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ABSTRACT OF THE DISSERTATION

Network Transparency in an Internetwork Environment
by
Alan Brian Sheltzer
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985
Professor Gerald Popek, Chair

Network transparency refers to the ability of a distributed system to
hide machine boundaries from users and programs; all resources are accessed
in the same manner, independent of their location. Network transparency
has been shown to be highly valuable and achievable in the local area net-
work environment. In contrast, access to remote resources in long haul net-
works traditionally is not transparent; substantially different access methods

are required and only a limited set of operations is available.

In this dissertation, we demonstrate that transparency across a system
of local area networks connected by long haul links is both highly desirable
and technically feasible. Three strategies are proposed to overcome the perfor-
mance limitations of the communications media: exploitation of locality,
semantics-based protocol design, and remote process execution. A distributed
name cache is shown to dramatically reduce the overhead of name manage-
ment for an internet operating system. New, higher semantic level message
primitives for the most frequent user commands are described and their
impact on reducing network traffic is demonstrated. A testbed based on the
Locus operating system, extended to operate across an internet ccnsisting of

LANs connected by long haul links, was implemented. Performance



measurements from the testbed were used to evaluate the effectiveness of the
three strategies and to demonstrate the viability of transparency in an inter-

net environment.
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CHAPTER 1

Introduction
1.1 Transparency in Distributed Systems

The focus of research in computer science is constantly shifting. As
the hardware for computing engines and communications evolve, the set of
opportunities and problems to be solved likewise evolves. Interest in the
efficient sharing of a single mainframe machine has been followed by interest
in the problems of communication among machines. Today, the abundance of
inexpensive computing power, coupled with well developed local area and long
hau! network technologies brings the issue of transparent, distributed com-

puting to the forefront of computer science research.

It is well known that computing environments are improved when com-
plex details of the underlying machine architecture are hidden from the user.
In a virtual memory system, for instance, the user has the illusion of address-
ing a large, contiguous memory space even though the corresponding real
memory locations may be scattered throughout primary or secondary memory.
In an operating system such as Unix, the filesystem conceals the physical pro-
perties of file storage devices and provides the user with the simple view of a

file as a sequence of randomly addressable bytes.

This principle of hiding unnecessary detail from the user can be

extended to a distributed system of computers. In the distributed environ-



ment, hiding machine boundaries from the user is known as network fran-
sparency. Network transparency provides opportunities for greater data shar-
ing, easier application software development and increased reliability when
compared to non-transparent distributed environments. In the ideal network
transparent environment, users and programs are presented with a unified,
location independent view of resources so they do not have to worry about

network protocols, network failures, or resource location.

1.2 A New Computing Environment: LANs Interconnected by Long

Haul Networks

Increasingly, one expects that computer environments will be composed
of workstations, locally connected by high speed local area networks (LANs),
with those networks linked by lower speed more conventional wide area or
"long haul” networks. Within a LAN, it is becoming clear that it is important
to make machine boundaries logically invisible both to users and applications
software. This local network transparency has been successfully demonstrated
and is in routine use in a number of systems, including Tandem’s NonStop

[Bar 81], Apollo’s Domain [Lea 82], and Locus [Pop 81}.

In contrast, computer systems connected by long distance communica-
tions networks have traditionally only provided a limited set of specialized
interfaces by which remote resources (files, programs, devices, services) are
accessed by the local user or program. Examples are the file transfer protocol
(FTP) of the Arpanet, site naming requirements of Decnet, or the specialized
interfaces of SNA. As single host sites within these networks are replaced by
clusters of local networks of workstations and other computers, users are

faced with transparent access to resources stored within a cluster but non-



transparent access to resources stored at all other sites. Furthermore, this
dichotomy forces processes running on sites that are geographically separated
to interact in a non-transparent fashion, regardless of how closely related the

processes are.

The major reason that interfaces to remote resources bhave differed
from local interfaces is that the performance quality of long baul networks
makes remote access potentially orders of magnitude slower than local access.
For example, a local disk may run at a several megabyte transfer rate with
tens of milliseconds delay, and a local area network may provide a bandwidth
of greater than one megabyte with delay less than a millisecond. By contrast,
long haul networks such as the Arpanet, Tymnet, and Telenet provide a max-
imum of approximately 50 kilobit bandwidths throughout most of their links
with delay commonly in the tenths of seconds. This dramatic difference
between long haul communications media and LANs or directly connected
devices has generally meant that it was not feasible to provide transparent

access to remote resources in the long haul case.

Furthermore, a wide variety of machines and operating systems have
been historically represented in long haul networks. The goal of developing a
standard for information exchange between a heterogeneous set of systems,
where it was often impractical to modify vendor supplied software, has also

contributed to restricting the interface to remote resources.
1.3 The Thesis
The fundamental issue to be addressed in this dissertation is:

e Can a distributed operating system provide network transparency with



satisfactory performance in an environment of interconnected networks
where some of the communication links have poor throughput, delay,

and error characteristics?

We will show that transparency s feasible, and highly desirable, in an inter-
net environment. That is, the conventional view of internet access is
incorrerct, at least when the computer systems at either end of the internet
link are similar (e.g. both Unix), and the links are comparable in quality to
the Arpanet. Remote access cen be provided with precisely the same inter-

face as local access, often with similar performance.

A proper defense of the thesis requires a case study that demonstrates
transparenéy in an internet environment. A case study based on Internet
Locus, which is a version of Locus extended to run on sites that communicate
across the Darpa Internet, has been implemented. Many of the lessons
described in this dissertation are a direct outgrowth of the transformation of

LAN based Locus into Internet Locus.

The underlying petwork model for the dissertation is a system of
machines running the same operating system, interconnected by a variety of
network technologies, including long haul networks and LANs. The topology
of most interest is an environment of LAN clusters connected by a long haul
network such as the Arpanet, with the LAN clusters separated by a maximum

of 5 or 6 packet switching nodes.

The dissertation does not specifically address the issues of file replica-
tion in an internet environment, distributed database systems, or internet

security, but provides a foundation for the study of these issues. Support for



heterogeneous operating systems and the problems of distributed systems
with very large numbers of sites are discussed elsewhere ([Loc 83] and [Rei

85)).
1.4 Related Research

A number of researchers have developed distributed operating systems
that support varying degrees of network transparency. Several systems have
provided a unified user view of files and tools located on different Arpanet
hosts but the performance of these systems has been disappointing. A mail
system, Grapevine, developed at Xerox is of interest because the system pro-
vides an internetwork-wide name service. A network transparent distributed
operating system developed at Stanford called the V-System, was originally
built for sites on a LAN, and has been extended to an internet environment.
The number of distributed operating systems that provide some degree of

transparency is quite large so only a few of the more important systems will

be described.
1.4.1 National Software Works

One of the earliest systems that supported limited network tran-
sparency was the National Software Works (NSW) [Hol 81]. The goal of the
project was to integrate tools available on different Arpanet hosts into a sin-
gle tool kit, accessible through a single monitor and filesystem. Network tran-
sparent access was limited to those tools or files that were registered in the
NSW database so only a small subset of a host’s files or tools were available

through the NSW.



The NSW designers realized that the existing Arpanet connection-
oriented host to host protocol (NCP) was not appropriate for achieving net-
work transparency, so a new protocol that handled request-response commun-
ication was developed. The NSW project had the ambitious aim of providing
service to machines with heterogeneous operating systems without modifying
operating system level code. Requests for NSW service, even local requests,
were first intercepted by a NSW process which sent the request to a central-
ized NSW monitor (usually located on a remote site) who then forwarded the
request to the appropriate tool. The implementation of network transparency
on top of the host’s native operating system, instead of building transparency
at the operating system level, resulted in unsatisfactory performance for

access to both remote and local resources.
1.4.2 RSEXEC

Anocther early system that provided limited transparent access to
remote resources was RSEXEC [Tho 73]. Like the NSW system, RSEXEC
was built on top of an existing operating system and suffered the resulting
performance overhead. Files stored on a remote RSEXEC site were specified
by prefixing the remote site name to the normal file name. A user could build
a limited form of name transparency by setting up a user profile that listed
the corresponding storage site for RSEXEC files so the site portion of a

filename could be omitted.

RSEXEC provided a limited set of distributed functions. Only users,
not programs could name remote files. Remote login and connection estab-
lishment were required before a remote resource could be accessed. All non-

local file access was achieved by first copying the file in its entirety to the



local machine. Non-local processes and devices could not be accessed.
1.4.3 Grapevine

Grapevine [Bir 82] is a system that provides mail service, resource loca-
tion, and authentication services in an internetwork. A distributed, replicated
database is used by applicatior programs to map the name of an object, such
as a user’s mailbox into its internet address. The name database is replicated
at several sites so the loss of a database site will not shut down the name ser-
vice. The Grapevine mail service is used to propagate updates to insure even-
tual consistency among copies of the distributed database but multi-copy
atomic update is not supported. Clients of the name service occasionally
observe inconsistent copies of the database at different sites since the propa-
gation mechanism may take several minutes. The Grapevine approach to a
replicated internet name service is sufficient for applications such as electronic
mail where an inconsistent name database may be inconvenient but not disas-
trous. The loose consistency constraint of the Grapevine name service is not
appropriate for an operating system name service. For instance, if an operat-
ing system uses an out of date name to location entry to find the storage or
synchronization site for a file, any file locking policy can no longer be

enforced.
1.4.4 NewCastle Connection

The Newcastle Connection [Bro 82] was developed at the University of
Newcastle Upon Tyne to connect loosely coupled Unix systems. It provides
remote access to files, using what appear to the application to be the same

system calls as used locally. Each system’s file tree and root is explicitly visi-



ble, so a file’s location cannot be changed without altering the file’s name.
The implementation is via extension to the language libraries of applications;
consequently local access is slowed down. Remote access requires application
level daemons at both the requesting and serving sites, with the attendant
performance costs. No transparent remote processes are provided. However,
because the Newcastle Connection is implemented at the user level, no kernel

changes are required, making it interesting for practical reasons.
1.4.6 The V-System

The V-System [Che 83] is a distributed operating system that p;'ovides
petwork transparency in an environment of workstations and server machines
connected by an Ethernet. The operating system provides uniform, message
based, inter-process communication between processes on a single machine or
on different machines. Dedicated server processes provide file access, printer

access and other services.

The V-system has been extended to support communication between
processes in an internetwork environment. For a process on one network to
communicate with é. process on another network, an intelligent gateway first
sets up a local alias process to mirror the remote process. Although the alias
process mechanism masks the fact that the actual remote process is not on
the same net as the sender, the process identifier name space is local to each
network so process identifiers cannot be used transparently between net-
works. Four processes are actually involved in any internetwork communica-
tion: the local process, the local alias process running in the local gateway,
the remote alias process running in the remote gateway, and the destination

process.



The V-system relies heavily on broadcast and multicast communication
which are not currently supported by internet architectures. Consequently,
the use of the V-system across an existing internetwork such as the Darpa
Internet is seriously limited. One expects the V-system internet design, with
its high process overhead, to exhibit performance problems, but measure-

ments for internet service have not yet been reported.
1.4.6 Accent

Accent is a communication oriented operating system kernel used to
support distributed personal computing at Carnegie-Mellon University [Ras
81]. The basic communication abstraction for interprocess communication
(TPC) in Accent is the port which is a protected kernel object into which mes-
sages are placed and removed by processes. A system call corresponds to the

notion of sending and receiving messages on ports.

Since messages are sent to ports rather than specific processes, a single
process can act as an intermediary for communication between processes.
Network transparent IPC is accomplished by having an intermediary network
process fabricate a local, "alias” port that corresponds to a remote port. Two
network servers can each allocate an alias port and provide inter-machine
communication without the communicating processes being aware that the

communication is crossing machines boundaries.

A message-based operating system such as Accent may exhibit slow
performance since all references to resources, even local resources, suffer from
high context-switch overhead. Microcode support for context switching is

being used by the researchers at CMU to help reduce the performance



difficulties.

1.4.7 Cronus

Cronus [Gur 85) is a distributed operating system used to interconnect
heterogeneous computers across local area networks. The Cronus implemen-
tation centers on an object-oriented, interprocess communication mechanism
where all resources, including processes, files, and devices are viewed as
abstract objects under the control of a manager process on a Cronus host.
Every object is an instance of some abstract type which defines the operations

that may be invoked on the object.

Cronus is structured to run on top of existing single site operating sys-
tems such as Unix, VMS, and CMOS. Existing operating system tools are
integrated into Cronus via a library-level trapping facility. Messages are
encoded in a host independent form to facilitate information exchange
between heterogeneous systems. External representations are defined for
common data types such as integers and character strings as well as aggre-

gates of types such as arrays and structures.

The extension of Cronus to the internet environment faces three obsta-
cles. First, Cronus, like the V-system, makes extensive use of broadcast com-
munication which is not currently available in any internetwork. Second, the
complex object-oriented IPC mechanism and the multilayered structure of
Cronus may lead to performance problems when Cronus is used across long
haul links. Third, the nced for data conversion to support heterogeneous
operation can potentially lead to unacceptable processing overhead cn com-

municating hosts.

10



1.6 Body of the Dissertation

In the body of the dissertation we first examine characteristics of the
internet environment. In chapter 2, current internet services available to users
and programs are described and contrasted to the services provided by a dis-
tributed operating system such as Locus. In chapter 3, approaches to extend-
ing network transparency beyond the local area network are discussed. Three

useful strategies emerge from the discussion:

e Exploitation of locality in distributed systems
e Semanties-based protocol design

¢ Remote Execution

These strategies are discussed in detail in chapters 4 and 5. A case study
based on Internet Locus is described in chapter 6. The results of performance
measurements of Internet Locus are presented and used to defend the validity
of the thesis. Conclusions and suggestions for future work follow in chapter

7.

11



CHAPTER 2

The Internetwork Environment
2.1 Network Interconnection

In their pioneering article on computer communications in 1974 {Cer
74], Cerf and Kahn present "a protocol design and philosophy that supports
the sharing of resources that exist in different packet switching networks”.
They foresee the desirability of interconnecting networks to facilitate data
and program sharing and remote access to resources. Five potential
differences between individual networks are identified which must be resolved
by a common protocoel for network intercommunication. These differences

are.

e Each network may have a distinct way of addressing the receiver of mes-

sages

o Each network may accept data of different maximum size

The delay to transfer packets across a network may vary

The reliability characteristics of networks may vary

e FEach network may have different facilities for supporting routing, fault

detection and status reporting

12



Two protocols are proposed to resolve these issues: the Internet Proto-
col (IP) and the Transmission Control Protocol (TCP). The IP defines a
datagram-based service that allows any host in a system of interconnected
networks (an internet) to communicate with any other host in the system.
Special sites called gateways, which have interfaces on two or more networks,
are responsible for routing datagrams between petworks and breaking
datagrams into smaller fragments if the datagrams exceed a network’s max-
imum size. Although datagrams are delivered with high probability, the IP
does not provide a reliable transport service. Datagrams may be occasionally

lost, duplicated, delayed for long periods of time, or contain bit errors.

Reliable communication between processes is provided by the TCP.
End-to-end state information such as sequence numbers and checksums are
used by the TCP to insure reliable delivery of messages. An additional proto-
col, the Internet Control Message Protocol (ICMP) has been developed to pro-
vide a mechanism whereby local network status information can be tran-

sported across an internet.

13



CEED)
Qe (o)

@& G G
s ®.®
e c=D

G @\

)

= cae

1
T

1 -

Figure 2.1: The Darpa Internet (1985)

2.2 The Darpa Internetwork

The early research on network interconnection, sponsored by the

Defense Advanced Research Project Agency (Darpa), has evolved dramati-
cally. Today, the Darpa Internet is a system of hundreds of host computers
interconnected by a variety of network technologies including local area net-
works, satellite networks, packet radio metworks, and terrestrial long haul
networks. The current Internet system is shown in figure 2.1. Internet Gate-

ways are represented by small squares and networks are represented by ovals
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or rectangles. Individual hosts, such as the UCLA Arpanet hosts, are not

shown.

The Darpa Internet is only one of several metwork interconnection
efforts. An internet architecture called PUP [Bog 80, which is similar to the
Darpa Internet architecture is in widespread use within Xerox. Public data
networks which adhere to the CCITT recommendation X.25 can be intercon-
nected by an interface specified in recommendation X.75 [Pos 80]. While the
Darpa and Xerox interconnection architecture provides a datagram based ser-
vice, X.75 specifies a virtual circuit service. An X.75 connection is a series of
concatenated virtual circuits so once an internet connection‘is established, no
alternate routing between gateways is possible. X.75 packets carry a logical
channel number that identifies the internet connection instead of a full desti-
nation address so X.75 packet headers are smaller than Darpa Internet or

PUP packet headers.
2.3 Services Provided by Current Internet Protocols

Although there has been tremendous growth in the number of sites
that communicate across the Darpa Internet, the number of services available
to users and programs has remained relatively stagnant since the early days of

the Arpanet. The following three services dominate use of the Internet:

e Remote Terminal Service (Telnet) - a process, usually acting on behalf of a
user, logs into a remote site and sends and receives characters as if it

were a terminal on the remote system.

e File Service (FTP) - a process sends and retrieves data files from a remote

site.
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¢ Mail Service - Text messages addressed to individuals are distributed to
designated machines. Individuals query a process on the designated

machine to receive any mail that has been sent to them.
2.4 Distributed Operating Systems

While the development of internetworks was stretching the geographic
boundaries of communicating hosts, another communication development was
taking place that brought computers closer together. By the 1970s, it was
possible to connect machines via a local area network with bandwidth and
delay characteristics that were close to those of a local disk. A number of
researchers developed distributed operating systems whereby a collection of
sites connected by a LAN appeared to the user as a single site. In a system
that exhibited full network transparency, any resource in the network could
be accessed by the entire repertoire of single site commands and system calls.
This contrasts sharply with the limited access to remote resources available to

an Internet host.
2.4.1 Locus

One such distributed operating system that provides network tran-
sparency is a distributed version of Unix, called Locus, which runs on high
speed, low delay, local area networks. Locus provides a fully transparent, dis-
tributed file system as well as transparent support for distributed processes.

Networks of heterogeneous cpu types are also handled transparently.

The file system appears to the user and applications software as a sin-
gle, tree structured name space with one root, across the entire collection of

machines. Changing the storage site of a file does not require changing its
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name. Important files are replicated below the user visible level, and the sys-

tem is responsible for keeping the copies mutually consistent.

Process execution in Locus is similarly transparent. It is possible to
create (i.e. fork) processes locally or remotely, with exactly the same seman-
tics. Processes may migrate to a similar cpu type while in the midst of execu-
tion without effect on continued correct execution. Processes interact with
one another across machine boundaries in the same manner as if they were
co-located (e.g. Unix signals and IPC operate transparently networkwide).
Besides providing access to remote resources through the same interfaces as
local ones, Locus also achieves a substantial degree of performance tran-
sparency. The delay in access to remote resources typically is little different

than the delay in access to local resources.

2.4.2 An Example of Accessing Remote Resources in the IP and

Locus Environments

A vivid comparison between accessing a remote resource using the
traditional internetwork protocols and using Locus protocols is shown in
figure 2.2. In the example, the emacs editor is invoked at a user’s site and the
file to be edited is stored at a remote site across an Internet link. When the
File Transfer Protocol is used, the user must first login to the remote site.
The user copies the file to the using site and edits the file. The new version

of the file is then copied by the user back to the storage site.

An alternative approach is to access the file using the Telnet protocol.
In this case, the terminal handling is performed by the remote site instead of

the local site so in a full duplex system such as Unix, characters must be
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echoed across the Internet link. Furthermore, if the file is to be used by a
program running on the user’s site, the file still must be transferred by the

user to the local site.

When the emacs editor is invoked under Locus, terminal handling is
performed by the local site so characters do not have to be echoed across the
Internet link. The editor issues normal read system calls and the operating
system transparently transfers the file to the user’s site from the storage site.
When the file is written, it is transferred back to the storage site without any
extra user commands. A program running on the user’s site may access the
file stored at the remote site without any user intervention in exactly the

same manner as if the file was stored locally.
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IP Environment Locus Environment

ftp 8.2.0.7 emacs filel
Trying "8.2.0.7" (8.2.0.7) ...
Open

220 bbnceq Server FTP
>user sheltzer

331 Enter PASS command
>pass

Password: xxxx

230 user Sheltzer logged in

>get filel
local file: filel.ftp

150 Retrieval of "filel” started okay
226 File Transfer completed okay

>bye

221 disconnect received, closing connections,
(1736 bps, 217 bytes/sec)

Transferred 217 bytes in 1 second

emacs filel.ftp
ftp 8.2.0.7

Trying "8.2.0.7" (8.2.0.7) ...
Open

220 bbnceq Server FTP
>user sheltzer

331 Enter PASS command
>pass

Password: xooox

230 user Sheltzer logged in

>send filel.ftp
remote file: filel

200 OK
125 Storing "file1” started okay
226 File Transfer completed okay

>bye
221 disconnect received, closing connections,
Transferred 202 bytes in 0 second |[sic]

Figure 2.2: Editing a file in the Internet and Locus environments
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2.6 Communication Characteristics of the Internet

Unfortunately, the Internet communications environment presents a
number of difficulties for a transparent distributed operating system. First,
the typical bandwidth of an Internet path that includes a long haul network
does not usually exceed 50 kilobits/sec. Second, the effective delay between
two computers that communicate across an Internet link can be several hun-
dred milliseconds or more. This delay occurs in land based lines largely
because of the time required to clock data in and out of switching computers,
and in satellite based communications because of the transmission delays to
and from geosynchronous orbit. While Iand based optical fibers will reduce
terrestrial transmission delays, the necessary switching computers are still
expected to introduce delays far greater than those experienced in local net-
works today. Further, an Internet path that contains several gateways and
possible satellite links will usually exhibit a much higher error rate then a

loeal area network.
]

The wide range of characteristics of the underlying networks within

the Darpa Internet are shown in figure 2.3.
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Network Max. Message Bandwidth Delay Guaranteed Network

Size {bvtes) Delivery Tvpe
Arpanet 1008 Medium Medium  Yes Terrestrial
Satnet 256 Low High No Satellite Network
Pronet 2048 High Low Yes LAN
Ethernet 1500 High Low Yes LAN
Telenet 128 Low Medium  Yes Public X.25 Network
Packet Radio 254 Medium Medium No Varying Topology
Wideband 2000 High High No Satellite Network

Low bandwidth: less than 50K bits/sec Low delay: less than 20ms.
Medium bandwidth: 50K bits/sec Medium delay: 50ms. to 500ms.
High bandwidth: greater than 1M bits/sec  High delay: greater than 500ms.
Figure 2.3: Internet Network Characteristics
These bandwidth, delay and error characteristics mean that distri-
buted operating system designs that are dependent on the low delay, mega-
byte bandwidths, and low error rates of local area networks will not extend to
the internet environment. For example, Locus sends a round trip message for
listing each file entry in a remote directory, and explicitly acknowledges each
page written (as done in a remote procedure call oriented structure) during
file operations before transferring another page. Unfortunately, these stra-
tegies, which simplify implementation in the local area network case, will per-
form unacceptably in the Internet case. New approaches to computer inter-
communication, which are more suitable to the internet environment, must be

developed if transparency is to be extended beyond local area networks.
2.6 Summary

The idea of building systems of interconnected computer networks to
facilitate data and program sharing and remote access to resources was intro-

duced by researchers in the 1970s. One such internet, the Darpa Internet,
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has grown significantly in terms of the number of interconnected sites, but
the available services have remained mostly limited to Telnet, FTP and mail
service. In contrast, distributed operating systems such as Locus, developed
for high speed, low delay, local area networks provide users and programs
with the entire repertoire of single site commands and system calls to access
any resource in the network. The bandwidth, delay, and error characteristics
of the internet environment prevent direct application of protocols developed
for LAN based distributed operating systems to the Internet. If network tran-
sparency is to be extended beyond the local area network, new protocols must
be developed which are suitable for the communication characteristics of the

Internet.
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CHAPTER 3
Principles of Distributed System Design

3.1 Introduction

A new, hierarchical view of the internet environment is presented in
this chapter. Virtual memory and local area network transparency are viewed
as instances of the general application of transparency across all levels in the
distributed system hierarchy. Several approaches to extending transparency
beyond local area networks are described and the choice of kernel to kernel
communication is defended. Strategies for overcoming the performance limi-

tations of long haul networks are explored.
3.2 A Hierarchical View of Distributed Systems

The internet environment is often viewed as a set of loosely coupled,
single site hosts, each controlled by a separate administration. Resources
located on remote hosts are accessed via a different interface than local
resources and the set of operations available for remote resources is restricted
to a few applications such as file transfer or remote terminal service. Explicit
permission must be granted each time a user or program accesses a resource

located on another host.
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In contrast, the hrerarchical view of the internet environment, illus-
trated in figure 3.1, views an internet as a single, unified collection of proces-
sors and storage devices, available to any user or program (subject to access
control). Resources are accessed in the same manner, regardless of their level
in the hierarchy. As one moves from the top of the hierarchy downward, the
number of available resources and services vastly increases while the cost of

accessing resources may also increase in terms of higher delay and lower

throughput.
Lsoii:'l Cache
LAN thl?ligry
Long Kl Di
Internetwork Local Site

Figure 3.1: Hierarchical View of the Internet Environment

The hierarchical view of distributed systems exposes the similarities
between a memory hierarchy within a single site and the hierarchy of proces-
sors and storage devices in an internet. In a memory hierarchy, each memory
level provides a larger, slower resource than the preceding level. Memory
management enforces information hiding by providing the user with a single,
global name space and a single interface to resources, regardless of where in
the memory hierarchy resources are stored. The user views a storage facility
that has the high throughput and low delay characteristics of the highest
level in the hierarchy with the storage capacity of the lowest level in the

hierarchy. Performance transparency is achieved by applying the principle of
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locality to reduce the number of accesses that must be serviced by the lower

levels.

In the memory hierarchy, a short access time can only be obtained at a
high cost per byte. Therefore, capacity is limited at the higher levels of the
hierarchy and expands as the cost per byte decreases. For instance, the rela-
tionship between the access times (T) for cache (c), main memory (mm), and

disk (d) is given approximately by [Sto 80]:
T,=0.1*T,, =0.000001 *T,

For a Vax 11/780 site configuration with 8K bytes cache, 2M bytes main
memory, and a 500M byte disk, the storage capacity (C) grows as:

C=250*C . =62500*C,

Similarly, in the internet hierarchy, as the distance to the local site
decreases, access time also decreases. The time to access a 1K byte page from
the local site (s), a LAN (1), a long haul network through 1 packet switching
node (lh1) and 5 packet switching nodes (lh5) is approximately (see section
6.4):

T,=0.9*T,=0.075 *T;;, =0.015*T\,
Of course, the capacity of the system in terms of the number of available

resources and services can greatly increase when the geographic boundaries of

the system are expanded.

These access time ratios lend support to the claim that transparency in
an internet environment is achievable since the differences in access time

between levels in the internet hierarchy are far less severe than the access



time differences in the memory hierarchy. Furthermore, in a memory hierar-
chy, data traditionally must move up to the CPU for processing while in the
internet hierarchy data not only moves to the using site, processing can also

migrate to the data storage site,

Transparent access to resources has long been provided within a single
site memory hierarchy. Recently, transparent access to resources has been
extended to sites connected by local area networks. When a distributed sys-
tem is viewed as a hierarchy of processors and storage devices, single site
memory transparency and local area network transparency can be viewed as
instances of the general application of transparency across all levels of a dis-

tributed system hierarchy.
3.3 Benefits of Internet Transparency

The benefits of organizing memory into a transparent hierarchy are
well known. The benefits of network transparency on a local area metwork
are discussed in detail in [Wal 83a]. Certain benefits are especially important
when network transparency is applied across all levels in the distributed sys-

tem hierarchy.

1. There is a single interface to all resources sn the distributed syatem,

regardless of resource location.

The user interface is simplified since a single set of commands is used
for all sites. Program development is simplified because a single set of
systemn calls is used and the k.nowledge of resource location is not
necessary for correct program execution. Furthermore, certain

integrated applications are naturally geographically distributed, such
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as the collection and analysis of radar information or database opera-
tions on a database with relations stored at many locations. The task
of writing software for distributed applications is simplified because

the details of network management are hidden from the application.

Data and programs are easily shared between sites when remote
resources are accessed in the same manner as local resources. In an
internet environment that only offers a file transfer service, for exam-
ple, sharing a file between sites is very difficult because the file must be

explicitly copied to a using site before it is accessed.
Eztensibility

As additional processing power and storage capacity are added to the
internet, users have immediate access to the new resources. For exam-
ple, if a powerful but scarce resource such as a supercomputer is added
to an internet system, users located in different geographic regions can
take advantage of the increased computing power without rewriting

their applications.
High availability and reliability

In an internet system with an abundance of processors and storage
devices, availability can be greatly improved if it is possible to substi-
tute equivalent resources for one another. A uniform interface that
hides the binding of resource names to specific locations is an impor-

tant building block for achieving improved availability.
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3.4 Arguments Against Internet Transparency

There are two common arguments against extending network tran-
sparency to an internetwork environment. First, since it is not possible nor
desirable to force all sites in an internet to run the same operating system, it
is argued that internet transparency is impractical. Second, since long haul
networks present far higher delay and much lower bandwidth than local net-
works, full performance transparency is not possible. It is argued, therefore,
that this difference in performance should not be masked by forcing the same

interface to local and remote resources.

We claim, however, that clusters of sites running the same operating
system, connected internally by LANs and interconnected by long haul net-
works is becoming an increasingly important network configuration. Even
though it may not be practical to extend network transparency to all sites in
a physical internet, extending transparency to selected groups of geographi-

cally distributed sites within an internet is a desirable goal.

Furthermore, we will show that for many internet topologies the per-
formance of remote access can approach the performance of local access.
When performance transparency is not possible, such as when large amounts
of data must be transferred across long haul networks, it is still useful to have
a single interface to all resources rather than force the user to have knowledge

of resource location and use specialized programs for remote access.
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3.5 Approaches to Network Transparency

Researchers have pursued four approaches to network transparency:
remote procedure call [Bir 84], message passing [Ras 81), connection layer [Bro
82}, and kernel to kernel communication [Pop 81]. Distributed operating sys-
tems across LANs have been built using each of these approaches with vary-
ing success. The approaches are described below and reasons why the fourth
approach, kernel to kernel communication, was chosen as a basis for extend-

ing transparency to an internet is explained.
3.5.1 Remote Procedure Call

Remote procedure call (RPC) is a means of providing a programming
language interface to remote service through the familiar syntax and seman-
tics of local subroutine calls. In most RPC schemes, a programming language
preprocessor generates client and server “"stubs™ which package subroutine
invocations and arguments into network messages. The client stub sends
messages to a remote server process which executes the subroutine, while the

client awaits a response which often includes a return value.

There are several reasons why RPC is not an appropriate paradigm for
remote service in an internet operating system. RPC limits remote service to
synchronous behavior since procedure call semantics require the caller to
block until the call returns. However, asynchronous behavior is often desir-
able. The ability to send and receive asynchronous signals across machine
boundaries is crucial to certain applications. Furthermore, if remote service is
only provided at the subroutine level, remote performance may suffer. In

many instances it is better to move the data to the using site rather than run
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each subroutine remotely at the data storage site.

Another drawback of the RPC model is that only those applications
written in the RPC-based language can take advantage of distributed opera-
tion. Existing applications such as a database management system or operat-
ing system command interpreter must either be rewritten in the RPC-based
language or must reimplement the basic mechanisms for distributed operation

such as transactions, a global name service, reliable communications, etc.
3.56.2 Message Passing

In 2 message-based distributed operating system, all local and remote
services are provided by passing messages between processes. Processes com-
municate by sending and receiving messages on ports or queues managed by
the kernel. Since all messages go through the kernel, only the kernel needs to
know where processes are located. Therefore, the application interface for
local and remote services can be identical. Both asynchronous and synchro-
pous behavior can be supported. A client can either send a message and
block until it receives a reply or send a message, continue executing a task,

and receive notification from the kernel when the reply is ready.

A major disadvantage of the message-passing approach is that perfor-
mance, especially local performance, is likely to be poor unless process over-
head is very small. The server process competes with other processes for CPU
resources and must wait to be scheduled by the operating system before it
can service a request. The completion of all services, including local system
calls, pay the penalty of server process scheduling. In addition, message-

passing usually forces data to be copied from the client process address space
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to the server process address space and back to the client address space. The
performance characteristics of message-passing are unattractive unless there is
kardware support for fast context switching, process scheduling, and efficient

sharing between process address spaces.
3.5.3 Connection Layer

A third approach to network transparency is to introduce a new layer
of software between the kernel and application layer. This approach is used
in the Unix United system where the additional layer of software is called the
Newcastle Connection (NC). In this system, distributed operation is achieved
without modification to the kernel. Instead, the location of resources are
embedded in their user-visible names. The NC determines whether a local or
remote operation is appropriate by intercepting all system calls and examining
their arguments. If the argument indicates that a local resource is to be
accessed, the NC issues a normal system call on behalf of the user. If a
remote resource is to be accessed, the local NC communicates with a remote

NC which sets up a remote server process to mimic the local user process.

The connection layer approach has the advantage that it is easy to
provide distributed operation to existing systems because the kernel is
unchanged. However, to achieve distributed operation at the program level,
programs must be linked with new library routines. Local performance will
likely suffer with the addition of a new layer of software. Remote perfor-
mance may also be inadequate since remote service is provided by user-level
processes. Perhaps the major disadvantage of this approach is that users
must be aware of the location of resources. Without location transparency, it

is difficult to replicate resources for reliability and to move resources to new
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locations when names are embedded in programs.
3.56.4 Kernel to Kernel Communication

The fourth approach, kernel to kernel communication, offers a number
of advantages over the other three approaches. In this approach, as in
message-passing, the location of a resource is determined by the kernel, not
by a layer of software between the application and kernel. However, in
message-passing a server process must be scheduled even for local services. In
the kernel to kernel communication approach, service provided by a local sys-
tem call on a single site is still provided by a low overhead, local system call
when the site is part of a distributed system. In addition, data copying
between a client and server process on the same site is not needed because the

operating system shares an address space with all processes.

In kernel to kernel communication, remote service is efficient because
much of the communication protocol can be run at interrupt level. However,
the ability to suspend execution pending the completion of an event, which is
a requirement to support a service such as reading a page from disk, is not
possible at interrupt level. In one approach to this problem, a set of special
kernel processes are used for remote service. The code, stack area, and global
variables of the kernel processes are resident in the operating system nucleus.
Kernel processes call internal system routines directly. As network requests
arrive, they are placed on a kernel queue, and when a kernel process finishes
an operation it looks on the queue for more work to do. Each kernel process
serially serves a request. An important distinction between kernel to kernel
communication versus process to process communication used in most

message-passing systems is that any kernel process can service any request.
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The overhead of scheduling a matching server process to handle a given client

request is eliminated.

In summary, the kernel to kernel communication approach to network
transparency is attractive because local service is not penalized when a site
becomes part of a distributed system, remote service is efficient because ser-
vice is provided by a combination of interrupt level code and lightweight ker-
nel processes and single site applications do not have to be reimplemented in

a distributed environment because the network is hidden in the kernel.
3.8 Strategies for Achieving Internet Transparency

The implementation of network transparency across a local area net-
work in a system such as Locus has relied on two basic assumptions that
must be relaxed when the internet environment is considered. First, the local
area network is assumed to support a small number o_f sites that are usually
fully connected. Second, in a local area network, sites communicate via a

high bandwidth, low delay link.

In a closely coupled distributed operating system such as Locus it is
convenient for all sites to maintain detailed state information about all other
sites in the network. When a single site joins or leaves the network all sites
participate in recovery and merge algorithms. Furthermore, all sites maintain
a globally replicated data structure (called the mount table) which records the
connection between individual parts of the network-wide name space. When-
ever membership in the network changes, all sites alter copies of their mount

table so a consistent name space is always maintained.



As clusters of sites are interconnected by long haul networks, the
number of sites in the system may grow from less than one hundred sites to
hundreds or thousands of sites. In a very large distl;ibuted system the
requirement that sites maintain detailed, up to date, information about all
other sites in the system cannot be met. To solve this problem, Reiher pro-
poses developing a system of domain name servers that keep replicated name
information for specific sets of sites [Rei 85]. Only domain name servers,
instead of all sites in a region, need to maintain a consistent view of the name
space. Non-server sites request remote naming information from domain
name servers and store the responses in "lazy evaluation” caches to reduce the
number of requests to servers, Cache entries contain enough information to
determine if the entry is up to date when the entry is used. If the entry is

incorrect, the non-server site requests the correct information from a server.

When sites communicate over a high bandwidth, low delay link, perfor-
mance transparency is easily achieved with relatively unsophisticated proto-
cols. Since the delay in transmitting a message from one site to another is
very low, the number of messages that are needed to service a user or system
task is not critical. A simple addressing scheme whereby each site address
corresponds to a single physical local area network address is sufficient for
packets to be routed between sites.

Id
In the internet environment, the bandwidth and delay characteristics

of long haul networks make remote access potentially orders of magnitude
slower than local access. Simple request response protocols designed for local
area networks do not efficiently use the available bandwidth of long haul

links. If many messages must be sent to a remote site to achieve a given task,
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remote performance will be dramatically inferior to local performance.

An addressing scheme is needed that allows all sites in an internet to
communicate with each other, not just those connected by a single local area
network. A fragmentation and reassembly strategy must be implemented to
handle messages that traverse networks that enforce different maximum
packet sizes. The internetwork addressing and packet fragmentation prob-
lems are easily solved by encapsulating messages within standard internet
headers such as those specified by the PUP protocol or the Darpa Internet

Protocol. A solution to the performance problem is more difficult.

If performance transparency is to be achieved in the internet environ-
ment, two goals must be met. First, the number of times a using site com-
municates with a remote site must be minimized without losing the func-
tionality of network transparency. Second, when a using site must communi-
cate with a remote site, the number of messages and number of bits per mes-

sage that are transmitted to achieve a given task must be minimized.

In a memory hierarchy, the principle of locality is used to reduce the
frequency of access to the lower levels of the hierarchy. Similarly, the princi-
ple of locality can be applied to a large distributed system to reach the first
goal in achieving performance transparency which is to reduce the frequency

of communication between sites.

A new methodology for protocol development called semantsics-based
protocol design, is applied to reach the second goal. Semantics-based protocol
design attempts to minimize the number of messages that must be sent to

accomplish frequent operating system and user tasks.
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In the internet environment, each level in the hierarchy not only con-
tains memory resources but also processor resources. The ability to move a
process to the data, which is not available in a memory hierarchy, can also be

used to reduce the information that must be transmitted across a link.

The combination of these three strategies, exploitation of locality,
semantics-based protocol design and moving the process to the data are
applied to reduce the difference in the performance of remote and local access
in the internet environment. Ideally, we wish to have the access time of the
highest level in the distributed system hierarchy (the using site) and the capa-
city of the lowest level (all sites and storage devices in the internet sgrstem).
Each of the strategies used to reach this goal is discussed in the following sec-

tions.
3.6.1 Loecality in Distributed Systems

Distributed operating systems constantly search for information that is
stored at remote sites (e.g. the translation from string name to object) and
then discard this information when in fact, the information may be used
again in the near future. If locality exists, caching recently used information
can help reach the first goal towards achieving performance transparency
which is to reduce the number of times that remote sites must be referenced

for information.

Caches are typically placed between a large, relatively slow and inex-
pensive source of information and a much faster consumer of that informa-
tion. The cache capacity is small and expensive, but quickly accessible. The

goal is for the cache behavior to dominate performance but the large storage
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facility to dominate costs, thus giving the illusion of a large, fast, inexpensive
storage system. Successful operation depends both on a substantial level of
locality being exhibited by the consumer, and careful strategies being chosen
for cache operation - disciplines for replacement of contents, update syn-
chronization, etc. The value of successful caches often is enormous,

representing the difference between satisfactory cost/performance and failure.

Caches have been used for many years as part of the single site
memory hierarchy between main memory and the central processor.
Recently, distributed caches have appeared in integrated hardware systems
constructed of multiple processors. In these multiprocessor architectures,
each processor has a private cache, and a mechanism exists to prevent the
simultaneous existence of different versions of the same data block in different
caches. The considerations in the design of multiprocessor hardware caches
are present, in analogous ways, in a distributed operating system, and their

proper resolution is of similar importance.

The property of "locality of reference” has been observed in program
execution [Den 72] [Mad 76], single site file access [Maj 84], as well as database
access [Kea 83]. We are interested in the degree to which locality is also exhi-
bited by distributed operating system functions such as name to object trans-
lation, remote file access, and remote site access. We must identify those
objects which have sufficient locality to indicate that caching will be beneficial
and determine at which level in the distributed system hierarchy the cache

should be built.
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The property of "locality of reference” has two components: temporal
locality and spatial locality. Temporal locality refers to the observation that
information which will be in use in the near future is likely to be in use
currently. Spatial locality means that the locations of references in the near
future are likely to be near the locations of current references. By observing
temporal locality in the patterns of referencing remote information we can
determine what information should be cached. By observing spatial locality
in reference patterns, we can determine how large each cache entry should be
and whether it is advantageous to prefetch certain data. For example, entries
in a name service cache might be single name to object mappings if little spa-
tial locality exists or full directory pages if sufficient spatial locality exists
whereby several directory entries within the same directory page are accessed
within a short time period. The definition of spatial locality can be
broadened to include logical relationships between objects in addition to phy-
sical "nearness”. It might be useful to bring an entire set of logically related

objects into a cache whenever a single object in the set is accessed.

The following objects in a distributed system may show sufficient local
ity to indicate that caching is beneficial:

File pages

Name to object translations

Directory pages

Files
Each of these objects is described below. A full discussion of name service
caching is given in chapter 4. An investigation into the logical relationships

between objects remains a subject for future research.



Many operating systems maintain a buffer cache in main memory of
pages recently read from disk. If sufficient locality exists, the number of
accesses to disk is greatly reduced as most pages are found in the buffer
cache. A distributed operating system can take advantage of the buffer cache
by entering pages read from remote sites into the cache. Subsequent access
to that data will not require any network traffic. Cached entries are invali-
dated when a file is closed if the file is stored remotely. The number of
remote accesses is further reduced if the first data page of a remotely stored
file is returned with the response to open for read message. This can be
viewed as an example of spatial locality where the first page of a file is logi-
cally related to the information returned in the response to open message. By

prefetching the first page of the file, network traffic is reduced.

It is important to note that the distributed operating system protocol
must be specifically designed to exploit existing kernel buffer caching. If mes-
sages are sent at the application process to process level rather then the ker-
nel level, it may not be possible to take advantage of buffer caching within

the kernel.

Another important opportunity for exploiting locality in a distributed
system occurs in the mapping of a name to the object it represents. In an
operating system such as Locus, where the name space is tree-structured, a
significant amount of network traffic results from translating a pathname to
an object. Even in a single machine Unix system such as Berkeley Unix,
release 4.2, name mapping consumes approximately 40% of system overhead
[Kar 84]. By caching name to object mappings at the using site, the number

of messages sent to remote sites during pathname expansion can be reduced.
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Instead of caching individual name to object mappings, it may be advanta-
geous to cache entire directory pages because many common tasks such as
listing the contents of a directory, expanding wildeard arguments, and access-

ing parent directories use information that is stored in directory pages.

A using site can cache some small number of pages for remote files and
directories and still stay within the limits of reasonable main memory cost.
However, it may be desirable to cache entire files to decrease message traffic
further. If files are cached at each using site, main memory in each site would
be quickly exhausted. Instead, a site in each LAN cluster can be configured
as a file cache server and relieve individual sites from their inherent cache size
limitations. When a file on another cluster is referenced, the file cache server
is first queried. If the file is stored at the file cache server, the file is accessed
without expensive intercluster traffic. A file cache machine has been demon-
strated at Cambridge University for a system of LANs connected by a high
delay satellite link [Ric 83].

3.6.2 A Semantics-based Approach to the Design of Network Proto-

cols

Network protocols are traditionally designed as a series of layers. Each
layer offers a well defined service to the layer above it, while hiding the imple-
mentation details of the service. The purpose of building layered protocols is
to simplify network design by partitioning the full network design problem
into a small number of independent, manageable pieces. Layered design also

facilitates the substitution of different implementations for a given layer.



In the seven layer ISO model, the physical layer is concerned with the
transmission of bits over a communication channel. The data link layer pro-
vides an error free transmission facility between a site and a network or
between nodes in a network. Data is transmitted in sequential units called
frames and lost or damaged frames are retransmitted at this layer. The net-
work layer provides a facility for one site to communicate with another site in
a network. The issue of how to route data between sites is solved in this
layer. The transport layer is responsible for providing an error-free channel
between sites. Messages sent over the channel must be delivered in sequence;
duplicate messages must be detected and discarded; lost or damaged messages
must be retransmitted; and the rate of message transmission must be flow

controlled so the sender does not flood the receiver.

The distinction between the remaining three layers, the session,
presentation, and application layers is not well defined. User services such as
remote terminal service, distributed database access, and file access and com-
mon functions used by several user services such as text compression or data

encryption fall within these three layers.

The interface between adjacent network protocol layers defines the set
of primitive operations the lower layer offers the higher layer. The amount of
information that flows across this interface is kept to a minimum so modules

for a given layer can be designed and implemented independently.

The bottom up, layered approach to the design of network protocols
has been successfully used in the design of network architectures such as
SNA, DECNET, and the Arpanet, and correct network operation has been

demonstrated. However, correct operation alone does not insure adequate
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performance for applications.

Three objections to the traditional protocol design methodology can be
raised. First, by isolating the details of each network layer, the performance
of certain applications that use the network may suffer. For example, the
Arpanet handles single packet messages of less than 1008 bits much more
efficiently than multipacket messages but this implementation detail is hidden
from protocol layers above the network layer. For example, the measured
mean delay of transmitting a message of 1440 bits (which is the Locus mes-
sage header plus Internet header size) across 5 IMP* hops is 318 ms while the
mean delay for transmitting a message that fits within a single Arpanet
packet is only 150 ms. If an application sends small, fixed size messages there
is a clear performance advantage to reducing the size of messages that travel
across the Arpanet to less than 1008 bits. Second, by concentrating on the
lower layers of the network protocol, the services provided by the lower layers
do not always match the services required by applications. An application
may require rapid, reliable delivery of single messages. If the only service
offered by the transport layer is a dynamie virtual circuit, the delay in estab-
lishing the circuit each time a message is to be deliveried may be unaccept-
able. Third, by designing each protocol layer independently, many functions
such as flow control, duplicate message detection, message sequencing and
guaranteed message delivery may appear in several layers and interact in

undesirable ways.

*The IMP or Interface Message Processor is the packet switching node in the
Arpanet
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A new approach to protocol design, semantics-based protocol design, is
proposed as a methodology to reach the second step towards performance
transparency which is to reduce the number of messages that are sent to
achieve a given task. Historically, network protocol development has centered
on the lower layers of the network architecture. Instead of focusing on the
lower protocol layers, the semantics-based approach centers on defining what
activity should be represented in messages to support applications. Once the
proper semantics of messages are understood, the lower levels of the protocol
are built to efficiently support the reliable delivery of messages. The
semantics-based methodology is application-driven or top down while the
traditional protocol design methodology is data communrications driven or bot-

tom up.

The activities that must be supported efficiently in a distributed
operating system protocol are system calls and frequent user commands. The
communication style that is predominant in these activities is a request fol-
lowed by a response. We must determine whether connection-oriented proto-
cols used in long haul networks or LAN request-response protocols can

efficiently support these activities in an internetwork environment.

In a typical connection-oriented protocol the communication path is
between a user or application program on a local site and a server process on
a remote site. The local user or application program first sets up a session
with the remote site to guarantee that the requester has permission to use the
service; to set up any session specific parameters such as byte order; to
guarantee that the remote site has adequate resources to provide the service;

and to establish sequence numbers for flow control, duplicate message detec-



tion, ete.

If sites have disjoint process and file name spaces the server process on
a remote machine must be identified. Usually the service has a well known
address where a process always listens for requests. When a request comes in,
the server creates a new process to handle the request and returns the
identification of the new process to the requester. The initial session is closed
and the requester opens a new session with the new remote server process.
When the requester has finished using the remote service, the session is closed
and the remote site frees any resources that were dedicated to provide the

service.

A connection-oriented protocol is clearly not well matched to a
request-response communication style. The overhead and delay of connection
establishment preclude acceptable support for distributed operating system

functions in an internet.

In contrast to connection-oriented protocols, the request-response pro-
tocol used between sites in a transparent local area network does not suffer
from the overhead and delay of connection establishment. In a Locus net-
work, for example, all sites share a global name space so no initial connection
is needed to establish the address of a remote server process. The communi-
cation path is from the operating system on one site to the operating system
on another site. No service authentication is necessary because the client is
the operating system rather than a user. A permanent, logical connection
between sites is established when a site first comes up, so no session specific
parameters or sequence nufnbers need to be set up each time a remote service

is used.

44



The model for remote service in Locus is shown in figure 3.2. Initial

system call processing is performed at the local site. When a point is reached

in the execution of the system call where remote access is needed, a message is

sent to the appropriate site. A response is returned from the remote site and

the execution of the system call is continued locally. Unfortunately, remote

service may require several requests and responses to be exchanged during the

execution of a single system call. While this has been acceptable in the LAN

environment, the increase in message traffic will degrade performance over a

higher delay, internet link.

Using Site
System call
Request
Test response

if OK
Request

Test response
if OK
Request

System Call
completion

Tl 1T

T

Storage Site |

do task A
Response

do task B
Response

do task n
Response

Figure 3.2: Locus Remote System Call Processing

It is often possible to raise the semantic level of the initial request mes-

sage so more of the system call processing is performed at the storage site (see

figure 3.3). The test of the outcome of the request is executed at the storage
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site instead of the using site. In the likely case that the outcome is successful,
execution of the system call continues at the storage site. If the outcome is

failure, a response is immediately returned to the using site.

For example, in LAN-Locus, the last close of a remotely stored file
(open for modification) often requires a Commit request and response message
exchange. If the Commit succeeds, a Close request is sent by the using site
and a response is returned. The semantics of the initial request can be raised
to mean: "Commit this file and if the commit succeeds, close the file". There-
fore the same task can be accomplished with a single Commit _and _ Close

message exchange.

|_Elsing Site Storage Site

System call

Request —
do task A
Test response
if Ok do task B

Test response
_if OK do task n

<— Response
System Call
completion

Figure 3.3: Internet-Locus Remote System Call Processing
3.6.3 Remote Execution

When the data needed by a given process does not reside at the site on
which the process exists, either the data can be moved to the initial process

site or the process can be moved to the data storage site. The second alterna-
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tive is only possible in a system that provides network transparency, i.e. one
where the execution of a process at the data storage site is semantically
equivalent to the execution of the process at the initial process site. Such
items as the file naming hierarchy, current open file descriptors, process
identifiers used for IPC, pending interrupts, device addresses, etc. as seen by

the relocated process must all be correctly interpreted.

Locus permits programs to be executed at any site in the network, sub-
ject to permission control, just as if they were executed locally. Furthermore,
a process ¢an change its site of execution even while in the midst of execution.
This ability for a process to move to the storage site(s) of its target data is
invaluable as a means of reducing message traffic due to data movement in

the internet environment.
3.7 Summary

A pew, hierarchical view of the internet environment is presented in
this chapter. The benefits of extending network transparency across all levels
of the hierarchy include a consistent user interface, the ability to use the full
repertoire of single site commands on all remote resources, ease of distributed
application development, enhanced sharing of data and programs, and the

potential for high availability and reliability.

If the performance of remote access, even across long haul networks, is
to approach the performance of local access, two goals must be achieved. The
frequency of communication between sites must be reduced and the number
of messages transmitted to achieve a given task must be minimized. Three

strategies are proposed to reach these goals: exploitation of locality,

47



semantics-based protocol design, and remote execution.



CHAPTER 4

Name Management in an Internet DOS

4.1 Introduction

Name service is an important component in the overall behavior of dis-
tributed operating systems. The use of a distributed name cache to improve
system petformance and reduce the elapsed time to access remote resources is
explored. A classical cache design evaluation, applied to the problem of dis-
tributed name management, is presented. Reference strings, collected from a
production distributed system, are used as input to a trace-driven simulation
to determine the degree of locality exhibited in pame to object translation,
evaluate cache parameters, and justify the utility of a distributed name

cache. a
4.2 Name Service in a Distributed Environment

In a system with a transparent name space,* it is the system’s respon-
sibility to find the resource given its name, and set up all necessary bindings
for subsequent access. The cost of this distributed name lookup, and the
associated update of relevant (perhaps partially replicated) tables as resources
are created, destroyed, and moved, can be a major cost of the distributed
system’s operation. In a production Locus installation for example, it is not

uncommon for half of total network traffic to be in support of name service.

*Strictly speaking, we refer here to locelion transparency.
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An immediate question is whether this key function is susceptible to
cache based speedup methods. If so, the performance improvement can be
remarkable. However, one must first determine whether name lookup exhibits
the requisite degree of locality, and whether the necessity to invalidate other
systems’ cache entries when a name service update occurs represents
significant cost, complexity and delay. If these characteristics are satisfac-
tory, one can then proceed with the determination of the other relevant cache

design parameters.

In order to address these issues, over 15 million "name-service” refer-
ence string entries were collected during normal operation of a production
Locus system. Each such entry represents a path name element in the distri-
buted Unix directory hierarchy. These measurements serve as a basis for
much of the discussion in this chapter. The reference strings were input to a
trace-driven simulation which was used to determine the degree of locality in
directory referencing, determine directory cache parameters, and evaluate the

overhead of maintaining multicache consistency.
4.3 Pathname Expansion in Unix and Locus

In a hierarchically structured file system such as Unix or Locus, each
file in the system is either a data file or a directory. Directories contain
entries of the form < string name, file descriptor pointer>> where the file
descriptor pointer is an index into a table of file descriptors (called "inodes” in
Unix) and each inode contains the device addresses of the actual data pages
for the target file, plus status information. An object is referred to by a path-
name which is a sequence of directory names separated by slashes and ending

in a file name. A pathname starts either at the root directory or the current
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working directory.

The system maps a name to an object by reading the first directory
component in the pathname and then sequentially searching the entries
within the directory for a match on the string name of the next pathname
component. If an entry is found, the file descriptor pointer of the entry is
used to locate the device addresses for the next pathname component. If the
next component is the last component in the pathname, the target object has
been found. If not, the pathname component is a directory and searching

continues.

In a distributed system, the directories and target object that are
referred to by a pathname may be stored at sites other than the site that
requests the target object. There are two approaches to pathname expansion
in a distributed environment. In the first approach, called transparent path-
name ezpansion, each directory is brought across the network from the
storage site and searched at the using site (the site that requests the path-
name expansion). This approach has the advantage that distributed opera-
tion is identical to single site operation as long as there is a transparent
mechanism for reading remote pages. However, a substantial amount of net-
work traffic may be generated during pathname expansion as each directory

component is opened, read, and closed.

In the second approach called remotz pathname ezpansion, the path-
name is expanded at each site that stores a pathname component. When the
using site finds a pathname component that is stored remotely, it packages
the remainder of the pathname into a network request message and sends it

to the site that stores that component. The storage site services the request
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by continuing pathname expansion, opening and searching the directories
locally. I all of the remaining components are stored at the storage site, then
the result of the pathname expansion is returned to the using site. If the
storage site finds that a component is stored remotely it sends the remainder
of the pathname to the next storage site and pathname expansion continues

there.

This approach reduces network traffic for pathnames that contain
many directories all stored at a single remote site. However, if the pathname
contains directories that are stored at several sites, network traffic is not
reduced. More importantly, if there is a significant level of user program
access directly to directory pages, substantial directory page traffic results in

addition to remote pathname expansion messages.

Measurements of the UCLA Locus network indicate that approximately
20% of all commands issued require user program access to directories. Com-
mon tasks such as listing the contents of a directory, copying or removing all
entries in a directory, expanding wildcard arguments, and accessing parent
directories, all use information found in directory pages. With remote path-
name expansion, directory pages remain at the storage site, so this approach

does not effectively reduce message traffic in many important cases.

The Locus distributed operating system supports transparent path-
name expansion. References to a remotely stored directory that is currently
open at a using site do not generate network traffic if the directory pages are
found in the local buffer cache. However, when a remotely stored directory is
closed, all of the associated file pages are flushed from the buffer cache to

insure that only one version of the directory exists in the system. Thus, the
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next open of a remote directory involves rereading all the directory pages to

be searched.

An example of the network traffic generated to expand a pathname
(/th/foo/file1) under Locus where the directories and target file reside at a
site different than the using site is shown in figure 4.1. The th directory is
opened and read across the network. The directory is searched for an entry
that contains the string name foo and when such an entry is found, the th
directory is closed. Next, the foo directory is opened and read across the net-
work and the string name filef is searched for. When a match is found, the

foo directory is closed and the target data file (file 1) is opened.

Tone & 3 3
Open th —

<— ROpen*
Read —

< RRead
Usclose —

<— RUsclose
Open foo  —

<— ROpen
Read —

“— RRead
Usclose —r

4—  RUsclose
Open file1i —

<— ROpen

Figure 4.1: Message Traffic for Pathname Expansion
of /th/foo/filel

Fortunately, the activity of most users is usually confined to a small,

slowly changing subset of the entire name hierarchy. Furthermore, most

*Responses are indicated as Rmessage-type, ie. the Open Response is shown
as ROpen. The explicit ACK messages sent for each Locus message (except
for Read and RRead) are not shown.
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directories have a high read to modify ratio. This behavior implies that the
number of messages due to pathname expansion can be reduced by caching
directory pages and related file descriptors at each site even after the direc-
tory has been closed. If significant directory reference locality exists, then
current references to directory pages are likely to be found in the directory
cache and will not generate network traffic. Total network traffic will be
decreased and more importantly, the elapsed time to reference remotely

stored objects will be reduced.
4.4 Issues in Distributed Cache Design

In order to properly evaluate the potential effectiveness of a cache, it is
important first to understand the necessary design goals and issues. Then
measurements and simulations can be used to determine specific parameters.

The goals in the desizn of a hardware or software cache [Smi 82| are:

1. Maximize the probability of finding a reference in the cache (hit ratio)

2. Minimize the time to access the information that is in the eache (access
time)

3. Minimize the delay due to a miss

4, Minimize the frequency and overhead of invalidating a cache entry.

A careful selection of cache parameters, including cache size and
replacement algorithm, is necessary to achieve these goals. A distributed
cache presents the additional problem of guaranteeing multicache consistency.
If caches at several sites store a copy of the same information (e.g. a directory

page) and one of the sites modifies the information without notifying the
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others, an inconsistent state results with possible disastrous consequences.

The hit ratio for the cache is improved by increasing the cache size,
given a significant amount of directory locality. However, the memory
requirements for the system and the time to access a given cache element also
increase as the cache size increases. Furthermore, some directory references
are unique (never rereferenced), so increasing the cache size beyond a certain
point will not improve the hit ratio. In a distributed cache, the overhead of
maintaining multicache consistency increases as cache size increases because a
larger cache increases the probability that a site is caching a page that must

be invalidated.

There are several approaches to maintaining consistency for a multisite
directory cache. In the simplest approach, directory pages are flushed from
the cache whenever the directory is closed. A request to open for
modification is blocked until all sites have closed the requested directory.
This policy insures multisite cache consistency since a site that has a direc-
tory open for modification knows that no other valid copies of the directory
page(s) exist at other sites. However, the cache is only useful during the

period that a directory is open.

In another approach, directory pages remain in the cache after the
directory has been closed. Whenever a storage site receives a request for
modification for a directory page, it broadcasts a message to all other sites
identifying the directory page. Each site examines its cache for the page and
invalidates it if present. Although this scheme may work well for a few sites,
as the number of sites increases, the network traffic generated becomes prohi-

bitive.
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A better solution is for the storage site to record the sites that have
requested a given directory page. When the storage site receives a request to
modify the directory page, only those sites in the list are notified to flush the
page from their caches. The overhead for cache invalidation is acceptable if
there is a low rate of directory modification to directories that are shared
among sites and if only a small number of sites share a directory when that

directory is modified.

When the directory cache is full and a cache miss occurs, some existing
cache entry must be replaced with the target reference. A good replacement
algorithm is necessary to achieve a satisfactory hit ratio. Choices include a
global LRU algorithm, LRU per process or user, or first in first out. The
delay due to removing the selected entry from the cache and bringing in the

target reference must also be minimized.
4.5 Directory Reference Measurements

A trace-driven simulation was used to investigate directory reference
locality and evaluate different design choices for the distributed directory
cache. Directory reference strings were collected on each site of the 15 site
UCLA Vax Locus network for 10 hour periods for 8 days. The network com-
monly supports more than 150 active users during the five hour busy period
of each day. There are various organizations administrating subsets of the
machines; as a result, certain communities of users regularly cross many

machine boundaries, while other users’ activity is primarily local.

An event trace was recorded each time the operating system referenced

a directory component during pathname expansion. Each event contained the
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name of the directory reference, its file descriptor, an indication of whether
the directory was stored at the site that issued the reference or at some
remote site, an indication of whether the directory reference was found in the
existing buffer cache of the using site, the type of reference (for read or for
modification), a networkwide timestamp, plus other information. References
to directories in which the directory was the target file (e.g. directory listing
commands) were not recorded. Approximately 2 to 3 million entries were col-

lected per day.

The reference strings for each site were combined and sorted by time.*
Cache simulations were run on the combined, multisite reference string so the
caches on all sites were simulated simultaneously. The extent of directory
sharing between sites and the effect of multisite cache invalidation could thus

be evaluated.
4.5.1 Measurement Results

The data which was collected showed differences in certain measure-
ments among sites, but for any given site, the measurements were quite

stable.

For a given site, the percent of references for remotely stored direc-
tories, the percent of references for modification, and the percent of remote
references not found locally, showed little variance during the 8 days of meas-
urements. For all sites, the percent of directory references for modification
also varied little, with an average of 2.5% and a standard deviation of 0.5.

The variance among sites for the local versus remote values was more

*Locus contains an intersite time synchronization facility that keeps the
clocks on all sites within a few milliseconds of one another.
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pronounced because different sites support different mixes of local and remote
service. Although local directory references were dominant on all sites, the
percent of references for remotely stored directories varied from 2.3% to
14.6%. The percent of remote references not found at the using site varied
from 20.2% to 83.2%. On sites where remote traffic was mostly due to the
activity of background processes that kept directories open, this percentage
was low, but on sites where remote traffic supported normal interactive com-

puting, the value was much higher.

Directory reference traces collected for 10 hours for a single example
site are shown in figure 4.2. As expected, most of the references are local
(88%). However, a significant portion (71%) of the remotely stored directory
pages must be brought across the network during pathname expansion. The
remaining references to remotely stored directories are references to direc-
tories that are currently open locally and are therefore found in the buffer
cache ("incore”) of the using site. The goal of a directory cache is to increase
the number of remotely stored directory pages that are found incore at the
using site. The number of directory references that are requests for
modification is quite low (1.3%) but single site measurements are not enough
to determine the amount of directory sharing when modification is requested.
The results from the trace-driven simulation using the combined data from all

sites is needed to determine the overhead of multicache invalidation.



All Local Remote
references | references | references
# of references 354491 317199 37292
% of references 100.0 89.48 10.52
% of references for mod 1.27 1.07 2.99
% of references not incore 17.41 11.12 70.87

Figure 4.2: Results of Directory Reference Event Collection
4.5.2 Locality in Directory Referencing

The property of "locality of reference” has been observed in program
execution, file access, as well as database access. We are interested in the
degree to which locality is also exhibited by operating system functions and in
name to object tramslation in particular. If locality exists, caching recently
used information is likely to reduce the overhead of operating system manage-

ment.

A measure of the locality present in a reference string is given by
Rodriguez-Rosell [Rod 76] and used by Kearns [Kea 83] to demonstrate local-

ity in database reference strings:

L(t,r) = w(t,r}/r

where L{t,r) is interpreted as the instantaneous locality measure at time t. This
measure can be applied to directory reference strings by setting:
t = time as measured in # of directory references
r == window size in # of directory references
w{t,7) == working set size at time t for window r
= the # of distinct directories referenced among the r most
recently referenced directories in the reference string

Averaging L(t,7) over the number of references gives the average locality I7)

for a given window size. A reference string that exhibits little rereferencing
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and thus has poor locality will have a value of I{r) near 1 over a wide range of
window sizes. If there is substantial rereferencing in a reference string, then
as the window size increases we expect L{7) to decrease rapidly as references
are likely to be found in the current working set so the average working set

size does not increase.
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Figure 4.3: Average locality L{7} as a function of window size
7 for directory references
A plot of the average locality L{7) versus window size for the example
single site directory reference string is shown in figure 4.3. The sharp
decrease in I{7) implies a significant level of locality in directory referencing
and suggests that a directory cache of reasonable size would be very
beneficial. At a window size of about 40, the curve flattens out, indicating

that some small number of directories are never rereferenced.
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4.5.3 Trace-driven Simulation Results

A trace-driven simulation was used to evaluate directory cache size,
replacement algorithms, and the overhead of maintaining multicache con-
sistency. A plot of the miss ratio versus cache size for a directory cache using
a global LRU replacement algorithm is shown in figure 4.4. The miss ratio is
the probability of not finding a remotely stored directory during pathname
expansion at the using site. The cache size is given in number of directory
pages with the assumption that each directory is stored on a single page. The
cache size would be slightly larger to support the small number of directories
stored on more than one page. A cache size of just 15 directory pages for the
Locus site considered in figure 4.2 reduces the miss ratio from about 71%
without a directory cache to just 11%. Almost 95% of the remotely stored
directory references will be found at the using site with a cache of 40 pages.
Therefore, in most cases, the elapsed time to access remote objects will be
greatly reduced since 95% of all accesses to remote objects will not include
the overhead of pathname expansion. The hit ratio for all sites with a cache
of 40 pages varies from about 87% to 96%. Increasing the cache size further
does not appreciably improve the miss ratio as some small number of direc-

tory pages are never rereferenced.

Instead of using a single, global cache at each site, a cache could be
dedicated to each user. Cache entries would be replaced as each user cache
filled up. Our measurements show that the number of active user ids per site
varied from a few to over twenty. Users frequently execute processes
remotely, especially on server sites, thus increasing the number of user ids per

site. Results from the trace-driven simulation show that although a cache per
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user (with a per user LRU replacement algorithm) uses a smaller cache size
per user to achieve the miss ratio of the global cache, the total number of

pages dedicated to the directory cache is substantially greater.
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Figure 4.4: Miss ratio versus window size for a directory cache
When a request for modification is received by the storage site of a
directory, the storage site must send a cache invalidation message to each site
that currently has the page in its cache. Both the number of directory refer-
ences that require cache invalidation messages and the number of sites that
must receive cache invalidation messages must be very low for the distributed

cache to be effective.

Data from the directory reference traces for a single day indicate that
over a 10 hour period there were 2,474,407 total directory references issued by

all sites. Results from the trace-driven simulatiop show that even if each site
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provides a cache of 80 directory pages, only 1265 or 0.051% of the references
require cache invalidation. The distribution of the number of sites that need
to be sent cache invalidation messages for each reference that requires cache
invalidation is shown in figure 4.5 for a cache of 680 pages. Only 93 references
or .0038% of the total number of references require more then a single cache
invalidation message. Thus, the overhead of maintaining multicache con-
sistency is quite low and should not be costly even as the number of sites in

the system grows substantially.
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Figure 4.5: Distribution of # of sites that require cache invalidation
messages
A plot of the miss ratio versus cache size for a single site cache
(without cache invalidation) and the miss ratio versus cache size for a distri-
buted cache where cache invalidation is generated by the simulation, is shown

in figure 4.6. The slightly higher miss ratio of the cache invalidation plot is
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mostly due to counting all references for modification as misses (since they
must be serviced by the storage site) rather than from the removal of invali-

dated entries from the cache.
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Figure 4.6: Plot of miss ratio with and without cache invalidation

4.8 Operation of the Distributed Directory Cache

Pathname expansion with a directory cache works as follows. When a
using site searches a remotely stored directory during pathname expansion
and the directory pages are not found in the directory cache at the using site,
a "no open read” (NOR) request message is sent to the site that stores the
directory. The storage site returns the file descriptor (inode) and the first
directory page to the using site, which enters the items into the local direc-

tory cache. The storage site adds the using site to a list of all sites that

64



currently have that file open for NOR. Additional directory pages are read
by the using site as usual and stored in the cache. Remotely stored directory

pages are removed from the using site directory cache on an LRU basis.

When a cache miss forces a directory page to be removed from the
cache, the storage site must remove the using site from the NOR list for that
directory. To reduce the delay due to a cache miss, an explicit "removed from
cache” message of an NOR directory is not sent to the storage site, but is
instead piggybacked on the next open message to that storage site. A table of
the last few NOR "removed from cache” messages are kept for each storage
site to be sent with the next open message. If an overflow of this table occurs
before the next open message is sent, a "removed from cache” message is
dropped. Given the low rate of cache invalidation, the overhead of sending
an invalidation request to a site that doesn’t actually have the directory in its

cache is minimal.

All opens for modification are sent to the site that stores the directory.
When a request for modification is received for a directory which has a non-
null NOR list, the storage site sends a message to each site in the list to
invalidate the file descriptor and pages associated with that directory. After
acknowledgement is received from all sites, the storage site opens the direc-
tory for modification. After the directory has been closed for modification, it

can be reopened NOR by other using sites.
4.7 Summary

The primary goal of the distributed name service cache discussed in

this chapter is the reduction in system response time to users’ remote requests
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by reducing the number of times a using site communicates with a remote
site. Name service in the distributed system which was studied exhibited a
high level of locality, with an exceptionally low level of conflict between
modifications to directories on one site and their concurrent use elsewhere in
the network. Since name management is a critical function to be supported
by an internet operating system, a name service cache can have a substantial

positive effect in overcoming the performance limitations of long haul links.
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CHAPTER 5

A Protocol for an Internet Operating System
5.1 Introduction

A new approach to protocol design, semantics based protocol design, is
proposed as a methodology to help extend transparency beyond local area
networks. New, higher semantic level message primitives for the most fre-
quent user commands are described and their impact on reducing network
traffic is explored. The role of modifications to the lower layers in the proto-
col hierarchy to support the new message primitives and further reduce traffic

is also discussed.
5.2 Methodology

The first step in semantics based protocol design is to investigate the
behavior of the client. One must determine the characteristics of the applica-
tions to be supported by answering the following questions: How much data
will be typically transmitted? Do frequent applications dominate client
behavior? What are the response time requirements for the applications?

How much demand will be placed on the network channel?

Next, message primitives to support the client’'s behavior must be
defined. System calls provided by a single site operating system may or may
not be appropriate as message primitives. During the execution of a system

call, other system routines are often called internally by the kernel. If each
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system routine corresponds to a message primitive, many messages may be
transmitted for each system call that operates on remotely stored data.
Instead, the semantic level of the message primitive can be raised so system
routines are called from the storage site rather than the using site to reduce

traffic.

Frequently, system calls act as a group to provide an operating system
service. For instance, in Unix, to create a process running new code, the fork
system call is executed to create a process running the same program as the
caller, followed by an ezec call which replaces the code and data of the run-
ning process with a new program and data image. In this case, a single mes-
sage primitive could be defined which combines the semantics of the fork and
exec system call to create a process which runs a new program on a remote

site.

The choice of message primitives is one of the most important factors
in the overall performance of a protocol. Lantz et. al. [Lan 84] report perfor-
mance improvements of up to 3000% when the message primitives of their
Network Graphics Protocol are defined so values are returned after an entire
sequence of graphic operations instead of being returned after each operation.
Similar performance gains have been measured in the Internet Locus testbed

and are discussed in chapter 6.

Raising the semantic level of message primitives must be balanced by
three constraints. First, it is often desirable to move data to the using site to
take advantage of local buffer caching. However, if an operation is moved
entirely to the storage site, care must be taken to return relevant data to the

using site so caching can be used to reduce the need for network traffic during



subsequent operations. Next, it is best for the user process that waits for the
completion of a system call to wait at the using site rather than the storage
site to avoid the overhead of building and scheduling a user process for
remote service. Third, the performance gain of building higher level message
primitives must be balanced against the amount of new kernel code that must

be written.

The final step in semantics based protocol design is to tune the lower
protocol layers to efficiently support the message primitives. The characteris-
tics of the underlying network should be exploited for efficient service. If a
LAN based protocol is to be extended to an internet environment, existing
patterns of message traffic can be measured to determine what message types
dominate traffic and to provide information for deciding what optimizations

are possible.
5.3 Client Behavior

! Given the rather poor communication characteristics of the lower levels
in the distributed system hierarchy it is reasonable to ask whether network
transparency is feasible in an internet environment. Surprisingly, a close
examination of the required characteristics of typical interactive computing

reveals that there is (in principle) substantial opportunity.

The actual amount of data which must be intrinsically transferred to
support the execution of interactive commands for a majority of cases is
surprisingly small. A study at Stanford University of the Unix operating sys-
tem found nearly 50% of all files to be 1K bytes or less in size, and about

75% of the files to be 4K bytes or less when weighted by frequency of use.
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[Laz 84]

Measurements of user commands were gathered from the collection of
Locus systems at UCLA to determine if certain applications dominate client
behavior. Users added a statement to their .logout files to save the history of
commands that were typed during an interactive session. A sample size of

10,092 command lines were collected.

The most frequently executed interactive commands are shown in
figure 5.1. Note that the most frequent 10 commands represent the majority
of what users actually do. The complete measurements from UCLA show
that 10% of the commands out of an available repertoire of over 330 com-
mands account for more than 80% of total command usage.* If these frequent
commands can be supported effectively, than major strides toward achieving
performance transparency over the Internet will have been taken. Although
commands that use file arguments may require transporting data across an
Internet link when the data is stored remotely, the statistics from the Stan-
ford study suggest that the actual amount of data that must be moved is
usually small. Thus, the intrinsically limited bandwidth may not be so insur-
mountable an impediment to providing normal interactive response time

across an Internet link.

*A study at Bell Laboratories reports a similar result [Han 84].
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Command Function Frequency of Occurrence
Is list contents of directory 11.9%
vi editor 8.7%
cd change to new directory 8.5%
more examine a file 7.5%
rm remove a file 3.3%
dirs list directory stack 26%
jobs identify background jobs 2.6%
fg bring a job to the foreground 2.2%
make compile a C zource program 2.2%
grep search for a string 2.1%

Figure 5.1: The 10 Most Frequently Executed Unix Commands

Furthermore, the several tenths of a second delay across an Internet
link is relatively small compared to the usual acceptable elapsed time of a few
seconds for interactive commands. That time in principle permits transmis-
sion of the needed small amount of data without substantially increasing the

user perceived delay, even over modest bandwidth connections.
5.4 Message Primitives for Internet Locus

The LAN-Locus protocols are used as a base to build a protocol for an
internet operating system. Emphasis is placed on efficiently supporting those
applications that dominate client behavior. The message primitives used by
Internet Locus to support the most frequent user commands that access
remote data are discussed in this section. The ¢p command (the 12th most
frequent command) which is often used to copy data between sites is included
in this section while the dirs, jobs, and fg commands are omitted because they

rarely access remote data.
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5.4.1 List a Directory

The most frequently used Locus command is Is, which lists the con-
tents of a directory. About 65% of the s commands that are executed include
the -1 option which provides information for each entry such as owner, size,
and protection. Under Locus, when the {s -l command is issued and the tar-
get directory is located on a remote site, the directory page is brought to the
using site after pathname expansion and a Stat Request is sent to the storage
site for each directory entry. The message traffic for the Is -l command of a

directory that contains 54 entries is shown in figure 5.2

Instead of sending a Status request message for each directory entry
and processing the Response at the using site, message traffic can be reduced
by moving most of the processing to the storage site. A new message primi-
tive, drrstat, has been defined for Internet Locus which reads a directory page
and returns the status for the number of directory entries that fit in a net-
work message. Under Internet Locus, message traffic for the Is -/ command
for the directory shown in figure 5.2 is reduced from B3 request/response pairs

to just 2 request/response pairs.

The ls command without options requires the target directory to be
opened, read, and closed. When directory pages are cached at the using site
as described in chapter 4, the ls command without options rarely causes any

network traffic.
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LAN-Locus* Internet-Locus
US SS Us SS
Open <dir> - Dirstat —>
€~ ROpen “—  RbDirstat
Read — Dirstat —>
“— RRead €— RbDirstat
Usclose<dir> —
€—  RUsclose
Open <dir> —
€— ROpen
Read —
4— RRead
Usclose<dir>
€—  RUsclose
Open<dir> —>
“— ROpen
Read —
€— RRead
Stat<file> -
“— RStat
Stat <file> —
4=  RStat
Stat -
€— RStat
Stat —
€— RStat
—-)
4—
Usclose<dir> —»
€= RUsclose

Figure 5.2: Message Traffic for the List Directory Command
ls -l

5.4.2 Examine a File

The more command is used to examine a text file, one screenful at a

time, on a terminal. A comparison of the message traffic generated from the

*Responses are indicated as Rmessage-type, ie. the Open Response is shown
as ROpen. The explicit ACK messages sent for each LAN-Locus message
(except for Read and RRead) are not shown in figures 5.2 - 5.8. Only 4 of the
54 Status Request/Response message pairs that are transmitted are shown.
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more command under Locus and Internet Locus is shown in figure 5.3. Under
Locus, each pathname component in the string name of the target file is
opened, read and closed as part of pathname to object translation. A system
call to determine the status of the target file is issued, resulting in a Status
request message and response. The target file is opened and a response to the
Open request message is returned. Finally, a read system call is issued and
the first page of the target file is returned to the user site from the storage

site.

Under Internet Locus, when the desired directory pages are in the
buffer cache at the using site, no messages are transmitted for pathname to
object translation. In the more command, as in many other commands and
programs, the Read system call follows the Open (for Read) system call. A
new message primitive has been defined that combines the semantics of these
two system calls. The new message means: "Open this file for read access and
if the open succeeds, return the first page of the file". Since many files contain
a single page of data, this message primitive is very effective in reducing

delay.

The Stat and Open system calls are also often used together by com-
mands and programs. The Stat call returns the attributes of a file. These
attributes are checked against some criteria (e.g. is this file a directory?) and
the Open call is issued depending on the outcome. Instead of transmitting
separate Stat and Open requests for a remote file, the Stat and Open calls can
be combined to form a single message primitive. A single StatOpen request is
sent which means: "Perform a Stat on the file and if the attributes of the file

match the desired criteria, open the file. In the Internet Locus version of the
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more command, the effect of the StatOpen primitive is simulated by opening

the file prior to the Stat system call so the Stat is executed at the using site.

LAN-Locus Internet-Locus
Us SS Us Ss

Open<dir> — OpenRead —?

€ ROpen “— ROpenRead
Read — Usclose -

“— RRead €— RUsclose
Usclose —

€— RUsclose
Stat <file> —

4€— RStat
Open<dir> -

“— ROpen
Read —r

“— RRead
Usclose<dir> —

“—  RUsclose
Open <file> -

“— ROpen
Read —

“— RRead
Usclose<file> —

4“— RuUsclose

Figure 5.3: Message Traffic for the Examine File Command
more filelK

5.4.3 Change Working Directory

The ed command changes a user’s current working directory. In LAN-
Locus, the new directory is opened and closed during the ¢d command. A
reference to a remote file in the current working directory causes the direc-
tory to be reopened and the page(s) brought to the using site as part of path-
name expansion. In Internet Locus, the current working directory is kept

open. The page(s) of the current working directory in the using site cache are
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rarely flushed so pathname expansion for a file within the current working
directory occurs without network traffie. Likewise, the /s command of the

current working directory does not generate any traffic.

The reduction in message traffic during the execution of the e¢d com-
mand under Internet Locus compared to LAN-Locus is not substantial. How-
ever, since the directory pages of the current working directory are kept at
the using site under Internet Locus, the reduction in message traffic due to
pathname expansion for commands that reference files in the current working

directory is often dramatic.

LAN-Locus Internet-Locus
s eSS ] US

OpenRead —*
ROpen “— ROpenRead

Open<cwd*>

Tt

Usclose<cwd >
RUsclose

Figure 5.4: Message Traffic for the Change Working Directory Command
ed /fth/abs

5.4.4 Edit a File

Viis a display oriented text editor. When Vi is invoked, the file to be
edited is sent from the storage site to the using site (see figure 5.5) and copied
into a temporary area managed by the editor. Updates are performed on the

temporary copy at the using site.

*c¢wd = current working directory
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When the Vi write command is issued, the new version of the file is
transmitted to the storage site. A shadow page mechanism is used at the
storage site to insure that either all of the changes to the file are saved or
none are saved. Each page of the updated version of the file is written into a
new physical page on disk at the storage site. However, the disk inode con-
tains pointers to the pages of the old version of the file while the incore copy
of the inode contains pointers to the newly allocated pages. When the using
site closes the file, 3 commit request is sent to the storage site. The storage
site services the commit by moving the incore inode information to the disk

inode thus permanently saving the new version of the file.

As suggested in chapter 3, a new message primitive can be defined to
combine the semantics of a commit followed by a close which reduces the
number of messages needed to save a new version of a file. In addition, the
StatOpen message can be used to remove the Stat message exchange. As a
result, a file can be saved on a remote site with just 2 message exchanges plus
a write message per page, compared to 10 message exchanges plus a write per

page under LAN-Locus.

77



LAN-Locus
US SS

Open<dir> —
4— ROpen

Read —
“— RRead

Usclose o 4
€—  RUsclose

Open<file> —
€— ROpen

Read <file> -
“— RRead

Open <dir> —
€— ROpen

Read —
“— RRead

Usclose<dir> —
€— RUsclose

Usclose<file> —>
€—  RUsclose

Open<dir> —
4— ROpen

Read —
4= RRead

Usclose<dit> —
4— RUsclose

Stat<file> -
€— ROpen

Open<dir> —
€— ROpen

Read —
4— RRead

Usclose<dir>» —*
€—  RUsclose

Open <file> —
“— ROpen

Write < file> —

USCommit —

<— RUSCommit

Usclose <file> —F

€— RUsclose

Internet-Locus

Us SS
OpenRead —*
€— ROpepRead
Usclose g
4= RUsclose
StatOpen g
€—  RStatOpen
Write —
USCommit —>
€— RUSCommit

Figure 5.5: Message Traffic for the VI Command
vi fic/file1K; write file
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For a large file, the delay due to the write messages overshadows the
delay due to the StatOpen and file Commit__close messages. Therefore, an
efficient data stream protocol, as described in section 5.5.4, is necessary for

editing large files across a slow internet link.
5.4.6 Remove a File

The network traffic for the LAN-Locus implementation of the remove
file command, rm is shown in figure 5.8. A Stat message is first sent to the
storage site to determine if the file exists or is a directory. Another Stat mes-
sage is sent to determine if the user has permission to remove the file. The
parent directory of the file and the target file are opened for modification and
the directory page(s) are sent to the using site. The file is removed by setting
the inode value of its directory entry to zero. The updated directory entry is
sent in a 1024 byte Write message and the directory is committed and closed.
The link count of the file is decremented, its version number is incremented,
and the file is committed so all sites that store a copy of the file see the
updated (deleted) version. When all storage sites have seen the delete, the

inode can be reallocated.

Much of the processing for the remove operation can be moved to the
storage site to greatly reduce the number of messages transmitted during the
rm command. The two Stats and file Open can be combined into a single
StatOpen message that causes the target file to be opened for modification if
the file exists and is not a directory. The parent directory can be opened and
read in a single message exchange. With variable length buffers {see section
5.5.2), only the single updated directory entry needs to be sent in the Write

message. The operation of commiting and closing the parent directory and
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target file can also be combined into a single message exchange.

LAN-Locus* Internet-Locus
US SS Us §S

Stat<file> — StatOpen —_—

“— ROpen €— RStatOpen
Stat<file> — OpenRead —F

4— ROpen €— ROpenRead
Open <dir> — Write —

4— ROpen USCommit —F
Read —> €= RUSCommit

€— RRead
Open <file> —

“— ROpen
Write <dir> —
Commit<dir> —*

4— RCommit
Usclose<dir> —>

4—  RUsclose
Commit<file> —

€— RCommit
Commit<fle> —>

€— RCommit
Usclose<file> —F

“— RUsclose

Figure 5.6: Message Traffic for the Remove Command
rm filelK

5.4.8 Copy a File to an Existing File

The network traffic generated under LAN-Locus to copy a 1K byte file
from one site to an existing file on another site is shown in figure 5.7. Path-
name expansion contributes significantly to the total network traffic gen-
erated by the simple copy command running under LAN-Locus as each direc-

tory component is opened, read, and closed across the network.

*Messages due to pathname expansion are not shown
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By caching directory pages, combining the separate Close and Commit
messages, and generating status requests after the file is opened, the number
of messages in addition to the Write message drops from 14 request/résponse
pairs in LAN Locus to 2 request/response pairs in Internet Locus. It is espe-
cially important in the Unix context to be able to copy small files efficiently

because, as mentioned earlier, small files dominate normal file usage.

LAN-Locus Internet-Locus
Us SS US SS
Open <dir> — Opea —
€— ROpen 4— ROpen
Read — Write —
“— RRead Uscommit —
Usclose — €  RUscommit
“—  RUsclose
Stat<file> —
€— RStat
Open<dir> -
4— ROpen
Read -
“— RRead
Usclose —
“—  RUsclose
Stat <file> —
“— RStat
Open<dir> —
“— ROpen
Read —
€— RRead
Usclose <dir> —
4  RUsclose
Open<file> —
4— ROpen
Write<file> —
Uscommit<fle> —>
€— RUscommit
Usclose < file> -
4— RUsclose

Figure 5.7: Message Traffic for the Copy File Command
ep /th/file1K filelK
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5.4.7 Copy a File to a New File

When the ¢p command is executed and the destination file does not
exist, a new file must be created at the storage site. Under LAN-Locus 8
requests and responses plus a Write message are used to create a file. The
parent directory of the new file is opened and read and then opened again for
modification. An open message is sent to the storage site with the inode set
to zero to request the creation of a new file. An inode is allocated at the
storage site and returned to the using site in the response to open. A direc-
tory entry for the new file is sent to the storage site in a 1024 byte message.
The directory is committed and closed to make the newly created file per-
manent. Finally, pages from the source file are sent to the storage site and

copied into the new file.

There are many opportunities to reduce the number of messages to
create a new file. The parent directory can be opened initially for
modification and the directory page(s) returned to the using site in the
response to open to eliminate an open request and response and a read
request and response. A new message primitive, Create can be defined to
request the creation of a new file. The semantics of Create are: "Open a new
file and if the open succeeds, write, commit, and close the parent directory
and commit the inode for the new file." With these optimizations, the number
of messages to copy a 1K byte file into a new file is reduced from 10
request/response pairs plus 2 writes to 3 request/response pairs and 1 write

message.
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LAN-Locus* Internet-Locus
US ss US §s

Open <dir> — OpenRead —

€— ROpen €— ROpenRead
Read — Create -

4  RRead €— RCreate
Open <dir> — Write —

€— ROpen Uscommit —>
Read — €— Ruscommit

“— RRead
Open <new file> —

“— ROpen
Write<dir> —
Uscommit <dir> —>

4— RUscommit
Usclose <dir> —

“—  RUsclose
Uscommit <new file> —>

4= RUzcommit
Write<<new file> —
Uscommit <new file> —

€—  RUscommit
Usclose <pew file>> —

“—  RUsclose

Figure 5.8: Message Traffic for the Copy File Command
cp /th/filelK newfilelK

5.4.8 Remote Execution: Make and Grep

The make command is used to execute a program if the target files for
the program have been modified or do not exist. Make is most often used to
compile a related group of source files. Grep is used to search a set of files for

lines that match a specified pattern. Both commands often access large

amounts of data.

In a network transparent distributed system, one has the choice of

moving the data to the execution site or moving the processing to the data

*Messages due to pathname expansion are not shown
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storage site. This freedom has tremendous potential for reducing delay due

to data movement across a long haul link.

Since make and grep are commonly executed commands, their load
modules will often exist at the site that stores the data to be accessed.
Therefore, if the site of execution for these commands moves from the initial
using site to the storage site, only a new process image has to be created at
the storage site, without the transfer of the load module for the command.
However, enough data from the user’s environment must also be transferred
so the execution of the process at the storage site is semantically equivalent to
execution of the process at the site the command was initially issued from.
Items such as current open file descriptors, IPC identifiers, and search paths

must be correctly interpreted by the relocated process.

Total Size of | Data to | Process to

Source File!s! Process Data
e

< 1K bytes 80 42
10K bytes 107 42
22K bytes 118 42
44K bytes 163 42

Figure 5.9: Total # of Messages Transferred
for make -f Makefile > & make.log
In the example shown in figure 5.9, the makefile, source files and log
file are all stored on a remote storage site. By moving the site of compilation
to the storage site, instead of moving the source files to the site that initially

issues the make command, the number of messages is significantly reduced.
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In Locus, a user can select the execution site for subsequent commands
by issuing the sefopts system call. However, for Internet Locus, the policy for
moving a process to the storage site to improve performance may depend on
the amount of data to be accessed and the distance between the using site
and storage site. A mechanism whereby the system dynamically determines

the appropriate execution site for a command is a subject of ongoing research.
5.6 Protocol Support for Message Primitives

By raising the semantic level of message primitives, the number of net-
work messages transmitted to service frequent user commands can be greatly
reduced. By moving the process to the data, the number of messages required
for certain data intensive commands can also be significantly reduced. How-
ever, the communication cost of supporting network transparency across long
haul links may still be too great unless the lower protocol layers are tuned

sufficiently for the higher delay, lower bandwidth environment.

Measurements of network traffic for an existing LAN-Locus network
were collected to determine the relative frequency of different message types.
The results were used to identify potential optimizations to improve perfor-
mance when Locus is extended to the internet environment. A discussion of
the network measurements is given in Appendix B. The most frequently

transmitted message types are shown in figure 5.10.
5.5.1 Piggyback Acknowledgements

In LAN-Locus, the Acknowledge (ACK) message contributes more to
overall network traffic than any other message type. When any Locus mes-

sage is received (except Read and Response to Read), the receiver transmits a
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148 byte Acknowledge message to the sender. The explicit ACK message uses
network bandwidth, contributes to delay, and wastes valuable processor
resources as the receiving CPU must field the network interrupt and copy the

ACK into a buffer and the sending CPU must format and transmit the ACK.
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Figure 5.10: Distribution of Message Types
Two optimizations are implemented in Internet Locus. First, the ACK
message is reduced to just 12 bytes so only the essential fields are transmit-
ted. This decreases transmission delay over slow communication links.
Second, ACKs are piggybacked in the header of outgoing messages. If there
is no outgoing traffic within a timeout period, an explicit ACK is sent. Since

most Locus traffic is characterized by request-response sequences, a response
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message with a piggybacked ACK in its header acts as an acknowledgement

for the request.

Response messages by themselves are not sufficient to provide ack-
nowledgments in all cases. Occasionally, a request cannot be serviced quickly
at the storage site so the response is delayed. The storage site must return a
separate ACK message without waiting for the request to complete so net-~
work resources such as sequence numbers and timeout buffers can be released

by the using site.
5.56.2 Variable Length Messages

A simple but important protocol modification concerns message sizes.
The transport layer of LAN Locus supports two fixed message sizes. Requests
are sent as small control messages and Responses consist of either a control
message or & data buffer plus a control message. Supporting only two fixed
message lengths simplifies the implementation of the transport layer and is
adequate in the low delay, LAN environment. However, the Arpanet.handles
single packet messages of less than 1008 bits much more efficiently then mul-
tipacket messages. Instead of supporting just two fixed message lengths,
Internet Locus supports variable length control messages and variable length

buffers to reduce delay across long haul links. Only the specific fields neces-

sary for each control message are transmitted.
5.5.3 Data Compression

Another strategy to reduce message traffic is data compression. Data
compression techniques have been studied for many years but their applica-

tion in computer networks has been limited. The encoding scheme developed
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by Huffman {Gal 78], based on the idea of assigning short codes for frequent
symbols and longer codes for rare symbols, will typically compress a text file
by about 38% and a binary file by 19% [Uni 81]. Unfortunately, the savings
achieved by transmitting a smaller message are usually offset by the expense
of calculating the relative frequencies of the message symbols, encoding the

message, and prepending the decoding tree to the message.

There is the potential, however, for a fixed encoding data compression
algorithm to be useful in reducing message traffic for a distributed operating
system, especially when a 1024 byte packet (the typical Vax UNIX page size)
can be reduced to less than 1008 bytes so it can be transmitted in a single
Arpanet message. In the fixed encoding scheme, symbol probabilities in
transmitted messages are collected over a period of time. A fixed Huffman
encoding is calculated from the symbol probabilities and the code is distri-
buted to all sites in the network. All sites use the same fixed code so no
decoding tree is prepended to messages. The processing cost of encoding mes-
sages using a fixed code can be made quite small, especially since each mes-

sage is checksummed anyway.

Extensions to this data compression scheme include combining the
checksum and encoding routines; recalculating the symbol probabilities after
a period of time so a slowly adaptive encoding is used; and using different
fixed codes for different file types such as text files, binary files, and source
code. A detailed evaluation of the costs and benefits of data compression for

Internet Locus remains for future work.
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6.5.4 Data Stream Protocol

The LAN-Locus protocol is not well suited for efficient transfer of large
amounts of data across long haul network links. Only a single message can be
in transit at a time to a given site. Under LAN-Locus, the network channel] is
blocked until the acknowledgement for the previous message has been
received. This stop and wait protocol performs satisfactorily in the low delay,
high bandwidth LAN environment but must be replaced by a data stream

protocol if sufficient throughput across long haul links is to be achieved.

In Internet Locus, a data stream protocol based on a sliding window of
outstanding messages has been implemented. Several messages, up to the
current window size, can be in transit to a given site at a time. Acknowledg-
ments are cumulative and signify that all messages up to and including the

message with the acknowledged sequence number were correctly received.

A go-back-N policy is implemented to handle communication errors. If
a site receives an out of sequence or damaged message it discards all subse-
quent messages from the sender until a correct copy of the expected message
is received. When the sender fails to receive an ACK for an outstanding mes-
sage within a timeout period, the lost message plus all subsequent unack-
nowledged messages are retransmitted. A more complex selective reject pol-
icy, which forces the receiver to handle out of sequence messages, is not neces-
sary due to the relatively low error rate for the internet topologies under

investigation in this dissertation.

Although data stream parameters such as window size and ack-

nowledgement timeouts are setup manually in the current testbed environ-
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ment, in a real Internet Locus system these parameters could be established
dynamically as part of the topology change algorithm. The elapsed time to
receive the response to Probe message during topology change could be used

to configure the window size and timeouts for different sites.

The data stream protocol allows files to be written efficiently over long
haul links. In LAN-Locus, when the using site issues a Write message, the
site must wait for an Acknowledgement message from the receiver before the
next Write message can be transmitted. In Internet-Locus, the using site can
send Write messages continuously, as long as the number of outstanding mes-

sages is less than the maximum window size.

The data stream protocol, however is not sufficient to achieve good
performance when reading large files across slow links. The LAN-Locus Read

protocol must also be adapted to the higher delay environment.

Under LAN-Locus, sequential read access to pages of a file stored at a
remote site works as follows. The using site first issues a Read Request mes-
sage. Upon receiving the Read Request, the storage site retrieves the desired
page from disk (unless it is in the buffer cache) and initiates a one page reada-
head to retrieve the next sequential page from disk. The first page is returned
to the using site who issues the next Read Request. If the communication
link between sites is a LAN, this request message often reaches the storage
site just after the readahead has completed so the storage site can fulfill the
request without expensive disk access. Another readahead is initiated so

pages are retrieved at a rate close to the maximum available disk rate.
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In the long haul environment, the network penality is far greater than
disk access. Therefore readahead should occur across the network, not just
from the disk to main memory at the storage site. A network readahead
scheme works as follows. The using site issues a pormal Read Request with a
flag set to indicate sequential read access and sets up enough input buffers to
receive as many pages as the window size allows. When the storage site
detects sequential read access, it retrieves pages sequentially from disk, send-
ing each page in a Read Response message, subject to window flow control.

The data stream protocol insures reliable transmission of Read Responses.

When the using site issues a read system call during sequential read
access, if the Read Response has already reached the using site, the read is
completed immediately without any additional network traffic. If the desired
page is not in an input buffer, the read call blocks until the page arrives.
Network readahead effectively eliminates intermediate Read Request messages
and provides data transfer at the maximum throughput allowed by the win-

dow size.
5.5.6 Summary

Given the poor communication characteristics of long haul links, the
extension of transparency to the internet environment appears to be a formid-
able task. Fortunately, a close examination of typical interactive computing

reveals several favorable characteristics:
o Files are typically small

o A small set of commands dominate total command usage
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o An acceptable elapsed time of a few seconds for command completion is
much greater than the time to transmit several messages across several

packet switching nodes in a long haul network

In this chapter we have demonstrated that by raising the semantic
level of message primitives, the number of network messages transmitted to
service frequent user commands is greatly reduced. By moving the process to
the data, the number of messages required for certain data intensive com-
mands is also significantly reduced. Network overhead is further decreased if
acknowledgments are piggybacked on outgoing messages, variable length
headers and buffers are transmitted, and a protocol that supports multiple

outstanding messages is used.
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CHAPTER 6

The Performance of an Internet Operating System
6.1 Introduction

Solutions to problems in many areas of computer science succeed or fail
depending on their performance. In this chapter, the performance of Internet
Locus is discussed. Performance goals are stated, the Internet Locus testbed
is described, and measurement results are presented. The contributions of
the strategies discussed in chapters 4 and 5 are evaluated and their impor-

tance for systems other than Locus is suggested.
6.2 Performance Evaluation of Distributed Operating Systems

Previous attempts at building network transparent systems across long
haul links have been unsuccessful largely due to poor performance. If the
protocols described in chapter 4 and 5 are to be presented as a solution to
internet transparency, their performance in a real internet environment must

be satisfactory.

We define the performance goals for an internetwork operating system

as follows:

1. The elapsed time for the completion of interactive commands when
data is stored across a long haul link or local area network should be

nearly equal to the elapsed time when data is stored at the using site
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for small amounts of data.

2. The elapsed time to transfer large amounts of data across a long haul
link or local area network using native operating system commands
should be less than or equal to the elapsed time when using a special-

ized file transfer protocol.

The first goal states that the response time for interactive commands
in a distributed system should be generally independent of resource location.
If this goal is not met, there is little justification for considering a collection of
sites connected by internet links as a single, integrated system. Of course, for
large amounts of data, the transfer time across a typical long haul link will
not match the transfer time from a local disk due to the limited bandwidth of
the link. The second goal states that the user should be able to invoke the
normal, single site data transfer commands to transfer data across any level in
the distributed system hierarchy and achieve performance that is at least as
good as the performance of specialized file transfer protocols. If this goal is
not reached, it will be difficult to argue that native operating system com-

mands should be used instead of non-transparent file transfer commands.

The performance of a distributed system is often evaluated at a much
finer grain then the elapsed time of interactive commands. A common perfor-
mance measure is the time to read or write a single page of data from a
remote site [Gol 82]. Although this performance measure has merit, its use as
a means of evaluating performance as perceived by users is inappropriate.
Under LAN-LOCUS, for example, the elapsed time to read a single page of
data across an Ethernet is approximately 15 ms. which is close to the average

time to read a page of data from disk. When a user examines a one page file,
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however, 18 or more messages may be sent between sites in addition to the
read request and response for the file. These additional messages contribute
significantly to latency and may in fact dwarf the contribution from the single
read request and response. We therefore have selected the elapsed time of
common commands as the measure for performance evaluation of Internet

Locus.
6.3 The Internet Locus Testbed

A testbed was built at UCLA to explore the feasibility of network tran-
sparency in an environment of LAN “subnets” conpected by long haul net-
works. The testbed was designed so the characteristics of the link between
the subnets could be easily adjusted. Two Locus subnets, each internally con-
nected by an Ethernet, communicate across an Internet link. Messages from
one Locus subnet are reflected off an echo host and sent to the other Locus
subnet. The echo host is easily changed to alter the "distance” between the

two Locus subnets.

Echo

Net n Site

e = = =

Net 1

Locus Locus Locus
Site A Gatewsy Site B Site C

Figure 6.1: Internet Locus Testbed

95



The Internet Locus testbed is shown in figure 6.1. The Locus sites and
Gateway site are VAX 11/750s attached by Interlan interfaces to a 10Mbps
Ethernet cable. The Gateway site has an additional 1822 interface to an
Arpanet IMP [Bol 78]. Each of the Locus sites runs the same Internet Locus
software. The Gateway site runs specialized software to route packets
through the testbed. The format of an Internet Locus packet is shown in
fizure 6.2. A packet that includes a full buffer is 1212 bytes in length (not
including local net header) which is larger then the maximum message size
supported by the Arpanet. Large packets must be fragmented at the Gate-
way for transmission over the Arpanet and reassembled for transmission over

the Ethernet.

Packets travel through the Internet Locus testbed as follows. A
packet, originating from a Locus site, is first encapsulated in an ICMP [Dar
81] echo packet. The packet is sent from the Locus originating site over the
Ethernet cable to the Internet Locus gateway site. The packet is forwarded
by the gateway site to the Internet Protocol (IP) [Dar 81] destination site who
swaps the IP source and destination addresses and returns the packet to the
gateway site. The gateway then forwards the packet to the Locus destination
site. The IP destination address is configured by the user, so any Internet
site that supports IP and ICMP is a possible candidate to serve as an Internet
Locus echo site. By this strategy, Locus is routinely run on sites that com-
municate via local area networks, long haul networks, and satellite networks

merely by changing the identity of the echo host.

The Internet Locus testbed introduces two sources of overhead that

would not be present in a real Internet Locus system. First, the eight byte
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ICMP header, which is used solely to bounce packets off echo hosts, would be
omitted in a real system. Second, the echo hosts run standard TCP/IP
software that invokes a user process to handle each Internet Locus packet.
The scheduling and running of a user process at the echo site for each packet
increases the communication cost of packet transfer in the testbed. In con-
trast, the Locus sites in the testbed handle the IP and ICMP packet headers
at interrupt level so the user process overhead introduced at the echo site
would not be present in a real Internet Locus system. We therefore expect
that the performance that can be achieved in a real Internet Locus system

will be slightly better than the performance measured in the Internet Locus

testbed.
Seader | 14 bytes
he?:ier 20 bytes
:Sah:l[:’r B bytes
Pi‘:‘gfgck 12 bytes
:’::;:r 148 bytes maximum
})I:(;I':: 1024 bytes maximum

Figure 6.2: Internet Locus Packet Format
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8.4 Performance of Interactive Commands in an Internet Environ-

ment

One of the important goals of Internet Locus is to provide interactive
users with response similar to that perceived in a LAN or single site environ-
ment. To determine how well Internet Locus meets this goal, frequently exe-
cuted Unix commands were run from a site (the using site or US) at UCLA
with the target data stored at a remote site (the storage site or SS) across an
Internet link. By adjusting the echo site in the Internet Locus testbed, tests
were run for storage sites effectively located at UCLA, California Institute of

Technology (CIT), Rand, and the University of Delaware (U-Del).

Site # of IMP | Locus Header | Locus Header
hogs glus buffer
CIT 1 34 198
RAND 3 102 594
U-DEL 5 170 990

Figure 6.3: Estimated Delay (in milliseconds) to Transmit Messages
from UCLA to Selected Internet Sites
The estimated delay to send an Internet Locus message from a site at
UCLA to each of the Internet destination sites is shown in figure 6.3. Assum-
ing negligible delay due to Ethernet propagation and gateway processing, the

delay D, is given by:

D= (I +(M/C) * H

where 1 = IMP processing delay
C = Channel bandwidth
M = # of bits in message
H = # of IMP hops from source to destination
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For the Arpapet, with 50 Kbps links, and 2ms. IMP processing delay [Hav 82},

D = (2ms. + (M/50Kbps)) * H
where M / 50Kbps = 32ms. for a Locus header (148 + 54 bytes)

M / 50Kbps = 198ms. for a Locus header plus buffer

The delay calculations show that the elapsed time to transmit several
request and response messages between UCLA and any of the selected Inter-
net destination sites is within the normal response time expected for interac-

tive commands.

In figures 8.4 through 6.7, two columns of measured performance data
are given. The first column shows the results of running LAN Locus across
the Internet by encapsulating LAN Locus protocol messages in IP headers.
The second column contains the results of repeating the tests using the new
Internet Locus protocols. The times reported have been adjusted to reflect a
one way trip to the echo site, thus simulating the case where one Locus sub-

net is located at UCLA and the other is located at the echo site.

1

8.4.1 List a Directory

The most frequently used Unix command is Is, which lists the contents
of a directory. When the -l option is used, additional information for each

_entry is listed, such as owner, size, and protection.

Using Site | Storage Site | LAN-Locus | Internet-Locus
. {sec.) {sec.)
UCLA-A UCLA-B 3.0 2.0
UCLA CIT 15.0 2.0
UCLA RAND 27.0 2.0
UCLA U-DEL 43.0 3.0

Figure 6.4: Elapsed Time for tlhe List Directory Command
Is -
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8.4.2 Examine a File

The more command is used to examine a text file, one screenful at a

time, on a terminal.

Using Site | Storage Site | LAN-Locus | Internet-Locus
{sec.) (sec.)
UCLA-A UCLA-B <10 <10
UCLA CIT 3.0 1.0
UCLA RAND 5.0 1.0
UCLA U-DEL 9.0 20

Figure 6.5: Elapsed Time for the Examine File Command
more filelK

6.4.3 [Edit a File

The elapsed time to edit a 1K byte file is shown below. The time

includes reading the file from the storage site and writing it back.

Using Site | Storage Site | LAN-Locus | Internet-Locus

5€C, ISQC!
S e

UCLA-A UCLA-B 2.0 2.0
UCLA CIT 6.0 2.0
UCLA RAND 10.0 3.0
UCLA U.DEL 200 5.0

Figure 6.6: Elapsed Time for the Edit File Command
vi filelK; write filelK

6.4.4 Copy a File

The elapsed time to copy a 1K and 2K byte file from one site to

another across an Internet link is shown below.
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cp /th/file1K flelK

Using Site | Storage Site | LAN-Locus { Internet-Locus
(sec.) (sec.)

UCLA-A UCLA-B < 1.0 <10
UCLA CIT 4.0 1.0
UCLA RAND 7.0 2.0
UCLA U-DEL 18.0 3.0

cp [th/file2K file2K

Using Site | Storage Site | LAN-Locus | Internet-Locus
(sec.) (sec.)
UCLA-A UCLA-B <10 <10
UCLA CIT 4.5 1.0
UCLA RAND 70 2.0
UCLA U-DEL 19.0 35

Figure 6.7: Elapsed time for the Copy File Command

6.4.6 Discussion

These measurements indicate that, in the absence of network conges-
tion, typical interactive commands that access small amounts of data can be
serviced in an Internet environment in 8 manner that users are likely to find
entirely satisfactory. The first performance goal of Internet Locus is largely
met, even for topologies where the using site and storage site are separated by

several switching nodes and located 3000 miles apart.

It is also clear that a number of users can be interactively served in a
concurrent manner across a single Internet link of the kind considered here.
This is because the time required to transmit the needed data for typical
interactive commands, even across the Internet, is relatively small compared

to the expected response time of the command. For example, ls -l may
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require approximately three seconds of elapsed time for a 1K byte directory.
The Internet is occupied for little more than a quarter of a second for the
request and resulting data transfer. Hence even though queuing effects may
cause some interaction among pending Internet requests, little user perceived

delay is likely.
6.5 Performance of Commands Requiring Large Data Transfers

In this section we examine the performance of transferring large
amounts of data using the traditional layered protocol approach, represented
by FTP, compared to a kernel to kernel implementation of a distributed
operating system, represented by the dd command® running under Internet
Locus. The performance of moving a process to the data, which is not avail-

able using FTP, is also reported.

There are two ways to evaluate elapsed times measured in the Internet
Locus testbed. The elapsed times can be adjusted to simulate a system where
the storage site is located at the echo site or the echo site can be considered
as part of the system and the elapsed times used without adjustment. In sec-
tion 6.4 the elapsed times for command completion are divided in half to
simulate the case where the storage site is located at the echo site. However,
if a data stream protocol is used and the maximum number of outstanding
messages is greater than 1, it is no longer correct to divide the elapsed time in
half. The sender does not wait for each message to travel from the receiver to
the echo site back to the sender before transmitting the next message and

instead transmits messages continuously as long as the number of outstanding

*The dd command is often used to transfer large amounts of data in the Unix
environment.
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messages is less than the maximum window size.

It is therefore difficult to simulate a system where the storage site is
located at the echo site when the window size is greater than 1 usiag elapsed
time measurements from the Internet Locus testbed. As a result, the meas-
urements of the data stream protocol are analyzed as if the echo site was part
of the system and Internet Locus throughput is calculated using the total
elapsed time for command completion, without any adjustment for the time

that packets travel to and from the echo site.

To accurately compare FTP throughput with Internet Locus
throughput, an FTP implementation for the testbed was developed in which
each FTP packet is sent via the echo site just as each Internet Locus packet
is. An ICMP header, added to each FTP packet, requests the echo site to
swap the source and destination IP addresses and return the packet to the

Internet Locus gateway which forwards the packet to the destination.
6.5.1 FTP and dd Performance Across a LAN

FTP and dd performance were measured in the production LAN-Locus
environment at UCLA. The unmodified version of FTP was used since there

was no echo site between the source and destination.

The average throughput for transferring large files across a 10Mbps
Ethernet using the dd command was approximately 300Kbps. The average
throughput using FTP was approximately 23Kbps. The extremely low
throughput of FTP is mostly due to the overhead of the TCP/IP implementa-
tion which is used by FTP to transfer data. As described in Appendix A, the

TCP/IP module incurs a large overhead from process context switching and
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data copying for each message transferred.
6.5.2 FTP and dd Performance Across the Internet

The throughput of the testbed version of FTP versus the throughput
of the dd command under Internet Locus for large files is shown in figure 6.8.
In each case, a file is transferred from an initial site at UCLA to a storage site
at UCLA through an echo site located at CIT, RAND, or U-DEL. The
throughput shown is the actual user data throughput so the number of bits
used in the calculation does not include the local network, IP, TCP, or Locus

headers.

For all file sizes and echo sites, Internet Locus outperforms FTP. This
performance difference is due mainly to the kernel implementation of Internet
Locus versus the user process implementation of FTP. The throughput of
FTP improves when the delay and occasional loss of packets at the echo site
are eliminated by sending packets directly to the destination rather than via
the echo site. For instance, the average throughput of FTP to RAND is
approximately 23 Kbps compared to approximately 9 Kbps as measured in
the testbed when RAND is used as an echo site. Similar performance
improvements for the dd command are expected for a real Internet Locus sys-

tem.
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Figure 6.8: Throughput of FTP versus the dd Command
8.5.3 The Effect of Window Size on Throughput

The effect of window size on the average throughput of the dd com-
mand is shown in figure 6.9 for an echo site at RAND. Without the data
stream protocol (window size = 1), the throughput of FTP exceeds the
throughput of the dd command. However, for a window size of 2 or greater,

the dd command outperforms FTP. With a window size of 6, the average

105



throughput of dd is approximately 14 Kbps compared to only 9 Kbps for
FTP.

The Internet Locus gateway cannot handle packet bursts when the
number of outstanding messages is greater than 7 or 8 due to the limited sup-
ply of buffers in the gateway. By inserting a small delay between consecutive
packets, the window size can be increased but the additional delay negates

any throughput improvement due to the larger window size.
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Figure 6.9: Effect of Window Size on Throughput

6.6.4 Discussion

The performance measurements from the Internet Locus testbed indi-
cate that the throughput for data transfer across long haul links using native

operating system commands meets the performance goal of being equal to or
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exceeding the throughput of data transfer using FTP. Since sites in an inter-
net operating system can store state information about the topology of the
system, accurate window sizes and timeouts are easier to determine than in a
system of autonomous hosts where data stream parameters must be fixed for

all topologies or be determined every time a connection is established.

The general flow control problem for a system of high speed LANs con-
nected by slower speed long haul links is difficult to solve. In end-to-end win-
dow schemes, the flow of messages is regulated by the round-trip delay from
source to destination but the flow of messages across the high speed link from
the sender to the gateway is uncontrolled. Since a large window size may
cause packet buffers in the gateway to overflow, the window size in an end-
to-end scheme is usually too small to achieve high throughput over a high
delay, internet path. An approach to achieving high throughput without
using a window of outstanding messages is described by Clark {Cla 85). In this
rate control scheme, the sender transmits a number of packets back-to-back
(a "burst™) but pauses between bursts. If the maximum burst size and the
minimum inter-burst period are determined properly, high throughput may
be achieved without overflowing buffers in gateways or intermediate packet
switches. The Internet Locus testbed is an excellent facility for studying this
rate control scheme and other flow control algorithms for an internet environ-

ment.
8.5.5 Compile a Program

The elapsed time to compile (make} a 10K byte source file is shown in
figure 6.10. The make command was issued from a using site (US) at UCLA.

The source file, makefile, and log file were located at a remote storage site.
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When the compilation was executed at the US, the files were brought across
the internet link. When the compilation was executed at the storage site
(SS), only a new process image had to be created at the SS because the com-
piler load module itself was available at the 55. The times reported in the
Compile at US column are due to the processing time for the compilation plus
the time to transfer the data between the SS and US. The times reported in
the Compile at SS column are due to the processing time for the compilation

plus the time to move the site of execution from the US to the SS.

By moving the site of compilation to the storage site, instead of moving
the data to the site that initially issued the make command, elapsed time for
the compilation is significantly reduced. In fact, the elapsed time for moving
the process to the data, even when the internet path includes a satellite hop,
indicates that it is reasonable to compile a program from a site at UCLA with

source files stored in Hawaii or Korea.

———m e
Using Site | Storage Site | Compile at US | Compile at SS
sec. {sec.)
UCLA-A UCLA-B 59 56
UCLA CIT 144 57
UCLA RAND 226 58
UCLA U-DEL 307 62
UCLA HAWAI 1046 105
UCLA KOREA 1538 126

Figure 6.10: Elapsed Time for the Compile Command
make -f Makefile > & make.log
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6.6 Evaluation of Internet Locus Strategiles

The following strategies were used to achieve the Internet Locus per-

formance results reported in sections 6.4 and 6.5:

. Reduce pathname expansion overhead

. Use new message primitives

) Use variable length packets to match underlying network characteris-
tics

° Piggyback acknowledgements

No single strategy emerged as sufficient to reach the Internet Locus perfor-
mance goals. Rather, the aggregate of all strategies was oiten necessary to
achieve satisfactory performance. It is difficult to evaluate the absolute
importance of each of the strategies. A strategy that is important in reducing
the latency for one command may play a much smaller role in reducing the
latency for some other command. Some strategies become more important as
the distance between the using site and storage site increases. Other strategies
may reduce communication overhead in general but contribute little to reduc-

ing the elapsed time for single commands.

Figure 6.11 illustrates the importance of each of the strategies and the
aggregate effect of all of the strategies for the copy command. In this exam-
ple, a 1K byte file stored at UCLA is copied to a site effectively located at U-
Del.
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Figure 6.11: Performance Effect of Internet Locus Strategies
For the Copy Command

Piggybacking acknowledgments contributes least to reducing latency
during the execution of the copy command in this example. The message
traffic for the copy command consists mostly of request/response pairs. After
a request is sent, the user process at the using site blocks until the response is
received. The elapsed time for command completion is not greatly decreased
when separate ACK messages are eliminated since the using site must wait for
the response message before command execution can proceed. The impor-
tance of piggybacking ACKs is mainly to reduce general communication over-

head.

110



High level message primitives and variable length packet headers con-
tribute approximately the same towards reducing latency for the copy com-
mand. The new message primitives eliminate 15 of the 29 total non-ACK
messages sent under LAN-Locus (see figure 5.7 for the copy command message

traffic} and the short headers reduce the number of bits transmitted.

Reducing the number of messages due to pathnathe expansion contri-
butes most to reducing the elapsed time for the example shown in figure 6.11,
and exceeds the total contribution from using new message primitives, short
headers, and piggyback ACKs combined. In this example, the parent direc-
tory of the target file is opened, read, and closed three times during the exe-
cution of the copy command under LAN-Locus. If the pathname had more
than a single directory component, the number of messages due to pathname
expansion would be even greater. Although reducing the number of messages
due to pathname expansion plays a significant role in reducing the elapsed
time for the copy command, all four strategies are needed to reduce the

elapsed time to a satisfactory level.

Thé effect of the Internet Locus strategies for the s -l command of a 54
entry directory located at Rand is shown in figure 6.12. Unlike the copy com-
mand, where reducing pathname expansion messages contributes most to
reducing elapsed time, in this example the single most effective Internet Locus

strategy is the use of new message primitives.
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Figure 6.12: Performance Effect of Internet Locus Strategies
For the Directory Listing Command
The importance of variable length headers is illustrated in figure 6.13.
The graph displays the round trip delay for sending messages of variable size
from UCLA to CIT, RAND, and UDEL. The increase in delay when messages
cross the Arpanet single packet limit of 126 bytes is apparent. For instance,
the round trip delay from UCLA to UDEL jumps from 300ms for a 98 byte
message to 636ms for a 128 byte message. It is especially important to avoid
this more than 200% increase in communication costs when the distance

between the using site and storage site is large.
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8.7 Use of Internet Locus Strategies in Other Environments

The lessons learned during the development of Internet Locus are not
limited strictly to Locus and may be beneficial to a variety of systems. One of
the most important lessons is that efficient mapping between names and
objects can play a significant role in improving the performance of a system.
Whether the system is a distributed operating system or a distributed data-
base management system, if references to remote objects exhibit sufficient
locality, name to object caches can be effective in reducing latency. Systems
that use name caches include the R* distributed database management sys-

tem [Lin 80], and the Grapevine internet mail system.
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Another important lesson is that the level of message primitives
directly impacts performance. If more information can be transmitted in mes-
sages without loss of functionality, remote performance improves. Experience
reported by the developers of the Network Graphics Protocol, as well as
experience with Internet Locus confirm this lesson. A third lesson is that net-
work characteristics, which are frequently assumed to be of no concern to
applications above a given protocol layer, cannot always be ignored. A slight

change in packet size may have a large impact on performance.

Although the Internet Locus strategies are most important for com-
munication across long haul networks, they may also be beneficial in local
area petworks. For a lightly loaded LAN, little gain is expected because of
the very low delay to transfer packets between sites. However, if there is
significant contention on the network, the Internet Locus strategies can be
useful in reducing the total amount of traffic, reducing CPU overhead spent

on processing packets, and reducing the time to access remote data.
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CHAPTER 7

Conclusions
7.1 Summary of Goals and Accomplishments

Network transparency has been viewed as a concept of similar
significance to virtual memory [Den 83]. It had previously been successfully
applied only to local area network based distributed systems. In this disserta-
tion we have shown that transparency can be effectively applied to an inter-

net environment that contains LANs and long haul networks.

An Internet operating system protocol that provides remote service for
frequently executed user and application tasks with only a small amount of
network overhead was designed and implemented. A distributed name cache
was shown to further reduce network traffic. Moving the execution site of a
process to the data storage site was also used to improve elapsed times and

was especially effective when large amounts of data were accessed.

The two performance goals for an internet operating system have been
largely met. The elapsed time for the completion of typical interactive com-
mands, when data is stored across long haul links, has been shown to be
nearly equal to the elapsed time when data is stored at the using site. The
elapsed time to transfer large amounts of data across long haul links using
native operating system commands bas been shown to be superior to the

elapsed time when a specialized file transfer protocol is used.

115



The focus on homogeneous operating systems and limited internet
topologies is both a strength and weakness of this research. By limiting all
sites to run the same operating system, we were able to use kernel to kernel
communication instead of building software on top of existing operating sys-
tems. This design choice played an instrumental role in the performance of
Internet Locus, but limits the types of systems that can participate in the
internet operating system. Other approaches, such as the bridge architecture
described in [Loc 83] are available to provide remote file access and update

and remote execution across heterogeneous system interfaces.

By focusing on limited internet topologies, where the maximum separa-
tion between using site and storage site was approximately 5 IMP hops, we
were able to keep the communication costs low enough so the performance
goals could be met. In other internet configurations, where the time to
transfer a block of data exceeds 1 or 2 seconds, remote access may be too

expensive for full network transparency.
7.2 Future Work

The work described in t-his dissertation provides a foundation for much
additional research. The Internet Locus testbed is an ideal environment to
study data compression, file replication, and file caching for an internet
operating system. A data compression scheme, as described in section 5.5.3,
should be implemented and its effect on reducing message delay should be
evaluated. The use of file replication to reduce remote access times should be
studied. The overhead of maintaining replicated files across long haul links
should be measured and the advantages and disadvantages of file replication

compared to file caching should be explored.
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Another area that merits further study is the interconmection of
heterogenecus systems. If kernel code can be modified in different operating
systems, can network transparency be achieved with satisfactory performance

between heterogeneous systems?

The impact of internet transparency on distributed applications such
as a distributed database management system should also be investigated.
Since Internet Locus provides many of the necessary functions for database
management operation such as transaction support, name-to-location map-
ping, and synchronization control, these functions do not have to be reimple-
mented by the database application. However, many problems remain, such
as determining the optimal placement of database relations, selecting the best
strategy for query processing and evaluating the effectiveness of a name map-
ping cache for a database system run on clusters of workstations connected

by long haul networks.

Other extensions to the Internet Locus work include a study of mes-
sage primitives for LANs connected by high bandwidth, high delay satellite
links and the use of an internet operating system to enhance supercomputer

access across long haul links.

Finally, a full scale implementation of Internet Locus at two or more
geographically separated sites will allow the ideas of this dissertation to be
evaluated in a more realistic setting than a testbed and may help uncover
new distributed applications that can take advantage of internet tran-

sparency.
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7.3 Contribution to Computer Science

Long haul computer networks have yet to fulfill the promise of easy
access to geographically distributed resources. Users of these networks have
been painfully aware of the boundaries between machines. Earlier research
on network transparent operating systems has shown that increased reliabil-
ity, improved performance, greater data sharing, and easy access to distri-
buted resources can be achieved over a local area network. This dissertation
extends the principle of network transparency to an internetwork environ-
ment consisting of local area networks connected by long haul networks. The
successful demonstration of internetwork transparency marks the true begin-

ning of the age of distributed processing.
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APPENDIX A

The Implementation of Internet Locus

Since the Locus operating system supports both TCP/IP and the Locus
protocol, there are two possible approaches for building Internet Locus. In the
first approach, the existing IP implementation is used. When a Locus packet
is ready to be transmitted over the local area network, the IP write routine is
called (instead of the normal device driver routine) with the Locus packet as
data. The packet is copied into user space and a user process which executes
the IP module is scheduled. The IP module handles addressing, message
queueing, fragmentation, and ICMP processing. Eventually, the local area
network device driver is called and the Locus packet, encapsulated in an IP
and ICMP header, is transmitted. The major benefit of this approach is that
very little new IP code has to be written. This approach was used in the first

Internet Locus implementation.

The alternative approach for Internet Locus is to reimplement [P at
the kernel level and bypass the existing IP module. When a Locus packet is
ready to be transmitted, an IP and ICMP header are added to the packet
with the header fields correctly filled in. A significant amount of IP address-
ing and fragmentation code and ICMP code has to be written. The benefit of
this approach is that extra copying of data and the overhead of user process

scheduling is avoided.
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A comparison of the throughput of LAN-Locus and Internet Locus
using each of these approaches is shown in the figure below. The dd com-
mand, which was used to copy data between sites connected by a 10Mbps

Fthernet, was executed for file sizes of 128k bytes to 1M bytes.*

The difference in performance between the approaches is dramatic.
While the performance of Internet Locus using the second approach matches
the performance of LAN Locus, Internet Locus using the first approach is
significantly inferior. These results reenforce the claim that protocols to sup-
port operating system functions should be placed at the kernel level rather
then the user process level. After the first implementation of Internet Locus
was shown to be unquestionably inferior to LAN-Locus across the Ethernet,

Internet Locus was completely reimplemented using the second approach.

THROUGHPUT OF THE DD COMMAND FOR INTERNET LOCUS
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*Throughput is calculated from the elapsed time of the dd command and is
not the aggregate throughput possible through the network channel. The
Internet-Locus implementations do not include any of the enhancements
discussed in chapters 4 and 5.
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APPENDIX B

Locus Network Measurements

Ethernet statistics and Locus protocol statistics were gathered on the
Locus Alpha network at UCLA for several days during 1983. The Alpha net-
work, used by students and faculty engaged in distributed system research,
consisted of four Vax 11/750s connected by a 10Mbps Ethernet cable. The
Interlan Ethernet interface collects the following statistics: the number of
packets transmitted and received, the number of packets in the receive fifo,
the number of collisions, the number of packets with an alignment error, the
pumber of collision fragments received, and the number of packets received
with a CRC error. A measurement package was developed and added to the
Locus network driver routines to collect the Ethernet statistics and also to
record the number and protocol type of each network message transmitted

and received by the site.

The Locus network measurements were collected on a single site from
Saturday, May 28, 1983 through Tuesday, May 31. The following table shows
the total number of messages transmitted and received by the site over the 4
day measurement period. The average number of messages transmitted and
received was 1,356,821 per day. Not surprisingly, message traffic on the days
that school was pot in session was less then the message traffic on Tuesday

which was the only school day measured.
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Day # of Messages

Saturday 1205669
Sunday 1125943
Monday 1436089

Tuesday 1659982

DISTRIBUTION OF MESSAGE TYPES FOR TUESDAY, MAY 31, 1983
Message Tvpe* Number of Msgs Transmitted
Acknowledgment 333217
Read 113586
Open Response 76954
Probe 65326
Open 59894
USClose 47968
SSClose Response 29775
Read Response 28079
Remote Service Call 21279
USClose Response 21260
Write 18894
Probe Response 5520
USCommit 1629
USCommit Response 1629
Device Open 227
BESS 227
RSC Response 62
SSClose 55
Device Open Response 85
BESS Response 55
Newtop 32
Spdind 28
Gettop 22
Channel Open 18
New Partition 14
Site Down 12
Pmount 11
VV Prop 3
RReqlbnlst 2
Reglbnlst 2
Clsfss 2
VV Update 1
Site Down Response 1

* A description of each message type can be found in [Wal 83a]
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The distribution of message types transmitted shows the large number
of acknowledgements compared to other types of messages. A method to
reduce the number of ACKS is described in chapter 5. The number of reads
is greater then the number of writes as expected. Reads and opens are espe-
cially frequent in Unix because each directory in a pathname must be opened

and searched.

SELECTED MESSAGES SENT PER HOUR FOR TUESDAY, MAY 31 1983
Time Opep  ROpen Read RRead Write USClose USCommit
12:30am 1841 1115 1591 223 2 1543 0
1:30 1841 1170 1585 239 0 1543 0
2:30 2669 1184 1798 332 6 1755 2
3:30 1953 1011 1775 181 2 1654 4
4:30 1894 1140 12079 317 3 1594 5
5:30 1841 1624 17266 1548 0 1548 0
6:30 1841 1572 1585 1309 0 1543 0
7:30 1840 4209 1666 1002 4 1527 2
8:30 1715 1457 1518 372 5 1413 5
9:30 2673 2651 2743 1277 116 2287 146
10:30 2653 4865 2482 1533 a5 2180 66
11:30 4779 4318 5945 2549 449 3565 417
12:30pm 3766 6622 6940 2033 681 3171 331
1:30 2752 2365 3932 1327 1338 1875 17
2:30 2155 2088 2881 1280 841 1811 12
3:30 2816 2411 3921 969 355 2394 81
4:30 2594 4524 3972 2124 257 2235 75
5:30 5325 4970 8642 1971 779 3544 261
6:30 3529 2114 8012 551 1042 2885 193
7:30 1964 17264 4436 4552 2019 1641 10
£:30 1841 2171 42901 920 1804 1543 0
9:30 1901 1772 4078 572 1514 1591 3
10:30 1830 1711 3916 750 1286 1534 0
11:30 1881 1719 8514 8486 8331 1582 4

The above table shows the distribution of selected message types
transmitted per hour. Since most traffic consists of a request followed by a

response, the number of messages received can also by estimated from the
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table. For instance, from 6:30pm to 7:30pm 17,264 Open Responses were

transmitted and 17,264 Open Requests were received.

The Open message is used for both the Open system call and the Stat
system call which returns file descriptor information. Since the Stat call does
not have a corresponding Close call, the number of Stats transmitted can be
found by subtracting the number of Using Site Closes (USClose) sent from
the number of Opens sent. For instance, at 12:30am out of 1841 Opens

transmitted, 298 were actually Stat system calls, not Opens.

The message collision statistics confirm that the Ethernet is lightly
loaded. The number of transmissions that result in a collision is less then 1%
even at peak traffic hours. Furthermore, there were only 9 duplicate messages
and 11 duplicate acknowledgements recorded over the entire 4 day period.
Duplicates occur when a message is retransmitted because a timer has expired
and both the original message and the retransmission are received at the des-

tination site. There were no CRC errors or frame alignment errors recorded.
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MESSAGE COLLISIONS OVER 24 HOURS - TUESDAY, MAY 31, 1983

Time _# of Mszs Tx # of Collisions
12:30am 19282 4
1:30 19472 5
2:30 21676 4
3:30 19442 4
4:30 30103 85
5:30 37516 15
6:30 22132 5
7:30 26641 8
8:30 18584 9
9:30 29467 8
10:30 37475 24
11:30 46302 13
12:30pm 47869 12
1:30 35161 8
2:30 31889 9
3:30 32078 11
4:30 39038 10
5:30 51612 12
8:30 39362 4
7:30 76878 21
8:30 33332 11
9:30 30802 9
10:30 33008 21
11:30 48905 16
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