BAYES DECISION METHODS

Judea Pearl June 1985
CSD-850023



BAYES DECISION METHODS

Judea Pearl
Cognitive Systems Laboratory
Computer Science Department

University of California
Los Angeles, CA 90024
(judea@UCLA-locus)
(judea@LOCUS.UCLA.EDU)

Written for Wiley’s forthcoming "Encyclopedia of AI”

*This work was supported in part by the National Science Foundation, Grant #DSR
83-13875



(Draft -- written for Wiley’s "Encyclopedia of AI")
BAYES DECISION METHODS
by

Judea Pearl

Basic Formulation

Bayes methods provide a formaﬁ:}m’ for reasoning about partial beliefs under
conditions of uncertainty. In this forfﬁalism propositions are quantified with numerical
parameters éignifying the degree of beliel accorded themr by some body of knowledge,
and these parameters are combined and manipulated according to the rulés of probabil-
ity theory. For example, if 4 stands for the statement "Reagan will seek re-election in
1988", then P(AlX) stands for a person’s subjective belief in A given a body of
knowledge X which may include -that person’s assumptions about American politics,
specific proclamations made by the White House, an assessment of Reagan’s age, per-
sonality, and so on. The symbol K, i;ldicating the source of the belief in A4, is often
suppressed from belief expressions, and we simply write P(A) or P(~A). This is justified
when K remains constant, since the main purpose of the quantifier P is to summarize K
without explicating its details. However, when this background information undergoes
" changes, we specifically need to identify which assumptions account for our beliefs, and

an explicit mentioning of K or some of its elements is then required.

In Bayes formalism, belief statements obey the three basic assumptions of proba-

bility theory:

1. 0= PA)s | (
2. P{sure proposition) =1 (
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3. P{A or B} = P(A) + P(B) if A and B are incompatible. _ {(3)

Thus, a proposition and its negation must be assigned a total belief of unity,

P(~A) = 1-P(A) (4)

to account for the fact that one of the two is certain to be true.

The heart of Bayesian techniques lies in ‘the celebrated inversion formula:

rd
e

P(Hle) = PlelH\P{H) (5}

P(e)
stating that the belief we accord a hypothesis H upon obtaining evidence e can be com-
puted by multiplying together our prior belief P(H) and the likelihood P(eld) that e will
materialize assuming that & is true. The denominator P(e) of (5) hardly enters into con-

sideration because it is independent on H and can always be computed by requiring

that P(Hle) and P(~Hle) sum to unity.

Whereas a formal mathematician will dismiss (5) as a straight-forward identity

stemming from the definition of conditional probabilities:

Pap) = 547 PsiA) = Tt (6)

the Bayesian subjectivist regards (5) as a normative rule for updating beliefs in
response to evidence. The left-hand side of (5) expresses a quantity P{Hle) that people
often find hard to assess, in terms of more readily judged quantities, often available
directly from the natural encodings of our experiential knowledge. For example, if a
person at the next gambling table declares an outcome "TWELVE" and we wish to
know whether he was rolling a pair of dice or turning a roulette wheel, the quantities P

(TVELVE | dice) and P (TWELVE | roulezte) are readily known from our model of the



gambling devices (giving 1/36 to the former and 1/51 for the latter). Similarly, we can
judge the prior probabilities, 7 (dice) and P (roulette), by estimating the number of
- roulette wheels _and dice-rolling tables at the gambling casino. However, issuing a direct
judgment 6f P (dice | TWELVE) is a much harder mental task, which could not be per-
formed reliably unless one becomes a specialist of such guesses, at the very same casino
establishment.
Combining Prospective and Retrosp;;tive Supports

The essence of the rule in (5) is conveniently portrayed using the odds and
likelihood-ratio parameters. Dividing (5) by the complementary form for P{(~Hle), we ob-
tain:

P(Hle) _ _PlelH) _PUH) )
P~Hle) ~ Plel~H) P(~H)

Defining the prior odds on H to be

L PH) _ _PH) '
OF) = Pi~H) ~ T-PE) (®)

and the likelihood ratio by

L{elH) = -I%T—% (9)
we see that the posterior odds

O(Hle) = }%_%Ie—ll—)- (10)
is given by the product:

O(Hle) = L(e|H)O(H) {11)

Thus, Bayes rule dictates that the overall strength of belief in & hypothesis &, based on
both our previcus knowledge X and a given evidence e, should be the preduct of two

factors: the prior odds O(#) and the likelihood ratio L{e|d). The former measures the



causal or prospective support accorded to H by the background knowledge alone, while
the latter represents the diagnostic or retrospective support given to H by the evidence

. actually observed.

_Strictly speaking, the likelihood ratio L(e|H) may also depend on other proposi-
tions in the tacit knowledge base X. However, we shall later see that the power of Bayes -
techniques comes primarily from the fac?.’,that in causal reasoning the relation P(elH) is
fairly local; namely, given that H is true the probability of e can be estimated fairly na-
turally and it is not dependent on many other propositioﬁs in the data base. For exam-
ple, once we establish that a patient suffers from a given disease, it is fa-ﬁrly natural to
estimate the probability that he will _deyglop a certain symi)tom. This is what physi-
cians learn in medical schools; if, isA considered a stable characteristic of the disease and,
therefore, should be fairly indepehdent of other factors such as epidemic conditions,
previous diseases, the tests that help identify the disease, and so on. It is for this rea-
son that the conditional probabilities:P(g]H) can meet the modularity requirements of
rule-based expert systems in that it cdn serve to quantify our confidence in rules such
as "if H then e", and retain its viability regardless of other rules or facts that may re--

side in the knowledge base at any given time.

Ex. 1. Imagine being awakened one night to the shrill sound of your burglar alarm system.
What would be your degree of belief that a burglary attempt has taken place? For il-
lustrative purposes we make the following judgments: (a) There is a 95% chance that
an attempted burglary will trigger the alarm system, P (Alarm | Burglary) = .95; (b)
There is slight (.01) chance that the alarm sound would be triggered by a mechanism
other than an attempted burglary; thus, P (Alom | No Burglary) = .01; (c) Previous
crime patterns indicate that there is a ome-in-ten-thousands chance that a given house
will be burglarized on any given night; i.e., P (Burglary) = 107

Putting these assumptions together we obtain, using {5},



0 (Bwrglarylalarm) = L (Alarm|Burglary) O (Burgiar)

_ .95 107 _
o1 1—-10-1 .0095
+ . and so, {rom
- 04
P = T4 o) (12)
we have:
“ 0095
P(Burglary ]Al?:m') T+ 0005 00941

Thus, the retrospective support impa.-rted to the burglary hypothesis by the alarm evi-
dence, has -increased its degree of belief from 1 in ten-thousands to 94.1 in ten
thousands. Notice that it was not necessary to estimate the gbsolute val;x-es of the pro-
babilities 7 (Alarm | Burglary) and P (Alarm | No Burglary), only their ratio enters the
calculation and, therefore, a direct estimate of this ratio could have been used instead.
Pooling of Evidence

Assume that the alarm system consists of not one, but a collection of ¥ burglary
detection devices, each sensitive to a &iﬁ'erent physical mechanism (e.g. air turbulences,

temperatures variation, pressure, sound, etc.) and each equipped with its own distinc-

tive sound of alarm.

Let H stand for the event that a burglary took place and tet & stand for the evi-
dence obtained from the ¥* detector, with e representing an activated detector and &
representing a silent detector. The reliability (and sensitivity) of each detector is
characterized by the probabilities P{ef|H) and P(ef|~H) or, more parsimoniously, by their

ratio:



P(etH)
P(et|~H)

If some detectors are triggered while others remain deactivated, we have conflicting evi-

L(H) = - (13)
) dénce on our hands, and the combined belief in the hypothesis # would be computed
by equation (11):

O(Hle &, - - - ) =L(&, ..., &'IH\OH) (14) -
Strictly speaking, equation (14) requires t};e use of an enormous data base, because we
need to specify the probabilities of a.ctiv-s.tion for every subset of detectors, conditioned
on H and on ~H. Fortunately, reasonable assumptions of independence can drastically
cut this storage requirement. Assuming that the state of act;ivation of each detector
depends only on whether a burglarly t".o_ok place, but is thereafter independent of the

activation of other detectors, we can write:

Ped - ) = TIP(EH) (15)
k=i
and
P&, ..., &¥|~H) = fIP(e*[-H) (16)
which lead to
ot .. ) ={TIL(EnIoE (17)

Thus, the individual characteristics of each detector are sufficient for determining the
combined impact of any group of detectors.
Multikypothesis Variables

The assumptions of conditional independence in equations (15) and (15).wi11 be
justified if the failure of a detector to react to an attempted burglery and the factors

which may cause it to fire prematurely both depend solely on mechanisms intrinsic to
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t;he individual detection systems such as insufficient sensitivity, internal noise, and so
on. However, if these may be caused by external circumstances affecting 2 selected‘
- - group of sgnso;s,' such as a power failure or an earthquake, the two hypotheses H =
Burglary and ~H = No Burglary may be too coarse to induce sensors’ independence,
and additional refinement of the hypotheses space may be necessary. This usually hap- _
pens when the negation of a proposition gntalils several possible states of the world,
each having its own distinct characteriss.t;ics. For example, the state of "No Burglary”
entails the possibilities of an "ordinary peaceful night”, a "night with earthquake®, "an
attempted entry by the neighbor’s dog”, each influencing the sensors present in a
unique way. Equation (16) may be justified with respect to each one of these condi-
tions, but not with respect to thei_r__aééreéa.te "No Burglary”. For this reason it is often
necessary to refine the hypothe—ses: space beyor;d that of binary-propositioss and group

them into multi-valued variables, where each variable consists of a set of exhaustive

and mutually exclusive hypotheses.
Ex. 2. We may choose to assign the variable name H = {H,, H, H,, H} to the following set of
conditions:
H, = no burglary, equipment malfunction {~b, m)
H, = attempted burglary, no malfunction (b, ~m)
H, = attempted burglary combined with equipment malfunction (b, m)
H, = no Burglary, no malfunction (~3, ~m)
Each evidence variable ¢ can also be multi-valued (e.g. ef=no sound, ef=low sound,
£=high sound) and, so, the causal link between # and & will be quantiied by an mXa

matrix where m and n are the number of values, respectively, that X and ¢ may take,

and the (i, j)* entry of M* stands for



M} = P(cf{H) i : (18)

For example, the matrix below could represent the various sensitivities of the ¥* detec- .

tor to the four conditions in H:

e o o
(no sound) (low sound) (high sound)
H, 5 4 1
H, .06 5. 44
H, 5 T 4
H, 1 0 0
Given a set of evidence readings &, €% «-- ¢, - -- ¢' the overall belief in the i

hypothesis is given by (4),
P(H]E, ..., ") = aP(e, - - CH)PH) (19)
where a is a normalizing consta.nt,- and assuming conditional independence with respect

to each H;, we obtain

N
PH(lE, - €)= ‘-‘[“HP(‘!WI)]P(HO (20)
-1
Thus, we see that the matrices P(*IH)) now play the role of the likelihood ratios in

equation (17). If for each detector reading & we define the likelirood vector

N = (A, AF M) (21)

N = P(etH)) (22)

then (20) is computed by a simple vector-product process. First, the individual likell-
hood vectors are multiplied together, term by term, to form an overall likelihood vector

A =1Ale - -+ eNY, where

A= ﬂp(&m,; (23)

k=g

Then we obtaiz the overall belief vector P(Hje*, -+ - €7} by the produet



P(H|e, -+ €)= aAPH) .

(24)

reminiscent of equation (17).

Note that only the relative magnitude of the conditional probabilities in {22) need
be estimated; their absolute magnitude does not affect the final result because a is to

be determined by the requirement SP(Hle!, - -+ €¥) =1
{ B

Ex. 3. Let us assume that our system contains two detectors having identical characteristics,
given by the matrix above. Further, let our prior probabilities for the hypothesis in Ex-
ample 2 be represented by the vector P(H) = {.099, .009, .001, .891} and assume that
detector-1 was heard to issue a high sound while detector-2 remained silent. From {22)
we have

A= (1, .44, .4,0) , M =(5.06.51)
A = Xo\%. = (.05, .026, .2, 0)

P(H)|¢*, %) = a(4.95,7.238, .20, 0)107° = (919, .0439, .0375, 0)

from which we conclude that the chances of attempted burglary (H, or H,) is
.0439 + 0375 = 8.14%.

The updating of beliel need not wait, of course, until all the evidence is collect-
ed, but can be carried out incremen;z-dly. For example, if we first observe ¢' = high
sound, our belief in H calculates to

P(H,le!) =a (.0099, .00396, .0004, 0) = (.694, .277, .028, 0)
This now serves as a prior belief with respect to the next datum and, after observing
& = po sound, it updates to:
P(H)le!, &) =a’A} - P(H|le') = a’(:347, .0166, .014, 0) =(.819, .0439, .0375, 0},
as before. Thus, the quiescent state of detector-2 lowers the chances of an attempted
burglary from 30.5% to 8.14%.
Uneertain evidence (cascaded inference)

One often hears the claims that Bayss techniques cannot handle uncertain evidence



because the relation P(A}B) requires that the conditioning event 3 is known with cer-

tainty. To see the difficulties that led to this myth let us make a slight modification in

_the story of the alarm syste‘m:

Ex. 4. Mr. Holmes receives a telephone call from his peighbor Dr. Watson, stating that he
hears a burglar alarm sound from the direction of Mr. Holmes's house. Preparing to
rush home, Mr. Holmes recalls that Dr. Watson is known to be a tasteless practical jok-
er and, therefore, he decides to first call his other neighbor, Mrs. Gibbons, who, in spite
of occasional drinking problems, is far more reliable.

Since the evidence variable §= "sensor output” is now uncertain, we cannot use it as evi-

dence in equation (11) but, rather, apply equation (11) to the actual evidence at hand:

w = Mr. Watson's testimorry, and write:

P(HIW) = L(WIRO(H) (25)

Unfortunately, the task of estimating L(wiH) will not be as easy as that of L(S|H) be-

cause the former requires the mental tracing of a two-step process, as shown in Figure

L ’ : GIBBON'S

TESTIMONY

BURGLARY SENSOR
QUTPYT

WATSON'S
TESTIMONY
Flgure 1

Moreover, even if we could obtain L(W|H) we will not be able to combine it with other
possible testimonies, say Mrs. Gibbon’s (G), by a simple process of muitiplication (23)
because those testimonies will no longer be conditionally independent with respect to
H. What Mrs. Gibbon is about to say may prove conclusively that Watson's phone call
originated from an honest neighborly concern (i.e. § = alarm sound) 2nd, so, it would

be wrong to assume P{WBurglary, G) = P{W{Burglary) because the r.h.s. also entails the

10



: possibility that Watson makes a prank phone call under the condition of a silent bur-
glary. Given the level of detail used in our story, it is more reasonable to assume tha.t’
- - the testimqnies_W and G are independent on each other once we know whether the
alarm sens.or was actually triggered. In other words, each testimony depends directly on
the alarm system (S), 2nd is only indirectly influenced by the possible occurrence of a

burglary (H) or by the other testimony (see Eigﬁre 1).

These considerations can be easily incorporated into Bayes formalism; we simply

condition equation {(19) on the intermediate variable § and obtain

P(H||G, W) = oP(G, WIH|)P(H))
= oP (Hu)fj'rp (G, WiH,, $))P(S,1H1) (26}
where S, j=1, 2 stand for the two -pc;ssible activation states of the alarm system, name-
ly, S, = "alarm triggered”, §, = "alarm not triggered”. Moreover, since G, W and H, only
influence each other via the mediating.va.riable § we can write

P(G, WiH, 5)) = P(GIS)P(W}S) (27)
and (26) becomes )

P(H||G, W) = “P{HI)?(GISJ)P(W!S})P(SJWI) (28)

The computation in (28) can be interpreted as a three state process: first, the
loeal likelihood vectors P(G!S;) and P{W|S) are multiplied together, term b;r term, to ob-
tain the likelihood vector AyS) = PfelS)), where ¢ stands for the total evidence collected,
G and W. Second, the vector PlelS) is multiplied by the link matrix My = P(S;|H)) to
form the likelihood vector of the top hypothesis A(H) = P(2lH)). Finally, using the pro-

duct rule of (4) (see also (19) or (24)), A(H) is multiplied by the prior P(#)) to give the

11



overall belief in H,.

This process demonstrates the psychological and computational role of the medi-
- a.i';ing variable §. It perrﬁits us to use local chunks of information taken from diverse
domains {e.g. P(H), P(GIS)), P(WiS)), P(S|d)), snd fit them together to form a global,
cross-domain inference P{Hle) in stages, using §imple and local vector operations. It is -
this role which prompted some philosop‘l}_ers to posit that conditional independence is
not an accident of nature for which we must passively wait but rather, a psychological
necessity which we actively dictate, e.g., by coining nanies to new, hypothetical vari-
ables, as the need develops. In medical diagnosis, for example, when sb'me symptoms
directly influence each other, the medical profession invents a- pame for that interaction
(e.g. complication, pa.thologica_l state, etc.) and treats it as a new auxiliary variable
which induces conditional indepeﬁdence; knowing the exact state of the auxiliary vari-
able renders the interacting symptoms independent of each other.

Implicit (intangible) Evidence:

Let us imagine the following developinent in the story of Mr: Holmes:

Ex. B. When Mr. Holmes called Mrs. Gibbons, he soon realized that she was in a somewhat
tipsy mood. Instead of answering his question directly, she went on and on describing
her latest operation and how terribly noisy and crime-ridden the neighborhood had be-
come. As he finally hung up, all Mr. Holmes could make out of the conversation was

that there probably was an 80% chance that Mrs. Gibbons did hear an alarm sound
from her window.

The Holmes-Gibbons conversation is the kind of evidence that is hard to fit into
any formalism. If we try to estimate the probability P{e[Alarm Sound) we would get ridi-
culous numbers because it would entail anticipating, describing, and assigning probs-

bilities to all possible courses Mrs. Gibbons’s conversation might have taken urder the

12



circumstances. i : L

These difficulties arise whenever the task of gathering evidence is delegated to
autonomous inferpréters who, for various reasons, cannot explicate their interpretive
process in full detail but, pevertheless, often produce informative conclusions that surm-
marize the evidence observed. In our case, Mr. Holmes's conclusion is that, on the -
basis of his judgmental interpretation of Gibbons's testimony (alone!), the hypothesis
*alarm sound” should be accorded a' confidence measure of 80%. Our task is to in-

tegrate this probabilistic judgment into the body of hard evidence previously collected.

In Bayes formalism the integration of implicit evidence is straightforward.
Although the evidence e cannot be zil;ti;:{llated in full detail, we interpret the proba-
bilistic conclusion to convey likelihood-ratio information. In our story, for example,
identifying ¢ with G = Gibbons’s testimony, Mr. Holmes's summary of attributing 80%
credibility to the "Alarm Sound” .event, will be interpreted as the statement
P{GlAlarm Souad) : P(GlNe Alarm Sound) =_4:-1. More generally, if the variable upon which
the tacit evidence ¢ impinges most directly has several possible states §,, §;, - - S, ¢
we would instruct the interpreter to estimate the relative magnitudes of the terms
P(eiS;) (e.g. by eliciting estimates of the ratios PlelS) : P(elS,)) and, since the absolute
magnitudes do not affect the caleunlations, we can proceed to update beliefs as if this
likelihood vector originated from an ordinary, logically crisp event e. For example, as-
suming that Mr. Watson’s phone call already contributed a likelihood ratio of 9:1 in
favor of the hypothesis "alarm sound”, the combined weight of Watson’s and Gibbons's

testimonies would yield a likelihood veector A(S) = P(W, GIS)) = {36, 1).

13



We can now integrate this vector into the computation of equation (28) and, us-

ing the numbers given in example 1, we get

AdH) = SA(SIPIS H) = (95 05) (38) = (3429)
P(H/|G, W) = aA,(H) P{H)) =a(34.25, 1.35) ® (1074,1-107%) = (.00253, .99747)

Note that it is important to verify that Mr. Holmes 80% summarization is
indeed based onfy on Mrs. Gibbons’s testiﬁiény and does not include prejudicial beliefs
borrowed fr_orn previous evidence (e.g. Watson’s testimony or crime-rate information)
or else, we stand the danger of counting the same information twice. The likelihood ra-
tio is, indeed, unaffected by such information. Bayesian practitioners claim that people
are capable of retracing the origins of- their beliefs by answering hypothetical questions
such as "What if you didn't receh‘fe—- Watson's call?” br "estimate the increment increase

in belief due to Gibbons's testimony alone”.

An effective way of eliciting pure likelihood-ratio estimates, unaﬁ'ected.by previ-
ous information, would be to first imagine that prior to obtaining the evidence, we are
in the standard state of total ignorance, then to estimate the final degree of belief cap-
tured by a proposition as a result of observing the evidence. In our example, if prior to
conversing with Mrs. Gibbons Mr. Holmes had a "neutral” belief in S, le,
P(alarm) = P(noalarm) = 1/2, then the post-conversation estimate P(alarm|G) = 80% would

indeed correspond to a likelihood ratio of 4:1 in favor of "alarm.”

14



~ Predicting Future Events

One of the attractive features of causal models in the Bayes formulation is the ease

. by which they facilitate the prediction of yet unobserved events such as the possible

developments of social episodes, the outcomes of a given test, the prognosis of a given
disease and so on. The need to facilitate such predictive tasks may, in fact, be the very
reason that human beings have adopted causal schema for encoding experiential

knowledge.

Ex. 8. Immediately after his conversation with Mrs. Gibbons, as Mr. Holmes is preparing to
leave his office, he recalls that his daughter is due to arrive home any minute and, if
confronted by an alarm sound, would probably (.7) phone him for instructions. Now he
wonders whether he should not wait a few more minutes in case she calls.

To estimate the likelihood of our néw target event: D = "Daughter will Call®, we
have to add a new causal link to the graph of Fig. 1 and, assuming that hearing an
alarm sound is the only reason that may induce the daughter to call, that link should

emanate from the variable $, and be quantified by the following P(DIS) matrix:

D ~D
will call  will not call
on - T 3
S
off 0 1

Accordingly, to compute P(Dlall evidence) we write

P(Dle) = E;rP(Dlsj. e)P(Syle) = ?P(Dwilf’(sfle)
which means that all the lengthy episodes with Mr. Watson and Mrs. Gibbons impart

their influence on D only via the belief they induced on S, P(S)le).

15



It is instructive to see now how P{(S;le) can be obtainet_i from the previous calcula-
tion of P(H)le). A natural temptation would be to use the updated belief P(H/le) and the

. link matrix P(S;|;) and habitually write the conditioning equaticn

P(S)le} = EI-P(SJW!)P(SA‘)
also known as Jeffirey’s rule of updating {1]. This equation, however, is only valid in a
very special set of circumstances. It will Ee/ wl:ong in our example because the changes
in the belief of H actually originated fxiom the corresponding changes in S, and so,
reflecting these back to § would amount to counting the same evidence twice. Formal- -
ly, this objection is reflected by the inequality P(S)\H;) # P(S)|H,, ¢), stating that the evi-
dence obtained affects, not only the belief in H and S, but also the strength of the
causal link between H and S. On the -surface, this realization may seem detrimental to
the usefulness of Bayes method-s m handling a large number of facts; having to caleun-
late all links parameters each time a new piece of evidence arrives would be an insur-
mountable computational burden. Fortunately, however, there is a simple way of up-
dating beliefs which circumvents this diﬁculty and uses only the original link matrices
[2]. The calculation of I;(S,[e), for instance, can be performed as follows. Treating 5 as
an intermediate hypothesis, Equation {4) dictates

P(Sjle) = aP(elS)P(S))

The term PflelS)) is the likelihood vector Ay(S) which was calculated earlier to {386, 1),

while the prior P(S)) is given by the matrix multiplication

P(S)) = ZP(S\H)PH) = (107, 1-1079( $2 :gé) = (.0101, .9899)

i

Thus, together, we have

16



P(S)le) = a{38, 1) @ (.0101, .9895) = (2686, .7394)
which gives the event §; = “"Alarm Sound On" a credibility of 26.86%, and predicts that-

~ the event D = "Daughter will call” with the probahility of

P(Dle) = ?P(DIS,)P(S;I:) = (2638, 7310){ 7) = .188
Multiple Canses
Tree structures, such as that used in the p/reciading section, require that only one vari-
able be considered a cause of any othéi:/1ra.riab1e. This structure simplifies computa-
tions but its rebresentational power is rather limited, because it forces us to group to-
gether all causal factors sharing a common consequence into a single node. By con-
trast, when people associate a given observation with multipie potential causes, they

weigh one causal factor against a:n__other as independent variables, each pointing to a

specialized area of knowledge. As an illustration, consider the following situation:

Ex. 7. As he is pondering this question, Mr. Holmes remembers having read in the instruction
manual of his alarm system that the device is sensitive to earthquakes and can be trig-
gered (.2) by one accidentally. He realizes that if an earthquake had occurred, it would
surely (.9) be on the news. So, he turns on his radio and waits arcund for either an an-
pouncement or a call from his daughter.

Mr. Holmes perceives two episodes which may be potential causes for the alarm
sound, an attempted burglary and an earthquake. Even though burglaries can safely
be assumed independent of earthquakes, still the radio announcement reduces the likel-
ihood of a burglary, as it "explains away"” the alarm sound. Moreover, the two causal

events are perceived as individual variables (see Figure 2); general knowledge about

earthquakes rarely intersects knowledge about burglaries.
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Glbbons’ Testmaony

L 3
wu-ucal-muzq w )

~ Figure 2

This interaction among multiple causes is a prevailing pattern of human reason-
ing. When a physician discovers evidence in favor of one disease, it reduces the credi-
bility of other diseases, although the patient may as well be suffering froﬁ; two or more
disorders simultaneously. A suspect who provides an alternative explanation for being
present at the scene of the crime appears less likely to be guilty, even though the ex-

planation furnished does not preclude his committing the crime.

To model this "sideways" interaction a matrix M should be assessed giving the
distributi?n of the consequence variab}e as a function of every possible combination of
the causal variables. In our example, we should specify M = P(S|E H) where E stands for
the variable E = {earthquake, no earthquake} . Although this matrix is identical in form
to the one described in Ex. 2, Eq.(18), where the two causal variables were combined
into one compound variable {#, H, H, H}, treating E and H as two separate entities
has an advantage in that it allows us to relate each of them to a separate set of evi-
dence without consulting the other. For example, we can quantify the relation between
E and R (the radio anmouncement) by the prbbabilities P(RIE) without having to

consider the irrelevant event of burglary, as would be required by compounding the
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pair (ER) into one variable. Moreover, having received a confirmation of R, we can
update the beliefs of £ and R in two separate steps, mediated by updating §, closely"
_ résembling the process used by people. An updating scheme for networks with

multiple-parent nodes is described in [3].

If the number of causal factors k is large, estimating M may be troublesome be- -
cause, in principle, it requires a table of '§ize" o1 In practice, however, people conceptu-
alize causal relationships by creating hierarchies of small clusters of variables and,
moreover, tile interactions among the factors in each clugter are normally perceived to
fall into one of few prestored, prototypical structures, each requiring ab;mt k parame-
ters. Common examples of such prototypical structures are: noisy OR gates (i.e., any
one of the factors is likely to tr_igg'gf the effect), noisy AND gates, and various enabling
mechanisms (i.e., factors identiﬁed as having no influence of their own except enabling
other influences to become effective).

Bayesian Networks

In the preceding discussion we have resorted quite often to the use of diagrams such
as those in Figures 1 and 2. These diagrams were not used merely for mnemonic or il-
lustrative purposes. They, in fact, convey importaat conceptual information, far more
meaningful than the numerical estimates of the probabilities involved. The formal pro-

perties of such diagrams, called Bayesian Networks [4], will be discussed next.

Bayesian Networks are directed acyclic graphs in which the nodes represent pro-
positions ({or variables), the arcs signify the existence of direct causal influences

between the linked propositions, and the strengths of these influences are quantified by
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_ conditional probabilities {Figure 3). Thus, if the graph contains the variables

Figure 3

%, ....%, and S, is the set of parents for variable x, then a complete and consistent
quantification can be attained by specilying, for each node %, an assessment P'(x; | §;) of

P(x; | 5). The product of all these assessments,

TP(x, %) I}P'(x:lsu)

constitutes a joint-probability model which supports the assessed quantities. That is, if
we compute the conditional probabili:ti_es P(x; | 5y) dictated by P(xll. .. ..%,), the original
assessments are recovered. Thus, for example, the distribution corresponding to the
graph of Figure 3 can be written by inspection:

P{x, 2 X3 X\ Xy %) = P(olEs) P(25}%e.%5) Plxir%0) P (xsley) Plxzlz)) Plx,).

An important feature of Bayes network is that it provides a clear graphical represen-
tation for many independence relationships embed:led in the underlying probabilistic
model. The criterion for detecting these independencies is based on graph separation:
namely, if all paths between x and x; are "blocked™ by a a subset § of variables, then x;
is independent of x; given the values of the variables in S. Thus, each variable x is in-

dependent of both its siblings 2nd its grandparents, given the values of the variables in
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its parent set §. For this "blocking” criterion to hold in general, we must provide a
épecial interpretation of separation for nodes that share common children. We say that."'
. _ the pathway along arrows meeting head-to-head at node x is normally "blocked”, un-
less x, or a;rl_y of‘ its descendants is in . In Figure 1, for example, x; and x, are indepen-
dent given §, = {x,} or S, = {z,x}, because the two paths between x, and x; are blocked
by either one of these sets. However, x, and x, may not be independent given
S, = {z, %}, because x,, as a descendant 6(:, , "unblocks” the head-to-head connection
at x;, thus opening a pathway between x, and x,.
Belief Propagation In Bayesian Networks

Once a Bayesian network is constructed, it can be used to replresent the generic causal
knowledge of a given domain, and (‘;axi“b-e-consulted to reason about the interpretation
of specific input data. The interpretation process involves instantiating a set of vari-
ables corresponding to the input data and calculating its impact on the probabilities of
a set of variables designated as hypotheses. In principle, this process can be executed
by an external interpreter who may ha.veraccess to all parts of the network, may use its
own co-mputational facilities, and may schedule its computational steps so as to take
full advantage of the network topology with respect to the incoming data. However,
the use of such an interpreter seems foreign to the reasoning process normally exhibited
by humans. Our limited short-term memory and narrow focus of attention, combined
with our inflexibility of shifting rapidly between alternative lines of reasoning seem to
suggest that our reasoning process is fairly local, progressing incrementally along
prescribed pathways. Moreover, the speed and ease with which we p;erform éome of the

low level interpretive functions, such as recognizing scenes, comprehending text, and



even understanding stories, strongly suggest that these processes involve a significant
amount of parallelism, and that most of the processing is done at the knowledge level it

- . sélf, not external to it.

A paradigm for modeling such active knowledge base would be to view a Baye
sian network not merely as a passive parsimonious code for storing factual knowledge -
but also as a computational architecture-for reasoning about that knowledge. That
means that the links in the networkl should be treated as the only pathways and ac-
tivation cen.ters that direct and propel the flow of data m the process of querying and
updating beliefs. Accordingly, we can imagine that each node in the net‘work is desig-
nated a separate processor which both maintains the parameters of belief for the host
variable and manages the communication links to and from the set of neighboring, logi-
cally related, variables. The comn—mnication lines are assumed to be open at all times,
ie., e#ch processor may at any time interrogate the belief parameters associated with
its neighbors and compare them to 1ts own parameters. I the compared quantities
satisfy some local constréints, no activity takes place. However, if any of these con-
straints is violated, the responsible node is activated to revise its violating parameter
and set it straight. This, of course, will activate similar revisions at the neighboring
nodes and will set up a multidirectional propagation process, until equilibrium is

reached.

The fact that evidential reasoning involves both top-down (predictive) and
bottom-up (diagnostic} inferences has caused apprehensions that, once we allow the

propagation process to run its course unsupervised, pathological cases of instability,



deadlock, and circular reasoning will develop [5]. Indeed, il a stronger belief in a given
hypothesis means a greater expectation for the occurrence of its various manifestations™ -
_and if, in turn, a greater certainty in the occurrence of these manifestations adds furth-

er credence to the hypothesis, how can one avoid infinite updating loops when the pro-

cessors responsible for these propositions begin to communicate with one another?

It can be shown that the Ba.yesi’g.n- nétwork formalism is supportive of self-
activated, multidirectional propagatibﬁ of evidence that converges rapidly to a
globally-con'sistent equilibriurﬁ [4). This is made possible By characterizing the belief in
each proposition by a vector of parameters, similar to the likelihood vecibr of Eq. (20),
with each component representing the degree of support tha;t the host proposition ob-
tains from one of its neighbors. Maintaining such a breakdown record of the origins of
belief facilitates a clear distinction between belief based on ignorance and those based
on firm but conflicting evidence. It is also ;;ostulated as the mechanism which permits
people to trace back evidence and assﬁinptions for the purpose of either generating ex-

planations, or modifying the model.

As a computational architecture, Bayesian networks exhibit the following

characteristics:

1. New information diffuses through the network in a single pass, i.e., equilibrium

is reached in time proportional to the diameter of the network.

(3

The primitive processors are simple, repetitive, and they require no working

memory except that used in matrix multiplieation.
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3. The local computations and the final belief distribution are entirely independent
of the control mechanism that activates the individual operations. They can be
activated by either data-driven or goal-driven (e.g., requests for evidence) con-

trol strategies, by a clock, or at random.

Thus, this architecture lends itself naturally to hardware implementation, capa- -
ble of real-time interpretation of rapidly changing data. It also provides a reasonable
model of neural nets involved in cognitive tasks such as visual recognition, reading
comprehension, and associative retrieval where unsupervised parallelism is an uncon-
tested mechanism. |
Rational Decisions and Quality Guarantees

Bayesian methods, unlike many alternative formalisms of uncertainty, provide
coherent prescription for choosing- actions and meaningful guarantees on the quality of
these choices. The prescription is based on the realization that normative knowledge,
that is, judgments about values, pre:férences, and desirability, represents a valuable
abstraction of actual human experience and that, like its factual-knowledge courter-
part, it can be encoded and manipulated to produce useful recommendations. While
judgments about the occurrence of events are quantified by probabilities, the desirabili-

ty of action-consequences is quantified by utilities (also called payoffs, or values) [].

Choosing an action amounts to selecting a set of variables in a Bayesian network
and fixing their values unambiguously. Such a choice normally alters the probability
distribution of another set of variables, judged to be consequences of the decision vari-

ables. If to each confizuration of the consequence set € we assign a utility measure



u(C), representing its degrge of desirability, then the overall_ expected utility associated

with action a is given by

U(a) = Su(C) P(Cla.e) (24 )
, C ) ’
where P(Cla,e) is the probability distribution of the consequence set C conditioned upon

selecting action a and observing evidence e.

Bayesian methodologies regard the expected utility U(a) as a figure of merit of
action s and treat it, therefore, as a prescription for choosing among alternatives.
Thus, if we.have the option of choosing either action a,, or a, we calculate both U{a))
and U{a,) and select that action that yields the highest value. Moreover, since the value
of U(a) depends on the evidence e observed up to the time of decision, the outcome of
the Maximum-Expected-Utility ,cri\‘.érion will be an evidence-dependent plan {or decision

rule) of the form: If ¢, is observed, choose aj; if e, is observed, choose a,,...

The same criterion can also be used to rate the usefulness of various iformation
sources and to decide which piece of evidence should be acquired first. The merit of
querying variable x can be decided prior to actually observing its value, by the follow-

ing consideration. If we query x and find the value v, the utility of action a will be

-

Ulalv,) = 3, u(Cla, z=v:)P(Cla, ¢, x=v;)
<
We will be able, at this point, to choose the best action among all pending alternatives

and attain the value

Ulv:) =max Ulalvy)

However, since we are not sure of the actual outcome of querying x, we must average
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U(v,) over all possible values of v, weighed by their appropriate probabilities. Thus, the

utility of querying x calculates o

Uz = E P(x=vx|e)U(v,)

where ¢ is the evidence available so far.

This criterion can be used to schedule many control functions in knowledge- -
based systems. For example, we can use it to decide what to ask to user next, what
test to perform next, or which rule to invoke next. The expert system PROSPECTOR
[7] actually employed a scheduling procedure (called J*) based on similar considera-
tions. If the consequence set is well defined and not too large, this information-rating
criterion can also be computed distributedly, concurrently with the propagation of evi-
dence Each variable x in the net;v-érk stores an updated value of U; and, as more evi-
dence arrives, each variable updates its U, parameter in accordance with those stored
at its neighbors. At query time, attrention will be focused on the observable node with

the highest U, value.

It is important to mention that the Maximum-Expected-Utility rule was not
chosen as a prescription for decisions for sheer mathematical convenience. Rather, it is
founded -on pervasive patterns of psychological attitudes towards risk, choice, prefer-
ences, and likelihoods. These attitudes are captured by what came to be knowﬁ as the
axioms of Utility theory [8]. Unlike the case of repetitive long series of decisions (e.g.
gambling}, where the expected-value criterion is advocated on the basis of a long run

aceumulation of payoffs, the expected utility criterion is applicable to single-decision si-

tuations. The summation operation in Eq.{29) originates not with additive accumula-
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_ tion of payofls but, rather, with the additive axiom of probability theory (Eq. 2).

In summary, the justification of decisions made by Bayes methods can be com-
municated in intuitively meaningful terms and the assumptions leading to these deci-

sions can be traced back with ease and clarity.
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