ANALYSIS OF THE NUMBER OF OCCUPIED PROCESSORS
IN A MULTI-PROCESSING SYSTEM

Abdelfettah Belghith August 1985
Leonard Kleinrock CSD-850027



ANALYSIS OF THE NUMBER OF OCCUPIED PROCESSORS
IN A MULTI-PROCESSING SYSTEMS *

Abdelfettah Belghith
Leonard Kleinrock
University of California, Los Angeles

ABSTRACT

We consider a multi-processor system consisting of a set, say P, of identical processors. A com-
puter job is represented as a set of tasks partially ordered by some precedence relationships and
represented as a directed acyclic graph called Process Graph. In such a graph, nodes represent tasks and
edges represent precedence relationships between these tasks. Many parameters are in play to charactenze
the terrain of our multi-processing system. These are: the job arrival process,the process graph description
( number of nodes, number of levels, number of tasks and their distribution among the levels, and the pre-
cedence relationships among the tasks), the task processing requirement, and the number of processors P
in the system.

In this report, we investigate the distribution of the number of occupied processors, the average
and variance of such number of occupied processors, and the probability distribution of the interarrival
times between tasks to the system. We find that the average number of occupied processors in the system
is independent of the number of levels in the process graph, the placement of tasks among levels, the pre-
cedence relationships among the tasks, the distribution of the task service time requirement, the distribu-
tion of the job arrival process and the number of available processors in the multi-processing system,
Such average number of occupied processors in the system is found to be solely a function of the average
number of tasks per job, the average rate of the job arrival process and the average task service time.

* This research was supported by the Defense Advanced Research Projects Agency of the Department of
Defense under contract MDA 903-82-C-0064
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CHAPTER 1
MODEL DESCRIPTION

A computer job is a set of tasks partially ordered by some precedence relationships. We represent
a job by a Directed Acyclic Graph (DAG), hereafter called a Process Graph (PG). A node in the process
graph represents a given task, and an edge (i,j) between node i and node j represents the precedence rela-
tionship between task i and task j. Edge (i,j) is used to prevent the start of task j execution unless task i
execution has been completed. The tasks (i.e., nodes) in the process graph are, therefore, distributed into
levels. Tasks at level one are said to be"starting tasks,” and tasks at the last level in the process graph are
said to be "terminating tasks.” Any two tasks can be executed concurrently (i.e., in parallel) if, and only if,
every predecessor of one task does not include the other task and vice versa. Figure (1) gives an example
of such a process graph. The edges are implicitly directed downward.

The multi-processor system under consideration consists of a set, say P, of identical processors.
Each processor is capable of executing any task. The number of processors, P, can be finite or infinite. Let
us define the following quantities:
N = random variable counting the number of task in a job, N 21
r = random variable counting the number of levels in a job, 1sr<N
X = random variable representing the task service time
Y = random variable representing the number of occupied processors

Since each level in the process graph must contain at least one task, it follows that the total
number of process graphs having N tasks and r levels is equal to the number of ways to distribute (N-r)
tasks among the r levels. This number of ways is ":

(n=ryr-1] [v-1
[rn—lr r ]= [r—l] an



————————— LEVEL 1

N=5 — — — LEVEL 2
r=3
NUMBERS INSIDE
THE CIRCLES ARE
TASKS NUMBERS
————————— LEVEL 3

FIGUREI.1
Example of a Process Graph

PROPOSITION 1]

For a fixed number of tasks per job, say N, and fixed number of levels per job, say r, and for
1€n <N -r+1 and 1<k <r , the probability of having n tasks at level k is given by:

1. If r=1, then:

0 ifn#N

Pl ntasks atlevel 1 | = ‘{1 if n=N

* In fact, the ordinary generating function of such number of ways is:
[x +xted ke ] =x’ [I—x]"

since each level can have from 1 to N-r+1 tasks in it, the number of ways to distribute N tasks among the r

levels such that no level is left empty, is the coefficient of x* in the generating function. By the binomial
theorem, Liu Introduction Combinatorial we have:

[l—x]"': i [:H_l}x' thence,

=0




2. If r 22, then:
r—2
Pf ntasks at levelk | =
N-1
r-1

PROOF
1. The proof of case 1 is trivial since for r=1 all tasks must be at this level.
2. For N and r fixed, from (1.1) we know that the total number of process graphs we can have
o INA1
ls r-l .

Consider now level k. We want n tasks at this level where 1<n<N—r+1 . Thence, there are
(N-n) tasks for the (r-1) remaining levels. The number of ways to distribute these (N-n)
tasks among the (r-1) levels so that no level is left empty (i.e., the number of process
graphs with (r-1) levels and (N-n) tasks) is given by:

]

This number also represents the number of possibilities of level k 1<k<r having n tasks

[(N—n }—(r-l)] +(r-1)-1
r-1)-1

out of a total of [r—l ] possibilities. The probability P[n tasks at level k] is therefore the

ratio between them.
il

Notice that level k can be any level, that is, 1<k<r. The minimum number of tasks any level can
have is one and, therefore, the maximum number of tasks any level can have is (N-r+1).

PROPOSITION 1.2
For a fixed number of tasks per job, say N, the probability that a randomly chosen process graph
has r levels, 1<r <N, is given by:
N-1
r-1

2.’-"-1

Pf process graph hasrlevels | =

This conditional probability for a process graph with r levels, given that the number of tasks is
fixed to N, is a binomial distribution b(r- LN-1, ).
PROOF



number of process graphs with r levels and N tasks
total number of process graphs with N tasks

P{ process graph hasr levels | N tasks in it | =

But we have

N IN-1| N1 IN-] Nt
Total number of process graphs with N tasks = 3, ro1 1= po , =2
r=1 r=0

N-1
and we know that the number of process graphs with r levels and N tasks is r—1
Thence,
N-1
o r-1
P{ process graph hasr levels | N tasks in it | = o
N—1 1 r-1 1 N—r
)2 2
=b(r-1,N-1 —1-)
= 3

il

Let 7 denote the mean number of levels in a randomly chosen process graph, given that such
graph has N tasks. Then, we have:

z

r= k P[ process graph has k levels | N tasks in it |
1

>
1l

2

- _iN-1.L
= lb(r LN-1,2)

~
1l

which gives

F=l-l (1.2)

The idea of a Markovian Process graph, denoted hereafter by MPG(X,Y), where X is the number
of nodes (i.e., states) and Y is the number of levels, was first introduced by Towsley Towsley 78 and
extensively used by Kung. Kung Kleinrock Random Graphs Kung Dissertation



A Markovian Process Graph is a Markovian state transition diagram generated for process graph
PG, assuming infinite number of processors in the multi-processor system, where each state in the Markov
chain represents a specific set of tasks in PG that can be executed in parallel. Following the notations used
in Kung Dissertation , let C , represent a state in the MPG where a is the set of tasks that are executed con-
currently, and let Ial represent the number of tasks in the state a. The chain starts with state C,, where f
is the starting task (s} in PG. For each state C, in the MPG, it will go to Ial other states, each branch
corresponding to the termination of one of the tasks in «. The state C . at the end of one of these branches
has the set of active tasks { a’ }, where o’ includes the tasks in o minus the completed task plus the activa-
tion of several other tasks, if any, due to the termination of this task. An exact algorithm and some exam-
ple are given in . Kung Dissertation Figure (1.2) below gives the Markovian Process Graph for the Process
Graph given in figure (I.1).

» circles represent states
= numbers inside circles

are concurrent tasks numbers
« numbers near circles are state numbers
» numbers on edges are

finishing task numbers

FIGUREL2
Markovian Process Graph for the Process Graph Given in Figure 1.1

In this technical report, we shall investigate the following:

1. the distribution of the number of occupied processors;
2. the average number of occupied processors; and
3. the distribution of the interarrival times between tasks to the system.

Many parameters are in play to characterize the terrain of the multi-processor system under inves-
tigation. These are:

1. job arrival process: Throughout this report, we assume that the job arrival process is
Poisson with parameter A. In chapter 5, we shall relax this assumption and consider a



general arrival process with independent job interarrival times.

2. process graph: characterized by:
* the number of nodes;
* the number of levels;
* the distribution of tasks among the levels; and
* the precedence relationships among the tasks.

3. task processing requirement: 'We shall consider three types. These are
* constant service time per task;
* exponential task service time; and
* random task service time.

4, number of processors: Throughout this report, we assume an infinite number of proces-
sors. In chapter 5, though, we relax this assumption and consider the case of a finite
number of processors.

This report is organized into six chapters. In chapter 2 we shall investigate the case of a
Fixed Process Graph. All jobs have the same Process Graph with a fixed number of tasks and fixed
number of levels. The Z-transform, the average and the variance of the number of occupied pro-
cessors will be derived. The service time per task is considered to be constant, the same for all
tasks. Chapter 3 will deal with semi-random Process Graphs with two or more levels. The case of
just one level is treated in chapter 2. Each job has a process graph with a fixed number of tasks and
fixed number of levels, but the distribution of tasks among levels varies from one job to another.
The service time per task is kept constant, the same for any task. In this chapter, we shall also
derive the Z-transform, the average and the variance of the number of occupied processors.
Chapter 4 will deal with the case of a random Process Graph. Each job has a random Process
Graph with fixed number of tasks but random number of levels (not exceeding the number of
tasks). The Z-transform and the average number of occupied processors will be derived. The ser-
vice time per task is considered to be fixed, the same for all tasks. Chapter 5 provides a detailed
investigation of the average number of occupied processors. For the first time in this report we
shall also consider the case of finite number of processors, exponential and random service time
per task and completely random process graphs (e.g., the number of tasks per process graph is ran-
dom, and the number of levels is also random but not exceeding the total number of tasks). Also,
in this chapter, we shall relax the assumption that the job arrival process is Poisson and consider 2
general job arrival process with independent interarrival times between successive jobs. We shall
find out in this chapter that the average number of occupied processors is independent of the
number of levels in the process graph, the distribution of tasks among the levels, the precedence
relationships among the tasks, the distribution of the task service time, the distribution of the job
arrival process and the number of available processors in the system. Such average number of
occupied processors will be shown to be only a function of the average number of tasks per pro-
cess graph, the the average rate of the job arrival process and the average task service time. In
chapter 6, we shall provide the distribution of the interarrival times between tasks to the system.



Two cases are investigated, exponential task service time and constant task service time.



CHAPTER 2
FIXED PROCESS GRAPH

In this chapter, we shall derive a closed form expression of the Z-transform of the distribu-
tion of the number of occupied processors. Closed expressions for the average and variance of the
number of occupied processors will also be derived. Throughout this chapter, we shall make the
following assumptions about the multi-processor system we have under investigation:

a. the number of processors in the system, P, is infinite;
b. the task service time, X, is constant, say 1 unit service time per task;
c. the process graph is fixed for all jobs . All jobs have the same process graph with a fixed

number of tasks, say N, and fixed number of levels, say r. Moreover, ifweletJ(n, n,, ...
,n,) be the description of the process graph, where »; is the number of tasks at level i in the
process graph, then we require that all jobs have the same process graph description.

Let us define the following quantities:

Interval I = is the closed interval [t-r,t]; see figure (IL1).

Y; = random variable counting the number of processors occupied at time t by the jobs that arrived
in slot i in the interval 1. A job arriving in slot i will participate with its (r-i+1)th level at time t.
Such job will then occupy n,_;,; Processors at time t.

¥ = random variable counting the total number of occupied processors at time t.

Thence, we have:

Y=¥¥, ay



JOB ARRIVALS ——»

FIGUREII.1
Analysis of a Fixed Process Graph

P[Y=x)= Y P[Y;=x ! k; jobs arrived in slot i].P [k; jobs arrived in slot i}
k=0

But,

1 ff x=kin,

P[Y=x I k; jobs arrived in slot i] = {0 otherwise

Thence,

plYi=k; n,_i 1) = Pk jobs arrived in slot i] (11.2)

Now, since the job arrival process is Poisson with rate A, and the slot width is unity (same
as the task service time}, we obtain

ki
PIY, =k Ayl = e (IL3)

i

Now let us define the Z-transform of ¥; by Y,(Z); that is,
YAZ) 2 X PIY=/1Z/
j=0

From (I1.3) we get:



o - ] —
VZ)= 3P Uik il 24 = T2 €2
k=0 j=0J:

]’

Y
=g —_—
A T

Thus, we have:

Yi{(Z)=e™ (t-e~] (11.4)

Let Y(Z) be the Z-transform of ¥. Since the job arrival process is Poisson, then the
arrivals and the number of such arrivals in any slot i, i=1, ... ,r are independent random variables.
1t follows that

Y@) =TI %:@)

i=1

Using (I1.4), we obtain

Y(Z)= [1 12
i=1

Therefore, we get:
Sz
Y(Z)=e™Me = (IL5)

Notice from (11.5) that Y()=1 and Y(O)y=e™ =P, where
Py=P[no job arrivals in the interval I ].

II.1 THE AVERAGE NUMBER OF OCCUPIED PROCESSORS

We shall derive the average number of occupied processors. We have:

4 yz)

Y=-=5-
dZ /Z=1

Thence, by using equation (IL.5), we get:

10



where n;21 ¥i=1,..r.

{Kzn

Thus, we arrive at:

|

=AN

I1.2 THE VARIANCE OF THE NUMBER OF OCCUPIED PROCESSORS

We have:
7_gi. 4y
dz? () =1
and
oYy =Y*- Y2

where o?y denotes the variance of the number of occupied processors. Now,

d* _d | d
Y@= [dZY(Z)]

i=

r _ A Y Z" r 2 axz
=e‘”{7x£n,~ [ﬂ,""l ]ZMI_Z }8 = + e_b {KZH; Z"‘_I } e
i=1 i=1

Therefore,

11

(IL6)



. , T
EY(Z),Z=I=6‘1’ [lzn; [n,-—l] ]e""+e"“r [lz; n,-] e™

=l.2r:n; [n‘-—l] + 12N2=lzrjn2,-—J\N+12N2

i=l

Thence, we get:

oy =X },: n? (IL7)
i=1

Let us try to find an upper and a lower bound for o%y. By using the loose inequality
2
pIETRE [Z x; ]

we get from (11.7)

o%y <AN? (11.8)
or, equivalently,

oySNY

Indeed*, this is a tight upper bound for o’y ; case of a process graph with N tasks and just one
level (r=1). The case of a process graph with N tasks and N levels (r=N) gives the lower bound ,
that is sigay?=AN . Thus, we have:

AN < 0% < AN?orequivalently Y<e’<NY

Moreover, let n ., = max n; i=1,...,r. Thus:

Also,
N SN g+ gt SOy

Therefore, we obtain the following:

12



AN <A {(N—n on mﬁ}sol, AN SAN? (IL8)

In the above analysis, no restriction was assumed for the choice of the shape of the
PG(N,r). Equations (IL6), (I1.7) and (IL.8) are valid for any shape of the process graph PG(N,r).
The only restriction is that all jobs have the same process graph description J(n; 25, .. ).

Let us take the discrete well-shaped diamond process graph denoted by PG(r) (as a func-
tion of r only).

CASE 1:rodd

Figure (I1.2) below gives some examples of such a process graph:

Thus, we have:

*Formerly, to obtain an upper bound on &%y, we have to solve the following maximization problem:

r
max ¥, n%;

i=]
r
subjectto Y m; = N and 1<rsN
i=l
For a given r, the solution to this problem is simply #,=N-r+1 , n;=1¥j=1,..,N and j#k. It is also

obvious that r=1 gives the upper bound
Likewise, to obtain a lower bound on o, , we have to solve the following minimization problem:

r
min E n?.‘_

i=1

subjectto Y, m; = N and 1<r<N
i=t
For a given r, the solution to this problem is simply n,-=—1:L for alt i=1,...,N . It is easy to see that r=N gives

the lower bound.

13



FIGUREIL2
Discrete Well-Shaped Process Graph with Odd Number of Levels

~1orel r43 1 r-1 r4l
T2 02 2 2 2 2
Thence:
1 2
N = ’;] (11.9)

Substituting into (I1.6), we get:

(I1.10)

14



Using the known identity ¥ i = = n+135(2"+1) , We get:

r-—1

- 2

r 2
2 _ 2, |r+l
Tns=2Y) i+ [2 ]

i=l i=1

felleste

Now, by using (I1.9), we obtain:

i=l

Finally, from (I1.7) we get:

ol,,:mi;i‘s—-%w (IL11)

CASE 2:r even

=4 r=6

FIGUREIL3
Discrete Well-Shaped Process Graph with Even Number of Levels

Thence, we have:

15



Thus:

y r r ,r
N=Yn=[14+2+.4= | + {=+H{z—1+.42+1
£ vz g

r(r+l)
T4

(1I1.12)

Thus:
N = r{r+1)

(I1.13)

and from (I1.6) we obtain:
= hr(r+l
=3
and
. z
2 _ .2 r+2 ri{r+l})
5 nt =2 Z; it = 7
and, by using (11.12),
r+2
=3
Finally, by using (IL.7), we obtain
o2y = m% (IL.14)
or equivalently,
oy = 17’—;1 (IL.15)

Let us take the uniform process graph of degree a (see figure 11.4). We have
(11.16)

N=ar

Therefore, from (I1.6), we get

16



Y =har
O O
o O
O O
o O
FIGUREI1.4

Uniform Process Graph of Degree a

Now we have:

2

n? = 2_,2

a~=a’r

™~

[
—

o

I
—_

i 1

and, by using (I1.16) we get

r
2n2,~=aN
=1

i

Finally, by using (I1.7), we obtain:

and, by using (I1.6),

Uzy =aY

17

(IL17)

(11.18)



11.3 FIXED PROCESS GRAPH WITH r=1

Since every job has a process graph with N tasks and 1 level, then all jobs arriving before
time (t-1) should be finished before time t. Only those jobs arriving in the interval [t-1,t] will
occupy any processors at time t. Each job arriving in the interval [t-1,t] will occupy N processors at
time t. Thence, from equation (I1.5), we get:

Y(Z)=e T ) (I..19)

The average number of occupied processors is then given by equation (IL6), and from equation
(I1.7) we get the variance of the number of occupied processors:

o2y =AN? r=1 (11.20)

14 CONCLUSION

In this chapter, we have investigated the case of a fixed process graph. We found closed
expressions for the Z-transform, the average and the variance of the number of occupied processors
in the system. Particular examples of fixed process graphs, namely, the discrete well-shaped pro-
cess graph with both odd and even numbers of levels, the uniform process graph of degree a and
the case of a process graph with just one level are considered.

18



CHAPTER 3
SEMI-RANDOM PROCESS GRAFPH 22

In this chapter, we shall derive a closed form expression of the Z-transform of the distribu-
tion of the number of occupied processors. Closed form expressions for the average and variance
of the number of occupied processors will also be derived. Throughout this chapter, we shall make
the following assumptions about the multi-processor system under consideration:

a. the number of processors in the system, P, is infinite;
b. the task service time, X , is constant, say one unit service time per task;
c the process graph is semi-random. Each job has a process graph with a fixed number of

tasks, say N, and fixed number of levels, say r. Jobs do not necessarily have the same pro-
cess graph description J(ny,n .. .,n,), where n; i=1,...r denotes the number of tasks at
level i in the process graph. Proposition (1.1) gives the probability of having n tasks at a
given level k, given that we have N tasks and r levels in such a process graph n=1,....N-r+1
,and k=1,...r.

Let us define the following quantities:
I = the interval of time (t-1,t)
Y = random variable counting the total number of occupied processors at time t
¥, = random variable counting the total number of occupied processors at time t, given that k jobs
arrived in the interval I
X; = random variable counting the number of occupied processors at time t and by the ith job arriv-
ing in the interval I

It is easy to see from Figure (I11.1) that ail jobs arriving before time (t-r) finished before
time t. Such jobs will not occupy any processor at time t. Any jobs that occupy processors at time t
are jobs that arrived in the interval I. Therefore,

19
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FIGUREIIL1
Analysis of Semi-Random Process Graph

Yk= iX, (III.I)

i=1

Also, we have

¥ op=1,. N—r+1 (I1L2)

Let us define the following quantities:
XAZ) = the Z-transform of X;

Y (Z) = the Z-transform of ¥,

Y(Z) = the Z-transform of ¥

Thence, we have:
N-r+l

X,(Z)A ¥ PIX=j1Z/
j=t

20



j=l N-1
r-1
That is,
1 N—r IN-j=2] .
X,(Z)= Y |2 ZiH (1IL3)
IN—-1| j=0
r-1

Since the random variables X;s, i=1,....k are independent and identically distributed (i.i.d.), we get
Y (Z)= [X ) ]" (I11.4)

where X(Z) is given by equation (111.3), and since the job arrival process is Poisson with parame-
ter A, we get

Y(Z)= i [X(Z) ]* Mk— eV

k=0
Thus,

Y(Z)= eV [H‘ m] (IIL.5)

Finally, by plugging equation (II1.3) into equation (IIL5), we get:

Y(Z)=e (111.6)

III.1 THE AVERAGE NUMBER OF OCCUPIED PROCESSORS

Let us define the following quantities:

Y = average number of occupied processors

M-k (M-i
bZy= S [R ‘]Z" (1IL7)

i=0

Ar

a= (111.8)
M+1
R+1

21



where:
M=N-1 and R=r-1

Therefore, we can write (II1.6) as follows:

Y(Z)= e ¢ 22 (I111.9)
Since Y = ‘ﬂ;(zz) et then, by using equation (IIL.9), we obtain:
7= 4bZ)
Y =ab(1ra T et (1I1.10)

Let us then find »(1) and &’ (1). Using equation (IIL7), we get:

=+ [M-il
b’(Z):f%(ZZ—)f =i [R ]z'-l thence ,
= ' iZ=1

i=1

MR |M—i
F)= 3 i [R '] (LL11)
i=

Now let us compute b(1). From equation (I11.7) we get:

MR (M i
b= 3 |p

=)

B

Therefore, we can write b(1) as
b (1) ME—R [R +IJ
S R
Let us consider the following function:

Blx) = (1+x )R + (1+x)f+ 4+ - 4 (14 )M

. R+i
The coefficient of x® in B(x) is exactly b(1) since the coefficient of x* in (1+x)** is [R ] .

Now let us rewrite the function f3(x) as:

(L — (140 )f
X

Blx)=

M+1
Thus, the coefficient of x® in B(x) is [R +1 ] and, therefore, we obtain
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MR |M—i M+1
=3 [p | = lrut (I11.12)

i=0

Now, by using equations (III.12), (II1.8), (I11.10) and (IIL.11), we get

dY(Z) - b (1
T et ar |1+ 1 (I11.13)
R+1

Let us compute b’(1):

A
Y=Y i
E:O R

M-R R+
= 3, (M-R-I) [R ]
i=0

M-R |R+i| M-R R+
i=0

i=0

and, using (I11.7), we get

M-R IR+
=(M-Rp(1)- Y i [R ]

i=0
Then, using (111.12), we get
, M+1 M-R R +i
E(W)=M-RY g, - Z iR (111.14)
i=0
Let us define the following:
A R+i
a,= Yi [R ] n=0 (I11.15)
i=)
Thence, we can define the following recurrence relation:
R+n
=G0y +n" [R ] nzl1 (I11.16)

with the boundary condition
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ae=0 (I1L.17)

Define the generating function of a, by A(x); that is,

Alx) =A i a,x"
a=(

Thus, equation (II1.16) gives
- n - n - R+n n
Yauat= Y a, x"+ Xn (p |x
n=l n=l n=I

That is,

- R+n
Axyag=xAx)+x ¥ n [R ]x"'l
n=0

A d = |R+n R
= (x)+xdxn§1R x

and, by using (A.3) of Appendix A, we get

d 1
=xA(x)+x -&;{m—l }

R+1
=xA (X) +x + m
Therefore, we obtain
ARx)= R+i)x
(l—x )R +3
We can rewrite A(x) as
Agy=—FHL R4 (1IL18)

(1—X )R+3 (l—x )R+2

Using standard techniques Kleinrock Queueing Theory equation (III.18) can be inverted to give

n+R+2 n+R+1
a, = (R+1) R42 —(R+Y) R+1

n-1 n—1
and, by using the well known formula [:] = [k ] + {k—l ] , wWe get
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A+R+2 n+R+1 a+R+1
R+2 [T |R+2 |T |R+1
Thus, we obtain

n+R+1

Now, using (II1.14) and (I11.19), we get:

db(Z) M+1 M+1
"4z ga” MR [Rﬂ ]“(R“) [m

and using equations (II1.13) and (I11.20), we obtain:

dY (Z) —hr M+2
dZ  z=1 R+2

Finally, since M=N-2 and R=r-2, we obtain

%

1.2 THE VARIANCE OF THE NUMBER OF OCCUPIED PROCESSORS

Let 6%y denote the variance of the random variable Y. Thus, we have

2
_ d¥ (@) d¥(z)y  \|dY(Z)
ey = 127 g dZ izt dZ

From equation (II1.9), we get

2

a’Y(z) =2ab’ (1) +ab” (1) + [ab(1)+ab'(1)]2
dzZt z=1

Let us then compute b”(1). From equation (IIL.7) we obtain

M-R M-i| .
b'Z)= ¥ iG-1) [p  [ZThence,

i=0

M-R M—i
ORI GNP

i=0

M M-1 M-2 M3 R
=0 p [+0|p |+2[p [+6|g |+ +M-RYM-R-) |
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M-R . ] R +i
= Z (M-R-i}M-R—-i-1) I
1=0
which gives:

2 MR |R+i M-R |R+i| M-R R +i
abZ) L M-RYM-R-1) Ea [R ]—2(M—R) T [R ]+.-§oi(i+l)[R ]

dz? z=1 i=0

M-R R +i
We then need to calculate 3, i(i+1) [R ] Let:
i=0
" R+i
a, = zi(i+1)[R ] n>0
i=)

Thence, we can obtain the following recurrence relationship:

R+n
a,=a,_y+n(n+l) M nzl

with the boundary condition
dog= 0

Let us define the generating function of a, by A(x); that is,
Alx)= i a,x"
n=0

Therefore, by using (II1.25), we obtain

o

o = R+n
Fax’= 3 a, x4+ 3 n(n+l) [R ]x"

n=l1 n=l a=l1

which gives

x = R+n "
A(I):E z n(n+1) R x”
n=]

We have

= R+n . dr 1z R+n el
Y n(n+1) R x =dx2 b R x

n=]

d2<”R+”A
" FEkR )

and, by using (A.3) of Appendix A, we get
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= d’ x 1 1
de (l_x)R-l-l

= R{1+Rx + 2(1+R)
(1-x)F+

Equation (II1.23) thus becomes

R(Q1+R)x2 +2(14R)x
(1__x).R+4

A(x)=

The above equation can be rewritten as:

R(1+R)  2(1+RY , (4R)(2+R)

A(x)= I11.28
x) (l_x)R+2 (1—x)R+3 (I_X)R-M- ( )
Equation (I11.28) can be easily inverted Kleinrock Theory Queueing to obtain:
R+n+1 R+n+1
a, = 2(1+R) R42 +(1+R)24+R) |p 3 nzl (111.29)

Let us now return to equation (I11.23). By using equations (111.12), (I11.11), (111.20) and
(I11.29), we get

M+1 M+1 M+l
¥ (Ly=(M-RYM-R-1) [R+1 ]—Z(M—R) {(M-R) [R+1 ]—(R+1) [R+2]

M+1 M+1
+2(1+R) R+2 + {(1+R)(2+R) 43
After some simplification we get

M+1 M+l M+1
¥ (H=M-RYR-M-1) [R+1 ] +2(1+R Y}1+M -R) [R+2 ] + (I+R }2+R) [R +3 ] (1I1.30)
Now, let us return to the calculation of 6%y . From equation (I11.22) we have
&2y =ab (1) + 3ab’ (1) +ab” (1) (1IL.31)

where a is given by equation (IIL.8), b(1) is given by equation (II1.12), &"(1) is given by equation
(T1I1.20) and &” (1) is given by equation (II1.30). Using the following,
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[M+1 ] [M +1]
R+2) M-k . B3] _ (M-RYM-R-D
M+1] 2R M+1 (2+R)(3+R)
R+1 R+1
and after some simplifications, we obtain
- - - R o or 1y R p-
Py =Ar+ MM R){M R+2+ 2+R(2M 2R -1} + 3+R(M R 1)} (111.32)
Now, replacing M and R by their respective values, we arrive at
r r
oy = lamdar + A\r(N-r) {N—r+2 + m(ZN—Zr—l) + E(N—r—al) } (I111.32)

III.3 CONCLUSION
In this chapter, we have investigated the case of a semi-random process graph. We found

closed expressions for the Z-transform, the average and the variance of the number of occupied
processors in the system.
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CHAPTER 4
RANDOM PROCESS GRAPH

In this chapter, we shall derive a closed form expression of the Z-transform of the distribu-
tion of the number of occupied processors. Closed expressions for the average of the number of
occupied processsors will also be derived. Throughout this chapter, we shall make the following
assumptions:

a. the number of processors in the system, P, is infinite;
b. the task service time, X, is constant, say one unit of service time;
c. the process graph is random. Each job has a random process graph with a fixed number of

tasks, say N, and a random number of levels r, 1<r<N . From proposition (I.2), we
know that the probability of an incoming job having r levels is a Binomial given by

1
Plr=r]= ST =b(r——1,N—l,E)

Moreover, two jobs having the same number of levels, say r, do not necessarily
have the same process graph description J(ay, ... .n,), where »; is the number of tasks at
level i, 1si<r . Proposition (1.1) gives the probability of having n tasks at a given level k,
given that the job has rlevels and N tasks, where n=1,..,N-r+1, k=1,...rand r=1,..,N.

From Figure (IV.1), we see that any job arriving before time (t-N) will not partcipate
(occupy any processor) at time t. A job arriving in the interval I=(t-N,t) will participate if, and
only if, it has enough levels. Let us divide the interval I into N equal slots of duration one unit of
time, each equal to the processing time of one task. We number such slots by 1,2,..,N (see Figure
(IV.1)). It follows that a job arriving in slot number i will occupy some processors at time t if, and
only if, it has at least i levels, where 1<i<N
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Analysis of Random Process Graph
PROPOSITION IV.1

The probability of a job arriving in slot i, 1<i <N, occupies a processor at time t is given by

A
£l

P [ job arriving in slot i occupies some processors at time t ] = T

PROOF
A job arriving in slot i, 1€i <N occupies some processors at time t if, and only if, it has at
least i levels. Thence, from proposition (1.2) we get
N-1
r-1

2N—[

N
P [ job arriving in slot i occupies some processors at time t = Y,

r=g

) N-1{ |N-I
and, since N—j|= j-1 , we get

N-i+] N—l] N-i+l [N-1 N-i |IN=1
1= lial=Z
N—j iV 1 SV

j=1
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Let us now define the following quantities:

Y = random variable counting the total number of occupied processors at time t
Yu = random variable counting the total number of occupied processors

at time t if k jobs arrived in ¥
Yia. . ko = random variable counting the total

number of occupted processors at time t if k; jobs arrived in sloti, i=1,....N
Xix = random variable counting the number of occupied

processors at time t due to jobs that arrived in slot i and given that k;
jobs arrived in slot i, i=1,....N

= random variable counting the number of occupied processors by
the jth job that arrived in slot i, i=1,..,N

- k
Y=%7Y, M— e (IV.1)
k=)

It follows that

k!
Kl 1F
Y= ; Yi,... a)m'ﬁ' (IV.2)
st Zh:&

N
Viko. . = _ZX;'.&, (Iv.3)

=

k

X=X X (IV.4)

Also, let us define the following Z-transforms:

Y(Z)A Y P[Y=y]Z® the Z-transform of the random variable ¥
y=0
Yo(Z) AY P[Y,=y1Z¥  the Z-transform of the random variable Y,
Yy

Yn'(kl h(Z) =A E P [Y_f(kI kn):y ]Z)‘ the Z-transform of the random variable Y,’(k, _____ k)
Y

X (Z) AT PiX;=x]Z*  the Z-transform of the random variable X;,,

X, ;(Z) A3 PIX;;=x1Z*  the Z-transform of the random variable X; ;

Since the X; ;s are independent and identically distributed, ¥ j=1...., k; then it follows that, by
using equation (I'V.4), we get

K
X = [1%:4(2)
j=t

Let us denote by X (Z) _PX,-",-(Z) since the X; ; 's are i.i.d. Thus, we get
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Ik
X (Z)= [X'(Z):l
and, from equation (IV.3), we get

Yir... WZ)= ﬁ |:Xi(z)]h

i=1

and, from equation (IV.2), we get

YuZ)= ; [XI(Z)]’“ [XN(Z)]h k! [1 lk
&1 E};a

k! ky! "IN

k

N
2 X'(Z)
i=l

N

Finally, using equation (IV.1), we obtain

k

N
T XYZ)
- i ;LNk 3N
Y(Z)= = e
,Z-:O N k!
which gives
1%‘,){‘(2)
Y(Z)=e?N . e * (IV.5)
IV.l THE AVERAGE OF THE NUMBER OF OCCUPIED PROCESSORS
Let us denote by ¥ the average number of occupied processors. Thus, we have
7. dY(Z)
Y="1 u=
and we have
@) _,aw JEO d |
=™ e — KEIX(Z)
Thus,
= ¥ dX,(Z)
Y=» §1 dZ iz=1 (av-6)
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Concentrating on slot i, we have

N
PX;;=x1= 3 P[X;=xir=rPir=r] where:

r=1

For i 22 we have

P [X,-J-=xlr=r] =

N-1
r—1
L
and for i=1 we have
0 ifx#N r=1
1 if x= r=1
PIXy=x/r=rl= ly_, 1
r=2 xzl r22
0 otherwise

-

and we know that P[r=r]}= . Thence,

2N—1
1. fori=2
i-1 |IN-1
5 r-1
SN-1 x=0
P Xi ] = 3
Xss *] N IN-x-1
o r-2
Py x#0
L

Therefore, we get

1 i-1 IN-1 N IN-x-1 i '
X;'J(Z)="2“‘ﬂ 2‘1 e |22 2 z 22

r= z20 |r=

Since we have X;;(Z)/z_,=1, from equation (1V.10) we get
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N IN-x-1 i-1 IN-1
pIDY [r—2 ]221\!—1_2 [r—l} 22

x2] r=

2. fori=1
From equation (IV.8) we obtain
[0 x=0
PIX=x]= 2;_1 x=N
N-x-1
N [r=-2 )
xz
L= V-1

Therefore, we obtain:

X;(Z)=

1 N N [N—x-1 x
=127+ 21X |, A

N-1
2 x21 |r=2

Using equations {IV.10) and (IV.13), we get

i=1 =2 xzl r=i

Let us define the following quantities:

N [N-x-1
B=3Xx1% r-2
x2l r=2

Thus, equation (IV.6) becomes

17=J\.{A+2;_1 [N+B ]}

Now, let us compute A,

34

& | HXi(2) Yo N |IN—x-1 1
A =22”‘1Zx 2 |2 Y=Y N+§1x

(IV.11)
(Iv.12)
i=1 (Iv.13)
£
= r—2
(Iv.14)



. zx=1 N2
Y =N N-2
_ x=12 N=2] v2] [N
i=N-l = NN N-3 [t V-2 [*2 N3

_ x=123 N2l [v-2] [v—2] (N3] [v3) [v—
iN-2 = N ooNanN INalt V=3 [PV [P iv—a |2 N-3 P v

N-3 j=2
V2 ]tioion 2]

o x=1,. . N—j+l N-2 N-2 N -3
i=j = N i2 LA V) +2 -2 + o+

y

. x=l,..N-1 N=-2 N-2 N-3 N -2
i=2 =, N o |F*|vo 2l |2y +. 4. HN-1)

Therefore, for any x, x=1,...,N-1, the participation is

N-x-1 N-—x-1 N—-x—1 . N-x-1 N-x-1
x 7o +2 14 +3 15 + o+ | +oH(N=x)
which gives
N-x-] N—x-1
participation of the value x, x=1,..N-I =x 3 (i+1) |; } (Iv.15)
i=0
which finally gives us
1 Nl Nl N—x-1
A= xzzlx §0 (i+1) |; (1V.16)

On the other hand, we have

N—x-1 N—x-1} N1 |N-x-1 N—=x-1 IN-—x-1
E,D(Hl)i + 2 +;§o‘i

i=0

but, by using the binomial theorem, Liu Introduction Combinatorial we have
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Therefore, A becomes

N-1

1
A=oyT

x=1

Let us define the following quantities:

N-1 1 x-1

A=3 x(3)
1 xz=:1 )
and
N-1 1 x-2
A;=3 x (x-1) (E)
x=1

Therefore, A becomes

A =% {QNAI—AZ }
Computation of A y:
N o pi-l g N-l

. ; 1
A=Yi— =—3 x' wherex=-=
a2 dxz 2

i=l

_d |, et
dx 1-x
[IwaN"](x—l) +x —x¥

(1-x )

and, replacing x by %, we get

1 N-2
Aj=4- [E-] N+1)

Computation of A .
N-1

Ay=Y i (i~-1yx?
i=l
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Y x (N-x~1)2¥=>1

(Iv.a7

(IV.18)

(Iv.19)



=—— ¥ xf wherex—-—;-

_N@N-DxVNT 2
B x-1 * 1-x A1)

and, replacing x by —;-, we get

N-3
Ay=16- LN2+N +2] [%]

Finally, by using equations (IV.19), (IV.20) and (IV.18), we obtain

) N-1
=N -2+ |—
A=N + {2]

Now, let us compute B. We have

N [N—x-1
B=2x1Z [r—2 ]

x21 r=2

x=N-1 - r=2 (N-1)

= =

x=N-2 = r=23 N-2)

’O ~‘
)
+
——
T
()
N’
=
| —

N—i+1| [N-i+l N-i+1
x=i mr=2 N-HL Bl ] et iN e

N-2 N-2 N -2
vt B ) )
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Therefore, we obtain:

N-1 . N-1 4
B= T iV =2 ¥ ic
i=l i=1

and, by using equation (IV.19), we get
B =2 —(N+1)
Then, using equations (IV.21) and (IV.22), equation (IV.14) becomes
¥ { 4X,(Z) }z N
aZ 1z=

i=]

Finally, equation (6) becomes

I%

IV2 CONCLUSION

(IV.22)

(Iv.23)

In this chapter, we have investigated the case of a random process graph. We were able to
find closed expressions for the Z-transform and the average number of occupied processors in the

system.
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CHAPTER 5
AVERAGE NUMBER OF OCCUPIED PROCESSORS

In this chapter, we shall investigate the average number of occupied processors under very
general conditions, given that the multi-processor system under investigation is in equilibruim.
We shall prove that such average number of occupied processors depends solely on:

a. the job arrival rate;
b. the average number of tasks per job; and
c. the average service time per task.

In particular, it does not depend on:

a. the shape of the process graph (i.e., the precedence relationships among tasks in the pro-
cess graph);

b. the distribution of the number of tasks per job;

c. the (conditional) distribution of the number of levels per job and the repartition of tasks

among such levels;

d. the distribution of the task service time;
€. the number of processors in the system; and
f. the distribution of the job arrival process.

In section V.1, we shall deal with the case of an infinite number of processors. For such
case, the system is always in equilibrium. Section V.2 deals with the case of a finite number of pro-
cessors. Finally, in the conclusion, we provide a pictorial representation of the system utilization
and the average number of occupied processors as a function of the number of available processors
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in the multi-processor system, and a pictorial representation of the average time insystem and the
average of the number of occupied processors as a function of the average rate of the job arrival
process.

V.1 INFINITE NUMBER OF PROCESSORS

Throughout this section, we shall assume that the number of processors in the system is
infinite. In section V.1.1, we shall deal with the case of constant service time per task, section
V.1.2 is an investigation of the case of exponential service time per task, and in section V.1.3, we
shall provide a more general result by letting the service time per task to be random.

V.L.1 CONSTANT SERVICE TIME PER TASK

In this section, we assume that the number of processors in the system is infinite and the
service time per task is constant. We shall first state a theorem that does not depend on the particu-
larities of the process graph.

THEOREM V.1
The average number of occupied processors, Y, in the case of

1. infinite number of processors;

2. constant service time per task, say one unit; and
3. Poisson job arrival process with parameter A,

is given by

Y¥=AN

where N is the average number of tasks per job.

PROOF
Notice first that ¥ does not depend on the shape of the process graph and, in particular,
does not depend on the distribution of tasks between the levels inside the process graph.

In the previous chapters we have already shown that, for N fixed, we have Y =N,
that is, for the cases

1. CASE 1: fixed process graph, N fixed and r fixed (see chapter 2)



2. CASE 2: semi-random process graph, N fixed, r fixed and random distribution of
tasks among levels inside the process graph, (see chapter 3)

3. CASE 3: random process graph, N fixed and r random with 1<r<N, (see chapter 4)

Let us first give an alternate, but rather simple, proof for the above cases and then
show that such result still holds for the more general case of a completely random process
graph, N random and r random 1<r<N .

CASE 1: Fixed Process Graph, N fixed and r fixed

Since the job arrival process is Poisson with parameter A and since only and
every job that arrived during the interval [t-r,t] will occupy some processors at time t,
then the average number of jobs present in the system is Ar. On the other hand, the

average number of tasks per level in the process graph is —Ar’— It follows that

f:?u—’f-:m

CASE 2. Semi-Random Process Graph, N fixed and r fixed

The proof exactly follows the proof of Case 1 since the average number of

tasks per level in the process graph is again —'g- .

CASE 3: Random Process Graph, N fixed and r random

Since the job arrival process is Poisson with parameter A and, since r =1,...,)N,
then we can see such Poisson source of jobs as N Poisson sources, each with parame-
ter A;, where

A."=}-P[r=i]

The ith source is, then, the source of jobs having N fixed and r=i fixed. Let
Y, = the average number of processors occupied by jobs generated by the ith source.
Thence, we have

Y=

M=

|
—_—

]

On the other hand, since the jobs generated by the ith source have a fixed N and a
fixed r=i, then by case 1 we obtain
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¥;=NN

Therefore, we get

- N _
Y= Z i
=l
N
= ;IK‘N
N
=N AP[r=i]
i=l
N
=AW T P[r=i]
i=l
=AN

ADDITIONAL CASE: Completely Random Process Graph N Random and r Random
Define

N= 3 nPIN =n]

nzl

The average number of tasks per job over all jobs. Since the job arrival process is
Poisson with parameter A, then we can see it as an infinity of Poisson sources, each
with parameter A, where

A;=AP{N =i]

That is, the ith source is the source of jobs having a fixed number, i, of tasks. More-
over, source i by itself can also be decomposed into i other Poisson sources, the jth
{(j=1,...) of which has parameter A;;, where

ll.j =X Plr;=j1 j=l..jandi=12]3,..

where 7, is a random variable counting the number of levels in a process graph given
that the job is generated from the ith Poisson source. Thus,

A =APIN =ilPIr;=j1  j=l,. andi=123,..

Let us define the following quantities:

¥Y; = average number of processors occupied by jobs
generated by the ith source, i=1,2,3,...
Y = average number of processors occupied by jobs
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generated from the source ij (i.e., the jth source
of the ith source), i=1,2,3,... and j=1,...1
Thus, we have

M

M
—

}_’;} and 17=

M-

I
—

7=

¥ i

On the other hand, by using the result of case 1, we can write

Finally, we obtain:

}_"=_°.Zli i:lkP[N=i}P[r,-=j]i
bl
=?\.i‘iiP[N=i] zi:lP[rizj]
= =
=7L§:{£P[N=i]
=AN

fil

V.1.2 EXPONENTIAL TASK SERVICE TIME

In this section, the number of processors in the system is assumed to be infinite, and the
task service time is exponentially distributed. Ultimately, we shall provide, as in the previous sec-
tion, a theorem that is independent of the particulars of the process graph. First, though, we shail
take into account the particulars of the process graph.

LEMMAYV.1
The average number of occupied processors Y for the case of

1. an infinite number of processors,

2, exponential task service time with parameter & ,
3. Poisson job arrival process with parameter A , and
4. N fixed and r fixed
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is given by

PROOF

Let PG(N,r) denote a process graph with N tasks and r levels and random distribution of
the tasks among the r levels. Let MPG(X,Y) denote a Markovian process graph (see chapter
1) with X tasks and Y levels.

Since the task service time is exponentially distributed with parameter ., then we can con-
vert our PG(N,r) into a Markovian MPG(X,N). Notice that X is finite since both N and r are
finite. Each job using some processors at time t is occupying only one state of the
MPG(X,N). Thence,

_ | average number of jobs ] [average number of tasks

= | occupying some processors |" | per state over all MPG (vV.1)
Let S = average system time per job. Thus, from M/G/es results, we obtain
average number of jobs occupying some processors = AS (V.2)
On the other hand, we can rewrite S as
5= N
I (average number of tasks per MPG state)
which gives
average number of tasks per MPG state = —Eg— (V.3)
Finally, by using equations (V.1), (V.2} and (V.3), we get
= N AN
Y =AS——=—
usop
Il
LEMMAV.2
The average number of occupied processors Y for the case of
1. an infinite number of processors,
2. exponentially distributed task service time with parameter .,
3. Poisson job arrival process with parameter A , and
4. N fixed and r random, r =1,....N
is given by



f’-=M and for pn=1 Y=

PROOF
Tt is enough to notice that the proof of Lemma (V.1) does not depend on the value of r.
i

LEMMAV.3
The average number of occupied processors Y for the case of

1. an infinite number of processors,
2. exponentially distributed service time per task with parameter i,
3. Poisson job arrival process with parameter A, and
4, N random, N =1,2,3.... and rrandom, r =1,...,N
is given by
Y = % andfor u=1 Y =3AN

PROOF

Let the Poisson source with parameter A be seen as an infinity of Poisson sources
with the ith i=1,2,3,... having parameter A; where

A =APIN =i].
with P[ N =i] = P[ job has i tasks ] i=1,2,3,...

Let ¥, be the average number of processors occupied by jobs generated from the ith
Poisson source. Thus, by Lemma (V.2}), we obtain

i
n

and, finally,

Y = i
i=1

= A

=Z

LeapPw=ili

i=1
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The following theorem presents the same statement as theorem (V.1) set forth above but deals with
the case of exponential service time per task.

THEOREMV 2
The average number of occupied processors Y , in the case of

1. an infinite number of processors,

2. exponentially distributed service time per task with parameter j, and
3. Poisson job arrival process with parameter A

is given by

if':ﬁ:’—- andfor p=1 ¥ =N

where N is the average number of tasks per job.

PROOF
Notice first that ¥ is insensitive to the shape of the process graph and, in particular, does

not depend on the distribution of tasks among the levels inside the process graph.

The proof is completely provided by Lemmas (V.1), (V.2) and (V.3).
W

V.1.3 RANDOM SERVICE TIME PER TASK

In this section, we assume that the number of processors in the system is infinite but that
the service time per task is considered to be random. As in the previous two sections, we shall for-
mulate a theorem that is independent of the particulars of the process graph. Moreover, we shall
relax the assumption that the job arrival process is Poisson. In fact, all we shall assume in this sec-
tion is that the job arrivals are independent.

Let us define the following parameters:

= the job arrival rate

= the average number of tasks per job

= the average concurrency per job over all jobs

= the average number of jobs present in the system
= the average time a job spends in the system

= the average service time per task

M x| O 2>
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THEOREM V.3
The average number of occupied processors Y for the case of

1. an infinite number of processors,
2. random service time per task with average X,
3. random job arrival process with average arrival rate A (job arrivals independent),
and
4, random process graph, that is,
* N random

* 1 random, r=1,...,N

* random repartition of tasks among levels, and

* random precedence relationships among levels
is given by

PROOF
Since the average number of occupied processors, ¥ , represents the average concurrency in
the system, it follows that

7=k,
Notice that K_C‘,' =K C j» due to the fact that P is infinite. By using Little’s formula Little ,
we have
K=21S

where S can be written as

s=Nx
C;
It then follows that
}7 = MEJ
AL X
C;

Thence,

I
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V.2 FINITE NUMBER OF PROCESSORS

In this section, the number of processors in the system is finite, say P. We shall prove that
the average number of occupied processors, ¥, is still given by ¥ = ANX . Throughout this section,
we assume that the multi-processor system is in equilibrium.

THECREM V4

If the multi-processor system is in equilibrium and work-conservative, then the average
number of occupied processors Y for the case of

1. finite number of processors, say P,
2. random service time per task (possibly different distribution for each task) with
overall average X .
3. random job arrival process with average arrival rate A (job arrivals independent),
and
4, random process graph per job, that is for each job:
* N random
* r random, r=1,...,N
* random repartition of tasks among levels, and
* random precedence relationships among levels
is given by:

¥ =2NX andfor X=1 Y =WN

Moreover, if the system is overtoaded then

PROOF

Let:

Y=P

n, = the average number of tasks per job processed by processor p, p=1,...P
p, = utilization of processor p, p=L...P

p = system utilization

The equilibruim condition is then¥p=1,....Pp, < 1 and thus p < 1. We have

Pp = Mpf
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If the system is overloaded (i.e., system utilization greater than one) then it is easy to see
that ¥ = P since all the processors are being used all the time. :
i
Also, notice that, in equilibrium, we have

=]
I
|~

V.3 CONCLUSION

In this chapter, we have proved that the average number of occupied processors in a
multi-processor system with P=1,2,3,... processors is given by ¥ =AN X, where ¥ and X represent
the average number of tasks per job and the average service time per task, respectively. It is
interesting to note that such average number of occupied processors does not depend on the
descﬁption of the jobs (e.g., the distribution of the number of tasks per job, the distribution of the
number of levels in the process graph, the repartition of the tasks among the levels, the precedence
relationships among the levels inside the process graph, the distribution of the task service time,
the distribution of the job arrival process and the number of processors in the system given that
such multi-processor system is in equilibium ).

Figure (V.1) and figure (V.2) below give a pictorial representation of the system utilization
and the average number of occupied processors in the system as a function of the total number of
available processors in the system. In Figure V.1, we have ANX <1, that is. the utilization of the
system when P=1 is less than unity. In Figure V.2, we have ANX 21, that is, the utilization of the
system when P=1 is greater than unity.

versus P, A\ANX <1 "
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FIGURE V.1 L
System Utilization and Average Number of Occupied Processors versus P, ANX <1
Y
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p=——= Y
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FIGUREV.2

System Ultilization and Average Number of Occupied Processors versus P, ANX 21
versus P, ANX 21"
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Figure (V.3) below gives a pictorial representation of the average number of occupied pro-
cessors ¥ and the average system time S as a function of the job arrival rate A for a given number
of processors P.

v.s
I |
|
' s
ol |
| \_
| Y
- : SLOPE 1S NX
|
l
0 I - A
0 P
NX
FIGURE V.3

System time and Average Number of Occupied Processors, versus A
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CHAPTER 6
TASK INTERARRIVAL TIME DISTRIBUTION

In this chapter, we shall derive a closed form expression of the distribution of the task
interarrival times to the system. Throughout the chapter, we assume that the number of available
processors is infinite and that the job arrival process is Poisson with parameter A. In section V1.1,
we investigate the case of exponential task service time, and in section VL.2, we shall consider the
case of constant service time per task.

VL1 EXPONENTIAL TASK SERVICE TIME

In this section, we shall find the distribution of the interarrival time between tasks to the
system for the special case of N tasks and N levels process graph, PG(N,N). A job is then
represented as a vertical string of tasks. We also consider that the job arrival process is Poisson
with parameter A and that the task service time is exponential with parameter jL.

Let us define the following:
t; = random variable measuring the interarrival time between jobs
t, = random variable measuring the interarrival time between tasks to the system

Let us place ourselves just at a task arrival (hereafter called a tagged arrival), and let ¢, be
the arrival instant of such tagged arrival. Notice that the next incoming task can be

1. from the same job as the tagged task,
2. from another job that is already in the system at time £, ,
3. from a newly arriving job (such a job must arrive to the system after time ¢, but no

later than (z, + £)).
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T TAGGED TASK ARRIVAL

s B

T 1 t:+t ~~ ARRIVALS
| |
| l
| | |
TASK | | |
GENERATED
BY JOB x | . JoB
A J ARRIVALS
—— ] —— N=4
JOB x
FIGURE VI.1.1
Task Arrivals Diagram; Exponential Task Service Time
CASE 3

The next incoming task is from a newly arriving job. We then have

P[ a task arrival in the interval [t gt o+11]1=P[ job arrival in {ty,tg+t]]=1 - e

CASES 1 AND 2

The next incoming task can be either from a newly arriving job or from a job that is
already in the system, Let us assume that we have k jobs in the system at time ¢, (just after time
ty). Notice that only those jobs that are not executing their last task will generate further tasks;
those jobs executing their last task will not generate any more tasks. Let us then find the probabil-
ity of a job executing its last task, given that such a job is already in the system.

P[job is executing its last task / it is in the sysiem] = P[ remaining tasks in such job = 0]

= 1 — P[ number of tasks in a job <0]
average number of tasks per job

<10
TN

Thus, we have

(VL1)

z |-

P{ job is executing its last task | it is in the system | =

and, subsequently,
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P[ job is not executing its last task [ it is in the system | = N1 (VL2)

We have the following:

Pt,>t]= P[ no task arrival in the interval [t o,t g+t ]/ task arrival at time ¢ ]

no job arrival in the interval [t ot o+t ] and no task arrivals from existing

=P jobs at time t o the interval [t ot g+t ] , given that at least one job is in the system at time 1

Since the event { no job arrival in [ #o,tq+f ]} and the event { no task arrivals in [ £o.t o+ 1 from
existing jobs in the system at time ¢, } are disjoint, then,

no task arrivals in [t gt g+t ] from existing
P t,>t 1=P[ no job arrival in [t o,t +1]]. P | jobs in the system at time o/ at
least one job is in the system at time t

= P{ at least one job is in the system at time { ]

On the other hand, since the job arrival process is Poisson with parameter A, we have:

)k
I
P[ k jobs are in the system at time ¢ | = ———— e™

k!
where

X is the average job service time, that is X = ﬁ and,

P[ at least one job is in the system at time t ] = 1-e -~

Also, we have

P[ no job arrivals in the interval [ to,t g+t | = e ™

Now,

no taskarrivals in [ todott ]

iy . o from existing jobs in the system k jobs are in the
P 1 jobs in the system al lime 1o/ at least =¥P at time o k jobs are in the

no task arrivals in [ totatt ] from existing

. = system at time Lo
one job iz in the system at lime 1o system at timet
0

But, we have:



Pf notaskarrivalsin { tolatt | no task arrivals m[ l"’.xw ‘]

from existing jobs in the system _ ¥ P from the k_ZI exnllfn.g ; obs in the i jobs among the k are not
=2 P systemat time to! i jobs ) executing their last tasks

among the k are not executing

artime tol k2 1 jobs exist o]
in the system at ttme |
? ° their last tasks
Therefore, it follows that:
no task arvivals in [ tod ot |
om existing jobs in the * el (vaY [
P Ir _ 8 J ' =3 [e 1.,] ‘ N-1 1
system at time to/ k2 1 jobs &= [ N N
in the system af timeto
N-1 *
= [——e™+—=
N

since
P[ no task arrivals in [ t ot g+t ] from the i jobs not executing their last tasks | = [e"“"]

Thus, it follows that
no task arrivals in [ ¢ gt g+t ] .
from existing jobs in the = (N-1 1 [J\X] B
P system at time t [ at least one |~ kz:=1 ¢eTtry ISR
Job isin the system at time { g
X -
= 4 E v
o | )
and P [t,>t] becomes
X -
N R g
P[ta>:]=e'“.e‘” e [ -1 ;_
1—e X
which finally gives
FIN-1 _ N-1
AT pad e
[4 - _ € -t
— £ = . e
1-e™

Plt,st]=1+ T
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VI.1.1 AVERAGE INTERARRIVAL TIME OF TASKS TO THE SYSTEM

Let us denote by 7, the average interarrival time between tasks to the system. We then

have
T =£ {1 aP[z,s:]}d:
BV N-1
it 3K N =,
=£-—e —e My £ = ¢ N‘e‘“ dt
1-e™ 1-e™
which gives

N, eLAX

PR £1l+iuJ£! 4 [le_u'f

Notice that for N=1, equation (V1.3) gives:

Sgh-L axN-1 ]
(VL3)

I, =

1
A

In fact, this is exactly the average interarrival time of a usual Poisson arrival process.

VI.2 CONSTANT TASK SERVICE TIME

Our multi-processor system can be viewed as an FCFS queueing system with infinite
number of processors. In this section, we are interested in finding the interarrival time of tasks to
the system. A job is represented as a process graph with N tasks and r levels, where 1<r<N, and N
and r are fixed for all jobs. The task service time is constant, say a units of time.

Let J = [nl,n 2,...,n,] be a given process graph (a given job) where »; is the number of

,
tasks at level i, i=1,..,r. Thence, n,=1, n,=1 and ¥ n;,=N. Since the number of processors is

i=1
infinite, then a job, upon its arrival, immediately creates its first task. Each a seconds thereafter,
the job creates all the tasks of its next level as shown in the figure below.

Each job is then represented as a vertical string of super-tasks. Super-task i comprises »;

tasks. Super-task i is the set of tasks at level i in the process graph. Let us first consider the interar-
rival time of super-tasks to the system.
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. . - TASK
T I l I ARRIVALS
| S — |
| | I I
| I | I
1 ) I I, Jo8
ARRIVALS
J(1,2.3.1)
FGURE VIL.2.1
Internal Creation of Tasks
LEMMA VI 1
Provided that @20, no simultaneous super-task arrivals can occur.
PROOF

Super-task arrivals from the same job are separated by exactly a seconds, Since a>0, then
no simultaneous super-task arrivals from the same job can occur. On the other hand, to
have simultaneous super-task arrivals from 2 different jobs, the arrival of these two jobs
must be separated by exactly ia seconds where 0<ia<r—1. However, since the job arrival
process is Poisson with parameter A, then we have

Pl job arrival in [ tt+dt | and job arrival in { t+iat+ia+dt ] |
= P[ job arrival in [ t,t+dt ] ]. P{ job arrival in [ t+iat+ia+dt | ]
=[Adt+0(8) ][N dt+0O(1) }

= A%dt? + Oft) = Oft)

since dt is very small.
The above can also be seen by noticing that the probability of having two arrivals separated
by exactly ia seconds is the same as the probability of having simultaneous arrivals.

(1]
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Lemma (VI.1) says that, to characterize the distribution of the tasks interarrival time pro-
cess, we need to find:

1. the distribution of the super-task interarrival times; and

2. the distribution of the super-task size.

First, we shall find the distribution of the super-task interarrival times. For such purpose, a
job is represented by a process graph with r levels and r super-tasks. Let us define the following
quantities:
¢ = random variable measuring the interarrival time between jobs
t, = random variable measuring the interarrival time between super-tasks

Our objective is to find P [¢,<t] .

CASE r=1

Since each job creates just one super-task and this is exactly upon its arrival to the system,
then the distribution of the interarrival time between tasks is the same as the job interarrival time
distribution. We have

Pl,st}=1-e™ 120 (VL.4)

CASE r 22
We first distinguish two cases.

2. CASE WHERE 0zt <a

We have

Pl,<t]=1-Plt,>t)

and
P, >t]= P[ super-task arrivals during the interval t |
= P[ no job arrivals in the intervals I oJ | f 5,...0 ]
r—1
= H e M
i=h
which gives
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_ S-TASK

I ] ] I I I ARRIVALS
| e—t—| | I
| | P |
l | I | | |
| I I |
| L | | H | . JOB
l ‘ [ I ‘ l ARRIVALS
FIGURE VI1.2.2
Task Interarrival Diagram, Case of r=1
S-TASK ARRIVAL
1 . S-TASK
I | I I ] ARRIVALS
| I b -
e 88 I I | | |
I | I ||
l | l | l | I I
| : ! ! | 0 i - JOB
L — | — ARRIVALS
| ° "l
FIGURE V1.2.3
Task Interarrival Diagram, Case of 0<t <a
Plt,<ti=1-¢™ (VLS)

1. CASE tz2a
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We have
Plt,st]1=1-Plt,>t},

and, since r>a, we must distinguish between the following two cases:

1. t=a, by Lemma (VI.1) the super-tasks belonging to the same job;
2. t >a, the super-tasks belonging to different jobs.
1.1 CASE t=a

S-TASK ARRIVAL S-TASK ARRIVAL

| |

| 1, ] t,+a ~ ARRIVALS
| I
I I
l I
I I
] i _ JOB
| | " ARRIVALS
|¢ a :I
FIGURE V1.2.4

Task Interarrivals Diagram, Case of t=a

Sincet=a,thenP[¢,st ]=P[t,<a ]=1-P[¢t,>a ],but
Plt,5a ] =

P[no super-task arrivals in the interval (r ¢ g+a )] and [no super-task arrival at time (¢ g+a)).
Also, since both events are disjoint, we obtain

Plt,>a ]=

P[no super-task arrivals in the interval (¢q,f4+a }] - P[no super-task arrivals at time (7 g+a )].
Finally, from case 1 where 0<t <a, we get

P{ no super-task arrivals in the interval (t ot o+a ) ] = e

and, by application of Lemma (VL1), we get

P[ no super-task arrivals at time (¢ o+a) ] = P[ the tagged super-task is the last super-task of its job ]
This probability can be calculated by twa different methods:
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METHOD I

We know that a job has r super-tasks and that each super-task takes a seconds of process-
ing time. Thence,

P[ job is executing its ith super-task | job is in the system ] = -’1-_-

JOB DEPARTS

4 5

[ ]
[ A

1
I =5 \ EXECUTION OF S-TASK #3

JOB ARRIVES

FIGURE VI.2.5
Execution of a Super-Task

METHQOD 2

P[ no super-task arrivals at time ( £, +a ) ] = P[ remaining number of super-tasks of the
tagged job =0]
Let us define the following PDF:

For(n)= Pf number of super-tasksina job<n |
Thus, we have

1 n=r
Fsr(n)= 0 otherwise

and the corresponding pdf f¢r(n) = P[ number of super-tasks in a job = n ]. Thus, we have

1 n=r

fsrin)= {0 otherwise

and the average number of super-tasks in a job is equal to r. From the above definitions, we get:

. . 1-Fer(0) 1
P[ remaining number of super-tasks of the tagged job | = —————— = —
r
Notice that the above is just the residual life formula. It then follows that
e =hra
Pli,>a)= t=a (VL6)
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12CASEt>a

S-TASK ARRIVAL

l _ 8-TASK
l l [ "~ ARRIVALS
foe—a —= I
| e—ta—]
- .|
| t > |
l l ] - JOB
ARRIVALS
FIGURE V1.2.6
Task Interarrivals Diagram, case of t >a
We have:
Plt,<t]=1-Plt,>t] and;
P [t, >t} = P[ no super-task arrivals during ¢ |
and, since by hypothesis t > a,
= P{ no super-task arrivals in [ tg+a to+t ] ]
= P{ no job arrivals during (t-a) |
We then obtain
Pli,>t]=e™9) (sa (VLD

Finally, putting the two cases together (i.e., for t2a), we get

Pltst]l=1-Pli,>t]
= I - P{ no super-task arrivals during t |

no super-task arrivals during ¢/

=1-F no super-task arrivals during a |- P[ no super-task arrivals during a }
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no super-task arrivals during t /

= —P super-task arrivals during a . P[ super-task arrivals during a |

Notice that:
P[ no super-task arrivals during t | super-task arrivals duringa ] = 0

Using equations (VL.6) and (V1.7), we obtain:

Aa(l-r)
Pl,st]l=1- fr— e™ 12a (VL8)

V1.1.1 AVERAGE INTERARRIVAL TIME BETWEEN SUPER-TASKS

Let: 7, = average interarrival time between super-tasks.
So,

=

[1 —P[tESr]] dt

Sy §

and, using equations (V1.5) and (VL.8), we get

Ta=_[e""'d¢+_|'e e™dt
0 a
which gives
- 1
I, = Tr- rz2
and, for the case of r=1, from equation (V1.4) we get
i, = % r=1
Thence,
TL=- r>1 (VL9)
Y V2

V1.2.2 VARIANCE OF THE INTERARRIVAL TIME BETWEEN SUPER-TASKS
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Let o, be the variance of the interarrival times between super-tasks. We have
o =Elt}1-E[t,

Using equations (V1.7) and (VL.8) (and after some calculations), we obtain

1-2(1- —har
02L=Qtﬁ——r 28 rzl (VI'll)
THEOREM V1.1

For any random process graph with N tasks and r levels, r=1,...N and for the case of an
infinite number of processors and constant service time per task, the average number of
jobs occupying some processors at any time t is givenby A r.
PROOF
The proof follows directly from equation (VL.9). Also, notice that since the processing
time per task is constant and the number of processors is infinite, then every job arriving in
the interval (t-r,t) will occupy some processors at time t. On the other hand, since the job
arrival process is Poisson with parameter A, then the average number of jobs arriving in an
interval of lengthris A r.
fl
THEOREM VI.2
For any random process graph with N tasks and r levels, r=1,.,.N and for the case of an
infinite number of processors and constant service time per task, a job that occupies some

processors at time t participates on the average in % tasks.

PROOF
Since the average number of occupied processors is AN and the average number of jobs
occupying some processors is Ar , it follows that the average number of participating tasks

per job is %

In the sequel, we shall find the distribution of the super-task size. Recall that a job is
represented by J = [n g, " ,n,.], where n; is the number of tasks at level i, i=1,...,r

LEMMA VL2
The distribution of the size of an arrival (i.e., a super-task), given that all jobs have the
same process graph, is given by
PIS,=k]1=+ ¥ 1 &k21
T med

i=l,...r
8.4 n =k

where S, denotes the random variable measuring the size of a super task.
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PROOF
Consider the arrival process of super-tasks to the system. Take any arrival and call it a

tagged arrival. This tagged arrival belongs to a given job. Call such a job a tagged job.
Thence, we have

tagged arrival is the jth tagged job is executing its jth
super-task of the tagged job = level | tagged job is in the system

-1
r
We then obtain

P[S;=k]= %( number of levels having k tasks )

Now let us consider a more general situation where jobs can have a random process graph
but still with N tasks and r levels with r=1,...,N.

LEMMAVI.3
For a random process graph with N tasks and r levels, r=1,...,N, the distribution of the size

of an arrival {i.e., super-task) is given by

r—2
P{S,=k]= r>2, 1<ksr
N-1
r—1
and
[o if k2N
PISSKI= Ty =y T
PROOF

The proof is a direct consequence of proposition (I.1).
]
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VI3 CONCLUSION
In this chapter, we have investigated the distribution of the task interarrival times to the

system. Two cases are studied, namely, the case of exponential task service time and the case of
constant service time per task.
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