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FUSION, PROPAGATION AND STRUCTURING IN BAYESIAN NETWORKS

ABSTRACT

Bayesian networks are directed acyclic graphs in which the nodes represent propositions
(or variables), the arcs signify direct causal dependencies between the linked propositions, and
the strengths of these dependencies are quantified by conditional probabilities. A network of
this sort can be used to represent the generic knowledge of a domain expert, and it turns into a
computational architecture if the links are used not merely for storing factual knowledge but also
for directing and activating the data flow in the computations which manipulate this knowledge.

The first part of the paper deals with the task of fusing and propagating the impacts of
new evidence and beliefs through Bayesian networks in such a way that, when equilibrium is
reached, each proposition will be assigned a certainty measure consistent with the axioms of
probability theory. It is shown that if the network is singly connected (e.g. tree-structured), then
probabilities can be updated by local propagation in an isomorphic network of parallel and auto-
nomous processors and that the impact of new information can be imparted to all propositions in
time proportional to the longest path in the network.

The second part of the paper deals with the problem of finding a tree-structured represen-
tation for a collection of probabilistically coupled propositions using auxiliary (dummy) vari-
ables, colloquially called ‘‘hidden causes.”’ It is shown that if such a tree-structured representa-
tion exists, then it is possible to uniquely uncover the topology of the tree by observing pairwise
dependencies among the available propositions (i.e., the leaves of the tree). The entire tree
structure, including the strengths of all internal relationships, can be reconstructed in time pro-
portional to nlog n, where n is the number of leaves.
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FUSION, PROPAGATION AND STRUCTURING IN BAYESIAN NETWORKS

Judea Pearl
1. INTRODUCTION

This study was motivated by attempts to devise a computational model for humans’ in-
ferential reasoning, namely, the mechanism by which people integrate data from multiple
sources and generate a coherent interpretation of that data. Since the knowledge from which
inferences are drawn is mostly judgmental -- subjective, uncertain and incomplete -- a natural
place to start would be to cast the reasoning process in the framework of probability theory.
However, the mathematician who approaches this task from the vantage point of probability
theory may dismiss it as a rather prosaic exercise. For, if one assumes that human knowledge is
represented by a joint probability distribution, P (xy,...,%,), on a set of propositional vari-
ables, X, . . . , X, the task of drawing inferences from observations amounts to §imply comput-
ing the probabilities of a small subset, /4, . . ., H, of variables called hypotheses, conditioned
upon a group of instantiated variables, e¢i,...,e,, called evidence. Indeed, computing
P(Hy, ..., Hgley, ..., ey) from a given joint distribution on all propositions is merely arith-

metic tedium, void of theoretical or conceptual interest.

It is not hard to see that this textbook view of probability theory presents a rather distort-
ed picture of human reasoning and misses its most interesting aspects. Consider, for example,
the problem of encoding an arbitrary joint distribution, P{x1, ..., X,), On a2 computer. If we
need to deal with » propositions, then to store P (x|, ..., X,) explicitly would require a table

with 27 entries -- an unthinkably large number, by any standard. Moreover, even if we found



some economical way of storing P(xy, ..., X,) (or rules for generating it), there would still
remain the problem of manipulating it to compute the probabilities of propositions which people
consider interesting. For example, computing the marginal probability P (x;} would require
summing P (X1,..., X,) over all 2#~1 combinations of the remaining n—1 variables. Similarly,
computing the conditional probability P (x;lx;) from its textbook definition

P (xi, xj)

Px;|xj)= 'T(x';)_— would involve dividing two marginal probabilities, each resulting from

summation over an exponentially large number of variable combinations. Human performance,
by contrast, exhibits a different complexity ordering: probabilistic judgments on a small
number of propositions (especially 2-place conditional statements such as the likelihood that a
patient suffering from a given disease will develop a certain type of complication) are issued
swiftly and reliably, while judging the likelihood of a conjunction of many propositions entails a
great degree of difficulty and hesitancy. This suggests that the elementary building blocks
which make up human knowledge are not the entries of a joint-distribution table but, rather, the

low-order marginal and conditional probabilities defined over small clusters of propositions.

Further light on the structure of probabilistic knowledge can be shed by observing how
people handle the notion of independence. Whereas a person may show reluctance to giving a
numerical estimate for‘a conditional probability P (x; | x;), that person can usually state with ease
whether x; and x; are dependent or independent, namely, whether or not knowing the truth of x;
will alter the belief in x;. Likewise, people tend to judge the 3-place relationships of conditional

dependency (i.e., x; influences x; given x;) with clarity, conviction, and consistency.



This suggests that the notions of dependence and conditional dependence are more basic
to human reasoning than are the numerical values attached to probability judgments. (This is
contrary to the picture painted in most textbooks on probability theory, where the latter is
presumed to provide the criterion for testing the former.) Moreover, the nature of probabilistic
dependency between propositions is similar in many respects to that of connectivity in graphs.
For instance, we find it plausible to say that a proposition ¢ affects proposition r directly, while
s influences r indirectly, via q. Similarly, we find it natural to identify a set of direct
justifications for ¢ to sufficiently shield it (¢) from all other influences and to describe them as
the direct neighbors of ¢ [Doyle, 1979]. These graphical metaphors suggest that the fundamen-
tal structure of human knowledge can be represented by dependency graphs and that mental trac-

ing of links in these graphs are the basic steps in querying and updating that knowledge.
1.1  BAYESIAN NETWORKS

Assume that we decide to represent our perception of a certain probiem domain by
sketching a graph in which the nodes represent propositions and the links connect those proposi-
tions that we judge to be directly related. We now wish to quantify the links with weights that
signify ‘the strength and type of dependencies between the connected propositions. If these
weights are to reflect summaries of actual experiences, we must first attend to two problems:
consistency and completeness. Consistency guarantees that we do not overload the graph with
an excessive number of parameters; overspecification may lead to contradictory conclusions,
depending on which parameter is consulted first. Completeness protects us from underspecify-
ing the graph dependencies and guarantees that our conclusion-generating routine will not get

deadlocked for lack of information.



One of the attractive features of the traditional joint-distribution representation of proba-
bilities is the transparency by which one can synthesize consistent probability models or detect
inconsistencies therein. In this representation, all we need to do to create a complete model, free
of inconsistencies, is to assign non-negative weights to the atomic compartments in the space
(i.e., conjunctions of propositions), just making sure the sum of the weights equals one. By con-
trast, the synthesis process in the graph representation is more hazardous. For example, assume
you have three propositional variables, x, X2, x3, and you want to €xpress their dependencies
by specifying the three pairwise probabilities P (x 1, x2), P (x2, x3), P (x3, x1). It turns out that
this will normally lead to inconsistencies; unless the parameters given satisfy some non-obvious
relationship, there exists no probability model that will support all three inputs. By contrast, if
we specify the probabilities on only two pairs, incompleteness results; many models exist which
conform to the input specification, and we will not be able to provide answers to all probabilistic

queries.

Fortunately, the consistency-completeness issue has a simple solution stemming from the
chain-rule representation of joint-distributions. Choosing an arbitrary order d on the variables
X1, ©° X, we can writel:

P(x1,x2, " X)) =P (xplXpm 0 XDPxpoy|Xp ~ 0 X1) * 0 P(x3]x2.x1) P(xa|x)P(x1)

In this formula, each factor contains only one variable on the left side of the conditioning bar

and, in this way, the formula can be used as a prescription for consistently quantilying the

TProbabilistic formulae of this kind are shorthand notation for the statement that for any
instantiation i of the variables x1,xs, ...,X,, the probability of the joint event (x1=i1) &
(x2=iq) & .. & (x,=i,) is equal to the product of the probabilities of the corresponding
conditional events (x ;=i1), (x9=i4 if x =i ), (x3=i3 if (x2=i3 & x3=i1)),... For this expansion
to be valid, we must require that P (E)>0 for all conditioning events E.



dependencies among the nodes of an arbitrary graph. Suppose we are given a directed acyclic
graph G in which the arrows pointing at each node x; emanate from a set S; of parent nodes
judged to be directly influencing x;, and we wish to quantify the strengths of these influences in
a complete and consistent way. If, by direct parents we mean a set of variables which, once we
fix their values, would shield x; from the influence of all other predecessors of x; (i.e.,
P | S)=P(x;1x1,...,x;-1)), then the chain-rule formula states that a separate assessment of
each child-parents relationship should suffice. We need only assess the conditional probabili-

ties, P (x;|S;), by some functions, F;(x;,S;), and make sure these assessments satisfy

> FiLS)=1

X

0 S.F,'(X,‘,S;) <1
where the summation ranges over all values of x;. This specification is complete and consistent
because the product form

P(xy -+ x) =[] Fitx.S)
i

constitutes a joint probability distribution that supports the assessed quantities. In other words,
if we compute the conditional probabilities P (x; | S;) dictated by P (xy, ' ** x,), the original as-

sessments F;(x;,S;) will be recovered:

Plxy, ... xp)
P(xi,Si) _ x,-e(;u&) 1

P(x;|5;)= P(S;) - ZP(xl,...,x,,)
xjeS.-

=F;(x;.5;)

So, for example, the distribution corresponding to the graph of Figure 1 can be written by in-

spection:

P (xq, X2, X3, %4, X5, Xg) =P (xg]x5) P(x5]x2,x3) P(x4]x1x2) P (x3]x)) Plxa|x1) P(x1)



Figure 1

This also leads to a simple method of constructing a dependency-graph representation for
any given joint distribution P (x{ - - - x,). We start by imposing an arbitrary order 4 on the set
of variables, x, ' X,, then choose x| as a root of the graph and assign to it the marginal pro-
bability P (x,) dictated by P (x,, " - - x,). Next, we form a node to represent xy; if x3 is depen-
dent on x 1, a link from x| to x5 is established and quantified by P (x2]x;). Otherwise, we leave
x; and x; unconnected and assign the prior P (x2) to node x;. At the ith stage, we form the
node x; and establish a group of directed links to x; from the smallest subset of nodes
S; & {x; - - x;_y} satisfying the condition

Px; |8y =P (xilxicgy ey X1)

It can be shown that the set of subsets satisfying this condition is closed under intersection;

therefore, the minimal subset S; is unique. Thus, the distribution, P (xy, - - - x,), together with



the order d uniquely identify a set of parent nodes for each variable x;, and that constitutes a full

specification of a directed acyclic graph which represents many of the dependencies imbedded in

P(xls T xn)-

In expert-systems applications where, instead of a2 numerical representation for
P(xy,...,X,), we have only intuitive understanding of the major constraints in the domain, the
graph can still be configured by the same modular method as before, except that the parent set §;
must be sclcctéd judgmentally. The addition of any new node x; to the network requires only
that the expert identify a set S; of variables which ‘‘directly bear’’ on x;, locally assess the
strength of this relation and make no commitment regarding the effect of x; on other variables,
outside S;. Even though each judgment is performed locally, their sum total is guaranteed to be
consistent. This model-building process permits people to express qualitative relationships per-
ceived to be essential, and the network preserves these qualities, despite sloppy assignments of
numerical estimates. In Fig. 1, for example, the fact that x¢ can tell us nothing new about x3
once we know x5, will remain part of the model, no matter how carelessly the numbers are as-

signed.

Graphs constructed by this method will be called ‘‘Bayesian Networks'’ or ‘‘Influence
Nerworks’' interchangeably, the former to emphasize the judgmental origin of the quantifiers,
the latter to reflect the directionality of the lirks. When the nature of the interactions is per-
ceived to be causal, then the term ‘‘Causal Network' may also be appropriate. In general, how-
ever, an influence network may also represent associative or inferential dependencies, in which
case the directionality of the arrows mainly provides computational convenience [Howard and

Matheson, 1984]. An alternative graphical representation, using undirected graphs, is provided



by the so-called Markov Fields approach {Kemeny, Snell and Knapp, 1976] and will not be dis-
cussed here. For comparison of properties and applications, see [Lauritzen, 1982}, [Pear! and

Paz, 1985] and [Spiegelhalter, 1985].

In the strictest sense, these Bayesian networks are not graphs but hypergraphs because to
describe the dependency of a given node on its k parents requires a function of £+1 arguments
which, in general, could not be specified by & two-place functions on the individual links. This,
however, does not diminish the advantages of the network representation because the essential
interactions between the variables are still displayed by the connecting links. If the number of
parents & is large, estimating P (x; | S;) may be troublesome because, in principle, it requires a
table of size 2%*1. In practice, however, people conceptualize causal relationships by forming
hierarchies of small clusters of variables (see Section 3.1) and, moreover, the interactions among
the factors in each cluster are normally perceived to fall into one of a few prestored, prototypical
structures, each requiring about & parameters. Common examples of such prototypical struc-
tures are: noisy OR gates (i.e., any one of the factors is likely to trigger the effect), noisy AND
gates and various enabling mechanisms (i.e., factors identified as having no influence of their

own except enabling other influences to become effective).

Note that the topology of a Bayes network can be extremely sensitive to the node order-
ing d; a network with a tree structure in one ordering may turn into a complete graph if that ord-
ering is reversed. For example, if x4, ..., X, stands for the outcomes of n independent coins, and
x,.+1 Tepresents the output of a detector triggered if any of the coins comes up HEAD, then the
influence network will be an inverted tree of n arrows pointing from each of the variables

Xy, ..., Xy toward Xx,4;. On the other hand, if the detector’s outcome is chosen to be the first
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variable, say x,, then the underlying influence network will be a complete graph.

This order sensitivity may at first seem paradoxical; d can be chosen arbitrarily, whereas
people have fairly uniform conceptual structures, e.g., they agree on whether a pair of proposi-
tions are directly or indirectly related. The answer to this apparent paradox lies in the fact that
the consensus about the structure of influence networks stems from the dominant role causality
plays in the formation of these networks. In other words, the standard ordering imposed by the
direction of caﬁsation indirectly induces identical topologies on the networks that people adopt
for encoding experiential knowledge. It is tempting to speculate that, were it not for the social
convention of adopting a standard ordering of events conforming to the flow of time and causa-

tion, human communication (as we now know it) would be impossible.
1.2  CONDITIONAL INDEPENDENCE AND GRAPH SEPARABILITY

To facilitate the verification of dependencies among' the variables in a Bayes network, we
need to establish a clear correspondence between the topology of the network and various types
of independence. Normally, independence between variables connotes lack of connectivity
between their corresponding nodes. Thus, it would be ideal to require that, should the removal
of some subset S of nodes from the network render nodes x; and x; disconnected, then such
separation indicates geﬁuinc independence between x; and x;, conditioned on §.

P(x;|x;,8)=Px1S).
This would provide a clear graphical representation for the notion that x; does not affect x;
directly but, rather, its influence is mediated by the variables in §. Unfortunately, a network

constructed to satisfy this correspondence for any arbitrary S would normally fail to display an
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important class of independencies [Pearl and Paz, 1985]. For example, in such a network, two
variables which are marginally independent will appear directly connected, merely because there

exists some other variable that depends on both.

Bayes networks, on the other hand, allow representation of this class of independencies,
but only at the cost of a slightly more complex criterion of separability, one which takes into
consideration the directionality of the arrows in the graph. Consider a triplet of variables,
X1,X2,X3, wheré x| is connected to x3 via x3. The two links, connecting the pairs (x}, x3) and
(x4, X3), can join at the midpoint, x5, in one of three possible ways:

(1) tail-to-tail, x; €—x7 =2 x3
(2)  head-to-tail, x; —>x9—>x3 or x;€—x3€¢x3
(3)  head-to-head, x| —> x7 €— x3
If we assume that x|, X5, X3 are the only variables involved, it is clear from the method of con-
structing the network that, in cases (1) and (2), x| and x3 are conditionally indépendent, given
x4, while in case (3), x, and x5 are marginally independent (-i.e., P (x3|x1) =P (x3)) but may
become dependent, given the value of x;. Moreover, if x5 in case (3) has descendants
X4,Xs -+, then x; and x3 may also become dependent if any one of those descendant variables
is instantiated. These considerations motivate the definition of a qualified version of path con-
nectivity, applicable to paths with directed links and sensitive to all the variables for which
values are known at a given time.
DEFINITION I: (2) A subset of variables S, is said to separate x; from x; if all

paths between x; and x; are separated by S,.

(b) A path P is separated by a subset S, of variables if



at least one pair of successive links along P is blocked by S,.

We next introduce a non-conventional criterion under which a pair of converging arrows is said

to be blocked by S,.

DEFINITION 2: (a) Two links meeting head-to-tail or tail-to-tail at node X
are blocked by S, if X is in §,.
(b) Two links meeting head-to-head at node X are

blocked if neither X nor any of its descendants is in S,.

This modified definition of separation provides a graphical criterion for testing conditional
independence: if S, separates x; from x;, then x; is conditionally independent of x;, given S,.
The procedure involved in testing this modified criterion is only slightly more complicated than
the conventional test for deciding whether Se- is a separating cutset and can be handled by visual
inspection. In Figure 1, for example, one can easily verify that variables x 7 and J‘C3 are separated
by S1={x} or Sp={x, x4} because the two paths between x; and x3 are blocked by either
one of these subsets. However, x+ and x3 are not separated by S3 = {x |, x¢} because xg¢, as a
descendant of xs, ‘‘unblocks’’ the head-to-head connection at xs, thus opening a pathway

between x5 and x 3.

Although the structure of Bayes networks, together with the directionality of its links,
depends strongly on the node ordering used in the network construction, conditional indepen-
dence is a property of the underlying distribution and is, therefore, order-invariant. Thus, if we
succeed in finding an ordering d in which a given conditional independence relationship be-

comes graphically transparent, that relationship remains valid even though it may not induce a
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graph-separation pattern in networks corresponding to other orderings. This permits the use of
Bayes networks for identifying by inspection a screening neighborhood for any given node,
namely, a set S of variables that renders a given variable independent of every variable notin §.
The separation criterion for Bayes networks guarantees that the union of the following three
types of neighbors is sufficient for forming a screening neighborhood: direct parents, direct
successors and all direct parents of the latter. Thus, in a Markov chain, the screening neighbor-
hood of any non-terminal node consists of its two immediate neighbors while, in trees, the
screening neighborhood consists of the (unique) father and the immediate successors. In Figure

1, however, the screening neighborhood of x3 is {x 1, x5, x2}.
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1.3 AN QUTLINE AND SUMMARY OF RESULTS

The first part of this paper (Section 2) deals with the task of fusing and propagating the
impacts of new evidence and beliefs through Bayesian networks in such a way that, when equili-
brium is reached, each proposition will be assigned a certainty measure consistent with the ax-
joms of probability theory. We first argue (Section 2.1) that any viable model of human reason-
ing should be able to perform this task by a self-activated propagation mechanism, i.., by an ar-
ray of simple énd autonomous processors, communicating locally via the links provided by the
Bayes network itself. In Section 2.2 we then show that these objectives can be fully realized in
tree-structured networks, where each node has only one father. In section 2.3 we extend the
result to networks with multiple parents that are singly connected, i.e., there exists only one (un-
directed) path between any pair of nodes. In both cases, we identify belief parameters, commun-
ication méssages and updating rules which guarantee that equilibrium is reached in time propor-
tional to the longest path in the network and that, at equilibrium, each proposition will be ac-
corded a belief measure consistent with probability theory. Several approaches toward achiev-

ing autonomous propagation in multiply-connected networks are discussed in Section 2.4.

The second part of the paper (Section 3) expands on one of these approaches by examin-
ing the feasibility of preprocessing a Bayesian network and turning it permanently into a tree by
introducing dummy variables. In Section 3.1 we argue that such a technique mimics the way
people develop causal models, that the dummy variables correspond to the mental constructs
known as ‘‘hidden causes’’ and that humans’ relentless search for causal models is motivated by
their desire to achieve computational advantages similar to those offered by tree-structured

Bayes networks. After defining (in Section 3.2) the notions of star-decomposability and tree-



decomposability, Section 3.3 treats triplets of propositional variables and asks under what condi-
tions is one justified in attributing the observed dependencies to one central cause represented by
a fourth variable. We show that these conditions are readily testable and that, when the condi-
tions are satisfied, the parameters specifying the relations between the visible variables and the
central cause can be uniquely determined. In Section 3.4 we extend these results to the case of a
tree with n leaves. We show that, if there exists a set of dummy variables which decompose a
given Bayes network into a tree, then the uniqueness of the triplets’ decomposition enables us to
configure that tree from pairwise dependencies among the variables. Moreover, the
configuration procedure involves only O (nlogn) steps. In Section 3.5 we evaluate the merits of

this method and address the difficult issues of estimation and approximation.
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2. FUSION AND PROPAGATION

2.1 AUTONOMOUS PROPAGATION AS A COMPUTATIONAL PARADIGM

Once an influence network is constructed, it can be used to represent the generic
knowledge of a given domain and can be consulted to reason about the interpretation of specific
input data. The interpretation process involves instantiating a set of variables corresponding to
the input data, calculating its impact on the probabilities of a set of variables designated as hy-
potheses and, finally, selecting the most likely combinations of these hypotheses. In general,
this process can be carried out by an external interpreter which may have access to all parts of
the network, may use its own computational facilities and may schedule its computational steps
so as to take full advantage of the network topology with respect to the incoming data. Howev-
er, the use of such an interpreter appears foreign to the reasoning process normally exhibited by
humans [Shastri and Feldman, 1984]. Our limited short-term memory and narrow focus of at-
tention, combined with our inability to shift rapidly between alternative lines ofi reasoning sug-
gest that our reasoning process is fairly local, progressing incrementally along pre-established
pathways. Moreover, the speed and ease with which we perform some of the low level interpre-
tive functions, such as recognizing scenes, comprehending text and even understanding stories,
strongly suggest that these processes involve a significant amount of parallelism, and that most

of the processing is done at the knowledge level itself not external to it.

A paradigm for modeling such phenomena would be to view an influence network not
merely as a passive parsimonious code for storing factual knowledge but also as a computational
architecture for reasoning about that knowledge. That means that the links in the network

should be treated as the only pathways and activation centers that direct and propel the flow of
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data in the process of querying and updating beliefs. Accordingly, we assume that each ﬁode in
the network is designated a separate processor, which both maintains the parameters of belief for
the host variable and manages the communication links to and from the set of neighboring, con-
ceptually related, variables. The communication lines are assumed to be open at all times, i.e.,
each processor may, at any time, interrogate the belief parameters associated with its neighbors
and compare them to its own parameters. If the compared quantities satisfy some local con-
straints, no activity takes place. However, if any of these constraints are violated, the responsi-
ble node is activated to set its violating parameter straight. This, of course, will activate similar
revisions at the neighboring nodes and will set up a multidirectional propagation process, until

equilibrium is reached.

The main reason for this distributed message-passing paradigm is that it ieads to a "tran-
sparent” revision process, in which the intermediate steps can be given an intuitively meaningful
interpretation. Since a distributed process restricts each computational step to obltain inputs only
from neighboring, semantically-related variables, and since the activation of these steps
proceeds along semantically-familiar pathways, people find it easy to give meaningful interpre-
tation to the individual steps, thus establishing confidence in the final result. Additionally, it is
possible to generate qualitative justifications mechanically by tracing the sequence of operations
along the activated pathways and giving them causal or diagnostic interpretations using ap-

propriate verbal expressions.

The ability to update beliefs by an autonomous propagation mechanism also has a pro-
found effect on sequential implementations of evidential reasoning. Of course, when this archi-

tecture is simulated on sequential machines, the notion of autonomous processors working
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simultaneously in time is only a metaphor; however, it signifies the complete separation of the
stored knowledge from the control mechanism -- the proclaimed, yet rarely achieved, goal of
rule-based architectures. This separation guarantees the ultimate flexibility for a sequential con-
troller; the computations can be performed in any order, without the need to remember or verify
which parts of the network have or have not already been updated. Thus, for example, belief up-
dating may be activated by changes occurring in logically related propositions, by requests for
evidence arn'\fiﬂg from a central supervisor, by a predetermined schedule or entirely at random.
The communication and interaction among individual processors can be simulated using a black-
board architecture [Lesser and Erman, 1977], where each proposition is designated specific areas
of memory to access and modify. Additionally, the uniformity of this propagation scheme
renders it natural for formulation in object-oriented languages: each node is an object of the
same generic type, and the belief parameters are the messages by which interacting objects com-

municate,

In Al constraint-propagation mechanisms have been found essential in several applica-
tions, e.g., vision [Rosenfeld, Hummel and Zucker, 1976; Waltz, 1972] and truth maintenance
[McAllester, 1980]. However, their use in evidential reasoning has been limited to non-
Bayesian formalisms [e.g., Lowrance 1982, Shastri and Feldman 1984]. There have been

several reasons for this.

First, the conditional probabilities characterizing the links in the network do not seem to
impose definitive constraints on the probabilities that can be assigned to the nodes. The
quantifier P (A |B) only restricts the belief accorded to A 1n a very special set of circumstances,

namely, when B is known to be true with absolute certainty and when no other evidential data is
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available. Under normal circumstances, all internal nodes in the network will be subject to some
uncertainty and, more seriously, after the arrival of evidence e, the posterior beliefs in A and B
are no longer related by P (A | B) but by P (A | B, ¢), which may be totally different. The result
is that any arbitrary assignment of beliefs to propositions A and B can be consistent with the
value of P(A |B) initially assigned to the link connecting them; in other words, among these

parameters, no violation of constraint can be detected locally.

Next, the difference between P (A |B, e¢) and P (A |B) suggests that the weights on the
links should not remain fixed but should undergo constant adjustment as new evidence arrives.
Not only would this entail enormous computational overhead, but it would also obliterate the ad-

vantages normally associated with propagation through fixed networks of constraints.

Finally, the fact that evidential reasoning involves both top-down (predictive) and
bottom-up (diagnostic) inferences has caused apprehensions that, once we allow the propagation
process to run its course unsupervised, pathological cases of instability, deadlo‘ck and circular
reasoning will develop [Lowrance, 1982]. Indeed, if a stronger belief in a given hypothesis
means greater expectation for the occurrence of its various manifestations and if, in turn, a
greater cerfainty in the occurrence of these manifestations adds further credence to the hy-
pothesis, how can one avoid infinite updating loops when the processors responsible for these
propositions begin to ccnmunicate with one another? Such apprehensions are not unique to pro-
babilistic reasoning but should be considered in any hierarchical model of cognition where mu-
tual reinforcement takes place between lower and higher levels of processing, e.g., connectionist

models of reading [Rumelhart & McClelland, 1982] and language production [Dell, 1985].



This paper demonstrates that coherent and stable probabilistic reasoning can be accom-
plished by local propagation mechanisms while keeping the weights on the links constant
throughout the process. This is made possible by characterizing the belief in each proposition
by a vector of several parameters, each representing the degree of support the host proposition
obtains from one of its neighbors. In the next two subsections we show that maintaining such a
breakdown record of the sources of belief facilitates local updating of beliefs and that the net-
work relaxes to a stable equilibrium, consistent with the axioms of probability theory, in time
proportional to the network diameter. This record of parameters is also postulated as the
mechanism which permits people to retrace reasoned assumptions for the purposes of modifying

the model and generating explanatory arguments.
2.2 BELIEF PROPAGATION IN TREES

We shall first consider tree-structured influence networks, i.e., one in which every node,
except one called “‘root,”’ has only one incoming link. We allow each node to fepresent a mul-
tivalued variable which may represent a collection of mutually exclusive hypotheses (e.g., iden-
tity of organism: ORG, ORG;,...) or a collection of possible observations (e.g. patient’s
temperature: high, medium, low). Let a variable be labeled by a capital letter, e.g.,
A,B,C,.., and its possible values subscripted, e.g., A;, A2, .., A,. Each directed link
A — B is quantified by a fixed conditional probability matrix, M (B |A), with entries:
M(B |A);j =P (B;[A;). Normally, the directionality of the arrow designates A as the set of

causal hypotheses and B as the set of consequences or manifestations for these hypotheses.

Example 1: Assume that in a certain trial there are three suspects, one of whom has definitely



committed 2 murder, and that the murder weapon, showing some fingerprints, was later found
by the police. Let A stand for the identity of the last user of the weapon, namely, the killer. Let
B stand for the identity of the last holder of the weapon, i.., the person whose fingerprints were
left on the weapon, and let C represent the possible readings that may be obtained in a

fingerprint-testing laboratory.

The relations between these three variables would normally be conceptualized by the
chain A —B —C; A generates expectations about B, and B generates expectations about C, but

A has no influence on C once we know the value of B.

To represent the common-sense knowledge that, under normal circumstances, the killer

is expected to be the last to hold the weapon, we may use the 3x3 conditional probability matrix:

.SOifA,':Bj i,j=1,2,3
PBjlA)=110if A;#B; i,j=1,23

To represent the reliability of the laboratory test, we use a matrix P (Cy1B;), satisfying
TP (CulB =1 for all j

Each entry in this matrix represents an if-then rule of the type:

““If the fingerprint is of type B; then expect reading of the type Cy, with credibility

P(CriB))”

Note that this rule convention is at variance with that used in many expert systems (e.g.,
MYCIN), where rules point from evidence to hypothesis (e.g., if symptom, then disease), thus
denoting a flow of mental inference. By contrast, the arrows in Bayes networks point from

causes to effects or from conditions to consequence, thus denoting a flow of constraints in the

[
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physical world. The reason for this choice is that people often prefer to encode experiential
knowledge in causal schemata [Tversky and Kahneman, 1977] and, as a consequence, rules ex-

pressed in causal format are assessed more reliably.>

Incoming information may be of two types: specific evidence and virtual evidence.
Specific evidence corresponds to direct observations which validate, with certainty, the values of
some variables in the network. Virtual evidence corresponds to judgments based on undisclosed
observations which modify the belief in some variables in the network. Such evidence is
modeled by dummy nodes, representing the undisclosed observations, connected by unquantified
(dummy) links to the variables affected by the observations. These links will carry only one-
way information, from the evidence to the variables affected by it, but not vice-versa. For ex-
ample, if it is impractical for the fingerprint laboratory to disclose all possible readings (in vari-
able C) or if the laboratory chose to base its finding on human judgment, C' will be represented
by a dummy node, and the link B —C will specify the relative degree to which each suspect is
believed to be the owner of the fingerprint pattern examined. For example, the laboratory exa-
miner may issue a report in the form of a list

P(C gbservea | B) = (.80, .60, .50)
stating that he/she is 80% sure that the fingerprint belongs to suspect B 1, 60% sure that it be-

longs to B, and 50% sure that it belongs to B3. Note that these numbers need not sum up to un-

31t appears that, by and large, frames used to index human memory are organized to evoke
expectations rather than explanarions. The reason could, perhaps, be attributed to the fact that
expectation-evoking frames normally consist of more stable relationships. For example,
P (B;]Cy) in Example 1 would vary drastically with the proportion of people who have type B;
fingerprints. P (Cg|B;), on the other hand, depends merely on the similarity between the type of
fingerprint that suspect B; has and the readings observed in the lab; it is perceived to be a stable
local property of the laboratory procedure, independent of other information regarding suspect

B;.
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ity, thus permitting each judgment to be formed independently of the other, separately matching

each suspect’s fingerprints to those found on the weapon.

All incoming evidence, both specific and virtual, will be denoted by D to connote dasa,
and will be treated by instantiating the variables corresponding to the evidence. For the sake of
clarity, we will distinguish between the fixed conditional probabilities that label the links, e.g.,
P (A |B), and the dynamic values of the updated node probabilities. The latter will be denoted
by BEL(A;), which reflects the overall belief accorded to proposition A=A; by all data so far re-
ceived. Thus,

BEL(4;) £ P(4;1D)

where D is the value combination of all instantiated variables.

Consider the fragment of a tree, depicted in Figure 2. The belief in the various values of
B depends on three distinct sets of data: i.e., data from the tree rooted at B, from the tree root-
ed at C and from the tree above A. However, since A separates B from all variables except B’s
descendants (see Section 1.2), the influence of the latter two sources of information on B are
completely summarized by their combined effect on A. More formally: let Dy stand for the
data contained in the tree rooted at B and Dj for the data contained in the rest of the network.
We have

P(B;|A;, Dg)=P(BjlA) (1)

which also leads to the usual ‘‘inter-siblings’’ conditional independence:

P(Bj,CclA) =P (BjlA) P (CklAi), 2)

since the proposition C = Cy is part of Dg".
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Data Fusion

Assume we wish to find the belief induced on B by some data D =Dg ) Dg. Bayes

theorem, together with (1), yields the product rule
BEL(B;) =P (B;|D§, Di) =P [DF | B;] - P [B; | D], (3)

where o is a normalizing constant. This is a generalization of the celebrated Bayes formula for

binary variables
O(H|E)=ME)O(H) 4)

where M(E)=P (E |H)/P (E | H) is known as the likelikood ratio and O (H)=P (H)/P (H) as the

prior odds [Duda, Hart and Nilsson, 1976].

As an example, let Dg represent the experience of examining the fingerprints left on the
murder weapon, and let D stand for all other testimonies heard in the trial. P (B;|Dj") would
then stand for our prior (before examining the fingerprints) belief that the ith suspect was the
last to hold the weapon, and P (D | B;) would represent the report issued by the fingerprint la-
boratory.  Taking, as before, P(Dg7|B)=(80,.60,.50), and assuming we have

P (B | Dj)=(.60, .30, .10), our total belief in the assertions B =B; is given by

BEL(B)= P (Dg|B)P (B |Dg) = (.80, .60, .50)(.60, .30, .10)

= (.48, .18, .05)
and, to properly normalize BEL(B), we set o=(48+.18+.05)"! and obtain

BEL (B )=(.676, .254, .07).
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Eq.(3) generalizes (4) in two ways. First, it permits the treatment of non-binary vari-
ables where the mental task of estimating P (£ |f-} ) is often unnatural and where conditional in-
dependence with respect to the negations of the hypotheses is normally violated (i.e.,
P(EE 2|1—-} )y# P(E, If—f )P (E 2|FI )). Second, it identifies a surrogate to the prior probability

term for every intermediate node in the tree, even afrer obtaining some evidential data.

In ordinary Bayesian updating of sequential data, it is often possible to recursively use
the posterior odd as a new prior for computing the impact of the next item of evidence. Howev-
er, this method works only when the items of evidence are mutually independent with respect to
the updated hypothesis, H, and will not be applicable to network updating because only vari-
ables which are separated from each other by H are guaranteed to be conditionally independent,
given H. In general, therefore, it is not permissible to use the total posterior belief, updated by
(3), as a new multiplicative prior for the next calculation. Thus, the significance of Eq.(3) lies in
showing that a product rule analogous to (4) can be applied to any node in the ﬁetwork without
requiring a separate prior probability assessment. However, the multiplicative role of the prior
probability has been taken over by that portion of belief contributed by evidence from the sub-
tree above the updated variable, i.e., excluding the data collected from its descendants. The
root is the only node which requires a prior probability estimation, and since it has no network

above, D, * should be interpreted as the background knowledge which remains unexplicated.

Eq.(3) suggests that the probability distribution of every variable in the network can be

computed if the node corresponding to that variable contains the parameters

AMB;) =P (Dg|Bi) (5)

and



n(B;) =P (B;1Dg). (6

n(B;) represents the causal or anticipatory support attributed to B; by the ancestors of B, and
A(B;) represents the diagnostic or retrospective support B; receives from B’s descendants. The
total strength of belief in B; would be obtained by fusing these two supports via the product
BEL(B;) = aA(B;) n(B:). (7
While two parameters, ME ) and O (H ), were sufficient for binary variables, an n-valued vari-

able needs to be characterized by two n-tuples:

AB)=AB 1), MB2), ... MBn) )

(B ) =n(B ), "(B2), ..., K(Bp). €))

To see how information from several descendants fuse at node B, note that the data Dg’
in (5) can be partitioned into disjoint subsets, D1=,D2?, ..., D™, one for each subtree
emanating from (the m children of) B. Since B ‘‘separates’’ these subtrees, conditional in-

dependence holds:

7L(Bf)=1“’(Dlar'IB;)=I;[P(D""IB.-), (10
so A(B;) can be formed as a product of the terms P (D k=|B;) if these are delivered to processor
B as messages from its children. For instance, if in our fingerprint example
P (D | B)=(.80, .60, .50) and P (D 2| B)=(.30, .50, .90) represent two reports issued by two in-
dependent laboratories, then the overall diagnostic upport A(B) attributable to the three possible

states of B is

A(B) = (.80, .60, .50) - (.30, .50, .90) = (.24, .30, .45).
This, combined with the previous causal support n(8 )=(.60, .30, .10), yields an overall belief of

BEL (B)=0(.24, .30, .45)(.60, .30, .10)=(.516, .322, .161).



Thus, we see that, at each node of a Bayes tree, the fusion of all incoming data is purely

multiplicative.
Propagation Mechanism

Assuming that the vectors A and & are stored with :ach node of the network, our task is
now to determine how the influence of new information will spread through the network, name-
ly, how the pér‘ametcrs 7 and A of a given node can be determined from the ’s and A’s of its
neighbors. This is done easily by conditioning Egs.(5) and (6) on all the values that the neigh-
bors can assume. For example, suppose E is the k** son of B. To compute the & multipli-

cand in the product of (10) from the value of A(E), we write
P(D*"|B;)=3, P(Di|Bi, Ej) P(E;|By)
J
and obtain (using (1) and (5))
P(D*"|B;) =3 ME;) P(Ej|B;)
]

Thus, P (D*~|B;) is obtained by taking the A vector stored at the £ son of B and multiplying
it by the fixed conditional-probability matrix that quantifies the link between B and E. Thus,
the A vector of each node can be computed from the A's of its children by multiplying the latter
by their respective link matrices and then multiplying the resultant vectors together, term-by-
term, as shown in (10). Each multiplicand P (D *~| B ) would be treated as a message sent by the

k* son of B and, if the sending variable is named E, the message will be denoted by Az(B),

AE(Bi) = TP (E;|BHME;)



A similar analysis, applied to the vector , shows that the 7 of any node can be computed
from the m of its father and the A’s of its siblings, again after multiplication by the correspond-
ing link matrices. No direct communication with the siblings is necessary since the information
required of them already resides at the father’s site (for the purpose of calculating its A, as in
(10)) and can be sent down to the requesting son. This can be shown by conditioning n(8) over

the values of the parent A:
n(B;) =P(B1D*B))

= )j:P (Bi1A;, D*(B)) P(A;1D*(B))

=3P (BilA)), P(A; | all data excluding D~(B))
J

= ;P (Bi 1A ,-)[an(A;)l;[km(A.-)]

with m ranging over the siblings of B. The expression in the brackets contains parameters

available to processor A, and it can be chosen, therefore, as the message mz(A) that A transmits

to B.
Thus,
1(B;) = 2P (Bi|Aj)ma(Ai) (11)
¥
where
np(A;) = an(A;) Am(Ai) (12)
m : sibling of B

or, alternatively,
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BEL (A;
mp(A;) ‘“'Tg% (13)

The division by Ag(A) amounts to removing from BEL (A) the contribution of Dy~ as dictated

by the definition of & in (6).

These results lead to the following propagation scheme:

1. When processor B is activated to update its parameters, it simultaneously inspects the
n5(A) message communicated by the father A and the messages A((B), A2(B), ..., com-

municated by each of its sons. Using these inputs, it then updates its A and © as follows:

2. A is computed using a term-by-term multiplication of the vectors Ay, A3, ..., (as in (10)):
ABi) =M(Bi) xAe(Bj) x + - = I;IM(B;')
3. T is computed using:

n(B)=B 3 P(BilAjnp(A))
!
where B is a normalizing constant and m(A) is the last message sent to B from the fa-

ther A.

4, Using the messages received, together with the updated values of A and T, each proces-
sor then computes new T and A messages to be posted on the message-boards reserved

for its sons and its father, respectively. These are computed as follows:

3. Bottom-up propagation: The new message Ag(A) that B sends to its father (A) is

computed by
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Ap(Aj) = TP (Bi|A)A(B:)

6. Top-down propagation: ~The new message ng(8) that B sends to its k% child £ is

computed by

xz(B;) = on(B;) 1;[;; Am(B)

or, alternatively,

BEL (B;
8= g

This updating scheme is shown schematically in Figure 3, where multiplications of any
two vectors stand for term-by-term operations. There is no need, of course, to normalize the n
messages prior to transmission (only the BEL () expressions actually require normalization).
This is done solely for the purpose of retaining the probabilistic meaning of these messages.
Additional economy can be achieved by having each node B transmit a single message BEL (B)

to all its children and letting each child use (13) to uncover its appropriated T message.

Terminal and data nodes in the tree require special treatments. Here we have to distin-

guish several cases:

L. Anticipatory Node: a leaf node that has not been instantiated yet. For such variables,

BEL <hould be equal to T and, therefoic, we should set A=(1,1,...,1).

2. Data Node: a variable with instantiated value. Following Egs.(5) and (6), if the j th
state of B were observed to be true, we set A =x =(0, ..., 0,1,0, ..., 0) with 1 at the j* po-

sition.

3. Dummy Node: a node B representing virtual or judgmental evidence bearing on A. We
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Figure 3
do not specify A(B) or m(B) but, instead, post a Ag(A) message to A, where Ap(4;) =

K P (observation |A;), and K 1s any convenient constant.

4, Roor Node: The boundary condition for the root node is established by setting ® (root)

= prior probability of the root variable.

Example 2: To illustrate these computations let us return to Example 1, and let us assume that
based on all testimonies heard so far, our belief in the identity of the killer amounts to
n(A )=(.8, .1, .1). Before obtaining any fingerprint information, B is an anticipatory node with
A(B)=(1, 1, 1), which also yields Ap(A )=A(A)=(1, 1, 1) and BEL (A)=n(A). n(B) can be calcu-

lated from (13) (using wp(A )=n(A) and P (B;|A;)=.8 if i=j), yielding
8.1 .111.8 :
nB)= |1 .8 .1|[.1]=(66,.17, 17)=BEL(B)
g1 811

Now assume that a laboratory report arrives, summarizing the test results (a virtual evidence C)
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by the message A¢c(B) = A(B)=(.80, .60, .50). Node B updates its belief to read:
BEL (B) = oA(B)n(B) = (.80, .60, .50)(.66, .17, .17) = (.738, .142, .1 19)

and computes a new message, Ag(A), for A:

8.1.1
Ap(A)=M -i= |1 .8 .1 = (75, .61, .54) _
1118

th on 00

Upon receiving this message, node A sets A(A )=Ap(A) and recomputes its belief to
BEL(A) = aA(A)n(A) = a(.75, .61, .54)(.8, .1, .1) = (.84, .085, .076)

Now assume that suspect A ; produces a very strong alibi in his favor, suggesting that there are
only 1:10 odds that he could have committed the crime. To fuse this information with all previ-
ous evidence, we link a new virtual-evidence node E directly to A and post the message

Ag(A)=(.10, 1.0, 1.0) on the link. Az(A) combines with (A ) to yield

MA)=Ag(A) Ag(A) = (.075, .61, .54)

BEL (A) = oA(A)n(A) = a(.075, .61, .54)(.84, .085, .076) = (.404, .333, .263)
and generates the message g(A) = CAg(A) m(A) = (.08, .1,.1) to B. Upon receiving mp(A),

processor B updates its causal support (8 ) to read:

.8 .1.1[.08
nBYy=0o'[.1 .8 .1|][.10|=(30, .35, .35)
1.1 811.10

and BEL (B ) becomes
EFL(B)=oAB)r(B) = a(8, .6, .5)(.334, .343, .317) = (.423, .326, .251)

The purpose of propagating beliefs top-down to sensory nodes such as B is two-fold — to guide
data-acquisition strategies toward the most informative sensory nodes and to facilitate explana-

tions which justify the system’s inference steps.
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Note that BEL (A} cannot be taken as an updated prior of A for the purpose of calculat-
ing BEL (B). In other words, it is wrong to update BEL (B) via the equation
BEL (B;)=Y.P(B;|A;) BEL(A))
J
because BEL (A ) itself was affected by information transmitted from B, and reflecting this infor-

mation back to B would amount to counting the same evidence twice.
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Illustrating the Flow of Belief

Figure 4 shows six successive stages of belief propagation through a simple binary tree,
assuming that updating is triggered by changes in the belief parameters of neighboring proces-
sors. Initially (Figure 4a), the tree is in equilibrium, and ail terminal nodes are anticipatory. As
soon as two data nodes are activated (Figure 4b), white tokens are placed on their links, directed
towards their fathers. In the next phase, the fathers, activated by these tokens, absorb them and
manufacture the appropriate number of tokens for their neighbors (Figure 4¢): white tokens for
their fathers and black ones for the children. (The links through which the absorbed tokens have
entered do not receive new tokens, thus reflecting the feature that a x-message is not affected by
a A-message crossing the same link. The root node now receives two white tokens, one from
each of its descendants. That triggers the production of two black tokens for top-down delivery
(Figure 4d). The process continues in this fashion until, after six cycles, all tokens are absorbed,

and the network reaches a new equilibrium.

PN
\ 2 !
DATA
DATA
{a}
&
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N
(d)

3] {e)

Figure 4
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As soon as a leaf node posts a token for its parent, it is ready to receive new data and,
when this occurs, a new token is posted on the link, replacing the old one. In this fashion the
inference network can also track a changing environment and provide coherent interpretation of

signals emanating simultaneously from multiple sources.

Properties of the Updating Scheme

1. The local computations required by the updating scheme are efficient in both storage
and time. For an m-ary tree with n values per node, each processor should store nZ+mn+2n

real numbers and perform 2a2+mn+2n multiplications per update.

2. The local computations and the final belief distribution are entirely independent of the
control mechanism that activates the individual operations. They can be activated by either
data-driven or goal-driven (e.g., requests for evidence) control strategies, by a clock or at ran-

dom.

3. New information diffuses through the network in a single pass. Instabilities and
indefinite relaxations have been eliminated by maintaining a two-parameter system (% and ) to
decouple causal support from diagnostic support. The time required for completing the diffu-

sion (in parallel) is proportional to the diameter of the network.
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23  PROPAGATION IN SINGLY-CONNECTED NETWORKS

The tree structures treated in the preceding section require that exactly one variable be
considered a cause of any other variable. This restriction simplifies computations, but its
representational power is rather limited since it forces us to group together all causal factors
sharing a common consequence into a single node. By contrast, when people associate a given
observation with multiple potential causes, they weigh one causal factor against another as in-
dependent variables, each pointing to a specialized area of knowledge. As an illustration, con-
sider the following situation:

Mr. Holmes received a phone call at work from his neighbor notifying

him that she heard a burglar alarm sound from the direction of his home. As he

is preparing to rush home, Mr. Holmes recalls that recently the alarm had been

triggered by an earthquake. Driving home, he hears a radio newscast reporting an

earthquake 200 miles away [Kim and Pearl, 1983].

Mr. Holmes perceives two episodes which may be potential causes for the alarm sound,
an attempted burglary and an earthquake. Even though burglaries can safely be assumed in-
dependent of earthquakes, the radio announcement still reduces the likelihood of a burglary, as it

“‘explains away’’ the alarm sound. Moreover, the two causal events are perceived as individual

variables each pointing to a separate frame of knowledge.

This non-monotonic interaction among muitiple causes is a prevailing pattern of human
reasoning. When a physician discovers evidence in favor of one disease, it reduces the likeli-
hood of other diseases, although the patient might well be suffering from two or more disorders
simultaneously. The same maxim also governs the interplay of other frame-like explanations

(not necessarily causal). For example, it is essential for comprehending sentences such as
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““John could not walk straight, and I thought he got drunk again. However, seeing the blood on

his shirt, I knew it was serious.”’

This section extends the propagation scheme to graph structures which permit a node to
have multiple parents and thus capture ‘‘sideways’’ interactions via common successors. How-
ever, the graphs are required to be singly connected, namely, one (undirected) path, at most, ex-

ists between any two nodes.
Fusion Equations

Consider a fragment of a singly connected network, depicted in Figure 5.

- /
Ga x” Figure 5 NeT

The link B — A partitions the graph into two parts: an upper subgraph, G, and a lower sub-

graph, Ggy, the complement of Ggi. These two sub-graphs contain two sets of dara, which we
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shall call Dy and Djy, respectively. Likewise, the links C = A, A » X, and A — Y define
the subgraphs Gy, Gix, and G4y, which contain the data sets Dy, DAy and D4y, respective-
ly. Since A is a common child of B and C, it does not separate Gy from G&y. However, it

does separate the following three subgraphs: G4 U Géa, Gix and G4y, and we can write

P (Djix,Diy|Ai.Dix, Dér) =P Dix 14 P (Diy | Ai) (14)
Thus, using Ba_yes rule, the overall strength of belief in A; can be written:
BEL(A;) =P (A;|Dfa, D&, Dix, Day) = a P(A;|Dgy, D) P (Dax | A} P (Diy | Ai) (15)
where o is a normalizing constant. By further conditioning over the values of B and C (See
Appendix I}, we get:

BEL(A;) = P (Dix |A:) P (Daiy | Al ;P(A,- |B;Ci) P (B;|Dga) P(Cr|Da)).  (16)
J

Eq.(16) shows that the probability distribution of each variable A in the network can be comput-
ed if three types of parameters are made available: (1) the current strength of the causal sup-

port, &, contributed by each incoming link to A :

Ta(B;)=P(B;|Dgy) (17)
(2) the current strength of the diagnostic support, A, contributed by each outgoing link from A :

Ax(A) =P (Dix|A) (18)

and (3) the fixed conditional probability matrix, P (A | B, C), which relates the variable A to us
immediate causes. Accordingly, we let each link carry two dynamic parameters, 7t and A, and let

each node store an encoding of P (A |B,C).
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With these parameters at hand, the fusion equation (16) becomes

BEL(A;) = & Az (4;) Ay(4) };, P(A;|B;Cy) =4 (B)) 14 (Ci) (19)
7

Alternatively, from two parameters, % and A, residing on the same link, we can compute the be-

lief distribution of the parent node by the product
BEL(B;) = a s (B;) A4 (B)) (20)

Propagation Equations

Assuming that the vectors « and A are stored with each link, our task is now to prescribe
how the influence of new information should spread through the network.

Updating A

Starting from the definition of A, (B;) = P (Dj, | B;), we partition the data Dpy into its
components: A, Dix, Diy and D&y, and summing over all values of A and C (see Appendix
I}, we get:

Aa(B;) = a;[nA(Cj);, Ax(Ag) Ay (Ap) P (A, | B;C))l 21
Eq.(21) shows that only three parameters (in addition to the conditional probabilities
P(A|B, C)) are needed for updating the diagnostic parameter vector Aq(B): ®4(C), Ax(A)
and Ay(A). This is expected since Dy is completely summarized by X, Y and C.

Updating nt

Similar manipulation on (17) (see Appendix I) yields the following rule for updating the

causal parameter Ty (A )
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iy (A;) = ohy(4;)] Z"',P (A;|BjCr) ma(Bj)ma(Cy)] (22)
j
Thus, Tx(A), like A4 (B), is also determined by three neighboring parameters: Ay(A), Tta(B)

and Ty (C ).

Eqs.(21) and (22) demonstrate that a perturbation of the causal parameter 7t will not af-
fect the diagnostic parameter A on the same link, and vice-versa. The two are orthogonal to each
other since they depend on two disjoint sets of data. Therefore, any perturbation of beliefs due
to new evidence propagates through the network and is absorbed at the boundary without
reflection. A new state of equilibrium will be reached after a finite number of updates which, in

the worst case, would be equal to the diameter of the network,

Eq.(21) also reveals that if no data is observed below A (i.e., all A’s pointing to A are
unit vectors), then all A’s emanating from A are unit vectors. This means that evidence gathered
at a particular node does not influence its spouses until their common son gathers diagnostic
support. This reflects the special connectivity conditions established in Section 1.2 and matches
our intuition regarding muitiple causes. In Mr. Holmes’s case, for example, prior to the
neighbor’s telephone call, seismic data indicating an earthquake would not have influenced the

likelihood of a burglary.

Although the treatment in this paper is restricted to discrete variables, Egs.(21) and (22)
can be readily extended to handle continuous variables as well. The case of additive Gaussian
variables is particularly attractive because all belief distributions and all the = and A messages
can be characterized by only two parameters each, the mean and the variance. Thus, the compu-

tations required are simpler, and matrix manipulations are avoided [Pearl, 1985b]. Distributed
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updating of non-causal, object-class hierarchies is described in [Pearl 1986].
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2.4  SUMMARY AND EXTENSIONS FOR MULTIPLY-CONNECTED NETWORKS

The preceding two sections show that the architectural objectives of propagating beliefs
coherently through an active network of primitive, identical, and autonomous processors can be
fully realized in singly-connected graphs. Instabilities due to cyclic inferences are avoided by
using multiple, source-identified belief parameters, and equilibrium is guaranteed to be reached

in time proportional to the network diameter.

The primitive processors are simple and repetitive, and they require no working memory
except that used in matrix multiplications. Thus, this architecture lends itself naturally to
hardware implementation, capable of real-time interpretation of rapidly changing data. It also
provides a reasonable model of neural nets involved in such cognitive tasks as visual recogni-
tion, reading comprehension [Rumelhart, 1976] and associative retrieval [Anderson, 1983],

where unsupervised parallelism is an uncontested mechanism.

It is also interesting to note that the marginal conditional probabilities on the links of the
network remain constant and retain their viability throughout the updating process. This is im-
portant because having to adjust the weights each time new data arrives would be computation-
ally prohibitive. The stable viability of the marginal conditional probabilities may explain why
people can assess the magnitude of these relationships better than those of any other probabilis-
tic quantity. Apparently, these relationships have been chosen as the standard primitives for or-

ganizing and quantifying probabilistic knowledge in our long-term memory.
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The efficacy of singly-connected networks in supporting autonomous propagation raises
the question of whether similar propagation mechanisms can operate in less restrictive networks
(like the one in Figure 1), where multiple parents of common children may possess common
ancestors, thus forming loops in the underlying network. If we ignore the existence of loops and
permit the nodes to continue communicating with each other as if the network were singly-
connected, messages may circulate indefinitely around these loops, and the process will not con-

verge to the correct state of equilibrium.

A straightforward way of handling the network of Figure 1 would be to appoint a local
interpreter for the loop x 1, x2, X3, x 5 that will account for the interactions between x; and x3.
This amounts, basically, to collapsing nodes x; and x5 into a single node representing the com-
pound variable (x4, x3). This method works well on small loops [Spiegelhalter, 1985], but as
soon as the number of variables exceeds 3 or 4, compounding requires handling huge matrices

and masks the natural conceptual structure embedded in the original network.

A second method of propagation is based on ‘‘stochastic relaxation’” [Geman and Ge-
man, 1984] similar to that used by Boltzman machines [Hinton, Sejnowski and Ackley, 1984].
Each processor examines the states of the variables within its screening neighborhood, computes
a belief distribﬁtion for the values of its host variable, then randomly selects one of these values
with probability given by the computed distribution. The value chosen will subsequently be in-
terrogated by the neighbors upon computing their beliefs, and so on. This scheme is guaranteed

convergence, but it usually requires very long relaxation times before reaching a steady state.



A third method called conditioning [Pearl,1985(b)] is based on our ability to change the
connectivity of a network and render it singly connected by instantiating a selected group of
variables. In Figure 1, for example, instantiating x; to some value would block the pathway
X3,%1, %3 and would render the rest of the network singly connected, so that the propagation
techniques of the preceding section would be applicable. Thus, if we wish to propagate the im-
pact of an ob;erved data, say at xg, to the entire network, we first assume x| =0, propagate the
impact of x4 té the variables x,, . . .,xs, repeat the propagation under the assumption x =1
and, finally, sum the two results weighted by the posterior probability P (x1]|x¢). It can also be
executed in parallel by letting each node receive, compute and transmit several sets of parame-
ters, one for each value of the conditioning variable(s). Conditioning provides a working solu-
tion in most practical cases, but it occasionally suffers from the inevitable combinatorial explo-
sion -- the number of messages may grow exponentially with the number of nodes required for

breaking up all loops in the network.

The use of conditioning to facilitate propagation is not foreign to human reasoning,.
When we find it hard to estimate the likelihood of a given outcome, we often make hypothetical
assumptions that render the estimation simpler and then negate the assumptions to see if the
results do not vary substantially. One of the most pervasive patterns of plausible reasoning is
the maxim that, if two diametrir2lly opposed assumptions impart two different degrees of
confidence onto a proposition Q, then the unconditional degree of confidence merited by Q
should be somewhere between the two. The terms ‘‘hypothetical’’ or *‘assumption-based’’ rea-
soning, ‘‘reasoning by cases,”’ and ‘‘envisioning’’ all refer to the same basic mechanism of

selecting a key variable, binding it to some of its values, deriving the consequences of each
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binding separately and integrating those consequences together.

Finally, a preprocessing approach, which is discussed more fully in Section 3, introduces
auxiliary variables and permanently turns the network into a tree. To understand the basis of
this method, consider, for example, the tree of Figure 2. The leaves C, D, E, F are tightly cou-
pled in the sense that no two of them can be separated by the others; therefore, if we were to
construct a Bayesian network based on these variables alone, a complete graph would ensue.
Yet, together with the intermediate variables A and B the interactions among the leaf variables
are tree-structured, clearly demonstrating that some multiply-connected networks can inherit ail
the advantages of tree representations by the introduction of a few dummy variables. In some
respects, this method is similar to that of appointing external interpreters to handle non-
separable components of the graph, because the processors assigned to the dummy variables,
like the external interpreters, serve no other function but that of mediation among the real vari-
ables. However, the dummy-variables scheme enjoys the added advantage of uniformity: the
processors representing the dummy variables can be identical to those representing the real vari-
ables, in full compliance with our architectural objectives. Moreover, there are strong reasons to
believe that the process of reorganizing data structures by adding fictitious variables mimics an
important component of conceptual development in human beings -- the evolution of causal

models. These considerstions are discussed in the section that follows.
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3. STRUCTURING CAUSAL TREES

3.1 CAUSALITY, CONDITIONAL INDEPENDENCE AND TREE ARCHITECTURE

Human beings exhibit an almost obsessive urge to conceptually mold empirical
phenomena into structures of cause-and-effect relationships. This tendency is, in fact, so com-
pulsive that it sometimes comes at the expense of precision and often requires the invention of
hypothetical, ﬁr'lobservable entities such as ‘‘ego,”’ ‘‘elementary particles,’”’ and *‘supreme be-
ings” to make theories fit the mold of causal schema. When we try to explain the actions of
another person, for example, we invariably invoke abstract notions of mental states, social atti-
tudes, beliefs, goals, plans and intentions. Medical knowledge, likewise, is organized into causal
hierarchies of invading organisms, physical disorders, complications, syndromes, clinical states

and, only finally, the visible symptoms.

We take the position that human obsession with causation, like many other psychological
compulsions, is computationally motivated. Causal models are attractive only because they pro-
vide effective data structures for representing empirical knowledge -- they can be queried and
updated at high speed with minimal external supervision; so, it behooves us to take a closer look
at the structure of causal models and determine what it is that makes them so effective. In other
words, what are the computational assets of those fictitious variables called *‘causes’’ that make
them worthy of such relentless human pursuit, and what renders causal explanations so pleasing

and comforting, once they are found?

The paradigm expounded in this paper is that the main ingredient responsible for the per-

vasive role of causal models is their centrally organized architecture, i.e., an architecture in
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which dependencies among variables are mediated by one central mechanism.

If you ask n persons in the street what time it is, the answers will undoubtedly be very
similar. Yet, instead of suggesting that, somehow, the answers evoked or the persons surveyed
influence each other, we postulate the existence of a central cause, the standard time, and the
commitment of each person to adhere to that standard. Thus, instead of dealing with a complex
n-ary relation, the causal model in this example consists of a network of n binary relations, all
connected star-.like to one central node which serves to dispatch information to and from the
connecting variables. Psychologically, this architecture is much more pleasing than one which
entails inter-variable communication. Since the activity of each variable is constrained by only
one source of information (i.e., the central cause), no conflict in activity arises: any assignment
of values consistent with the central constraints will also be globally consistent, and a change in

any of the variables can communicate its impact to all other variables in only two steps.

Computationally speaking, such causes are merely names given to auxiliary variables
which facilitate the efficient manipulation of the activities of the original variables in the system.
They encode a summary of the interactions among the visible variables and, once calculated,

permit us to treat the visible variables as if they were mutually independent.

The dual summarizing/decomposing role of a causal variable is analogous to that of an
orchestra conductor: it achieves coordinated behavior through central communication and
thereby relieves the players from having to communicate directly with one another. In the phy-
sical sciences, a classical example of such coordination is exhibited by the construct of a field

(e.g. gravitational, electric or magnetic). Although there is a one-to-one mathematical
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correspondence between the electric field and the electric charges in terms of which it is defined,
nearly every physicist takes the next step and ascribes physical reality to the electric field, ima-
gining that in every point of space there is some real physical phenomenon taking place which
determines both the magnitude and direction which tag the point. This psychological construct
offers an advantage vital to understanding the development of electrical sciences: It decom-
poses the complex phenomena associated with interacting electric charges into two independent
processes: (1).the creation of the field at a given point by the surrounding charges and (2) the

conversion of the field into a physical force once another charge passes near that point.

The advantages of centrally coordinated architectures are not unique to star-structured
networks but are also present in tree structures since every internal node in the tree centrally
coordinates the activities of its neighbors. In a management hierarchy, for example, where em-
ployees can communicate with each other only through their immediate superiors, the passage of
information is swift, economical, conflict-free and highly parallel. Likewise, we know that, if
the interactions among a set of variables can be represented by a tree of binary constraints, then
a globally consistent solution can be found in linear time, using backtrack-free search {Frueder
1982, Dechter & Pear], 1985]. These computational advantages of trees also retain their power

when the relationships constraining the variables are probabilistic in nature.

In probabilistic formalisms, the topological concept of central coordination is embodied
in the notion of conditional independence. In our preceding example, the answers to the ques-
tion ‘“What time is it?”’ would be viewed as random variables that are bound together by a
spurious correlation [Simon 1952, Suppes 1970]; they become independent of each other once

we know the state of the mechanism causing the correlation, i.e., the standard time. Thus, con-

50



ditional independence captures both functions of our orchestra conductor: coordination and

decomposition.

The most familiar connection between causality and conditional independence is
reflected in the scientific notion of a szare. It was devised to nullify the influence that the past
exerts on the future by providing a sufficiently detailed description of the present. In probabilis-
tic terms this came to be known as a Markov property; future events are conditionally indepen-
dent of past events, given the current state of affairs. This is precisely the role played by the set
of parents S; in the construction of Bayesian networks (Section 1.1); they screen the variable x;

from the influence of all other variables except x;’s descendants.

But conditional independence is not limited to separating the past from the future; it
often applies to events occurring at the same time. Knowing the values of the parent set §; not
only decouples x; from its other ancestors but also renders x; independent of its siblings and of
many of their descendants. In fact, this sort of independence constitutes the most universal and
distinctive characteristic featured by the notion of causality. In medical diagnosis, for example,
a group of co-occurring symptoms often become independent of each other once we know the
disease that caused them. When some of the symptoms directly influence each other, the medi-
cal profession invents a name for that interaction (e.g., complication, clinical state, etc.) and
treats it as a new auxiliary variable, which again assumes the decompositional role characteristic
of causal agents; knowing the exact state of the auxiliary variable renders the interacting symp-
toms independent of each other. In other words, the auxiliary variables constitute a sufficient
summary for determining the likely development of each individual symptom in the group; thus,

additional knowledge regarding the states of the other symptoms becomes superfluous.
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The continuous influx of such auxiliary concepts into our languages casts new light on
the status of conditional independence in probabilistic modelling. Contrary to positions often
found in the literature, conditional independence is not a “‘restrictive assumption’’ made for
mathematical elegance; neither is it an occasional grace of nature for which we must passively
wait. Rather, it is a mental construct that we actively create and a psychological necessity which

our culture labors to satisfy.

The deéompositional role of causal variables attains its ultimate realization in tree-
structured networks, where every pair of non-adjacent variables becomes independent given a
third variable on the path connecting the pair. Indeed, the speed, stability and autonomy of the
updating scheme described in Section 2.2 draws its power from the high degree of decomposi-
tion provided by the tree structure. These computational advantages, we postulate, give rise to

2

the satisfying sensation called ‘‘in-depth understanding,”’ which people experience when they

discover causal models consistent with observations.

Given that tree-dependence captures the main feature of causation and that it provides a
convenient computational medium for performing interpretations and predictions, we now ask
whether it is possible to reconfigure every Bayesian network as a tree and, if so, how. First we
assume that there exist dummy variables which decompose the network into a tree, and then ask
whether the internal structure of such a tree can be determined from observations made solely on
the leaves. If it can, then the structure found will constitute an operational definition for the hid-
den causes often found in causal models. Additionally, if we take the view that ‘‘leaming’’ en-
tails the acquisition of computationally effective representations of nature’s regularities, then

procedures for configuring such trees may reflect an important component of human learning.
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A related structuring task was treated by Chow and Liu (1968), who also used tree-
dependent random variables to approximate an arbitrary joint distribution. However, in Chow’s
trees all nodes denote observed variables; so, the conditional probability for any pair of variables
is assumed to be given. By contrast, the internal nodes in our trees denote dummy variables,
artificially concocted to make the representation tree-like. Since only the leaves are accessible
to empirical observations, we know neither the conditional probabilities that link the internal
nodes to the leaves nor the structure of the tree -- these we would have to learn. A similar prob-
lem of configuring probabilistic models with hidden variables is mentioned by Hinton er al.
(1984) as one of the tasks that a Boltzmann machine should be able to solve. However, it is not
clear whether the relaxation techniques employed by the Boltzmann machine can easily escape
local minima and whether it can readily accept the constraint that the resulting structure be a
tree. The method described in the following sections offers a solution to this problem, but it as-
sumes some restrictive conditions: all variables are bi-valued, a solution tree is ‘assumcd to ex-

ist, and the value of each inter-leaf correlation is precisely known.
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3.2 PROBLEM DEFINITION AND NOMENCLATURE

Consider a set of n binary-valued random variables xy, ** -, x, with a given probability
mass function P (x; ---,x,). We address the problem of representing P as a marginal of an
(n+1)-variable distribution Pg (x1, ..., x,, w) that renders x; - * *, x, conditionally independent

given w, i.e.,
Py(x1, ** " s Xps W) =1jP,<x,- |w)Py(w) (23)
i=

P (X1, s Xg) = af{P_,(x,- |w=1) + (1-o) TP, (x; | w=0) (24)

The functions Ps (x; | w), w=0, 1, i=l, ..., n, can be viewed as 2x2 stochastic matrices relat-
ing each x; to the central hidden variable w (see Fig. 6a); hence, we name Py a star-distribution
and call P siar-decomposable. Each matrix contains two independent parameters, f; and g;,
where

fi=Ps xi =1 | w=l)

g8i=Ps; (xi=1| w=0) (25)

and the central variable w is characterized by its prior probability Py (w=1) = o (see Figure 6b).

Figure 6

(a)
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The advantages of having star-decomposable distributions are several. First, the product
form of Py in (23) makes it very easy to compute the probability of any combination of vari-
ables. More importantly, the product form is also convenient for calculating the conditional pro-
babilities, P (x;|x;), describing the impact of an observation x; on the probabilities of unob-

served variables. The computation requires only two vector multiplications,

Unfortunately, when the number of variables exceeds 3, the conditions for star-
decomposability become very stringent and are not likely to be met in practice. Indeed, a star-
decomposable distribution for n variables has 2n+1 independent parameters, while the
specification of a general distribution requires 271 parameters. Lazarfeld (1966) considered
star-decomposable distributions where the hidden variable w is permitted to range over A
values, A>2. Such an extension requires the solution of An+A—1 non-linear equations to find the
values of its An+A-1 independent parameters. In this paper, we pursue a different approach, al-
lowing a larger number of binary hidden variables but insisting that they form a tree-like struc-
ture (see Figure 7), i.e., each triplet forms a star, but the central variables may differ from triplet
to triplet. Trees often portray meaningful conceptual hierarchies and are, computationally, al-

most as convenient as stars.

We shall say that a distribution P (x},x3, * ** , X,) is tree-decomposable if it is the mar-

ginal of a distribution

Pr(x1xa, """ ,Xp,W1,W2, "7 ,Wy,) mSn-=2
that supports a tree-structured network, such that wi,wj,, ** , w,, comesponds to the internal
nodesof atree T and x|, x5, - , X, toits leaves.
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Figure7

Note that if P supports a rooted tree T, then any two leaves are conditionally indepen-
dent, given the value of any internal node on the path connecting them. These relationships
between leaves and internal nodes are a property of the undirected tree, independent of the
choice of root. Now, since a choice of a new root for T will create a tree T’ which is also sup-
ported by Pr, we are permitted to treat T as an unrooted tree. Conversely, given an unrooted
tree T and an assignment of variables to its nodes, the form of the corresponding distribution
can be written by the following procedure: We first choose an arbitrary node as a root. This, in
turn, defines a unique father F (y;) for each node y; € {xy, *** ,X%x, W1, *° " , Wn) In T, except

the chosen root, y;. The joint distribution is simply given by the product form:
min
Prixy = X wy - Wm)=P0’1)1'£P[}’fIF(Y:)] (26)
1=
For example, if in Figure 7 we choose w as the root, we obtain:

Pr(x| - - x7,wy - wa)=Px7]wg) P(xglwa) P(xs5|w3) P(x4lw3) P(x3lwy) Pxz|wi)

P(x||w)) P(wyilwq) P(wslwa) P(wa|wz) P(w2)

Throughout this discussion we shall assume that each w has at least three neighbors; oth-

erwise, it is superfluous. In other words, an internal node with two neighbors can simply be re-
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placed by an equivalent direct link between the two. Similarly, we shall assume that all link ma-
trices are non-singular, conveying genuine dependencies between the linked variables; other-

wise, the tree can be decomposed into disconnected components, i.., a forest.

If we are given Pr(xy, " X5, W], *°° Wy), then, clearly, we can obtain
P(xy, ‘' x,) by summing over the w’s. We now ask whether the inverse transformation is
possible, i.e., given a tree-decomposable distribution P (x 1, " - X,), can we recover its underly-
ing extension PT (Xy "** Xp, W1 " ° Wp) ? We shall show that: (1) the tree distribution Pr is
unique, (2) it can be recovered from P using nlogn computations and (3) the structure of T is
uniquely determined by the second order probabilities of P. The construction method depends
on the analysis of star-decomposability for triplets, which is presented next. (Impatient readers

may skip this analysis and go directly to Theorem 1.)
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3.3  STAR-DECOMPOSABLE TRIPLETS

In order to test whether a given 3-variable distribution P (x ,x2,x 3) is star-decomposable,

we first solve eq.(24) and express the parameters O.,f;,g; as a function of the parameters specify-

ing P. This task was carried out by Lazarfeld (1966) in terms of the seven joint-occurrence pro-

babilities

pi =P (x;i=1)
pij =P (xi=1,x;=1)

Pix =P (x;=1, x;=1, x;=1)

and led to the following solution:

Define the quantities
lij]1=pij ~pipj

5; = [[1'} ik

1
7

Lk]
__PiPijx — PijPi
”-s - [_/k]
Si _pi | Wi
pi S Sipi

and let ¢ be the solution of

t24Kr—1=0

The parameters «,f;,g; are given by:
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1
z

g =pi—3Si [—-—lf‘a ] (35)
Moreover, the differences f;—g; are independent of p;;:
1
Crs 5
The conditions for star-decomposability are obtained by requiring that the preceding

solutions satisfy:

(a) S; should be real

(b) 0<f;<1
(c) Osg; <1
Using the variances
1
o; = [p;: (1-p)1% 37
and the correlation coefficients
. = PijmPiPj

requirement (a) is equivalent to the condition that all three correlation coefficients are non-
negative. (If two of them are negative, we can rename two variables by their complements; the
newly defined triplet will have all its pairs positively correlated.) We shall call triplets with this

property positively correlated.

This, together with requirements (b) and (c), yields (see Appendix II):

Theorem 1: A necessary and sufficient condition for three dichotomous random variables to be

star-decomposable is that they are positively correlated, and that the inequality:
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Pi!;l::'- <pijk 52%1 + G0k (Pjx —PijPik) 39)

is satisfied for all i€f1,2,3}). When this condition is satisfied, the parameters of the star-
decomposed distribution can be determined uniquely, up to a complementation of the hidden

variable w, i.e., w—(1-w), f;—g;, a—(1-0).

Obviously, in order to satisfy (39), the term (pj — p;jpi) must be non-negative. This
introduces a Siinple necessary condition for star-decomposability that may be used to quickly

rule out many likely candidates.

Corollary -- A necessary condition for a distribution P (x, X2, x3) to be star-decomposable is

that all correlation coefficients obey the triangle inequality:
Pjk 2 PjiPik (40)
(40) is satisfied with equality if w coincides with x;, i.e., when x; and x; are indepen-
dent, given x;. Thus, an intuitive interpretation of this corollary is that the correlation between

any two variables must be stronger than that induced by their dependencies on the third variable;

a mechanism accounting for direct dependencies must be present.

Having established the criterion for star-decomposability, we may address a related prob-
lem. Suppose P is not star-decomposable. Can it be approximated by a star-decomposable dis-

tribution 2 that has the same second-order probabilities?

The preceding analysis contains the answer to this question. Note that the 3rd order
statistics are represented only by the term p;j, and this term is confined by Eq.(39) to a region

whose boundaries are determined by 2nd-order parameters. Thus, if we insist on keeping all
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2nd-order dependencies of P intact and are willing to choose p;j so as to yield a star-
decomposable distribution, we can only do so if the region circumscribed by (39) is non-empty.

This leads to the statement:

Theorem 2: A necessary and sufficient condition for the second-order dependencies among the

triplet x| x X3 to support a star-decomposable extension is that the six inequalities

PijPik ijPik .
lp‘.‘ £x Sﬁ?— +0;0 (Pje— PijPu) =123 (41)

possess a solution for x.
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3.4 A TREE-RECONSTRUCTION PROCEDURE

We are now ready to confront the central problem of this section -- given a tree-
decomposable distribution P (xy, - - -, X,), can we uncover its underlying topology and the

underlying tree-distribution Pr(xy, =, X, Wy, * ", Wy)?

The construction method is based on the observation that any three leaves in a tree have
one, and only one, internal node that can be considered their center, i.e., it lies on all the paths
connecting the leaves to each other. If one removes the center, the three leaves become discon-
nected from each other. This means that, if P is tree-decomposable, then the joint distribution of
any triplet of variables x;,x;,x; is star-decomposable, i.e., P (x;, x;, x;) uniquely determines the
parameters oLf;.g; as in eq.(33), (34) and (35), where « is the marginal probability of the cen-
tral variable. Moreover, if we compute the star decompositions of two triplets of leaves, both
having the same central node w, the two distributions should have the same value for
o = Py(w=1). This provides us with a basic test for verifying whether two arbitrary triplets of
leaves share a common center, and a successive application of this test is sufficient for determin-

ing the structure of the entire tree.

Consider a 4-tuple x 1, x 2, x3, x4 of leaves in T. These leaves are interconnected through
one of the four possible topologies shown in Figure 8. The topologies differ in the identity of
the triplets which share a common center. For example, in the topology of Figure 8(a) the pair
[(1,2,3), (1,2,4)] share a common center, and so does the pair [(1,3,4), (2,3,4)]. In Figure 8(b),
on the other hand, the sharing pairs are [(1,2,4), (2,4,3)] and [(1,3,4), (2,1,3)], and in Figure 8(d)

all triplets share the same center. Thus, the basic test for center-sharing triplets enables us to de-
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Figure 8

cide the topology of any 4-tuple and, eventually, to configure the entire tree.

We start-with any three variables x |, x; and x3, form their star decomposition, choose a
fourth variable, x4, and ask to which leg of the star should x4 be joined. We can answer this
question easily by testing which pairs of triplets share centers, deciding on the appropriate topol-
ogy and connecting x4 accordingly. Similarly, if we already have a tree structure T;, with i
leaves, and we wish to know where to join the (i +1)* leaf, we can choose any triplet of leaves
from T; with central variable w and test to which leg of w should x;, be joined. This, in turn,
identifies a subtree T;” of T; that should receive x;,; and permits us to remove from further con-
sideration the subtrees emanating from the unselected legs of w. Repeating this operation on the

selected subtree T;” will eventually reduce it to a single branch, to which x;,; is joined.

It is possible to show (Tarsi and Pearl 1984) that, if we choose, in each state, a central
variable that splits the available tree into subtrees of roughly equal size, the joining branch of

X;+» can be identified in, at most, log ; (/) tests, where & is the maximal degree of the tree T;.
k-1

This amounts to O (nlogn) tests for constructing an entire tree of n leaves.

So far, we have shown that the structure of the tree T can be uncovered uniquely. Next
we show that the distribution Pr is, likewise, uniquely determined from P, i.e., that we can

determine all the functions P(x; | w;) and P{w; | wg) in (26), for i=l, --- n and
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j.k=1,2, -+ m. The functions P(x; | w;) assigned to the peripheral branches of the tree are
determined directly from the star decomposition of triplets involving adjacent leaves. In Figure
7, for example, the star decomposition of P (x x xs) yields P (x; | wi) and P(x3 | wy). The
conditional probabilities P (w; | wy) assigned to interior branches are determined by solving
matrix equations. For example, P(x, | wo) is obtained from the star decomposition of

(x1,xs5,x7),and it is related to P (x; | w) via

P(xy | W2)=WZP(X1 | wdP(w) | wa)
s
This matrix equation has a solution for P (w | wj) because P (x; | w;) must be non-singular.
It is only singular when f =g, i.e., when x is independent of w and is therefore independent
of all other variables. Hence, we can determine the parameters of the branches next to the peri-
phery, use them to determine more interior branches, and so on, until all the interior conditional

probabilities P (w; | w;) are determined.

Next, we shall show that the tree structure can be recovered without resbrting to third-
order probabilities; correlations among pairs of leaves suffice. This feature stems from the ob-
servation that, when two triplets of a 4-tuple are star-decomposable with respect to the same
central variable w (e.g. 1,2,3 and 1,2,4 in Fig. 8(a)), then not only are the values of « the same,
but the f and g parameters associated with the two common variables (e.g., 1 and 2 in Fig. 8(a))
must also be the same. While the value of & depends on a third-order probability, the difference
fi—g; depends only on second-order terms via eq.(36). Thus, requiring that f 1—g; in Fig. 8(a)
obtain the same value in the star decomposition of (1,2,3) as in that of (1,2,4) leads to the equa-

tion:
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[12][13] _ [12]{14] .
23] ~  [24] (42)

which, using (28), yields

P13P42 = P14P32 - (43)

An identical equality will be obtained for each f;—g;, i=1,2,3,4, relative to the topology of Fig-

ure 8(a). Similarly, the topology of Figure 8(b) dictates

P12P43 = P14P23 (44)
and that of Figtire 8(c) dictates:

P12P34 =P13P2s (45)
Thus, we see that each of these three topologies is characterized by its own distinct equality,
while the topology of Figure 8(d) is distinguished by all three equalities holding simultaneously.
This provides the necessary second-order criterion for deciding the topology of any 4-tuple
tested: if the equality p;;py = papj holds for some permutation of the indices, we decide on
the topology 5> ®—®<C'[ If it holds for two permutations with distinct topologies, the entire
4-tuple is star-decomposable. Note that the equality p;;py = papj; must hold for at least one

permutation of the variables or else the 4-tuple would not be tree-decomposable.



3.5 CONCLUSIONS AND OPEN QUESTIONS

This section provides an operational definition for entities called ‘‘hidden causes,”
which are not directly observable but facilitate the acquisition of effective causal models from
empirical data. Hidden causes are viewed as dummy variables which, if held constant, induce
probabilistic independence among sets of visible variables. It is shown that if all variables are
bi-valued and if the activities of the visible variables are governed by a tree-decomposable pro-
bability distribution, then the topology of the tree can be uncovered uniquely from the observed
correlations between pairs of variables. Moreover, the structuring algorithm requires only

nlogn steps.

The method introduced in this paper has two major shortcomings: It requires precise
knowledge of the correlation coefficients, and it works only when there exists an underlying
model that is tree-structured. In practice, we often have only sample estimates of the correlation
coefficients; therefore, it is unlikely that criteria based on equalities (as in Eq.(43)) will ever be
satisfied exactly. It is possible, of course, to relax these criteria and make topological decisions
by seeking proximities rather than equalities. For example, instead of searching for an equality
PijPu = PikPji,» we can decide the 4-tuple topology on the basis of the permutation of indices
that minimizes the difference p;;py — pupji- Experiments show, however, that the structure
which evolves from such a method is very sensitive to inaccuracies in the estimates p;;, because
no mechanism is provided to retract erroneous decisions made in the early stages of the structur-
ing process. Ideally, the topological membership of the (i+1)" leaf should be decided not
merely by its relations to a single triplet of leaves chosen to represent an internal node w but

also by its relations to all previously structured triplets which share w as a center. This, of
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course, will substantially increase the complexity of the algorithm.

Similar difficulties plague the task of finding the best tree-structured approximation for a
distribution which is not tree-decomposable. Even though we argued that natural data which
lend themselves to causal modeling should be representable as tree-decomposable distributions,
these distributions may contain internal nodes with more than two values. The task of determin-
ing the parameters associated with such nodes is much more complicated and, in addition, rarely
yields unique s-qutions. Unique solutions, as shown in section 3.4, are essential for building
large structures from smaller ones. We leave open the question of explaining how approximate
causal modeling, an activity which humans seem to perform with relative ease, can be embodied

in computational procedures that are both sound and efficient.
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APPENDIX I

DERIVATION OF THE UPDATING RULES FOR SINGLY CONNECTED NETWORKS
Updating BEL

Starting with

BEL (A;) AP (A;|D#, Déa, Dix. Diy),

we apply Bayes rule, and obtain

BEL (A;) = o P (Dix, Dy 1Ai, Dia Déa) P (Ai|Dia, Dén)
The conditional independence of Eq.(14) now yields Eq.(15):

BEL(A;) = P(Dix|A:) P(Diy|A;) P(A; | Dga, Déa)

Conditioning and summing over the values of B and C, we get
BEL(A;) =a P (Dix|A) P (Diy A anP (A;|Dffa, D, B, CYP (B, C |Dgfy, D)

= P(Dix|A) P D4y |Ai) BZ&P(A;- |B,C)P B |Dga) P(C D)
making use of the fact that B and C are independent, given data from non-descendants of A.

This confirms Eq.(16):

BEL (A;)=a P (Dix |Ai) P (D4iy |A) [);P(A.- |Bj, Ce) P (B;1Dfa) P(Clec*A)}
J

and, using the A~7 notation

Ax(A)=PDjx|A) maBj}=P(B;|Dga)
we obtain Eq.(19)

BEL (4;) = o Ax(A;) Ay(A)) [:Z}‘P(Ai [Bj, C¢) ma(Bj) ﬂA(Ck):|-
i
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Updating =:
nx(A;))=P(A;|Dix)=P(A;|D - Dix)=BEL(A; laay=q, 1 - 1)
= o Ay(4;) %P(Ai |B; Ci) ®a(Bj) ®a(Ch) |,
]
thus confirming Eq.(22).
Updating A:

M (B:)=P (D3 |B:)=P(A, Dix, Div, Déx|B:)

=J§P(DA-X,DA-Y’D5A|Bi’cj:Ak)P(stAk|Bi)
=J§P(DA3{1Ak)P(DXYlAk)P(DgAle)'P(Aleth)P(leBi)
But P(C;|B;)=P(C;) because B and C are marginally independent, and
P(D&|Cj) P(Cj) =0 P(C;|D&y) by Bayes rule. Therefore,
?LA(Bx')=a}§P(DA_XIAk)P(DA_YlAk)P(Cj|D5A)P(Aklcj’3¢')
= 0?9‘ Ax(Ar) Ay(Ag) 4 (Cj) P (Ag| Bi, Cj)

=X @ X Ax(Ae) Ay (Ag) P(Ac|Bi, Cj) |
]

which confirms Eq.(21).
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APPENDIX II

CONDITIONS FOR STAR-DECOMPOSABILITY

Let
pi =P (x;=1)
pij =P (x;=1,x;=1) (II-1)

pije =P (%=1, x;=1, x,=1)

The seven joint-occurrence probabilities, py p2 P31, P12, P13, P23, P 123, uniquely define the
seven parameters necessary for specifying P (x), x2, x3). For example:

Px1=1,x2=1,x3=0=prp—-p123

Pxy=1,x2=0)=p;-p12 et

These probabilities will be used in the following analysis.

Assuming P is star-decomposable (Eqs.23 and 24), we can express the joint-occurrence

probabilities in terms of &, f;, g; and obtain seven equations for these seven parameters.

pi=of; +(1-o) g (II-2)
pij =of i f; + (1-0) g;g; (1I-3)
Pig =ofif jfi + (1-0) gig; 8k (1I-4)

These equations can be manipulated to yield product forms on the right-hand sides:

pij —pipj = o(1-0)(fi ~ g)(fj — &;) (II-5)

PiPijk = PijPik = o(1-0) fig; (fj —=8;)(fx =fi) (-6)
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Eq.(II-5) comprises three equations which can be solved for the differences f; —g;,i=1, 2,3,

giving

1
3 .k T

where the bracket [ij] stands for the determinant

lij]1 =pij — piPj

These, together‘ with (II-2), determine f; and g; in terms of S; and a (still unknown):

11
- |7

fi=pi +5; [_aa__
IE;

g =pi—Si [—f:o-%

To determine o, we invoke Eq.(II-6) and obtain

1
o |Z_ _ 1
[T"—d-_ =t {or oo = m—)
where ¢ is the solution to
124Kt —1=0
and K is defined by:
pi si  Sip;

. Ljk,i] _PiPijk = PijPik

{I-7)

(T-8)

(II-9)

(O-10)

(II-11)

(I1-12)

(II-13)

(1I-14)

It can be easily verified that K (and, therefore, @) obtains the same value regardless of which in-

dex i provides the parameters in (II-13).

71



From Eq.(II-13) we sée- that the parameters S; and y; of P govern the solutions of (II-
12) which, in turn, determine whether P is star-decomposable via the resulting values of
a, f;, g;- These conditions are obtained by requiring that:
(a) S; be real
(b) 0sf;<1
(c) 0<g; =1
Requirement ta) implies that, of the three brackets in (II-7), either all three are non-negative, or

exactly two are negative. These brackets are directly related to the correlation coefficient via:

1 1 ..
pi; = [ij1[p: (1=p)1 Zlp; (1-pp)] 2 = g,z% (I1-15)

and so, requirement (a) is equivalent to the condition that all three correlation coefficients are
non-negative. If two of them are negative, we can rename two variables by their complements;

the newly defined triplet will have all its pairs positively correlated.

Now attend to requirement (b). Eq.(II-9) shows that f; can be negative only if §; is
negative, i.e., if S; is identified with the negative square root in (II-7). However, the choice of
negative S; yields a solution (f;’, g;’, @) which is symmetrical to that stemming from a positive

S; (fi, gi» @), with fi'=g;, g’ =fi, &’ =1-0. Thus, S; and f; can be assumed to be non-

. . .. . Si
negative, and it remains to examine the condition f; <1 or, equivalently, ¢ 2 1_;' (s~= (1I-9)
i
and (II-11)). Imposing this condition in (II-12) translates to:

Pijk S g%fi +0,0;1Pjk — PijPic] (II-16)
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Similarly, inserting requirement (¢}, g;20, in Eq.(II-12) yields the inequality:

—-——pik‘?u <Pijk (I1-17)
Pi

which, together with (II-16), lead to Theorem 1, Section 3.3.
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Figure Captions
- A typical Bayes network representing the  distribution
P(xy - xg) =P(xglxs) P(xs|x2x3) P(x4lx1,%2) P(x3lx1) Plxalxy) Px1)
A segment of a tree illustrating data partitioning.
The internal structure of a single processor performing belief updating for variable B.
The impact of new data propagates through a tree by a message-passing process.

Fragments of a singly connected network with multiple parents,
illustrating data partitioning and belief parameters.

(a) Three random variables, x 1, x9, x3 connected to a
central variable w by a star network.
(b) Illustrating the three parameters, o, f;, 8;, associated with each link.

A tree containing four dummy variables and seven visible variables.

The four possible topologies by which four leaves can be related.
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