COMPARISON OF DYNAMICALLY AND STATICALLY
SCOPED LISP

Asya Campbell June 1985
Report No. CSD-850024

Comparison of Dynamically and Statically Scoped LISP

Asya Campbell

Comprehensive paper submitted in partial satisfaction of the

requirements for M.S. degree in Computer Science.

University of California, Los Angeles
June 1985

Introduction

This paper describes and explores the differences between lexically scoped and
dynamically scoped dialects of LISP. Currently, LISP is used as a tool in Artificial In-
telligence (AI) - which is one of the most advanced and futuristic fields of computer sci-

ence. But actually, LISP is one of the oldest languages still in use.

Most of the key ideas of LISP were developed by John McCarthy in 1958 through
1958. And in 1958 through 19€2 the actual programming language was implemented
and applied to the problems of artificial intelligence [McCa78|. Parts of LISP were
based on theoretical principals of lambda calculus and other parts were added on for the

convenience of the users.

Through the years, LISP has developed into many dialects (such as Franz Lisp,
InterLisp, MacLisp, T LISP, and other Al languages based on LISP). Now we can not
even talk about “‘standard LISP”, because so many implementations have provided their

own features.

In this paper I will review two major dialects: dynamically scoped Franz Lisp
(based on McCarthy’s original LISP, [McCa80], McCa85}) and statically scoped T LISP
(based on Guy Steele & Gerald Sussman SCHEME, (S&S 75|, [S&S78a]). I will show
how the {eatures of these two dialects are reflected in their semantics, and then contrast

and compare these two dialects.

The rest of this section describes the general characteristics of LISP-like
languages and also gives an introduction to the formal speciﬂcations of programming
languages. In the next sections, [will present the syntax and the semantics of LISP and

SCHEME. A lot of it is taken from the literature and class notes from 232B, Denota-

tional Semantics, taught by professor David Martin, Fall 1984, UCLA; but [also added
and changed some of the equations to make the grammars of the two languages more

comparable.

LISP is an expression-oriented, applicative order (i.e. in a function application the
arguments are evaluated before the function is applied) language with parenthesized
syntax known as Cambridge Polish {or prefix polish) notation. The language is designed
primarily for symbolic data processing. Symbolic expressions are usually referred to as
S-expressions. The most elementary type of S-expressicn is the atomic symbol (atom).

An atom is a string of numerals and letters, starting with a letter.

Examples of atoms:
A
B
AB
W4TY

These symbols are called atomic because they are not split into individual charac-
ters and are taken as a whole. -A.ll S-expressions are built out of atomic symbols and the
punctuation marks such as ‘1", “)”, and “.”. Internally, S-expressions are represented
as LISP trees, which are like binary trees, except that all the information is attached to
the leaves (extgrior nodes). For example, the S-expression {(HI . HA) . HO) is represent-

ed by the following tree:

A

Next I want to review some basic functions of S-expressions. The first function is
CONS. It takes two arguments, and it is used to build S-expressions from smaller S-
expressions. So given arguments X and Y, CONS [X,Y] constructs a dotted pair whose
left value is X and right value is Y.

For example,
CONS [A,B} = (A . B)
CONS (A .B), Cl = ((A. B). C)

The next two functions do just the opposite of CONS. They are called CAR and
CDR, and they produce subexpressions of a given expression. Both functions take one
argument. [f the argument is a dotted pair, then CAR returns the first part of the argu-
ment and CDR returns the rest of the argument. Both f{unctions are undefined if the

argument is atomie.

For example,
CAR [(A . Bl =A
CAR [((A.B).C)] = (A.B)
CAR {(A)] = A
CAR [A] is undefined
CDR|(A.B)}=B
CDR [((A.B). Q)] =C
CDR [A] is undefined

It is quite common in LISP to chain together CAR and CDR operations. There is
a way to abbreviate multiple CAR's and CDR's by forming function names that begin
with C, have several A’s and/or D’s in the middle and end with R.

For example,

CADR [(A.(B.C))] = CAR[CDR[(A.(B.C))] | = CAR (B .C)| =B

The two remaining basic functions are known as predicates. A predicate is a
function whose value is either true or false. In LISP, true is represented by the atom T

and false is represented by the atom NIL. The following two definitions are from
[McCa85).

The predicate ATOM is true if its argument is an atomic symbol, and false if its

argument is composite.

For example,
ATOM [APPLE| =T
ATOM {(A . B)] = NIL
ATOM [CAR [(A.C)]||=T

The predicate EQ is a test for equality on atomic symbols. It is undefined for

non-atomic arguments.

For example,
EQAAl=T
EQ (A, B] = NIL
EQ [(A . B), (A . B)] is undefined
EQ [A, {A . B)] is undefined

In real systems the value of undefined is usually represented as NIL, which is the

same as false.

It is usually more convenient to write a list of expressions of indefinite length,
such as (XY 2), instead of using dot notation. Such notation is known as list notation.

The separator for the elements of a list is blank. Each list (I1 Iz ... I} can be defined in

terms of dot notation as (1; . (lz . (... (Ia - NIL) ... }}). The atomic symbol NIL serves as

a terminator for lists. Accordingly, NIL is also used to represent an empty list ().

For example,
(Z) = (Z . NIL)
XY2Z2)=X.(Y.(Z.NL))
(XY)2)=((X.(Y.NL)).(Z.NIL)
(X)) = (X . NIL) . NIL)
(Z.(XY)=(Z.(X.{Y.NIL))

There is another function, NULL, which is quite often referred to as one of the
elementary functions. This predicate is useful for deciding when a list is exhausted.

NULL is true if and only if its argument is NIL.

All the elementary functions described above can be applied to S-expressions

written in list notation, as well as to S-expressions written in dot notation.

In LISP, there do not exist type declarations. It is a “‘typeless’” language. Also
in most LISP dialects there is no distinction between program and data. So, it is possi-
ble to manipulate programs as data and to execute data as programs. For more infor-
mation on LISP the reader is referred to [McCa85] and to [Pleb80]|, from which most of

the above information is taken from.

To describe programming languages formally, people use syntax and semantics.
Syntax deals with grammatical structure of programs in the ia.ngua.ge, while semantics is
used to describe the meaning of programs in the language. There has been a lot of work
done in syntax, and the rules for defining syntax of programming languages are pretty
much defined and clear. In this paper, I will use a BNF (Backus Normal Form) gram-

mar to define the syntaxes of SCHEME and LISP. Defining semantics is more difficult,

mainly due to the complexity of the subject. There are a lot of different approaches to

solving this problem.

Each approach should fulfill the following criteria, according to U. Pleban:
1. it should be mathematically sound;
il. it should be applicable to all programming languages and their features;
iii. it should be relevant to proving program correctness and equivalence;
iv. it should expose the structure of implementations.

There are three major approaches to formal specification of language semantics:
operational, denotational, and axiomatic. Operational semantics usually specifies some
formal system that models the interpretation of programs. The computational model is
an abstract machine with transitions among states. A very good example of this ap-
proach is VDL (Vienna Definition Language), [L&W 68], [Wegn72|. Axiomatic semantics
provides axioms and rules of inference, similar to the axioms and rules for logical cal-
culus. Axiomatic semantics formulates assertions about a programming language.
Denotational semantics takes a functional approach to the specification of the program-
ming language semantics. A denotation is a function usually written in lambda cal-

culus.

In this paper I have chosen the denotational approach as the basis for comparison
of the dynamically scoped LISP and the statically scoped SCHEME. This approach is
especially well suited for LISP-like languages because LISP is based on lambda calculus.
For a description of denotational semantics, the reader should consult the standard

references, such as [Tenn‘TBl and [Gord79].

Syntaz of LISP 1.0

The following list describes syntactic domains of LISP.

Syntactic Domains:

P : Prog Programs
E:Exp Expressions
F:Fn Functicns
id : Id Identifiers
at : At Atoms

bf : BFn basic (elementary) functions

Syntaz Equations:

P-> F;..F,E n >0

The above equation (which I added, myself) defines a progranr to be any number

of function definitions, followed by expression E.

E-> at
| id
| (F Eyp ... En) n>0
| (SETQ id E)

| (COND (En1 Ei2) -.. (Ent En2)) n>0

An expression can be just an atom and then that atom is the value of the expres-
sion. It can also be an identifier, then the value of the expression is the S-expression
that is bound to that identifier at the time when we evaluate the expression. An expres-
sion can also be a function, followed by a list of arguments, which are also expressions.

Thus we allow the composition of functions.

An expression can also be of the form (SETQ id E), in which the value of E is as-
signed to variable id and returns the value of E. The last part of the above rule gives us
the format of conditional expressions. Conditional expressions give us ability to branch.
The meaning of the conditional expression is: if Eq; is true, then the value of Ej2 is the
value of the entire expression. If Ey; is false, then 1f Eo; is true the value of Eo2 is the
value of the entire expression. And so on, searching for the Eii which is true from left
to right. If none of the Ejs are true, them the value of the entire expression is

undefined, [McCa65).

F-> bt
id
| (LAMBDA (id; ... ida) E) 2>0
| (LABEL id F)

bf-> CAR | CDR | CONS | EQ | ATOM | NULL

A function can be a basic (elementary) function. It can be simply an identifier.
In this case its meaning must be previously defined in the environment. A function can
also be defined using lambda notation, thus establishing a correspondence between the
arguments and the formal parameters used in the function. In order to be able to write

recursive functions, we introduce the LABEL operator. In (LABEL id F), the name id is

assigned to function F so that a use of id in F can denote a recursive call, [McCab5].

-10-

Semantics of LISP 1.0

Let Env denote the domain of environments. An environment r : Env keeps
track of the bindings of identifiers. So, it is concerned with questions of scope. The en-
vironment is a mapping from identifiers to demotable values. Denotable values are
things that can be written down in that language. In LISP denotable values are S-
expressions and open functions. Open function is the result of function definition. It
takes in run-time environment, return address (expression continuation), and parameters
(S-expressions), and gives back a final answer. There is no need to introduce locations,

since none of the basic functions can modify list structure, [M&F 80}.

Continuations are a functional representation of the concept of flow of control.
For example, continuation for a command denotes the effect of the rest of the computa-
tion, which is not always the same as this command’s textual successors in the program.
Expression continuations in LISP are mappings from the domain of S-expressions (result
of the function) to the domain of final answers. Answer a : Ans is either an S-expression

or an Error. A summary of semantic domains is listed below.

Semantic Domasns:

Q : unspecified Atomic Values (quotations)
e:5=Q+(S5x98) S-expressions

a:Ans =S + Error Answers

k:Ec=8-> Ans Expression continuations
d:Dv=S+ OFun Denotable values

r: Env =1d -> (Dv + {unbound}) Environments

f: OFun = Env-> Ec-> S*-> Ans open functions

z : Fec = OFun -> Ans Function continuations

There are four semantic functions: P, B, E, and F, whose definition constitute
the core of the standard semantics of LISP. They are listed below. B maps literal
atoms to atomic values. Since the details of this mapping are irrelevant, it is left
unspecified. E takes an expression, an environment, and an expression continuation and
gives us a final answer. F takes a function, an environment, and a function continua-

tion and gives us a final answer.

Semantic Functions:

P : Prog-> Ans

B:At->Q (unspecified)
E :Exp-> Env-> Ec-> Ans

F:Fn-> Env-> Fec-> Ans
Semantic Equations:
(E1) E[at] (r) (k) = k (Bfat])

All atoms are just handed to the function B and the result is fed into expression

continuation k.

-12-

E2) Eld k) = (r{id) = unbound -> UNBOUND-VAR,
(E2) E[id] (r) (k) = (r(id) noo n(lsS>(l‘(ld)) > kg'(ld)),

)

The value of the variable id is looked up in the environment r. If it is unboznd,
then an error message is produced, otherwise, if it is an S-expression then the value

found is passed to the rest of the program, otherwise, an error message is produced.

(E3) E[(F Ei ... Ep)] (r) (k)

=3]rérﬁg (r)

Aey . E[Eg] (z);

e(a1) - E[Ep
ot (k])(&, ey €2)

In the above function evaluation, function F is evaluated in run-time environ-
ment r to get a function or a function representation, which then can be applied to the

parameters ey, ..., €n.

-13-

(E4) E[(COND (Ei11 E12) ... (En1 En2))] (1) (k)

== E[Eul (l‘);
cond g[][EJElf]((;) (k),
r)
conzdl (E[E2] (r) (k)

E[E&u E(:’l');) (k
}n%élvfééﬁb

where
cond: (Ans x Ans) -> S -> Ans

cond (a1, ag) (e) = ag if e has the value NIL and a; otherwise

If Ey; evaluates to non-NIL value, then the value of the COND form is the value

of Ej2; otherwise, we check the value of E2; and so on.

(E5) E[(SETQ id E)] (r) (k)

= E[E] (r);
)\e.[k](eg;)r(id))

Value of E is assigned to variable id and then it is passed to expression continua-

tion k.

-14-

(F1) F[CAR] (r) (z) = 2 (car)

where
car: OFun

ar (1) (k) (¢) = (e = <e1, e2> -> k (1),
) BAD-CAR-ARG

F[CDR] (r) (z) = z (cdr)

where
edr: CFun

edr (1) (k) (e) = (e = <ey, e2> -> k (e2),
) BAD-CDR-ARG

F[CONS] (r) (z) = z (cons)

where
cons: OFun

cons (r) (k) (e1, e2) = (1sS (e1) and

isS (e2) -> k (<eq, e2>),
) BAD-CONS-ARG

FEQ] (1) (2) = z (eq)

where
eq: OFun

eq (r) (k) (e1, e2) = (isAtom (e1) and
: isAtom (ez) -> (e1 = e2 N>ILT

l;)lhD-EQ-ARG

-15-

FIATOM] (1) (z) =lz (atom)

where
atom: OFun
atom (r) (k) (e} = (isAtom (e) -> T,
() () (o) = (istom (&) > T,
BAD-ATOM-ARG

)

F[NULL)] (r) (z) = z (null)

where
null: OFun

1 (r) (k) () = (isNull (¢) -> T,
null (r) (k) (e) ;lsu(e)im‘

The function CAR produces a subexpression of a given expression e. Ifeis a dot-
ted pair, then CAR sends the first part of the argument to continuation k, otherwise, an

error message is produced. The rest of the basic functions are similar.

(F2) F[id] (1) (z) = (r(id) = undound -> UNBOUND-FUN,
(isOFun (r{id)) -> z g(id)),
NON-FUN

)

The value of the identifier is looked up in the environment. If it is unbound, an
error message is produced. Otherwise, if it is an open function then its value is passed

to the function continuation, else another error message is produced.

(F3) F[{LAMBDA (id; ... idu) El {r) (z) =z (f)
where

f = A .Ak.\(ey, ..., €a)-
E[E] (¢ [et, ..., ea/id1, ..., idn] (k)

When we see a LAMBDA expression, we construct its denotation, f, and it is
passed to the function continuation z. fis defined so that when the LAMBDA expres-
sion is applied to the arguments, the LAMBDA variables idy, ..., idy (formal parameters)
are bound to actual parameters ey, ..., ¢n. The body E is evaluated with these bindings,

' is the call-time environment.

(F4) F[(LABEL id F)] (r) (z)
= FIF] (1) (M2 (\ L [1/id]))

LABELs were introduced in order to be able to write recursive functions. The

call-time environment ' is modified by binding of f to name id; f is result of F[F].
Most of the above information is from McCa60], [McCa85], and [Gor 75].

As an example of checking the types, consider the type checking for the equation
(F4). I will do it from inside out. On the left hand side (LABEL id F) is of type Fn, r is
Env, and z is Fc. The result of that is of type Ans, since Fn -> Env -> Fe¢ -> Ans.

On the right hand side, it is a little more involved:

o [f/id] is of type Env. fis OFun. Thus, f(r' [f/id]) is Ec -> S* -> Ans. Ar' is of
type Env. Thus, A\r' f(r' {f/id]) is OFun. z is Fc, and since Fe = OFun -> Ans, we
get Ans. M is OFun. OFun -> Ans gives us Fc. Therefore, (AM.z (' f(¢ [{/id)))) is
of type Fe. F is of type Fn, r is of type Env. Thus, the whole right hand side gives us

-17-

Ans

(Fo -> Eav -> Fe-2> Ans).

The following diagram illustrates the above type checking.

EE) () (N z()w;'- t
i1

| |
En Env | |
Fec

[(LABEL if E)‘](r) (z) =
QEun

En Env Ec \
l

pum———

Ans

pes like that for every equation, but because it is time consum-

We can check t¥
eader with that.

aining, 1 will not bore the T

ing and not very entert
e the equation for the LISP program.

d anywhere in the literatur
seman-

1 could not fin
ed the following

ptax equation above, 1 defin equation for the

So, based on my sy
tics of LISP 1.0.

() P{(LABEL idi F) - (LABEL ida F) E} 23>0
= F[Fy] (ro);
>~f1 F{Fq] (ro)
- Mn— F[F. (r0);
P EE (role 1) (ka)

where,
Fr =M. fo/id1 .- idn

10

This equation defines n functions in the initial environment rg, and then evalu-
ates an expression E in that environment, modified by the definition of the functions,

and using the initial expression continuation ko.

Instial Environment
ro = CAR, CDR, CONS, .../car, cdr, cons, ...

CAR, CDR, CONS, etc. are identifiers; car, cdr, cons, etc. are OFun.

Instial Continualion
ko = As.s

The answer of the program is the value of E, which is an S-expression.

-19-

Syntaz of SCHEME

In [S&S 75}, [S&S78a] and related papers, Steele and Sussman describe a dialect
of LISP called SCHEME. The major difference between SCHEME and LISP is that
SCHEME is lexically scoped. It has considerable significance for the ease with which
SCHEME can be compiled. In fact, Steele has written a compiler for SCHEME, called
RABBIT, [Stee78].

The following list represents the syntactic domains of SCHEME. Most of it is from
(S&S 75}, [S&S 78al, [Pleb79], and [Plebg0)}.

Syntactic Domains:

P : Prog Programs

D : Def Global function definitions
F:Fn Named abstractions

A: Abs Unpamed abstractions

E : Exp Expressions

S : S-exp S-expressions

id : Id Identifiers

at : At Atoms

pum: Num Numbers (integer and reals)

Syntaz Equationa:

P-> DE
| E

-20-

D -> (DEFINE (F; ... Fu)) n>0
F-> (id A)

A-> (LAMBDA (id] ... idn) E) n>0

To define (possibly) mutually recursive functions globally we use DEFINE. Each
of the named abstractions Fj is of the form (id A), where id is just an identifier and A is

a iambda expression defined above.

E-> T
| NIL
| (QUOTE $)
| num
| id
| A
| (ASET! id E)
| {(E¢ E1 ... En) n20
| (IF E1 E2)
| (IF E; E2 E3)
| (LABELS (Fi ... Fa) E) n>0
| (CATCH id E)
| (THROW id E)

S-> at
| num

| (1. S2)

An expression is either T or NIL, which are literal atoms, or (QUOTE S), which
is a constant - S-expression. It can also be an identifier, like in LISP, or a number.
Having number in SCHEME but not in LISP is not very important, since the domain of
atoms in LISP is not specified, so we can say that a number is an atom. An expression
can also be of a form (ASET! id E), where the value of E is assigned to variable id.
Therefore, ASET! behaves liké SETQ in LISP. An expression can also be an A, un-
named abstraction, which is just a lambda expression of the form (LAMBDA (id; ... ida)
E). In contrast to LISP, a lambda expression in SCHEME always evaluates to a closure,
ie. it is associated with an environment containing bindings for its free variables, thus

achieving lexical scoping, [Pleb80).

Both IF statments in SCHEME are just simplified versions of the LISP condition-
al COND. LABELS is like LABEL in LISP except that it is easier to define mutually re-
cursive functions using LABELS. The mutually recursive functions are defined only for

the evaluation of the body of the LABELS form.

-29.

Semantics of SCHEME

The basic values in SCHEME, as in LISP, are atoms: integers, reals, and literal

atoms. Domain of integers is denoted by N, domain of reals by R, and domain of literal

atoms (quotations) by Q.

Let e denote a member of the domain of expressible values Ev, which are also
storable values. It can be a basic value, a closed function, an expression continuation,
or it can have a CAR-part and a CDR-part, which are both in Ev. Having closed func-
tions here is necessary, since functions are first-class objects in SCHEME, which means
that they may be assigned to a variable, passed to a function, produced as 2 result by a

function, and used as atomic constituents of data structures.

Expression continuations model SCHEME escape objects, which are also first-
class objects. Answer a : Ans is simply an expressible value or an error. In SCHEME,
identifiers can only denote locations, thus denotable valued : Dv is identical to location”’

1 : Loe, which is left unspecified.

Environments r : Env, map identifiers to their denotations or {unbound}. Stores
s : Store, map locations to their contents (the storable values) or {unused}. The run-
time information is kept in the store. The compile-time information is kept in the en-

vironment.

SCHEME functions are mapped to closed functions. f, member of the domain
CFun. Such a function takes a list of evaluated arguments from expressible values Ev
and expression continuation Ec, and produces a command continuation. Closed func-
tions in SCHEME, in contrast to the open functions in LISP, do not take environment

as their parameter. SCHEME is statically scoped, so you do not need a run-time en-

-23-

vironment as input to the function. You also do not need a compile-time environment

for closed functions in SCHEME because it can be figured out at compile time.

There are also three domains of continuations. They are command continuations

¢ : Ce, expression continuations k : Ec, and definition continuations u : De.

The above discussion is summarized in the following list of domain equations,

[Pleb80].

Semantic Domains:

Q
N

R
B

: unspecified

=Q+N+R

: Ev = B + Cfun + E¢ + (Ev x Ev)
: Loc

: Env = Id -> (Dv + {unbound})

: Store = Loc -> (Sv + {unused})

: Sv = Ev

: Dv = Loc

: Ans = Ev + Error

: CFun = Ev* -> Ec-> Ce

: Ce = Store -> Ans
:Ec=Ev-> Ce¢
: D¢ = Env -> Ce¢

-24-

Atoms (quotations)
Integers

Reals

Basic Values

Expressible values
Locations (unspecified)
Environments

Stores

Storable values
Denotable values
Answers

Closed functions

Command continuations
Expression continuations

Definition continuations

The following list of seven semantic interpretation functions constitutes the core
of standard semantics of SCHEME. Those semantic functions are: P,D,F A E,S,
B. Tn SCHEME, the Env for E and F is run-time (call-time) environment. We have to
distinguish between call-time and compile-time (defining) environments. The run-time
information is kept in the store. The compile-time information is kept in the environ-
ment. We use locations to keep track of the run-time information. That is why we
need locations in SCHEME.
Semantic Functions:
P : Prog -> Ans
D : Def -> Env-> De-> Ce
F:Fn->Env->Dc->Ce
A : Abs -> Env -> CFun
E:Exp-> Env-> Ec-> Ce

S : Sexp -> Ec -> Ce

B: (At + Num)-> B (unspecified)
Semantic Equations:

(S1) Sfat] (k) = k (Blat])
(S2) S(oum] (k) = k (B{num])

-25-

All atoms and numbers are just handed to the function B and the result is fed

into expression continuation k.

(S3) S[S; . So (k)
= S{8};
)«e;.S[Sg];

Aes.alloe*(1);
ALxs.k(<ey, e2>) (s[<e1, e2>/1])

Strictly speaking, 1 is a vector of 1 (one} location. An S-expression with CAR-
part and a CDR-part causes a location to be allocated and an operation cons to be per-

formed.

(E1) E[T] (r) (k) = S[T] (k)

(E2) E[NIL] (r) (k) = S[NIL] (k)

(E3) E{(QUOTE 8)] (r) (k) = S{§] (k)
(E4) E[num] (r) (k) = S{num] (k)

All the above trivial cases are just handed to the function S.

(EB) E[id] (r) (k) = (r(id) = unbound -> UNBOUND-VAR,
\ contents (r{id)} (k)

The value of the variable id is looked up in the environment r. If it is unbound,
then error message is produced, otherwise, the utility function contents is called. (See

below for the explanation of all the utility functions.)

(E8) E{A] (r) (k) = k (A[A] (r))

The above just passes the result of A[A] in the environment r to the expression

continuation k.

(E7) E{(ASET! id E)] (r) (k)
= (r{id) = unbound -> err{UNBOUND-VAR),

E s
o e (sle/id)

ASET! behaves exactly like SETQ in LISP, except that we first check whether

variable id is bound to a location.

(E8) E|(E¢ Ei ... Eu)] () (k)
= E[Eq] (r);
CFun?;

M.E[EY (r);
Xe1.E[Eq] (r);

Aein- \E ;
i(enf}(<[E1n.] (r,) ea>) (k)

In (E8) Eo is evaluated once, and if it evaluates to a function, then the result is

applied to the arguments Ey, ..., Eq, which are evaluated from left to right.

-27.

(E9) E((IF E; Es)] = E{(IF E; Ez NIL)]
(E10) E{(IF E\ Ez E3)] (r) (k)

= E{Eq] (r);
cond(E[E2] (r) (k), E{Eq] (r) (k))

where
cond: (Ce x C¢) -> Ev-> Ce

cond (e1, ¢2) (e)- = ¢z if e = B[NIL] and c; otherwise

If E; evaluates to non-NIL, then the value of the IF form is the value of Es; oth-
erwise, it is the value of E3. Actually, it is just a simplified version of general LISP
COND form.

(E11) E{(LABELS ((id1 A1) . (ida An)) E)] (r) (k)
= alloe* (n}); allocate n locations
Ay, -

F((id, Az)l (¢);
)\n F((idz A2)] (¢);

Ar(a-1).F[(ida r)
g

where

Y =r [11, ves ln/ldl, very idn]
¢ =1 fre] (2] .o [Tl

Evaluate E relative to r and s modified by the (possibly) mutually recursive (lo-
cal) function definitions (idi A;), 1 = 1, 2, .., n. The identifiers (function names)
idy, ..., idq are bound to the values; of the LAMBDA expressions Aj, ..., Ap respectively.
The body E of LABELS form is evaluated in an extended environment r' ' , where the
local bindings for idy, ..., ids are known, [Pleb80]. The environments r, ¢’ and ! are

compile-time environments.

(E‘12) E[(CATCH id E)] (r) (k)

= falloe* (<k>});
ALE(E] (r{l/id]) (k)

The above is like a label definition in FORTRAN. The CATCH variable id is
bound to a memory location which is initialized to the current expression continuation
(the “escape object”), and the body E is evaluated with these new bindings. If during
‘this evaluation (THROW id E) is encountered, then the rest of the evaluation of the
CATCH Lody E is discontinued, and the value of the body E of the THROW is re-
turned as the value of the CATCH.

(E13) E[(THROW id E)] (r) (k)

= (r{id) = unbound -> err(UNBOUND-VAR),
contents (r(id));

Ec?;
Ak’ E[E] (1) (k')

The above is like 2 GOTO in FORTRAN. The first occurrence of k' is regarded
as a value, and the second occurrence resarded as continuation. The identifier id must
be bound to an “escape object”, which is then applied to the value of the expression E.

This effectively returns from the CATCH expression which caused the creation of the

““escape object’.

Actually, CATCH and THROW operators are found in some LISP 1.0 implemen-

tations, for example, Franz Lisp.

(A) A|(LAMBDA (id ... ida) E] (r)

-29-

= e Nk (1g(e") =
> iallo c*(e)
>~(11 i Iy {EEIIA(r’)Sk))

where
¢ =1l la/id1, - ida)

t a denotation so that the

e a LAMBDA expression, we construc
The

When we se
id, are bound to new initialized

LAMBDA variables id1, .-y locations 11, .-, la

body E is evaluated with these new bindings.

(F) Fi(id A)] (1) (v)
= \s.(r{id) = unbound -
) (r(ld)/ld) (S[AlA] r)/r(ld)])

is assigned to the location to which

although they can-

A[A] (1)

The function value produced by
which are used in (E11) (

identifier id is bound. It updates the states,

cel out of the equation).

(D) D{(DEFINE ((id1 A1) ... (ida Aa)))] (r} (u)

= alloe* (n); allocate n locations
Y PR i 2
Fid Ay} (7);
Ar1.F[(idz Az)} (7);

Xrin.l).F (ida An)] (');

Arp.u(r’ /)
where
l" =T [1], weny ln{idl, vasy idul
r' =mnr .|

The above equation handles the (global} definition of n functions (idi As), i = 1,
2, ..., n (which may be mutually recursive) in the environment and store. The equation
is very similar to the one for LABELS (E11). The little environments ry, ..., rq are com-
bined and passed to the original definition continuation u. The environment r is

compile-time environment (actually it is initial environment).

(P1) PD E] = D[D] (ro) (A\r' .E[E] (ro[r’]) (ko)) (s0)

(P2) P[E] = E[E] {ro) (ko) (so)

The above two equations define a SCHEME program by first defining all the
functions in the initial environment ro, and then evaluating E in the environment rg
modified by ' , which contains all the definitions of the above functions, with the initial

expression continuation ko and the initial store so.

Instial Environment

-31-

ro = lcAR, lcpR, lcons, .../CAR, CDR, CONS, ...

Instial Continunation

ko = Mels.e take final value, ignore final store

Instial Store |

so = fcaRr, fcDR, fcoNs, ---/lcar, lcpr, lcons, -..

Where fcar, fcpr, fcons, ... : CFun are SCHEME primitive function definitions

in preallocated locations lcar, lcDR, lcons, ...
Utslsty Semantic Functions

Function alloc* allocates n 2> 0 distinet unused locations ip s.

alloe* : N -> (Loc* -> Ce) -> Ce Allocate storage
alloe* (n) (t) (s)
= t(<y, ..., >) (s), n2>0
where,
s(h) = ... = s(lp) = unused
= STORAGE-FULL, otherwise

.32-

SCHEME versus LISP

SCHEME and LISP 1.0 were described above in structural denotational seman-
tics, i.e. semantics in which the meanings of syntactic constructs are given in terms of
the meanings of their parts, [M&P 80]. The implementation of SCHEME (T Lisp) fol-
lows that denotational semantics. But most of the LISP 1.0 implementations {such as
Franz Lisp and MacLisp) have added a lot of features, like availability to the program-
mer of EVAL and APPLY, and evaluation of the function position Eg in an application
(Eo E; ... En) many times. That is why the structural definition of modern LISP

languages is not possible.

We have presented the syntax and semantics of standard subsets of SCHEME
and LISP. Besides relatively minor differences between the two, such as the usage of IF
and LABELS instead of COND and LABEL, SCHEME has very different semantic
flavor from LISP. The following is a list of the most important differences between the

two:

1. Free variables in LAMBDA expressions are lexically bound in SCHEME and are
dynamically bound in LISP. This makes the construction of a compiler f{or
SCHEME easier than for LISP. It also makes it easier to debug programs in
SCHEME than in LISP, because in SCHEME all the references to a local variable
binding are textually apparent in the program. Thus, the connection between

binding and reference is unchanged at run-time, [S&S78b].

2. In some LISP systems, there is SET operator in addition to SETQ operator.
(SET Eo Ey) is like a (SETQ id E) except that instead of id we can have an arbi-
trary S-expression Eq, which is evaluated. In SCHEME there is no 2nalog to SET ‘
operator, only to SETQ. In SCHEME there is a distinction between atoms which

are used as a constants, and atoms which are used as variables. As Steele and
Sussman mention in [S&S78a], “‘although the case of a general evaluated expres-
sion for the variable name causes no real semantic difficulty, it can be confusing
to the reader. Moreover, in two years we [Steele and Sussman] have not found a
use for it. Thefefore, we have replaced ASET .with ASET!.” Another reason for
leaving it out of the definition of SCHEME, is so that SCHEME will have a

structural denotational semantic definition.

In SCHEME there is a sharp distinction between S-expressions, which define
data, and LAMBDA expressions, which define functions. Thus, user-defined func-
tions do denote functions in the mathematical sense. This is the most important
semantic difference between SCHEME and LISP. In LISP, program and data are
not distinguished. This is easy to do in dynamically scoped LISP because global
variables do not need to be bound until run-time anyway. LAMBDA expressions
in LISP generally do not denote functions (except when an explicit word FUNC-
TION is used), but are just function representations in the form of S-expressions
and therefore, they can be used and manipulated as data. In SCHEME, because
it is statically scoped, every LAMBDA expression evaluates to a function, i.e. it is
closed in the definition environment. The only operation which is defined for a
function in SCHEME is invocation. But also, functions in SCHEME are treated
as first-class objects, i.e. they may be passed as arguments to functions, returned

as a value from functions, and they may be atomic parts of data structures.

Most of the above is from [M&P 80|, [Pleb79], and [Pleb80].

In this paper I described the similarities and differences between statically scoped
SCHEME and dynamically scoped LISP. Both languages were described using denota-
tional semantics. Compiling SCHEME into efficient object code is possible because it is
statically scoped. That also makes debugging easier in SCHEME than in LISP. But
there are some applications which require the flexibility of interpretive execution and the
on-the-fly creation of executable code it allows, [M&P 80]. This reason and also heavy
usage of LISP by Al community makes it very unlikely that SCHEME will replace LISP

in the very near future.

Finally, I have included in the appendicies a working program written in Franz
Lisp and T LISP to demonstrate the differences in the output of that program due to
the differences in scoping of two dialects. I also included a contour model to show the
differences between dynamic and static bindings. There is also a copy of the same pro-

gram, written in a block structured language, like pseudo-pascal.

Appendix L.

This is an example of running a program in Franz Lisp, which is dynamically

scoped.

(de dynamic ()
setq globalx 0)
proc2)

(de proc2 ()
((lambda (globalx) (procl)) 3)

(de procl ()
) globalx

Franz Lisp, Opus 38.50
-> (load 'dynamic)

[load dynamic.]]

t

:3) (dynamic)

-> globalx
3

-37-

Appendix II.

This is an example of running the same program in T LISP, which is statically

scoped.

(herald static)

(define (static)
set globaix 0)
proc2)

(define (proc2)
((lambda (globalx) (proci)) 3)

(define (procl }
globalx

)

T 2.8 (132) VAX11/UNIX Copyright (C) 1984 Yale University
> (load ’static)

‘Loading "static.t” into *SCRATCH-ENV+
STATIC PROC2 PROC1 #{Procedure 2 PROC1}
> (static)

[Binding GLOBALX] 0

> globalx

0

Appendix II.

Contour model of the same program shows the difference between static and

dynamic bindings. Value of the variable, globalx, is printed out from procedure proel.

Static scoping (T Lisp)

static
I I I
| globalx | O |
I I !
proc2 procl
I I
globalx | 3 i
I
Dynamic scoping (Franz Lisp)
dynamic
I I I
globalx | O |
| !
proc2
| I
globalx | 3 |
|

| procl

e e i, S———

-39-

Appendix IV.

This is example of the same program written in a block structured language.

program block ;

var
globalx : integer;

{#*%xxxxtxx2%x PROC1 ERRRRRKERE KKK }
procedure procl;

begin
writeln (globalx)
end;

{“*uauu*ﬂ PROC2 sxssxsxkanss}
procedure proc2;

var
globalx : integer;

begin

globalx := 3;
proci

end;

{HAndnn ek ek KN MAIN #sknssxkkrakk}

begin
globalx := 0;
proc2

end.

[Gord735]

[Gord79]

[L&W 66]

[McCa60]

McCa85]

[McCa78]

McCa80]

[McDe80|

IM&P 80]

[Pleb79]

[P1eb80]

REFERENCES

Gordon, Michael J. C., Operational Reasoning and Denotational Se-
mantics, Memo AIM-264, Artificial Intelligence Laboratory, Stanford
University, CA, August 1975.

Gordon, Michael J. C., The Denotational Description of Programming
Languages, Spring-Verlag, New York, 1979.

Lucas, P. & Walk, K., On the Formal Description. of PL/1, Annual
Review in Automatic Programming, vol. 8, part 3, Pergamon Press,
1968.

McCarthy, John, Recursive Functions of Symbolic Expressions and
Their Computation by Machine, Part I, CACM, vol. 3, no. 4, pp.
184-195.

McCarthy, John, Paul W. Abrahams, David J. Edwards, Timothy P.
Hunt & Michael I. Levin, LISP 1.5 Programmer’s Manual, M.LT.
Press, Cambridge, Massachusetts, 1965.

McCarthy, John, History of LISP, ACM SIGPLAN Notices, History of
Programming Languages Conference, vol. 13, no. 8, August 1978, pp.
217-223.

McCarthy, John, LISP - Notes on its Past and Future, Conference
Record of the 1980 LISP Conference, Standford University, CA, Au-
gust 1980.

McDermott, Drew, An Efficient Allocation Scheme in a Interpreter for
a Lexically-scoped LISP, Conference Record of the 1980 LISP Confer-
ence, Standford University, CA, August 1980, pp. 154-162.

Muchnik, Steven S. & Pleban, Uwe F., A Semantic Comparison of
LISP and SCHEME, Conference Record of the 1980 LISP Coanference,
Standford University, CA, August 1980, pp. 56-64.

Pleban, Uwe F., The Standard Semantics of a Subset of SCHEME, a
Dialect of LISP, Technical Report TR-79-3, Department of Computer
Science, University of Kansas, Lawrence, Kansas, July 1979.

Pleban, Uwe F., A Denotational Approach to Flow Analysis and Op-

timization of SCHEME, a Dialect of LISP, Ph.D. Dissertation, Univer-
sity of Kansas, Lawrence, Kansas, 1980.

-41-

[Stee77]

[SteeT§]

(5&S T75]

[S&S784a]

[S&ST78b]

[S&S 80|

[Tenn76}

[Wegn72]

Steele, Guy Lewis Jr., Debunking the “Expensive Procedure Call "
Myth or, Procedure Call Implementation Considered Harmful or,
Lambda: The Ultimate GOTO, Memo 443, Artificial Intelligence La-
boratory, M.LT., October 1977.

Steele, Guy Lewis Jr., RABBIT: A Compiler for SCHEME, Technical
Report AI-TR-474, Artificial Intelligence Laboratory, M.LT., January
1978.

Steele, Guy Lewis Jr. & Gerald Jay Sussman, SCHEME, An Inter-
preter for Extended Lambda Calculus, Memo 349, Artificial Intelli-
gence Laboratory, M.L.T., December 1975.

Steele, Guy Lewis Jr. & Gerald Jay Sussman, The Revised Report on
SCHEME, a Dialect of LISP, Memo 452, Artificial Intelligence Labora-
tory, M.1.T., January 1978.

Steele, Guy Lewis Jr. & Gerald Jay Sussman, The Art of the Inter-
preter or, The Modularity Complex (Parts Zero, One, and Two),
Memo 453, Artificial Intelligence Laboratory, M.LT., May 1978.

Steele, Guy Lewis Jr. & Gerald Jay Sussman, The Dream of a Life-
time: A Lazy Variable Extent Mechanism, Conference Record of the
1980 LISP Conference, Standford University, CA, August 1980, pp.
163-172.

Tennent, R. D., The Denotational Semantics of Programming
Languages, Communications of the ACM vol. 19, no. 8, August 1978,
Pp. 437-453.

Wegner, Peter, The Vienna Definition Language, Computing Surveys,
vol. 4, no. 1, March 1972.

