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ABSTRACT OF THE THESIS

A C-Oriented Register Set Design
by
Miquel Huguet
Master of Science in Computer Science
University of California, Los Angeles, 1985

Tomds Lang, Chair

In this thesis, the architecture of a register file for a processor oriented to execute
C programs is considered to study the cost/performance tradeoff. This study is
inspired by the same principle which has motivated Reduced Instruction Set
Computers, to utilize the processor resources efficiently to support the execution
of the most frequent instructions. The design is based on measurements of the
execution of a collection of C programs (that include 775 functions and 30,000
lines of code) obtained by modifying the Portable C Compiler. We show that the
number of registers required varies and that a large percentage of functions re-
quire a small number. Thus, we propose to have a few (2 or 3) window sizes so
that the smallest window is always allocated. This window is expanded if the
function requires more registers. We use our measurements to determine suitable
window sizes and show that for a performance equivalent to the fixed-size window
case, the register file can be made significantly smaller. The effects of muitipro-
gramming on the register file are also considered. Moreover, we propose a new
implementation for the register file, called the shift-register file, in which the bus
size and the access time to the register file is independent of its size and
equivalent to the bus size and the access time required for a single-window archi-
tecture.
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CHAPTER 1
INTRODUCTION

En el pot petit,
hi ha la bona confitura.

(In the small can,
you will find the best marmalade.)

Popular catalan adage

1.1 Antecedents and Motivation

Registers have been used since the beginning of computer design as a
mechanism to speed up computations. The first computers had only one accumu-
lator register to perform expression evaluation. When hardware became cheaper,
more registers were introduced in the processor: several accumulator registers, in-
dex registers, base registers, specialized registers such as the stack pointer, ete.
To reduce the complexity in the compiler, registers were made orthogonal, i.e.,
any operation code can be used with any register [WULF81]. Thus, registers were
grouped in a general-purpose register set.

The use of registers reduces the data memory traffic because if operands
are already available in processor registers, no memory access has to be generated,
and reduces the instruction memory traffic because shorter addresses are used.
However, registers have to be saved every time a function is called and restored
when the function returns. It has been observed that one of the important fac-
tors that influences the design and use of the register file is the overhead pro-
duced by the register saving and restoring [LUND77, PATT82].

Recent advances in compiler technology, specially in register allocation op-
timization [CHAI81, CHAI82, ANKLS2, CHOWS4, MCKU84]|, have resuited in a
better usage of the register set. Thus, the compiler can allocate more simple vari-
ables to registers, and if the variables have disjoint lifetimes, they can share the
same register without register saving and restoring. To avoid the development
cost of an optimizing compiler for every language and every machine [JOHNS1],
optimizing compiler research pursues independence of the source language and



the target machine to increase their portability [AUSL82, TANES3].

Furthermore, advances in hardware technology that make possible a large
number of registers in a single chip [SITE79] have made possible the reduction of
register saving and restoring overhead. To obtain this, a2 new bank or window of
registers is made active on each function call [SITE79, DANNT79, LAMP82] so that
registers have to be saved only when no more windows are available in the regis-
ter file. Patterson and Séquin [PATTS2] have already quantified the reduction in
the data memory traffic due to the register saving and restoring overhead for two
benchmark programs comparing a multiple-window architecture (RISC) with a
single-window architecture (VAX-11): from 444K to 8K for the puzzle benchmark,
and from 696K to 4K for the quicksort benchmark.

Both compiler and hardware technological advances have caused the proli-
feration of nmew register-oriented processors either with a VLSI design: MIPS
[HENNS82], and RISC I and II [PATT82, KATES3]; or with a MSI/LSI multi-chip
design: IBM 801 [RADIS2], RIDGE 32 [BASAS83}, PYRAMID 80x [PTCS83}, and
CELERITY C1200 [OLLES5]. Some of these processors have introduced a new in-
struction set design style, called Reduced Instruction Set Computers as a contrast
to the tendency of increasing the complexity of the processors.

At this time there is no clear understanding of the elements that define a
Reduced-Instruction-Set-Computer approach. Patterson [PATT85| has character-
ized the existing Reduced Imstruction Set Computers by the following factors:
operations are only register-to-register, memory operands must be loaded first to a
register to be operated, instruction decoding is simpler, operations and addressing
modes are reduced, and branches avoid pipeline penalties. The basic idea is to ex-
ecute fast the small number of instructions that have been shown to be very fre-
quent [ALEX75, SHUS78, SWEES2, MCDA82, WIECS2, CLARS2|. In this same
direction the availability of a multiple-window register file has been proposed as a
method to reduce the large overhead in function calls [PATT82].

The design of a register set was studied by Lunde [LUND77]. He measured
several algorithms programmed in different languages (ALGOL, BASIC, FOR-
TRAN, and MACRO) and concluded that the register set should include: two
floating-point accumulators, two fixed-point accumulators, and eight registers
with simple fixed-point operations. However, modern processors are constantly
increasing their register sets: 16 registers for the RIDGE 32; 32 for the RISC,
MIPS, and IBM 801; and 64 for PYRAMID 90x and CELERITY C1200.

Furthermore, when a multiple-window register file is also available in the
processor to reduce the function call overhead, the total number of processor re-
gisters is even larger: 138 for RISC, 528 for PYRAMID 90x, and 4096 for CELERI-
TY C1200. While this reduces the overhead in function calls and returns, it
might have the following drawbacks: it uses a large chip area in VLSI implemen-



tations or a large number of chips in a MSI/LSI implementation, it increases the
amount of processor context to be saved on context switching, and it increases
the processor cycle-time due to the long data busses [HENNS84].

Therefore, the basic idea given by Reduced Instruction Set Computers, to
atilize the resources efficiently to support the execution of the most frequent in-
structions, has not been applied in the design of the processor register set. Thus,
the main motivation of this thesis is to balance the cost/performance tradeoff of
the register file so that the most frequently executed functions have enough regis-
ters to be executed and so that the least amount of hardware resources (registers)
is unutilized.

To study this cost/performance tradeoff, we consider the architecture of a
register file for a processor oriented to execute programs written in C [KERNT78].
C has been selected because it is widely used for system programming [FEUES2},
it has a type flexibility that allows to program system functions traditionally cod-
ed in assembler [KERN81, POST83], it has been used to implement UNIX , it can
be usgd as an intermediate language for other block-structured languages such as
ADA  [HILL83|, and has been used to implement other languages such as LISP
and PROLOG. No attempt is made in this thesis to generalize the measurements
obtained for the C programs. The reader is referred to [WEIC34] or [HUCKS3]
for a comparison of the characteristics of different programming languages to C.

To study the design of a C-oriented register set, first we consider the use of
the registers made by the compiler to store different types of information (vari-
ables defined by the programmer, variables defined by the compiler itself,
process-execution environment information, etc.), the problems that the compiler
has to store this information in registers, and the number of registers required to
store this information (Chapter 2). Second, we discuss how the register set is or-
ganized with a multiple window approach to balance the cost/performance tra-
deoff (Chapter 3). Finally, we study how the register file can be implemented to
reduce the drawbacks in size and speed (Chapter 4).

We show that the number of registers required varies and that a large per-
centage of functions require a small number. Thus, we propose to have a few (2
or 3) window sizes so that the smallest window is always allocated. This window
is expanded if the function requires more registers. We use our measurements to
determine suitable window sizes and show that for an equivalent performance to
the fixed-size window case the register file can be made significantly smaller. The
effects of multiprogramming on the register file are also considered and we show
that either two private register files or a shared register file among the running

1‘TJNIX is a trademark of Bell Laboratories

;%Dj)& is a trademark of the U.S. Department of Defense (Ada Joint Program
ce



user process and the exception handlers is required. Moreover, we propose a new
implementation for the register file, called the shift-register file. The shift-register
file makes the bus size and the access time to the register file independent of its
size, and equivalent to the bus size and the access time required for a single-
window architecture.

This first chapter is organized as follows. Section 1.2 reviews some termi-
nology used to define storage classes for C variables. Section 1.3 introduces the
static and dynamic measurements gathered to justify the design of a C-oriented
register set. Section 1.4 comments the advantages of having local simple variables
in registers instead of having them in a memory stack with a cache. Section 1.5
discusses the register usage, i.e., the type of information that the programmer
(compiler) stores in registers. Section 1.6 compares two different organizations for
the register set (general-purpose registers and specialized registers). Section 1.7
considers the influence of function calls and returns on the design and use of the
register file. Finally, Section 1.8 presents the organization of this thesis.

1.2 Storage Classes for C Variables

Each variable in C belongs to one of the following four storage classes:
external, static, automatic, or register. The storage class of a variable determines
its lifetime and the memory segment where it is stored (data segment for external
and static variables, and stack segment or processor registers for automatic and
register variables).

External variables exist throughout the execution of the entire process.
Static variables also exist throughout the execution of the entire process, but they
can be referenced only by functions defined in the same module, i.e., they are only
known in the same module where they are defined, the compiler does not allow
functions outside of this module to refer to them. Static variables are useful
when a function needs to remember a value from call to call; for example, for a
function to generate random numbers. Storage for external and static variables is
allocated statically during compilation time. Let us refer to both classes as global
variables. Observe that the language does not require any special protection for
static variables. Both external and static variables share the same data segment
and, therefore, can use the same addressing mechanism to be referenced.

Automatic variables are local to each block, that is, to each set of state-
ments enclosed between brackets ({,}). Space for automatic variables is dynami-
cally allocated when the block is entered and deallocated upon exit. To avoid the
cost of having to allocate/deallocate space per block basis, automatic variables are
allocated when a function is called and deallocated when the function returns;
however, the compiler does not allow statements outside a block to refer to local
variables defined inside the block. The allocated space is called the activation
record of the function; it includes not only automatic variables, but also parame-
ters received by the function and some environment information (return address,



dynamic link, ete.).

Register varigbles are also local to each block. They are used as a hint to
the compiler to store them in the processor registers. If there are more register
definitions than processor registers, then the ones which cannot be stored in regis-
ters are treated as automatic variables. However, an optimizing compiler can
share the same processor register among several variables with disjoint lifetimes
[CHAI81]. Three different register allocation policies are discussed later in Section
9.5. Only simple variables can be defined of type register.

1.3 Static and Dynamic C Measurements

One of the goals of this project has been to gather the necessary informa~
tion to justify the design of a C-oriented register set. Static measurements are
useful to justify issues related to code size and dynamic measurements to justify
issues related to execution time. Both measurements were obtained modifying the
Portable C Compiler [JOHN79, LION79]. Four programs were measured:

1) A program that plots VLSI mask layouts on a dot plotter (CIFPLOT),
which includes 274 functions in 9750 lines of code.

2) A text formatting program (NROFF), which includes 226 functions in 6500
lines of code.

3) The UNIX sorting program (SORT), which includes 21 functions in 916
lines of code.

4) The Portable C Compiler for the VAX-11 (VPCC), which includes 252
functions in 12,800 lines of code.

However, only static measurements are available for the CIFPLOT pro-
gram, because there is no driver for the VLSI laboratory plotter installed in our
system. These programs have been selected because they have already been used
at Berkeley for the RISC design [PATTS82]. At Berkeley, they have also used
different short benchmark programs to measure the performance of RISC with
respect to other machines [PIEPS81, PATT82a]. We have also measured the same
benchmark programs, but we do not use them to justify the design of the C-
oriented register set. The reason is that they are too short to be representative
enough when we want to determine, for instance, the stack depth of the executed
programs, or the number of local simple variables defined by the programmer for
each function. This does not imply that the short benchmark programs cannot
be used to compare execution times for different architectures, although the pur-
pose of the benchmark (or what the benchmark is measuring) has to be kept in
mind to interpret the results.



The measurements were made using the Portable C Compiler generating
code for VAX-11. For the static measurements, only the first pass of the Portable
C Compiler is used. In this case, counters are kept to accumulate local simple
variable definitions and data object usage as soon as they have been parsed. For
the dynamic measurements, code was generated so that every time that a specific
event is executed (for instance, a local simple variable is referenced) a counter as-
sociated to such event is incremented. Program execution was intercepted at the
end to print the contents of the counters.

The measurements are used in this thesis to deduce the number of registers
required by C programs and to compute the data memory traffic overhead caused
by register saving and restoring. Some more measurements were taken, but they
are not shown in this thesis because they are not relevant to our discussion. The
measurements are not reported in this section: they are introduced in the sections
where needed. The following have been measured:

(a) The number of local simple variables defined and used by the program-
mer for each function (Section 2.2).

{b) The number of data objects executed to determine the data memory
traffic caused by each data object and the register saving and restoring overhead
(Sections 2.4 and 3.2). Data objects are classified according to their storage class
and their type (local simple variables, arrays, pointers to simple variables,
pointers to structures, etc). The purpose of this classification is to allow us to
compute for each executed data object the number of memory references generat-
ed {Section 2.4.1).

(c) The number of parameters passed to a function and the type of expres-
sions to evaluate for parameter passing (Section 2.8).

(d) Functions that require the creation of an activation records in the stack
because no more registers are available, and the number of registers unused in the
window for each function (Section 3.7).

(¢) Overflows generated by different window and register file sizes (Section
3.8).

(f) Distribution of the stack depth in the register file, i.e., number of regis-
ters present in the register file per function (Section 3.9.3).



1.4 Registers versus Cache Memory

The current activation record can be stored either in a memory stack or
pariially in a memory stack and partially in registers as discussed in the next sec-
tion. There are three major motivations for having as many variables as possible
in registers:

1) Instruction formats require fewer bits to specify the address of an operand
in a register than one in memory.

2) Access to variables is faster from registers than from memory, although a
cache also provides fast access to operands.

3) There is less memory traffic because some operands are already in the pro-
cessor registers.

Both cache memory and registers are valid methods to get fast access to
operands for local simple variables. However,

(1) Cache memories cause some overhead in checking if the data is avail-
able or not. Furthermore, if the data is not available, the processor will have to
wait for a new block from main memory.

(2) Cache memories do not reduce the instruction length because a full ad-
dress specification is still required to refer to the operand. The address of a local
variable stored in the activation record is usually specified as a displacement rela-
tive to the frame pointer. Fewer bits are required to specify a register address
than to specify the displacement.

(3) The addressing mode specifier has to be decoded and the operand ad-
dress has to be computed every time the instruction is executed.

Of the three mentioned problems the most critical is the third one. Every
time that the variable has to be fetched the contents of the {frame pointer register
and the displacement have to be added so that even if the variable has been used
recently and it is in the cache, an extra cycle is required to perform the addition.
If the local variable were stored in a register, then not only fewer bits would be
required, but also no overhead for address computation would be incurred.

To evaluate this overhead we can consider, for instance, measurements
done by Norton and Abraham [NORT83] on a medification to the VAX-11 impie-
mentation. They design an instruction buffer such that any reference to a local
variable is resolved (i.e., the offset is added to the frame pointer to compute the
variable’s virtual memory address) and its virtual address is stored in the instruc-
tion buffer, rather than its addressing mode specifier (offset and frame pointer).
While this instruction is in the buffer an execution cycle is saved because the vir-



tual address has not to be computed again. The new implementation was meas-
ured using two programs: the UNIX file comparison program diff and an eight by
eight matrix multiply program. The improvement for the first program ranged
from a factor of 1.78 with an I-cache size of 64 instructions to a factor of 2.11
with an I-cache of 256 instructions. The improvement for the second one ranged
form a factor of 2.85 with an I-cache of 64 instructions to a factor of 2.75 with an
I-cache of 256.

Therefore, although both cache and registers fulfill one of the three major
motivations for having data in registers (fast access to operands), registers are
more efficient than cache to store local simple variables because:

(1) The complexity of computing the local simple variable address is only
paid once during compilation because the compiler allocates the variable to a re-
gister and its address does not have to be computed every time it is referenced.

(2) The instruction size is reduced because fewer bits are required to refer
to a local simple variable stored in a register.

(3) Only one copy of the local simple variables is available so that no mul-
tiple updates in different hierarchical memory levels have to be made.

The drawback is that an optimizing compiler is required to perform regis-
ter allocation and to use the register set efficiently. Not everyone agrees in mov-
ing towards this direction: there already exists a proposal to simplify compiler
complexity moving it to the architecture [HARB82], and some authors [JOHNS81]
claim that optimizing compilers should be eliminated. Moreover, having local sim-
ple variables allocated to registers increases register saving and restoring memory
traffic overhead because registers have to be saved when a function is called, and
restored when the function returns. However, in Section 2.4 we will see that the
register saving and restoring memory traffic is balanced with the reduction in data
memory traffic caused by the data objects when local simple variables are allocat-
ed to registers. Therefore, registers should be used to store local simple variables.

Cache memories also have a similar problem to registers. Since the cache
memory has a copy of the data object, the original value of the data object has
also to be updated when the copy is modified. No modification is required while
the data object is only being read. Our measurements have shown that, on the
average, for every executed data object which is written, 7.3 data objects are ac-
cessed (including the one being written). The original value in memory can be
updated at the same time that the copy is updated (write-through) or when the
copy has to be replaced (copy-back) [SMIT82]. No comparison is made in this
thesis about the data memory traffic generated for both cases (cache and regis-
ters). The selection of registers is based on the three reasons given above and on
the reduction on register saving and restoring overhead that we obtain using mul-



tiple windows shown in Section 3.2.

Although local simple variables are allocated to registers rather than to
memory, this does not imply that cache memories should be discarded. They are
necessary to keep instructions and data that canpot be allocated in registers.
Moreover, current research on memory caches is showing that it is better to
separate caches for data and for instructions because they require different organ-
izations (a instruction cache is simpler because it is read only), different algo-
rithms for pre-fetching, and different algorithms for replacements [SMITSS).

Besides these two approaches (registers and cache), a third approach has
also been proposed: to store the activation record in Writable Control Store
(WCS) [WAKES3]; however, no study was made about its implementation. This
approach is not discussed in this thesis because we are focusing our design to-
wards a VLSI hardware implementation, not a microprogrammable one.

1.5 Register Usage

Registers cannot be used to store non-simple variables (arrays, structures,
or unions) because of their size. External and static non-simple variables must be
stored in the data segment and automatic non-simple variables in the memory
stack.

Registers in the general-purpose register set cannot be used to store global
(external or static) simple variables either because, in C, functions can be com-
piled separately so that the compiler does not know where global variables have
been allocated when the other modules were compiled. However, an alternative
solution exists to have global simple variables in a special set of registers refer-
enced with a memory address instead of a register address. This is discussed in

Section 2.10.
Consequently, registers can be used for the following purposes:

(1) To store local (automatic or register) simple variables defined by the
programmer. Local simple variables correspond not only to data of a fundamental
data type (integer, character, unsigned, ...), but also to pointers to variables of
any type, i.e., any variable that can be stored in a register.

(2) To perform expression evaluation, i.e., to store temporary results.

(3) To store some values, basically addresses, generated by the compiler to
optimize program execution. For instance, if a multi-dimensional or unidimen-
sional array is referenced inside a loop, then the loop invariant address computa-
tion can be removed from inside the loop and stored in a temporary variable so
that it is only computed once.



(4) To store the run-time process environment state, i.e., the address of
the next instruction to execute, the address of the top element in the execution
stack, the address of the last activation record in the stack, ete.

(5) To pass parameters to the callee and to return a value back to the call-
er. C functions cannot pass or return arrays, structures, unions, or functions;
they can only pass or return data of a fundamental data type or pointers. So,
parameters and the return value fit in registers.

(6) To store bases to compute the effective address of operands as base +
displacement.

(7) To store indices to compute the effective address of operands as base
address + shifted-indez. The index register is shifted depending on the number of
bytes of the operand. If the base address register not only contains the base ad-
dress, but also a bound value used to check during run-time execution that the
shifted-index displacement is smaller than the bound, then the base address regis-
ter is called a descriptor.

In the next chapter we present measurements to determine the number of
registers that can be used effectively for each of these purposes. Section 2.2
presents how many local simple variables are defined by the programmer for each
function. Sections 2.6 and 2.7 discuss how many registers are used to store tem-
porary results and optimizing variables. Section 2.8 studies different alternatives
for parameter passing and determines how many registers are required to pass
parameters through them. Section 2.9 shows how many registers are required to
store the run-time process environment. The use of special registers such as
bases, indices, or descriptors more related to addressing modes is not discussed in
this thesis.

1.8 General-Purpose versus Specialized Registers

Two possible organizations are possible for the register set: to have
general-purpose registers (for all uses) or to have specialized registers. The organ-
ization of the register set has a direct influence on both the instruction-set format
and the register-set implementation.

Regarding the instruction-set format specialized registers have two main
advantages: less bits are required to refer to a specialized register and they are
better protected. Specialized registers are usually referenced implicitly by the
operation code so that the instruction format requires less bits. For example, the
- stack pointer register in zero-address architectures, the accumulator register in
one-address architectures, and the program counter register in branch and funec-
tion call instructions.
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Also specialized registers offer better protection, specially for environment
registers. If they can only be modified by special instructions (i.e., the program
counter modified only by branch and function call instructions, the frame pointer
only by function call instructions, etc.), then the programmer cannot change aiy
of them on purpose or by mistake. For example, let us consider the PDP-11
[DEC78]. The program counter and the stack pointer are available as general-
purpose registers. If a programmer is using the stack pointer register to store
some characters into the stack and an exception occurs, then we can have a pro-
gram trap error depending on the value of the stack pointer. If it is even, then
the exception function will push the program counter and the stack pointer into
the stack and no error will be generated. If it is odd, then an odd address pro-
gram trap error will be generated because it i3 not possible to move a word to an
odd address. This error is caused not only by exceptions, but also by the function
call instruction.

Although VAX-11 [DEC79| has also the stack pointer as a general-purpose
register, this problem is solved: when an exception occurs or a function call in-
struction is executed, then the two lower bits of the stack pointer are forced to
sero and the old contents are saved into the stack so that it can be restored ac-
cordingly.

In spite of both advantages (instruction length and protection), architec-
tures tend to use more general-purpose registers because:

1) General-purpose registers allow more orthogonality in the instruction set:
one op-code is required to perform a specific operation with any of the re-
gisters.

2) General-purpose registers simplify the task of the compiler writers because
they have less special cases to consider in code generation [WULF81].

3) Environment registers in a general-purpose register set are protected by the
compiler. Programmers will be using high level languages and they will not
have access to these registers.

Specialized and general-purpose registers can (and sometimes must as we
will see below) be combined to get the advantages of both. For example, the
MC68000 [MC79] bas sixteen 32-bit general-purpose registers divided into two
sets, eight data registers and eight address registers so that the address mode de-
cides which register set is going to be used and the instruction format only re-
quires three bits to specify the register address. The MIPS machine [GROS83|
has 16 general-purpose registers and 6 special registers; these registers are refer-
enced implicitly by certain operation codes; for instance, there is a 16-bit shift
format {eight bits for the operation code, four bits for the source register, and
four bits for the destination register) that uses one of the special registers to indi-
cate the shifting amount.
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Yuen [YUEN84] has proposed a new approach to try to shorten the
number of bits required to specify an operation: to use implicit registers that do
not depend on the operation code, but on the context left by the previous execut-
ed instruction. For instance, one instruction refers a register as a general-purpose
register and the following ones can use this register without explicitly referring it
in the instruction format. The drawback of this approach is that new operation
codes must be introduced ones to work with an explicit register and others to
work with an implicit register. In a later paper, Hor and Yuen [HORS85] present
an instruction set with these characteristics.

The implementation of the register set is affected by its organization. With
general-purpose registers the implementation is limited to perform read /write
operations on the register set; however, with special registers the instruction exe-
cution can make better use of the parallelism so that different actions can occur
in parallel. For instance, let us consider the current-window pointer and the
first-window pointer required to manipulate a register file with multiple windows
organized as a circular buffer ([KATE83|. The current-window pointer points to
the current buffer (window) and the first-window pointer points to the first buffer
(window) in the file. The current-window pointer must be used to translate any
virtual register number and both must be used to detect if 2 memory address
refers to a physical register location if registers are memory mapped (see Section
4.2.5). If they were in the general-purpose register set (for example, as global re-
gisters and implemented in a register file for global registers), then both registers
would have to be read to perform these operations before reading the operand; as
a consequence the time required to execute an instruction would increase. There-
fore, both registers must be specialized register so that they can be operated in
parallel with the ALU execution. This does not imply that for the users’ point of
view specialized registers cannot be referenced as part of their register set.

It is also better to have the program counter (PC) as an specialized regis-
ter. For example, let us consider four computers, two designed at Digital Equip-
ment Corporation and two designed at the University of California at Berkeley:
PDP-11/60, VAX-11/750, RISC I, and SOAR.

In PDP-11/60 [DEC77)] there is not automatic instruction prefetch; only
register-to-register instructions perform automatic prefetch to save execution cy-
cles. The PC is a general-purpose register and it is implemented in the register
file together with the other registers. It is incremented explicitly by the micro-
instruction that performs the fetching of the next instruction. The ALU and the
register file are idle when 2 memory operation is required so that the cycle is used
to increment the PC.
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In the VAX-11/750 implementation [DEC80| the program counter is imple-
mented as a specialized register although for the user it is a general-purpose regis-
ter. The instruction stream in VAX-11/750 is prefetched automatically, four
bytes at a time, and loaded in an 8-byte instruction buffer; the program counter is
incremented automatically at the same time that a new word is brought into the
instruction buffer. So, no explicit micro-instruction has to be given to increment
the program counter.

Katevenis [KATES83] proposes to separate fetching and execution units in
the RISC I architecture. The program counter is moved to the instruction
fetch-and-sequence unit so that control-transfer instructions are transparent to
the execution unit. The main advantage of this implementation is that if a two-
port instruction cache is available, then unconditional branches can be executed
with zero-delay time. This scheme is only possible if the program counter is not a
general-purpose register and the execution unit does not refer implicitly to the
program counter in any instruction. The program counter in RISC II is not a
general-purpose register, but the jump instructions use it implicitly as a PC-
relative addressing mode; therefore, RISC I implementation makes no use of this
scheme even though a two-port instruction cache is available.

However, in SOAR [UNGAS84] jump instructions contain the absolute ad-
dress of the target instruction so that no address computation is required and the
instruction prefetch penalty for jumps is eliminated.

In conclusion, general-purpose registers should be used to store local simple
variables defined either by the programmer or by the compiler. Specialized regis-
ters can be used to implement environment registers (at least, the current-window
pointer and the first-window pointer in multiple-window architectures), although
they can also be referenced using a general-purpose register. This discussion
finishes in Section 3.8 where it is presented how the C-oriented register set is or-
ganized.

1.7 Register Set, Windows, and Function Calls

In recent years it has been observed that one of the important factors that
influences the design and use of the register file is the overhead produced by the
saving and restoring of registers in function calls and returns. For instance,
Lunde [LUND77| affirms that the BLISS compiler spends 25% of its execution
time to compile a program (Treesort) in call administration. Patterson and
Séquin [PATTS2| have weighted the relative frequency of high-level language
statements to conclude that 129 of the statements are calls and that they
correspond to 33% of the machine instructions and to 45% of the memory refer-
ences (these numbers have been computed from the average number of instrue-
tions and references per statement generated by the C compilers for VAX-11,
PDP-11, and MC68000). This is especially true for languages such as C which en-
courage the use of functions. Our measurements have shown that, on the aver-



age, one of each 25 executed data objects is a function call.

Some recent architectures have claimed that they have an efficient calling
mechanism [STRE78, BERES2]: instead of having to specify instructions to expli-
citly perform register saving and restoring, this is done implicitly by the call and
return instructions. Both the program size and the instruction memory traffic
have been reduced because fewer instructions are needed to code high-level-
function calls and returns, and fewer instructions have to be fetched. However,
the data memory traffic is the same because the registers still must be saved and
restored by the call and return instructions in the same way that they were saved
and restored by simpler instructions. In VAX-11 the data memory traffic is even
worse than PDP-11 because PDP-11 uses the frame pointer as argument pointer
and VAX-11 have two registers for this purpose so that one more environment re-
gister has to be saved and restored per function call.

To avoid the register saving and restoring overhead some architects
[JOHNS82, DITZ82| have proposed to use a stack architecture. In a stack architec-
ture variables and temporary results are stored in the stack so that no registers
must be saved and restored during function calls. In this case, local simple vari-
ables have to be stored in the stack and we have already said in Section 1.4 that
registers are more efficient than a cache to store local simple variables. Moreover,
in Section 2.4 we show that register saving and restoring overhead is balanced by
the reduction in the data memory traffic caused by the data objects when local
simple variables are allocated to registers.

With the recent technological advancements it is possible to have a large
number of registers on a single chip [SITE79] so that multiple register banks can
be available in the processor. In this case, a new bank is made active on each
function call and no registers have to be saved unless no more banks are available
[SITE79, DANN79, LAMPS82|. In this thesis we use the name window to refer to
the part of the register set that is automatically allocated when a new function is
entered. Our measurements confirm that a multiple-window register file is very
effective to reduce the overhead caused by register saving and restoring (see Sec-
tion 3.2). However, the resulting register files have a large number of registers,
use a large chip area in VLSI implementations, increase the amount of processor
context to be saved on context switching, and increase the processor cycle-time

due to the long data busses [HENN84].

Most designs use fixed-size windows because of the simplicity in the imple-
mentation: C/70 [KRALS0, BBN81], RISC [PATT82, SEQU82], PYRAMID 90x
[PTCS23], and CELERITY C1200 [OLLESS]. Ditzel and McLellan [DITZ82] pro-
pose the use of variable-size windows to improve the use of registers, but this
results in a complex and slower implementation (see Section 3.3). As a comprom-
ise that incorporates the advantages of both schemes, we propose an approach
that uses a few (2 or 3) window sizes (Section 3.4). We use our measurements to
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compare with the fixed-size window approach and to determine suitable window
sizes {Section 3.7). We show that for equivalent performance the register file can
be made significantly smaller (Section 3.8).

1.8 Thesis Organization

This thesis is organized as follows. Chapter 2 discusses the register usage
for the purposes introduced in Section 1.5: local simple variables defined either by
the programmer or by the compiler, registers to store the run-time process en-
vironment, registers to pass parameters, and registers for global simple variables.
This chapter also considers the single window case to conclude that our measure-
ments indicate that, in spite of the overhead in register saving and restoring, it is
convenient to use registers for local simple variables.

Chapter 3 confirms the reduction in data memory traffic when multiple
windows are available, compares fixed-size windows with the variable size case
and non-overlapped windows with overlapped ones, presents the proposed ap-
proach of using a few different sizes, uses our measurements to select these sizes,
discusses the size of the register file, and shows that in the proposed approach the
size is significantly smaller than in the fixed-size window case. This chapter also
considers the effects of exceptions and context switching on the register file and
studies two different organizations: private register file and shared register file.

Chapter 4 discusses how the register file is organized using a circular buffer
approach to implement windows of different sizes, compares this implementation
with the existing organizations with fixed-size windows (C/70, RISC, PYRAMID
g0x, and CELERITY C1200), and introduces a new organization for the register
file that makes the bus size and the access time to the register file independent of
its size, and equivalent to the bus size and the access time required for a single-
window architecture.
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CHAPTER 2
REGISTER USAGE

2.1 Introduction

This chapter discusses how registers are used to store local simple variables
either defined by the programmer or by the compiler, environment state informa-~
tion, and global simple variables. Except when it is explicitly mentioned, local
simple variables also include the parameters passed to the function. This chapter
also presents how registers can be used to pass parameters.

Local simple variables defined by the programmer correspond not only to
data of a fundamental data type (integer, character, unsigned, ...), but also to
pointers to variables of any type, i.e., any variable that can be stored in a regis-
ter. The C programmer uses two different storage classes to define local simple
variables: automatic and register. The definition of register variables is used to
help the compiler to perform register allocation.

The compiler can generate some local simple variables either to perform ex-
pression evaluation or to optimize program execution. Let us call temporary vars-
ables the local simple variables defined by the compiler to perform expression
evaluation, and optimizing variables the local simple variables defined by the com-
piler to optimize program execution. These variables are either of a fundamental
data type or pointers to variables of any type. The difference between them is
that temporary variables exist only during expression evaluation (i.e., they are
alive per statement basis) and optimizing variables exist across statements.

There are two advantages for using registers to allocate local simple vari-
ables either defined by the programmer or by the compiler. First, program size is
reduced because register addresses are shorter than memory addresses. Second,
there is less data memory traffic generated during program execution because re-
gisters have faster access than memory. Section 2.2 shows the usage of local sim-
ple variables done by the programmer and the number of local simple variable
defined by the programmer as an upper bound of the number of registers required
per function for this purpose.

On the other hand, there is a main drawback in allocating local simple
variables to registers: the complexity of the compiler increases. The register allo-
cation policy is a complex task to be performed by the compiler due to two fac-
tors: the alias problem and the register saving and restoring overhead. If the
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compiler wants to move a local simple variable from the stack to registers, it has
to be sure that there is no alias (i.e., the variable cannot be accessed through a
pointer) because, otherwise, two copies of the same variables could be updated
simultaneously. The alias problem and its solutions are discuased in Section 2.3.

The second factor is given by the register saving and restoring overhead. If
the compiler moves local simple variables to registers knowing that they have no
alias, then every time that a function is called the registers must be saved, and
when a function returns, they must be restored. This increases the data memory
traffic so that compiler writers want to make sure that even if the local simple
variable has no alias, its usage in the function (deduced from the static number of
references to the variable) compensates for the traffic overhead generated. Sec-
tion 2.4 considers the data memory traffic generated in the single window case to
conclude that our measurements indicate that, in spite of the overhead in register
saving and restoring, it is convenient to use registers for local simple variables.
Moreover, McKusick [MCKU84| affirms that "by eliminating entry and exit costs
(to function calls with multiple windows), the register allocator can more readily
use the registers without needing to worry about whether the use will have
enough payoff to cover the entry and exit cost.” Multiple windows are discussed in
the next chapter.

From the previous discussion we can conclude that the effectiveness of re-
gister usage depends on the characteristics of the programs to execute, the
characteristics of the compiler which translates the high-level language program,
and the characteristics of the processor. Each one can be characterized as follows:

(1) The programs can be characterized by three factors: the usage of local
simple variables defined by the programmer with respect to the total number of
data object executed by the program, the number of local simple variables defined
for each function, and the frequency of performing function calls. Section 2.2
discusses the first two factors. The frequency of function calls has already been
given in Section 1.7: on the average, cne of every 25 executed data objects is a
function call.

(2) The compiler is characterized by the register allocation policy that is
used to decide which variables are allocated to registers and by the number of
temporary and optimizing variables that the compiler generates. Section 2.5
discusses three different allocation policies, Section 2.6 presents the number of re-
gisters required to perform expression evaluation, and Section 2.7 considers the
number of registers required for optimizing variables.

(3) The processor is characterized by the number of registers available and
the cost of register saving and restoring given by the number of registers to save.
Section 2.4 shows the register saving and restoring overhead for three different re-
gister allocation policies in the single window case: (i) all local simple variables are
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allocated to processor registers, {ii) only explicitly defined register variables are,
and (iii) no local simple variables are. The number of registers in the processor is
only considered in the mentioned section as the number of registers to be saved
when a function is called. Chapter 3 considers again this cost for the multiple
window case and deduces the number of registers that should be available in the
processor and how they should be organized.

Finally, this chapter also presents how many registers are required to pass
parameters (Section 2.8) and to store the run-time process environment state in-
formation (Section 2.9), and how memory mapped registers can be used to store
some global simple variables (Section 2.10).

2.2 Local Simple Variables Used by the Programmer

In this section we discuss first the usage of local simple variables defined by
the programmer with respect to the total number of data objects that the pro-
gram generates and executes. We confirm the results already given by other au-
thors {PATT82, COOKS2] that local simple variables are the most common vari-
ables used by the programmer. Second, we also comment on the use of variables
of the register class done by the programmer. We show that applications pro-
grammers use fewer register variables definitions that system programmers so that
we cannot expect to allocate registers only based on the storage class defined by
the programmer to obtain a good generated code as some register allocation poli-
cies are doing (see Section 2.5). Finally, we consider the number of local simple
variables defined by the programmer and confirm again that the most frequent
called functions are the ones with a small number of defined local simple vari-
ables.

2.2.1 Local Simple Variable Usage

In this subsection we discuss the usage of local simple variables defined by
the programmer with respect to the total number of data objects that the pro-
gram generates and executes. This usage is given for the four measured programs
mentioned in Section 1.3.: CIFPLOT (orly static measurements), NROFF, SORT,
and VPCC; the column AP (ALL PROGRAMS) indicates their totals. Table 2.1
shows the static and dynamic usage of automatic and register variables for each
programs, i.e., for the data objects that can be allocated in registers. Data ob-
jects are divided into two categories depending on the storage class: automatic or
register.

The first row shows the percentage of data objects which are local simple
variables used as operands (local simple variables with and without autoincrement
or autodecrement operators), the second shows the percentage of data objects
that are local simple variables used to compute the address of an operand
(pointers to simple variables with and without autoincrement or autodecrement
operators and pointers to a field of a structure), and the third the addition of
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both rows. Parameters are accounted as part of the local simple variables of the
function. '

static (%) | dynamic (%)

wrorr | sort | veoc | ap N nrorr | sort | vece LA
I

S 22.7 35 | 192 | o2 143 175 | 359 89 | 9.4
operand  fegister 5.1 20.0 155 | 143 | 124 8 324 168 | 202 | 302
address  auto | 8.4 0.6 56 | 30 | 43 l 02 94 | 32 | 22
comp.  register f| 2.3 1.8 8s | 141 ]| 7.3 0.8 86 | 139 | 82
coraL | M I 311 o1 | 248 | 122 17| 77 | 53 | 121 | ns
register 7.4 218 | 239 | 284 |107d 330 | 254 | 431 | 383

Table 2.1. Local Simple Variable Usage

From the table we see that 40% of the executed data objects operate
directly a local simple variable (with or without increment or decrement opera-
tors), and 10% of the executed data objects require a local simple variable to com-
pute the address of the operand. From this, we can conclude that if the compiler
allocates all the local simple variables in registers and there are enough registers
to store them, then

a) The static measurements show that 38% of the data objects are referenced
with a register address.

b) The dynamic measurements show that 50% of the data objects are found
in registers during program execution.

However, if the compiler only allocates register variables explicitly defined
by the programmer, then

a) Only half of the local simple variables (19% of the data objects) are refer-
enced with a register address.

b) Only 38% of the data objects are found in registers during program execu-
tion.

Furthermore, our measurements show that 30% of the data objects does
not generate any data memory traffic because they are either integer constants
(26.7%) or fanction calls (3.87%). Therefore, storing as many local simple vari-
ables as possible in registers should reduce significantly the size of the programs
and the data memory traffic. Section 2.4 discusses in more detail data memory
traffic generated when local simple variables are completely allocated, parcially al-
located, and no allocated to registers.
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2.2.2 Automatic versus Register Variable Definitions

In this subsection we comment on the use of register variables done by the
programmer. If the programmer utilizes register definitions in its simple variable
declarations, then register allocation will be greatly simplified because only vari-
ables defined by the programmer are allocated to registers. However, for this to
be effective the programmer should know how many registers are available in the
processor, the allocation policy that the compiler uses, and the best candidates to
be stored in registers. This results in a program that is not machine independent
and that runs efficiently only in the machine that has been generated for. More-
over, as can be seen from Table 2.2 register variables are not used by application
programmers so that efficiency in register allocation depends on the compiler.
Therefore, the compiler should be responsible for optimizing the generated code.

CIFPLOT | NROFF | SORT | VPCC ALL

#-

_Declared functions . 274 226 21 1252 773
Total no. of registers 89 260 30 412 791
Regs. per function 0.32 _ 1.15 1.43 1.63 1.02
Total no. of automatic 794 198 61 719 1772
Auto. per function 2.95 0.88 2.90 2.85 2.31
Ratio reg.:auto. 0.11 1.31 0.49 0.57 0.44

Table 2.2. Local Simple Variables Defined by the Programmer

Table 2.2 gives the number of local simple variable that the programmer is
defining as register and as automatic for the four measured programs (see Section
1.3). It can be easily deduced that

(1) System programmers use the register allocation definition to optimize
program execution. The best usage is for compiler writers: 1.63 registers per func-
tion; the number is not higher maybe because several functions were written origi-
nally for PDP-11 and the Portable C Compiler for PDP-11 only has three registers
available for register defined variables. The ratio of registers versus automatic de-
clarations is 0.72 for the three system programs (NROFF, SORT, and VPCC).

(2) Application programmers use fewer register definitions. CIFPLOT bhas
on the average 0.32 registers per function and the ratio of register versus au-
tomatic declarations is 0.11.

How general are these results? This is difficult to say. My experience says
that programmers who have started as assembly language programmers use more
registers than programmers who have started with another high level language
(PASCAL, for instance). But this is impossible to quantify. Let us see how the
programmer uses register definitions in what is consider to be representative C
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programs: the benchmarks. Eleven benchmark programs have been measured:
five (E, F, H, I, K) were developed at Carnegie-Mellon University to evaluate
different computer architectures [GRAP81], and they were coded in C by Piepho
[PIEPS1]; the ackermann’s function (ack) [WICHT76]; two version of the puzzle
benchmark, one using pointers (pptr) and the other using subindexes (psub)
[BEEL84]; the quicksort benchmark (sort); the Sieve of Eratothenes benchmark
(siev) [GILB81); and the towers of Hanoi benchmark (tow). These benchmarks
were provided by David Patterson and they have been used to compare RISC
with other architectures [PIEP81, PATT82a].

no. ftn,

no. reg. ‘
average 2.5 3.5 4.8 2.7 05 1.7
no. auto. | 16 9 7 16 13 2 11 15 5 4 98
average 80 45 35 380 65 1.0 2.2 2.5 5.0 2.0 §i 3.2
ratio 0.6 0.5 1.1 03 § 0.5

Table 2.3. Register Usage by Benchmark Programmer

Table 2.3 gives the register usage by the programmer. Six benchmark pro-
grams out of 11 do not have register definitions at all. On the average the ratio
of register definitions to automatic definitions is 0.5. This ratio is similar to the
system programs VPCC and SORT. This high ratio is caused basically by the
pointer version of the puzzle (pptr) benchmark (all local simple variables have
been defined register) and the sort benchmark (the most used local simple vari-
ables are defined register). If these two benchmarks were not considered because
of their high number of register declarations, then the ratio would be 0.2, closer
to the one given by the application program CIFPLOT. Therefore, in general, ap-
plication programmers use few register definitions.

2.2.3 Number of Local Simple Variables per Function

Now we discuss the number of local simple variables that the programmer
defines in each function. The number of registers required to store these local
simple variables will depend on the register allocation policy. Three different allo-
cation policies are presented in Section 2.5. However, we can use the number of
local simple variables defined as an upper bound for the number of registers re-
quired per function for this purpose.

Table 2.4 gives the percentage of functions with up to 3, 6, 8, and 14 local
simple variables defined in the function, including parameters. The percentages
of functions are given statically and dynamically for the four measured programs.
These numbers correspond to the actual number of registers used to store local
simple variables defined by the programmer by the Portable C Compiler for
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PDP-11 (3), for VAX-11 (8), and for RISC (14) , and by the RIDGE C Compiler
for RIDGE 32 (8).

| 14

CIFPLOT - - - -

NROFF § 836 | 938 | 987 | 100 | 89.2 | 98.6 | 99.9 | 100.0
SORT i 61.9 | 81 85.7 952 1779 | 795 | 795 80.6
vPcc Q695 | 889 [ 960 | 088 500 | 728 | 027 | 678
ALL PROG 73.6 | 80.7 } 95.7 99.1 § 754 | 86.6 | 96.2 98.6

Table 2.4. Percentage of Defined Local Simple Variables

From the table we can deduce that 99% of functions have no more than 14
local simple variables. However, we can also observe that the most frequent called
functions are the ones with a small number of local simple variables: 75% of the
called functions have up to three local simple variables. Also that the number of
local simple variables is not equally distributed among the functions: 75% have up
to three, 12% have between four and six, 9% have seven or eight, and 3% have
between nine and fourteen.

In conclusion, if local simple variables are stored in registers, data memory
traffic is reduced because of their frequent usage. Also code size is reduced be-
cause shorter addresses are required to refer to a variable stored in a register than
to a variable stored in the stack. Moreover, the compiler should allocate simple
variables to registers independent of their storage class (register or automatic) as
defined by the programmer. That is, we cannot expect to allocate registers only
based on the storage class defined by the programmer to obtain a good generated
code. Finally, we have shown that the most frequent called functions are the ones
with a small number of local simple variables (75% of the functions have up to
three local simple variables) and that the number of local simple variables defined
by the programmer is not very large (99% of the function have up to fourteen lo-
cal simple variables}.

“In reality the Portable C Compiler only uses nine registers for local simple
variables.” However, this could be expanded to the fourteen registers allowed by
the architecture (see Section 3.7.3).
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2.3 Alias Problem

One of the problems encountered by compilers in the allocation of local
simple variables to registers is the alias problem. A name is an alias of a second
one when both of them refer to the same memory location. The language
definition in C does not allow the definition of two names that refer to the same
memory location, i.e., there is no construct similar to EQUIVALENCE of FOR-
TRAN. However, two different names can refer to the same memory location be-
cause

(a) One is the definition name of this location and the other is a pointer to
it. For example, for the variables and functions in Figure 2.1 the integer pointer
p of the function g and the global integer i refers to the same memory location.
The execution of the program (independent of its purpose) would not be correct if
the compiler moves the global integer variable f to a register before entering the
for loop.

int i, ;

iR

{ gl &i);

} ]

g (p)

}nt *p;
}ntj' 0:j <N
or(ilram,3><i) ; j++)

) p += a[j];

Figure 2.1. Example of Alias Problem

(b) Two pointers are pointing to the same memory location. In this case
there are two local or global pointers that contain the same address, i.e., they are
referring to the same memory location.

This phenomenon is explicitly caused by the programmer with or without
intent, but the compiler must generate correct code for it. This phenomenon is
not only typical for the C language, but also for block-structured languages as
ALGOL, PASCAL, and ADA. If the compiler decides to move temporarily a copy
of the value of a variable that is in the stack to a register and this variable has an
alias, then this copy is valid until either the next function call or the next expres-
sion evaluation which includes a pointer indirection. This is because the pointer
indirection or the called function can update the value of the variable that is in
the stack so that the copy that is in the register is not any longer valid. Also the
pointer indirection or the called function can read the value from the stack after
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its copy has been updated in the registers.

If the language had few function calls and few pointer indirections, then
the lifetime of a variable in a register would be large enough to compensate the
work done by the compiler to keep track of which variables are in registers. How-
ever, function calls in C and, in general, in modern programming languages are
very frequent so that the lifetime of a variable in a register is short. Our meas-
urements show that one of each 25 executed data objects is a function call and
that one of each 50 executed data objects is a pointer indirection. The period of
life of a register has been measured by Lunde [LUND77] for six algorithms written
in ALGOL, BASIC, BLISS, FORTRAN, and MACRO and executed.in DEC-10; it
is 11.9 instructions ranging from 4 to 24 instructions. Therefore, variables are not
moved temporarily to a register because their lifetime is short.

However, if the variable has no alias, then the copy that is in the register is
still valid after a pointer indirection or a function call. There are four solutions
to the alias problem:

(1) The easiest one is not to use registers at all. This is the solution imple-
mented by stack architectures. It results in high memory traffic and slow access
to the variables.

(2) The compiler only allocates to registers variables explicitly defined of
register storage class by the programmer. Also the compiler does not move tem-
porarily any automatic variable to a register so that only one copy of a variable
exists at any point during program execution. The alias problem is solved be-
cause the address operator & cannot be applied to a register variable, i.e., they
cannot be accessed through a pointer, and only a copy for each variable exists at
any time either in the stack if it is an automatic variable or in a register if it is a
register variable. The disadvantage is that register usage is far from being op-
timal as has been discussed in the previous section. This is the policy used, for
instance, by the Portable C Compiler [JOHN79] for PDP-11 and VAX-11.

(3) The compiler allocates a local automatic variable to a register if the
programmer does not apply the address operator to it. In this case, there is no
other name that can refer to it by indirection so that if the compiler moves tem-
porarily a copy of the variable to a register, then we can guarantee that the vari-
able has no alias. This solution is implemented, for instance, in the VMS C Com-
piler [ANKLS2]. The number of local simple variables that cannot be allocated to
registers because the address operator is applied to them is insignificant: our
measurements show that only 0.2% of the data objects are local simple variables
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with the address operator and they account for 0.0013%! of the executed objects‘.
Consequently, the alias problem can be solved by an optimizing compiler and al-
most all the local simple variables can be allocated to registers if there are enough
registers available.

(4) The registers are mapped to memory so that both a register address
and a memory address refer to the same location. In this case, register and au-
tomatic variables can be allocated to registers when they are defined (assuming
that there are enough registers to store all local variables). If the compiler finds
out later that the address operator is applied to a local simple variable which has
been allocated to a register, then the mapped address is computed so that both
the register number and the address refer to the same memory location. The
memory unit detects when the processor is issuing a memory address to a location
that refers to a register and the appropriate access is generated (Section 4.2.5
shows how this is implemented). Memory mapped registers are also used for other
block-structured languages as a mechanism to access to a varisble defined in a
higher lexicographical level. However, Tanenbaum has already detected that this
is done very infrequently [TANE78].

Memory mapped registers require a new set of memory addresses for each
activation record. The reason is that when a function is called and its new ac-
tivation record is built, the contents of the actual registers are saved and, thus,
their mapped address are no longer valid. Only part of the activation record
needs a new set of memory mapped addresses, the part that resides in registers
and that must be saved. Consequently, the activation record is divided in two
parts: the part that is stored in registers (the local variables defined by the pro-
grammer allocated to registers and the variables required by the compiler) and the
part that is stored in the stack frame (local variables defined either by the pro-
grammer or by the compiler that cannot be allocated to registers and the local
structures and arrays). Thus, two stacks (with their associated stack pointers)
are required to implement memory mapped registers as is shown in Figure 2.2.
Memory mapped registers bave been proposed by Patterson and Séquin
[PATTS2], although neither RISC I [PEEKS3] nor RISC II [KATES3] have imple-
mented them. PYRAMID 90x [PTCS83| has implemented memory mapped regis-
ters, although the cost of the implementation cannot be justified by the gain
detected in our measurements.

In conclusion, both (3) and (4) provide solutions to the alias problem. (3)
solves the alias problem by having an optimizing compiler select which variables
can be allocated to registers and does not require any architectural support. Our
measurements show that the number of local simple variables that cannot be allo-
cated to registers because the address operator is applied to them is insignificant

g

Since these numbers are very low, no attempt was made for computing exactly
how many variables cannot be allocated to registers because the address operator
is applied to them.
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Figure 2.2. Activation Record Partition with Memory Mapped Registers

because only 0.2% of the data objects are local simple variables with the address
operator and they account for 0.0013%! of the executed objects. In (4) the alias
problem does not exist because the compiler can always generate a memory ad-
dress to refer to an operand stored in a register; in this case, a non-optimizing
compiler can allocate all local simple variables to registers getting a good optim-
ized code and without having to worry about the alias problem. Although both of
them can be equally efficient, we must balance the problems that the compiler has
to allocate local simple variables to registers with and without architectural sup-
port and the influence of the hardware support over the processor cycle time.
Section 2.5 reviews how compilers can solve the alias problem without architectur-
al support and Section 4.2.5 discusses the requirements to implement memory
mapped registers with a circular-buffer register file. A shift-register file does not
support memory mapped registers (see Section 4.3).

2.4 Data Memory Traffic Overhead

The measurements presented in this Section show that for the single-
window case registers should be used to store local simple variables to reduce
memory traffic, in spite of the memory traffic overhead generated by register sav-
ing and restoring on function calls.

The single-window case is studied because it seems that some compilers do
not use registers to store local simple variables due to the register saving and res-
toring overhead. This is shown, for instance, in a study made by Emer and Clark
[EMERS4] where they have monitored the performance of a VAX-11/780 under a
specific timesharing workload. The number of reads and writes caused by call
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and return instructions is 4.14 and 4.03 respectively, i.e., on the average no regis-
ters are used across function calls, only three environment registers {the program
counter, the frame pointer, the argument pointer) and a mask (with some infor-
mation that is not relevant to our discussion) are saved and restored [DEC79].

To compute the total data memory traffic we have to add to the memory
traffic generated by the data objects, the one generated by parameter passing and
by register saving and restoring. Since our measurements reflect the dynamic
characteristics of the C programs independently of the machine on which they are
executed, the data memory traffic is "computed” instead of "measured.” The data
objects have been measured dypamically for the three programs mentioned in
Section 1.3. The number of data memory accesses have been computed according
to the storage class associated to each data object type.

Subsection 2.4.1 shows the data memory traffic caused by executed data
objects and discusses how this have been computed. Subsection 2.4.2 shows the
total memory traffic once the overhead caused by parameter passing and regisier
saving and restoring is included.

2.4.1 Data Memory Trafic Caused by Data Objects

This section shows the data memory traffic caused by the data objects for
the measured programs: NROFF (Table 2.5), SORT (Table 2.8), VPCC (Table
2.7), and their totals (ALL PROGRAMS; Table 2.8). Since we want to determine
the data memory traffic for different allocation policies and for different number
of registers used, we consider the following three cases:

(a) Only explicitly defined register variables are allocated to processor regis-
ters (and there are enough processor registers for all register variables). This type
of register allocation is performed by the Portable C Compiler [JOHN79] for
VAX-11. This case is called "case (a).”

(b} All local simple variables defined by the programmer are allocated to
registers. This case corresponds to a register allocation policy in which all local
simple variables are allocated to registers without register sharing, i.e., even if two
loca] simple variables have disjoint lifetimes they are allocated to different regis-
ters . This type of register allocation is performed by the Portable C Compiler
for RISC [MIROS2|. This case is called "case (b).”

-

If two or more variables share the same register, then less registers are required
than local simple variables defined in the function. Since we did not know in this
case how many registers should be saved, on the average, when a function is
called, then we would not be able to compute the register saving and restoring
overhead in Subsection 2.4.2. For this reason we must consider that each variable
is allocated to a different register, even if they have disjoint lifetimes. However, a
sharing allocation policy would also correspond to this case when enough registers
are available.
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C Data Objects case (a) case (b) case (c)
NROFF No. % | No. % |No % [No %
global 13813498 19.1 1.0 450 | 1.0 566 | 1.0 238
SV auto 5015869 69| 1.0 171 - - 1.0 9.1
register 21480449 290.7 - - - - 1.0 38.8
global 1755907 24110 60| 10 75| 1.0 32
ARY auto 5441 00| 1.0 00} 10 0.0 | 1.0 0.0
register 721 004§ 10 60} 1.0 00 ]| 2.0 0.0
global 91927 01 20 06 | 20 08| 20 0.3
PTR =auto 113303 02118 07 )08 04| 18 0.4
register 225200 03110 08 { 10 1.0 | 20 0.8
global 31839 00| 20 02120 03| 20 0.1
- auto - - - - - - - -
register 33781 00 ] 1.0 0.1 110 01] 20 0.1
global 2137062 30|20 1146 ]| 20 184 | 20 7.7
v++ auto 411449 06 | 20 2.8 - - 2.0 1.5
register 1972812 2.7 - - - - 2.0 7.1
global 769162 1.1 ] 3.0 79 | 3.0 99 | 3.0 4.2
*++ auto 18535 00|30 02} 10 01)]30 01
register 218350 03110 0.7 1 1.0 09 | 30 1.2
global 018522 13| 1.0 31110 39 | 10 1.7
as[].f aute - - - - - - - -
register - - - - - - - -
global 196262 0.3 - - - - - -
& auto 3 0.0 - - - - - -
register - - - - - - - -
FTN 3277421 4.5 - - - - - -
Integer constants | 19814108 27.4 - - - - - -
Strings 18516 0.0 - - - - - -
TOTALS 72329137 29248565 23269541 55380040

Table 2.5. Data Memory Traffic per Data Object (NROFF)

(¢) No local simple variables are allocated to processor registers, i.e., all lo-
cal simple variables are allocated to the stack. This case would correspond to the
register allocation policy performed by the Portable C Compiler for VAX-11 if the
programmer did not use any register variable definition at all. This case is called
"case (¢).”

The data memory traffic has been computed considering the storage class
(global, automatic or register} of the data object and the number of memory
accesses that the data object generates. The values for the three cases are given
relative to the pumber of data objects. The following considerations have to be
taken into account to compute the data memory traffic from the measured data
objects:
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SORT C Data Obje
global 374963 54 1 03 19 ] 03 680 03 1.3
5V auto 2160737 313 | 10 404 - - 1.0 200
register 868768 126 - - - - 1.0 117
global 4525 0.1 | 10 03 | 1.0 1] 1.0 0.1
ARY auto - - - - - - - -
register - - - - - - - -
global 27724 04 | 1.0 05110 1.7} 10 0.4
PTR auto 316795 46 | 20 18|10 190 20 8.5
register 531161 7.7 110 99|10 319 | 20 143
global - - - - - - - -
- auto 50012 09| 20 22110 38| 2.0 1.8
register 6732 0.1 1.0 0.1 1.0 0.4 2.0 0.2
global 79405 1.2 [ 30 45130 143 | 3.0 3.2
v++ auto 314587 46 | 21 123 | 0.2 321 21 88
register 280949 42 | 00 001 060 00 1 20 7.8
global - - - - - - - -
*++ auto 271118 39 | 30 152110 163 ]| 30 109
register 57611 08 110 11110 351 30 2.3
global - - - - - - - -
as[].f auto - - - - - - - -
global 20957 0.4 - - - - - -
& auto - - - - - - - -
register - - - - - - - -
FTN 114701 1.7 - - - - - -
Integer constants | 1380980 20.1 - - - - - -
Strings 8 0.0 - - - - - -
TOTALS i 6898629 l 5349663 | 1667271 7451441

Table 2.6. Data Memory Traffic per Data Object (SORT)

(1) Simple variable (SV) objects do not generate any memory access if the
object is stored in a register, and one memory access, otherwise. However, there
are some data objects that are considered as simple variables, but that instead of
fetching their contents, their address has to be computed. This occurs, for in-
stance, when a name for a structure or an array appears alone, i.e., without any
field or element modifiers. This results that the traffic for some global variables is
less than the number of objects because to compute the address of a data object
no data memory traffic is involved.

(2) Array objects (ARY) generate one memory access, except when the ad-
dress of an array has been passed as a parameter. In this case, if the address is in
the stack (i.e., is stored in an automatic variable for the case (a)), then it should
be fetched first to compute the address of the element to access. For this reason,

29



the traffic is greater than number of objects.

(3) Pointers to simple variables (PTR) or to a field of a structure (—) re-
quire two accesses if the pointer is in memory or only one if the pointer is in a re-
gister. The exceptions in this case are pointers to structures (used to compute the
structure address) and the pointers to functions (used to store the address of the
function and, therefore, only the address is loaded, not the datum where the ad-

dress is pointing to).

C Data Objects case (a) case (b) case (¢)
VPCC No, No. No. No,
global 3404162 43 | 08 83108 119} 08 38
sV auto 6842709 86 | 1.0 209 1] 00 00| L0 9.5
register 19502500 24.5 - - - - 1.0 27.2
global 3704221 47110 113 |10 162 ) 10 5.2
ARY auto B26 001 1.0 00| 1.0 00 1] 1.0 0.0
regis_ter 137424 0.2 ] 0.2 0.1} 02 0.1 1.2 0.2
global 39743 0.0 1] 20 02120 0.3 ]| 20 6.1
PTR auto 463077 06 | 1.1 15 ] 0.1 01111 0.7
register 1914680 24 )09 53] 09 75 1 19 5.1
global 141505 021 20 09| 20 1.2 1 20 0.4
— auto 2100681 26120 1281] 10 9.2 1| 20 5.9
register 0088362 114 | 10 278 | 10 398 | 20 254
global 103006 01| 21 06 | 21 09| 21 0.3
v+4+ auto 226840 031 20 14 | 00 001] 20 0.6
register 3721156 4.7 | 0.5 5.5 1 0.5 79 1 22 I11.7
global 5806 00 ] 3.0 0.1 | 3.0 0.1 | 3.0 0.0
*+4+ auto 22452 00| 30 021 10 0.1} 3.0 0.1
register 814422 1.0 1 1.0 251 10 36 | 3.0 3.4
global 76046 0.1 ] 10 021 1.0 03] 10 0.1
as].f auto - - - - - - - -
register 113228 0.111.0 03110 05 1] 2.0 0.3
global 2892227 36 - - - - - -
& auto 196213 0.2 - - - - - -
register - - - - - - - -
FTN 2719830 3.4 - - - - - -
Integer constants 21219000 26.7 - - - - - -
Strings 100408 0.1 - - - - - -
TOTALS 79550612 32705235 22816695 71627850

Table 2.7. Data Memory Traffic per Data Object (VPCC)

(4) Simple variables that are incremented or decremented (v++) require
also two accesses if the object is in memory, and none if the object is in a register.
The exception in this case is the objects of type (p—f)++ that require three
accesses if the pointer is in memory, or two if it is in a register.
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(5) Pointers to simple variables that are auto-incremented or zuto-
decremented (*++) require three accesses if they are in memory, or one if they
are in registers.

(6) Fields of an element of an array of structures (as{].f) require only one
access, except in the case in which its address has been passed as a parameter.

(7) Addresses of objects (&) are solved either computing the address or
loading a constant with their memory address. In any case, no data memory
traffic is involved.

(8) Integer constants are loaded directly from the instruction register;
therefore, no data memory traffic is involved.

(9) For strings, their address is part of the instruction and, thus, no data
memory traffic is involved.

Other data objects have not been included in this table because no oc-
currence has been detected (local structures, pointers to a field of a structure with
auto-increment or auto-decremented operators, and float constants).

It can be seen that in case (b) traffic caused by automatic variables has
been either eliminated (case 1) or reduced (cases 2 to 6) because all local simple
variables are allocated to registers. Note that in this case global simple variables
{(with or without auto-increment or auto-decrement operators) account, on the
average, for 45% of the data memory traffic; Section 2.10 shows how this traffic
can also be reduced.

Table 2.9 summarizes the traffic caused by data objects for the three cases.
The more simple variables the program has, the more traffic is introduced because
these variables must be brought from memory every time they are referenced.
For example, SORT using 49% of simple variable objects (31% are automatic
variables) introduces an overhead of 2921% when only register variables are allo-
cated to registers with respect to when all local simple variables are. If no local
simple variables are allocated, then the overhead is in this case of 347%!

In conclusion, if only register variables are allocated to registers {case (a)),
then the data memory traffic generated by the data objects is 41% more with
respect to the case in which all local simple variables are allocated to registers
(case (b)). If no local simple variables are allocated to registers (case (c)), then the
data traffic is 1009 more with respect to the case in which only the register vari-
ables are allocated to registers and is 182% more with respect to the case in which
all local simple variables are allocated to registers. These numbers do not include
the data memory traffic generated by parameter passing and register saving and
restoring. This is discussed next.
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ALL C Data Objects RISC1 VAX-11 VAX-11
el ' (0, '
global 17592623 . . . A .

sV auto 14019315 88 {10 2081 0.0 00| 1.0 10.4
register 41860715 264 - - - - 10 31.1
global 5464653 34110 £1]110 114110 4.1
ARY auto 6267 00 ] 1.0 001] 10 001 10 0.0
register 138145 0.1 | 0.2 0.0} 0.2 0.0 | 1.2 0.1
global 150394 0.1 ]| L8 04118 06| 18 0.2
PTR auto 893175 06| 1.5 20105 091 15 1.0
register 2671041 1.7 1 09 3.7 109 521 19 3.8
global 173344 0.1 ] 20 05| 2.0 07| 2.0 0.3
- auto 2160593 14| 20 64| 1.0 451 20 3.2
register 9128875 57110 136} 10 191 20 136
global 2319473 1.5 | 2.0 7.0 | 2.0 9.9 | 20 3.5
v+4 auto 952876 06 | 2.0 291 0.1 01] 20 14
register 5983917 381 03 27103 38 | 2.2 9.6
global 775058 0.5 ] 30 35| 30 49 | 3.0 1.7
*++ auto 3121056 021] 30 14 | 1.0 071 3.0 0.7
register 1090383 07 110 16 | 1.0 23| 3.0 2.4
global 994568 06 | 1.0 151 10 21110 0.7

as].f auto - - - - - . - -
register 113228 0.1 110 0.2 110 0.2 | 20 0.2

global 3118446 2.0 - - - - . -

& auto 196216 0.1 - - - - - -
register - - . - - - - -

FTN 6111952 3.8 - - - - - -
Integer constants 42423088  26.7 - - - - - -
 Strings 118928 01 | = - = - = =

134459331

07 overhead

25.7

(} vs. case (b)

2209

case {c) vs. case (a) ||

89.3

39.3

1190 |

case {c) vs. case (b) i 1381

346.9

2139 |

Table 2.9. Traffic Caused by Data Objects
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2.4.2 Overhead for Single Windows

For a single-window architecture style, we want to determine the register
saving and restoring cost for different allocation policies and for different number
of registers used. Therefore, we consider the three cases mentioned in the previ-
ous Subsection: (1) only explicitly defined register variables are allocated to pro-
cessor registers (this case is called "SW (a)"); (2) all local simple variables defined
by the programmer are allocated to registers (this case is called "SW (b)"); and (3)
no local simple variables are allocated to processor registers (this case is called
"SW {¢)").

For the computation of the overhead caused by register saving and restor-
ing we consider that at least four elements have to be pushed onto the stack
when the function is called; these elements correspond to the three environment
registers and the mask mentioned (at the beginning of Section 2.4) for VAX-11.
In addition, the registers being used to store local simple variables have also to be
saved. For the computation of the overhead caused by parameter passing we con-
sider the usual approach of passing them through the stack (see Section 2.8) so
that one memory reference is made for each parameter.

The data memory traffic is given in Table 2.10. From the table we see
that, on the average, 1.41 register variables per function are defined by the pro-
grammer. Consequently, including the saving and restoring of the three environ-
ment registers and the mask, results in 10.82 references to memory being generat-
ed per function call. Therefore, SW (a) has, on the average, 114% more data
memory traffic than that strictly caused by the programmer when parameter
passing and register saving and restoring is considered.

When all local simple variables are allocated to registers (i.e., for SW (b)),
the data memory traffic generated by the data objects is reduced by 29% with
respect to the one generated for SW (a), but the register saving and restoring
traffic is 369 more because, on the average, 3.37 local simple variables are allocat-
ed to registers (this number results from the 1.41 register variables and the 1.96
automatic variables defined on the average per function; see Table 2.10). Thus,
the overhead generated by register saving and restoring and parameter passing is
2149% instead of the previous 114%. Consequently, the reduction in data object
traffic is balanced by the increase in register saving and restoring overhead,
resulting in a total memory traffic that is very similar for both cases.

On the other hand, if no local simple variables are allocated to registers
(i.e., for SW (c)), then the data memory traffic generated by the data objects is
twice the one generated for the case SW (a), but the register saving and restoring
traffic is 269 less because only eight memory references are generated for each
function call (the saving and restoring of the three environment registers and the
mask). This results in 34% more data memory traffic than for case SW (a).



SINGLE WINDOW
No. function calls
register vars. per {tn.

Automatic vars. per ftn,

data memory traffic
data objects
parameters
registers

case (a): only reg. vars. |
| 64950158
| 20248565

| 24088241

1622352

7067770
5349663

171665
1546442

case (b): all local vars.
64794921

32

4605076

71554324 |
32705235 §

34244013 |

6399093
70255828

114

data memory traffic 4211236 ; 149851557
data objects t 23259541 | 1667271 22816695 47743507
parameters | 1622352 171665 4605076 6399093
registers | 30913028 2372350 51578095 95708957

% overhead (tot./d.obj.) | 179 153 246 214

0 4

| SW(b) vs. SW(a} overhead
case (¢): no local vars. |

-40 10 |

data memory traffic | 83478606 | 8762200 | 100562598 ] 192803584
data objects | 55380040 | 7451441 71627850 § 134459331
parameters 1622352 171665 4605076 | 6399093
registers | 26476304 | 1130184 | 24320672 | 51945160

% overhead (tot./d.obj.) 51 - 18 40 43

SW(c) v8. SW(a) overhead 29 24 4] 34

SW(c) vs. SW(b) overhead 29 108 27 29

Table 2.10. Overhead for Single Windows

Therefore, for the single-window case, the traffic generated is almost the
same independently of whether all local simple variables are allocated to registers
or only register variables are, and it is worse if no local variables are allocated
(from 29% to 34%). This indicates that a single-window architecture should have
at least the register variables defined by the programmer allocated to processor
registers.

The use of registers is even more advantageous if we consider the reduction
in instruction memory traffic due to shorter addresses. For instance, for VAX-11
if a local simple variable is allocated to a register, then a onme-byte-operand
specifier is needed for a register address; otherwise, a two-byte-operand specifier is
needed for a stack address.

However, the compiler should not rely on the register variable definitions
done by the programmer to perform allocation because application programmers
do not use them (see Section 2.2.2) and we believe that the compiler, not the pro-
grammer, should be responsible for the generation of efficient code. Therefore, we
conclude that, for the assumptions made, registers should be used to store local
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simple variables to reduce memory trafic, although the total data memory traffic
generated is almost the same independently of whether all local simple variables
are allocated to registers or only register variables are.

2.5 Register Allocation Policies

Register allocation decides which variables in a program should reside in
registers. Register allocation is one of the most effective ways to optimize pro-
gram execution, but it is also one of the difficult tasks performed by the compiler.
For instance, Beatty [BEAT78| has modified the register allocation policy of the
1BM/360 FORTRAN H compiler. The algorithm consists roughly of 4750 lines of
PL/I code, i.e., it becomes a significant part of the compiler. The results were
very good: the code generated by several programs is 26% smaller than the one
produced by the standard compiler. No results are reported about dynamic exe-
cution, but he stated that “a comparable improvement in execution time can be
expected.” Chow and Hennessy [CHOWS4] have measured the effect of register al-
location and program optimization on the running time of 13 benchmark pro-
grams. When all the optimizations are performed, the benchmarks running time
is on the average 39% smaller; however, when all the optimizations are performed
except register allocation, then the running time is only 13% smaller.

This section does not pretend to be an overview of different register alloca-
tion policies —the reader is referred to [AHO78] and [LEVES83]—, but it wants to
contribute in comparing two different allocation policies because as Wulf has stat-
ed "while there is data on the use of instruction sets, the relation of this data to
compiler design is lacking” [WULF81]. Thus, this section discusses two different
allocation policies implemented in two different compilers (the Portable C Com-
piler and the VMS C Compiler) for the same machine (VAX-11); the same alloca-
tion poliey (in the Portable C Compiler) applied to two different machines (VAX-
11 and RISC); and, finally, it presents actual research in register allocation to op-
timize register usage by allowing that local simple variables with disjoint lifetimes
share the same register.

Two Different Compilers for the Same Machine

The Portable C Compiler [JOHN79| uses an on-the-fly register allocation
policy: as soon as a name declaration is found the compiler decides what its
storage class (register or stack) is depending only on the definition given by the
programmer (register or automatic). The advantage is that the storage class is to-
tally decided in the first pass so that the second pass can generate code once the
statement has been parsed. Thus, the first pass generates the parser tree for a
statement and, after that, the second pass generates code for it so that first and
second pass are applied per each statement basis instead of per function basis. It
results in smaller memory requirements, very convenient if the compiler has to be
executed in machines with a small address space, like PDP-11.
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The drawback is that registers are used only for the local variables that the
programmer has explicitly defined as register (the registers are also used to store
environment information and temporary results in expression evaluation; this is
discussed latet). Therefore, the compiler is simpler, but the generated code is far
from optimal. This allocation policy corresponds to the second solution given to
the alias problem in Section 2.3.

Since the compiler generates code as soon as the expression is parsed, it
does not perform complex optimizations such as common expression reduction or
loop invariant removal. The only optimization that is performed by the compiler
is expression optimization, e.g., integer or float constant expressions are computed
and operator associativity is applied so that the expression is evaluated with the
minimum number of registers [SETH70].

The VMS C Compiler [ANKLS82| does not allocate any storage class when a
new definition is parsed. The storage class is not decided until the very end of
the compilation process. Once the parsed tree has been built the Optimizer elim-
inates from the candidates for storage in registers those variables that the address
operator is applied to them. Only the ones that cannot be referenced by any
pointer variable are candidates to be stored in registers because they do not have
any alias. The Optimizer also performs classical global optimizations: removal of
invariant expressions from loops, elimination of common subexpression, ete.

After the Optimizer, the Local Code Generator selects the intermediate
results to be hold in registers. For example, if an temporary result has to be used
as an index register, then the Local Code Generator will give it the maximum
priority to be allocated to a register to avoid the load instruction to bring the
temporary result from memory to a register.

It is not until after this phase that the Register Allocator decides which of
the variables and intermediate results are going to be allocated to registers. The
Register Allocator at this moment can make a decision closer to what an assembly
language programmer could do because more information is available on the can-
didates: usage span, loop depth, priority, ete.

Levy and Clark [LEVY82] have measured the differences in performance
between both compilers executing four benchmark programs (search, sieve, puzzle,
and acker). On the average, the execution time for the programs compiled using
the VMS C Compiler is 2.3 times shorter than the same programs compiled using
the Portable C Compiler. How much of this gain is a result of the register alloca-
tion scheme is not discussed, but probably it must be one of the most important
factors.

36



The effect of optimization on six unspecified benchmarks is given in
[ANKLS82] for the VMS C Compiler. Table 2.11 reproduces the results; the first
row shows the gain in execution time when all optimizations are performed and
ihe second row shows the gain when all optimizations are performed except local
variable allocation in registers. In two of the benchmarks (1 and 3) register allo-
cation is crucial to obtain a good optimization. For instance, the running time of
benchmark 1 is about 80% shorter when all optimizations are performed; if there
is no assignment of local variables to registers, but all other optimizations are per-
formed, then the running time is only reduced 20%. In the other benchmarks, re-
gister allocation helps to improve running time, but it is not as significant as
those two.

With all optimizations 929 32 15 5 68 52
Without local variables
in registers

Table 2.11. Effect of Optimization on the VMS C Compiler

The Same Compiler for Different Machines

The problem with the on-the-fly allocation policy is that the code is gen-
erated per statement basis so that automatic local simple variables cannot be allo-
cated in registers because of the alias problem. The compiler only performs local
register allocation (i.e., per statement) moving a copy of the variable into a regis-
ter. Thus, the compiler register allocation policy relies on the register definitions
done by the programmer to perform global optimization (i.e., per block or funec-
tion) so that variables are allocated directly to registers. In Section 2.2.2 we have
already said that the compiler should be responsible for generating an efficient
code independently of the definitions done by the programmer. Furthermore, ap-
plications programmers do not use register definitions extensively.

However, if the registers are memory mapped, then the compiler can also
allocate to registers automatic simple variables. When the address operator is ap-
plied to a local variable stored in a register, its memory mapped address is com-
puted so that both the memory address and the register number refer to the same
variable. Thus, all local simple variables are allocated to registers while there are
free registers. This allocation policy correspond to the fourth solution given to
the alias problem in Section 2.3.

Let us see what happens when the Portable C Compiler generates code for

a processor with memory mapped registers, RISC, and with unmapped registers,
VAX-11. Looking again at Table 2.1 it can be concluded that:
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1) The static measurements show that

1a) In RISC, all local simple variables defined by the programmer, i.e., 38% of
the data objects, are allocated to registers. These objects can be addressed
by only five bits.

1b) In VAX-11, half of the local simple variables defined by the programmer,
i.e., 19% of the data objects, are allocated to registers, and the other half
(19%) are allocated to the stack. A register address is specified by four
bits for the addressing mode and four bits for the register number and a
stack-frame address is specified by four bits for the addressing mode, four
bits for the register number (frame pointer) and eight bits for the displace-
ment.

Therefore, the number of bits required to refer local simple variables is
significantly greater in VAX-11 than RISC. Of course, this does not imply that
RISC programs are smaller than VAX-11 programs because there exist other fac-
tors to consider. In fact, the opposite is usually true [PATT82]. However, this
can explain why some of the benchmark programs measured in [PATTS82] have a
larger program size for VAX-11 than RISC.

2) The dynamic measurements show that

2a) In RISC, all local simple variables defined by the programmer, i.e., 50% of
the data objects, are found in registers: 40% are directly operated in regis-
ters and 10% are used to compute the address of the data object.

2b) In VAX-11, 38% of the data objects are found in registers and 12% in the
stack frame.

Let us remember that the static measurements include the four programs,
but the dynamic ones do not include the CIFPLOT program. For this reason the
results are not more biased.

If no register definitions were used at all, then 50% of the data objects in
RISC would still be found in registers but in VAX-11 all would be found in the
stack frame.

Thus, the simplicity of the on-the-fly allocation policy does not imply
inefficiency when registers are mapped and there exists enough registers to hold
the whole set of local simple variables.



Register Allocation via Coloring

In Section 2.2.1 we have seen that local simple variables are the most fre-
quent variables referenced by the programmer. Thus, the compiler has to allocate
as many local simple variables as possible in registers to optimize program execu-
tion; however, the compiler must ensure that the data memory traffic reduction
obtained haing these variables in registers compensate their associate register sav-
ing and restoring overhead.

To be able to allocate as many local simple variables as possible in regis-
ters, Chaitin has implemented a register allocation policy via coloring [CHAI81,
CHAIS2] for the IMB 801 PL.8 Compiler [AUSL82]. The lifetimes of the local sim-
ple variables over an entire function are represented in a graph such that two
nodes are adjacent if they are alive simultaneously. The register allocator tries to
color the graph with as many colors as available registers. Thus, variables in a
function that are alive at different points during program execution can share the
same color (register).

The problem of finding a minimal coloring is NP complete. Chaitin’s algo-
rithm works better when the number of available registers is high so that no spil-
ling (i.e., transfer a variable from a register to memory) is necessary. The IBM
801 processor [RADI82] for which the algorithm was developed, has 32 registers
available and, therefore, the algorithm is executed in a linear time because spilling
seldom occurs. Approximate solutions have been developed [CHOWS&4, MCKU84|
to find a non-optimal solution in a linear time for machines with smaller register
sets. For instance, MIPS [PRZY84] has only 16 general-purpose registers and uses
[CHOW&4] algorithm.

In conclusion, actual compiler technology can solve the alias problem either
with or without architectural support and can optimize register usage indepen-
dently of the register definitions given by the programmer. The number of local
simple variables to which the address operator is applied is very small (0.2%; see
Section 2.3); thus, the number of local simple variables that are not able to be al-
located to registers is insignificant. Therefore, if an optimizing compiler is avail-
able, then register usage can be almost equally efficient in a processor without
memory mapped registers than in a processor with memory mapped registers.

2.8 Registers for Temporary Results

Expression evaluation is one of the most frequent constructs in C: the
measured programs give that on the average 91% of the statements require an ex-
pression evaluation. There has been in the past some controversy about what
kind of architecture is the best to evaluate high-level language expressions: stack-
oriented, register-oriented, accumulator/stack-oriented, or storage-oriented
[MYER77, KEED78, MYER78, KEED78a, KEED79, KEED83|. Recent architec-
tures exist for both approaches: towards a stack-oriented instruction format
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[DITZ82, JOHNS82, BESTS82, SCHUS4, OHRAS84} or towards a register-oriented in-
struction format [PATT82, BASA83, PTC383, MACGS84, OLLES5]. This section
discusses first the advantages of using registers to perform expression evaluation
and after this, the number of registers required to store temporary results.

Registers versus Stack for Expression Evaluation

Two main reasons are usually given to justify the implementation of a
stack architecture to evaluate expressions:

1) Code generated for stack architectures is more compact because of the
zero-address instructions.

2) Once an expression has been parsed it is simpler by the compiler to gen-
erate code to evaluate the expression using a stack.

Myers [MYERS2| has aiready shown that, for expressions with a small
number of operators, the first statement is false, i.e., fewer instructions and small-
er code are required to represent simple expressions in a register architecture than
in a stack architecture. The measurements taken show that on the average there
are 1.85 objects and 0.80 operators per compiled expression and 2.17 objects and
1.37 operators per executed expression. These results are similar to the ones that
have already been published for other high-level languages. For instance,

(1) Alexander and Wortman [ALEXT75] studied the characteristics of 19
XPL programs written by undergraduate and graduate students as well as system
programmers. On the average, there are 0.76 operators per compiled expression;
arithmetic expressions contain 0.41 arithmetic operators and logical expressions
contain 0.28 logical operators and 0.91 relational operators.

(2) Tanenbaum [TANE78] has measured the characteristics of more than
300 procedures written in SAL used in various system programs. On the average
there are 0.45 arithmetic operators per compiled expression and 1.22 operators per
compiled conditional expression.

Furthermore, the distribution of the number of operators per assignment
statement has also been given. Assignment statements without any operator in
the right side account for 66% of the assignment statements and with only one
operator account for 20% of them; only 0.3% have more than 4 operators.

(3) Cook and Lee [COOKS2| have also measured statically the distribution
of assignment statements in more than 120,000 lines of PASCAL programs, writ-
ten by graduate students and faculty. Assignment statements without any opera-
tor account for 809% of the assignment statements and with only one operator ac-
count for 119% of them; only 0.3% have more than 3 operators.



Therefore, for the measurements shown the first statement is false. The
second statement is true, but if a register allocator algorithm is already required
for local simple variables (and Section 1.4 has already shown the advantages of
having locals in registers instead of a stack), then the complexity added to evalu-
ate expressions in registers is insignificant.

In conclusion, the complexity of the expressions in high-level languages
does not justify the usage of special instructions to evaluate them. The compiler
can use register or memory variables to perform expression evaluation. [nstruc-
tions to manipulate registers are already available in the instruction set because
in Section 1.4 we said that we prefer to store local simple variables in registers in-
stead of a cache (stack). Moreover, observe that registers for temporary results
do not generate any register saving angd restoring overhead because they do not
have to be saved across function calls . If some registers are available to store
temporary resuits, then no new instructions are required. The number of regis-
ters required for this purpose is discussed next.

Registers Required for Expression Evaluation

The number of registers available for expression evaluation varies with
different architectures. If only an accumulator register is available and if there
are parenthesized subexpressions with different operator precedences, then the ac-
cumulator has to be saved and restored during expression evaluation. So, the
question is how many temporary registers are required to have a small saving and
restoring overhead. We said a small overhead and not a null overhead because we
want to balance the cost of the implementation (given by the number of registers
available; i.e., to have a small number of registers) with the data memory traffic
generated (given by the number of registers that have to be saved /restored
to/from memory because no enough registers are available; i.e., to have a large
number of registers)

Schneider [SCHN71| has shown that the maximum number of registers
peeded by a non-optimizing compiler to evaluate expressions is (K+1)N+1 for
parenthesized expressions, where K is the maximum number of nested parentheti-
cal subexpressions, and N is the number of precedence levels for dyadic operators.
Since C (KERN78] has 16 dyadic operators in 8 precedence levels (logical opera-
tors are not included because they do not generate code for expression evaluation,
but branch instructions), at most 9 temporary registers are needed for non-
parenthesized expressions. However, this number is seldom used because the ex-
pressions most used by the programmer are simple ones as we have seen above.
The same is true for parenthesized expressions.

“This is not true when an expression has a function call inside. In this case,
temporary results have to be saved. This is discussed at the end of this section.
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Since the average number of operators per expression is low (1.37 per exe-
cuted expression), the number of temporary registers required to evaluate them is
small. If we assume that the result given for SAL and PASCAL would be similar
for C, then we can conclude that two temporary registers are enough to evaluate
almost all expressions. This has been verified by two more studies:

(1) Gajewska [GAJE75] has measured statically 35,000 lines of C code
written by system programmers. She has modified the Sethi-Ullman algorithm
[SETH70] to compute the average number of registers required for expression
evaluation on PDP-11: 1.65 for conditional expressions and 1.46 for expression
statements.

(2) McKusick [MCKU84] has measured the entire set of program utilities
provided by the 4.2bsd UNIX system. 97% of the expression statements and 93%
of the expressions in other statements require less than 2 temporary registers to
be evaluated.

Therefore, two registers are enough to store temporary results to evaluate
more than 95% of the C compiled expressions. The 95% has been deduced from
the numbers given by McKusick (97% and 93%) since our measurements have
given that 58% of the compiled statements are expression statements.

Temporary variables are good candidates to be allocated to registers be-
cause:

a) They do not have any alias problem since the programmer cannot refer
to them.

b) They do not usually have to be saved across function calls. The only
exception in which registers for temporary results must be saved is is when the
expression has a function call inside. In the first case, an optimizing compiler
should apply associative and commutative rules to the operators in the expression
so that the function is evaluated first and no temporary registers have to be
saved.

¢) They are only alive during statement execution. Thus, registers for tem-
porary results can be easily shared.

If more variables for temporary results are required than registers available,
then the compiler has to either save the current temporary registers in the stack
or use some of the registers for local simple variables defined by the programmer.
The Register Allocator knows the usage and the period of life for all local vari-
ables and tries to allocate as many as possible in registers.
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2.7 Registers for Optimizing Variables

The compiler can generate some local simple variables to optimize program
execution. These variables avoid that the same computation be done more than
once. To decide whether to generate a local variable or to perform the same com-
putation more than once, the compiler should not only know how many times the
computation is done, but also where this computation is done, i.e., computations
performed inside a loop should have higher priority than computation performed
outside. Some examples of local variables generated by an optimizing compiler
are:

(a) Addresses of an element of a unidimensional or a multi-dimensional ar-
ray. For example, the following program

for (i = 0; i < MAXROW; i++)
for (j = 0; j < MAXCOL; j++)
total += alil(j];

can be converted by an optimizing compiler to

for (i = 0; i < MAXROW,; i++) {
register int *p = ali];
for (j = 0; j < MAXCOL; j++)
} total += p[j];

so that the address computation for afi] has to be done only once for each value
of 1

(b) Common sub-expressions. For example, the following function

insertProc (tp, p)
proc_t **tp, *p;

{
if (*tp === NULL)
*tp = p—p.next = p;
else {
p—p_next = (*tp)—p_next;
*tp = (*tp)—p-next = p;

}

can be converted by an optimizing compiler to



insertProc {tp, p)
register proc_t **tp, *p;

register proc_t *q= *tp;
if (@ == NULL)

*tp = p—p.next = p;
else {

p—p_next == q—p_next;

*tp = q—p_next = p;

}

thus, the address of the structure is kept in a register instead of following the tail
pointer {p address specification. This causes two memory accesses for fetching the
structure address.

(¢) Addresses of global variables. For example, the RISC portable C com-
piler generates for the assignment statement:

¢ = *++gp;

where ¢ is a local integer variable and gp is a pointer to a global array of charac-
ters, the following code:

Idhi  #va_high,r4  load bits <31:13> of gp memory address

1d1 va_low(r4) compute memory address and load gp
add r5#1715 increment pointer

Idhi  #va_high,r4  load bits <31:13> of gp memory address
stl r5,va_low(r4) compute memory address and store gp
ldbs  0(r5),r30 load operand in ¢

An optimized compiler would detect that the same address is needed and
r4 would be loaded only once.

These compiler defined variables can be kept in registers. The Register Al-
locator has to weigh their usage and priority against the usage and priority of lo-
cal simple variables defined by the programmer and to decide which ones are go-
ing to be allocated in registers. In addition to their usage and priority, the Allo-
cator must also know their period of life to try to share the smaller possible
number of registers. If no function calls are involved, then temporary registers
can be used, i.e., registers that are not automatically saved across function calls;
otherwise, registers for local simple variables saved across function calls should be
used.
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The C compiler that has been used to take the measurements does not per-
form these optimizations because it generates code as soon as the statement has
been parsed. So, no measurements were taken about how many registers are re-
quired to store compiler defined variables. Even though there exists abundant in-
formation about optimization, no information has been found concerning either
how many temporary variables a compiler generates or how many registers are
needed for compiler optimization. Therefore, we must leave this number as
undefined, although we do not expect that the number of registers required by
the compiler would be more than two. The reason is that, on the average, the
number of for, while, and do statements parsed per function is small {0.59 per
function), and so is the average number for unidimensional arrays (2.8% of the
data objects). The usage of multi-dimensional arrays for the measured programs
is negligible {0.003% of the data objects). Furthermore, the more optimizing vari-
ables are required in a function, the higher the probability is that their lifetimes
be disjoint so that they can share the same register.

If there are more optimizing variables than registers, then the compiler has
to either define some local simple variables or use some of the registers for local
simple variables defined by the programmer. As we said for temporary variables
the Register Allocator knows the usage and the lifetime for all local variables and
tries to allocate as many as possible in registers. However, if there are no more re-
gisters available, then it could be better to perform the same computation more
than once rather than to have to create an activation record in the stack for only
optimizing variables (assuming that this is not required for local variables defined
by the programmer).

2.8 Registers for Parameter Passing

This section discusses how the compiler can pass parameters from the call-
er to the callee. When the compiler is parsing a function call statement, it does
not have any information about what is the usage of the parameters for the cal-
lee; therefore, three alternatives are possible:

(1) To pass parameters through the stack. When the compiler parses a
function definition, it has full information about the parameter usage and can de-
cide which parameters should be moved into registers and which ones should
remain in the stack frame. Again the programmer can also use register variable
definitions to give a hint to a non-optimizing compiler.

(2) To pass parameters through registers. The compiler usually divides
the register set into registers for temporary results and registers for local vari-
ables. The first ones are not saved across function calls and the second ones must
be saved either by explicit or implicit instructions, or with a multiple window
scheme. The compiler can use the temporary registers to pass the parameters.
The compiler has again full information about their usage so that it can decide
which ones are moved to a register for local variables and which ones are moved
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to the stack frame. If there are more parameters than registers, then only the
first ones are passed through registers and the others through the stack. If multi-
ple non-overlapping windows are available and the register set has some registers
common to all the functions (i.e., not saved across function calls), then these re-
gisters can be used to pass the parameters.

The drawback of this approach is that once a parameter has been comput-
ed, there is one less temporary register available to perform expression evaluation.
However, the number of parameters per function call is very low: the static meas-
urements give on the average 1.55 parameters per function call and for the
dynamic measurements this number is reduced to 0.99 parameters per function
call. Furthermore, we have already mentioned that in C the most frequent ex-
pressions are the simple ones (see Section 2.6); this is also true for parameter ex-
pressions. Table 2.12 shows the parameter types that are passed to a function:
129 are constants, 56% are simple variables, and only 32% are either an expres-
sion to be evaluated or a non-simple variable (an element of an array or a field of
a structure). Since C does not require to evaluate the parameters in any specific
order, the compiler can reorganize the parameter expressions so that the ones that
require more temporary registers to be evaluated, are evaluated first. Thus, tem-
porary registers can be used to pass parameters to avoid data memory traffic.

no.

. 17 650736 i .
global sv. 671705 414 50 - 14526 0.3 | 686281 10.7
auto sv. 133881 3.3 2404 1.3 979340 21.3 || 1115625 174
register sv. 508309 31.3 55417 28.9 | 1225843 266 | 1789569 28.0

185907 115 | 113777 69.8 | 1734581 377

comple - .
— lie22352

param. per ftn. l 1.51

Table 2.12. Function Parameters

(3) To pass parameters through registers in multiple overlapped windows.
In this case, the window is divided into three parts: registers for outgoing parame-
ters, registers for incoming parameters, and registers for local variables as it is dis-
cussed in [PATT82]. The overlapped registers become part of the local registers
of the current window so that the compiler does not have to move them either to
local registers or to the stack. If the number of overlapped registers is smaller
than the number of parameters, then the first ones are passed through registers
and the others through the stack; the compiler has again full information and can
decide whether to move any of the parameters in the stack to registers and vice-
versa. If the number of parameters is smaller than the number of overlapped re-
gisters, then no memory traffic is produced because a new window of registers is
available for each function call.
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Traditionally compilers have used the first approach for parameter passing
in architectures without multiple windows, but research for optimizing compilers
is moving toward the second approach to reduce data memory traffic overhead
caused by parameter passing [CHAISI].

Looking again at Table 2.10, we can deduce that the overhead caused by
parameter passing with respect to the data memory traffic generated by the data
objects is 10% in the case that only explicitly defined register variables are allo-
cated to processor registers (SW (a)), 13% in the case that all local simple vari-
ables defined by the programmer are allocated to registers (SW (b)), and 5% in
the case that no local simple variables are allocated to registers (SW (c)). If
parameters are passed through registers and enough registers are available, this
overhead is eliminated.

npumber !» % of functions with up to n parameters

of static ! dynamic

CIFPLOT

30.7 65.5 28.6

59.9 920 57.2
82.9 99.1 95.3
91.7 99.5 | 100.0
95.0 100.0
96.5
96.9

arameters

Table 2.13. Registers for Parameter Passing

Table 2.13 shows the percentage of functions that pass n or less parameters
for both static and dynamic measurements. Our first conclusion from the table is
that functions with a small number of parameters (< 3} are called more frequent-
ly that functions with a big number (> 4). For the three measured programs,
three registers are enough to pass parameters for 98% of the function calls. If
four registers are available a gain of 0.3% is obtained and with registers the gain
is 0.4%. To be able to have all parameters passed through registers, six registers
are required.

In conclusion, to reduce the overhead caunsed by parameter passing, param-
eters can be passed through registers: temporary registers for single windows or
overlapped registers for multiple windows. In the former case, the compiler
should decide to move the parameters either to the stack or to registers for local
variables; thus, some extra instruction memory traffic is generated for instructions
to transfer parameters from temporary register to registers for local simple vari-
ables or to the stack. Since C does not require to evaluate the parameters in any
specific order, the compiler can reorganize the parameter expressions so that the
ones that require more temporary registers to be evaluated, are evaluated first.
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The number of registers required is not very large: three registers are encugh for
98%% of the functions.

Finally, before leaving this section we must considered one of the features
of C that makes impossible to pass parameters through registers, except if its
usage is restricted. The C programmer can pass a variable number of parameters
to the callee. This is very useful, for instance, in the printf function [KERN78].
The caller can specify as many parameters as necessary to be printed; the callee
uses the first parameter to control the printing output format and to know how
many parameters have been passed. In this case, the programmer of the callee
function only specifies one parameter and uses the address of this parameter as
the address of an array of parameters. Of course, the resulting program is not a
machine independent program, although the programmer has available a include
file (varargs.h) to make this mechanism as general as possible. This feature is a
consequence of the flexible type manipulation {using the address of a parameter as
the address of an array) and the lack of type checking provided by C. Languages
with a strong type checking mechanism (PASCAL, ADA} do not allow to pass a
variable number of parameters.

Since we are passing the first parameters through registers, then we cannot
use an array to refer them. Therefore, the compiler cannot pass parameters
through registers because it does know if the callee refers them as members of an
array. They are two possible solutions to this problem:

(1) The programmer should specify a special type definition for the func-
tions that expect to use the list of parameters as an array.

(2) The programmer should specify a special type definition to define a
variable list of parameters. Every time that the function is called the programmer
should cast the list of parameters with this definition type to indicate to the com-
piler that the callee expects a variable number of parameters.

In any case, the compiler knows that a function (in both cailer and callee
level) is processing a variable number of parameters so that it might decide to
pass all of them through the stack or the first ones through registers and the rest
through the stack (if any). Although no measurements are available, we would
affirm that this feature is seldom used for either application or system program-
mers. Therefore, the definition of C should be modified as indicated above to al-
low the compiler to pass parameters through registers.



2.9 Environment Registers

This section discusses the number of registers required to store the run-
time process environment. The run-time process environment can be divided into
two different categories: privileged and general.

The privileged process execution environment is defined by the processor
status: processor mode (user or supervisor), processor priority, interrupt mask,
etc. It also includes registers associated with memory management information to
support virtual memory. Privileged registers are not discussed in this thesis.

The general process execution environment is given by the following four
elements:

Program Counter  Points to the next instruction to execute.
Stack Pointer Points to the top element in the execution stack.
Frame Pointer Points to the current activation record in the stack.

Argument Pointer  Points to a list of parameters being passed to a function.

This does not mean that all four need to have a register associated to it.
Section 2.9.1 shows that the frame pointer and the argument pointer can be only
one register for C programs and Section 2.9.2 shows that the frame pointer and
the stack pointer can also be only one register for C programs if an optimizing
compiler is available.

Some other environment registers might be required by the architecture.
For instance, if the architecture has multiple windows, then two more registers
are required:

Current-Window Pointer Contains the memory address for the current window
in the register file.

First-Window Pointer Contains the memory address for the first window
available in the register file.

The usage of these two registers is discussed in Chapters 3 and 4.
2.9.1 Using the Frame Pointer as Argument Pointer

This subsection shows how the frame pointer can also be used as argument
pointer when parameters are pushed from right to left (i.e., the rightmost parame-

ter pushed first and the leftmost parameter pushed last) and an optimizing com-
piler is available. To simplify our discussion let us assume that the whole activa-
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tion record is in the stack and no multiple windows are available. Note that oth-
erwise the discussion should be applied only to the part of the activation record
which resides in the stack.

If the parameters are pushed from left to right, thep the argument pointer
is required to indicate to the callee where the first (the leftmost) parameter is
stored. Since C allows to pass a variable number of parameters (see Section 2.8),
the callee does not know where the first parameter is stored because the stack
pointer points to the last element pushed (to be precise, to the return address
after the call, but it would be possible to find the last element). Figure 2.3 shows
the activation record that the function has to set before executing: the argument
pointer points to the first parameter, the frame pointer to the beginning of the lo-
cals, and the stack pointer to the top of the stack; the return address, the old
frame pointer, and the registers have been saved between the parameters and the
locals. Note that the parameter pointer has to be explicitly initialized by the call-
er, saving its old value to be restored when the callee returns. The frame pointer
is loaded with the value of the stack pointer after its contents and the contents of
the general-purpose registers have been saved. The stack pointer is decremented
(if the stack grows downwards) to reserve space for the local variables defined by
both the programmer and the compiler. These operations can be performed with
one or several instructions depending on the architecture; this is not discussed
here because it does not have any influence in deciding the number of registers re-
quired.

locals

registers saved
environment information

(old frame ptr)

(return address)

parameter #n

ap — parameter #1

Figure 2.3. Activation Record Using Frame, Argument, and Stack Pointers
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On the other hand, if the parameters are pushed from right to left so that
the first parameter is always on top, then when a function is called the frame
pointer is loaded with the current value of the stack pointer so that parameters
are accessed with a positive displacement and locals with a negative displacement
with respect to the frame pointer (assuming again that the stack grows down-
wards). The activation record is shown in Figure 2.4.

sp —

locals

registers saved
environment information
fp - (old frame ptr)
(return address)

parameter #1

Barameter #n

Figure 2.4. Activation Record Using Frame and Stack Pointers

However, the order in which the parameters are pushed is not enough to
reduce both the argument and the frame pointer to only one register. Again we
have to comsider the optimization degree of the compiler. If we assume that the
code is generated as soon as the statement has been parsed using an on-the-fly al-
location policy (e.g., the Portable C Compiler), then the compiler has no
knowledge about the number of registers used for local simple variables before
starting generating code. Thus, the compiler cannot generate displacements for
local simple variables in the stack because it does not know the number of regis-
ter that are saved between the old frame pointer and the space for local simple
variables (see Figure 2.4).

This problem can be solve either using two pointers (argument and frame)
or saving a fixed number of registers. If two pointers are used, then displace-
ments for local simple variables can be generated independently of the registers
that must be saved (see Figure 2.3). If the same number of registers is used, then
displacements can also be generated because there is always a fixed displacement
to the first local simple variable in the stack. In this case, the number of registers
saved is independent of the number of registers used to store local simple vari-
ables, i.e., the registers are always saved even though they are unused by the
function.
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The first solution is used by the Portable C Compiler for VAX-11. The
created activation record for VAX-11 is similar to the one given in Figure 2.3. The
difference is that parameters are also pushed from right to left so that the argu-
ment pointer can be initialized in the moment of performing the call instead of
having to be initialized before pushing the parameters. The second solution is
used by the Portable C Compiler for PDP-11. Three registers are used for regis-
ter variables defined by the programmer. As we said, these registers are always
saved independently of whether the function is using them. The created activa-
tion record for PDP-11 corresponds to the one given in Figure 2.4.

If an optimizing compiler is available so that code is not generated until
the function has been parsed, then the number of registers used by local simple
variables is know and, therefore, the same register can be used for both the argu-
ment and the frame pointer. This problem is similar to that of other block-
structured languages (ALGOL, PASCAL, ADA), except that the order in which
parameters are pushed is not important because no variable number of parame-
ters is allowed.

2.0.2 Using the Stack Pointer as Frame Pointer

If an optimizing compiler is available and no code is generated until the
function has been parsed, then the following data is known:

1} The number of local variables defined by the programmer.
2) The number of temporary and local variables required by the compiler.
3) The maximum number of parameters required by any of the function calis

that appear in the function.

4) The number of registers that must be saved.

In this case, the size of the activation record is obtained by adding these
four numbers plus one word for the return address. When the function is en-
tered, the stack pointer is decremented by the activation record size. Displace-
ments for local and temporary variables are computed relative to the stack
pointer so that no frame pointer is necessary. When the function returns either
the stack pointer can be explicitly incremented by the activation record size or
implicitly restored if it was saved by the execution of the call instruction. Conse-
quently, as Figure 2.5 shows, the stack pointer can be used as frame pointer and
argument pointer. Observe that the order of evaluation of the parameters is no
longer important; however, the compiler must allocate them so that the leftmost
parameter is the first below the return address, the second leftmost below the
first, and so on (assuming again that the stack grows downwards).
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A similar scheme was proposed by Ditzel and McLellan [DITZ82] in their C
Machine. The C/70 machine [BBN81] uses also a similar scheme. However, the ac-
tivation record does not contain the maximum number of parameters that can be
passed to the function; every time a parameter is pushed (and the stack pointer
decremented) the compiler has to modify the displacements for the local variables.

(22230 ———
sp —
space for the
max. number of
outgoing parameters

locals
(program + compiler)

registers saved

return address

parameter #1

Earameter #n

Figure 2.5. Activation Record Using Only Stack Pointer

Therefore, if an optimizing compiler is available, the stack pointer, the
frame pointer, and the argument pointer can be combined in only one register.

2.9.3 Registers Required

In conclusion, for optimizing compilers only two registers are required for
the general-process execution environment: the program counter and the frame or
stack pointer. If multiple register-windows are implemented, two more environ-
ment registers are required as we will discuss in Chapters 3 and 4 the current-
window pointer and the first-window pointer.

2.10 Registers for Global Simple Variables

This section discusses why general-purpose registers are not used to allo-
cate global (external or static) simple variables and shows how some special regis-
ters addressed through memory addresses can be used. Looking again at Tables
9.5-2.8 we can deduce that global simple variable data objects (with and without
autoincrement or autodecrement operators} are the most executed objects after
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local simple variables and integer constants: on the average they account for 13%
of the data objects. If local simple variables are kept in registers, then the data
memory traffic caused by global simple variables accounts on the average to 44%
(remember that no overhead caused by function calls was accounted or that
tables yet).

If the compiler were able to allocate them in general-purpose registers (let
us not worry about the number yet), then data memory traffic would be reduced.
However, compilers do not store global simple variables in the general-purpose re-
gisters either permanently or temporary. Let us discuss why.

The compiler cannot decide to store a global simple variable permanently
in a register because C modules are compiled separately so that no information is
available to the compiler about the other modules. Thus, the compiler cannot
have a global policy to allocate global simple variables to registers. The compiler
could collect information in the symbol table about the usage of each global vari-
able in the same way that it is done for local variables [FREI74]. This informa-
tion is passed to the loader in the object module. However, even if the loader had
complete information about the usage of each global variable, it would have to
change the code generated by the compiler changing memory references to regis-
ter references. This is not practical.

The compiler could decide for each function which global simple variables
are moved to registers. In this case, the compiler has the same probiem that we
have mentioned for local variables: aliasing. The copy of a global value is valid
until either the next function call or the next expression evaluation which in-
cludes a pointer indirection. As has been mentioned above, one of each 25 execut-
ed data objects is a function call and one of each 50 executed data objects is a
pointer indirection. Thus, the expected period of life of a variable moved to a re-
gister is very short if we cannot guarantee that the variable has no alias.

Therefore, compilers are faced with a similar problem to the one discussed
for automatic simple variables in Section 2.3. Moreover, the programmer cannot
give any hint to the compiler because register definitions for global variables are
not allowed in C. There are three different soiutions:

(1) Global simple variables are not allocated to registers either permanently
or temporary. It results in high memory traffic and slow access to the variables.
The Portable C Compiler, for instance, uses this policy.

(2) Optimizing compilers can allocate global simple variables temporary to
registers. However, optimizing compilers cannot applied for global simple vari-
ables a similar policy to the one used for automatic variables, i.e., the compiler al-
locates a global simple variable to a register if the programmer does not apply the
address operator to it {see solution (3) to the alias problem in Section 2.3). The
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reason is that the compiler does not know if the address operator has been ap-
plied to the external variable in another module. Therefore, the copy of the glo-
bal variable is valid only until the next function call or the next pointer indirec-
tion so that the expected period of life is very short.

(3) The architecture can again offer some support to solve the alias problem
so that the compiler can allocate permanently some global simple variables to re-
gisters. The solution is to have some memory locations mapped to registers. The
compiler keeps similar information in the symbol table to the one kept by au-
tomatic simple variable to decide which ones are the best candidates to be allocat-
ed in registers (static frequency usage with a relative weight depending on wheth-
er the variable is used inside a loop statement). The loader when decides the
memory addresses for global variables using the information left by the compiler
in the object modules, then it also decides which ones are stored in these memory
locations, i.e., ailocated to registers. Note that the loader does not have to change
any code generate by the compiler because these registers are not referenced by a
register address, but by a memory address.

no. scalar  90% ref.
Program | g1 bal var.  occurs in |
pee 95 16
troff 234 46
dr 79 _18

Table 2.14. Registers for Global Simple Variables

How many memory locations are needed for this purpose? Ditzel and
McLellan [DITZ82] propose to have 18 special memory locations for global simple
variables. This number is based on their measurements reproduced in Table 2.14.
The measured programs are: the Portable C Compiler (pec) compiling the machine
dependent part of the compiler, the UNIX word processor troff processing the
troff tutorial, and a VLSI design rule checker (dr) checking a 32-bit adder.

McDaniel [MCDAS2] proposes to have only four memory locations for glo-
bal simple variables. He has measured two programs: the MESA compiler and a
VLSI circuit analysis program. His measurements show that 24% and 17% of the
instructions of these two programs are converted from memory instructions to re-
gister instructions when four registers are available to map global simple variables
and four registers are available to map local simple variables (MESA is a stack ar-
chitecture so that all local simple variables are allocated to memory). Since the
measurements are given for both optimizations we cannot conclude how much
memory traffic reduction is obtained with only four mapped memory locations for
global simple variables.
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In conclusion, global simple variable memory traffic can be reduced if the
architecture offers some registers mapped to special memory locations. The com-
piler has to keep usage information about global simple variables similarly to the
information kept for automatic simple variables to decide register allocation; this
information is passed to the loader through the object module. The loader looks
for the best variable candidates to be in registers and allocates them to these spe-
cial memory locations. No measurements were taken in this report regarding how
many registers are needed for global simple variables; the measurements taken by
Ditzel and McLellan are valid and, therefore, their proposal of having sixteen re-
gisters for global simple variables is adopted.

2.11 Conclusions

In this chapter we have studied the usage of registers for different pur-
poses:

(1) Registers for local simple variables defined by the programmer. We
have shown that they account for half of the data objects that the measured pro-
grams manipulate. This allow us to conclude that the compiler should allocate
" these variables to registers independently of the storage class specified by the pro-
grammer, automatic or register, to reduce both the program size and the data
memory traffic generated during program execution. Although a single window is
available, local simple variables should be allocated to registers because (a} regis-
ter saving and restoring overhead is balanced with the reduction in data memory
traffic generated by the data objects, and (b) shorter addresses can be used so
that the instruction memory traffic is also reduced. The efficiency of the generat-
ed code should depend on the optimizations done by the compiler, not on the
storage class definitions done by the programmer.

The alias problem can be easily solved by an optimizing compiler without
having any architectural support, i.e., without having memory mapped registers.
The number of local simple variables that are not able to be allocated to registers
by an optimizing compiler because the address operator has been applied to them
is very smail: only 0.29 of the data objects are local simple variables with the ad-
dress operator and they account for 0.0013% of the executed objects. Thus, re-
gister usage can be almost equally efficient in a processor without memory
mapped registers than in a processor with memory mapped registers if an optimiz-
ing compiler is used.

The number of local simple variables defined by the programmer for each
function is not very large: 99% of the functions have up to fourteen local simple
variables. However, we have seen that the most frequent called functions are the
ones with a small number of local simple variables: 75% of the called functions
have up to three local simple variables, including parameters passed to the func-
tion. The number of registers necessary to allocate local simple variables depends
on the register allocation policy. If a register allocation by coloring 1s used, then
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some local simple variables can share the same register if they have disjoint life-
times.

(2) Registers for temporary results and parameter passing. The number of
registers necessary to perform expression evaluation is also not very large: two re-
gisters are enough to evaluate more than 95% of the expressions. Registers for
temporary results can also be used for parameter passing for single windows. In
this case, three registers are enough to pass parameters for 98% of the functions.

(3} Registers for optimizing variables. No measurements have been taken
nor found to determine the number of registers required by a compiler to store
optimizing variables. However, we do not expect to use more than two registers
for each function.

(4) Registers for the run-time process environment state. If an optimizing
compiler is available, then only two registers are required: the program counter
and the frame pointer (also used as stack pointer and argument pointer). If mul-
tiple windows are available, then two more registers are required: the current-
window pointer and the first-window pointer.

(5) Registers for global simple variables. Although global simple variables
cannot be allocated to general-purpose registers, they can be allocated to some
memory locations mapped to special registers so that they can only be addressed
through memory addresses. In this case, only the data memory traffic is reduced,
not the instruction memory traffic.

Therefore, if an optimizing compiler is available, registers can be used very
effectively to reduce both the data memory traffic and the instruction memory
traffic, even when only a single window is available. Our measurements indicate
that if only a single window is available, then the number of registers available in
the general-purpose register set should be either 32 or 16 plus some specialized re-
gisters (the program counter, for instance). Our measurements do not justify the
actual trend of some architectures oriented to UNIX (i.e., C) that provide more
than 32 general-purpose registers (PYRAMID 90x and CELERITY C1200).

In the next chapter we introduce how the register saving and restoring
overhead can be reduced using multiple windows, and we study how the register
set should be organized. We also consider the number of registers that should be
available for each purpose to balance the implementation cost of the register file
and the number of bits required in the instruction to specify a register address
with the number of variables defined by both the programmer and the compiler
and the data memory traffic overhead introduced by register saving and restoring
(or overflows gnd underflows in the case of multiple windows}.

57



CHAPTER 3
MULTIPLE WINDOWS

3.1 Introduction

This chapter studies the architecture of a register file for a processor
oriented to execute programs written in C. The design is based on the measure-
ments presented in the previous chapters. The proposed register file is compared
with those of other recent proposals known by the author: C/70 [KRAL80], RISC
[PATTS2|, PYRAMID 90x [PTC83|, and CELERITY C1200 [OLLESS5].

Multiple windows allow to reduce the register saving and restoring over-
head as has already been shown by Patterson and Séquin [PATTS82]. When a
function is called, a new window is allocated from the register file. So, no register
saving and restoring is involved if enough windows are available in the register
filee. Windows can overlap to pass parameters through registers to reduce the
parameter passing overhead as has been discussed in Section 2.8. RISC, PYRAM-
ID 90x, and CELERITY C1200 have overlapped windows (six registers for RISC
and sixteen for PYRAMID and CELERITY). When no more windows are avail-
able, then a register file overflow exception is generated. These processors handle
overflow in three different manners:

(1) To have enough windows in the register file so that an overflow excep-
tion is never generated. This is implemented by C/70 with a register file of 128
windows.

(2) To allocate virtual windows from memory when there are no more win-
dows available in the register file. This solution is implemented by CELERITY
that has sixteen windows per register file and eight register files available for eight
active processes (each file is private to each process; see Section 3.9.2). Therefore,
processes with a window stack depth larger than sixteen are not using registers,
but memory locations referenced as registers.

(3) To remove the oldest window in the register file, i.e., to make space for
the new one. This is implemented by RISC and PYRAMID 90x. In both proces-
sors the register file is organized as a circular buffer to avoid to relocate the win-
dows when an overflow exception is detected. RISC has a register file of eight
windows and PYRAMID of sixteen. However, since the windows overlapped to
pass parameters up to seven windows for RISC and fifty for PYRAMID can be ac-
tive at any moment (see Section 3.5).
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In this chapter we consider the third approach, i.e., when an overflow oc-
curs the oldest window is removed from the register file and saved into the win-
dow overflow stack. However, how the register file is implemented is not discussed
until Chapter 4.

A special mention has to be done with CELERITY C1200. The C1200 has
a NCR/32 processor [NCR83| as internal processor and an external 4K register
file. NCR/32 is a single chip VLSI CPU processor with a cycle time of 125 ns.
and only sixteen internal registers. Since instructions cannot operate directly
with external registers, NCR/32 provides some special instructions to transfer an
external register to an internal one. Thus, the register file is organized as a
program-controlled cache of registers. Even though no information is available,
we can guess that the compiler has a single-window-oriented register allocator
with the register saving and restoring overhead discussed for single windows. The
differences with a stack-oriented approach are that fast access to the operands
stored in registers is provided (only cne instruction of 125 ns.), and that short ad-
dresses are used (5 bits in a 16-bit instruction to specify the virtual register
number of the current window). Therefore, C1200 is not a multiple-window ar-
chitecture in the same sense than the other omes are because registers in the win-
dows are not available to the native processor instructions. However, since no
study has been made about the effectiveness of this approach and very little infor-
mation has been released, in this thesis we just consider the multiple windows,
i.e., the overhead caused to transfer information for the register-file cache to the
internal registers is transparent to our discussion.

All the existing processors with multiple windows use fixed-sizg windows:
C/70 has a window size of eight registers, RISC of sixteen registers , and PY-
RAMID 90x and CELERITY C1200 of thirty-two registers. Since the number of
registers required per function is usually small (75% of the functions have up to
three local simple variables, including parameters; see Section 2.2.3), part of the
registers in the window are being unused. Ditzel and McLellan [DITZ82] propose
the use of variable-size windows to improve the use of registers, but this results in
a complex and slower implementation (see Section 3.3). Asa compromise that in-
corporates the advantages of both schemes, we propose an approach that uses a
few (2 or 3) window sizes (Section 3.4). We use our measurements to compare
with the fixed-size window approach and to determine suitable window sizes (Sec-
tion 3.7). We show that for an equivalent performance to the fixed-size case the
register file can be made significantly smaller (Section 3.8).

"The firs implementation of RISC I had a smaller window size. Sixteen registers
corresponds to the window size for the second implementation of RISC I and for
RISC H that have been widely used in the literature.
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This chapter is organized as follows. Section 3.2 confirms with our meas-
urements that the use of a multiple-window register file reduces dramatically the
overhead in register saving and restoring. Section 3.3 compares fixed-size win-
dows and variable-size windows. Section 3.4 presents the an intermediate ap-
proach of using a few different sizes that offers most of the advantages of both ap-
proaches. Section 3.5 considers the advantages of having overlapped windows
versus non-overlapped ones. Section 3.6 explains how the register set is organized
with multi-size overlapped windows. Section 3.7 uses our measurements to select
the different window sizes. Section 3.8 also uses our measurements to select the
size of the register file and shows that in the proposed approach the size is
significantly smaller than in the fixed-size window case. Finally, Section 3.9 stu-
dies the effects of exceptions and context switching on the register file and
presents two different organizations for the register file: private register file and
shared register file.

3.2 Data Memory Traflic Overhead for Multiple Windows

This section confirms that multiple windows reduce dramatically the over-
head in register saving and restoring. Since the purpose of this section is not to
discuss the overhead generated by different window and file sizes (this is done in
Section 3.8 after we have introduced our proposal), only one specific size for the
window and one for the file have been considered. Instead of taking arbitrary
sizes, we have chosen the sizes available in one of the existent processors (RISC)
as we will see below. A similar approach was taken to compute the overhead for
single-window architectures {see Section 2.4}.

For the multiple-window architecture style we assume that the window has
enough registers to store all local simple variables defined by the programmer.
This corresponds to case (b) for single windows (see Section 2.4). Since for a
single-window architecture we have concluded that it is advantageous to use re-
gisters to allocate simple variables and a multiple-window architecture is register
oriented, the register allocation policies equivalent to cases (a) and (c) are not con-
sidered here. Furthermore, we have already seen that the number of registers re-
quired for local simple variables is not very large: 99% of the functions have up to
fourteen local simple variables defined by the programmer (see Section 2.2.3).
The multiple window case we consider is called "MW" in the sequel and the data
memory traffic is shown in Table 3.1. The total data memory traffic for the three
single window cases has been copied from Table 2.10.

Since 2 multiple-window architecture benefits from the use of overlapped
registers to pass parameters (this is done in RISC), we assume that the windows
are overlapped and that they have sufficient registers to pass all parameters (the
five registers in RISC are sufficient to pass parameters for 98% of the called funec-
tions) Thus, parameters are not pushed onto the stack and no data memory
traffic overhead caused by parameter passing is generated for MW.



| No. function calls

SW (a) data memory traffic || 64959158 71554324 | 143958384
SW (b) data memory traffic || 64794921 | 4211286 | 79000676 | 149851557
|SW (c) data memory traffic_§§ 83478606 | 8762200 2 100562908 il 192803584
MULTIPLE WINDOW ;
data memory traffic | 26542603 | 1667271 26222849 § 54392487
data objects | 23259541 | 1667271 22816695 | 47743507
parameters - - - : -
registers 3283062 - 3406154 § 6648980
% overhead (tot./d.obj.) 14 0 15 § 14
SW(a) v8. MW overhead 145 324 173 § 165
SW(b) vs. MW overhead 144 153 201 | 176
SW(c) v8. MW overhead 215 426 283 | 254

Table 3.1. Overhead for Multiple Windows

To compute the traffic due to overflows and underflows, we use the values
from Table 3.5 for seven windows. Note that the the values reported in
[PATTS2) for the same number of windows is only 1%; this is because this article
uses two short benchmark programs (sort and puzzle) to measure the percentage
of overflows and we have already said that they are not representative enough for
this type of measurements {see Section 1.3). When an overflow occurs one win-
dow must be saved in memory. We have assumed a window size of sixteen regis-
ters {like RISC's window size) to compute the overhead caused by register file
overflows and underflows. The number of function calls executed for each pro-
gram was given in Table 2.10 and is reproduced in Table 3.1. Thus, from Table
3.1 we deduce that MW has 14% more data memory traffic than that strictly
caused by the programmer.

With respect to single windows, the data memory traffic generated for SW
(a) is 165% greater than the one generated for MW, for SW (b) it is 176%, and
for SW (c) it is 254%. Therefore, data memory traffic is reduced by a factor of
2.7 or 3.5 by using multiple windows.

We also observe in Table 3.1 that for the SORT program, all the three sin-
gle window cases have a higher overhead with respect to multiple windows than
the other programs: from 324% if only register variables are allocated to processor
registers to 426% if no local simple variables are allocated to registers. This is be-
cause SORT has a higher percentage of local simple variables with or without
auto-increment or auto-decrement operators (53% in comparison with 40% for
NROFF and 38% for VPCC), and a lower percentage of function calls (2.1% in
comparison with 4.6% for NROFF and 3.8% for VPCC).
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In conclusion, when multiple windows are available, the data memory
traffic is reduced by a factor of 2.7 or 3.5 with respect to the case in which a sin-
gle window is available. Therefore, multiple windows offer an excellent support
for function calls independently of the instruction set design (reduced or com-
plex).

3.3 Fixed-Size Windows versus Variable-Size Windows

The number of registers allocated in a variable-size window is exactly the
number of registers required per function. On the other hand, if fized-size win-
dows are used, then there are some functions that require more registers and some
functions that do not use the whole set of registers available. Therefore,
variable-size windows allow a more efficient use of the register file. This implies
that the register file can be smaller because fewer registers are required to hold
the same number of windows, and fewer registers have to be saved (restored)
when an overflow (underflow) occurs and during context switching. However,
variable-size windows have four main drawbacks:

(1) Since the purpose of variable-size windows is to have enough registers
for all local simple variables, the number of bits available in the instruction to ad-
dress a register is determined by the maximum number of local simple variables
that can be defined in a function. This results in a larger number of bits required
for a register address in the instruction format.

(2) If the window can be of any size, random access to the whole register
file is required. Fixed-size windows require random access only to the current
window, which permits an implementation that has a short bus whose size is in-
dependent of the register file size. If the register file is implemented as a circular
buffer (like RISC and PYRAMID 90x register files), then random access to the
whole register file is still required. However, an alternative implementation to the
circular register file called shift register file introduced in Section 4.3 allows this
independence.

(3) Physical register addresses have to be computed every time a register is
accessed. This computation requires the addition of the current-window pointer
with the virtual register number given by the instruction. If three-address in-
structions are available the overhead introduced is significant except if all three
additions can be performed in parallel. Consequently, the register address compu-
tation in the fixed-size window case is certainly faster than the one in the
variable-size window.

(4) When a function returns it is not possible to check if the caller window

is completely present in the register file because the callee does not know the
caller’'s window size. To solve this problem two alternatives are possible:
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a) Every instruction that refers to registers in the current window checks
if the register is present in the register file. If it not, then a trap is generated to
bring it from memory. If only one register is brought, then underflows will be
really expensive to handle. If a fixed number of registers is brought, then it is
possible that those that are not part of the current window have to be saved
again without having been utilized.

b) To have a special instruction in the caller placed after every call in-
struction (and, therefore, executed after every return instruction) that verifies
that the current window is present in the register file. This causes an increase in
the number of instructions required to execute a function call to four: two in-
structions in the caller (the call itself and the verification of the presence of the
current window) and two in the callee {the allocation of the new window and the
return).

Ditzel and McLellan [DITZ82] have proposed a C Machine with multiple
variable-size windows. Each window correspond to an activation record for local
simple variables. The register file contains the top windows in the stack.
Operands are referenced with a displacement to the stack pointer which is also
used as a frame pointer. To reduce the overhead of having to compute the regis-
ter address every time an operand is referenced, the Instruction Cache stores par-
tially decoded instructions, i.e., operand addresses of the form SP + offset are
converted either to a register address, if the operand is in the register file, or to a
memory address, otherwise. The presence of the current window in the register
file, after a function call, is ensured by executing a special instruction when the
callee returns. Thus, this machine has three of the above mentioned drawbacks
(1, 2, and 4) and has reduced the third one by increasing the compiexity of the
processor.

In conclusion, although variable-sized windows utilize the register file more
efficiently than fixed-sized windows, their implementation increases significantly
the complexity of the processor: large register addresses are required in the in-
struction, the bus size cannot be made independent of the register file size, more
instructions are required to execute a function call, and more overhead is incurred
to map a virtual register address to a physical register address. Fixed-size win-
dows are implemented in C/70, RISC, PYRAMID 90x, and CELERITY C1200.
The following section shows that it is possible to have a small number of sizes (2
or 3) to balance the advantages of both approaches.

3.4 Multi-Size Windows

A second alternative to fixed-size windows, less flexible that variable-size
windows, is to have available more than one size. By default, the smaller set of
registers is always allocated. Ounly when the compiler detects that the function
needs more registers, then it generates an instruction to allocate a larger size win-
dow. These windows are called multi-size windows.
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The architecture does not have to provide any protection support to ensure
that an instruction is referring to a register inside the window. This is ensured by
the compiler because the programmer is not using an assembly language, but a
high-level language.

Three of the advantages given for fixed-size windows are still valid for
multi-size windows: small register addresses are required in the instruction, the
bus size can be made independent of the register file size, and less overhead is in-
curred to map a virtual register address to a physical register address (in com-
parison with variable-size windows). In addition, the advantages given for
variable-size windows are also valid for multi-size windows: registers are better
utilized, i.e., the register file can be smaller because less registers are required to
hold the same number of windows, and less registers have to be saved (restored)
when an overflow (an underflow) occurs and during context switching.

With respect to variable-size windows, multi-size windows are more res-
tricted because the largest window size might not be sufficient for some functions
so that some local simple variables might have to be allocated to the stack, and
some of the registers in the window are unused when the number of variables
does not match a window size. However, in Section 3.7 we will see that an ade-
quate choice of the sizes makes the former occur infrequently and the number of
unused registers small.

With respect to fixed-size windows, maulti-size windows offer two draw-
backs. The first drawback is that the mapping from a virtual register address to
a physical register address is faster for a power-of-two fixed-size window because
no addition is required, only concatenation. However, the time and chip area re-
quired to perform the addition of a few bits is almost insignificant. This addition
must also be performed for non-power-of-two fixed-size windows {see Section
4.2.4).

The second drawback is that we have to manage windows of variable size,
i.e., the current-window pointer (CWP) has to be updated to point to the ap-
propriate window when a function returns. This can be solved with two different
alternatives: the architecture saves the CWP on a function call to be restored
later when the function returns or the programmer (compiler) generates an in-
struction to update the CWP. Let us discuss them in turn.

To manage multi-size windows implicitly (by the architecture} it is neces-
sary to keep either a copy of the previous CWP when a funection is called or to
keep the window size to update the CWP. The advantage of keeping the window
size is that less bits are required because the number of sizes available is smaller
than the number of registers in the register file. The advantage of keeping the
pointer is that no ALU operation is required when a function returns to compute
the CWP. We select the pointer approach, although the following discussion can
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be applied to both of them. Let us see how the pointer can be manipulated when
registers are not memory mapped and when they are mapped (see Section 2.3).

If the registers are not memory mapped, then a parallel register file is re-
quired to keep track of this information. Since various sizes are available, the
number of entries in the parallel register file should be the maximum number of
the smallest windows that can be in the register file. The pointer or the size is
saved when a function is called and restored when a function returns. If there is
overflow, the bottom window is saved together with its pointer in the overflow
stack. Saving the window pointer increases the dats memory traffic; however, the
increase would not be significant because overflow occurs infrequently (see Section
3.8}.

If the registers are memory mapped, then it is not possible to store the
pointer with the window when an overflow occurs because there is no memory lo-
cation free between windows. There are two possible solutions: to store the
pointer in a third memory stack or to use one of the window registers to hold the
pointer., The first solution requires to have a third stack pointer to manipulate
the window pointer overflow stack. The second solution causes that the program-
mer (compiler) cannot use one of the registers in the window because is used by
the architecture.

Therefore, although multi-size windows could be managed directly by the
architecture, the processor requirements that are needed make this first possibility
very unattractive.

The second possibility consists of updating the CWP explicitly by an in-
struction generated by the compiler. The following two approaches are possible,
depending on where the CWP is pointing to:

(1) If the CWP points to the bottom of the current window, then the fol-
lowing operations have to be done:

a) The call instruction specifies the current window size so that the CWP is
updated to point to the bottom of the callee window.

b} The number of registers for the largest window is always available in the
register file. An overflow exception is generated when the number of free registers
is smaller.

¢) When the function returns, the CWP is decremented with the smallest

window size. Remember that C functions are compiled separately so that the cal-
lee has no information about the caller’'s window size.
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d) If the caller uses a larger window, then an instruction is generated after
every call (executed after every return) that updates the CWP. This corresponds
~ to the solution (b) given for variable-size windows (see previous section).

Thus, a function always has available the largest size window. Once the
compiler know the appropriate window size for the function, then it includes this
information in the call instruction to increment the CWP with the exact window
size and generates an instruction after every call instruction to decrement it. Ob-
serve that this approach is different from the one discussed in the previous section
for variable-size windows because the functions that use the smallest size windows
do not require any extra instruction.

(2) If the CWP points to the top of the current window, then the following
operations have to be done:

a) When a call instruction is executed, the CWP is always incremented
with the smallest window size, i.e., the smallest window size is always allocated to
the callee.

b} If the callee requires a larger window size, then an instruction is execut-
ed to increment the CWP for the appropriate window size.

When the CWP is incremented by (a) or (b) and there are not enough free
registers in the register file, then an overflow exception is generated.

¢) The return instruction specifies the window size so that the CWP is de-
cremented and the callee window is deallocated. The number of registers for the
largest window should always be available in the register file upon return. An
underflow exception is generated when the number of registers is smaller.

Although the number of operations or instructions executed for the second
approach is the same as for the first, we select the second approach because the
generated code size is smaller than the one for the first approach. With the first
approach, functions that require a larger window size generates an instruction to
decrement the CWP after every instruction call in the function. With the second
approach, only one instruction to increment the CWP for each function is neces-
sary.

In conclusion, multi-size windows offer the same advantages as fixed-size
windows except for the mapping from virtual register numbers to physical register
numbers, and the manipulation of windows of different sizes. However, multi-size
windows allow a better utilization of the register file because (1) less data memory
traffic is generated during overflows, underflows, and context switching, and (2)
less registers are required in the register file to hold a specific number of windows.
This is quantified with our measurements described in Section 3.8. Section 3.7
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also uses our measurements to deduce the number of different windows available
and the number of registers per window. But, first we have to present the advan-
tages of using overlapped windows (Section 3.5) and how the register set is organ-
ized with multi-size windows (Section 3.6). There is no architecture known to the
author that uses multi-size windows.

3.5 Overlapped versus Non-Overlapped Windows

The main advantage of having overlapped windows has been already given
in Section 2.8: to reduce the overhead caused by parameter passing. In the fol-
lowing discussion parameter passing refers to the information transferred from the
caller to the callee (parameters and return address) and from the callee to the
caller (result). If no overlapped registers are available, there are three different al-
ternatives:

(1) To have some registers common to all the functions, i.e., to have some
registers which are not part of the window so that they are not saved across fune-
tion calls. In this case, parameters can be passed through these common registers
as has been discussed in Section 2.8. The drawback is the same as when only one
window is available and parameters are passed through registers for temporary
results: the compiler must decide which parameters are moved to the stack and
which ones are moved to registers of the window. Thus, the overhead is not com-
pletely eliminated and instruction memory traffic is incremented because of the
extra instructions generated.

(2) To have special instructions to pass parameters to the next window.
This scheme has three drawbacks:

a) The first drawback is that these instructions have to check if the regis-
ter file has enough space for the following window. If no space is available the in-
struction will cause a trap to indicate register file overflow and to make space for
the following window. Although only the first instruction is able to generate a
trap, every executed instruction of this type has to check if there is an overflow
exception. On the other hand, with an overlapped window scheme overflows and
underflows are only generated by the call and return instructions.

b) The second drawback is that without overlapped registers every param-
eter should be transferred to the following window with an explicit move instruc-
tion. Looking again at table 2.12, we deduce that 55% of the parameters (con-
stants, global simple variables, and complex parameters) are moved directly to the
corresponding overlapped register and that 45% of the parameters need an expli-
cit move instruction. Thus, the number of instructions required for parameter
passing is doubled.
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¢) Finally, the third drawback is that pointers to the next and the previous
windows should also be available if we do not want to increment the CWP to map
the virtual register number to a physical register number every time that an in-
struction to transfer an argument is executed.

(3) To pass parameters through the stack. This increases data memory
traffic as has been discussed in Section 2.4 and, thus, no advantage is obtained
with the multiple windows for parameter passing. Moreover, if we are using the
stack pointer as frame pointer (see Section 2.9.2), then all the functions {with at
least a statement that performs a function call) need to create a stack frame be-
cause of the parameter passing. If parameters are pass through registers and
enough registers are available for parameter passing and local simple variables,
then only functions with non-local simple variables need to create an activation
record in the stack.

On the other hand, overlapped windows have two main disadvantages:

(1) If the register file has N windows and it is organized as a circular-buffer
register file (see Section 4.2), then only N-1 windows can be used because the re-
gisters for outgoing parameters of the last window overlap with the registers for
incoming parameters of the first one; therefore, there is always a portion of the re-
gister file that is unutilized. This is only true for a circular-buffer register file;
Section 4.3 presents an alternative implementation that solves this problem.

(2) The mapping from the virtual register number given by the instruction
to the physical register number is easier if the general-purpose register set and the
window have the same size because the virtual register number only needs to be
concatenated with the current window pointer. This not only requires non-
overlapped windows, but also a general-purpose register set without registers that
are not part of the window (although it is possible to have some specialized regis-
ters as we have discussed in Section 1.8). Thus, the first alternative to solve
parameter passing in non-overlapped windows would disappear. It can be shown
that the cost of mapping from virtual to physical register numbers when imple-
menting overlapped windows is insignificant (see Section 4.2.4).

In conclusion, overlapped windows offer more advantages for parameter
passing than non-overlapped ones. RISC, PYRAMID 90x, and CELERITY C1200
use overlapped registers to pass parameters. C/70 does not have overlapped re-
gisters nor common registers to pass parameters, so parameters are passed
through the stack.

In the multi-size approach, all window sizes require the same number of
overlapped registers. This is because functions are compiled separately so that
when a function is compiled there is no information about the caller’s window
size. Next section discusses how the register set is organized with overlapped
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multi-size windows and Section 3.7 presents how many overlapped registers are
required.

3.8 The Register Set Organization

This section discusses how the register set is organized. The register set
can be divided into four parts: the incoming-parameter registers, the local regis-
ters, the outgoing-parameter registers, and some registers common to all the func-
tions, i.e, registers that are not automatically saved across function calls. To pass
parameters through registers the outgoing-parameter registers overlap with the
incoming-parameter registers of the function to be called as has been proposed in
[PATTS2| and discussed in the previous section. We assume that the compiler
uses the incoming-parameter registers that are free (registers that do not contain
any parameter) to store local simple variables, in addition to the local registers.
Common registers are called "global” in RISC and PYRAMID terminology. Now,
we show that common registers are not necessary.

The register set in RISC consists of the window plus 10 common ("global")
registers: six are used for temporary results and four have a special purpose
(zero-hardware register, stack pointer, current-window pointer, and first-window
pointer). As we have mentioned in Section 2.10, although special registers for glo-
bal simple variables can be available, global variables cannot be allocated to
general-purpose registers. Thus, these "global” registers are used by the Portable
C Compiler to store temporary results and environment registers [MIRO82]. Let
us discuss this usage.

The temporary results can be stored in the outgoing-parameter registers
since these are not used across function calls. This solution has already been im-
plemented by PYRAMID 90x: there are sixteen outgoing-parameter registers that
are used as registers for temporary results. However, PYRAMID still has 16 com-
mon registers, three of them have a special purpose (program counter, stack
pointer, and "a pointer to the base of the current stack frame” ), but no usage
has been specified for the other 13 registers. CELERITY C1200 has also 16 com-
mon registers, 15 are used as floating-point registers and one as a multiply accu-
mulator.

Thus, the only usage for common registers is to store environment informa-
tion. Floating-point registers can be referenced with floating-point instructions
and, therefore, it is not necessary to have them as part of the general-purpose re-
gister set. Since we have already discussed that some environment registers (the
program counter, the current-window pointer, and the first-window pointer)
should be implemented as specialized registers (see Section 1.6}, then we have to

*Little information has been released about PYRAMID so that it is difficult to
verify if this pointer is the stack frame. If so, there is no reason of having it as a
"global" register because it should be saved on function calls.
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decide if they should be mapped in the general-purpose register set or if some spe-
cial instructions are provided to manipulate them. There are two reasons for not
‘having common registers:

(1) The translation from virtual to physical register numbers is easier if
there are no common registers. When common registers are available, it is neces-
sary to detect whether a virtual register number refers to the common register file
or to the multiple-window register file and to transiate the number to a displace-
ment relative to each file (see Section 4.2.4). If no common registers are available,
then virtual register numbers refer only to the multiple-window register file.

(2) Common registers force a larger general-purpose register set because
they reduce the number of registers in the window. For instance, for a 16-
general-purpose register set, if four general-purpose registers are used for the pro-
gram counter, the current-window pointer, the first-window pointer, and the
stack pointer, then the largest number of registers available to the window is 12
with non-overlapped registers. If we want overlapped registers, this number
seems to be too small for all the usages we have discussed in the previous chapter
so that a larger register set should be selected (i.e., 32 registers).

Thus, we would prefer to provide some special instructions to manipulate
environment registers so that no common general-purpose registers are required.
The number of these special instructions is small because the program counter is
implicitly updated by other instructions and could be referenced implicitly by a
relative addressing mode (2lthough Section 1.6 has shown the advantages of not
having this addressing mode); the current-window pointer can be updated impli-
citly by the call and the return instructions; and the first-window pointer can also
be updated implicitly by the instructions to save and to restore a window.

There is one more environment register that it is not required to implement
it as specialized register: the stack pointer also used as frame and argument
pointer (see Section 2.9). The stack pointer only should be incremented and de-
cremented when an activation record has to be created in the stack because there
are not enough registers to keep it. This is expected that occurs infrequently with
an adequate choice of the window sizes (see Section 3.7). So, there is no necessity
for having the stack pointer as a general-purpose register because it is used for a
small number of functions. Thus, we can also implement the stack pointer as a
specialized register. Only functions which have part of the activation record in
the stack and need the frame pointer to address their local variables, then the re-
turn address is saved in the stack (because is not needed during function execu-
tion) and the frame pointer is copied in its place. The advantage of loading the
stack pointer in a general-purpose register is that it is not necessary to provide a
special addressing mode to access local simple variables in the stack because this
addressing mode is seldom used.
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The RISC zero-hardware register is used to implement the instructions
NOOP (add r0,r0,r0), clear (add r0,r0,ri), move (add r0rirj), test (add
r0,7i,r0{c}), and compare (add ri,rj,r0{c}); and some addressing modes. If the in-
struction set implements five more operation codes and the equivalent addressing
modes, then no zero-hardware register is necessary.

In conclusion, no common registers are necessary in the general-purpose re-
gister set. Outgoing-parameter registers are used to store temporary resuits and
the environment registers (program counter, stack pointer, current-window
pointer, and first-window pointer) are implemented as specialized registers. More-
over, some special registers mapped to specific memory locations can be used to
allocate global simple variables as discussed in Section 2.10. The general-purpose
register set is divided into three parts: the incoming-parameter registers, the local
registers, and the outgoing-parameter registers. Note that even without common
registers the general-purpose register set size and the window size are not the
same because the latter only includes the local registers plus the overlapped regis-
ters, i.e., only the registers that must be allocated (deallocated) when a function is
called {returns).

The next section determines the number of registers to include in the win-
dow. The following factors have to be considered: (1) the number of variables
defined by the programmer and by the compiler and their lifetimes (because they
can share the same registers), (2) the compiler allocation policy, (3) the data
memory traffic overhead introduced by overflows and underflows, (4) the imple-
mentation cost of the registers given by the area required and the processor cycle
delay, and (5) the number of bits required in the instruction to specify a register
address.

Section 3.3 have already discussed the register saving and restoring over-
head, Section 3.7 determines the window size based on the number of variables
required per function and on the number of bits required for register addressing,
and Section 3.8 determines the register file size based on the percentage of
overflows. Different register allocation policies have been discussed in Chapter 2
and considered to compute the register saving and restoring overhead. Multi-size
windows require the use of an optimizing compiler because to allocate the ap-
propriate window size we need to know how many registers are required by the
function before code generation. Also an optimizing compiler is required to use
the stack pointer as frame and argument pointer (see Section 2.9). Thus, we can-
not use an on-the-fly allocation policy. The cost of implementation is considered
only in terms of the number of registers in the register file. Chapter 4 discusses
two different implementation alternatives for the register file.
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3.7 Window Sizes

This section discusses the number of registers in a window. Our goal is to
reduce the data memory traffic caused by local simple variables, parameter pass-
ing, and register saving and restoring. If we assume that there are enough win-
dows in the register file so overflow is infrequent, then to reduce the data memory
traffic caused by local simple variables we would like to have enough registers in
the window to store all local simple variables, i.e., to have to create an activation
record only for functions that use non-simple local variables (arrays or struc-
tures). However, the number of variables is not the only element to consider to
decide the register set size, the decision must balance the implementation cost of
the registers and the number of bits required in the instruction to specify a regis-
ter address (i.e., to have a small window), with the data memory traffic generated
by the local simple variables that cannot be allocated to registers (i.e., to have a
large window). Consequently, we want to have the smallest window that provides
a satisfactory performance.

To determine the window sizes, first we discuss how many registers are re-
quired for parameter passing (Subsection 3.7.1); second, we determine the smallest
and the largest window sizes depending on the number of functions that need to
create an activation record in the stack because there are not enough registers
available (Subsection 3.7.2); and third, we study how many window sizes should
be available to reduce the number of unused registers in the window so that regis-
ters are used efficiently and few unused registers have to be saved and restored
during overflow and underflow (Subsection 3.7.3). This will also result in a small-
er register file for the same number of windows as discussed in Section 3.8.

3.7.1 Overlapped Registers

This subsection discusses the number of overlapped registers required for
parameter passing and result return. The overlapped registers should include one
extra register to save the return address to the caller.

A C function can only return one simple variable (a data of a fundamental
data type or a pointer). Thus, only one register is required to pass a result back
from the callee to the caller. Therefore, at least two overlapped registers should
be available: one to store the return address and one to store the return value.

The number of parameters passed from the caller to the callee has been
discussed in Section 2.8 and shown in Table 2.13. For the three measured pro-
grams, three registers are enough to pass parameters for 88% of the function
calls. Since we want to use outgoing-parameter registers to store temporary
results, we also need to have enough registers to perform expression evaluation.
Section 2.6 has discussed the number of registers required for temporary results
and has concluded that two registers are enough for 95% of the expressions.
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In conclusion, if the window has four overlapped registers (one to store the
return address and three to pass parameters), then 98%% of the functions are able
to pass parameters through registers. The functions that contain this 2% of
function calls with more than 3 parameters, require the creation of a siack frame
for the extra parameters. No measurements were made to compute the number of
these functions. Let us remark that although the caller needs to create the frame,
the callee may have enough registers available for local simple variables and the
parameters can be moved from the stack to registers. RISC has six overlapped re-
gisters, and PYRAMID 90x and CELERITY C1200 have sixteen, which are also
used for temporary results. Our measurements do not justify the increase from
six to sixteen registers done by PYRAMID and CELERITY.

3.7.2 Smallest and Largest Window Sizes

To determine the smallest and the largest window sizes in the multi-size
window case we consider the number of functions that need to create an activa-
tion record in the stack because there are not enough registers available. Table
3.2 shows the percentage of functions that need to create an activation record in
the stack for different window sizes due to simple variables, non-simple variables,
and their total. Since we have use the Portable C Compiler to collect our meas-
urements, we have assume that one register is used for each local simple variable
defined by the programmer, i.e., we have not considered sharing of registers.
Thus, it is possible that an optimizing compiler by coloring could reduce the per-
centage of functions that need to create an activation record in the stack. Ob-
serve that the total percentage is not always the sum of the two previous columns
because some functions that require a frame for simple variables also require it for
non-simple variables. Also, note that the number of activation records created
due to non-simple variables is independent of the window size.

We consider the set of window sizes 4, 8, 12, ... because the smallest size
should have sufficient registers for the parameters and the return address, and we
increase the size by a fixed increment of four.

The smallest window size is 4, i.e., 4 registers for incoming parameters used
also to store the return address and the local simple variables, and 4 registers for
the outgoing parameters. In this case, the user has available eight general-
purpose registers: four for temporary results, three for local simple variables (in-
cluding parameters), and one for the return address. From Table 3.2 we see that
this size is sufficient for 75% of the executed functions.

A possible largest window size in the multi-size window case is 12, i.e,, 16
general-purpose registers accessible to the programmer (1 for the return address,
11 for local variables, and 4 for outgoing parameters). From Table 3.2 we see that
for this size only 3.3% of the functions need to create an activation record in the
stack, 1.9% because of local non-simple variables and 1.4% because of local simple
variables.
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Dno. registers ‘. % frames

Table 3.2. Window Size

This value (16 general-purpose registers) balances the number of bits re-
quired in the instruction to specify a register address (4) with the data memory
traffic generated by the local simple variables that cannot be allocated to registers
(1.4% of the functions require the allocation of some simple variables in the
stack). This seems to be an adequate number for a single window, for a fixed-size
window, and for the largest muiti-size window.

3.7.3 Unused Registers in Window

To determine the set of sizes to include we consider the number of unused
registers in the window, as shown in Table 3.3. This number has been computed
taking into account only local simple variables defined by the programmer. Two
conclusions can be deduced from this Table:
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Fixed-size I Multi-size

|
Program - | Three-size
SORT 116 |47 [79] 17 1.6
VPCC o6 |33 |70%F 23 1.2
ALL PROGRAMS fo07 |40 70§ 19 1.1

Table 3.3. Unused Registers in Window

(1) The advantage of having three-size windows (i.e., 4, 8, and 12 registers)
with respect to having two-size windows (i.e., 4 and 12 registers) only. Three-size
windows use more efficiently the registers available because, on the average, only
1.1 registers are not used as compared to 1.9 for two-size windows. Consequently,
on overflow, underflow, and context switching only 1.1 registers (per window) that
are saved or restored are not used.

(2) The advantage of having multi-size windows versus having fixed-size
windows. If a fixed window of 12 registers were selected, then, on the average, 7.9
registers of each window present in the register file would not be used and would
have to be saved or restored on overflow, underflow, and context switching.

C/70 | RISC g l:fm two-size | three-size
m%
general-purpose
exister set 8 32 64 8/16 8/12/16
window size 8 16 32 4/12 4/8/12
overlapped
registers 0 6 16 4 4
% of frames 14 | 1.2- 1.4 - 1.4 1.4
(simple)
unused registers 3 11 27 1.9 1.1
% ftn. pass par. | 98.5 100 98.1 98.1
through regs.

Table 3.4. A Comparison of Existing Processors
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To compare our proposal with the existing processors, Table 3.4 summar-
izes the relevant data from Tables 2.13, 3.2, and 3.3. C/70 has a fixed-window
size of 8 to store local simple variables and temporary results. If we assume that
two registers are used for temporary results, then six registers are available to
store the local simple variables. Our measurements show that six registers are
enough for 86% of the executed functions (see Section 2.2.3). The number of
unused registers has not been measured, but we can expect that on the average
there are sbout 3 unused registers for each window. This number has been de-
duced from Table 3.3 observing that for a large window the average number of re-
gisters used is three. Neither overlapped nor common registers are available so
that parameters are passed through the stack.

RISC has a fixed-window size of 16 to store local simple variables, the stack
frame, and the return address. Thus, from Table 3.2 we conclude that between
1.2% and 1.4% of the functions do not have enough registers to store all local

. . * .

simple variables . The number of unused registers have not been measured, but
it is expected to be, on the average, about 11 (deduced as indicated for C/70).
Six overlapped registers are available so that 98.5% of the executed function calls
pass parameters through registers.

PYRAMID 90x and CELERITY C1200 bave a fixed-window size of 32 regis-
ters. Our measurements do not show any reason for such a large window because
with a window size of 24 registers all local simple variables can be allocated to re-
gisters (see Table 3.2) and the number of unused registers to be transferred
from/to memory on overflow, underflow, and context switching is expected to be,
on the average, about 27 (deduced as indicated for C/70). Sixteen overlapped re-
gisters are available so that all the executed function calls pass parameters
through registers.

In conclusion, our measurements show that for a register file of three-size
windows with four overlapped registers and window sizes of 4, 8, and 12, 75% of
the functions have enough with the smallest window, 17% with the medium size
window, and 5% with the largest window. Only 1.4% of the functions need to
create an activation record in the stack because of local simple variables. On the
average, only 1.1 registers of each window are not used and, thus, only 1.1 unused
registers have to be saved or restored per window on overflow, underflow, and
context switching. Four overlapped registers allow that 98.19% of the function
calls pass parameters through registers.

In reality, the Portable C Compiler does not use the free overlapped registers to
store local simple variables so that only 9 registers are used for local simple
variables. However, this is a constraint imposed by the compiler, not by the
architecture.
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Finally, the following considerations have to be made concerning the way
the numbers in Tables 3.2 and 3.3 have been computed:

a) We have not accounted for the functions that require 2 frame because
some function they call passes more than three parameters. Qur measurements
show that 29% of the functions pass more than three parameters; however, no
measurements were taken on the number of functions that contain these 2% of
function calls.

b) We have not accounted either for the functions that require a frame for
the local simple variables that must be allocated to the stack because the address
operator is applied to them. These variables cannot be allocated to registers, ex-
cept if the registers are memory mapped. However, our measurements show that
only 0.2% of the data objects are local simple variables with the address operator
and that they account for only 0.0013% of the objects executed (see Section 2.3).

c¢) We have not accounted either for the functions that require a frame be-
cause more than four temporary registers are required to perform expression
evaluation. We know that two registers are enough to evaluate 95% of the ex-
pressions. We do not know how many functions require more than four registers
to evaluate expressions and they do not have any free local register in the largest
window.

d) The local simple variables included are only those defined by the pro-
grammer. Optimizing variables have not been accounted because the Portable C
Compiler does not define them. We expect that an optimizing compiler would
perform register allocation by coloring (see Section 2.5) so that local simple vari-
ables with disjoint lifetimes can share the same registers. Thus, the compiler can
use the unused registers in the window for optimizing variables. Observe that, on
the average, there are 1.1 unused registers that the compiler can still use.

e) Only functions calls to programmer-defined functions have been meas-
ured, i.e., the measurements do not include function calls to library functions.

In spite of this, we believe that the numbers are representative enough to
allow us to make the previous comparisons.

3.8 Register-File Size

This section discusses the number of registers of the register file. Three
factors are considered to determine the register-file size: (1) the data memory
traffic generated by the windows that must be brought to (from) memory because
of register file overflows (underflows), (2) the cost of the implementation given by
the number of registers required in the register file, and (3) the restrictions im-
posed by the implementation: the number of registers must be a power of two in
a circular-register file (see Section 4.2.1) and a multiple of the general-purpose re-
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gister set in a shift-register file (see Section 4.5).

For fixed-size windows, Table 3.5 shows for different register file sizes and
three different window sizes —four registers {3 for local variables and 1 for the re-
turn address), eight registers (7 for local variables and 1 for the return address),
and 12 registers (11 for local variables and 1 for the return address)— the follow-
ing data: (a) the percentage of overflows, (b) the average number of registers that
must be saved per function call, and (c) the average number of windows in the re-
gister file. Columns (a) and (b) are used to deduce the data memory traffic gen-
erated; column (c) is used to deduce the average pumber of unused registers in
the file and the average number of registers that must be saved on context
switching. The percentage of overflows has been computed without taking into
account context switching and operating system exceptions, i.e., we have assumed
that the register file is dedicated to each of the measured programs. The effects
of exceptions and context switching on the register file are discussed in the next

section.

From Table 3.5 we conclude that eight is an adequate number of windows
to have a low percentage of overflows (2%). The number of registers required in
the file depends on the window size. For a window size of 12 (which was shown
to be adequate in Section 3.7), the register file has 100 registers (or 128 if it has to
be a power of two, in which case, the register file can contain up to 11 windows
and the percentage of overflows is approximately 0.4%). For this case we have
that, on the average, 4.8 windows are present in the register file and 0.3 registers
are saved per function call. Since there are 7.9 unused registers per window (see
Table 3.3), the register file will contain on the average 38 unused registers.

RISC has a register file of 128 registers; thus, up to seven windows can be
stored in the file. For this case, Table 3.5 shows that the percentage of overflows
is 3.29% and that on the average 4.4 windows are present in the register file. As
we said in Section 3.2, the percentage of overflows is higher than the one given by
Patterson and Séquin [PATT82] due that they measured two benchmark pro-
grams. Since there are 11 unused registers per window (see Table 3.4), the regis-
ter file will contain on the average 48 unused registers, i.e., 38% of the registers in
the file are allocated, but unused.

PYRAMID 90x has a register file of 512 registers, that is, up to 15 windows
can be stored in the file. Table 3.5 only shows the case for 16 windows; however,
the numbers should be very similar: a percentage of overflows of about 0.1% and
an average of 6.7 windows present in the register file. Since there are 27 unused
registers per window (see Table 3.4}, the register file will contain on the average
181 unused registers, i.e., 35% of the registers in the file are allocated, but
unused.
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ﬂ avg. reg. saved [call H

number of average
windows program % lel4-arg reg. windows
in RF ovfl 3 7 11 in RF
NROFF 51.1 § 2.0 4.1 6.1 20
SORT 198 1 0.8 1.6 2.4 2.0
2 veece 418 fi7] 33 | 50 2.0
ALL PROG. || 46.2 § 1.8 3.7 5.5 2.0
NROFF 18.2 |} 0.7 1.5 2.2 3.2
SORT 0.Fr § 0.0 0.0 0.0 3.1
4 VPCC 121 fos | 10 | 14 3.1
ALL PROG. | 150 {] 0.6 1.2 1.8 3.1
NROFF 90 f| 0.4 0.7 1.1 36
SORT 0.0 % 00 0.0 0.0 3.4
5 VPCC 70403 | 06 | 09 3.5

NROFF | 3.
SORT |

VPCC

Table 3.5. Fixed-Sized Windows

CELERITY C1200 has eight register files. Each one is associated to an ac-
tive process so that to switch context from one process to another {among these
eight) only one pointer has to be changed. This organization is discussed in Sec-
tion 3.9.2 when multiple private register files are considered. Here, we only con-
sider the register file that is available to one process. In this case, the register file
is identical to the one described for PYRAMID 90x.

C/70 has a register file of 1024 registers, i.e., it can contain 128 windows.
As we said in the Section 3.1, the large number of windows is a consequence that
C/70 does not want to handle overflow exceptions. Since a large register set occu-
pies a large area in a VLSI implementation (33% of the chip in RISC [KATER3])
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or requires many chips in the MSI/LSI case, register sets of 512 or 1024 registers
are only justified if overflows are extremely slow.

¥ (3 . fot fy
number of two-size (3/11) E three-size {3/7/11)

. program !
registers ; avg. reg. | avg. reg.

L RE

ALLPROG. | 0.3 0.0 435 f 0.2 0.0 39.2

Table 3.6. Multi-Size Windows

Table 3.6 shows the equivalent information to Table 3.5 for two-size and
three-size windows. For the three-size case the best candidate for the register-file
size is 64 because it generates less than 1% of overflows (0.86%), it is a multiple of
16 which is convenient for the shift-register-file implementation, and is a power of
two which is convenient for the circular-buffer-register-file implementation. In
this case, the average number of registers saved per function call is 0.1 and the
average number of registers present in the register file is 33.3. Consequently, the
three-size implementation is significantly better than the fixed size: the number of
registers is reduced to half, the percentage of overflows and the number of regis-
ters saved per overflow to one third, and the average number of registers being
used from 52 to 33. This last figure is important because it corresponds to the
number of registers that have to be saved in context switches. Therefore, one of
the drawbacks of using a register file [HENNS84], {that the process switching time
is increased "by dramatically increasing the processor state”) is reduced.



From another perspective we can see the advantages of three-size windows
if we consider a register file of 64 registers (in this case the register file can con-
tain up to 5 windows of 12 registers). With respect to a register file with 5 fixed-
size windows of 12 registers, multi-size windows reduce the overflows from 8.3%
to 0.6%%, the average number of registers saved per call from 3.6 to 0.1, and the
number of registers used from 44 to 33.3.

We also observe the advantage of having three-size windows with respect
to the two-size window case in all three aspects: percentage of overflows, average
number of registers saved per call, and average number of registers present in the
register file. For instance, for 84 registers the percentage of overflows is reduced
form 1.3% to 0.6%, the average number of registers saved per call from 0.2 to 0.1,
and the average number of registers present in the register file from 36.4 to 33.3.

In conclusion, our measurements show that for three-size overlapped win-
dows and for a 64 register file, overflows occur in less than 1% of the calls, only
0.1 registers have to be saved per function call, and on the average 33.3 registers
are present in the register file. Three-size windows allow a better utilization of
the register file than fixed-size windows because a smaller register file can be used
and, therefore, the implementation cost and the process state to be saved on con-
text switching are both reduced.

3.9 Exceptions and Context Switching

One of the drawbacks given by Hennessy [HENNS84] for using a register file
with multiple windows is that the process switching time is increased "by dramat-
ically increasing the processor state.” Since more registers are available in the pro-
cessor for multiple-window architectures than for single-window architectures, the
amount of processor state to be saved is larger. For this reason, in this section we
discuss the eflects of exceptions and context switching on the register file.

When the processor execution cycle is broken because an exception has oc-
curred, then the current processor state has to be saved and a new one has to be
loaded to service the exception. The processor state includes the register set
(general-purpose registers plus specialized registers), privileged registers (such as
the processor status word), and mapping information to translate virtual memory
addresses to physical memory addresses. In this section we only discuss the
effects of exceptions and context switching on the register file. Memory manage-
ment support is not discussed in this thesis.

Although a context switch occurs as a result of an exception, here we use
the term ezception to refer to the event in which the processor control goes to an
exception handler (or to a kernel process for concurrent operating systems) and
returns to the original process, and the term contezt switching to refer to the
event in which a new user process is scheduled.
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On exceptions the processor state can be saved (loaded) partially or totally.
If it is saved partially, then the exception handlers must not destroy any part of
the previous process state information (this can be guaranteed by the architecture
or by "trusted” handlers). If it is saved toially, then the processor state associat-
ed to the running process is better protected.

On context switching we have a similar problem. The context of the previ-
ous process can be left in the processor or can be completely removed. If it is left
in the processor, then the architecture should protect it against possible errors
generated by the current process and it should be possible to identify the infor-
mation available per process.

If the processor state is totally saved, then two drawbacks have to be con-
sidered. First, the overhead caused by saving the whole processor state on each
exception or context switch can be a bottleneck in the system depending on the
amount of information to be saved and the frequency of exceptions and context
switches.

Second, due to the frequent change of processor state, the register file
might not be used effectively. If the average number of function calls between
overflows is larger than the average number of function calls between exceptions
or context switches, then it is probable that the register file can be made smaller
because it never has the opportunity of becoming full.

Thus, to determine the degradation on the usage of the register file due to
exceptions and context switches we have to study (1) the overhead generated on
exceptions and context switches due to the register file saving, and (2) the average
number of function calls between exceptions and context switches. This is done
in Subsection 3.9.1.

Once we have determined the feasibility of saving totally or partially the
contents of the register file on every exception and context switching, then we
have to determine how the register file has to be organized. Two possible organi-
zations are studied:

(1) Private Register File. In this case, the whole register file is devoted ei-
ther to one user process or to one exception handler at a time. If only one regis-
ter file is available, then it must saved on every exception and context switch. To
avoid this, the processor can have more than one register file. Section 3.9.2
discusses the private-register-file organization.

(2) Shared Register File. In this case, the register file is shared either (i)
among the user process and the exception handlers so that the register file has
only to be saved when a new user process is scheduled, or (ii) among several user
processes and the exception handlers so that the previous contents does not have
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to be saved even on context switching. Section 3.9.3 discusses the shared-
register-file organization.

Finally, one remark has to be made about where the register file contents is
saved. If we adopt a similar solution to the one implemented for single-window
architectures (i.e., the registers are saved in the process control block of the
current process), then when the processor state has to be restored, there are two
possible alternatives:

(a) In the first one, the whole register file contents is restored. This is a
bad policy because if the program is increasing its stack depth (performing more
function calls than returns), some windows are transferred again to memory
without having been used.

(b} In the second one, only the top window is restored. Since we do not
know the current window size when the processor state is restored, we have to
load the largest window in the register file. In this case, the complexity of the
overflow and of the underflow handlers is increased. When an overflow is detect-
ed, the overflow handler has to save the window in the overflow stack indicating
that some previous windows are still in the process control block. When an
underflow exception is detected, the underflow handler has to check if the window
has to be restored from the process control block or from the window overflow
stack.

Therefore, to be able to load only the top (largest) window and to continue
program execution transparently to the context switch event, the processor state
has to be saved in the window overflow stack.

In this case, the page (or pages) corresponding to the window overflow
stack must be present in main memory. This is because if the processor state has
to be saved before handling a context switch and the overflow stack is not in
main memory, then the processor will be idle during the time required to service
the page fault handler because two user processes cannot share the register file
while a context switch is performed. This is also true for an exception. Thus, the
number of pages allocated per process is increased. Note that for the single-
window case, registers are saved to the process control block which is stored per-
manently in main memory.

3.9.1 Overhead and Frequency

This subsection discusses the overhead generated on exceptions and con-
text switches due to the register file saving, and the average number of function
calls between exceptions and between context switches to determine the effects of
multiprogramming on the performance of the register file. We show (1) that the
register file should not be saved totally when an exception occurs because of the
high frequency of exceptions and the low average service time, and (2) that the re-
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gister file is fully utilized because the average number of function calls between
context switches is greater than the average number of function calls between
overflows. Since no measurements can be made using our register set, the effects
of multiprogramming on the register file are determined with measurements made
on two other machines. One was made by this author on PDP-11/60 [HUGUS1]
and the second was made by Emer and Clark on VAX-11/780 [EMERS84].

frequency service

exception type I average total { time avg.
DZ-11 (1) multiplexor (display) | 8996.47 | 512790 28 § 387.62
D2-11 (2) multiplexor (display) 527775 | 300832 16 § 391.41
Clock 6000.07 342004 19 || 544.47
Disk | 1270.46 72416 4 | 1086.95
DZ-11 (1) muitiplexor (keyboard) {  576.23 32845 2 f§ 1118.67
Printer | 19256 | 10976 1| 2014.80
Others (floppy disk, console, ...) § 1032.82 58871 3|
Total interrupts 23346.36 | 1330743 T3 479.91
EMT instruction 8524.21 485880 27
Others (TRAP, priv. instr., ...} 129.02 7354 -

Total exceptions - : 1823977

Table 3.7. Measured Exceptions on PDP-11/60

A software monitor was implemented by this author on the RSX-11M
operating system running on the PDP-11/60 of the Computer Science School at
the Universitat Politecnica de Barcelona. Statistics about the real system load
during two hours were collected. Table 3.7 reproduces the number of exceptions
that the system handles, on the average, during two minute intervals. Observe
that there is a clock interrupt every 20 ms. because in Europe the power line fre-
quency is 50 Hz. Exceptions are divided into two classes: traps (synchronous) and
interrupts (asynchronous). During these two hours the processor was 21% of the
time in system mode, 23% in user mode, and 56% idle . From the table we
deduce that, on the average, the interval between two exceptions is 3.95 ms.

This average interval between two exceptions (3.95 ms} does not reflect
only the time that processor is executing user code, but also includes the proces-
sor idle time. To have a rough estimation of the interval time between excep-
tions, let us consider only the time that the processor is busy, i.e., we assume that
the processor has switched from busy to idle only once during this 2-hour inter-

“The idle time is a consequence of the type of load that the PDP-11/60 had back
in 1981: mostly first-and-second-year students learning PASCAL and MACRO-11
(PDP-11 assembly language), i.e., programs with very low execution time.
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val. We also assume that all exceptions have occurred when the processor was in
user mode, but we only account clock interrupts for this interval. In this case,
the average interval between two exceptions is 0.94 ms.

Now, we want to determine the average service time for exceptions, inter-
rupts, and traps. The average service time for an exception is deduced dividing
the time that the processor has been in kernel mode by the number of exceptions
given in the Table. Thus, on the average, the exception service time is 829 ps.
The average service time for an interrupt handler was measured and is given in
the Table: 480 ps. If we multiply the interrupt average service time by the total
number of interrupts, we can deduce that interrupts account for 73% of the ex-
ceptions and 42% of the time that the processor has been in system mode, and
that traps account for 27% of the exceptions and 58% of the time. The 58% has
beed computed from the difference of the total exception service time minus total
interrupt service time. From here we can also deduce the average service time for
a trap (mainly system calls}: 1,771 ps.

Given the time between exceptions and the average service time, we would
like to know how many call instructions have been executed during this interval
and in the exception handlers. The average instruction execution time for PDP-
11/60 instructions is given in [SNOWS1): 1.578 ps. Thus, or the average, an in-
terrupt handler executes 304 instructions, a trap handler executes 1,122 instruc-
tions, and 596 instructions are executed between two exceptions. Shustek
[SHUS78| has measured statically 10,000 lines of code from the RSX-11M operat-
ing system. He shows that 6.3% of the instructions are function calls (jsr). Since
no dynamic measurements are know to the author, we use this percentage to con-
clude roughly that, on the average, 20 call instructions are executed for an inter-
rupt handler, 73 for a trap handler, and 39 in the interval between two exceptions
when no idle time is considered.

To determine the overhead generated by saving the register file on excep-
tions, we consider a 64-register file with three-size windows. In this case, on the
average 33.3 registers have to be saved (see Table 3.6). If we assume that, on the
average, 41 instructions are required to perform the register file saving (33) and
the loading of the smallest window for the new process (8) , then the overhead in-
troduced on every exception is about 7%. The overhead has been computed con-
sidering that 41 instructions have to be executed for every 596 instructions exe-
cuted between two exceptions.

Usually a new processor state has to be loaded for the exception handler. In this

case, we only consider the smallest register window. This can be used by the
architecture to pass some parameters to the handler. For instance, for the
program error handler, the architecture can initialize an incoming-parameter
register with the type of error that has been detected.
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Moreover, in this case the register file cannot be used very efficiently be-
cause the average number of function calls executed between two exceptions (39)
is lower than the average number of function calls between exceptions (167 for a
64-register file with three-size windows; sce Table 3.8). Alsc, the number of funs-
tion calls executed for the interrupt handlers {that account for 73% of the excep-
tions), let us conclude that the register file is not very disturbed when it is shared
among the user process and the exception handlers {see Section 3.9.3) because, on
the average, 20 call instructions are executed for an interrupt handler.

In this study no measurements were made about context switching fre-
quency.

Emer and Clark have monitored the performance of a VAX-11/780 under a
specific timesharing workload. They measured the number of instructions execut-
ed between exceptions and between context switches: 637 instructions are execut-
ed between hardware and software interrupts, 2539 instructions are executed
between software interrupt requests, and 6418 instructions are executed between
context switches. They also measured the instruction frequency by group, 4.5%
of the executed instructions belongs to the group of subroutine call and return,
and 2.4% to the group of procedure call and return. If we assume that there are
the same number of calls than returns, then 3.45% of the executed instructions
are calls. Thus, on the average 220 call instructions are executed between context
switches, but only 22 between exceptions.

Therefore, the overhead introduced on every context switch is not
significant: 0.6% (computed similarly to the overhead for exceptions), and the re-
gister file is well utilized between context switches because the average number of
function calls (220) is higher than the average number between overflows (167).
Moreover, for exceptions we obtain similar results to the ones detected in the pre-
vious study: 6.4% of overhead and a lower average number of function calls (22)
executed between exceptions.

In conclusion, the register file should not be saved totally every time that
an exception occurs because of the high frequency of exceptions {mainly inter-
rupts) and the low average interrupt service time. Only the specialized registers
(current-window pointer, first-window pointer, program counter, and stack
pointer) should be saved, although this can also be avoided if a different physical
register exists for each processor state. Moreover, the register file is utilized
efficiently if it is saved omly during context switching because in this case the
average number of call instructions executed between context switches is higher
than the average number of call instructions executed between overflows.
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3.9.2 Private Register File

This subsection discusses three alternative organization approaches for the
register file when the whole register file is devoted either to one user process or to
one exception handler at a time. The three approaches are: to have only one re-
gister file; to have two register files, one for the user processes and a second for
the exception handlers (operating system functions); and to have multiple register
files so that no register file saving and restoring is involved on context switching if
there are less active processes than register files.

If only one register file is available, then its contents must be totally saved
every time that there is an exception. As we have discussed in the previous sub-
section, the exception rate (mainly interrupts) makes this approach unattractive.
Moreover, to service an exception we have to wait for saving the whole register file
first; this time can be too large for some applications. The advantages of this ap-
proach is that it is simpler to implement because only the area for one register file
is required and that it is easier to manipulate because only one process uses the
register file at a given time.

A second alternative is to have two register files, one for the user processes
and a second for the exception handlers. In this case, the user register file has to
be saved only on context switching. The advantages of this approach are that (a)
the user register file is not disturbed with the exception events; and that (b) when
an exception occurs, if a user process is active, then the exception handler can use
the kernel register file without having to perform any user register file saving;
however, if an exception handler is already active, then the kernel register file
should be saved first. Thus, there is no delay to process an exception when the
processor is executing user code because no register saving has to be performed.
The processor is executing user code more than kernel code so that when an ex-
ception occurs, the probability of using the kernel register file is lower than the
probability of using the user register file. However, in this case, each exception
handler requires its own window overflow stack. Since the exception handlers are
dispatched in LIFO order, the kernel register file can be shared among them so
that only one common window overflow stack is required for the operating sys-
tem.

The drawbacks of having two register files are that (a) it does not optimize
the usage of the register file because exception handlers use only part of it and
user processes use the other part, and that (b) it increases the processor area
dedicated to register storage because two register files are required. However,
since the register file size has been reduced to 84 registers, it is-still possible to
have a VLSI implementation (Katevenis [KATES3] has shown that 128 registers
can be implemented using 33% of the chip area).

87



Finally, if multiple register files are available, then no register file saving
and restoring is involved on context switching if there are less active processes
than register files. In this case, context switching consists only of changing a
pointer to the current register file. The advantage of this approach is the fast
context switching time. The drawback is that it is impossible to implement in
VLSI because of the large area required and it would require many chips in a
MSI/LSI implementation. This cost can only be justified if the context switching
time is very critical for a few number of applications (e.g., real-time applications).

TMS 9900 [OSBOS81] is an example of a machine with multiple single win-
dows. A new register bank is allocated to each active process in the system. How-
ever, the register banks are not processor registers, but memory locations. This
approach provides a fast context switching mechanism because no register saving
and restoring is involved. However, a memory reference is generated for each re-
gister access, although the program can use short addresses to refer these regss-
ters.

CELERITY C1200 has available eight private register files of 512 registers
each, i.e., 4K of registers are provided. Context switching is performed by chang-
ing the process identification number that defines which process is active and,
therefore, which register file has to be used. No register saving and restoring is
involved if less than eight processes are active.

In conclusion, if the register file is private to each process, then two regis-
ter files should be available in a VLSI implementation, one for the user processes,
only saved (and loaded) on context switching, and a second for the exception
handlers. To have only one register file private to each process is not recommend-
ed because of the high frequency of exceptions (mainly interrupts).

3.9.3 Shared Register File

This subsection discusses two alternative approaches for the register file
when it is shared either (1) among several user processes and the exception
handlers so that the previous contents does not have to be saved on context
switching, or (2) among the current user process and the exception handlers so
that the register file contents have to saved only when a new user process is
scheduled. Let us discuss them in turn.

Register File Shared Among Several Processes

To share the register file among all active processes, it must be possible to
identify the process to which each window belongs to, because windows must be
saved in each process address space. Since processes are not scheduled in LIFO
order, the operating system cannot have a common overflowing area for all the
processes. The operating system cannot have either an overflow stack for each
process in its address space because it would increase significantly the operating
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system memory space.

Likewise, windows cannot be allocated in LIFO order in the register file.
For instance, let us assume the following situation shown in Figure 3.1: process A
was running and had allocated some windows in LIFO order in the register file;
process A expires its quantum so that the processor is switched to process B; pro-
cess B keeps executing and allocating windows in LIFO order from the register file
until its quantum finishes. Now, the processor is given back to A, but A cannot
allocate any more windows in LIFO order because they have been allocated to B.
Thus, windows in the register file should be allocated randomly so that the regis-
ter file is implemented as a register cache.

free windows

Figure 3.1. Shared Register File with LIFO order

The most attractive mapping scheme for the register cache is set associa-
tive. With a direct mapping, different processes could be sharing the same regis-
ters, even though some registers are free in the cache. The fully associative map-
ping is too expensive to implement if a large number of registers are available in
the cache.

To avoid to perform a memory access every time that a register is written a
write-back policy has to be adopted. When a function returns, registers should
be marked as unused to be able to find free registers in the cache and to avoid to
have to save them in memory. Registers should not be memory mapped because
it would be too expensive to check if the register associated to a memory location
is present in the cache.
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Since the cache replacement algorithm does necessarily save the registers in
LIFO order, then each register or window need to have associated a memory loca-
tion indicating where they must saved. Therefore, the cache mapping unit should
have associated not only a tag register with a unique process identification
number (PIN), but also a memory address to be used by the replacement algo-
rithm. The memory address should be the physical memory address because
when the register needs to be saved, the memory mapping for the process to
which the register belongs to, may be unavailable. In this case, all pages associat-
ed to the window overflow stack must be present in main memory rather than
only the pages associated to the top windows. This is a consequence of the
write-back replacement policy.

The cache mapping unit for the register file cache can be the window or
the register. If the mapping unit is the register, then the mapping function can
use the virtual register number or the physical register number. Let us discuss
them in turn.

(1) The mapping unit is the window. In this case, the windows should be
all of the same size and non-overlapped. The windows should have the same size
because each window needs to have associated the above mentioned tags (PIN
and memory address). The windows should be non-overlapped because they are
allocated randomly in the cache register, not sequentially. Thus, two architectur-
al features (multi-size and overlapped windows) which have been shown to be ad-
vantageous to support efficiently function calls cannot be implemented with the
register cache if the mapping unit is the window. Moreover, the average number
of unused registers is larger because of the use of fixed-size windows. These draw-
backs are solved when the mapping unit is the register.

virtual register memo i
giste PIN SOt status register
number address contents

WWW used aaa
XXX used bbb

n —

’ P1 YYY unused cce
XXX — 1| P2 z22 used ddd
memory mapped
address cache entry given by VR<n>

(first register is hidden)

Figure 3.2. Virtual Register Numbers as Mapping Function
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(2) The mapping unit is the register and the mapping function is the virtu-
al register number. Since registers for different windows have the same virtual re-
gister number, when a call instruction is executed, registers associated to the old
window should be hidden until the function returns. This can be implemented
using the memory address associated to each register and matching not only the
PIN, but also this address. This is implies to compute the memory address for
each register referenced. For instance, Figure 3.2 shows a 4-way associative cache
entry for a given virtual register number (VR<n>>). Two processes, P1 and P2,
have registers in the cache. P1 has two registers, one for the current window and
a second for a previous window so that this is hidden. P2 has only one register
associated to its current window. Observe that P1 had another register in the
cache that is marked unused because the function has returned and, thus, the re-
gisters belonging to the window have been destroyed.

Since the compiler tends to use the same register numbers, some cache en-
tries are more required than others. To avoid this, a skewed mapping should be
defined so that the same register number is mapped to different cache locations.

(3) The mapping unit is the register and the mapping function is the physi-
cal register number. Since in a circular buffer the physical register numbers are
caleulated modulo the register file size, we need to make hidden registers associat-
ed with numbers that wrap around. It is not clear how such a mechanism can be
implemented.

In conclusion, to be able to use multi-size overlapped windows the mapping
unit should be the virtual register number, but the memory address associated to
each register and the tags with the PIN increase significantly the amount of
storage required. To decrease the amount of storage required, the window could
be used as the mapping unit; however, this solution is discarded because fixed-size
windows with non-overlapped registers should be used. Therefore, a register
cache is not a good solution to share the register file among processes because it
increases the complexity of the processor and the area required for register
storage.

Register File Shared Among Running User Process and Exception
Handlers

The register file can be shared among the running user process and the ex-
ception handlers so that it contents is only saved on context switching. When an
exception occurs a non-overlapping window must be allocated so that the
outgoing-parameter registers are not destroyed. However, for system call excep-
tions windows can also be overlapped to allow parameter passing from the user to
the system. The current-window pointer is saved automatically together with
other process environment information (program counter, processor status word).
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The kernel uses the same first-window pointer to detect overflows.

The advantage of this approach with respect to the duplication
(user/kernel) of the register file given in the previous subsection is that the regis-
ter file is used more efficiently because the whole register file is available indepen-
dently of the processor mode. The drawback is that if the user is using the last
window available in the register file, then at least one window should be saved be-
fore being able to handle the exception. Table 3.8 shows the percentage of func-
tions that have allocated n registers in the file when neither exceptions nor con-
text switches are considered using three-size overlapped windows and a file of 64
registers. As we can see, the smallest size window (8 registers) cannot be allocat-
ed for 5% of the functions.

If we want to have always at least one window available to handle inter-
rupts, then we can change the overflow detection condition (see Section 4.2.2) so
that an overflow for user processes is generated not when there are no more free
registers, but when there is only one window left {probably the smallest window
size plus the number of overlapped registers should be enough). The drawback in
this case is that we are not using the whole register file for the user process. The
advantage is that we do not have to wait for saving the largest window when an
exception occurs and there are no more free registers This is only possible with a
circular-buffer register file (see Section 4.2.3), not with a shift-register file (see
Section 4.5).

number of | NROFF | SORT | VPCC j ALL PROGRAMS

registers % % % % accum.
8 00 | oo 0.0
12 0.1 0.7 0.4 0.4
14 43 0.0 0.9 2.7 3.1
20 76 0.0 3.0 53 8.4
24 9.5 0.0 42 | 6.9 15.3
28 17.0 10.9 103 § 139 29.2
32 15.0 423 10.7 § 136 42,8
36 13.5 2.2 12.9 13.0 55.8
40 12.6 83 119 § 12.2 68.0
44 6.7 22.4 10.1 | 8.6 76.6
48 53 1.2 11.1 7.8 844
52 30 6.1 8.9 5.7 90.1
56 3.3 4.2 7.2 5.1 95.2
80 1.9 0.5 54 3.4 98.6
64 0.4 1.9 2.9 1.5 100.1

Table 3.8. Register File Depth
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In conclusion, the register file can be shared among the running user pro-
cess and the exception handlers.

We do not have information about how C/70 and RISC handle exceptioms,
but both might share the register file among the running user process and the ex-
ception handlers. Although people from PYRAMID 90x claim that they have an
excellent and original mechanism to support efficiently context switching, this au-
thor has not been able to obtain any information about it.

3.10 Conclusions

In this chapter we have confirmed that multiple windows offer an excellent
support for function calls independently of the instruction set design (reduced or
complex). When multiple windows are available, the data memory traffic is re-
duced by a factor of 2.7 or 3.5 with respect to the case in which a single window
is available.

The advantages and disadvantages of fixed-size and variable-size windows
have been studied and an intermediate solution have been proposed: multi-size
windows. Multi-size windows combine the advantages of both approaches: small
register addresses are required in the instruction, the bus size can be made in-
dependent of the register file size, no extra instruction is required to execute a
function call if the smallest window is needed, less data memory traffic is generat-
ed during overflows, underflows, and context switching, and less registers are re-
quired in the register file to hold a specific number of windows.

Using our measurements we have concluded that three-size overlapped win-
dows (with four overlapped registers and window sizes of 4, 8, and 12) and a re-
gister file of 64 registers balances some of the mentioned factors to determine the
register set design:

(1) The number of local simple variables required: 75% of the functions
have enough with the smallest window, 17% with the medium size window, and
5% with the largest window. Only 3% of the functions need to create an activa-
tion record in the stack, 1.99% because of local non-simple variables and 1.4% be-
cause of local simple variables.

(2) The data memory traffic overhead: overflows occur in less than 1% of
the calls and, on the average, only 0.1 registers have to be saved per function call.

(3) The number of bits required to address a general-purpose register: only
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(4) The implementation cost given by the storage area required: only 64 re-
gisters.

Furthermore, on the average, only 1.1 unused registers have to be saved or
restored per window on overflow, underflow, and context switching, and the
pnumber of registers to be saved during context switching is not very large: on the
average, only 33.3 registers are present in the register file.

Finally, we have considered the effects of multiprogramming on the register
file and shown that (1) the register file should not be saved totally when an excep-
tion occurs because of the high frequency of exceptions and the low average ser-
vice time, and (2) the register file is fully utilized because the average number of
function calls between context switches is greater than the average number of
function calls between overflows. Consequently, two different organizations have
been studied: private register file and shared register filee. We have concluded
that with a private organization, two register files are required one for the user
processes and the other for the exception handlers, and that with a shared organi-
zation, the register file is shared only among the user and the exception handlers,
not among several user processes.
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CHAPTER 4
REGISTER-FILE IMPLEMENTATION

4.1 Introduction

This chapter studies the implementation of a register file. The implemen-
tation is discussed at the level of the algorithms required to manipulate it. As we
said in Section 2.9, there are two pointers to manage the register file: the
current-window pointer (CWP) and the first-window pointer (FWP). We study
how these pointers are modified on function call and return, on register file
overflow and underflow, and during context switching. We also discuss how
translation is performed from virtual register to physical register numbers.

Section 4.2 discusses the implementation of multi-size windows using a
circular-buffer register file. Katevenis [KATER3] has already shown how a circular
buffer is used for fixed-size windows and memory mapped registers. However, he
affirms that both the register file size and the window size must be a power of two
to avoid integer divisions by arbitrary constants. We show that this is only true
for the register file size, but not for the window size. We extend the implementa-
tion to the multi-size case.

One of the drawbacks for using a register file approach given by Hennessy
[HENN84] and admitted by Patterson [PATTS5] is that the register file size
influences the basic processor clock cycle. The larger the register file is (and,
therefore, the more windows are available}, the slower the clock cycle is. This is a
consequence of the implementation of the register file as a random memory, i.e.,
access to any register location is provided, not only to the current window. Sec-
tion 4.3 presents an alternative implementation to the circular-buffer organization
called the shift-register file that makes the clock cycle independent of the register
file size. It is also shown how the shift-register file is organized to implement
fixed-size windows with overlapped registers (Section 4.4) and multi-size windows
(Section 4.5).

4.2 Circular-Buffer Register File

This section presents how multi-size windows are managed in a register file
with a circular-buffer organization. A circular-buffer implementation avoids the
relocation of the windows in the register file when an overflow occurs (see Section
3.1). This section is organized as follows: first, we study what operations are per-
formed on the CWP to allocate and deallocate windows; second, we present how
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overflow and underflow are detected and what operations are performed on the
FWP; third, we discuss how context switching is performed; fourth, we show how
translation from the virtual register number to the physical register number is
done and we compare it with the translation performed for fixed-size windows in
C/70, RISC, PYRAMID 90x, and CELERITY C1200; and finally, we illustrate
how memory mapped registers are implemented.

When an overflow occurs, the oldest (first) window in the register file is
saved in the window overflow stack. Let us assume that the window overflow
stack starts at the top (higher addresses) of the memory space, that the stack
grows downwards, and that the memory address and the registers have 32 bits.
The following notation is used:

N Number of registers in the general-purpose register set
R Number of registers in the register file

Mo’ Ml’ ..., M. Number of registers per window (M,, is the smallest window and
8 . 1]
M, is the largest one).

P Number of overlapped registers

C Number of common registers

n and r are the number of bits required to address the general-purpose re-
gister set and the register file.

Independently of whether the registers are memory mapped, the following
registers are required to manage the register file (see Figure 4.1):

CWP  Current-Window Pointer (32-bit memory address)

CWRF Current Window in Register File (r-bit register address; if there is a sin-
gle window size and it is a power of two, then the last bits will be zero)

FWP  First-Window Pointer (32-bit memory address)
FWRF First Window in Register File (r-bit register address)

The registers CWP and FWP can also be used as CWRF and FWREF if the
number of registers in the register file is a power of two. Let us use both names
to make explicitly when we are referring to the pointers in the memory stack and
when we are referring to the pointers to the register file, even though below (in
Subsections 4.2.1 and 4.2.2) it is shown that they might be the same.
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CWRF

CWP —

windows
present in
register file

FWP—> FWRF

windows
saved
register file

window
overflow
stack

Figure 4.1. Circular-Buffer Register File

If registers are memory mapped, the CWP is used to compute the memory
address associated to a given virtual register number (see Section 2.3). Since the
CWP is a specialized register (see Section 3.8), an instruction has to be provided
to perform this operation. If registers are unmapped, then although an r-bit re-
gister (CWRF) would be enough to translate virtual to physical register numbers,
the CWP is required to detect overflows as we will discuss in Subsection 4.2.2.

Since the registers have 32 bits and the stack is word aligned, then the last
two bits of CWP and FWP are zero. Thus, the operations discussed below on
these pointers refer only to its <31:2> bits. However, 30-bit operations are not
necessarily performed on both pointers because the window overflow stack has al-
located only the last pages of the memory address space and, therefore, the higher
order bits of both registers are always one.
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4.2.1 Window Allocation and Deallocation

As we have discussed in Section 3.4, the smallest window is automatically
allocated when a new function is called. If the callee requires more iegisters, then
the window is expanded by an instruction generated by the compiler. The win-
dow is deallocated when the function returns; the return instruction contains the
window size. Thus, the following operations are performed:

(1) on function call:

CWP — CWP - M,
CWRF «— (CWRF + M ) mod R

(2) on expanding the window size up to M.

CWP — CWP - (M. - M,)

CWRF « [CWRF 4 (M.~ M_)] mod R

Note that the operation (Mi - M_) does not have to be performed because
the difference is known in advance. In the following subsections, we use Zi to
refer to this difference: Z0 = MO’ and Zi = (Mi - Mo), i=1,..,s.

(3) on function return:

CWP «— CWP + Mi
CWRF « (CWRF - Mi) mod R

If R is a power of two and the initial values of CWP and CWRF are
(1,1,..,1,0,0) and (0,0,...,0) , then the register CWRF corresponds to the one’s
complement of the <r+1:2> bits of the CWP because when one is incremented,
the other is decremented by the same value. To show that this is true, let us con-
sider a single window size (M). Thus, if X gives the nesting depth (0 for the first
window, 1 for the second, and so on), then from the previous expressions we can
deduce that the CWP and the CWRF for a function at level X are:

CWP<31:2> = (2% -1)-XM, CWP<1:0> =00
CWRF = (0 + X M) mod R = (X M) mod R

In reality the initial values of the CWP and the CWRF are different because
initially the smallest window is allocated. However, we can assume that the initial
values are the ones given above before allocating the window without any loss of
generality.
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If R is a power of two, then the <r+1:2> bits of 2té;e CWP differ from the
r bits of the CWRF by the complementation constant (27 - 1), i.e., CWRF is the
one’s complement of CWP <r+1:2>.

R should be a power of two to implement these operations efficiently, i.e.,
to avoid divisions to compute the modulo and to use only two registers to manage
the register file.

Note that, since we are using just one register for the CWP and the
CWRF, after a context switching the top (largest) window for the new process
(see Section 3.9) cannot be loaded at an arbitrary location, but in the one given
by the one's complement of the <r+1:2> bits of the CWP.

4.2.2 Overflow and Underflow Detection

An overflow exception is detected when a new window is allocated or ex-
panded and no more free registers are available in the register file. An underflow
exception is detected when a function returns and the largest window size is not
available in the register file. Since the callee does not know the window size of
the caller, the largest window should be available (see Section 3.4). Let us discuss
first how overflow and underflow conditions are detected and after this, how they
are handled.

An overflow exception is detected when updating the CWRF we pass over
the FWRF (see Figure 4.2), i.e., it is given by the following conditions:

if CWRF < FWRF < (CWRF + Zi) mod R or
FWRF < (CWRF + Zi) mod R < CWRF then
overflow exception
else CWP — CWP - Z, CWRF ~ (CWRF + Zi) mod R

This comparison is too difficult to implement. An alternative is to check
that after decrementing the CWP, the number of registers given by the difference
between the FWP and the CWP can be present in the register file, i.e.,

CWP — CWP - Z,
if FWP - CWP > R then overflow exception

A 30-bit subtraction is not required because the high order bits of both
pointers are always one as we said at the beginning of this section.

An underflow exception is detected when after updating the CWP, the
largest window size is not available, i.e.,

CWP — CWP + M,
if (CWP - FWP) <M_ then underflow exception
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Again, a 30-bit subtraction is not required.

+~— (CWRF + Zi) mod R
FWRF —

free registers

CWRF —

(a) Overflow if CWRF < FWRF < (CWRF + Z) med R

free registers

CWRF

| — (CWRF +Z) mod R
FWRF '

free registers

(b) Overflow if FWRF < (CWRF + Z) mod R < CWRF

Figure 4.2. Register File Overflow

Both overflow and underflow conditions are handled by an operating sys-

tem exception function or by the architecture itself depending on the complexity
of the processor. Different strategies for managing the register file have been stu-
died by Tamir and Séquin [TAMI83|. They conclude that with eight windows in
the register file the best strategy is to bring only one window from or to memory.
No new measurements have been taken for multi-size windows. We assume that
on overflow (underflow) the largest window size is brought to (from) memory.
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Thus, the following operations need to be performed:

(1) on overflow:

FWP « FWP - M_
FWRF «— (FWRF + M) mod R

(2) on underflow:

FWP « FWP + M_
FWRF « (FWRF - Ms) mod R

Again, it can be shown that the register FWRF corresponds to the one’s
complement of the <r+1:2> bits of FWP if R is a power of two and their initial
values are FWRF = (0,0,...,0) and FWP = (1,1,..,,1,0,0).

Therefore, no extra complexity is introduced for multi-size windows to
detect and to handle overflow and underflow exceptions, except that different
constant numbers should be added/subtracted instead of a unique constant and
that, since the window sizes are not necessarily a power of two, some more bits
have to be added/subtracted (for a fixed-size window with 2™ registers, m bits of
the CWP and the FWP are always zero so that they do not have to be
added/subtracted).

4.2.3 Context Switching

When a new user process is scheduled, the windows associated to the old
user process are saved in the window overflow stack area and only one large win-
dow associated to the new user process is brought to the register file, as we have
discussed in Section 3.9. If registers are memory mapped, then an instruction {or
a bit in the processor status word) should be provided to disable the register map-
ping. Special registers for global simple variables (see Section 2.10) have also to
be saved during context switching, although this is not discussed here because is
independent of the saving/loading of the register file. Let us discuss how context
switching is handled for two different cases: two private register files, one for the
user and the second shared among exception handlers (see Section 3.9.2), and a
shared register file among the current user process and the exception handlers (see
Section 3.9.3).

If two private register files are available, then the specialized registers (at
least, the CWP and the FWP) can also be duplicated (one set for the user and a
second for the kernel) so that they do not need to be saved when an exception oc-
curs. As we said in Section 3.9.2, the user register file is not disturbed while the
exception is handled.
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If a new user process has to be scheduled as a result of the exception, then
the user register file has to be saved in the user window overflow stack. Since the
register file is organized as a random memory, registers are saved from the user re-
gister file to the memory locations of the user window overfiow stack given by ihe
values of the FWP and the CWP associated to the user process (not by the
current FWP and CWP). The specialized registers have also to be saved in the
user’s process control block.

Special instructions should be provided to perform the context switching;
however, these are not discussed in this thesis because they depend on the com-
plexity of the processor. For instance, if the processor has only one-cycle instruc-
tions, then first the specialized registers are saved and after this, a special instruc-
tion saves the register pointed to by the FWP in the user window overflow stack,
increments the user FWP, and sets a condition code when the user FWP is lower
than the user CWP. This instruction is executed as many times as registers have
to be saved. However, since a memory access is performed per instruction, two
cycles are required to execute the instruction and to save only one register. Thus,
an instruction to save a group of registers makes a better use of the parallelism in
the processor, overlapping the access to the register file with the access to
memory, so that the number of cycles required to perform the register saving is
reduced. For instance, RISC uses the standard stl instruction to save one regis-
ter, i.e., it takes two cycles (800 ns.) to save one register; while SOAR [UNGA84|
provides one instruction to save eight registers in nine cycles.

Once the old user context is saved, the specialized registers and the larger
window for the new user process are loaded. Again, some special instructions are
required to perform these operations. Moreover, as we have said in Section 4.2.1,
the window cannot be loaded in an arbitrary location in the user register file, but
in the one given by the one’s complement of the <r+1:2> bits of the CWP.

If the register file is shared among the user process and the exception
handlers, then when an exception occurs (except an overflow or an underflow ex-
ception), a non-overlapping window is allocated. To do this, the CWP is decre-
mented by (M, + P). However, before decrementing the CWP, this should be
saved to remember where the last user window is located. To avoid the register
saving, the CWP can also be duplicated. If the exception handlers and the user
process are sharing a common window overflow stack, no duplication for the FWP
is necessary. Otherwise, the FWP should also be duplicated (or saved) so that the
overflow exception handler can differentiate user and kernel windows. For our
discussion, let us assume that they share the overflow stack.

If a new user process has to be scheduled as a result of the exception, then
the user's windows in register file have to be saved in the window overflow stack.
To detect if the user still has any window present in the register file, the user
CWP is compared with the current FWP. If the former is lower than the latter,
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then this means that part of the register file (between the FWP and the user
CWP) has to be saved. Otherwise, the user's windows have already been saved as
a consequence of overflows generated during the execution of the exception
handler functions. Although the exception handler might have some windows
present in the register file, or part in the register file and part in the overflow
stack, we assume that the scheduler never returns to its caller, i.e., it loads the
new user’s state, so that these windows are destroyed. Observe that the ones
that are in the overflow stack are also destroyed because they have been saved
above the user CWP. Likewise we have discussed above, special instructions are
required to perform these operations.

Sinee the window cannot be loaded in an arbitrary location in the user re-
gister file, but in the one given by the one’s complement of the <r+1:2> bits of
the CWP, then it could be that these registers correspond to the ones used actu-
ally by the scheduler’s window. Therefore, the scheduler should load the larger
window at the end of its execution when it is possible to destroy whatever is in
the registers. This is equivalent to what happens for a single-window architec-
ture.

Finally, if we want to have always at least one window available to handle
interrupts (as we said in Section 3.9.3), then we have to change the overflow
detection algorithm given in the previous subsection so that an overflow for user
processes is generated not when there are no more free registers, but when there
is only one window left. For instance, to be able to allocate the smallest window
size, the overflow detection algorithm for the processor user mode should be
changed to:

CWP « CWP - Z,
if FWP - CWP > (R-M, - P) then overflow exception

The operation (R - Mo - P) should not be performed because is known in
advance.

Therefore, context switching is not more complex to manipulate in multi-
size windows than in fixed-size windows because our discussion above can be ap-
plied either to fixed-size windows or to multi-size windows. Also, some special in-
structions have to be provided to perform the context saving and loading, in-
dependently of whether the current-window pointer and the first-window pointer
are specialized registers.
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4.2.4 Virtual to Physical Register Number Translation

Virtual register numbers (VR) given by the instruction have to be convert-
ed to physical register numbers {PR_ADDR) in the regisier file. In this subsection
we study three different cases to see how costly the implementation can be for
each case. In the first case, the number of registers in the fixed-size window is the
same as the number of general-purpose registers, i.e., neither common nor over-
lapped registers are available (N = M). This case corresponds to the C/70 regis-
ter file. In the second case, the register set consists of C common registers and a
fixed-size window of M registers (N = C + M + P). This case corresponds to the
RISC register file (with M = 16, C = 10, and P = 8), and to the PYRAMID 90x
and CELERITY C1200 register files (M = 32, C = P == 16). In the third case,
multi-size windows are considered with overlapped windows and no common re-
gisters.

(1) M=N

In this case, the register file is divided in W = R/N non-overlapped win-
dows. W is a power of two because both N are R are powers of two. Translation
is done by concatenation of the CWRF with the virtual register number, ie.,

PR_ADDR « (CWP<r+1:n+2>) @ VR<n-1:0>

where the symbol ' represents the one’s complement operator and the symbol @
represents the concatenate operator. CWP<1:0> is zero because the stack is
word aligned and CWP<n+1:2> is zero because the window size (the register
set) is a power of two. ~

(2) C 7 0 and M is a power of two

If there are common registers and the window size is a power of two, then
half of the register set is used for common registers and outgoing-parameter regis-
ters and half for local registers and incoming-parameter registers M=C+P=
N/2). Let us consider that the common registers have the lower virtual register
numbers (as they have in RISC and PYRAMID). In this case, a comparison is re-
quired to detect when a common register is used:

if VR < C then CR_ADDR ~ VR<1n-1:0>
else PR_ADDR « (CWP<r+1:m+2>)" @ CC (VR<n-1:0>>)

where CR_ADDR is the address of the common register file, CC is a code convert-

ed used to subtract C from the virtual register number, and m is the number of
bits required to address a register in a window of size M.
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If C is a power of two as is in PYRAMID (where C=P=N/4= 16},
then the translation mechanism is simplified:

if VR<n-1:0-2> == 00 then CR_ADDR — VR <1n-3:0>
else PR_ADDR « (CWP<r+im+2>)’ @ CC(VR<p-1:n-2>) @ VR<n-3:0>

(3) C=0andM,M,.., M,

With multi-size windows we assume that the outgoing-parameter registers
have the lowest virtual register numbers so that the compiler always uses the
same virtual register numbers for temporary registers and outgoing parameters.
Thus, multi-size windows overlap as is shown in Figure 4.3. As we have said in
Section 3.4, virtual register numbers that are not used in the current window are
protected by the compiler, not by the architecture. Translation is performed us-
ing an r-bit adder:

PR_ADDR « [ (CWP<r+1:2>)" - VR<n-1:0> | mod R

R<r-1>
--------- PR<mo+ms—l> VR<0>
OP
-------- VR<p-1>
LR
--------- PR<m -1> VR<0> - - == = S
op VR<p-1> P
- - - h; - VR<p> l———VR<m_-1>
R<0> .’R<m0—1>

Figure 4.3. Mapping with Multi-Size Windows

In conclusion, if the window size is a non-power of two, then an r-bit adder
is required to perform virtual register to physical register number translation.
Since multi-size windows allow to have a small register file size, the number of
bits to be added is small and the delay introduced is almost insignificant. This
pumber is even reduced in a shift-register file as we will discuss in Section 4.5.
Therefore, although in C/70, RISC, PYRAMID, and CELERITY the translation is
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performed with concatenation and this is for sure a faster operation than addi-
tion, the number of bits required to be added does not force us to discard the use
of non-power-of-two windows. Furthermore, translation is simplified when no
common registers are available.

4.2.5 Memory Mapped Registers

Although we have already seen in Section 2.3 that the alias problem can be
solved by an optimizing compiler, here we would like to study the complexity that
must be introduced to the processor when registers are memory mapped. To
detect if a memory address (MA) location is in a register instead of memory, the
MA must be compared with the the current and first window pointers:

CWP < MA < FWP

Once it is detected that the memory address refers to a register the physi-
cal register number has to be computed. This computation is performed sub-
tracting the MA from the FWP to get the register number relative to the register
number pointed by FWRF. The physical register number is obtained adding the
FWRF and the result of the subtraction modulo R:

[FWRF + (FWP<31:2> - MA<31:2>) | mod R =
[ FWRF mod R + (FWP<31:2> - MA<31:2>) mod R mod R =
[ FWRF mod R + FWP<31:2> mod R - MA<31:2> mod R | mod R

If R is a power of two, then FWRF = (FWP<r+1:2>)’ and

[ (FWP<r+1:2>)" + FWP<r+1:2> - MA<r+1:2> ]mod R =
[(2F -~ 1) - MA<r+1:2> | mod R =

[ (MA<r+1:2>) | mod R =

(MA<r+1:2>)’

Therefore, if R is a power of two, r bits of the memory address give direct-
ly the physical register number independently of the window size (power or non-
power of two). With a circular-buffer organization, the complexity introduced by
memory mapped registers consists basically in detecting when a memory address
refers to a registers, not in translating the memory address to a physical register
number.

In conclusion, in a register file with a circular-buffer organization the
number of registers in the register file must be a power of two to be able to imple-
ment efficiently the operations on both the current-window pointer and the first-
window pointer. However, the window size does not have to be necessarily a
power of two. When the window size is not a power of two, an r-bit addition
needs to be performed to translate virtual to physical register numbers.
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4.3 Shift-Register File

This section discusses an alternative implementation to the circular-buffer
register file, called the shift-register file. The name comes from the fact that the
stack of windows is organized as a shift register as shown in Figure 4.4. Read and
write operations can only be performed on the registers of the top window. To
introduce how the register file is organized with shift registers we have selected to
start with non-overlapped fixed-size windows because it is easier to explain; later,
Sections 4.4 and 4.5 show how the shift-register file can be organized to support
fixed-size window with overlapped registers and multi-size windows. In this sec-
tion, we also present the advantages of the shift-register file with respect to the
circular-buffer one.

—

L
Figure 4.4. Shift-Register File with Fixed-Size Windows

If the registers are not memory mapped, then only access to the current
window is required, i.e., we do not need access to the whole register file. Thus,
the register file is implemented as it is shown in Figure 4.4 so that registers are
pushed (shifted down) when a function is called and poped {shifted up) when a
function returns. In this case, a bus of the same size as in the single window case
is required so that both the bus size and the access time to the register file
depends only on the register set, and not on the number of windows.

The shift-register file is implemented as a circular shift register because
when the file is full and a new function is called the bottom register window be-
comes available in the top one so that an exception handler (an operating system
function or the architecture itself as we have already discussed in the previous
section) can transfer it to memory. To detect the overflow a bit is associated to
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each window indicating when the window is in use; this bit is shifted up/down to-
gether with the window. When a function is called and the register file is shifted
down, an overflow is detected if the bit associated to the top window indicates
that the window is in use. As in the circulai-buffer case, the frst-window puinier
indicates the memory address where the window must be saved.

Underflow is detected using the same bit used for overflow detection.
When a function returns and the register file is shifted up, an underflow is detect-
ed if the bit associated to the top window indicates that the window is not in use.
Again, the FWP is used to transfer a window from memory to the top window.

Although in this case the current-window pointer is not necessary to per-
form translation from virtual to physical register numbers because this is direct
(i.e., the same virtual register numbers are used as physical register numbers), it
is still necessary to handle context switching. Let us discuss why.

If only the FWP is available, then windows have to be saved from the top
to the bottom because only access to the top window is provided. Thus, windows
in the overflow stack are saved in the opposite order (see Figure 4.5.(a)) and a
mask has to be saved on the top of the overflow stack indicating how many win-
dows have been saved. When this process is scheduled to run again, the processor
state has to be restored completely because the top windows in the stack are up-
side down. As we said in Section 3.9, this is not a good policy because if the pro-
cess is performing more function calls than returns, some windows would have to
be transferred again to memory without having been used.

If the CWP is also available, then the top window in the register file is
saved at the top of the overfiow stack, the next window is saved below the previ-
ous one, and so on (see Figure 4.5.(b)). In this case, when this process is
scheduled to run again, only the top window is loaded in the register file. This
policy corresponds to the one discussed in Section 3.9 and implemented for a
circular-buffer register file.

Thus, the CWP is required to handle context switching. Besides the order
in which windows are saved, context switching is handled similarly to the
circular-buffer case (see Section 4.2.3).

The register window size does not have to be necessarily the same as the
number of registers in the register set. Some registers are used as temporary re-
gisters and, therefore, they do not need to be pushed when a function is called.
Thus, the register file does not have to be a multiple of the register set, and the
common registers can be used to pass parameters as has been discussed in Section
3.5 for non-overlapped windows.
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Figure 4.5. Saving the Register File on Context Switching
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The shift-register file offers the following advantages as compared to a
circular-buffer register file:

{1) The size of the register celis {except the ones which are on the top)
might be smaller because no bus access is required for them. However, control to
perform the up/down shifting is required. A detailed design is being performed to
evaluate the reduction in size that can be obtained. The percentage of the chip
area dedicated to register storage is 39% for RISC I (gold implementation ), 30%
for RISC I (blue implementation) [FITZ82], and 27.5% for RISC II [KATES3].

(2) Address decoders are only needed for the top window reducing the chip
area required for this. The percentage of the chip area dedicated to decoders is
89% for RISC I (gold implementation), 6% for RISC I (blue implementation), and
5.8% for RISC II.

(3) The processor cycle time is reduced because:

(3a) The mapping from virtual to physical register number is direct. So,
the time required to perform the addition to compute the physical register
number for non-power-of-two windows is eliminated. No addition is required for
power-of-two windows (see Section 4.2.4).

(3b) The number of registers available to perform reads and writes is small-
er so that the bus size is also smaller. Thus, the access time to the register file is
similar to the single window case and it is independent of the size of the register
file. This eliminates one of the drawbacks for using multiple windows given in

[HENN84] and [PATTSS].

(4) The number of registers available in the register file does not have to be
a power of two. This allows a more flexible selection of the number of registers
required in the file. In the circular-buffer register file the number of registers in
the file must be a power of two (see Section 4.2.1).

On the other hand, the shift-register file offers two disadvantages with
respect to a circular-buffer register file when it is shared among the user process
and the exception handlers:

(1) The overflow detection algorithm for the user process cannot be
modified so that there exists always at least one free window to handle exceptions.
This is because only access to the top window is provided. Section 4.2.3 has
shown how the detection algorithm can be modified for the circular-buffer case.

"RISC I was implemented by two different groups: one was called the gold group
and the second the blue group.
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(2) When a new user process is scheduled, the kernel windows left in the
register file have to be destroyed (shifted up) so that the user windows are moved
to the top to be transferred to the overflow stack (if any). Since access to the
whole register file is provided in a circular-buffer organization, the user windows
can be transferred directly to memory.

The implementation of the shift-register file is not discussed in this thesis.
Mare Tremblay, a graduate student at UCLA, is working actually on it. However,
only a remark is done to the reader. To avoid to have a very long connection
from the bottom of the file to the top, windows can be physically reordered so
that all the connections become of equal size. Figure 4.6 shows how individual bit
cells might be connected to optimize the connection length for seven windows
numbered from 1 to 7; window 1 is the top window and window 7 is the bottom
one.

1
¥
7
2
6
-3
3

4

Figure 4.6. Cell Connections in the Shift-Register File

In conclusion, a shift-register file allows a more flexible selection of the
number of registers required in the file, makes the register file access time similar
to the one required for the single window case, and we expect that less area will
be required for its implementation.

111



4.4 Overlapped Windows in a Shift-Register File

This section discusses how the shift-register file is organized to implement
fixed-size windows with overlapped registers. The window is divided into two
parts: the overlapped registers and the local ones. The overlapped registers are
also divided into two parts: the registers for incoming parameters (IP) and the re-
gisters for outgoing parameters (OP) used also as temporary registers. The only
difference with the overlapped windows in the circular-buffer register file is that
here both the IP and the OP registers have the lowest virtual register numbers
while in the circular-buffer approach the IP and the OP register numbers are in
opposite sides of the register set (if no common registers are considered). Let us
call the part of the register file with the local registers the local-shift-register file
(LSRF) and the other part the overlapped-shift-register file (OSRF). Figure 4.7
shows the new structure for the shift-register file.

' ! !

OSRF LSRF

Figure 4.7. Shift-Register File with Overlapped Windows

Let us discuss the operations to be performed on function call and return,
on translating virtual to physical register numbers, on overflow and underflow,
and on context switching.
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Window Allocation and Deallocation

When a function is called the local-shift-register file is shifted down as we
said in the previous section, but for the overlapped-shift-register file only the IP
registers have to be shifted down. The OP registers have to remain in the top
window to be accessed as the IP registers for the callee function.

When a function returns, the callee IP registers must remain in the top
window because they contain the return value and they are the caller OP. Thus,
only the caller IP registers and the local-shift-register file have to be shifted up.

Therefore, a multiplexer is needed to select the part of the overlapped re-
gisters that are shifted up or down. How the overlapping is performed is ex-
plained next.

Virtual to Physical Register Translation

The mapping from virtual to physical register numbers is still direct for the
local-shift-register file. However, the mapping for the overlapped-shift-register file
is not direct because the OP registers of the caller must become the IP registers of
the callee. Thus, the mapping must alternate the translation from virtual to phy-
sical register numbers so that the same physical registers used by the caller as OP
are used by the callee as IP.

To obtain this. alternative mapping, functions are classified in even and odd
functions depending on their stack (or window) depth in the moment they are
called, i.e., the main function is an even function, functions cailed by the main
function are odd functions, function called by these become even again, and so on.
The <m+2> bit of the CWP can be used to detect when a function is even or
odd. Thus, for one type of functions (let us say even), the mapping is direct:

VR, — PRO, VR1 —PR, .., VR2P-1 — PR2P_1.
For the other type of functions, the mapping is the opposite:

VR{) — PR2P_1, V'R1 — PR2P_2, vy V'R2qu — PR,

If the number of overlapped registers is a power of two, then the physical
register number for the odd functions is just given by the one’s complement of the
virtual register number. Otherwise, a code converter is necessary.

The mapping from virtual to physical register numbers is shown in Figure
4.8 for four overlapped registers. Observe that the mapping is transparent to the
compiler. The compiler has to know only the register numbers used as IP and OP
registers and their relationship (VRD contains the return address, the caller must
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use register VR to pass the first parameter to the callee, which receives in its re-
gister VR, etc.). The compiler has to know also this information for the
circular-buffer case.

VR: 0 1 2 3 4 5 8 7

PR_ADDR: 0 1 2 3 4 5 6 7

PR_ADDR: 0 1 2 3 4 5 6 7

(a) odd functions

Figure 4.8. Sharing Four Overlapped Registers

Overflow and Underflow Handling

Overflow and underflow conditions are detected using a bit associated to
each window to indicate when a window is in use as has been discussed in the
previous section.

When a function is called, the register file is shifted down. The bottom
window of the local-shift-register file is moved to the top one, and the bottom
window of the overlapped-shift-register file is moved to the OP part of the top
window. If an overflow is detected, then the local registers and the OP registers
are transferred to memory.

When a function returns, the register file is shifted up. The IP registers of
the callee are converted to the OP registers of its caller so that they are always
present. If an underflow is detected, then the local registers and the OP registers
are brought from memory.
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Context Switching

To switch the context from one user to another we perform the same
operations described in the previous section, i.e., we use the CWP to move win-
dows in the register file {from the top to the bottom) to the overflow stack. The
first time, the whole top window is moved; for the next ones, only the local regis-
ters and the IP registers are moved.

The two drawbacks mentioned in the previous section for a shared shift-
register file with respect to the circular-buffer case are still valid. However, now a
third one appears: since only half of the overlapped registers can be shifted down,
it is impossible to allocate a non-overlapped window. In this case, the easiest
solution is to trust that the kernel functions will not use the incoming-parameter
registers (of course, this only affects to the first function).

A Comparison with the Previous Approach

Overlapped windows introduce two drawbacks as compared to non-
overlapped windows:

(1) Some extra area is required for the multiplexer and control introduced
by the overlapped-shift-register file.

(2) Virtual to physical register number translation is required for over-
lapped registers. However, if the number of overlapped registers is a power of
two, the complexity required by the translation (i.e., to compute the one’s comple-
ment of the virtual register number) is insignificant.

The advantages of having overlapped register windows have already been
discussed (see Section 3.5) and compensate these drawbacks. Therefore, over-
lapped windows can also be implemented using a shift-register file. Moreover, if
we compare overlapped registers here with the circular-buffer case, then another
advantage appears: the total number of registers in the file can be used in full.
Remember that in the circular-buffer organization the outgoing-parameter regis-
ters of the last window are overlapped with the incoming-parameter registers of
the first window so that registers associated to the last window cannot be used. In
the shift-register file this restriction disappears. However, the sharing of the re-
gister file by the user process and the exceptions handlers is better protected with
a circular-buffer organization than with a shift-register organization because in
the latter a non-overlapped window cannot be allocated.
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4.5 Multi-Size Windows in a Shift-Register File

This section discusses how multi-size overlapped register windows can be
implemented using a shift-register file. The top window corresponds to the larg-
est window size plus the incoming parameter registers, i.e., if no common registers
are available, then the top window corresponds to the largest general-purpose re-
gister set (of size N). The register file is divided in N/P groups of P registers.
Each group of P registers is shifted up/down individually and each level in the file
has associated a bit to detect whether the group is in use. This bit is equivalent
to the one we had for each window in the previous two cases to detect
overflow /underflow conditions. The window sizes available are: P, 2P, 3P, ..., and
N-P because a whole group of registers have to be shifted down (allocated) or
shifted up (deallocated) as we will discuss below.

— o

Figure 4.9. Shift-Register File with Multi-Size Windows
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For instance, Figure 4.9 shows a shift-register file divided in four groups.
If every group has four registers (P = 4}, this file corresponds to a general-
purpose register set with 16 registers, four overlapped registers, window sizes of 4,
8, and 12 registers, and a total of 64 registers in the file.

Let us discuss again the operations to be performed on function call and
return, on translating virtual to physical register numbers, on overflow and
underflow, and on context switching.

Window Allocation and Deallocation

Since now windows are of different sizes, we need a pointer to the top of
the window similarly to the CWRF pointer discussed for the circular-buffer case
(see Section 4.2). To smallest window size that it is possible to allocate is M, = P
because a minimum of P registers have to be shifted down. Thus, when a func-
tion is called, this pointer is incremented by the smallest window size (P) modulo
N. The successive window sizes must be multiples of P because P registers are
shifted up/down all together.

If the callee requires a larger window, then an instruction generated by the
compiler will update the CWP and shift down one or more groups. When the
function returns, the window is deallocated so that the groups for such window
are shifted up. Thus, the operations to be performed are very similar to the ones
described for a circular-buffer organization, except that they are done modulo N
instead of modulo R:

(1) on function call:

CWP ~— CWP - M,
CWRF «~ (CWRF + MO) mod N

(2) on expanding the window size up to M.

CWP — CWP - Z.
CWRF «— (CWRF'+ Z) mod N

(3) on function return:

CWP — CWP + M,
CWRF «— (CWRF - M) mod N

Also, it can be shown that this pointer corresponds to the one's comple-

ment of the bits <n+1:2> of the CWP, or if P is a power of two, to the one’s
complement of the bits <n+1:p+2> of the CWP (see Section 4.2.1).
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Virtual to Physical Register Transiation

A shift-register file with multi-size windows has the overlapped registers in
the opposite sides of the current window as Lhe ciicalaf-buffer case. Virtual regis-
ters are also numbered as the circular-buffer case, i.e., the outgoing-parameter re-
gisters have the lowest virtual register numbers (see Figure 4.3). The translation
from virtual to physical register numbers is performed similarly to the circular-
buffer case (see Section 4.2.4), but only an n-bit adder is required:

PR_ADDR « [ (CWP<n+1:2>)" - VR<p-1:0> | mod N
If P is a power of two, then it is only necessary to use a (n-p)-adder:
PR_ADDR + [(CWP<n+1:p+2>)’ - VR<a-1:p>] mod N @ VR<p-1:0>

Thus, for instance, to translate virtual to physical register numbers for a
64-register file with three-size windows of sizes 4, 8, and 12, and 4 overlapped re-
gisters, a 2-bit adder is required for a shift-register organization, while a 6-bit
adder is required for a circular-buffer organization.

Overflow and Underflow Handling

An overflow exception is detected when a group of registers is shifted down
and the bit associated to the top window for this group indicates that the regis-
ters are in use. An underflow exception is detected similarly.

The main difference with the circular-buffer organization is that the largest
window cannot be any longer transferred to/from memory when
overflow/underflow is detected. With a shift-register organization, only the
groups that have caused overflow/underflow can be transferred. On overflow,
other groups cannot be transferred to memory because they are at the bottom of
the register file so that they are not available. On underflow, other groups cannot
be brought from memory because the other groups at the top window are in use.

Therefore, only the exact number of registers which have caused the
overflow/underflow condition are transferred to/from memory. Although no
measurements have been taken, it seems that this results in a slightly greater per-
centage of overflows because when the process is increasing its stack depth, two
overflows can be generated by the same function (one for the smallest window size
and a second if the function requires a larger window size).
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Context Switching

Context switching is handled similarly how has been discussed in Section
4.3. Windows are saved, from the top to the bottom, to the overflow stack using
the CWP. When the process is restored, then the whole top window cannot be
loaded to an arbitrary location. It has to be loaded in the order that the
<n+1:2> (or <n+1:p+2> if P is a power of two) bits of the CWP specifies be-
cause virtual register numbers are translated relatively to the contents of these
bits.

The two drawbacks of the shared shift-register file with respect to the
shared circular-buffer case mentioned in Section 4.3 remain. However, in this
case, when an exception occurs, it is possible to allocate a non-overlapped window
with the smallest size shifting down two groups of registers. Thus, the third
drawback introduced in the previous section for fixed-size windows with over-
lapped registers disappears.

In conclusion, multi-size windows can also be implemented using a shift-
register file. The advantages with respect to a circular-buffer organization is that
a shift-register file makes the register file access time independent of the register
file size, performs virtual to physical register number translation using an n-bit
adder or a (n-p)-adder if P is a power of two, and allows more flexibility in the
selection of the register file size because R should be just a multiple of N. The
drawbacks are that it forces the window sizes to be a multiple of P, and that,
although no measurements have been taken, it seems that it generates a slightly
greater percentage of overflows because only the exact number of registers can be
transferred to memory.

4.6 Conclusions

In this chapter we have discussed two different organizations for the regis-
ter file: circular buffer and shift registers. The circular-buffer organization has al-
ready been used for fixed-size windows in the RISC and PYRAMID 90x proces-
sors. We have seen how it can also be used to implement multi-size windows and
have shown that the window size does not have to be necessarily a power of two.
If the window size is not a power of two, then an r-bit adder is required to per-
form translation from virtual to physical register numbers.

A new organization called the shift-register file has been introduced. We
have explained how the shift-register file can also be used to implement fixed-size
windows without and with overlapped registers, and multi-size windows. The ad-
vantages of using a shift-register organization rather than a circular-buffer one
are:
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(1) The register file access time depends only on the size of the general-
purpose register set and not on the size of the register file. Thus, the processor
cycle delay caused by access to the register file is independent of the register file
size and similar to the delay required to access a register file with 2 single window.

(2) A shift-register file allows more flexibility in the selection of the size of
the file: R should only be a multiple of N. In the circular-buffer register file R
should be a power of two.

(3) To translate a virtual register number to a physical register number an
p-bit adder is required instead of an r-bit adder. The number of bits to be added
can be reduced to (n-p) if P is a power of two. For instance, to translate virtual
to physical register numbers for a B4-register file with three-size windows of sizes
4, 8, and 12, and 4 overlapped registers, a 2-bit adder is required for a shift-
register organization, while a 6-bit adder is required for a circular-buffer organiza-
tion.

(4) All the registers in the shift-register file can be used. In the circular-
buffer register file, the last window cannot be used because its outgoing-parameter
registers overlapped with the incoming-parameter registers of the first window.

We also expect a reduction in the chip area required for storage, bus, and
decoders. However, no results are available yet.
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CHAPTER 5
CONCLUSIONS

In this thesis, the architecture of a register file for a processor oriented to
execute programs written in C has been considered to study the cost/performance
tradeoff for the register set design. The principle that has motivated Reduced In-
struction Set Computers, to utilize the resources efficiently to support the execu-
tion of the most frequent instructions, has been the main motivation for this
design.

In Chapter 2, we have discussed the use of the registers made by the com-
piler for different purposes: for local simple variables defined by the programmer,
for temporary results and parameter passing, for optimizing variables defined by
the compiler, for the run-time process environment, and for global simple vari-
ables. The problems that a compiler has to use the registers for each purpose
have been considered and the solutions offered by an optimizing compiler and by
the architecture have been evaluated. We have concluded that registers can be
used by an optimizing compiler to reduce both the data memory traffic and the
instruction memory traffic, even if only a single window is available.

In Chapter 3, we have confirmed that multiple windows offer an excellent
support for function calls independently of the instruction set design (reduced or
complex). The advantages and disadvantages of fixed-size and variable-size win-
dows have been studied and multi-size windows have been proposed as an inter-
mediate solution that incorporates the advantages of both schemes. Using our
measurements we have concluded that three-size windows with four overlapped
registers and window sizes of 4, 8, and 12, and a 64-register file balance the
cost /performance tradeoff.

The effects of multiprogramming on the register file have also been con-
sidered and we have shown that (1) the register file should not be saved totally
when an exception occurs because of the high frequency of exceptions and the low
average service time, and (2) the register file is fully utilized because the average
pumber of function calls between context switches is greater than the average
number of function calls between overflows. We have also concluded that with a
private organization, two register files are required one for the user processes and
the other for the exception handlers, and that with a shared organization, the re-
gister file should be shared only among the user and the exception handlers, not
among several user processes.
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In Chapter 4, we have shown how a circular-buffer register file can also be
used to implement multi-size windows and have compared this implementation
with the existing organizations with fixed-size windows. Moreover, a new organi-
zation has been proposed: the shift-register file. The shift-register file offers the
following advantages with respect to the circular-buffer register file: it makes the
bus size and the access time to the register file independent of its size, it allows
more flexibility in the selection of the size of the file, it requires a smaller adder to
perform virtual to physical register number translation, it utilizes all the registers
available in the file, and it might reduce the required area.

Therefore, the use of an optimizing compiler and a multiple-window regis-
ter file with multi-size windows balances the cost/performance tradeoff of the re-
gister set design: it allows an excellent usage of the register file, it increases the lo-
cality of the references, and it reduces both the data and the instruction memory
traffic generated.
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