition of the theorem

YnePuy) f(n)<M=f(d) €

and therefore all the nodes on P (,-_;) must be expanded before Knowing

that #’is expanded implies the expansion of k and all its ancestors.

case b: ¢ is to the .ight of k. The situation in this case is shown in
Figure 2.3b. From the condition of the theorem it follows that the path
P (n'-t) 1 bounded below f (7"} and therefore from lemma $ % should be
expanded before »
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2.4. ON THE OPTIMALITY OF A*
2.4.1 Previous Works and the Notion of Equally-Informed

The optimality of A*, in the sense of computational efficiency, has been 2
subject of some confusion. The well-known property of A* which predicts that
decreasing errors h*~h can only improve its performance (result 6 in [Nilsson
1980a] ) has often been interpreted to reflect some supremacy of A* over other
search algorithms of equal information. Consequently, several authors have as;umcd
that A®’s optimality is an established fact (e.g [Nilsson 1980b, Mero 1984]. ). In
fact, all this property says is that some A* algorithms are better than other A* algo-
rithms depending on the heuristics which guide them. It does not indicate whether
the additive rule f =g +h is the best way of combining g and A, neither does it assure
us that expansion policies based only on g and & can do as well as more sophist-
cated policies that use the entire information gathered by the search. These two con-
jectures will be examined in this section, and will be given a qualified confirmation.

The first attempt to prove the optimality of A* was carried out by Hart, Nils-
son and Raphael [Hart 1968] and is summarized in {Nilsson 1980b] Basically, Hart
et al. argue that if some admissible algorithm B fails to expand a node n expanded by
A*, then B must have known that any path to a goal constrained to go through node
n is nonoptimal. A*, by comparison, had no way of realizing this fact because when
n was chosen for expansion it satisfied g(n)+ h(n) < C*, clearly advertizing its
promise to deliver an optimal solution path. Thus, the argument goes, B must have
obtained extra information from some external source, unavailable to A* (perhaps by
computing a higher value for &(n)), and this disqualifies B from being an “equally

informed", fair competitor, to A*.
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The weakness of this argument is that it fails to account for two legitimate
ways in which B can decide to refrain from expanding n based on information per-
fectly accessible to A*. First, B may examine the properties of previously exposed
portions of the graph and infer that n actually deserves a much higher estimate than
h(n). A*, on the other hand, although it has the same information available to it in
CLOSED, cannot put it into use because it is restricted to take the estimate 4 (n) at
face value and only judge nodes by the score g(n)+ A{n). Second, B may also
gather information while exploring sections of the graph unvisited by A*, and this
should not render B an unfair, "more informed” competitor to A* because in princi-
ple A* too had an opportunity to visit those sections of the graph. Later in this sec-
tion (see Figure 2.6) we demonstrate the existence of an algorithm B which manages
to outperform A* using this kind of information.

Gelperin (1978) has correctly pointed out that in any discussion of the
optimality of A* one should also consider algorithms which adjust their A in accor-
dance with the information gathered during the search. His analysis, unfortunately,
falls short of considering the entirety of this extended class, having to follow an
over-restrictive definition of equally-informed. Gelperin’s interpretation of "an
algorithm B is never more informed than A*", instead of just restricting B from
using information inaccessible to A, actually forbids B from processing common
information in a better way than A does. For example, if B is a best-first algorithm
guided by fp, then in order to qualify for Gelperin’s definition of "never more
informed than A*,"” B is forbidden from ever assigning to a node n a value fa(n)
higher than g(n)+ h(n), even if the information gathered along the path to »

justifies such an assignment.
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In our analysis we will use the natural definition of "equally informed,"”
allowing the algorithms compared to have access to the same heuristic information
while placing no restriction on the way they use it. Accordingly, we assume that an
arbitrary heuristic function k(n) is assigned to the nodes of G and that the value
h(n) is made available to each algorithm that chooses to generate node n. This
amounts to viewing A(n) as part of the parameters that specify problem-instances
and comespondingly, we shall represent each problem instance by the quadruple
I=(G,s,T,h)

We will demand, however, that A* only be compared to algorithms that
return optimal solutions in those problem instances where their computational perfor-
mances are to be appraised. In particular, if our problem space contains only cases
where A(n) € h* (n) for every n in G, we will only consider algorithms which, like
A*, return least-cost solutions, in such cases. The class of algorithms answering this
conditional admissibility requirement will simply be called admissible and will be
denoted by A ;. From this general class of algorithms we will later examine two
subclasses Agc and A,r. A, denotes the class of algorithms which are globally
compatible with A*®, ie., they return optimal solutions whenever A* does, even in
cases where h > h*. A, stands for the class of admissible BF* algorithms, i.e.,
those which conduct their search in a best-first manner, being guided by a path-
dependent evaluation function as in Section 2.1.

Aﬁdiﬁonaﬂy, we will assume that each algorithm compared to A* uses the
primitive computational step of node expansion, that it only expands nodes which
were generated before, and that it begins the expansion process at the start node s.
This excludes, for instance, bi-directional searches [Pohl 1971] or algorithms which
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simultaneously grow search trees from several "seed nodes” across G.
2.42. Nomenclature and a Hierarchy of Optimality Relations

Our notion of optimality is based on the usual requirement of Dominance

[Nilsson 1980a].

Definition: Algorithm A is said to dominate algorithm B relative to a set I of prob-
lem instances iff in every instance / €], the set of nodes expanded by A is a subset of
the set of nodes expanded by B. A strictly dominates B iff A dominates B and B
docs not dominate A, i.c., there is at least one instance where A skips a node which B

expands, and no instance where the opposite occurs.

This definition is rather stringent because it requires that A establishes its

superiority over B under two difficult tests:
1. expanding a subset of nodes rather than a smaller number of nodes
2. outperform B in every problem instance rather than the majority of instances

Unfortunately, there is no easy way of loosening any of these requirements without
invoking statistical assumptions regarding the relative likelihood of instances in I.
In the absence of an adequate statistical model, requiring dominance remains the only
practical way of guaranteeing that A expands fewer nodes than B, because if in some
problem instance we would allow B to skip even one node that is expanded by A, one
could immediately present an infinite set of instances where B grossly outperforms
A. (This is normally done by appending to the node skipped a variety of trees with
negligible costs and very low A).
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Adhering io the concept of dominance, the strong definition of optimality pro-
claims algorithm A optimal over a class A of algorithms iff A dominates every
member of A. Here the combined multiplicity of A and I also permits weaker
definitions, for example, we may proclaim A weakly optimal over A if no member
of A strictly dominates A. The spectrum of optimality conditions becomes even
richer when we examine A*, which stands for not just one but a whole family of
algorithms, each defined by the tie-breaking-rule chosen. We chose to classify this
spectrum into the following four types (in a hierarchy of decreasing strength):

Type 0: A* is said to be O-optimal over A relative to L iff in every problem instance
Ie] every tie-breaking-rule in A* expands a subset of the nodes expanded by
any member of A. (In other words, every tie-breaking-rule dominates all
members of A .)

Type 1: A* is said to be 1-optimal over A
relative to 1 iff in every problem instance /€] there exists at least one tie-
breaking-rule which expands a subset of the set of nodes expanded by any
member of A.

Type 2: A* is said to be 2-optimal over A
relative to I iff there exists no problem instance / €] where some member of
A expands a proper subset of the sct of nodes which are expanded by some
tie-breaking-rule in A*.

Type 3: A* is said to be 3-optimal over A
relative to I iff the following holds: if there exists a problem instance /€1

where some algorithm Be A skips a node expanded by some tie-breaking-



rule in A*, then there must also exist some problem instance /s€ I where that
tie-breaking-rule skips a node expanded by B. (In other words, no tie-
breaking-rule in A* is strictly dominated by some member of A .)

Type-1 describes the notion of optimality most commonly used in the litera-
ture, and it is sometimes called "optimnal up to a choice of a tie-breaking-rule”. Note
that these four definitions are applicable to any class of algorithms, B, contending to
be optimal over A ; we need only replace the words "tie-breaking-rule in A*" by the
words "member of B". If B turns out to be a singleton, then type-0 and type-1 col-
lapse to strong optimality. Type-3 will collapse into type-2 if we insist that /, be
identical to / 5.

We are now ready to introduce the four domains of problem instances over
which the optimality of A* is to be examined. The first two relate to the admissibil-

ity and consistency of A (a).

Definition: A heuristic function A(n) is said to be admissible on (G,I0 iff
h(n) S h*(n) forevery neG

Definition: A heuristic function 4 (n) is said to be consistent (or monotone) on G iff
for any pair of nodes, n” and n, the triangle inequality holds:
A(n)YSk(n',n)+ h(n) (38)

Corresponding to these two properties we define the following sets of problem

Instances:

Lip= {(G,s Th) | h<h* on (G,n} (39)
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Icon = {(G ,s,[,h) | h is consistent on G} {40)
7/

Clearly, consistency implies admissibility [Pearl 1984] but not vice versa, therefore,

Icon Slap

A special and important subset of I ,p (and Icon), called non-pathological
instances, are those instances for which there exists at least one optimal solution
path along which 4 is not fully informed, that is, h<h* for every non-goal node on
that path. The non-pathological subsets of I,p and I gy Wwill be denoted by 14p

and I ;ou, respectively.

It is known that if & < h*, then A* expands every node reachable from s by
a strictly C *-bounded path, regardless of the tie-breaking rule used. The set of nodes
with this property will be referred to as surely expanded by A*. In general, for an
arbitrary constant d and an arbitrary evaluation function f over (G, s, T, h), we let
N # denote the set of all nodes reachable from s by some strictly d-bounded path
in G. For example, _hlf:_,, is a set of nodes surely expanded by A* in some instance

OflAD'

The importance of non-pathological instances lies in the fact that in such
instances the set of nodes surely expanded by A* are indeed all the nodes expanded
by it Therefore for these instances any claim regarding the set of nodes surely
expanded by A* can be translated to "the set of all the nc;des" expanded by A*. This
is not the case, however, for pathological instances in I p; ﬂf:,, is often a proper
subset of the set of nodes actually expanded by A*. If & is consistent, then the two
sets differ only by nodes for which h(n)=C*-g*(n) [Pearl 1984]. However, in

cases where k& is inconsistent, the difference may be very substantial; each node a for
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which A(n)=C*-g*(n) may have many descendents assigned lower A values
(satisfying h+g<C*) and these descendents may be expanded by every de-
breaking-mic of A* even though they do not belong to _l\if:h.

In the following subsection we present several theorems regarding the
behavior of competing classes of algorithms relative to the set _N_f:h of nodes surely
expanded by A®*, and will interpret thcs;: theorems as claims about the type of
optimality that A* enjoys over the competing classes. Moreover, for any given ;-)air

(A, I) where A is a class of algorithms drawn from {h,&hf,ﬁsc }andlis a

domain of problem instances from {I_AD, 1:p: Leows Loon }, we will determine

the strongest type of optimality that can be established over A relative to I, and will
identify the algorithm that achieves this optimality. The relationships between these
classes of algorithms and problem domains are shown in Figure 2.4. The algorithm
A** is an improvement over A* discussed in Appendix 2.2.

2.4.3 Where and How is A* Optimal?

2.4.3.1 Optimality over admissible algorithms, A 4

Theorem 8:
Any algorithm that is admissible on I ,, will expand, in every instance /e I oy, all
nodes surely expanded by A®.

Proof:
Let I=(G ,5,I,h) be some problem instance in I, and assume that n is surely

expanded by A*,ie., n eﬁf:h. Therefore, there exists a path P,_, such that
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Chnnin af Algaviious

Figure 2.4 - The classes of algorithm and the problem instances
for which the optimality of A* is examined.

“n'eP,, ,gnV+h(n)<C* 41)
Let B be an algorithm compatible with A*, namely halting with cost C+inl.

Assume that B does not expand n. We now create a new graph G (see figure
2.5) by adding to G a goal node ¢ with A(s)=0 and an edge from # to ¢ with non-
negative cost C=h(n)+4, where

A=12(C*-D)>0 (42)
and

D=max{((n') | n’ e _11,‘::,,} (43)
This construction creates a new solution path P ¢ with cost at most C*-A and, simul-
taneously, (due to A 's consistency on /) retains the consistency (and admissibility) of

A on the new instance /”. To establish the consistency of & in /" we note that since



Figure 2.5 - Used in the proof of theorem 8.

we kept the A values of all nodes in G unchanged, consistency will continue to hold
between any pair of nodes previously in G. It remains to verify consistency on pairs
involving the new goal node r, which amounts to establishing the inequality
k(n"ySk(n’t) for every node n’ in G. Now, if at some node n’ we have
h(n") > k(n’z) then we should also have:

h(n)Y> k(' n)+c=k(n’a)+h(n)+A (44)
in violation of #'s consistency on 7. Thus, the new instance is also in I ngN.

In searching G, algorithm A* will find the extended path P ¢ costing C*-A,
because:

f@)=g(aHc=f(nHASD +A=C*-A < C* (45)
and so, ¢ is reachable from s by a path bounded by C*-A which ensures its selection.

Algorithm B, on the other hand, if it avoids expanding n, must behave the same as in
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problem instance /, halting with cost C* which is higher than that found by A*. This

contradicts the supposition that B is both admissible on / and avoids the expansion
of node n.
O
The implications of Theorem 8 relative to the optimality of A* arc rather
strong. In non-pathological cases / € Icon A* never expands a node outside igc:h
and, therefore, Theorem 8 establishes the O-optimality of A* over all admissible
algorithms relative to ISon. In pathological cases of Loy there may also be nodes
satisfying f (n)=C * that some tie-breaking-rule in A* expands and, since these nodes
are defined to be outside N[y, they may be avoided by some algorithm B A 4,
thus destroying the O-optimality of A* relative to all Ioon. However, since there is
always a tie-breaking-rule in |A* which, in addition to N &y, expands only nodes
along one optimal path, Theoyem 8 also establishes the 1-optimality of A* relative
the entire I ooy domain. Stronger yet, the only nodes that A* expands outside ﬂf.:h
are those satisfying f () = C*, and since this equality is not likely to occur in many
nodes of the graph, we may interpret Theorem 8 to endow A* with "almost” 0-

optimality (over all admissibl¢ algorithms) relative to Icon-

The proof of Theorem 8 makes it tempting to conjecture that A* retains the
same type of optimality relative to cases where h is admissible but not necessarily
consistent. In fact, the original argument of Hart, Nilsson and Raphael [Hart 1968]
that no admissible algorithm equally informed to A* can ever avoid a node expanded
by A* (see Section 2.4.1),

to I,p. Similar claims are made by Mero [Mero 1984] and are suggested by the

ounts to claiming that A* is at least 1-optimal relative

theorems of [Gelperin 1977].
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Unfortunately, Theorem 8 does not lend itself to such extension; if A is
admissible but not consistent, then after adding the extra goal node ¢ to G (as in Fig-
ure 2.5) we can no longer guarantee that 4 will remain admissible on the new
instance created. Furthermore, we can actually construct an algorithm that is admis-
sible on I ,pp and yet, in some problem instances, it will grossly outperform every
tie-breaking-rule in A*. Consider an algorithm B guided by the following search
policy: Conduct an exhaustive right-to-left depth-first search but refrain from
expanding one distinguished node n, ¢.g., the leftmost son of 5. By the time this
search is completed, examine n to see if it has the potential of sprouting a solution
path cheaper than all those discovered so far. If it has, expand it and continue the
search exhaustively. Otherwise,”® retum the cheapest solution at hand. B is clearly
admissible; it cannot miss an optimal path because it would only avoid expanding n
when it has sufficient information to justify this action, but otherwise will leave no
stone unturned. Yet, in the graph of Figure 2.62, B will avoid expanding many nodes
which are surely expanded by A*. A* will expand node J 1 immediately after s
(f (1)=4) and subsequently will also expand many nodes in the subtree rooted at J 1-
B, on the other hand, will expand J;, then select for expansion the goal node ¥, con-
tinue to expand J, and at this point will halt without expanding node J ;- Relying on
the admissibility of 4, B can infer that the estimate A (J 1=1 is overly optimistic and
should be at least equal to & (J;)-1=19, thus precluding J 1 from lying on a solution
path cheaper than the path (s ,/4,Y) at hand.

Granted that A* is not 1-optimal over all admissible algorithms relative to
I.p, the question arises if a 1-optimal algorithm exists altogether. Clearly, if a 1-

DA simple valid test for skipping anode in I ,p is that max { g(n") + h(n") | n’}. on
some path P from 5 to n be larger than the cost of the cheapest solution at hand.
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optimal algorithm exists, it would have to be better than A* in the sense of skipping
in some problem instances, at leasi one node surely expanded by A* while never
expanding a node which is surely skipped by A*. Note that algorithm B above could
not be such an optimal algorithm because in return for skipping node J, in Figure
2.6a, it had to pay the price of expanding J,, and J, will not be expanded by A*
regardless of the tie-breaking-rule invoked. If we could show that this “node trade-
off” pattern must hold for every admissible algorithm and on every instance of 1 ,p,
then we would have to conclude both that no 1-optimal afgorithm exists and that A*
is 2-optimal relative to this domain. Theorem 9 accomplishes this task relative to

Lip-

Figure 2.6 - Graphs demonstrating that A* is not optimal.

Theorem 9:

If an admissible algorithm B does not expand a node which is surely expanded by A*
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in some problem instance where . is admissible and non-pathological, then in that
very problem instance B must expand a node which is avoided by every tie-
breaking-rule in A*.

Proof:

Assume the contrary, i.e., there is an instance /=(G 5,I',4) € 1 such that a node
n which is surely expanded by A* is avoided by B and, at the same time, B expands
no node which is avoided by A*, we shall show that this assumption implies the
existence of another instance /” € I ,p where B will not find an optimal solution. /’
is constructed by taking the graph G, exposed by the run of A* (including nodes in
OPEN) and appending to it another edge (n,7) to a new goal node ¢, with cost
c¢(n,)=D~k,(s,n) where

D =max{((n') in'e ﬁf:,,} (46)
and k,(n’,n) is the cost of the cheapest path from s’ ton in G,.

Since G contains an optimal path P*,_y along which A (n)<h* (n") (with the
exception of ¥ and possibly s ), we know that because ties are broken in favor of goal
nodes A* will halt without ever expanding a node having f (n)=C*. Therefore,
every nontc;n.ina] node in G, must satisfy the strict inequality g (n )+h(n)<C.

We shall first prove that /* is in I p, i.e., that A(n") S 2 *(n") for every node
n’in G,. This inequality certainly holds for a* such that g (n)+h(r") 2 C* because
all such nodes were left unexpanded by A* and hence appear as terminal nodss in G,
for which k *(n "y=ee (with the exception of y, for which h (y)=h *'(y)=0). It remains,
therefore, to verify the inequality for nodes a’ in E‘C;,, for which we have

g(n)+h(n)SD. Assume the contrary, that for some n’e NS we have
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h(n")>h*;{n"). This implies

h(n") > k,(n’,n)+c(n,t) (47)
=k, (n',n)+D =k (s.n)
2k,(u’,n)+k¢(s,n')+h(n')-Ic,(s,n)

or

k,(s,n) > ko (n'n)+k,(s,n") (48)
in violation of the triangle inequality for cheapest paths in G,. Hence, / “isin I ,p.

Assume now that algorithm B does not generate any node outside G,. If B
has avoided expanding # in J, it should also avoid expanding » in 7, all decisions
must be the same in both cases since the sequence of nodes generated (including
those in OPEN) is the same. On the other hand, the cheapest path in [ ’ now goes
from s to n to ¢’, having the cost D <C*, and will be missed by B. This violates the
admissibility of B on an instance in I ,p and proves that B could not possibly avoid
the expansion of # without generating at least one node outside G,. Hence, B must
expand at least one node avoided by A* in this specific run.

o

Theorem 9 has two implications. On one hand it conveys the discomforting
fact that neither A* nor any other algorithm is 1-optimal over those guaranteed to
find an optimal solution when given h<h*. On the other hand, Theorem 9 endows
A* with some optimality property, albeit weaker than hoped; the only way to gain
one node from A* is to relinquish another. Not every algorithm enjoys such

strength. These implications are summarized in the following Corollary.

Corollary 2: No algorithm can be 1-optimal over all admissible algorithms relative

to L ,p, but A* is 2-optimal over this class relative to Iip-
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The fact that Theorem 9 had to be limited to non-pathological instances is
explained by Figure 2.6b, showing an exception to the node-tradeof rule on a patho-
logical instance. Algoritim B does not expand a node (/) which must be expanded
by A* and yet, B does not expand any node which A* may skip. This example
implies that A* is not 2-optimal relative to the entire I,y domain and, again, this
begs the questions whether there exists of a 2-optimal algorithm altogether, and
whether A* is at least 3-optimal relative to this domain.

The answer to both questions is, again, negative; another algorithm that we
shall call A**, turns out both, to strictly dominate A* and to meet the requirements
for type-3 optimality relative to I ;. A** conducts the search in a manner similar to
A*, with one exception; instead of f (n)=g (n)}+h(n), A** uses the evaluation func-

tion:

f(n):max{g(n')-l-h(u')lu' onthecurrentpathton} (49)
This, in effect, is equivalent to raising the value of £ (») to a level where it becomes
consistent with the & 's assigned to the ancestors of n. [Mero 1984] A** chooses for
expansion the nodes with the lowest f value in OPEN (breaking ties arbitrarily but in
favor of goal nodes) and adjusts pointers along the path having the lowest g value.
In figure 2.6a, for example, if A** ever expands node J , then its son J will immedi-
ately be assigned the value f (/) = 21 and its pointer be directed toward J,.

It is possible to show (see Appendix 2.2) that A** is admissible and that in
non-pathological cases A** expands the same set of nodes as does A*, namely the
surely expanded nodes in _N_‘C_,,h In pathological cases, however, there exist te-
breaking-rules in A** that strictly dominate every tie-breaking-rule in A*. This
immediately precludes A* from being 3-optimal relative to I, and nominates A**
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for that title.

Theorem 10:
Let a** be some tic-breaking-rule in A** and B an arbitrary algorithm, admissible
relative to I ,pp. If in some problem instance /,€1,p, B skips a node expanded by

a** then there exists another instance /e ,p where B expands a node skipped by

ar*,
Proof:
Let
SA =R, N2 - nt,.l b (50)
and
Sp=n,ny .., K -0 (51)

be the sequences of nodes expanded by a** and B, respectively, in problem instance
1,€l,p, ie., K is the first node in which the sequence Sp deviates from 5,. Con-
sider G,, the explored portion of the graph just before a** expands node J. That
same graph is also exposed by B before it decides to expand X instead. Now con-
struct a new problem instance /5 consisting of G, appended by a branch (/,r) with
cost C(J.0)=f (J)~g{J), where ¢ is a goal node and f (/) and g (J) are the values
that a** computed for J before its expansion. /5 is also in I ,p because A(r)=0 and
C (J,¢) are consistent with 4 (J) and with the &’s of all ancestors of J in G,. For if

some ancestor n; of J satisfies 4 (n;) > A* (n;) we will obtain a contradiction:

g(m)+hin;) > g(n) +h*(n;) (52)
=g(n) +k(n; J)+c(J,0)
2g(N+clJ,1)
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=f()= mflx [g(n;) +A(n))]

Moreover, a** will expand in ], the same sequence of nodes as it did in /, until J is
expanded, at which time t enters OPEN with
F@y=max[g(W)+c{J 1), f]=f()). Now, since J was chosen for expansion
by virtue of its lowest f value in OPEN, and since a** always breaks up ties in favor
of a goal node, the next and final node that a** expands must be r. Now consider B.
The sequence of nodes it expands in /, is identical to that traced in /, because, by
avoiding node J, B has no way of knowing that 2 goal node has been appended to G,.

Thus, B will expand X (and perhaps more nodes on OPEN), a node skipped by a**.
||
Note that the special evaluation function wused by A**

f(n)=max {g(n')+h(n') | n’on P,_,,} was necessary to ensure that the new

instance, /5, remains in I ,5. The proof cannot be carried out for A* because the
evaluation function f{n)=g (n)3+h(n) results in C(J,2) = A(J), which may lead to

violation of i {n;) < h*(n;) for some ancestor of J.

Theorem 10, together with the fact that its proof makes no use of the assump-

tion that B is admissible, gives rise to the following conclusion:
Corollary 3: A** is 3-optimal over all algorithms relative to I ,py.

Theorem 10 also implies that there is no 2-optimal algorithm over A ,; rela-
tive to I ,pn. From the 3-optimality of A** we conclude that every 2-optimal algo-
rithm, if such exists, must be a member of the A** family, but figure 6b demon-
strates an instance of I ., where another algorithm (B) only expands a proper subset
of the nodes expanded by every member of A**, This establishes the desired conclu-
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sion:
Corollary 4: There is no 2-optimal algorithm over A y relative to I 4p
2.4.3.2 Optimality over globally compatible algorithms, A .

So far our analysis was restricted to algorithms in A, ie., those which
return optimal solutions if A(n) S k*(n) for all n, but which may return arbitrarily
poor solutions if there are some 7 for which A(n)>h*(n). In situations where the
solution costs are crucial and where A may occasionally overestimate h+ it is impor-
tant to limit the choice of algorithms to those which return reasonably good solutions
even when h>he. A*, for example, provides such guarantees; the costs of the solu-
tions returned by A* do not exceed C* + A where A is the highest error h*(n)~h(n)
over all nodes in the graph [Harris 1974] and, moreover, A* still returns optimal
solutions in many problem instances, i.c., whenever A is zero along some optimal
path. This motivates the definition of A 4, the class of algorithms globally compati-
ble with A*, namely, they return optimal solutions in every problem instance where

A* returns such solution.

Since A, is a subset of Ay, We should expect A* to bold a stronger
optimality status over A, at least relative to instances drawn from [ ,p. The fol-

lowing Theorem confirms this expectation.

Theorem 11:
Any algorithm that is globally compatible with A* will expand, in problem instances
where k is admissible, all nodes surely expanded by A*.

Proof:
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Let I =(G,s,Ih) be some problem instance in 1,p and let node n be surely

expanded by A*, i.c., there exists a path P,_, such that

gn)+h(n)<C* forall n’e P,;_, (53)

Let D =max {/(n') In’e P,_,,}and assume that some algorithm Be A ;. fails to
expand n. Since/ € 1,p, both A* and B will return cost C ¢, while D <C'*.

We now create a new graph G’, as in figure 2.5, by adding to G a goal node ¢’
with A(t")=0 and an edge from n to r’ with non-negative cost D—g(P,_,).
Denote the extended path P,_,_,- by P*, and let I’'=(G's,lUt’,h) be a new
instance in the algorithms’ domain. Although h may no longer be admissible onI’,
the construction of I guarantees that f (n") S D if n’ € P*, and thus, by Theorem 2,
algorithm A* searching G* will find an optimal solution path with cost C, M <D.
Algorithm B, however, will search ]’ in exactly the same way it searched /; the only
way B can reveal any difference between [ and I’ is by expanding n. Since it did
not, it will not find solution path P ¢, but will halt with cost C*>D, the same cost it
found for I and worse than that found by A*. This contradicts its property of being
globally compatible with A*.
o
Corollary §:

A* is O-optimal over A ;. relative to I ip.

The corollary follows from the fact that in non-pathological instances A*
expands only surely expanded nodes.

Corollary 6:

A* is 1-optimal over A ;. refativeto I 4p.
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Proof:
The proof relies on the observation that for every optimal patk P* (in any instance of
I,p) there is a tie-breaking-rule of A* that expands only nodes along P* plus
perhaps some other nodes having g(n)+ h(n) < C*, ie, the only nodes expanded
satisfying the equality g(n)+h(n)=C* are those on P*+. Now, if A* is not 1-
optimal over A ;. then, given an instance I, there exists an algorithm B& A ;. such
that B avoids some node expanded by all tie-breaking-rules in A*. To contradict this
supposition let A ;* be the tie-breaking-rule of A* that returns the same optimal path
P* as B retums, but expands no node outside P* for which g(n)+h(n)=C*
Clearly, any node n which B avoids and A,* expands must satisfy
g{(n)+h(n) < C*. We can now apply the argument used in the proof of Theorem
11, appending to n a branch to a goal node ¢, with cost c(n,t")=h(n). Clearly,
A * will find the optimal path (s,n,t") costing g (n) + A(n) < C*, while B will find
the old path costing C *, thus violating its global compatibility with A*.

O
2.4.3.3 Optimality over best-first algorithms, Ayt

The next result establishes A*'s optimality over the set of best-first aigo-
rithms (BF*) which are admissible if provided with A<h*. These algorithms will be
permitted to employ any evalvation function fp where f is a function of the nodes,

the edge-costs, and the heuristic function 2 evaluated on the nodes of P, i.c.
fP zAf(s N ST LL P Jn) =f({ni}s {C(ﬂi,ni+l)}, {h(ni)} I niEP)' (54)

Lemma 6:
Let B be a BF* algorithm using an evaluation function fp such that for every

(G s5.T.h) € L,p fp satisfies:
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fe=f G nung .. N=C(P)) ¥eT. (55)

L]

If B is admissible on I 45, then Eﬁh < ﬁﬁ'.

Proof:

Let I=(G,s,I',h)e I,p and assume neﬂf.:h but néﬁ_ﬁ', i.e., there exists a path
P, , such that for every n'eP,_, gp(n)+h(n)<C* and for some
n'eP,_, fz(nhHz2Cs.

Let
Q=1 {x(n’)-*h(u')} (56)
n'ef,,
Qs = max {Ja(ﬂ')} (57

Obviously: @ < C* and Qg 2 C* ~» Q3>0. Define G’ to include path P,_, with
two additional goal nodes 7,,¢, as described by figure 2.7. The cost on edge (s,£4) is

Qp+Q
2

other nodes retain their old A. /’'=(G';s,I" U {r,,2,},h) € L.p since™n’, n'eP,_,,

g (n"y+h(n")SQ which implies that A (n)SQ —g (n Y=h*;{n").

, the cost on edge (n,¢,) is Q—gp _(n), ¢, and ¢ are assigned A '=0 while all

Obviously the optimal path in G’ is P,_, with cost 0. However, following

the condition of the Lemma, the evaluation function fp satisfies

Mp  =fp(t)=C(P; )= QB;Q < Qg (58)

Moreover, since Mp,_ 2 Qp, we have Mp < Mp _ , implying that B halts on the

suboptimal path P, _, , thus contradicting its admissibility.
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Figure 2.7 - Used in the proof of lemma 6.
Theorem 12:

Let B be a BF* algorithm such that f satisfies the property of Lemma 6.
a. If B is admissible over I . then B expands every node in NS

b. If B is admissible over I ,, and fp is of the form:

fp,(n)=F(gp_(n) h(n)) 59
then F (x .y )Sx+y.

Proof:

a Let M be the min-max value corresponding to the evaluation function fp. It

is easy to see that M 2C «. From that and from Theorem 11 we get

NS SNESNY (60)
and it is implied by Theorem 5 that any node in N  is expanded by B.

b. Assume to the contrary that there is a path P and a node n€ P such that
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—i 9 ty
gP(ni hin)

Figure 2.8 - Used in the proof of theorem 12
F(gp(n)h(n)) > gp(n)+h(n) (61)

ata;
2

Let G be a graph as shown in Figure 2.8 having nodes s,7,7;,22 and edges
(s,;r), (rity), (s, with costs C(s,r)=gp(n), C(r,t)=h(n),

Let a;=F(gp(n),h(n)), ay=gp(n)y+h(n). Obviously, a; <

< aji.

a1+a;
2
h(t,)=h(19)=0. Obviously I € I ,p. However,

C(s,t9)= Let I=(G,s,{t,,12}),h) where h(s)=0, A(r)=h(n} and

+a,

Fr)=Fgpnhh(n) =a; > 2 =c(s,tp) =f(tp) (62)

implying that B halts on solution path P,z_,z, again contradicting its admissi-
bility.
a
Corollary 7:

A* is O-optimal over A, relative to I i and 1-optimal relative to Icon. A**is 1-

. optimal over A ¢ relativeto I 5.
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Note that A** is not a member of Ay ; it directs pointers toward the lowest-g

rather than the lowest f path as instructed by our definition of BF* (Section 2.1).
o
An interesting implication of Part b of Theorem 12 asserts that any admissible
combination of g and &, h<he, will expand every node surely expanded by A*. In
other words, the additive combination g+h is, in this sense, the optimal way of

aggregating g and A for additive cost measures.

The O-optimality of A* relative to nonpathological instances of I1,p also
implies that in these instances g (n) constitutes a sufficient summary of the informa-
tion gathered along the path from s to n. Any additional information regarding the
heuristics assigned to the ancestors of n, or the costs of the individual arcs along the
path, is superfluous, and cannot yield a further reduction in the number of nodes
expanded. Such information, however, may help reduce the number of node evalua-
tions performed by the search (see [Martelli 1977, Bagchi 1983] and [Mero 1984). ).

)

2.4.4 Summary and Discussion

Our results concerning the optimality of A* are summarized in Table 1. For
each class-domain combination from Figure 2.4, the table identifies the strongest type
of optimality that exists and the algorithm achieving it.

The most significant results are those represented in the left-most column,
relating to A .4, the entire class of algorithms which are admissible whenever pro-
vided with optimistic advice. Contrary to prevailing beliefs A* turns out not to be
optimal over A, relatve to every problem graph quantified with optimistic esti-
mates. There are admissible algorithms which, in some graphs, will find the optimal



Domain

Problem
instances

Class af Algorithms

Admissible

Giobaily Compatibie
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Best-First
if Fesh* with A*
Admissible A" i3 3-aptimal A is 1-optimai A" is 1-optimali
fao No 2-optimal exists | No O-optimal axists | No O-optimal exists
Admissibie
and A* is 2-optimai .
nonpathological . A’ is O-optimal A" is O-optima!
- No 1-optimal exists
e
Congsistent A® is 1=gptimai - A% is 1-optimat A’ is 1-optimai
leon No 0-optimal exists | No O-optimal exists | No O-optimal exists
Consistent
nenpathoiogical A’ is Q-optimal A* is O-optimal A" is C-optimal
12om
TABLE 1




solution in just a few steps whereas A* (as well as A** and all their variations)
would be forced to explore arbitrary large regions of the search graphs (see Fig.
2.6a). In bold defiance of Hart, Nilsson, and Raphael’s [Hart 1968] argument for
A*’s optimality, these algorithms succeed in outsmarting A* by penetrating regions
of the graph that A* finds unpromising (at least temporarily), visiting some goal
nodes there, then processing the information gathered to identify and purge those
nodes on OPEN which no longer promise to sprout a solution better than the cheapest

one at hand.

In nonpathological cases, however, these algorithms cannot outsmart A*
without paying a price. The 2-optimality of A* relative to I ,p means that each such
algorithm must always expand at least one node which A* will skip. This means that
the only regions of the graph capable of providing node-purging information are
regions which A* will not visit at all. In other words, A* makes full use of the
information gathered along its search and there could be no gain in changing the
order of visiting nodes which A* plans to visit anyhow.

This instance-by-instance node tradeoff no longer holds when pathological
cases are introduced. The fact that A* is not 2-optimal relative to 1 ,p means that
some smart algorithms may outperform A* by simply penetrating certain regions of
the graph earlier than A® (A* will later visit these regions), thus expanding only a
proner subset of the set of nodes expanded by A*. In fact the lack of 2-optimality in
the (A 44, I4p) entry of table 1 means that no algorithm can be protected against
such smart competitors; For any admissible algorithm A ,, there exists another admis-
sible algorithm A 5 and a graph G quantified by optimistic heuristic & (2 < A*) such
that A, expands fewer nodes than A ; when applied to G. Mero [Mero 1984] has
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recently shown that no optimal algorithm exists if complexity is measured by the
number of expansion operations (a node can be reopened several times). Our result
now shows that A .4 remains devoid of an optimal algorithm even if we measure

complexity by the number of distinct nodes expanded.

The type-3 optimality of A** over A, further demonstrates that those
smart’ algorithms which prevent A* from achieving optimality are not smart after
all, but simply lucky; each takes advantage of the peculiarity of the graph for which it
was contrived and none can maintain this superiority over all problem instances. If it
wins on one graph there must be another where it is beaten, and by the very same
opponent, A**, It is in this sense that A** is 3-optimal, it exhibits a universal

robustness against all its challengers.

Perhaps the strongest claim that Table 1 makes in favor of A* is contained in
the entries related to I ooy, the domain of problems in which 4 is known to be not
only admissible, but also consistent. It is this domain that enables A* to unleash its
full prunning powers, achieving a node-by-node superiority (types O and 1) over all
admissible algorithms. Recalling also that, under consistent A, A* never reopens
closed nodes and that only few nodes are affected by the choice of tie-breaking-rule
(see [Pear! 1984] ), we conclude that in this domain A* constitutes the most effective

scheme of utilizing the advice provided by .

This optimality is especially significant in light of the fact that consistency s
not an exception but rather a common occurrence; almost all admissible heuristics
invented by people are consistent. The reason is that the technique people invoke in
generating heuristic estimates is often that of relaxation; we imagine a simplified

version of the problem at hand by relaxing some of its constraints, solve the relaxed
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version mentally, then we usc the cost of the resulting solution as a heuristic for the
original problem [Pearl 1983] It can be shown thai any heasistic generated by such a
process is automatically consistent, which explains the abandon of consistent cases
among human-generated heuristics. Thus, the strong optimality of A* under the gui-
dance of consistent heuristics implies, in effect, its optimality in most cases of practi-

cal interest.



APPENDIX 2.1: Finding an € -optimal path in a Tree with Random Costs

Let C* (¥ ,p) be the optimal cost of a root-to-leaf path in a uniform binary
tree of height N where each branch independently has a cost of 1 or 0 with probabil-
ity p and 1-p, respectively. We wish to prove that forp > 1/2

PM2(1+e)C*(Np)] =0 e>0
where

M = min max {f (»}},
i nePf

fn)=g(n)+a*[N-d(n)},
and where a* is defined by the equation

a* —p 1-a*

Call 2 path P (o, L)-regular if the cost of every successive path segment of
length L along P is at most aL.. Karp and Peari [Karp 1983] have shown that:

a P[C* (N p)saN] = 0 for aca*.

b. If a<a*, one can always find a constant L ; such that the probability
that there exists an (a,L 4)-regular path of length N is bounded away
from zero. Call this probability 1=-g 4, (g o<1).

Consider the profile of f along a (oL )-regular path P sprouting from level
d, below the root. Along such a path g (n) satisfies:

g(n)Sdy+d(n)yd,]Ja+ol
and, consequently,

f (n) £ (1-o)d, +0*N +ol +d (n }(a-ct* )
For a>0* the expression on the right attains its maximum when d(n) reaches its



largest value of N-d,, and so
Ms maJrg f(n)s (i=2a+a?® yd,rol+N G
RE
Now let d, be any unbounded function of N such that d,=o (N) and consider the

probability P [M 2(1+3)a*N]. For every & between a* and (1+3)a* the inequality

(1-20+0* )d, (N +aL 4N a S (1+3)a*N
will be satisfied for sufficiently large N, hence, choosing a.* <a<(1+8)a*, we have

P[M2(1+8)a*N] S P[no (L g)-regular path stems from level d,(N))]
24N)
s [q (,] -0
We can now bound our target expression by a sum of two probabilities:

PM2(1+e)C*(N p)] < 1-P [( 14€/2)C* (N p )20*N 2(1-8/2)M]

a*N a*N
crlomegt]or s ]

and, since each term on the right tends to zero, our claim is proved.
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APPENDIX 2.2: Properties of A**

Algorithm A** is a variation of A*. It can be viewed as a BF* algorithm

(Section 2.1) that uses an evaluation function:
f’p,_(n)=max {f(n') =gp (n)+h(n")|n'e P, }

A™® differs from A* in that it relies not only on the g+ value of node n, but
also considers the g+A values along the path from s to n. The maximum is then
used as a criterion for node selection. Note that A** cannot be considered a BF*
algorithm since it uses one function, f°, for ordering nodes for expansion (step 3)
and a different function g for redirecting pointers (step 6¢). Had we allowed A** to
use f* for both purposes it would not be admissible relative to I ,p, since £’ is not
order preserving.

We will now show that A** is admissible over I 4py.

Theorem:
Algorithm A** will terminate with an optimal solution in every problem instance
where Agh*

Proof:
Suppose the contrary. Let C be the value of the path P,_, found by A** and assume
C>Cv,

We will argue that exactly before A** chooses the goal node ¢ for expansion,
there is an OPEN node n’ on an optimal path with f ‘(n") € C*. If we show that, than
obviously A** should have selected n’ for expansion and not r, since

f'(n) SC* < C = f'(t), which yields a contradiction.
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Since A** redirects pointers according to g, the pointer assigned to the shal-
lowest OPEN node n’ along any optimal path is directed along that opumal path.
Moreover, s <h* implies that such a node satisfies f (") S C*, and this completes
our argument.

(]

We next show that A** dominates A* in the following sense:
Theorem:

a) For every tie-breaking-rule of A* and for every problem instance /€l ,p,
there exists a tie-breaking-rule for A** which expands a subset of the nodes
expanded by A*. Moreover,

b) There exists a problem instance and a tie-breaking-rule for A** that expands
a proper subset of the nodes which are expanded by any tie-breaking-rule of
A*,

Proof: Part a

From the definition of £’ it is clear that all paths which are strictly bounded below C'*
relative to f are also strictly bounded below C ¢ relative to f°. Therefore, both algo-
rithms have exactly the same set of surely expanded nodes, N.£* =N £°, and this set
is expanded before any node outside this set. Let n* be the first node expanded by
A satisfying the equality f (n*)=C*. Exactly before n* is chosen for expansic~ all
nodes in N £ were already expanded. A**, after expanding those nodes also has a*
in OPEN with f ‘(n*)=C *; there exists, therefore, a tie-breaking-rule in A** which
will also choose n* for expansion. From that moment on, A* will expand some

sequence n*,ny, na,ng, -t for which f(m;)}<Ce. Since on these nodes
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f'(n;) = C», it is possible for A** to use a tie-breaking-rule that expands exactly that

same sequence of nodes until termination.
Partb

Examine the graph of Figure 2.9.

Figure 2.9 - Used in proof of theorem in appendix 2.2

n, and n, will be expanded by every tie-breaking-rule of A* while there is 2
tie-breaking-rule for A** that expands only P,_,.
a

6%



CHAPTER 3
GENERATING HEURISTICS FOR
CONSTRAINT-SATISFACTION PROBLEMS

3.1. BACKGROUND AND MOTIVATION
3.1.1 introduction

An important component of human problem-solving expertise is the ability to use
knowledge about solving easy problems to guide the solution of difficult ones. Only a
few works in Al [Sacerdoti 1974, Carbonell 1983] have attempted to equip machines
with similar capabilities. Gaschnig [Gaschnig 1979] Guida et al. [Guida 1979}, and
Pearl [Pear] 1983) suggested that knowledge about easy problems could be instru-
mental in the mechanical discovery of heuristics. Accordingly, it should be possible
to manipulate the representation of a difficult problem until it is approximated by an
easy one, solve the easy problem, then usc the solution to guide the search process in

the original problem.

The implementation of this scheme requires three major Ssteps:
1. simplification 2. solution 3. advice generation. Additionally, to perform the
simplification step, we must have a simple, a-priori criterion for deciding when 2

problem lends itself to easy solution.
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This paper uses the domain of constraint-satisfaction tasks to examine the
feasibility of these three steps. It establishes criteria for recognizing classes of easy
problems, provides special procedures for solving them, demonstrate a scheme for
generating good relaxed models, and introduces an efficient method for extracting
advice from them. Finally, the utility of using the advice is evaluated in a synthetic

domain of problem instances.

Constraint-satisfaction problems (CSP) involve the assignment of values to
variables subject to a set of constraints. Understanding three-dimensional drawings,
graph coloring, electronic circuit analysis, and truth maintenance systems are exam-
ples of CSPs. These are normally solved by some version of backtrack search which
may require exponential search time (for example, the graph coloring problem is

known to be NP-complete.)

The following paragraphs summarize the basic terminology of the theory of
CSP as presented in [Montanari 1974] and extended by [Mackworth 1977] and
[Freuder 1982]. Some observations are presented regarding the relationships
between the representation of the probliem and the performance of the backtrack algo-
rithm.

3.1.2 Definitions and Nomenclature

Formally, the underlying model of a CSP involves a set of n variables X, ... X,
each having a set of domain values Dy, ...,D,. An n-ary relation on these vari-

ables is a subset of the Cartesian product:
peDxDaX,...,xD, . (1)

A binary constraint R;; between two variables is a subset of the Cartesian product
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of their domain values, i.e.,
Ry SDixD;j . )

A network of binary constraints is the set of variables Xy ...,X, plus the
set of binary constraints between pairs of variables and it represents an n-ary relation
defined by the set of n-tuples that satisfy all the constraints. Given a symmetric net-

work of constraints between n variables, the relation p represented by it is:
p={(x1X2 - - - Xp) | X;€D;,and (x;x;)eR;j forallij} . (3)

Not every n-ary relation can be represented by a network of binary constraints with n
variables, and the issues of finding the best approximation by such network are
addressed in [Montanari 1974]. In this paper we will discuss only relations induced
by network of binary constraints and henceforth assume that all constraints are binary

and symmetric.

Each network of constraints can be represented by a constraint graph where
the variables are represented by nodes and the non-universal constraints by arcs. The
constraints themselves can be represented by the set of pairs they allow, or by a
matrix in which rows and columns correspond to values of the two variables and the
entries are O or 1 depending on whether the corresponding pair of values is allowed
by the constraint. Figure 3.1 displays a typical network of constraints (a), where con-

straints are given using matrix notation (b).

Several operations on constraints can be defined. The useful ones are: union,
intersection, and composition. The union of two constraints between two variables is
a constraint that allows all pairs that are allowed by either one of them. The inter-

section of two constraints allows only pairs that are allowed by both constraints. The
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X1 XZ abege

a/010

b{ 101

R= X4 ¢c\010
X3

(a) {b)

Figure 3.1 - A constraint Network (a) and matrix representation (b)
composition of two constraints, R |5 R 43 ‘‘induces’ a constraint R ;3 defined as fol-
lows: A pair (x| ,x3) is allowed by R ;5 if there is at least one value x,€ D 5 such that
(x1,x3)€R |3 and (x4,x3)€R 3. If matrix notation is used to represent constraints,

then the induced constraint R ;3 can be obtained by matrix muitiplication:
Ri3=R; Ry (4)

A partial order among the constraints can be defined as follows: R;; © R ; iff
every pair allowed by R;; is also allowed by R; (this is exactly set inclusion). In
this case we say that R;; is smaller (or stronger) than R ;. We can also say that R i
is a relaxation of R;;. The smallest constraint between variables X; and X; is the
empty constraint, denoted ®@;;, which does not allow any pair of values. The largest
(ie. weakest) is the universal constraint, denoted U;;, which permits all possible
pairs. A corresponding partial order can be defined among networks of constraints
having the same set of variables. We say that R ¢ R’ if the partial order is satisfied

for every pair of corresponding constraints in the networks.
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Finally, we define the notion of equivalence among networks of constraints:
two networks of constraints with the same set of variables arc equivalent if they

represent the same n-ary relation.

Consider, for example, the network of figure 3.2, representing a problem of
four bi-valued variables. The constraints are attached to the arcs and are given, in
this case, by sets of pairs. The direction of the arcs only indicates the way by which
constraints are specified. The constraint between X ; and X, displayed in part (b),
can be induced by R ;2 and R 4. Therefore, adding this constraint to the network will

result in an equivalent network. Similarly, since the constraint Ry, can be induced

from R 13 and R 4, it can be deleted without changing the relation represeated by the

{0

network.

(a) (b)

Figure 3.2 - A constraint network, constraints represented by set of pairs.
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The process of inducing relations in a given network makes the constraints
smaller and smaller, while leaving the networks equivalent to each other. Montanari
called the smallest network of constraints which is equivalent to a given network R,
The Minimal Network. The minimal network of constraints makes the *‘global’’
constraints on the network as *‘local’”’ as possible. In other words, a minimal net-

work of constraints is perfectly explicit.

Every binary-constrained CSP problem can be represented by a network of
constraints. A tuple in the relation represented by the network is called a solution.
The problem is either to find all solutions, one solution, or to verify that a certain
tuple is a solution. The last problem is fairly easy while the first two problems can

be difficult and have attracted a substantial amount of research.
3.1.3 Backtrack for CSP

The algorithm mostly used to solve CSP problems is backtrack. Given a vertical
order of the set of variables X ;,X,,...,X, and a horizontal order of values in
cach domain of a variable x; ., 5,...,%; 4, algorithm Backtrack for finding one solu-

tion is given below:
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Backtrack

Begin

1. Assignxl_l toxl (l.f
2 k=1

3. while k<n-1

4. while X, ,, has values /* x x5, ..., X; wWere already selected™*/

5.  choose first value x,.; ; S.t. constraints(xy,Xz, - - - » Xk Fk+l ;) = true
6. then erase (tcmporm'l’ Xgslls - - - 1Xp41,j from domain of X1

7.

8

9

aliowed by a unary consuaini)

k=k+1
goto 3
. end
10. k=k-1 (backtrack since no value at (5) exists).
11. If k=0 exit , no solution exists.
12. end
13. exit with solution
End.

In line 5 of the algorithm all the constraints between X, and previous variables in
the vertical order are checked. The value chosen should be consistent with all the pre-
vious instantiated values under those constraints. For Backtrack to find all solutions
the above algorithm should be modified slightly by adding another outer loop and ter-
minating only when k=0.

Montanari considered the question of finding the minimal network M of a
given network R as the central problem in CSP, implying that once it is available the
problem is virtually solved. The following two lemmas elaborate on this issue by
relating the minimal network to the backtrack algorithm.

Lemma 1:

Let R and R’ be two equivalent networks such that R* ¢ R. Given the same order for
instantiating variables, any sequence of values that is assigned by Backtrack on R’
will be assigned also by Backtrack on R when Backtrack looks for all solutions.
Proof:

The order between the networks implies that any sequence of values which is con-
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sistent under R is also consistent under R.

g
Conclusion:

Given a network R and a fixed order of instantiation of variables, Backtrack’s perfor-
mance, when looking for all solutions, is most efficient on the minimal network, rela-

tive to all networks which are equivalent to R, since it is contained in all of them.

We now show that when the algorithm seeks only one solution then, using the
minimal network, the solution can be found easily in many cases. Some more

definitions are required.

Given an n-ary relation p, representable by a network with n variables, the
projection pg of the relation p on a subset S of the variables is not always represent-
able by a network with |S| nodes. If for any subset of variables, S, pg is represent-
able by 2 network with |S| variables then p is said to be a Decomposable relation.
Given an n-ary decomposable relation p, represented by a minimal network M, then
for any subset S of variables the subnetwork of M restricted to the nodes in S, is a

minimal network of ps. In this case M is also said to be decomposable.
For example, the network in figure 3.3 is minimal but not decomposable. The
rclation represented by M is:

P = (X1 15%2,15%3,1,% 41 (% 1,18 22 32X 42(% 12X 22X 31X 43)] (5

Where x; ; denotes the j™* value of variable X; (Note that X , is a non-binary vari-
able.)
If § = {X,X5,X3} it can be shown that p,, given by

Ps = {(x)1,X21.%3,1)(% 1 15 22:F 321X 1 2% 22X 3.1))s (6)

77



cannot be represented by a network with 3 variables. (For more details see [Mon-

tanari 1974] ).

Figure 3.3 - Minimal nondecomposabie network of constraints

Lemma 2:
If M is minimal and decomposable network then Backtrack will find one solution
without backtracking at all.
Proof:
From M 's decomposability it follows that any projection p; has a minimal network
which is the subnetwork of M that is restricted to the variables in S. Therefore, any
tuple of the variables in S that satisfy all the constraints in the minimal subnetwork is
part of an n-tuple in the n-ary relation represented by M, and therefore it can always
be extended.

O
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The complexity of finding a solution given a minimal and decomposable net-
work M is, therefore, O (n2k) where n is the number of variables and £ is the max-
imum cardinality of the value domain for all variables. In the previous example of 2
nondecomposable minimal network Backtrack may explore the path X1 X2 X3
and since it cannot be extended to a 4-tuple relation satisfying M the algorithm will
have to backtrack. In conclusion we see that solving a2 CSP in which we are finding
all or one solution, is easier when the minimal network is available, but this does not

guarantee backwrack-free search unless the network is also decomposable.

Backtrack and its performance on CSPs were extensively discussed in the AJ
literature. Most researchers have been trying to identify the major maladies in its per-
formance, to provide a corresponding cure, and to analyze the results. These works
can be classified along the following dimensions:

1. The problem objectives: finding all or finding one solution

2. control parameters: controlling the order of instantiation of variables, order of
inatantiation of values, or manipulating the problem’s representation by prun-

ing values or propagating constraints.

3. cure implementation: preprocessing the cures prior to the start of the algo-
rithm, or incorporating them dynamically into the algorithm while it searches

for solution(s).

Mentioning only few studies, we start with [Montanari 1974] who considered
the task of finding all solutions, and discussed the solution of a problem by propagat-
ing the constraints and pruning pairs of values from them. In light of the previous
lemmas these methods can be regarded as a preprocessing phase to a backtrack
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algorithm although the latter was not mentioned explicitly. Mackworth [Mackworth
1977] extended Montanati’s work by introducing consistency checks to cure the
maladies of Backtrack. Haralick and Eliot [Haralick 1980] discussed the task of
finding all solutions and examined various methods of value pruning including looka-
head mechanisms which are incorporated into the algorithm. Freuder [Freuder
1982] considered the problem of finding one solution to a CSP and provided a pro-
cedure to select a good ordering of variables which is performed as a preprocessing
to Backtrack. Other works in analyzing the average performance of Backtrack were
reported by [Nudel 1983, Purdom 1985] and (Haralick 1980] all estimating the size
of the tree exposed by Backtrack while searching for all solutions.

It seems that the only parameter not considered for controlling Backtracks’
performance is the order by which values are assigned to variables. Part of the reason
can be explained by the following theorem.

Theorem 1:

Given the objective of finding all solutions and given a fixed order for instantiation of
variables, the search tree exposed by Backtrack is invariant to the order of selection
" of values. (All search trees which are identical up to an ordering of branches are con-
sidered the same.)

Proof:

Any sequence of values that is explored by Backtrack w.r.t. a specific order of vari-
ables is consistent under this subset of variables, and it may or may not Icod to 2
solution. The only way Backtrack can find out if it is extensible to a solution is to
continue and explore it. Therefore, Backtrack which tries to find all solutions will
have to search this sequence for any order of value assignment.

i
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Similarly, Backtrack that looks for one solution in a CSP that has no solution
will expose the same search tree under any order of value assignment, given a fixed
order of variables. The above theorem states that for the task of finding all solutions

value-selection strategies will not improve Backtrack’s performance.

In this paper we address the objective of finding a single solution to CSPs.
Although this problem is easier it can still be very difficult (e.g. 3-colorability) and it
appears frequently. Theorem proving, planning and even vision problems are exarm-
ples of domains where finding one solution will normally suffice [Simon 1975], and,
the order by which values are selected may have in this case a profound effect on the
algorithm’s performance. In the following section we outline a general approach to

devising value selection strategies for finding one solution to CSP.
3.1.4 General Approach for Automatic Advice Generation

Following the model of the A* algorithm that uses heuristics to guide the
selection of the next node for expansion, we now wish to guide Backtrack in select-
ing the next node on its path. We assume that the order of variables is fixed and
therefore the selection of the next node amounts to choosing a promising assignment
of values from a set of pending options. Clearly, if the next value can be guessed
correctly, and if a solution exists, the problem will be solved in linear time with no
backtracking. Backtrack builds partial solutions and extends them as long as they
show promise to be part of a whole solution. When a dead-end is recognized it back-
tracks to a previous variable. The advice we wish to generate should order the candi-
dates according to the confidence we have that they can be extended further to a solu-

tion.
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Such confidence can be obtained by making simplifying assumptions about
the continuing portion of the search graph and estimating the likelihood that it will
contain a solution even when the simplifying assumptions are removed. It is reason-
able to assume that if the simplifying assumptions are not too severe then the number
of solutions found in the simplified version of the problem would correlate positively
with the number of solutions present in the original version. We, therefore, propose
to count the number of solutions in the simplified model and use it as 2 measure of

confidence that the options considered will lead to an overall solution.

To incorporate the advice generation into the backtrack algorithm, line 5
should be replaced by the following:

Sa. eliminate values of X, which are not consistent with xy, . .., Xj.
5b. /* X3,1.1, - - - »Xg414 are the remaining candidates for assignment®/
advise((Xg41,10 + - - 1 X1 )y & ka1 1o+ -0 X ka1y))

Sc. assign x k+1,1 10 X1

The advice procedure takes the set of consistent values of X,.; and orders them

according to the estimates of the number of possible solutions stemming from them.

The remaining sections describe the advice-giving algorithm, provide theoret-
ical grounds for it, and report experimental evaluation of its performance. In section
3.2 we establish criteria for recognizing classes of easy CSPs and introduce an
efficient method of counting the number of solutions. Section 3.3 describes a process
of approximating a given CSP by an easy relaxed one. Section 3.4 evaluates the util-

ity of using the advice using a synthetic domain of CSPs.
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3.2. EASY CONSTRAINT-SATISFACTION PROBLEMS
3.2.1 Introduction and background

In general, a problem is considered easy when its representation permits a solution
in polynomial time. However, since we are dealing mainly with backtrack algo-
rithms, we will consider a CSP easy if it can be solved by a backtrack-free pro-
cedure. A backtrack-free search is one in which Backtrack terminates without back-

tracking, thus producing a solution in time linear in the number of variables.

The discussion of backtrack-free CSPs relies heavily on the concept of con-
straint graphs. Freuder [Freuder 1982] has identified sufficient conditions for a con-
straint graph to yield a backtrack-free CSP, and has shown, for example, that tree-
like constraint graphs can be made to satisfy these conditions, with a small amount of
preprocessing. Our main purpose here is to further study classes of constraint graphs
lending themselves to backtrack-free solutions and to devise efficient algorithms for
solving them. Once these classes are identified they can be chosen as targets for a
problem simplification scheme: constraints can be selectively deleted from the origi-
nal specification so as to transform the ongmal problem into a backtrack-free one. As
already mentioned, we propose to use the ‘‘number of consistent solutions in the
simplified problem’* as a figure-of-merit to establish priority of value assignments in
the backtracking search of the original problem. We show that this figure of merit can
be computed in time comparable to that of finding a single solution to an easy prob-

lem.

Definition: ( [Freuder 1982] ) An ordered constraint graph is a constraint graph in
which the nodes are linearly ordered to reflect the sequence of variable assignments
executed by the Backtrack search algorithm. The width of a node is the number of
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arcs that lead from that node to previous nodes, the width of an ordering is the max-

imum width of all nodes, and the width of a graph is the minirium widih of all the

orderings of that graph.
A c B A t
1
A B c A B {
B B A A o |

DIRECTION OF
INSTANTIATION

Figure 3.4 - Ordering of a constraint graph

Figure 3.4 presents six possible orderings of a constraint graph. The width of
node C in the first ordering (from the left) is 2, while in the second ordering itis 1.
The width of the first ordering is 2, while that of the second is 1. The width of the
constraint graph is, therefore, 1. Freuder provided an efficient algorithm for finding
both the width of a graph and the ordering corresponding to this width. He further

showed that a constraint graph is a tree iff it is of width 1.

Montanari [Montanari 1974] and Mackworth [Mackworth 1977] have intro-
duced two kinds of local consistencies among constraints named arc consistency and
path consistency. Their definitions assume that the graph is directed, i.e., each sym-
metric constraint is represented by two directed arcs.
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Let R;;(x,y) stand for the assertion that (x,y) is permitted by the explicit con-
straint R;;.
Definition: ( [Mackworth 1977] ): Directed arc (X; X ;) is arc consistent iff for any
value x € D; there is a value y €D; such that R;;(x,y).
Definition ( [Montanari 1974] ): A path of length m through nodes (ig,i;, ...,i,)is
path consistent if for any value x€D; and yeD;_ such that R; ; (x.y), there is a

sequence of values z,1€D;,..., 2,._;€ D;__, such that

Ry (x.z)andR;; (zy.z0)and - Ry ; (Zm1o¥)- N
R; ;_may also be the universal relation e.g., permitting all possible pairs.

A constraint graph is arc (path) consistent if each of its directed arcs (paths) is
arc (path) consistent. Achieving ‘‘arc consistency’’ means deleting certain values
from the domains of certain variables such that the resultant graph will be arc-
consistent, while still representing the same overall set of solutions. To achieve
path-consistency, certain pairs of values that were initially allowed by the local con-
straints should be disallowed. Montanari and Mackworth have proposed
polynomial-time algorithms for achieving arc-consistency and path consistency. In
[Mackworth 1984] it is shown that arc consistency can be achieved in O (ek3) while
path consistency can be dchieved in O (n3k%), where n is the number of variables,
is the number of possible values, and ¢ is the number of edges.

Theorem 2( [Freuder 1982] ): '

a If the constraint graph has a width 1 (i.e. the constraint graph is a tree) and if

it is arc consistent then it admits backtrack-free solutions.

b. If the width of the constraint graph is 2 and it is also path consistent then it
admits backtrack-free solutions.
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The above theorem suggests that tree-like CSPs (CSPs whose constraint
graph are trees) can be solved by first achieving arc consistency and then ins;tantiat-
ing the variables in an order which makes the graph exhibit width 1. Since this
backtrack-free istantiation takes O (ek) steps, and on trees e=n—1, the whole prob-
lem can be solved in O (nk?). The test for this property is also easily verified: to
check whether a given graph is a tree can be done by a regular O (n?) spanning tree
algorithm. Thus, tree-like CSPs are easy since they can be made backtrack-free after
a preprocessing of low complexity.

The second part of the theorem tempts us to conclude that a width-2 con-
straint graph should admit a backtrack-free solution after passing through a path-
consistency algorithm. In this case, however, the path-consistency algorithm may
add arcs to the graph and increase its width beyond 2. This often happens when the
algorithm deletes value-pairs from a pair of variables that were initially related by the
universal constraint (having no connecting arc between them), and it is often the case
that passage through a path-consistency algorithm renders the constraint graph com-
plete. It may happen, therefore, that no advantage could be taken of the fact that a
CSP possesses a width-2 constraint graph if it is not already path consistent, We are
not even sure whether width-2 suffices to preclude NP-completeness.

In the following section we give weaker definitions of arc and path con-
sistency which are also sufficient for guaranteeing backtrack-free solutions but have
two advantages over those defined by [Montanari 1974] and [Mackworth 1977] :

1 They can be achieved more efficiently, and

2. They add fewer arcs to the constraint-graph, thus preserving the graph width
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in a larger classes of problems.
3.2.2 Algorithms for achieving directiona! consistency
a. Case of Width-1

Securing full arc-consistency is more than is actually required for enabling
backtrack-free solutions in constraint graphs which are trees. For example, if the con-
straint graph in figure 3.5 is ordered by (X |,X,.X 3,X ), nothing is gained by making
the directed arc (X 3,X ;) consistent.

Figure 3.5 - Ordered constraint graph
To ensure backtrack-free assignment, we need only make sure that any value
assigned to variable X, will have at least one consistent value in D . This can be
achieved by making only th~ directed arc (X ,X 5) consistent, regardless of whether
(X3,X ) is consistent or not. We, therefore, see that arc-consistency is required only
w.r.t a single direction, the one specified by the order in which Backtrack will later
choose variables for instantiations. This motivates the following definitions.

Definition: Given an order d on the constraint graph R, we say that R is d-arc-
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consistent if all the directed edges which follow the order d are arc-consistent.
Theorem 3:
Let d be a width-1 order of a constraint tree T. If T is d-arcconsistent then the
backtrack search along the order d is backtrack-free.
proof:
Suppose that X X5, ..., X, were already instantiated. The variable X, is con-
nected to at most one previous variable (from the width-1 property), say X;, which
was assigned the value x;. Since the directed arc (X;,X;4:) is along the order d, its
arc-consistency implies the existence of a value x;,; such that the pair (x;Xg,.1) is
permitted by the constraint R;¢ 1) Thus, the assignment of x;,, is consisient with
all previous assignments.
O

An algorithm for achieving directional arc-consistency for any ordered con-

straint graph is given next (The order d =(X X 3,....X,y) is assumed)

DAC- d-arc-consistency

begin
Fori=ntolby-1 do
For each arc (X; X;); j<i do
REVISE(X; X,)
end
end
end

N RwNS

The algorithm REVISE(X; X;), given in [Mackworth 1977] , deletes values from the

domain D; until the directed arc (X;,X;) is arc-consistent.
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REVISE(X; X;)

. begin
For eachxeD; do
if there is no value y € D; such that R ;;(x,y) then
delete x from D;
end
end

OB N

To prove that the algorithm achieves d -arc-consistency we have to show that
upon termination, any arc (X;,X;) along d (j<i), is arc-consistent. The algorithm
revises each d-directed arc once. It remains to be shown that the consistency of an
already processed arc is not violated by the processing of coming arcs. Let arc
X;X;) (j<i) be an arc just processed by REVISE(X;.X;). to destroy the con-
sistency of (X;,X;) some values should be deleted from the domain of X; during the
continuation of the algorithm. However, according to the order by which REVISE is
performed from this point on, only lower indexed variables may have their set of
values updated. Therefore, once a directed arc is made arc-consistent its consistency

will not be violated.

The algorithm AC-3 [Mackworth 1977] that achieves full arc-consistency is

given for reference:

Q
w

gin
O~{ X:.X;)| (X; X;) € arcs, i=j}
while @ is not empty do
select and delete arc (X .X,,) from Q
REVISE(X,; X,,)
if REVISE(X; ,X,,) caused any change then
dQ*QUK&XﬂH&Xneumh&m}
€en
end

g

PUNAUN BN

The complexity of AC-3, is O (ek?), while the directional arc-consistency algorithm
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takes ek? steps since the REVISE algorithm, taking k2 tests, is applied to every arc
exactly once. It is also optimal, because even to verify directional arc-conmsistenty
each arc should be inspected once, and that takes k2 tests. Note that when the con-
straint graph is a tree, the complexity of the directional arc-consistency algorithm is
O (nk?).
Theorem 4:
A trec-like CSP can be solved in O (nk?) steps and this is optimal.
proof:
Once we know that the constraint graph is a tree, finding an order that will render it
of width-1 takes O(n) steps. A width-1 tree-CSP can be made d-arc-consistent in
O (nk?) steps, using the DAC algorithm. Finally, the backtrack-free solution on the
resuitant tree is found in O (nk) steps. Summing up, finding a solution to tree-like
CSP’s takes, O (nk) + O(nk2) + O(n) = O (nk?). This complexity is also optimal
since any algorithm for solving a tree-like problem must examine each constraint at
least once, and each such examination may take, in the worst case, k> steps, espe-
cially when no solution exists and the constraints permit very few pairs of values (see
Appendix 3.1 for a formal proof of optimality).
|

Interestingly, if we apply DAC w.r.t. order 4 and then DAC w.r.t. the reverse
order we get a full arc-consistency for trees. We can, therefore, achieve full arc-
consistency on trees in O (nk2). Algorithm AC-3, on the other hand, has a worst case
performance on trees of O (nk 3) as is shown next. Figure 3.6 illustrates a CSP prob-
lem that has a chain-like constraint graph. There are 7 variables, each with k values,
constrained as shown in the figure. Each row represent a variable, the points
represent values and the connecting lines describe the allowed pairs of values. Since

AC-3 does not determine the order in which the arcs enter REVISE, we will impose
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Figure 3.6 - Tree-constraint network showing worst-case of AC-3

an ordering which will be particularly bad for it: in increasing node index, that is,
first (X ;,X 5) then (X 2,X 3) etc. However when a new arc is inserted to the queue it is
given hte highest priority, because AC-3 employs a last-in-first-out policy. Therefore,
Arc (X X 5) will be processed first, then arc (X ;X 3) and, since a value was deleted
from X 5, arc (X ;,X ) will be inserted back to the queue and processed. No change
occurred and, therefore, the next arc to be processed is (X 3,X 4), this will cause pro-
cessing of (X ,,X ;) again which, in turn, causes the processing of (X ;,X ;) and so on.
We sce that each arc will be processed k-1 times resulting in a total complexity of
O (nk?). Tt was recently found [Mohr 1985}, that using special data structure, the gen-
eral arc—consistency on graphs can be improved to achieve performance of O(ek?).
This is done by keeping for each vidlue the number of values that match it in each
neiboring variable.

Returning to our primary aim of studying easy problems, we now show how
advice can be generated using a tree-like approximation. Suppose that we want to

solve an n variables CSP using Backtrack with X, X,,...,X, as the order of
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instantiation. Let X; be the variable to instantiate next, with x;1,%;2, - - - . ¥a the pos-
sible candidate values. Ideally, to minimize backtracking we should first oy the
values which are more likely to lead to a consistent solution but, since this likelihood
is not known in advance, we may estimate it by counting the number of consistent
solutions that each candidats admits in some approximate, easily solved problem.
We gencrate a relaxed trec-like problem by deleting some of the explicit constraints
given, then count the number of solutions consistent with each of the k possible
assignments, and finally use these counts as a'figure of merit for scheduling the vari-
ous assignments. In the following we show how counting the number of consistent

solutions can be imbedded within the d -arcconsistency algorithm, DAC, on trees.

Any width-1 order, d, on a constraint tree determines a directed tree in which
a parent always precedes its children in d (arcs are directed from the parent to its
children). Let N(x; ) stand for the number of solutions in the subtree rooted at X
consistent with the assignment of x; to X;. Consider a node X; with all its successor
nodes as in figure 3.7. Looking first on the relation between X;and a specific child
node X,, it is clear that the value x; can participate in a solution with each value of
X, with which it is consistent, no matter what values arc assigned to variables in the
subtree rooted at X,. Therefore the number of partial solutions consistent with x;,
which are restricted to the subtree rooted at X, is 2 sum of the corresponding

numbers in the child node. Namely:

N (x| in the tree rooted at X)) = 3 N(x:) (8)
{xua@D,| Ry(xpxa))

Since the partial solutions coming from different successor nodes can be combined in
all possible ways, the number of solutions in the subtree rooted at X; will be their

product. Therefore, N () satisfies the following recurrence:
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Figure 3.7 - Schematic computation of number of solutions in trees.

Nixs)= o N(xy) &)
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From this recurrence it is clear that the computation of N (x;) may follow the exact
same steps as in DAC: simultancously with testing that a given value x; is consistent
with each of its children nodes, we simply transfer from each child of X; to x; the
sum total of the counts computed for the child’s values that are consistent with x;.
The overall value of N(x;) will be computed later on by multiplying together the
summations obtained from each of the children. The computation starts at the leaves,
initialized to N = 1, and progresses towards.the root. Each variable perform the
counting only after all its child’s nodes computed their counts as in the counting pro-
cedure COUNT that follows.

The COUNT procedure contains the arc-consistency algorithm and REVISE
described earlier and performs the calculation according to the recurrence (9) above.
The algorithm terminates when the root is assigned counts for all its values. The

COUNT procedure is defined for a parent node and all its children.
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COUNT(V,,V V3, -...V,)

. begin
For each (V,,V,) do
REVISE(V,,V))
n (vp.r )= z N (Vlt )
Rﬂ(vplvl)
end
For each value l_\lfp,eDP do

Nv,)= n (v,
(P‘) 1V, a child I( P‘)

00 NGO RwN-

Like REVISE, line 4 takes k2 steps, therefore, for each parent node, V;, it takes
k2-deg (V;). Thus, the counting for all the variables in the subtree, sums up to
O (nk?) (if n is the number of variables in the tree) , not increasing the complexity of

the directional arcconsistency by more then a constant.
b. Case of Width-2

Order information can also facilitate backtrack-free search on width-2 problems by
making path-consistency algorithms directional.

Montanari had shown that if a network of constraints is consistent w.r.t all

paths of length 2 (in the complete network) then it is path-consistent. Similarly we
will show that directional path-consistency w.r.t. length-2 paths is sufficient to obtain
a backtrack-free search on a width-2 problems.
Definition: A constraint graph, R, ordered w.r.t. orderd = (X ,X5,...,X,), is d-
path-consistent if for every pair of values (x,y), xeX; and yeX; such that R;;(x,y)
and i <, there exists a value zeX, , k>; such that Ry (x,2) and Ry;(z,y) for every
k>i,j

Theorem 5:

94



Let d be a width-2 order of a constraint graph. If R is directional arc- and path-
consistent w.r.t d then it is backtrack-free.
Proof:
To ensure that a width-2 ordered constraint graph will be backtrack-free it is required
that the next variable to be instantiated will have values that are consistent with pre-
viously chosen values. Suppose that X1, X 3, . .., X, were already instantiated. The
width-2 property implies that variable X, is connected to at most two previous
variables. If it is connected to X; and X;, i,j Sk then directional path consistency
implies that for any assignment of values to X;X; there exists a consistent assign-
ment for X;,;. If X;,; is connected to one previous variable, then directional arc-
consistency ensures the existence of a consistent assignment.
(=]

An aigorithm for achieving directional path-consistency on any ordered graph
will have to manage not only the changes made to the constraints but also the
changes made to the graph, i.c., the arcs which are added to it. To describe the algo-
rithm we use the matrix representation for constraints. The matrix R; whose off-
diagonal values are O, represents the set of values permitted for variable X;. The
algorithm is described using the operations of intersection and composition:

The intersection R,'j OfR'ij andR','J is written: R'J’ =‘R’;j & R:J-

Given a network of constraints R = (V,E) and an orderd = (X X, . .. ,Xn),
we next describe an algorithm which achieves path-consistency w.r.t this order.
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(HY%=R
(2) fork=n to 1 by -1do
(QV isk 8onncctcd to k do
Y ;=Y & Yy Yy 'Yy /™ this is REVISE(i k)
(®) Vi jsk st X Xe)(X;.X,)eE do
ij =Y,‘j & Y,‘;Y& " Y‘:J
end
end

Step 2a is the equivalent of the REVISE(i k) procedure, and it performs the direc-
tional arc-consistency. Step 2b starts after 2a is performed for every i < k. Step 2b
updates the constraints between pairs of variables transmitted by a third variable
which is higher in the order d. I X;.X;, {.j<k are not connected to X, then the rela-
tion between the first two variables is not effected by X, at all. If only one variable,
X;, is connected to X, the effect of X, on the constraint (X,-,Xj) will be computed by
step 2a of the algorithm. The only time a variable X, effects the constraints between
pairs of earlier variables is when it is connected to both. It is in this case only that a

new arc may be added to the graph.

The complexity of the directional-path-consistency algorithm is O (n3k?). For
variable X; the number of times the inner loop, 2b, is executed is at most O ((i—1))
(the number of different pairs less then i), and each step is of order k3, The computa-
tion of loop 2a is completely dominated by the computation of 2b, and can be
ignored. Therefore, the overall complexity is

¥ (i-1)%3 =0 (n %) (10)
i=2
Applying directional-path-consistency to a width-2 graph may increase its

width and therefore, does not guarantee backtrack-free solutions. Consequently it is
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useful to define the following subclass of width-2 CSP problems.
Definition: A constraint graph is regular width-2 if there exist a widini-2 ordeiing Of

the graph which remains width-2 after applying d-path-consistency, DPC.

A ring constitutes an example of a regular-width-2. Figure 3.8 shows an ord-
ering of a ring’s nodes and the graph resulting from applying the DPC algorithm to

the ring. Both graphs are of width-2.

Xg Xg
X4 X4
X3 2. X,
X2 Xq
X9 X4

Figure 3.8 - A regular width-2 CSP
Theorem 6:
A regular width-2 CSP can be solved in O (1)
Proof:
Regular width-2 problem can be solved by first applying the DPC algorithm and then
performing a backtrack-free search on the resulting graph. The first takes O (n 3k3y

steps and the second O (ek) steps.
c

The main problem with the preceding approach is whether a regular width-2
CSP can be recognized from the properties of its constraint graph. One promising
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approach is to identify nonseparable components of the graph and all its separation
vertices [Even 1979].

definition: A connected graph G (V,E) is said to have a separation vertex v if there
exist vertices @ and b, such that all the paths connecting @ and b pass through v. A
graph which has a separation vertex is called separable, and one which has none is
called nonseparable. A subgraph with no separation vertices is called a nonsepar-
able component.

An O (| E |) algorithm for finding all the nonseparable components and ;hc separation
vertices is given in [Even 1979]. It is also shown that the connectivity structure

between the nonseparable components and the separation vertices has a tree structure.

Let R be a graph and SR be the tree in which the nonseparable components
C1,Cs, ...,C, and the separating vertices V,,V,, ..., V, are represented by nodes.
A width-1 ordering of SR dictates a partial order on R, d°, in which each separating
vertex precedes all the vertices in its children components of SR.

Theorem 7:

If there exist a 4* ordering on R such that each nonseparable component is regular-
width-2 then the total ordering is regular width-2.

Proof;

Let d¢ be the order induced by d* on component C, and let P be its parent separat-
ing vertex. When algorithm DPC reaches a node X, which is not Po, within this
component, then if X is not a separating vertex, it has arcs leading back only to nodes
within this component. If the X is a separating vertex, then since it is not the parent
of component C, all his children nodes were already processed and, therefore, it has
arcs leading back only to nodes within its parent component C. In both cases DPC
adds arcs only within the component C. Therefore, if d* induces an order d which
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is regular-width-2 for all components, then d’ is regular-width-2.
0
As a corollary of theorem 7,we conclude that a tree of simple rings is
regular-width-2. In figure 3.9, a graph with 10 nodes identified by its components

and its separating vertices is given, with a possible d* ordering which, in this case, is

regular-width-2,

G

G C3 Cs ;4
F
A D |: J F E |
o c2 H
8 cE c E
>, :
C1 (»]

; 0 1
B

R SR THE ORDERED GRAPH

(a) {b) {c)

Figure 3.9 - A Graph and its decomposition into nonseparable components

The decomposition of the constraint graph into a tree of nonseparable com-
ponents and separating vertices can be utilized always to improve Backtrack'~ perfor-
mance. Let SR be the directed tree associated with a given graph R, which induce an
ordering on the nodes of the SR tree, i.c. parent always precedes its sons. Backtrack,

given both R and SR will work on each component starting from leaf components
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towards the root component. The algorithm is described next:
Bac_ktrack(R SR)

begin
assign TSR SR. /*TSR stands for temporary SR .*/
1. If TSR = & then generate-solutions(SR ).
2. letCy, .. .,C, be the leaf components in TSR .
3. foreach C; a leaf, do
4,  perform backtrack on this subgraph C;
5
6

b

associate with the component C; all solutions found, denoted by pc,
delete from the domain of P, values which do not appearin p,
(Pc, is the parent separating vertex of C;)
7.  delete C; from TSR.
8. end.
9. goto 1.
end.
The procedure generate-solution(SR ) will generate all the solutions by walking on
the SR tree from the root to leaves and concatenating the partial solutions found for
each component that can be "joined” w.r.t. the separating vertices. i.e. for two con-
nected components that share the same separating vertex all partial solutions having

the same value for that vertex can be joined.

The complexity of the backtrack algorithm as a function of the graph R,
denoted by B (R ), will satisfy the following:
B(R)Sn B 5, (C) (11)
where B ,.(C) is the performance of Backtrack on one of the components in R,
which is most costly. If r is the size of the largest component then
B(R)=0(") (12)
We therefore see that if R has a nice decomposition into an SR then backtrack can

utilize this structure and improve its performance.
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3.2.3 Summary

This section discuss the following parts of the three main steps involved in the pro-

cess of generating advice -- simplification, solution, and advice generation.

L. The simplification part: we have devised criteria for recognizing easy prob-
lems based on their underlying constraint graphs. The introduction of direc-
tionality into the notions of arc and path consistency enabled us to extend the
class of recognizable casy problems beyond trees, to include regular width-2
problems.

2. The solution part: using directionality we were able to devise improved algo-
rithms for solving simplified problems and to demonstrate their optimality. In
particular, it is shown that tree-structured problems can be solved in O (nk o)
steps, and regular width-2 problems in O (n°k?) steps.

3. The advice generation part: we have demonstrated a simple method of
extracting advice from easy problems to help Backtrack decide between pend-
ing options of value assignments. The method involves approximating the
remaining part of a the task by a tree-structured problem, and counting the
number of solutions consistent with each pending assignment. These counts
can be obtained efficiently and can be used as figures-of-merit to rate the
promise offered by each option.
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3.3. THE SIMPLIFICATION PROCESS

The previous section suggests that a tree constraint-graph, being associated
with an easy CSP, can be made a target for the simplification process from which
advice will be extracted. We, therefore, discuss here the issues involved in approxi-
mating a network of binary constraints by a tree of constraints. We seek a good
approximation since the closeness of the approximation tree to the original network

will determine the reliability of the advice generated.

If the network R has an equivalent tree representation we would obviously
like to recognize it and find such a representation. This, however may not be explicit
in the constraint network; a network may contain many redundant constraints which,
if eliminated, would still represent the same overall relation. For example, any one of
the arcs in the network of figure 3.10 can be eliminated producing a tree-structured
constraint graph representing the same relation. Note that in this figure, and
throughout this section, there are multiple arcs between variables which connect
values. Two values are connected if they are permitted by the constraint. Another
example is given in figure 3.11 in which two 3-nodes networks, R; and R,, are
displayed. These two networks are equivalent, because they both represent the equal-
ity relation p = {(0,0,0),(1,1,1)} and, unlike that of figure 3.10, both are maximal, that
is, the addition of any pair of values to any one of the constraints (i.e relaxing any
specific constraint) will result in a nctwork representing a larger relation. Neverthe-
less, R can be transformed into R, by simultancously allowing the pair of values
(1,0) between (Z,X) and disallowing the pair (0,1) between (X,Y). The question
raised by this example is:

What networks have a tree representation and how to perform the transformation into
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(0,1)

(0,1)

Figure 3.10 - A "redundant” CSP

X (0,1)

(0,1)

Figure 3.11 - Equivalent network of constraints

a tree?

The two examples given display two levels of operation to be considered in
the process of transforming a network into a tree. The first is a macro operation
involving the deletion of whole arcs (i.e. total elimination of constraints between a

pair of variables) while the second is a micro operation, that merely modifics the arcs
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by adding and deleting pairs of values. In our approach we will consider only macro
operations of arc deletions; the use of micro transformations introduces a higher level
of difficulty to which we will not relate at this point. Considering only arc deletions,
a network R can be transformed into an equivalent tree only if some of the arcs are
redundant, i.e. they represent constraints that can be inferred from others. This
immediately raises the question of testing whether a given constraint is implied by

others.

This question is the inverse of the one posed by Montanari [Montanari 1974]
who claimed that the central problem in Constraint-Satisfaction Problems is the
transformation of the original network R into its minimal representation, M, which is
the most redundant network that represents the same relation as R. Qur interest is
the opposite, transforming R into one of its least explicit equivalent network.
Definition:

a A network R is maximal if there is nonetworkR';R :R'such thatR ~R’

(~ stands for equivalance)

b. A network R is arc-maximal if any arc deletion results in a network

representing a larger relation,
A maximal network is arc-maximal but not necessarily vice-versa.

lemma 3:

An arc-consistent constraint tree is maximal.

proof:

In an arc-consistent tree, for any permitted pair of values there is an n-tuple in the
relation which contains this pair. Disallowing this pair will eliminate such tuple from

the relation, thus making the relation smaller. In other words any arc-consistent
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constraint tree is minimal network for that relation.
)
An immediate conclusion is that arc-consistent tree-network is arc-maximal.
In general, deleting an arc from a tree-constraint may result in a larger relation even
when it is not arc-consistent. Let T and T, be the two disconnected subtrees gen-
erated from deleting arc (A ,B) and let p; and p, be the projection of p on the vari-
ables in T, and T respectively. The relation obtained after deleting the arc (A,5)
from T is the product of p; and p, (i.c. any n-tuple that is the concatenation of a
tuple in p, and a tuple in py). Therefore if there is a tuple in p; with A=a and a tuple
in p, with B=b then the relation resulting from deleting arc (4 ,B) permits the pair
(a,b).

In most cases a CSP problem will not be arc-redundant, because if it is posed
by humans its specification bas already passed through some process of redundancy
filtering, and therefore arc deletion will almost always generate larger relations. The
third question on which we will focus, therefore, is:

Given a network of constraints, R, what is the spanning tree, T, that will best

approximate R 2.

To discuss the quality of approximations, the notion of closeness between
relations must first be agreed on. Let p be the relation represented by R and p, the
relation represent~d by a relaxed network R,, ie., p C P,. An intuitively appealing

measure for the closeness of R to R, may be:

M®RR,) =—l‘§-—'|- (13)

where [p| is the number of n-tuples in p. This measure satisfies:
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a. M@p.p)=1
b.  Ifpgp, Spythen I2MQR.R,)2MRRy)

M is a global property of two relations and the task of finding the spanning
tree which yields the lowest M is very complex. Instead we propose a greedy
approach: at each step delete the least "valuable” arc which leaves the network con-
nected, namely, the arc deleted keeps the resulting network closest to the original
one. To pursue this approach we need to define a measure of constraint strength,
called weight, for each arc, that will estimate the contribution of that arc to the
overall relation. Let R be a network of constraints and R the network after the arc
(X,Y) was eliminated, i.c. the constraint between X and Y becomes the universal
constraint. Let / and !’ be the size of the relations represented by R and R respec-
tively. n'(x;,y;) is the number of tuples in the relation represented by R having
X=x; Y=y;, R'(X,Y) is the constraint induced by R on the pair (X,Y), and r (X Y) is

the local constraint given between X and Y in R. The following is satisfied

1=1- ) n %) (14)
EINERX Y)Y X X)
therefore
n ’ Xi.¥;
Lo1- )X —(i’) (15)
J wopeRAY-rixyy ¢

Since we have no way of knowing the quantities n'(x.y) and the structure of the
induced constraint R'(X,Y). we will estimate them both by a constant,c and R

respectively. This gives:
l—’,=1-l—",|n'-r(x,r)| (16)

The only quantity we can actually examine is 7 (X,Y ), therefore to maximize Ii the
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above formula suggests choosing the constraint r(X,Y) with the most number of
allowed value-pairs. Our first measure of constraint-weight is, therefore, defined by:

mX.,Y)=|rX,Y)I (17N
For instance, the weight of the universal constraint is m X, Y) = kz, andifr(X,Y) =

& then the weight becomes m (X ,Y) = 0.

In what follows we develop another measure of constraint strength by adopt-
ing notions from probability and information theory and by showing that the probiem
of finding tree approximation can be partially mapped into the problem of finding a
tree-structured joint probability distribution [Chow 1968].

n-ary relations and probability distributions.

Let P(X) be a joint probability distribution of » discrete variables
X X3 ....X, - A product approximation of P{X) is defined to be a product of
several lower-order distributions (also called marginal distributions) in such a way
that the product is a probability extension of these lower order distributions. A par-
ticular class of product approximation considers only second order components
where, each variable is conditioned upon at most one other variable. The relation-
ships between the variables can be therefore represented by a tree. Given a directed
spanning tree of the variables (the direction is from parents to sons) as in figure 3.12,

the distribution function associated with it is given by the product:

PX)= In P(x; 1x, 18
(X) UL (x; 1%5()) (13)
p (i) is the parent index of variable X;, and P (xqlxp) = P(xo) . O denotes the root
of the tree. Chow {Chow 1968] has shown that if the measure of distance between

two probability distributions P and P, is given by:
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PIX) = P(Xq) *P(Xg | Xq) = PIXg | X5) * P(Xq | Xa} « PiX5 | X) * P(Xg | Xg)

Figure 3.12 - A tree-dependence distribution

P(X)
P,X)

then the closest tree-dependence distribution to P is the one that correspond to the

IPP)=FPX)log 19
X

maximum spanning tree when the weight of each arc is J(X;.X;). I(X;.X;) is
Shanon’s mutual information between X; and X;, defined by:
P (x;x;)
IX; X:)= Y P(x; x; Nlog(—rei—
& X)) 5} o log( G e r s
I(P,P,) can be interpreted as the difference of the information contained in P (X)
and that contained in P, (X ) about P (X).

) (20)

Chow’s results are remarkable in that a global measure of closeness can be
maximized by attending to local measures on individual arcs. We therefore, attempt
to adopt Chow’s results to our need. Mapping probability distributions to constraints

relations, we say that a relation p is associated with a distribution function P ; if:
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0 if(xyxe ..., X)EP
Polxyxa .- 0x) =4 lmheﬂ"m'.fe"l 2

ipl
Let p, be the relation represented by a constraint-tree,?, and let P,and P, be

the distributions associated with relations p and relation p;, having sizes of / and /,

respectively. The "distance” between the two distributions:

I _ 1 L &
(PpPp)= 3 Jlog= =logr 22)
Xep

1
is a monotone function of —; whose inverse was already proposed as a measure of

closeness between two relations (where one contains the other). Accordingly, finding

the closest tree dependence distribution P, to P, will result in the closest approxi-

l
mation of a tree relation p, to p. Equivalently, in order to minimize -;- we need to

find the maximum spanning tree w.r.t the measure / (X; X ;). From the given mapping
between relations and distributions (Eq. (21)) we get that:

n(x;,x;)

P (x; 3y 23)
n(x;)
P(xj)y=——"— @4

{
- where n(x; x;) is the number of tuples in p having X; =x; and X; = x;, and n (x;) is

the number of tuples in p with X; = x;. Substituting (23) and (24) in (21) we get

n(x;x;) n(x;X;)

IX; X)=3% log (25)
P ! n(x;)n(x;)
= 1 2 Ylog—r i)
= logl + ] z:',‘jn (i x; )log———-u Gntx)) (26)

Consequently the appropriate measure of arc weight is:
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M) = (a1 logmee il e

e gn(.x:,-)n(x‘,-)

The question now is how to obtain the quantities n(x;), n(x; ,xj) needed for
computing m. To find them accurately, we need to inspect the list of tuples permit-
ted by the global relation which, of course, is unavailable. In the case of probability
distributions the marginal probabilities P (x;), and P (x;,x;) are estimated by sam-
pling vectors from the distribution and calculating the appropriate sample frequen-
cies. This cannot be done in our case since finding even one tuple that satisfies the
network solve the entire problem. All that we have available is the network of con-
straints and, therefore, we must approximate the weight m (X,Y) by examining only

properties of the arc (X,Y). This leads to approximations:

ci) = {}, Msivbialk a8)
n(x;) = Ny (x;) (29)

Where Ny (x;) is the number of pairs in the constraint r (X; X;) with X; =x;, Substi-
tuting (28) and (29) in (27) we get:

1

myX; X;)= ) log—— 30)
. xix)er (X, X;) n(x;n(x;)
== ¥ (logn(x;) + logn(x;)) (31)
(xx))

= - ¥ n(x;logn(x;) - Zn(xj Nogn(x ) (32)

X x;

The behavior of this measure can be illustrated in some special cases:

a If the constraint r (X ,Y ) is the universal constraint (and assuming k values for

each variable) then m4(u (X ,Y)) = =23 (k-1)logk = -2k (k—1)logk
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b. If »(X,Y) is the empty constraint O(X ,Y) then we define m(®(X,Y)) =0

c. If any value of X; is allowed to go with exactly r values of X; then

my==2k-rlogr. f r=1wegetm,=0

d. when only one value in one variable is permitted with all the values of the
other m, = -k logk

We see that this measure considers not only the number of the pairs allowed but also

their distribution over the k2 slots available. For uniform constraint (like case ¢) it

can be seen that

mq = =2N"logr (33)
when N is the size of the constraint.

We next give an example showing the behavior of the accurate measure of

weight, m, compared with their estimates, m .

Consider the relation between 3 binary variables, X ,Y ,Z, given by:

p = {(1,1,1),(1,0,0),(1,1,0),(0,0,0)} (34)
where the order of the variables is (X,Y,Z). A network representing this relation is
given in figure 3.13 where the nodes are the variables and the lines correspond to per-
mitted pair of values between pairs of variables. The accurate measures of n(x;x;),
and, n(x;) for the pair (X ,Y) are given by:
n(0,0)=1, ;1(0,1)-0 , a(1,0)=1, n(1,1)=2, n(X=0)=1, n(X=1)=3. Therefore, substi-

tuting in (29) we get:

2 1
m(X Y)-Iag—+log§+2bg 32 =log—— 108

Similarly , for the two other pairs, we obtain:
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X (0,1

< aunill

Figure 3.13 - A constraint network
m(Y Z)=log—=—

This suggest that the relation may be best approximated by a tree constituting of the
arcs (X,Y) and (Y ,Z). Indeed, the elimination of the arc (X ,Z) will not change the
relation at all whereas it is not possible to express p by removing either (¥Y,Z) or

(X ,Z) only.

By comparison, the network R and (35) give the weight estimates:
m:(X,Y) = _'4’ mz(Y,Z) = -4, mz(X,Z) = —d

Which, in this case, fail to distinguish between the various constraints.

In conclusion, we suggest to generate tree-approximations for networks using
the maximum spanning tree algorithm. Two measures for constraint-strength, to be

used by the algorithm, are proposed and justified.
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3.4. THE UTILITY OF THE ADVICE-GENERATION SCHEME

We compare here the performance of Advised Backtrack (abbreviated ABT) with
that of Regular Backtrack (RBT) analytically, via worst case analysis, and experi-

mentally, on a random constraint problem.
3.4.1 Worst case analysis

An upper bound is derived for the number of consistency checks performed by the
algorithms as a function of the problem’s parameters and the number of backtracks
performed. A consistency check ocours each time the algorithm checks to verify

whether or not a pair of values is consistent w.r.t. the corresponding constraint.

Let #B, and #Bp be the number of backtracks, and N (ABT') and N (RBT) the
number of consistency checks performed by ABT and RBT, respectively. The
problem’s parameters are 2, the number of variables, and &, the number of values for
each variable. Parameters associated with the constraint graph are |E |, the number

of arcs, and deg, the maximum degree of variables in the graph.

The number of backtracks performed by an algorithm is equal to the number

of leaves in the search tree which it explicates. We assume that
Number of nodes expanded = ¢ -#B (35)
approximately holds for some constant ¢. (This truly holds only for uniform trees
where ¢ is the branching factor.) Therefore we use the number of backtracks as a sur-
rogate for the number of nodes expanded. Let #C, and #Cp be the maximum
number of consistency checks performed at cach node by ABT and RBT, respec-

tively. We have:
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N s #B-#C (36)

Considering RBT first, the number of consistency checks performed at the i™
node in the order of instantiation is less then k-deg(i). That is, each of this
variable’s values should be checked against the previous assigned values for vari-

ables which are connected to it. We get:
N(RBT )< k-deg #Bp 37

The ABT algorithm performs all of its consistency checks within the advice
generation. For the i variable , a tree of size n—i is generated. The consistency
checks performed on this tree occur in two phases. In the first phase, for each vari-
able in the tree, the values which are consistent with the already assigned values are
determined. The number of consistency checks for a variable v in the tree equal
k-w(v), where w{v) is the number of variables connected to v which were already

instantiated. Therefore, for all variables in the tree, we have

k- Y wv)sk|E]|. (38)
vétree
The second phase counts the number of solutions. We already showed that the

counting takes no more then (n—i )-k> which is bounded by nk2. Hence,
N(ABT)<(k-|E | +nk®#B, (39)
We now want to determine the ratio between #B, and #Bp for which it will

be worthwhile to use Advised Backtrack instead of Regular Backtrack and, a first

approximation, will treat the upper-bounds as tight estimates.

N(ABT)YSN(RBT) 40)
does not imply that

(k*|E | +nk?#B, Sk-deg #Bp , (41)
however to get some feelings regarding the comparison between the two algorithms
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we will assume that (41) is implied from (40). From (41) we get

#B
R2|E|+nk

) (42)
Since
|E |
=0 , 43
deg sn (43)
(42) will hold if
#B R n]‘
—_— 44
7B, 2n+ deg (44)

(44) implies the inequality (41) between the upper bounds of N(ABT) and N(RBT)
and we will allow ourselves to assume that it reflects the relationships between the
above quantities, namely that (40) is implied from (44) baring in mind that it does
not logically follows. Therefore, ABT is expected to result in a reduction in the
number of consistency checks only if it reduces the number of backtracks by a factor

greater than (’H'deig)' Thus, the potential of the proposed method is greater in prob-

lems where the number of backtrackings is exponential in the problem size.
3.4.2 Experimental resuits

Test cases were generated using a random Constraint-Satisfaction Problem
generator. The CSP generator accepts four parameters: the number of variables a,
the number of values for each variable k, the probability p, of having a constraint
(an arc) between any pair of variables, and the probability p, that a constraint allows
a given pair of values. Two performance measures were recorded: the number of
backtrackings (#8) and the number of consistency checks performed. The latter
being an indicator of the overall running time of the algorithm. What we expect to
see is that the more difficult the problems, the larger the benefits resulting from using
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advised Backtrack.

In our experiments we use m, the size of the constraint, as the weight for
finding the minimal spanning tree. Using the alternative weight, m,, is not expected
to improve the results for two reasons. First, the problems generated were quite
homogeneous and we have shown that fo_r such problems both weights are the same.
Second, the reduction in the number of backtrackings was so drastic that further

improvements due to modified weights seems unlikely.

Two classes of problems were tested. The first, containing 10 variables and 5
values, were generated using p = p1=0.5, and the second with 15 variables and §
values, generated using p =0.5 and p ;=0.6. 10 problems from each class were gen-
erated and solved by both ABT and RBT. The order by which the variables were
instantiated was determined, for both algorithms, by the structure of the constraint
graph. Namely, variables were selected in decreasing order of their degrees which
closely correlate with the criterion of minimum width. [Freuder 1982] The order of
value selection is determined by the advice mechanism in ABT and random in RBT.
Therefore, while ABT solved each problem instance just once, RBT was used to
solve each problem several (five) times to account for the variation in value selection
order. When a problem has no solution, the number of backtrackings and con-
sisténcy checks in RBT is independent on the order of value selection, and in these
cases the problem was solved only once by RBT.

Figure 3.14 and figure 3.15 display performance comparisons for both classes
of problems. In figure 3.14, the horizontal axis gives the number of backtrackings
that were performed by RBT and the vertical axis gives the number of backtrackings
performed by ABT for the same problem instance. The darkened circles correspond
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to problem instances from the first class while empty circles correspond to instances
of the second class. We observe an impressive saving in #8 when advise is used,
especially for the second class in which the problems are larger. Figure 3.15 uses the
same method to compare the number of consistency checks. Here, we observe that in
many instances the number of consistency checks in ABT is larger than in RBT, indi-
cating that in these cases the extra effort spent in "advising" backtrack, was not

worthwhile.

These results are consistent with the theoretical prediction of the preceding
subsection. If we substitute the parameers of the firsi class of probiems in (44) we
get that #B,, should be smaller than #B by at least a factor of 20 (25 for the second
class of problems) to yield an improvement in overall performance. Many of the
problems, however, were not hard enough (in terms of the number of backtrackings
required by RBT) to achieve these levels. In section 4.3.3 we give an average
analysis of RBT performance on this class of problems and indeed we observe that

on the average these problems are linear in n,i.e. easy to solve.

Figure 3.16 compares the two algorithms in only those problems that turned
out to be difficult. it displays the number of consistency checks in the cases where the
number of backtrackings in RBT were at least 70. We see that the majority of these
problems were solved more efficiently by ABT than RBT.

Experiments were also performed on the n-queen problem for » between 6
and 15 and on the 3-colorability problem on a set of random graphs. In all cases the
number of backtrackings of ABT was smaller than RBT, but the problems were not

difficult enough to get a net reduction in the number of consistency checks.
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As a result of the above experiments we felt that the "advising” scheme was
too good for the tested problems, i.e. it gave very good results with a high cost.
We wanted to weaken somehow the quality of advice in order to reduce its costs. The
following scheme was devised: instead of generating advice based on the full span-
ning tree of the remaining problem we trimmed the tree to contain only a fixed
number of variables, /. The computation of the number of solutions proceeded in the
same way based only on this partial tree. This approach enabled us to test ABT using
a whole range of strength of advice starting from a strong and full advice that consid-
ers all nodes in the tree, as before, through the weakest advice, having just one node,
which is really no advice at all. Figures 3.17 and 3.18 summarize the results of
experimenting with this parametrized advice. The x-axis display the strength of
advice being used, i.e. the parameter / of the number of nodes considered in the tree.
The left vertical axis gives the number of consistency checks and the right vertical
axis gives the number of backtracking. The entries display the average performance
of ABT with the corresponding amount of advice where figure 3.17 displays average
w.r.t. problems in class 1 while figure 3.18 gives the results on problems from class
2. Full dot indicate the number of backtrackings, empty dot indicate the number of
consistency checks. The cross dot represent the results with no advice, i.e, with RBT.
As we see the amount of backtrackings reduces exponentially with / and the amount
of consistency checks has a minimum for a relatively weak advice. In the first class
of problem the advice based on just two nodes gave the best performance (on the
average). In the second class of problems with 2=15 an advice based on 3 nodes was
best. In both cases the best performance of ABT was indeed better then RBT's per-
formance. We conjecture therefore, that in general, problems in this classes will

need only weak advice to enhance their performance considerably.
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In conclusion, advice should be invoked with an appropriate strength. One
needs therefore, a way of recognizing the difficulty of a problem instance prior to
solving it. Knuth [Knuth 1975] has suggested a simple sampling technique that
require very small computation to estimate the size of the search tree. These esti-
mates can be used in conjunction with our parametrized advice that will adapt itself
according to the expected size of the tre¢. Namely, smaller problems will be guided
by a weaker advice (e.g. based on partial trees) that is obtained more efficiently.

Experiments related to the ones reported here were performed by Haralick et
al. [Haralick 1980]. The Forward-Checking lookahead mechanism (reported to exhi-
bit the best performance considering the number of consistency checks) can also be
viewed as an automatically generated advice in the sense discussed here. However,

since the task was to find all solutions, the results cannot be directly related.
3.4.3 average case analysis

We conclude by giving an upper-bound on the average complexity of regular
backtrack on a random CSP.

Given a random CSP generated with the parameters p, and p 4, the probabil-
ity, @, that a pair of values is consistent is:
. Q=1=-p,+p1P2 (45)
The average number of nodes expanded when backtrack looks for one solution,
denoted by E (B,n,) is smaller then the average number of nodes expanded if back-
track looks for all solutions, denoted by E (B,y). iec.

E (Bone )SE (Ban) (46)
We will therefore, find a bound to E (B,,,) by bounding E (B y)-
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Given a fixed order of variables’ instantiation, the probability that the j * yalue in the
sequence is consistent with all the previous j—1 values is §/7'. Therefore, the pro-
bability that a node at depth / in the search tree will be expanded is: (see also [Haral-
ick 1980] ):

gl-—l)!
p(X20)=Q ? (47)

where X is a random variable indicating the length of a consistent set of values.

Since the number of possible nodes at level / is k', we get:

n g-ni a=n 1
E@m)=3k0Q * =340 *) (48)

i=] I=1
Let [ oy, be the level in the search tree that has the maximum average number of

nodes. Replacing each term in (48) by the highest, we get:

Uga=1) fmms
EBug)sn-tk@ 2 ) 49
! nax can be found by differentiating the function:
1=ty
fy=kQ ? (50)
yielding
Ink 1
lmax = =105+ (51)

If ] 5o S n we have:

(- + e (k2 (£.2)

E(Boy)=0(n-(k¢®200 2 ) (52)
where
c(k,Q)= 25 (53)
In—
0

For a fixed k and Q we see that, asymptotically, the average complexity is linear in

n. For a fixed Q we have:
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1

1
]Il—
EBuy)=0nk*@=0mk 2 k™)=0n k") (54)
No wonder, therefore, that most instances generated by our model were not too

dificult- . On the average these problems are linear in » and Ok ") in k.
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APPENDIX 3.1: Lower bound to the complexity of tree-CSP

We will show that any algorithm that guaranteed to solve any tree-CSP with n
variables and k values requires (n-1)k2 steps in the worst casc. We assume that the
basic step of the search algorithm consists of testing the consistency of a pair of
values. The algorithm terminates with the first solution found or by concluding that
no solution exist The proof uses an oracie which, for any given algorithm, creates a

problem instance on which that algorithm must spend (n=1)k? steps.

Consider tree problems that have a star structure as depicted in the figure
3.19.

Figure 3.19 - A star constraint-tree
X o is the center variable and X ), . . . ,X,,_; are all connected to it. Let v represent an
arbitrary value of the center variable. The idea is to have the oracle answer the tests
so that, for each v, it will not be possible to conclude the existence of a consistent
solution without checking v against all possible values of all the peripheral variables.

Since there are (n~1)k such values for each value of X , this will prove the claim.
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Oracle specification:

At any point of time, the information available to the algorithm (and the oracle) con-
sists of three sets of pairs: positively determined, negatively determined and undeter-
mined. In response to the query R(X;,x,X(v)? (testing if the pair (x,v) is con-

sistent) the oracle responds as follows:

a If for X; and v there are still undetermined pairs (X;,y,Xo.v) , y #x, the

answer is "NO", else
b. the response is "YES" uniess

c. v in X has a positively determined matching value in each of the other n-2

variables {(excluding X;). In which case the answer is again "NO".

This oracle creates a problem instance with no solution so that any algorithm
will have to check all pairs of values. Notice that case (b) is executed w.r.t. vand a
specific variable X j» only when all the pairs of a value in X b and v were determined.
After this there is one positive match to v in X; and all the other pairs are negatively
dctcmﬁned. Therefore when case (c) is executed with regard to value v of X5 all the
values which are connected to v are determined and there are exactly one matching
value to v in each of the other variables. Part (c) ensures that there will not be a full

solution consistent with v.

Suppose that the claim is not true, i.c., that the algorithm halts while **there
are still undetermined pairs. Let v be a value of X 3 which participate in one or more
of these undetermined pairs. Any variable X; whose values were all determined w.r.t

v must have a positive match with v ( due to case (b)). For all other variables we
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make the undetermined pairs** positive, thus creating a problem instance that has a

solution which the algorithm fails to detect. This yields a contradiction.
(]
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CHAPTER 4
GREEDY ALGORITHMS AND HEURISTICS

4.1 INTRODUCTION AND MOTIVATION

When one tries to extend the idea that heuristics can be generated by consulting
simplified models to optimization problems, one must address the following ques-
tion: what should be the target of the simplification process? Or put differently: what
constitutes an easy optimization problem? Pearl [Pearl 1983] has suggested that a
possible criterion for an easy problem is that it is solvable with no backtracking. The
easy problems used in Chapter 3 for generating advice for constraint satisfaction
problems (i.e., problems with a tree constraint-graph) indeed meet this criterion. In
the context of optimization problems this same criterion translates to problems that
can be solved (optimally) by a Greedy algorithm. We call such problems greedily

optimized.

Greedy algorithms use an irrevocable search control regime that uses local
knowledge to construct a global solution in a ‘‘hill climbing’’ process [Nilsson
1980). Usually, they involve some real-valued function defined on the states of the
scarch space. The greedy control strategy selects the next state so as to achieve the

largest possible increase in the value of this function.

Of the various search control strategies available (e.g., backtracking, best-
first, greedy), greedy schemes are probably the closest to explaining human

problem-solving strategies because they require only & minimum amount of memory
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space and because they often produce adequate results. (Due to the small size of
human short-term memory, it is very hard to conceive of a human conducting best-
first or even backtracking search, both requiring retention of some properties of pre-
viously suspended alternatives.) The study of greedy algorithms and of greedily
optimized problems is, therefore, important not only for the enhancement of weak

methods but also for understanding human reasoning in general.

The “‘nearest neighbor’’ strategy for obtaining solutions for the Traveling
Salesman problem, is a well-known example of a greedy scheme that generally does
not yicld an optimal solution. Nevertheless, this is perhaps the most intuitively
appealing and the first choice of most humans faced with this problem. Moreover,
the solutions produced by this strategy are often of acceptable quality. For example,
Reingold [Reingold 1977] proved that the ratio between the answer found using this
method and the optimal answer is less or equal to Ig (n+1)/2 (where n is the number
of cities), and empirical evidence [Bentley 1980] suggests that it finds tours that are
about 20% worse then optimal on the average when the cities are distributed at ran-

dom.

There are two ways in which greedy schemes can play a role in the solution
of optimization problems. The first is using a ‘‘greedy solution’’ in lieu of a true
optimal solution of the problem, as in the example above. The main issue in this
case is the choice of the best hill-climbing function, namely, the one resulting in the
least expected amount of suboptimization. This is the subject of Section 4.2 where
the relative merits of several such functions for the two-constraint knapsack problem

are discussed.
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The second way is using greedily optimized simplifications of the original
problem for stregthening a weak method algorithm (A *, backtrack). For instance,
when A ¢ is utilized for solviﬁg instances of the Traveling Salesman problem, a possi-
ble source for the heuristic evaluation function is the optimal value of a Minimum
Spanning Tree (MST) problem obtained by relaxing the TS problem. The attractive-
ness of the MST problem in this case stems to a large extent from it being greedily
optimized. For this type of use, and in particular if the generation of heuristic advice
is to be mechanized, an issue of utmost importance is that of being able to identify
greedily optimized problems and their ranking functions. A necessary step toward
this objectivé is the characterization of greedily optimized problems, which is the

subject of Sections 4.3 and 4.4,

Our takeoff point is a list of optimization problems known to be greedily
optimized that appear, along with their respective greedy strategy, in the appendix to
this chapter. All the problems on the list involve the task of selecting, from a given
set of elements, a subset of the elements which satisfy some property, so as to max-

imize (or minimize) the value of a cost function defined on all possible solutions.

A careful examination of the list of problems reveals that they fall into three
categories which we will refer to as selection-problems, ordering-problems, and
tree construction problems. If the cost function is not dependent on the order of
the elements in the subset of elements that constitute a solution, then a selection
problem is at hand. An example is the Minimum Spanning Tree problem (#1 in the
list). In an ordering problem the value of the cost function is is dependent on order
of the clements as well as on their identity. An example is the Optimal Storage on
Tape problem (#4). Tree construction problems fall somewhere between the other

two categories. These problems require the generation of a tree which imply a partial
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order on the set of elements (see, for example, the Optimal Merge Patterns problem,

#6).

The solution of selection and tree-construction problems by greedy algo-
rithms has been studied extensively. Section 4.3 summarizes the relevant results for
these categories. Specifically, Section 4.3.1 describes the work of Edmonds and Gale
[Lawler 1976] on the relationships between matroid theory and greedy algorithm and
Section 4.3.2 summarizes the work of-[Parker 1980] which characterizes the set of
cost function defined on trees that are minimized using the Huffman algorithm
(which is a greedy procedure).

No comparable body of knowledge exists for characterizing greedily optim-
ized ordering problems. An attempt to do so, the Greedoids theory [Korte 1981] fais
to capture a large set of ordering problems. A theory intended to feel this gap is
presented in Section 4.4, in which we characterize cost functions that permit optimal

solutions of ordering problems by a greedy algorithm.

We conclude this introduction by mentioning work on greedy algorithms
related only indirectly to the discussion of this chapter. Sahni and Horowitz [Sahni
1978] devoted a chapter in their book to greedy algorithms, containing a collection of
problems that can be solved by a greedy algorithm.

A generalization of the Matroid structure (section 4.3), called Greedoids
[Korte 1981], represents an attempt to capture an even larger set of problems that
can be solved by a greedy algorithm. However, there are greedily optimized ordering
problems that cannot be patterned after neither matroid nor greedoid theories {(e.g.,

The "average weighted processing time", in section 4.3).
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Some authors had also investigated the conditions under which some classical
optimization problems will be solved by greedy algorithms. In particular Dunstan
etal. [Duntsan 1973] discussed linear programming and Magazine et al. [Magazine
1975] discussed a class of knapsack problems,

For NP-Complete problems greedy algorithms were proposed as approxima-
tion algorithms and in some cases their performance was analyzed by comparing the
cost of the solution obtained and the optimal cost. Garey and Johnson discuss such
suboptimal algorithms in their book [Garey 1979]. Probabilistic analysis of the per-
formance of random versus greedy strategies is reported by [Ausiello 1981] for the
knapsack and clique problems.
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4.2 UTILIZING GREEDY SCHEMES
Consider the following hypothetical story.
Joseph’s Dilemma

Joseph (Jacob’s youngest and most favored son) wants to bring some food to
his brothers. He searches his father’s storage and finds six Items: a pair of lamb’s
legs, a crate of dry fish, a box of pita-bread, a can of olives, a chunk of cheese and a
can of milk. The items are clearly marked with their nutritious value (in calories),

their volume (in square feet) and their weight (in pounds) as follows:

item 1 2 3 4 5 6
value 4 10 12 2 4 5
volume 2 6 20 10 1 4
weight 16 48 4 8 20 20

Wishing to bring the most valuable combination to his brothers, Joseph would like to
take everything, but he is limited as to the total volume he can carry (20 cu. feet) and
the total weight he can carry (80 pounds), so some items shouid be given up.

How should he go about selecting the items so as to maximize his brothers’

appreciation?!

Needless to say that Joseph, unequipped with the Tools of Operations-
Research and Combinatorial Optimization will not formulate the problem as an
optimization problem with two constraints and probably would be unable to come up
with an optimal selection within the time allowed by the circumstances. Nevertheless

it is not hard to imagine that Joseph, given his natural resourcefulness and common-
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sense approach to life would be able to select a fairly good composition. He begins
to execute the following strategy: Consider all the items, choose the one that looks
most worthy, then add to it the most worthy of the remaining items and so on until
either the volume or the weight limit is exhausted. He is not aware (and would prob-
ably be offended if he were) of the fact that 3000 years down the road this strategy

would be known as the Greedy strategy.

The problem Joseph is facing now is how to determine what the "most
worthy" item at each step means. Since the final merit of each item lies in its nutri-
tious value he first tries to use this as a selection criterion and thus he picks item 3 as
the first choice. He immediately observes that no other item can be added because the
entire volume capacity (20 cu. feet) is taken up by this item, yielding a total value of

only 12 calories.

Joseph suspects that this highest-value-first criterion is not the best selection
strategy (one might say that it is too greedy). Therefore other selection criteria
accounting for both size and weight may be tempted, for example, choose the item of
lowest size as long as its vaiue is above some threshold. The intention of Joseph in
this scheme is to maximize the number of items chosen since he bears in his mind
that as more items are selected, the larger will be the total value. Later he realizes
that the thing that causes him to regret the selection of a promissing item is the fact
that it inhibits the selection of another, equz;lly promissing. Moreover, the feeling of
regret occur primarily when the first item consumed a large fraction of either the

remaining volume or the remaining weight allowence. Therefore for each item he

5; w;
calculates the two normalized parameters of weight and size S—' and -‘;V‘— where s;
r r

and w; denote the size and weight of item i. S, and W, are the residual total size and
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weight, and the criterion indicating the relative amount of resource consumed is:

(=)
max{— , <~
S, W,
henceforth ''index of resource-consumption’’. His scheme in this case might be:
Choose the next item with the smallest index of resource-consumption, which is a
parameter updated after each selection, according to the residual available size and

weight.

After further pondering with this problem Joseph realizes that the criterion
above must also take into account the nutritious value of each item, or else he may
hypothetically fill his bag with very small, light, but worthless collection. For each

pi p;
d h - i al f . ..
siisr “ Wifwr where pi is the value of item 1

item he calculated the two ratios

Joseph can now try to use each one of the ratios above separately as his selection cri-
terion, or try to combine the two measures by some rule, perhaps the pessimistic rule

used before.

What is the mental process involved in the generation and refinement of such
scheme and criteria? What knowledge and representations are required for mechan-
izing such processes? These are the kind of questions that have motivated this study.
We will show now that most of the ranking functions suggested in the story, if used
by a greedy algorithm, can in fact lead to an optimal solution of some simplified ver-
sion of the original problem. This suggests that prchlem simplifi.ction plays an

important role in such learning processes.

A simplified problem is a problem similar to the original, in which some com-
ponents are changed to render the problem easy to solve, e.g. a constraint is added or

deleted, the cost function is altered etc. The following list displays the ranking
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functions suggested in the story:

1 pi
2 Wi
3. 5;
4 5w
. max( S,'W,)
s P
Wy
6. P
5
7 ming Pi Pi )

S"/S, ’ wi/W,

The main compornents in the problem are: the cost function, the size con-
straint, the weight constraint, and the integer constraint. (The latter refers to the con-
straint that elements cannot be divided, each element is either selected in its entirity
or not selected at all.) The ranking functions in the above list yield a greedy algo-
rithm optimal for one of the following simplified problems:

L. If the size and weight constraints are deleted and instead we have the con-
straint: "The number of clements must be less or equal to N”, then this
simplified problem is optimally solved using {p;} to rank the selection of ele-

ments.

2. If the cost function is simplified and instead of evaluating the combination in
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the sack by its total nutritious value we evaluate it by the number of elements
included, and if the size constraint is deleted, then this new simplified prob-
lem is optimaly solved by function 2 (w;). Function 3 (s;) can be explained in

a similar way.

Function §, -&-, (resp. 6, %—) solves optimally the problem in which both the
i

Wi

integral constraint and the size (resp. weight) constraint are deleted.

The most interesting of all is ranking function 7. It is possible to show that it
solves optimally a continuous version of the knapsack problem. In other
words, if we can add to the sack any fractional quantity €, from each element,
as small as we wish, then adding this quantity from the element suggested by
function 7 and updating the remaining size and weight will give an optimal
solution (assuming the quantities available from each element exceed the size
and weight limits). We conjecture that this strategy is also optimal when the
resources available from each element are limited. The simplified problem in
this case is obtained by deleting the integral constraints. Notice that the forth
ranking function can also be regarded as solving optimally this model with
the added constraints on the input instances that the values of all the elements

are equal.

The availability of several ranking functivas to a greedy strategy of a given

problem points to the need of comparing these functions and measuring their "good-

ness”. Intuitively, we expect the merit of a given ranking function to increase with

the "closeness” between the original problem and the simplified problem. A partial

order w.r.t closeness to the original problem is given in figure 4.1, We say that prob-
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lem B is closer to P then problem A if every component in B which differ from P is

included in A but not vice-versa.

[ONONONO
cfo

Figure 4.1 - Hierarchy of simplified problems

As we see, the only relationships we could establish in this way is that function 7 is
better then 4, 5 and 6. All other ranking functions are incomparable. We do feel,
however, that function 4 should be considered better then 2 and 3 since it takes more
parameters of the problem into consideration (for that reason we might also feel that
function 7 is the best) but, the superiority of 4 cannot be guaranteed for every prob-

* lem instance, nor does the superiority of ranking function 7.

Another way of using the advice when several uncomparable simplified
models induce different ranking functions, is to associate each ranking function with
a different classes of instances (of the original problem). For each simplified prob-

lem and its ranking function we delineate a class of instances of the original problem
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that can be optimally solved by it. For example, the effect of deleting the weight
constraint is equivalent to the requirement that the weights of all the elements are
equal. Similarly, changing the cost function to the "number of elements” (instead of
the “total value”) is equivalent to requiring that the values of all elements are equal.

We can therefore consider the following classes of problem instances:
2. Viyj w; =w;

3. Vijs=s;

s Vi
. 1 W(E
5 V-sl

1 S < g
6 W=S

The ranking function p; will optimally solve the original problem on the set
of input instances satisfying requirements 2,3, and 6. Function 7 will solve optimally
(if € is small enough) the original problem for problem instances satisfying 4 and
5,etc. Figure 4.2 gives the associations between each ranking function and the set of
instances that it solves optimally. The class of instances is denoted by a conjunction
of the original problem with several of the requirements on the inputs (denoted by

their numbers).
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Ranking function Instances

Pi P+(2)+(3)+(6)

w; P+(1)+(3)

S; P+(1}+(2)

S w;

mfm{?,w P+ (1) + (4) +(5)

- P+(d)+3)

w;

% P+(5)+(2)

. ' Pi Pi .
min( ./Sr'stWr) P+ )+ (5

Figure 4.2 - Mapping ranking functions to sub-domains of instances

This approach suggests to decompose the set of instances to different sub-
domains and to associate with each such sub-domain the most appropriate ranking
function as in figure 4.2. For example, if in a given problem instance, all the ele-
ments are big but do not differ much in size and weight, then function 1 is appropri-

ate. If the elements are all very small, then function 7 will be appropriate.

The main steps of this approach are outlined next and the general idea is illus-
trated in figure 4.3.

Given a problem P do the following:

1. Check if problem P is greedily optimized. If it is, then apply the appropriate
technique for identifying the correct ranking function and stop.

2. If P is not greedily optimized then generate a set of simplified problems
which are greedily optimized.
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For each such problem find the ranking function that optimizes it.

Map each simplified problem into a corresponding subset of problem

instances of P as explained before.

Generate a ranking rule that associate classes of instances with ranking func-

tions.

Figure 4.3 - A scheme for generating ranking functions

143



4.3 GREEDILY OPTIMIZED SELECTION AND TREE-CONSTRUCTION
PROBLEMS

In sections 4.3 and 4.4 we present some characteristics of combinatorial
optimization problems which can be solved by a greedy algorithm. Among those are
the "Minimum spanning tree” problem, the "Optimal storage on tape" problem,
"Minimum average flow in one machine job shop scheduling” and more. This set of
problems will be called Greedily-optimized problems and a list of such problems is

given in section 4.5.

The main source of knowledge to characterize greedily optimized selection-
problems is the theory of Matroids. We give a brief summary of the matroid theory

which relates matroids with greedy algorithms following with some conclusions.

Matroid theory deals with problems having a finite set of elements, each asso-
ciated with a real number called weight. The cost of a subset of elements is the sum
of their weights. Subsets which satisfy some given constraints are regarded as solu-
tions. A greedy algorithm constructs a solution by choosing the elements in order of
decreasing weight as long as the constraint is satisfied. According to the matroid
theory, the greedy algorithm will always find a solution with maximum cost if the set
of solutions satisfies two properties. The first property is that every subset of a solu-
tion is also a solution. The second property is more involved and has to do with the
cardinality of a solution (i.e. the number of elements in the set). It requires that if
there are two solutions s; and s ; with cardinality i and j respectively and i>j then it is
possible to transfer an element in 5; — 5 7» 10 5; such that the resulting set will be a
solution with j+1 elements. A more formal discussion of the matroid theory is given

below. It is taken from the book "Combinatorial optimization by Lawler [Lawler
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1976]
4.3.1. The theory of matroids and greedy algorithms.

definition: A matroid M =(E ,®) is a structure in which E is a finite set of elements

and @ is a family of subsets of elements of £ such that:
M.1 ¢ e® and all proper subsets of each set in @ are in .

M2 If/, and I, are sets in @ containing p and p+1 elements respectively, then

there exists an element ¢ in [, —/, such thatl, +eisin ®.

The sets of ©® are called independent sets. An independent set is said to be maximal
if it is not contained in any other independent set. A maximal independent set is said
to be a base of the matroid, and the rank, r(4), of a subset A C E is the cardinality
of a maximal independent subset of A .

Examples:
1. Matroid of matrix A: E is a set of columns of A, and ® contains all linearly
independent subsets of E.

2. Matroid of a. graph: E is the set of edges of graph G and @ contains all
cycle-free subsets of edges.

3. Matching matroid: Let G = (N ,A) be a graph and E be any subset of nodes in
N. Let @ be the family of all subsets / < E such that there exist a matching
which covers all the nodes in I. M =(E,®) is a matroid called a matching

matroid.
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Theorem 1: (theorems will be stated without their proofs).

Let @ be the family of independent sets of a matroid. Then :

T.1 Forany A g E,if ] and !’ are maximal subsets of A in ©, then [/| = |/’].
Conversely, if M = (E,®) is a finite structure satisfying M.1 and T.1, then M is a
matroid.
m;
Theorem 1 asserts that for any A € E , all maximal independent sets in A
have the same cardinality. The rank function r (A ) is thus well defined.

Theorem 2;: (Whitney)
Let Q be the set of bases of a matroid. Then:

T.2 Q2= ¢ and no set in Q2 contains another properly.

T3IfB,and B, are in Q and ¢, is any element of B |, then there exists an element
eyinBjsuchthatB,-e; +e5is in Q.
Conversely, If (E,Q) is a finite structure satisfying T.2 and T.3 then M = (E,®) is a
matroid, where @ = (I |JC B, forsome B inQ }
O
Let M =(E,®) be a matroid whose elements have been given weights,
w(e;) 2 0. The triplet (E,®,W) in which W is a vector of weights associated with the
elements of £, is called a weighted matroid, and an independent set with maximum
sum of weights is desired. Any weighting of the elements induces a lexicographic
ordering on the independent sets, when the elements in each set are ordered decreas-

ingly w.r.t. their weights.
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Theorem 3: (Rado, Edmonds)
Let @ be the family of independent sets of a matroid then:

T.4 For any nonnegative weighting of E, a lexicographically maximum set in @
has a maximum weight.
Conversely, if M = (E,®) is a finite structure satisfying M.1 and T.4 for any set of
weights then M is a matroid.
a
A lexicographically maximal base can be found by the Matroid Greedy
algorithm: namely, choose the elements of the matroid in order of size, weightiest
element first, rejecting an element only if its selection would destroy independence of
the set of elements. Note that If B is a lexicographically maximum base and / is any
other independent set, then the weight of the k™ largest element of B is not smaller
then that of the & largest element of 7, for all k. We say that B in @ is gale
optimal in @ if for any other set [ in @ there exists a one to one mapping h : I-B
such that w(e)Sw(h(e)) foralle in/.
Theorem 4: (Gale)
Let @ be the family of independent sets of a matroid. Then:

T.5 For any weighting of the elements in E, there exists a set B which is gale
optimal in P.
Conversely, if M = (E,®) is a finite structure satis{ying M.1 and T.5 then M is a
matroid.
]
In the case that some weights are negative and one sceks a maximum-weight
independent set, the greedy algorithm can be applied up to the point where only nega-

tive elements remain, and all of those are rejected.
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For any given matroid M = (E,®), there is a dual matroid M® = (E£,0) in

which each base of M7 is the complement of a base of M, and vice versa.

Theorem 5:

If M = (E,®) is a matroid, then M2 = (E ,®P) is also a matroid.

O

From the above it follows that if A is a lexicographic maximum base of M,

then E-A is a lexicographic minimum base of M2, It is clear that solving a maximi-

zation problem for the primal matroid also solves a minization problem for the dual

matroid.

Conclusion:

1.

From the duality notion of matroids it follows that whenever a matroid has a
non empty dual matroid then both maximum and minimum greedy algorithms
can be applied to it. The maximum weight independent set can be built either
by selecting the elements in order of decreasing weight as suggested before,
or by building the minimum independent base of the dual matroid and taking
its complement. In practice it means that we find our set by deleting elements
from E in order of increasing weight until we are left with a maximal
independent set.

Given a matroid M = (E,®) and a cost function C' defined over @ then if C

can be expressed as:

CEY=F( S-S
where f; =f(e¢;) and F is a symmetric function, which is also monotonic,
then the matroid greedy algorithm with the weights being {f;} will find an

independent set with maximum cost.
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The first three problems in section 4.3 are sclection problems and they can all
be modeled as matroids. The “spanning tree" problem is a classic example since 2
spanning tree is 2 maximal independent set in a graphic matroid. The "continuous

knap-sack" problem can be modeled by the matroid (E,P) as follows: eachitem i is

v.
divided into 5; new items with a unit size and a value of ':-L E is the set of all these
: i

new ,unit size, elements and a subset belongs to @ if it does not contain more then B
elements. This structure is a matroid and it is easy to see that the greedy algorithm
for it will result in the same strategy as the one suggested in section 4.3. The prob-
lem of “job sequencing with deadlines” is also greedily optimized and can be
modeled and explained by the matroid theory. For details see [Lawler 1976).

An exception; the resource consumption problem.

A simple selection problem which is greedily optimized but cannot be
modeled (at least, not in a straight forward way) as a matroid is given next (problem
#5). Given a set of n elements, associated with each is a weight w; and a total weight

W, find the largest subset of elements with a total weight less or equal to W.

A greedy optimal strategy for this problem is to select the elements in a non-
decreasing order of weight. If we try the straight forward way of modeling the sub-
sets of elements with weight less or equal W as candidate for independent sets, we
can see immediately that they do not satisfy property M.2. We therefore consider this
problem as a specific model for greedily optimized selection problem that will be

referred to as the resource consumption model.
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4.3.2 Greedily optimized tree-construction problems.

In this subsection we summarize the work by Parker [Parker 1980] on Huff-
man algorithms and the tree construction problems which are optimally solved by
them. Huffman algorithm can be regarded as a greedy algorithm for tree construction
problems. An example from this class is the problem "optimal merge patterns” which
requires a set files to be merged in a pairwise manner so that the total merge cost will
be minimized. The cost of the resulting merged tree is the weighted average path
length. Huffman algorithm builds a tree with optimal cost by merging at each step the
two files with the smallest weights. The weight of a merged file is the sum of
weights of its components files. Another, less common variation of Huffman algo-
rithm is to construct a tree with minimum height. In this case the Huffman algorithm
suggests to combine elements with minimal weights and the weight of a merged node

is the maximum weight of its sons.

The problems considered here were called by Parker Binary Tree Construc-
tion problems. Formally, in a problem from this class one is given a set of n+1
leaves having corresponding nonnegative weights {w;ws,...,w;,...,w,}. Construc-
tion of a full binary tree on these leaves is effected by n merges of pairs of "avail-
able” nodes. Each node in the pair is marked unavailable after a merge and their
father (the result of the merge) is marked available, having as his weight some func-

tion F of the wéights of its sons.

The set of weights for every problem instance are taken from a weight space
U, that is an interval from the non-negative reals, and the weight combination func-
tion F:U —=U? is any symmetric function. F is used to produce the weight of internal

nodes generated by a merge operation. A tree cost function, G : UM =R, is defined
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for all trees having n internal nodes, to be any symmetric mapping from U” inio the
real numbers. For such a tree, T, the cost of T will be

G (W (T)) =G (W I(T)9W2(T)s---vwn (T))-
where W;(T') is the i* smallest internal node weight in tree T

Huffman algorithm for binary tree construction can be stated as follows:
given a weight combination function F, merge at each step the two available nodes of
smallest weight until only one node is available. For example, if F(x,y)=x+y and
G = sum then the cost function is the weighted path length of T. If

F(x,y)=max {x,y} + ¢ and G = max then the cost of any tree T is fga;(wj-l-c 1)
J

where /; is the path length from the leaf w; to the root of the tree 7. This is the tree

height measure.

The question is for which other problems will the Huffman algorithm produce
an optimal tree and under exactly which cost. Parker identifies a class of weight com-
bination functions which all produce optimal trees with the Huffman algorithm,
under corresponding classes of tree cost functions. The following definitions are
required:

Definition: A function F is quasilinear if
Fx.y) = ¢7'(M(x) + A90)
where A is a nonzero constant, and ¢ : U —» R is invertible.

Definition: Given two weight sequences a ={a;<4;%,..2,} and b =

{(b1€bsS,... by} wewriteashif
k k
Zal-SZb,-
i=m]l i=l

for every k between 1 and n.
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The three main results of this work will be described next.

Results:

1. The root weight in the tree generated by the Huffman algorithm is minimal
over all the root weights of trees generated by other procedures, if and only if,
the weight combination function F is quasilinear and for which A21 and the ¢

function is unbounded.

This is an important property since it guarantees a minimal root
weight for the Huffman tree (the tree that is generated by the Huffman algo-
rithm). Clearly, if the cost of the tree is determined by its root weight then
the resulting Huffman tree is optimal.

2 The second result is an extension of the first one. Here the comparison among
different trees is not only via the weight of the root of the trees but also by
looking at all the internal nodes’ weights of the trees. The result is given by

the following theorem:
Theorem (theorem 5 in [Parker 1980] )

Let F(x,y) = ¢”'(Ad(x) + A9(»)) be the weight combination function
of the tree construction where ¢ is convex, positive, and strictly monotone
and A 21. If W(S) and W (T') are the weight sequences of the internal nodes
of the trees § and T, constructed respectively by the Huffman algorithm and

by any other way, then

W(S)swW(T)
(The same results hold if ¢ is concave, negative,and strictly monotone).

3. The third result identifies the cost functions which capture the order
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relationship between different weight vectors. That is, whenever the relation-
ship between two trees S and T satisfies W (S) € W(T), the cost function, G,
satisfies G (W (8)) £ G(W(T')). The set of cost function which have this pro-
perty are the Schur concave functions.

Definition: A function G : U —R is Schur concave if

4G

dx;

dG
(x; ‘Ij)(ji;l_‘ )<0
Forallx; x; € u,ije{l2..n}
Theorem:
G(a) € G(b) for all weight sequences a <€ b if and only if G is Schur cou-

cave.

We can therefore conclude that if F is quasilinear and satisfies the properties
mentioned in result 2, and if G is Schur concave , then the Huffman algorithm pro-

duces a tree with minimal cost.
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4.4 POPERTIES OF GREEDILY-OPTIMIZED ORDERING PROBLEMS

In this section we attempt to characterize cost functions that permit optimal solution
of ordering problems by a greedy algorithm. For obvious reasons, we are particu-
larly interested in properties whose verification does not depend on the knowledge of
the optimal solution, but rather can be carried out by simple manipulation of the

problem representation.

Instead of discussing a single ordering problem, we focus on an entire class,
or family, of problems that are very similar in character. This notion is formalized
by that of a Problem Scheme P defined as a triplet (E,PAR,C) where:

1. E is a set of elements.

2. PAR is a set of parameters, which are real valued functions defined over the
elements of E. Parameters could be single-argument functions, in which case
they are denoted by a(i), B(i), etc., where i indexes the elements in E. They
could also be multiple-argument functions, defined over all sequences of the
same number of elements and denoted by Y(i .j), 8(i,j k), etc.

3. C is a real valued cost function. It associates a cost with any sequence of
subsets of elements in E, and is dependent only on the the parameters of the
elements and on their order. The cost function is written as C = C(G), where
o denotes a sequence of elements in £, and o; is the element in position i in

o.

An instance of a problem scheme P, denoted by P; is specified by a subsct of
clements E; of E along with the values of their parameters. Let n be the cardinality
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of E;. The problem associated with every instance P; of P is to find a sequencing
(€1, " * * se,) Of all the elements of E; such that C(e,.--1€,) is maximal (or minimal)

over all permutations of the elements.

For example, the problem of sequencing jobs on a single processor so as to
minimize a weighted average of the flow times (problem 14 in Section 4.3) can be
formulated in terms of a scheme (E ,PAR ,C) where E is a sct of jobs, PAR contain
two parameters, p and u, that associate with each job a processing time and an
importance weight, respectively, and C is a cost function defined on any sequence ©
of n elements as follows:

no i
Ce)= X u ij 1)
i=l j=l

where u; and p; are the parameters of the i* element in the sequence C.

A greedy rule for P is a sequence of functions f ={f;}

where ©; are all sequences of j elements. A greedy procedure for solving any
instance P; of P using f = {f;} is defined as follows (maximization is assumed):

Greedy.(P,f):

1. choose e € E such that f ;(¢)=max {f |(¢)) | ¢’€E}

2. after choosing e 1,3, . . - , ;1 choose yeE —{e;, . .., ;] such that

filen - &i_py)=max {fiey, ... e1x) | x€E~{ey, ....60)]

Definition: P is greedily optimized by f if for every problem instance P; having n
clements, the sequence (¢, . . . , &,) generated by Greedy(P J) has a2 maximum cost

over all permutations of the clements.
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The above definition of a greedy rule may seem more general then the reader
expect. It provides a frame model even though most of the discussion is restricted to

the special and familiar cases as described next.

In the balance of this section we restrict our attention to problems with
single-argument parameters and (uniless specified otherwise) to greedy rules that
satisfy

filen....e)=file)=f(e). (3)

In that case the greedy rule is defined over the set of parameters associated with each
element, i.c.,

e =f (B, - 4)

We will refer to such rules as ranking functions. Possible ranking functions for the

sequencing problem discussed above are

S ;) =y (5)
and
[ (u.p;) =piu; . (6)

A ranking function induces a weak order among the elements of E and the greedy

procedure simply chooses elements in a nonincreasing order of f.

Definition: A ranking function is optimizing for some problem scheme P, if for
every problem instance, P, it generates an optimal order. A problem scheme is said
to be greedily optimized by a ranking function if it permits an optimizing ranking
function. (In the sequel, we use the term greedily optimized to mean greedily
optimized by a ranking function.)
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Our original question is reduced, then, to finding verifiable properties of cost
functions that make a problem scheme greedily optimized and to the discovery of
optimizing ranking functions. We start by giving a necessary and sufficient condition
for a problem scheme to be greedily optimized. The condition is stated for problems
having a one-to-one cost function (i.e., no two sequences have the same cost). It
should be slightly modified to hold for -any cost function but this involves some
details that we choose to avoid in this specific theorem.

Theorem 1:
A necessary and sufficient condition for a problem scheme P, having a one-to-one
cost function, to be greedily optimized is that for any two elements @ and b (charac-
terized by their assigned parameters) and for all problem instances of P in which
they both participate, either a precedes b in all optimal sequences or b precedes g in
all optimal sequences.
Proof:
Since the cost function is one to one, an optimizing ranking function should also be
one to one. The existence of a one-to-one ranking function implies only one internal
order between any two elements dictated by the magnitude of f(a) and f(b). Therefore
if the condition is not satisfied by a one-to-one cost function, such ordering function
cannot exist. If, on the other hand, the condition is satisfied then the relative posi-
tions of any pair of elements in the optimal sequences defines an order relationship
among the elements. There exists (accept in some pathological cases) a real function
f, defined over all the elements which satisfy f (a Yef (b) iff a precedes b in the
order (see [Krantz 1971] ). The function f is the ranking function that yiclds an
optimal solution.

c
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Consider, for example, a problem scheme defined by a set of four elements
{1,2,3,4} and some cost function. Suppose that the optimal sequence for the instance
defined by the set (1,2,3) is (3,2,1), and that the optimal sequence for the instance
defined by the set {1,2,4} is (4,1,2). Then, this schema does not have any optimizing
ranking function because elements 1 and 2 do not have the same ordering in the two

optimal sequences.

The deficiency with the condition stated in theorem 1 is that it is usually not
verifiable from the probiem’s representation (unless the problem is represented with
its optimal solutions, an unlikely situation). We will therefore have to be satisfied
with stronger requirements that constitute sufficient but not necessary conditions for
greedily optimized problems. One way to do this is to extend the properties required
by the theorem on the optimal sequences to all possible sequences.

Definition: Let P={(E ,PAR,C) and let f be a ranking function (not necessarily one-
to-one) defined over the set of parameters of each element in £. A ranking function
f is called uniform relative to P, if for every problem instance and for every

sequence © of ¢lements in that problem instance,

C(0) 2C() if £ (;) > £ (Ciu1) (M
and '

C(o)=C(a)if f(0;)=f (G;41)

for all i, where o' is the sequence resulting from the e;tchange of the i** and i+1*

elements in ©.

Theorem 2:

A uniform ranking function f for a problem scheme P is optimizing.
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Proof:
We have to show that for every problem instance an ordering generated by the greedy
procedure using f is maximal. Let P; be any problem instance and ¢* be an optimal
sequence. We show that if o violates the ordering dictated by f then it couid be
transformed into such a sequence with no change in the cost. Let i be the first loca-
tion in o that violates the ordering induced by f, ie., f(of) < f (2. By
exchanging the elements in positions i and i+1 the cost of the sequence cannot
decrease due to the property of f being uniform ranking function, and it cannot
increase due to the assumption that ©* is an optimal sequence. If now the element
o7, has an f value which is larger then that of the element G2, then an exchange
between them will also not change the value of the cost function. The element G,
can propagate in this fashion up in the sequence without changing the cost until it
reaches its appropriate position according to f . At this point all the first i+1 elements
obey the order dictated by f. The next violation of the ordering which appears there-
fore in a position higher then i will be then located, and the process will continue in
the same way. Since the locations of new violations increases, the process is
guaranteed to terminate. The result will be an optimal sequence obeying the order
dictated by f .
O
A uniform ranking function indicates how to produce an improvement in the
value of the cost function from any non-optimal sequence. Also, if a unifc-m rank-

ing function exists, then it is unique up to a monotonic increasing transformation.

What properties of the cost function guarantee the existence of a uniformly
optimizing ranking function? This is the question we address next. Let Zg be the

set of all the sequences, in all the instances of problem scheme P, for which element
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a immediately precedes clement b.

Definition: A cost function C is said to be pairwise preferentially independent
(p.w.p.i.} if either

Co)2C(c?) YVoeZ,
with strict inequality for at least one sequence, or

C(o)sC(c") VoeZ,, (8)
with strict inequality for at least one sequence, or

Ce)=C(c?) VoeZl,,

where o is the sequence resulting by the exchange of any two elements a and & in
o. In the first two cases we say that C prefers @ on b (resp. b on a), and denote it
by a>,..b (resp. b>,,, a). In the third case we say that C is indifferent between a

and b and use the notationa~,,, b.
definition: A pairwise preferentially independent cost function C is said to be acy-
clic if the refation >,,, is transitive, i.e.,
if a 2,,b and b 2,,, ¢ then a 2,,¢. (9}
This last property (i.e., that the relation *‘C prefers a on b’’ satisfies transi-
tivity) is required to assure a weak order [Krantz 1971] and does not follow automat-
ically from p.w.p.i. The following example shows that a cost function can be pair-
wise preferentially independent but not acyclic. Consider a problem instance defined

by a set of three clements {1,2,3} with a cost function C that creates the following

complete order among all different sequences:
(321)>(132)>(213)>(312)>(123)>(231) .

For this instance C is pairwise preferentially independent where 3 is preferred to 2
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and 2 is preferred to 1. However, 1 is prefemred to 3 thus violating transitivity.

Theorem 3:

A necessary and sufficient condition for a problem scheme P = (£ LAR ,C) to have a
uniform ranking function is that C is p.w.p.i. and acyclic. Obviously, in that case P
is greedily optimized.

Proof:

It is obvious that the existence of a uniform ranking function for a problem scheme P
implies that the cost function is p.w.p.i. and acyclic. We will therefore show only the
sufficiency part. Since C is p.w.p.i. and acyclic it induces 2 weak order on all the
elements of E, that is, on all the sets of values assigned to parameters. Therefore,
there exists [Krantz 1971], a real function f on the elements of E that reflects this
ordering, i.e.,

a>‘,,,,_b iff f(a)> f(d) (10)
and

G=p b iff f@)=F(b). (1

Obviously, f is a uniformly optimizing ranking function, and by theorem 2P is
greedily optimized.

a

The following theorem suggests a possible process for identifying a p-w.p.i.

cost function and for discovering its optimizing ranking function.

Theorem 4:
Let P be a problem scheme P=(E ,PAR,C) and G any sequence of any subset of the

elements in E. If the cost function C satisfies
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C (o)~ C(d) =K (d(5;) ~d (6;,1)) (12)

for all i, where X is a nonnegative function defined on & and d is a function defined
on the parameters associated with each element, then d is an optimizing ranking
function.
Proof:
It is easily seen that 4, satisfying (12), is a uniform ranking function and therefore,
by Theorem 2, optimizing.
a

Theorem 4 suggests the following process for discovering a uniform ranking
function: perform symbolic manipulation on the cost function and try to express the
difference between the cost of an arbitrary sequence and that of the sequence which
results from exchanging the i and i+1* elements. If the expression satisfies condi-

tion (12) then an optimizing ranking function is given by d in that expression.

For an example we look again at the single-processor scheduling problem
whose cost function is given in (1). Let ¢ be a sequence resulting from the

exchange of the i and i+1** clements. We get that

C(0) = C(0°) = (Wj41Pi = UiPis1) = Minil; (% - Zwi ). (13)
1 1+

In this case the ranking function suggested from the above representation is

f(pi )= i—' Most of the ordering problems in the list of Section 4.3 have a rank-

1
ing function satisfying condition (8) (e.g., problems 4,8,9,10,11,12,13,14,15) and
many of their cost functions satisfy also condition (12). However, the symbolic
manipulation required to demonstrate condition (12) may not be straight forward

(e.g. problem 15).
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The gap between the sufficient condition for a problem scheme to be greedily
optimized, requiring that the cost function be p.w.p.i., and the necessary condition as
given in theorem 1, is not as wide as it may seem. For instance, in problem instances
of two elements the two conditions coincide, because there are only two possible
sequences, one of which is maximal. This observation leads to the following impor-
tant and uniform way for discovering optimizing ranking functions for any greedily

optimized problem not necessarily with a p.w.p.i. cost function.

Theorem 5:
If P is any greedily optimized problem scheme then 2 ranking function f is optimiz-
ing if and only if it agrees with the ordering dictated by the cost function on pairs of
eclements, that is, for every two elements a and b, if C(a,b)> C(b.,a) then
f(a)> fb).
Proof:
If a problem scheme has an optimizing ranking function then it also has to optimaly
solve instances of two elements only. To do that the ranking function has to satisfy
the above condition, which may induce a complete order on the elements of E. For
greedily optimized problems this order should yield an optimal solution for ail
instances.
O

Notice that the arguments for moﬁng theorem § are possible only because we
modeled a problem scheme as encompassing all problem instances having different
sizes. If we had modeled a problem scheme to be dependent on the size of the prob-
lem, n, then the optimizing ranking function could be dependent on n and thus
invalidating the argument presented in the proof. All the greedily optimized prob-
lems we encountered (specifically, all those in Section 4.3) do comply with our
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model of problem scheme, and therefore, we believe we didn’t exclude any interest-

ing problems by such a restriction on the model.

Theorem 5 also provides a general way of finding an optimal solution for any
instance of a greedily optimized problem scheme including cases where the cost
function is not provided in a symbolic form. One should simply sort the elements in
the order dictated by applying the cost function to pairs of elements. When a prob-
lem is not known a’ priori to be greedily optimized, this method could be used to
either generate candidate ranking functions or to reject the hypothesis that the pr;)b-
lem is greedily optimized (if the pair-wise preference turn out intransitive). When
the objective is to find an explicit optimizing ranking function f then, by theorem 5,
candidate functions must satisfy C (a,b)>C(b,a)f (a)>f (b) for any two elements a
and b of E. It should be noted that this test only gives the ranking function once we
know that it is greedily optimized. The general criteria (12) also provides a guarantee
that the problem is greedily optimized. Note however that the guarantee can be asser-
tained by considering only adjacent 4xchanges as opposed to the exchange of any

pair of elements.

The above observations imply that cost functions defined on pairs of elements
can be used as building blocks for generating cost functions that are greedily optim-
ized. A cost function C,, defined on pairs of elements with & parameters each, is said

to be transitive if for every x,y,z € R*
Colx,y)2Cayx)and C9(y,2) 2Ca(z,y) Caolx,2)2C3(z x). (14)

Theorem 6:
If a cost function C, defined on pairs is transitive, then a problem scheme

P=(E ,PAR,C), where C is given by:
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Cle,es, ....8)= iicg(e,.e_,-) (i5)

Jj=lk=l
is greedily optimized.
Proof:
The cost function defined in (15) satisfies
C(0) - C(0') = Cale; ein) — Caleisnei) (16)

and since C,(x,y) is transitive, then clearly C is p.w.p.i. and acyclic and therefore it
is greedily optimized.

|

Theorem $§ points to a way by which the theory of greedily optimized prob-

lems, discussed so far, can be extended to encompass greedy rules which are not res-

tricted to be single-argument ranking functions. For instance, suppose we consider

greedy rules of the form:

file)=f(e)and (17)

Vi>1l filey....e)=fileie)=1(eipe).
Such rules will be called level-2 greedy rules. In this case the function for deciding
the next element in the sequence may depend on the last element. For instance, if ti'ac

problem scheme has chosen.one parameter, a positive weight, by which elements are

denoted, then the following is a possible level-2 greedy rule:

f&x)=x
y ifxz21
fy)= -y ifx<l (18)

Given any set of elements this greedy rule generates sequences that are a concatena-
tion of two subsequences; a nonincreasing sequence of all elements greater than or

equal to 1 followed by a nondecreasing sequence of all elements smaller than 1. It
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will optimize any cost function that ranks such sequences as having maximum cost.

The following theorem is a natural extension of theorem 5 to level-2 greedy rules.

Theorem 7:
Let P=(E ,PAR,C) be a problem scheme. If P is greedily optimized by a level-2
greedy rule then this rule has to agree with the cost on pairs and triplets of clements,

that is,

1. For every two elements a and b, C(a,b) > C(b,a) implies f(a) > f(b),

and

2. for every three elements a,b,andc, such that f(a)> f(b) and
f@)>f(c)ifClab,c)>Cla,c,h)thenf(a,b)>f(ac).
Proof:
The optimizing level-2 greedy rule must solve optimally all problems instances of 2
and 3 elements, implying the first and the second condition, respectively.
g
However, unlike the ranking function in a levei-1 rule for problem scheme P,
in this case the cost on all pairs and triplets does not determine completely the
optimal ordering of the elements (i.e., the set of functions f (ey,e3)). The argument
saying that problem instances of three elements should be solved optimally by a
level-2 rule implies something only on the optimal sequence but not on every 3-
element sequence. For instance, if the optimal sequence is (a,b,c) the relationship
between f(b,a)and f (c,a) is not determined by theorem 7 since b or ¢ do not stand
in a first position of the optimal sequence. This situation do not occur in two-element
problem instances where there are only two possible sequences one of which has to

be optimal. For example the level-2 greedy rule given in (18) satisfies the
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requirements of theorem 7 for any cost function which, for pairs and triplets, is given

by
Cx,y)=x and C(x,y.z)=xy+z, (19)

respectively. However, (18) is not necessarily an optimizing greedy rule for cost
functions that prescribe more elaborate costs to problem instances of larger size. For
instance if we define the scheme cost function to be:

n=-1
Clxy .- Xn1Fn) =X +%n (20)
im]

then this function is not greedily optimized by the above level-2 rule. For example, if
a 4-element problem instance {10,0.5, 0.75, 0.25} is considered, rule (18) will gen-
erate the sequence (10,0.75,0.25, 0.5) while the optimal sequence is
(0.75.0.5,0.25,10). A more promising rule will be:

i-1 0

Ox; >

: h J

NP L 21

f(.'l:l,...,x') -x; i=1 ( )
J_I;lej<0

This is a greedy rule which is not hrmted to a specific level. It may provide an
optimal solution to a larger set of problem instances but not to all of them. We can
conclude therefore that this problem is not greedily optimized even in the broader
sense of greedy rule as defined in (2).

The observations made with respect to theorems 5 and 7 can be generalized,
in a natural way, to greedy rules of any level. For example, it can be shown that any
level-i greedy rule that optimizes a problem scheme P has to comply with the
behavior of the cost function on all instances of the problem consisting of 2, 3,..., i

clements. However, most greedily optimized problems encountered in the literature,
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are solved by level-1 greedy rules, i.e., ranking functions. We, therefore, conclude
our brief venture into higher-level greedy rules and retum to focus on ranking func-

tions.
4.4.2 Dominant greedy vs. Regular greedy

A popular choice of a greedy rule is the cost function itself, i.e.,
file1ynne)) = Cley,nnney) (22)

Meaning that any point in time a person chooses that element which if it were the
last, would yield best cost (Le. Mayopic policy). This greedy rule is optimal for
some problem scheme P if any instance P; of P have the following property: any
subsequence (€ |,.....,¢;) of E; that has a maximal cost over all subsets of size j of E;
can be extended to a sequence of length j+1 that has a maximal cost over all subsets
of size j+1 of E;. Formally,

Ve, ...,e;)optimalover®; 3 e;,,€ E;—fe,,...,e)} (23)

s.t. (e [T ,e,-,e,-ﬂ) is opumal on °i+l .

When this condition is satisfied, the greedy rule (19) generates an optimal sequence,
o satisfying the following property: any subsequence (¢,....,¢;) of G has a maximal
cost over all subsets of size j of E;. An optimal sequence that has this property is
called a dominant sequence. A greedy rule that generates dominant sequences for
every problem instance is said to be dominant (we will also say that in this case the
cost function is dominant), It is clear then, that a problem scheme that satisfies con-
dition (23) is dominant and its dominant sequences can be obtained using the greedy
rule (22).

168



Not all greedy rules which are optimal are dominant. For example, the cost

function

C©)=Tu¥p; 24)
i=l j=l

which, as we already know, is greedily optimized by the ranking function

fup)= %, is not dominant. To see this, consider the three-element problem
instance, in which each element i is defined by its parameters (i;, p;):

e1=(1,4), £2=(05,3) e3=(5,10) (25)

The values assigned by the ranking function to the elements are: f(e;) = 4,

f(ey) = 6, f(es) = 2, so that the optimal sequence is: (eye),e3). Evaluating

sequences of two clements we sec that

C (e 2€ ]) =8.5 (26)
while |

C(eseq) = 105 Q7

Obviously, the length-2 subsequence of the optimal sequence is not maximal, and
thus the ranking function is not dominant. On the other hand, the following cost

function

C@=% 3 (28)
imlj=]

for which the ranking function f (p) = p is optimizing, is dominant.

In what follows we identify necessary and sufficient conditions for a cost
function to be dominantly optimized and discuss the relationships between these con-

ditions and those obtained for regular greedily optimized problems.
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The sufficient condition (22) may or may not be verifiable from the cost func-
tion if it is given symbolically. This property looks suitable for a proof by induction.
Nevertheless, we are interested in identifying other, stronger sufficient conditions
which may be easier to verify. Again, we focus on level-1 greedy rules, namely, on

the question whether a cost function has a dominant ranking function.

Since a dominant ranking function is optimizing, it is determined by the order
imposed by the cost function on pairs of elements and should satisfy the condition of
theorem 5, and since the cost function is also defined on sequences of one element,

we must have f(e) = C(e) and:
ifC(ab)>Cb,a)thenC(a)>C(b). 29

To test this property, one should check the behavior of C (e) as a ranking function: if
inconsistency is found in the order induced by C(e) and the order induced by the
cost on pairs (given that both orders are well defined) then the hypothesis that the
problem has a dominant optimizing ranking function may be rejected. (It still may

have a non-dominant optimizing ranking function as in (25).)

In order to provide some necessary conditions for a dominant cost function
we need the following definitions. The first definition is a weaker version of the
P-w.p.i. property in which the order under exchange of adjacent elements should hold

only when those elements are at the tail of the sequence.

Definition: A cost function is tail pairwise preferentially independent (t.p.w.p.i.)
if either

‘ C(y2C(c”) V¥ ce I, (30)
with strict inequality for at least one sequence, or
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C(e)SC(c®) V o€ X,
with strict inequality for at least one sequence, Or

C@)=C(c®) V 6€ I

In the first two cases we say that C prefers a on b (resp. b on a) tp.w, and denote
it by a>pp b (resp. b>(p4.a). In the third case we say that C is indifferent
between a and b t.p.w and use the notation a —pw.b. If the relation is acyclic then it

induces a weak order on the elements of E.

Definition: A scheme cost function is order preserving if

Vi ifCley,... ,e,-)ZC(cI', ...,€) and C(¢i+1)2C(¢i+l') (31)

then C(¢ {5+ ¢ ,¢,-,e;.,,1) P C(¢ ]’, e ,¢,-’,e,-+1') .

Let £}, denote all sequences for which clement a immediately precedes b when b is

the last element.

Theorem 9:

Let C be a scheme cost function in P = (E ,PAR ,C) which is both order preserving
and tp.w.p.i. If C(a)2C(b) implies that C(a,b)2C(b,a), then C is greedily
optimized by a dominant ranking function.

Proof:

We prove by induction that the ranking function f(e) = C (e) generates dominant
optimal solutions. The induction is on the length, k, of the subsequence under con-
sideration. Let ¢ =(e,€4, - - - , €,) be the sequence selected by the greedy algorithm
with the ranking function f (e) = C(e).

1. k=1. The first element ¢, is chosen by the criterion that C(e)) is maximal

over all the elements in E . The dominance property obviously holds.
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k =2. Given e, s.t. C(e) is maximal, the algorithm chooses €3 s.t. Cleq)is
maximal over all the clements in E—¢,. Let (x,y) be any other possible pair
ink.

a. if y #elthenC(e1)2C(x)andC(¢2)2C(y)andthercfomfromthe

order preserveness property of C wegetCle,e)2C(x,y)

b. if y =e¢, then C(e,es) 2 C(eze;) because of the tp.w.p.i. order
which unifies with the order imposed by C() Also
Clege ;2 Clx,e)=C(x,y) becavse of order preserveness. From
the above two inequalities we get C(ey,e3) 2 C(x,y).

Assume that for all subsequences of length t Sk, (ey,...,&) have max-
imum cost over ®,. We will prove that this holds for & = (e, . . ., €.€p+1)-
We have to show that V ¢’, & = (¢4, ...,€.41) C(0) 2 C(c). From the
induction hypothesis we know that C(ey, ..., &) 2C(ey, . ...

a. Suppose that ;,," € {e, ...,&}. In this case C(ep,y) 2 C (€ k)
and from order preserveness it follows that C(ey, ..., €8 41) 2

C(e'l, coe ,C’t,e’k+1).

b. Assume ey, € {e),...,¢). Inthatcase e’y = ¢; for 1Sjo<k.
We first show that:
Co)=Cey,....)2C(e1 .., € 1,801 - - - » Cks1rEj - 32)
Then we show that

C(¢ TR ,ejd_l,ejd,l. PR ’¢t+l‘l¢jo)2 C(e'l, - ,e't,ej.) SC(d) . (33)
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From (32) and (33) it follows that
C@2C(0). (34)
Equation (32) can be shown by propagating the element ¢; to the
right side of the sequence ¢ while always keeping the cost nonincreas-
ing:
Cley,-.. 1€ Cigrl) 2 Cley, ... ’ejo""l'ejo) (35)

since C is tp.w.p.i. From (35) and the order preserveness of C it fol-

lows that:
C(el, [P ,ejo,ejﬂl,eju,,z) 2 C(Cl, PP ,Gj",l,ejo,ejd_z) . (36)

We can continue in the same manner to propagate ¢; to the right
without increasing the cost, thus proving equation (32).
Equation (33) is true since it follows, from the induction hypothesis

on the set of elements E - {e;, }, that:
C(el. cae ,ejrl,ej‘,,l,e“l) 2 C(G'l, ‘s .C’t) ’ (37)
and, together with the order preserveness property, this implies:

Cley, -1 8jr1jpolhs1s€j) - 2Cle’y, ... e'k,e;) (38)

0

It is easy to show that a cost function which is t.p.w.p.i. and order preserving

is p.w.p.i. Therefore, a cost function satisfying the conditions of theorem 9 is
p.w.p.i. and has a dominant optimizing ranking function. For example, the function

n
PPy Pi (39

i=1

is both p.w.p.i. and order preserving. The ranking function f(p)=p results in 2
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dominant optimal solution. For C(¢) to be an optimizing ranking function, it is
important to verify that the order induced by C(e) agrees with that induced by the

p.w.p.i. property (i.e. the last condition of theorem 9). For instance, the cost function
< i
2P (40)
—

is both p.w.p.i. and order preserving. However, the ordering implied by C(p) results
in a decreasing sequence while the (optimal) ordering implied by exchanging adja-
cent elements is nondecreasing in p. Indeed, this cost function is greedily optimized

with f (g ) = -p, but is not domirant.

A special class of dominant cost functions defined on elements with a single
parameter, is presented next. The cost is defined recursively and each element will be
identified by the value of its parameter, also called a weight. Given a weight combi-
natiog function F : RxR R, C is defined as follows:

1. Cixy)=F(xy)
2. C(xy,z)=F(F(xy)2)
3. Given that C is defined for i elements, C (€ 1,.+€;,€i41) = F (C (€ 1,.4€1):8i41)-

Theorem 10:

Let F be a weight combination function which is monotonic in both arguments, ie.,

F(xy)zF(x,z) y2z, and
Fyx)2F(zx) y2z,

and path-length monotone, i.e.,
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FF(xy)h)2F(F(xaz)y) y2z.

If C is a cost function defined recursively by F, and assuming that on single eiement
C(e)=e, then C is dominantly optimized using the ranking function f (x)=x. We
assume that the path-length monotone property holds alsc when x = .

Proof:

We will show that C is order preserving and t.p.w.p.i, and that both orderings com-
ply with the ordering dictated by the weights. The monotonicity of F w.r.t. both
arguments implies that C is order preserving. From the path-length monotonicity of

F it follows that if e; 2 ¢;, then

Cley,....e ;. )=FF(C(ey,....¢;1)8 802 41

F(F(C(G Lo v+ ,e,-_l),e,-.,_l),e,-) = C(C 10+ 0+ ,e,-_l,e,-+1,¢;) ’

which verifies the required property. Since C is both order preserving and t.p.w.p.i.,
it is dominantly greedily optimized by the ranking function f (x) = x.

O

As an example, the cost function generated recursively by the weight combi-

nation function F(x,y)=x% is dominantly optimized by the ranking function

f(x)=x. The function F is monotone in both arguments and is path-length mono-

tone. The cost function generated this way is given explicitly by:

Clepeq....e)=e ¥ e 2. e . (42)

Up to now all the “‘nice’’ greedily optimized cost function properties we

described required the cost function to be p.w.p.i. (or t.p.w.p.i.). Since this property

is not a necessary condition it is natural to look for cost functions that are greedily

optimized but not p.w.p.i. We show that the p.w.p.i. property may indced be

replaced by another strong property of cost functions.
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Definition: A cost function is strong order preserving if Vi and Vx,y € E
Cley,...,e)>Cle’y,....e7) Cley,-.. €6 X)> Ce'y,....e"1y) (43)

For example, A lexicographical order among sequence of integers is strong
order preserving. The cost function
n -
Cley,.--.e)=Y le—¢il 100 (44)
i=]
for e; € {0,10),is strong order preserving but not p.w.p.i.
Theorem 11:

If a cost function is strong order preserving then it is dominantly optimized.

proof:
Clearly, the ranking function f;(ey, .. .,¢)=Cley, ..., ) is dominant when C is
strong order preserving.
O
The notions of a dominant cost function and dominant greedy rules are remin-
iscent of the conditions for greedy optimality of selection problems. This suggests
the possibility of combining the selection and sequence problems, for example,
finding a maximum cost ordered subset of elements that satisfy given constraings. In
the next theorem we enlarge the class of cost functions defined on the independent
sets of a matroid to include also order dependent cost functions that can be greedily
solved.

Theorem 12:
Let (E ,®) be a matroid and C be a scheme cost function defined on sequences of ele-
ments in £. If the scheme cost function is order-preserving and tail-pairwise pre-

ferentially independent, then lexicographically maximum independent set (w.r.t. the
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costs of each element as weights) will give a set and an ordering with maximum cost.
Proof:
Let e =(e,e5, ...,¢) be a lexicographically maximum independent set of the
matroid, and let ¢’ be any other independent set arranged in some order. Since the
cost function is also p.w.p.i. the cost will increase if we reorder the elements in e’
nonincreasingly. From matroid theory [Lawler 1976] we know that Vi e; 2 ¢, and
the order preserveness property of the cost function guarantees that C(e) 2 C(e”).
.

For example, consider a set of n jobs that have to be processed on two
machines. On the first machine they have to meet their deadlines and they all have 2
unit processing time. Those jobs that meet their deadlines on the first machine will
be processed in some sequence on the second machine. Each job is associated on the
second machine with a deadline, d°, a processing time p” and an importance weight
u’. Consider the following task: find a set of jobs that can be finished by their dead-
line on the first machine and sequence them on the second machine so as to maxim-
ize a weighted average of the processing times. The cost function in this case is
given in (1). The set of jobs that can all be finished by their deadlines on the first
machine, constitutes the independent sets of a matroid [Lawler 1976]. However, the
cost function is not dominant and obviously not order preserving and, indeed, it can-
not be greedily optimized over the set of jobs that can be finished by their deadlines
on the first machine (i.e., theorem 12 cannot be used). Now consider the same prob-
lem except that the objective is to maximize a simple average of the processing
times. The cost function in this case is:

3 3r;

i=lj=]
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This is a dominant cost function, that is also order preserving and thus can be
optimally solved using the matroid greedy algorithm as follows: Choose the ¢lements
in a decreasing order of their p’ as long as they can be ordered to meet their dead-

lines on the first machine.

We conclude this section by presenting two examples of greedily optimized
cost functions and verifying their properties. although ail the ordering problems in

section 4.3. can be shown to be p.w.p.i. we choose to focus on problems 12 and 15.

Problem 12 requires to order a set of jobs so that the maximum job lateness,
max{F; - d;}, (45)

is minimized. Jackson [Jackson 1955] had shown that the problem is p.w.p.i. and
suggested the due-dates as the ranking function. Let ¢y =(p,d)) and e = (p2.da)
be a pair of jobs with their processing times and due-dates. Using the process sug-
gested by theorem 7, of identifying ranking functions based on costs of pairs, it can
be shown that

Clepey) > Cleze)) = dy>dj, (46)
that is,

max{p, —d,,pi+py—dz} > max{py~dy,p+p~d} > d,>d3. (47)
The cost of one element is

C(ey)=p,—d;. (48)
This cost does not provide the same ordering as the due-dates and, therefore, the cost

function is greedily optimized but not dominant.

178



Problem 15 deals with minimizing the maximum flow-time in a two-machine
flow-shop. It was shown [Conway 1967] that the maximum flow-time is minimized if

job j precedes job j+1 when
Looking only on two-job problems, it is easily verified that the ordering dictated by

(49) coincides with the order determined by costs on pairs. If (A ,B ) and (45,8 )

are two jobs then the cost function for the sequence (e 1,2,) is:

Cleyea)=A;+max{A,,B |} +B,. (50)
It can be shown that
A,+max(A,B ) +B5 < A,+max{A B4} +B, (51)
iff
min{A {,B 3} < min{A ;,B |} (52)

This criterion is the one known in the literature. From the transitivity property of the
order induced by (52) we know that there exist a ranking function f that induces an
individual order. After some manipulation such a ranking function can indeed be
formed. It can be shown that if:

min{A 1B o} < min{A 5,8 ;) (53)
then

sign(A,—-B,) sign(A,-B,)

mind;, By min@;,By) GY
Therefore the function
sign(A; - B;)
F(ALB) = “minA B (55)
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is a uniform ranking function for the problem. The cost for one element only is

A+ B, and it does not coincide with the ranking function (54). We can therefore

conclude that this cost function is not dominant.
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4.5 A GLOSSARY OF GREEDILY OPTIMIZED PROBLEMS

I Minimum (Maximum) Spanning Tree.
Given a graph G =(V ,E) where V is the set of vertices and E is the set of
edges, and a cost function defined on E, Find a spanning tree with minimum

cost.

Greedy strategy: seiect edges in nondecreasing order of their values as long

as they do not create a cycle.

2, Continuous Knapsack problem.
Given a set of items with associated size s; and value v;, find a maximum

value subset of items or fraction of iterns with a total size less or equal to B.

v.
Greedy strategy: Sclect the elements in nonincreasing order of the ratios s—'
i
3. Job sequencing with deadlines.
Given n jobs with deadline d; and profits p;, and each job takes one unit to
process. Find a maximum profit subset of jobs that can be completed by their
deadline.
Greedy strategy: Select the jobs in decreasing order of profit as long as they

can be completed by their deadline.

4, Optimal storage on tape.
Given a set of n programs {1,2,...,n}, such that program i has a length /;,
Find the sequence in which they should be placed on a tape such that the aver-

age retrieval time is minimized. That is , find a permutation which minimizes
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the measure:

n k
pIPI
k=zli=l
Where ; is the length of the i** program in the sclected permutation.

Greedy strategy: Select the programs in a nonincreasing order of their
length.

Storing programs on a limited amount of tape.

This problem is the same as problem 4 only that the amount of tape available
is limited to L, and the goal is to Select a maximum set of programs to be
stored on the tape.

Greedy strategy: Select the program in a nondecreasing order of their length.
(this is like a 0-1 knapsack with constants values.)

Optimal merge patterns:
Merge n files in pairwise manner so as the total merging cost will be minim-
ized. Each file has weight w;. If file j result in the merge of files { and k then

the cost of this merge is w; where
w; =Ww; + wy.

Greedy strategy: Merge the two files which have the lowest cost, then add
the resultant file to the list and repeat (Huffman procedure).

Single source shortest paths.
Given a weighted graph, determine the shortest path from a source to ail the

remaining vertices of the graph.
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Greedy strategy: Dijkstra algorithm.

Scheduling sequential search, [Simon 1975]

An unknown number of chests of spanish treasure have been buried on 2 ran-
dom basis at some of n sites, at a known depth of three feet. For each site
there is a known unconditional probability p;, i=1,2,...,n, that a chest was
buried there, and the cost of excavating site i is ¢;. Find a strategy ¢ (a per-
mutation of the integers from 1 to n) that minimize the average cost of the

search, The search terminates upon success.

Greedy strategy: select the sites according to increasing order of i—'
i

Another search problem. {Degroot 1970}

Suppose that an object is hidden in one of r locations and let p; be the prior

probability that the object is in location i. Here il’i = 1. Even though the

iml

correct location is searched, there may be a positive probability that the object

will be overlooked in this search. Let ar; be the probability that the object is

overlooked in location i, even though it is there. The cost of each search at

location i is c;. A procedure must be determined that will minimize the

expected total cost of the search procedure.

Greedy strategy: Choose the locations according to an increasing order of

the ratios -
€i

m; (k)
where &; (k) denote the probability under any procedure that the object will be

found for the first time during the ™ search of location i. %;(k) are given by:

183



10.

11

12.

n; (k) = pyoy T (1-ay).

Job sequencing with different processing times.
Given n jobs with processing times p; for job i find a sequencing that will
minimize the mean flow time. That is:
n k
PIPY
F o L=lizl
n
Where p; is the processing time of the i job in the selected strategy and

F; = 3p; is the flow time of the i* job.
j=i

Greedy strategy: The mean fiow time is minimized by sequencing the jobs in
order of nondecreasing processing time:

P1Sp2S " Sp,
Note that this problem is identical to problem #4.

The same as previous problem, only the measure of performance is:

if’i“
i=l

n

Fora>0.

Greedy strategy: sequence jobs in order of nondecreasing processing time:

P1Sp2S " SPy
Sequencing Jobs according to due-date. [Conway 1967] Given n jobs, each
associated with a deadline d; and a processing tim p;, Find an optimal
sequencing that minimized the maximum job lateness. Maximum‘ job lateness

is defined by:
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13.

14.

max{F; -d; }
Where F; is the flow time of job i.

Greedy strategy: (Jackson, 1955) The maximum job lateness is minimized

sequencing the jobs in order of nondecreasing due-dates.

Sequencing jobs according to slack-times di = p;
Given n jobs with deadlines {d;} and processing times {p;}, find an optimal
sequencing that maximize the minimum job lateness and the minimum job

tardiness. The minimum job lateness is defined by:
min{F; - d;}

Greedy strategy: The minimum job lateness is maximized by sequencing the

jobs in a nonincreasing order of slack time: d; — p;

Sequencing against weighted measure of performance. [Conway 1967]
The value u; is given to each job to describe its relative importance. Mean
weighted flow time is given:

_n

F,= EluiF ;

Greedy strategy : (Smith 1956). The total weighted flow time is minimized

by sequencing the jobs in a nondecreasing order of %— and is maximized by

i
the antithetical procedure
Many of the previous results can also be generalized to include u;

coefficients: Mean weighted waiting time and mean weighted lateness are

minimized sequencing by the ratio %
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15.

16.

Minimizing maximum Flow-time in a two-machine flow-shop. [Conway
1967]

Let (A;,B;) be a pair associated with each job. A; is the work to perform on
the first machine of the shop and B; is the work to be performed on the
second machine. For each i A; must be completed before b; can begin.

Given the 2n values: A ,A5,..., A, , B 1,B2,...,B,, Find the ordering of these
jobs on each of the two machines so that neither the precedence nor the occu-

pancy constraints are violated and so that the maximum of the F; is made as

small as possible. (F; = 3 pz)
k=]

Greedy strategy: (Johnson 1954) ; The max flow is minimized if for every j
job j precedes job j+1 if
min(A; B, )<min(A;,1,8;)-
Another possible representation for the greedy strategy: sequence according
to
_ sign(A; - B;)

i M-I.H(A,' ,B,')
When A; # B;, and otherwise, 0.

Coin changing.
Let A, = {a,a4,...,a, } be a finite set of distinct coin types (e.g @) = 50c, a,
= 25¢ etc.). Each of the g;’s is an integer and thata; > a3 >...>a,,. Each type

is available in unlimited quantity. Find a minimal st of coins that sum to C.

Greedy strategy: Use the coin types in an order a,, a3, a,. When the coin
type i is being considered as many coins as possible from this type will be

186



given,
This strategy is optimal when the input set A, = {¥"~1k*"2,_ % for some
k>1. When a, = 1 then there is always a solution that can be obtained by the

greedy strategy which is not always optimal.
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