DATABASE MANAGEMENT ALGORITHMS
FOR ADVANCED BMD APPLICATIONS

Principal Investigator: Wesiey W. Chu
Researchers: M. T. Lan, K. K. Leung, J. M. An

Aprii 1985
CSD-850018






SECURITY CLASSIFICATION OF THIS PAGE Mhen Date Entered}

REPORT DOCUMENTATION PAGE | CRE COMPLETNE b

' BEFCRE CCMPLETNG FORM
l. REPCAT wuMSBER

12. GIYT ACCESSION ROJ J. RECIPIENT S CATALOG HUNBER

4. TITLE (and Subiitie) 5. TYPE CF REPORT & PERIOO coVERED

inal Report for the period:

Catabase Management Algorithms for Advanced Feb., 1, 1984 - Jan. 31, 1985

gD Applicatians

& PERFORMING QRG. REPOAT yyuaEA

7. AUTHGR(a)

W, W, Chu, M, T. Lan, K. K. Leung, J. M. An

8. CONTAACT QR GRANT NUMSZR{s)

DASG 60-83-C-0019

3. =£arcnuiuc QAGANIZATICH MAME ARD ASGRESS 13, PRCCAAM E_EMENT. PRCIECT, T ASK
. e B AREA A WORX UMIT NUMBERS
University of California, Los Aageles
Computer Science Department
405 Bilzard Ave., Los Anzeles, CA. 90024

T, CONTROLLING OFFICE NAME AND ADCRESS 12. REPQAT QaATE
2allistic Missile Cefense Advanced Techrology
Center (3MDATC) . T3. WUMBER OF PAGEZS
9. 0. Box 1500, Huntsville, AL 25237 114

Y4, wTmITCRAING AGENGY NAME & ASORESICI! afliarend (e Contreiling Cllics) 15. SEQLRITY CLASL (ef Uua repart)

Unclassified

SCMEQULE

— - et et
15a, CESLASSIFICATION/ OCWNGRAGING

6. SISTRAIEUTICH STATEMENT (af thie Raparr)

Distribution limited to U. S. Government Agencies only, Test and Evaluation.
Other requests for this document must be referred to BMD Program Manager,
ATTN: BMDSC-AU, P. O, Box 1500, Huntsville, AL 35807

17, CiSTRIBUTICN STATEMENT (0f the sbatrect enisred in 3lacx 29, Il dillsrent [ram mpesrt)

& SUPALEZMENTARY NQTES

‘3. KLY WCRLS (Continue on reveree side il nececsary and ldenilly by Biger numser)

Concurrency, Database Management Algorithm, Distributed Systems, Intermodule
Communication (IMC), Locking, Task Assignment, Interprocessor Communication (IPC),
Fault Tolerant Locking, Resilient Commit Protocol, Task Response Model, Task
Control-Flow Graph, Precedence Relation, Module Scheduling.

3. ASSTAACT (Cantinue ar reverse e:da if Necsasary and |deniity by bicek Mmumser)

)

P - . . . -
00 o5 1473 E3 - Nor i noves s oBsILETE Ureclasg< 4.3



DATABASE MANAGEMENT ALGORITHMS
FOR ADVANCED BMD APPLICATIONS

FINAL REPORT FOR THE PERIOD

FROM: February 1, 1984
TO: January 31, 1985

Contract No. DASG 60-83-C-0019

Prepared For:
Ballistic Missile Defense Advanced Technology Center
Huntsville, Alabama 35807
April 30, 1985

University of California, Los Angeles
Wesley W. Chu, Principal Investigator
Researchers: M. T. Lan, K. K. Leung, and J. M. An

The views, opinions, and/or findings contained in this report are those of the author(s)
and should not be construed as an official Department of the Army position, policy or
desision, unless so designated by other official documentation.



CONTENTS

Page
I. INTRODUCTION AND SUMMARY .....coiriiimiiiiiiieieinnnsss s I-1
II. TASK RESPONSE TIME MODEL & ITS APPLICATIONS FOR
REAL TIME DISTRIBUTED PROCESSING SYSTEMS......coovvieieiercnnnene. II-1
[Ii. PRECEDENCE RELATIONS & TASK ALLOCATION FOR
DISTRIBUTED REAL-TIME SYSTEMS ..o -1

IV. FAULT TOLERANT LOCKING FOR TIGHTLY COUPLED SYSTEMS........... IV-1

ACKNOWLEDGEMENTS

DISTRIBUTION LIST



CHAPTER I

INTRODUCTION AND SUMMARY



I. INTRODUCTION AND SUMMARY

During the past year, we have been emphasizing our studies on distributed
processing systems for the following three areas: task response time model, algorithm
for task assignments for distributed real-time systems, and Fault Tolerant Locking

protocol. We shall briefly summarize our findings in the following.

We have developed an analytical model for estimating the average response time
for loosely coupled distributed systems. The model provides a good estimate of task
response time as compared with simulations. For example, we are able to estimate the
port-to-port time for the DPAD system and obtain results comparable to that
generated by the DPAD simulator. Our analytical model not only provides us more
insight, but also is far less time-consuming. The model allows us to study the
performance of various scheduling algorithms, data base management algorithms, and
modﬁle and file assignment. Currently, we are extending our model for the tightly

coupled distributed systems.

Task assignment is one of the important problems in distributed systems. The
three key parameters are: accumulative execution time (AET), interprocessor
communication (IMC), and module precedence relation. During the past year, we have
emphasized our investigation on the module precedence relationship area. We have
performed simulation experiments as well as analytical studies and discovered that the
module execution time is a key parameter in determining whether a module pair should

be allocated on the same processor. In general, if a module with small execution time
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precedes a module with large execution time, then they should be allocated on the same
processor. Otherwise, they should be allocated on different processors. We have
incorporated these rules in our allocation algorithm developed in the previous year that
considers AET and IMC. We noticed that precedence relationship consideration could

provide substantial response time improvements for some application tasks.

Fault tolerance is an important design issue for distributed systems. Fault
Tolerant Locking (FTL) provides a resilient locking protocol for performing updates in
primary and shadow file copies in a tightly coupled distributed systems. Techniques
are developed to assure data consistency and recovery in cast of processor, memory, or
communication path failures. FTL has been implemented on the SDC BMD testbed at
Huntsville. Experimental results characterize the FTL behavior, operating overhead,
and performance. The testbed results conclude that FTL is feasible (in terms of
response time) for BMD applications. Currently, we are developing an analytical model
for FTL to study the interrelationshiAp of such parameters as the memory access
conflict, number of lock retries (time-out), and response time. Such study should
provide us with insight about selecting the parameter values for achieving optimal

performance.
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TASK RESPONSE TIME MODEL & ITS APPLICATIONS
FOR REAL-TIME DISTRIBUTED PROCESSING SYSTEMS®*

Wesley W. Chu and Kin K. Leung

Computer Science Department
University of California, Los Angeles
California 90024

Abstract

Response time is an important system petfor~
mance measure for real-time distributed proceasing sys-
tems. This paper introduces an analytic model to esti-
mate the task response time for loosely coupled distri.
buted systems. The model considers such factors as
the precedence relationships among software modules,
interprocessor tommunication, interconnection network
delay, module scheduling policy, and assignment of
modules to computers. Simulation experiments are
used to validate the assumptions of the analytic modei,
Applications of the model to the study of such design
issues for distributed systems as module assignment,
precedence relationships, module scheduling policies,
and database management algorithms are discussed.

1. INTRODUCTION

With the advent of low-cost VLSI and communi-
cation technologies, distributed processing (DP) has be-
come an economically and technologicaily attractive
computer architecture. The DP system coasidered in
this paper consists of multiple computers, each with its
oWn memory and peripherals, connected by an intet-
connection network.

In a DP system, an application task is often par-
titioned into several sub-tasks (i.e., software modules)
which are assigned to a set of computers for processing.
An example of a task consisting of fifteen modules as-
signed 10 a system with three computers is shown in
Figure 1. The logical structure and precedence rela-
tionships among the software modules may be
represented by a task control-flow graph. The task is
repeatedly invoked to meet the processing requirements
(e.g., processing return signals from s radar). After a
module completes its execution, it sends messages to
enable {invoke) its Succeeding module(s) as indicated in
the task controf-Aow graph. In addition, when a

*This work was supported by the Ballistic Missile
Defense  Advanced Technological Center under
Contract DASGB0-83-C-0019 and the U.C. MICRO
Grant P-3607-N-84.
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Figure 1a. A Sample Task Controk-Flow Graph

module finishes its execution, it may also send messages
to update the shared data files on other computers.
Such message exchanges among modules are referred to
as intermodule communication {IMC)". The overhead
for communications among modules that reside on the
same computer is usuaily small and can be assumed to
be negligible. If Mmessages are sent between modules
that reside on different computers, the messages are
called igterprocessor communication (IPC). IPC re-

II-1
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Figure 1b. Assignment of Modules to Computers

quires such extra processing as communication protocol
and management of the distributed data files, and in-
curs interconnection network delay. Therefore [PC has
significant impact on the system performance and
respoase time.

If data are shared among modules residing on
different computers, to provide fast local accessing and
to enhance file availability, some of the shared data
files are replicated on several computers. However,
maintaining the data consistency of the replicated
copies requires the use of a concurreacy control
mechanism (e.g., locking, timestamp, exclusive-writer
protocol}. Therefore, planning a DP system is compli-
cated by many such complex and interdependent
design issues as module and file assignment?, module
scheduling policy, database management algorithm, ete.
Presently, there is* no systematic methodology {or
designing DP systems. Existing system designs use ad
hoe methods which result in a trial-and-error approach.
Further, since DP systems often are required to per-
form time critical functions, response time is an impor-
taat performance measure. Simulation techniques are
used to estimate the response time, but such ap.
proaches are time-consuming and expensive. This
motivates us to develop an analytic model for estimat-
ing the response time for DP systems. The model can
be used as a unified approach for studying various DP
design issues and exploring the tradeoffls among
different design choices.

We shall first present our task response time
model based on module response times and the weight-
ed task control-Bow graph. Next, we present a set of
simulation experiments to validate the assumptions
used 1o the model for various types of logical structures
and precedence relationships among modules. Finally,
we discuss the use of the model to study the interrela-
tionships among task response time, module assign-
ment, precedence relatioaships, scheduling policy for
module executions, and database management algo-
rithms.
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2. A TASK RESPONSE TIME MODEL

Queueing networks ¥+ are commonly used to
model DP systems. In suchk models, computers are
represented as servers, modules as customers, and task
invocations correspond to external arrivals. Customers
are routed for service in accordance with the task
controk-Blow graph and the module assignment. in DP
systems, a module may enable more than one modules.
This is referred to as a FORK in the graph. Alterna-
tively, a module may have several immediate predeces.
sor modules which must complete their executions be-
fore the succeeding module can be executed. This is
referred to as a JOIN. When a control-flow graph con-
sists of FORKs and JOINs, the routing scheme in the
queueing oetwork model is inadequate to represent the
logical relatioaships among modules. Thus the system
cannot be represented by a tractable queueing network
model. Therefore, we present a new model to estimate
the task response time.

Task response time, or port-to-gort (PTP) time,
is the time from the request of a task invocation to the
completion of its execution. Since s task may be re-
peatedly invoked and the modules are enabled accord-
ing to the sequence as indicated in the control-flow
graph, task response time consists of module waiting
times, module execution times and precedence waiting
times. Module waiting time is the time from a module
invocation arrival until it starts its execution on a com-
puter. This waiting time is the time spent waiting for
module executions and input [PC processings. Module
erxecution fime is the sum of a module’s execution time
and its output [PC time. Let the sum of a module's
waiting time and execution time be denoted as module
response lime. The precedence watling time is the in-
termodule synchronization delay due to the precedence
relationships among modules. QOur task response time
model consists of two sub-models: module response time
model and weighted control-flow graph model. The first
sub-model computes the module response times, while
the latter considers the precedence waiting times.

2.1 Module Response Time Model

For a given module assignment, each computer
will execute a fixed set of modules. The response time
of a module is the time {rom its invocation to the com-
pletion of its execution. Thus module response time in-
cludes waiting (queueing) time and module execution
time. [f 2 module needs to send messages to other com-
puters, the output IPC time is included as a part of the
module execution time. Further, these [PC’s are
transmitted over the interconnection network, and
eventually arrive at their destinations. These input
[PC’s on the destination computers cap be viewed as a
special module which also contends f{or processing.
Based on the module assignment and IMC's among
modules, [PC processing times can be obtained. Let the



module execution times be characterized by probability
distribution functions (PDF’'s). Then each computer
can be modeled as a queueing system with several
modules {customers of different types) with specified
service distributions. Based on the logical structures
among modules and task invocation rate, the invoea-
tion rate of each module on the computer can be deter-
mined, In queueing terminology, module invocations
are customer arrivals. If several modules on the same
computer are invoked simultaneously, this results in a
bulk module invocation.

In our model, we assume that 1) the module in-
vocation arrival (single or bulk) processes are indepen-
dent of each other, and 2) module invocation interar-
rival times are Poisson distributed. To iHustrate the
concept, let us determine the modules’ response times
on a computer that uses first-come-first-serve (FCFS)
scheduling policy® for module executions.

Consider a computer that has n distinet module
invocations (single or bulk invocations}, and the arrival
rate [or the i* module invocation be A, and the Laplace
Transtorm (L.T.) of the service requirement be ¢s) for
i=1.2,...n. For a bulk invocation that invokes a set M of
distinet modules (referred to as module bulk), the
corresponding service requirement is U[e)= ] Xi(s),

M

where Xo.{s} is the L.T. of the service time of module m.

Based on the assumptions 1 and 2, this queueing
system is an extemsion of the regular FCFS M/G/1

queue with total arrival rate x= ¥ 3, and the L.T. of

[F 23

service time for each invocation arrival s

U'le)m i %— Ufe). For the M/G/1 queue, the first two
=1

moments of the module bulk waiting time from the
bulk invocation arrival until its first module starts to
execute are

A |
o= 2(-; -2 (1)
¥
and w =2+ 3('1' = {2)

where:
w' = n'* moment of service time for i* module invocation,
» = server utilization = £,

[T 11
w = average module bulk waiting time.
From Egs.(1) aad (2), we obtained the variance of
module buik waiting time as

*The model can be applied to other module scheduling
policies with the use of appropriate queueing delay
equations.
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In a bulk invocation, a set of modules are in-
voked at the same time. Based on the resource require-
ments, the operating system schedules the execution se-
quence for these modules. Let the sequence be
#1 . Jz e Jt o Jme The response time (a random variable}
for module j, is

¥
i) = 0 + E; ls) (4)

where:

v = module bulk waiting time,

oj,} = execution time lor module j, .
The average response time T(;) for module j, can be
obtained by taking the expected values of Eq.(4). We
have

i) =5+ 5 %) (5)

1m]

Since w, ;) and {;,) are independent random
variables, the variance o%{j,) of the response time for
module j, is the sum of variances of each component in

Eq.{4). Hence
i) = o3+ T o) (®)

1m]
where o%(;,) is the variance of execution time for module
jr and o% is given in Eq.(3). For the case of a single
module invocation, there will be only a single module in
the execution sequence.

2.2 Weighted Control-Flow Graph Model

To take into consideraticn the precedence wait-
ing times due to the intermodule relationships as indi-
cated in the task control-low graph, we map the mean
and variance of the module response times (computed
by the module response time model) onto the controi-
flow graph as arc weights {Figure 2). The response
time f{or module i is assigned as the weights for all arcs
emerging from module i in the control-low graph.
After the execution of module i, if it enables moduie j
which is residing on a different computer, the module
enablement message is transmitted via the interconnec-
tion network. Since the network delay is independent
of module response times, the mean and variance of
network delay*® can be added to the weight of the arc
from module i to j. Then the task response time can
be estimated from this weighted control-fow graph
model.

**Network delays among any pair of computers may be
different depending upon the characteristics of the
interconnection network.
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Time Estimations

According to the logical structures and pre-
cedence relationships among software modules, there
are four common types of control-low subgraphs:
sequential thread, And-Fork to And-Join, Or-Fork to
Or-Join. and loop {Figures 3 to 6). A task contrcl-How
graph may contain a combination of these basic logical
relationships among modules. Each of these graphs can
be reduced to a single node graph. Such successive
graph reductions yield the estimation of the task
response time.

2.2.1 Sequential Thread Subgrsph

Sequential thread subgraph (Figure 3) is a se-
quence of modules conaected in series in which each
module ({except the last) has a single successor.
Modules execute in the sequence indicated by the
thread. Assuming that module response times
represented by arc weights are random variables, then
the total response time of the thread is the sum of all
arc weights of each module,

TT-4
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Figure 4. And-Fork To And-Join Subgraph

2.2.2 And-Fork to And-Joln Subgraph

This subgraph begins from a module which
simultaneously enables several succeeding modules fan
and-fork) and ends at a module which is enabled only
when all of its preceding modules have completed their
executions fan and-join) as shown in Figure 4. This
subgraph may correspond to the case in which the
modules assigned to different computers require cosp-
current processing. Since sequential threads can be re-
duced to a single node as mentioned above, the and-
fork to and-join subgraph can be aggregated into
several nodes V, with response time y, for i=1,2...n {Fig-
ure 4). Because of the and-join function, the response
time of the subgraph is the maximum of y,'s.

Computing the response time for this subgraph
requires the knowledge of the PDF's for 3’s, which is
rather complicated. In this study, we shall emphasize
mainly the sverage task response time, which usuaily
can be determined by the first two moments of module
response times. Therefore, these moments are derived
from the module response time model. According to
the coefficients of variation of y's, they can be approxe



mated by either Erlangian or hyper-exponential distri-
bution functions®. Assuming that p's are independent,
the joint PDF for p's can be computed. Thus the
mean and variance of the response time for the syb-
graph can be obtained.

2.2.3 Or-Fork to Or-Join Subgraph

This type of the subgraph consists of an or-fork
and an or-join as depicted in Figure 5. At the or-fork,
the module enables one of its succeeding modules.
This tvpe of subgraph facilitates the system to process
one ont of several threads based on certain selection
criteria. The branching probubility to execute each
thread can be measured or: estimated from the IMC
data. The response time for the subgraph is the
weighted response times of all these threads.

2.2.4 Loop Subgraph

Loops are often contained in a task control-fow
graph for repeatedly processing a set of modules for 3
task invocation. A loop mar contain any of the
aforementioned subgraphs. After aggregating these
subgraphs, a loop may be represented by a single cyclic
node graph as shown in Figure 8. The arc weight is
the response time of executing s single loop. The
response time of the loop subgraph can be computed
" from the average number of times that the loop is exe-
cuted multiplied by the time required to execute a sin-
gle loop.

[ —-—
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'
3
1
¢

LOOP a TIMEZ %ITH
PROBABILITY 2

¥, ' AZIFANSEZ TTME FOR
A JINCLE LOGP

¥ RESPONSE TIME roR THE
LOOP SUBGRAPH

Figure 8. Loop Subgraph
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2.3 Module Response Times With Dependent
Modale Invocations

In Section 2.1, module invocations are assumed
to be independent and their interarrival times are Pois-
son distributed {assumptions 1 and 2). Thus, the logi-
cal dependency and the precedence relationships
among modules are neglected when computing the
module response times. The independence assumption
is based on the following observations. Each computer
is allocated with several modules which sare enabled by
modules residing on other computers. Since the opera-
tion of each computer is independent of each other, the
module iavocation arrival processes at each computer
are random and thus can be approximated by indepexn-
dent Poisson processes. However, if s module is in-
voked by another module residing on the same comput-
er (e.g., assigning a sequential thread to the computer),
then the module invocations are dependent and aop-
Poisson arrivals. The error introduced in computing
the mean module response times in such cases may be
unacceptable. Therefore we introduce the following
generalized model to compute the mean module
response times for dependent modyle invoeations.

2.3.1 Partitioning the Control-Flow Subgraphs

Based on a module assignment, we partition the
coatrol-flow graph into a set of subgraphs such that
the modules of each subgraph are allocated to the same
computer. Each control-fow subgraph on a computer is
invoked by other computers via the interconnection
network. Examples of such subgraphs are shown in
Figure 7. Due to the relationships among modules as
indicated in the subgraphs, the invocations of these
modules are dependent upon each other. In addition,
the dependency among the modules at the forks and
joins increases the computation complexity for module
response times. For tractability while considering the
precedence relationships among modules, we further
partition the subgraphs into several smaller ones at the
lorks or joins. As a resuit, the partitioned sebgraphs
become sequential threads (Figure 8). Figure 8a is a
special case where two sequential threads are invoked
simultaneously via bulk moduyle invocations as they
succeed an and-fork in the original control-fow sub-
graph. Further, if 3 sequential thread has an or-fork
(Figure 8f) and the control branches to a module resid-
iog on apother computer, then the execution ter-
minates at the or-fork.

2.3.2 Mean Module Response Times for Parti-
tioned Subgraphs

Since computing the mean module response time
is simpler than computing its variance, we are able to
relax assumptions 1 and 2. Let us refer to the frst
module of each sequential thread in a subgraph as the
eniry module, and other modules as non-entry modules.
We assume: 1a) the invocations for the entry module(s}
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of each subgraph are independent of each other, 2a}
the interarrival times of these invocations are exponen-
tially distributed (i.e., Poisson arrival processes). In
this case, only the invocations for the entry modules
are independent and Poisson arrivals, and the invoca-
tions for non-entry moadules may be dependent and
non-Powsson arrivals. Thus the mean module response
times* computed under these reflaxed assumptions in-
¢lude such module precedence,relationships as sequen-
tial threads. bulk module invocations at and-forks, and
branching at or-forks.

Let us consider the response times for entry
modules. Due to Poisson arrivals, the average waiting
time for 3 given entry module is the processing time re-
quired to execute all the module invocaticns existing
(waiting or being executed) on the computer upon the
artival of the entry module invocation. When several
entry modules are invoked simultaneously, these
modules are executed in a predefined sequence. Except
the first module in the sequence, the mean module
waiting time for a given entry module is the sum of the
module bulk waiting time and the execution times of
those modules processed prior to the module (Same as
Eq.(-4)).

of
the

*For  mathematical tractability, the variances
module response times are computed under
independent Poisson assumptions.

II-6

1-p

b

UNCHANGED

(a) (s} (3]

UNCHANGED
(®)

UNCHANGED

(o) (e} (gl

E: ENTRY MODULES

Partitioned ControkFlow Subgraphs of
Figure 7

Figure 8.

Let us now consider the waiting times for non-
entry modules. After an entry module finishes its exe-
cution, it enables its succeeding module as indicated in
the subgraph. Since the invocation arrivals for the
non-entry modules no longer form a Poisson arrival
process, we need to keep track of the 'history’ of the
module executions since the arrival of that entry
module invocation. During the waiting time of the en-
try module, pew module invocations may arrive (rom
other computers, and some of modules waiting in (roat
of the eatry module may invoke their succeeding
modules. These module executions will become the
waiting time for the non-entry module, which can be
divided into three componeants, and computed as shown
in the Appendix. The module response times can be
obtained by summing the respective waiting and execu-
ticn times.

Qur study reveals that for most subgraphs, the
module response times based on independent and Pois-
son module invocation assumptions are very close to
those of the dependent module invocations. The
dependent module invocation approach provides more
accurate module response times only when the modules
assigned on a computer form a long sequential thread.
This reveals that assumptions 1 and 2 are reascnable,
and provide good approximations for most cases.



3. MODEL VALIDATION

To validate the proposed task respoase time
model, simulation experiments were performed via two
simulation packages: a queueing network based simula-
tion package PAWS 7, and a simulator of the Distribut-
ed Processing Architecture Design (DPAD) System * for
real time space defense applications, In the PAWS
simulation, computers are modeied as servers, and
module invocations are represented as customers which
request services [rom the servers. The service times
correspond to the module execution times, After re
celving service, a customer is transferred to another
server queue according to the task control-flow graph
and the module assignment. A customer goes through
the interconnection network if it is transferred from
one server 10 another. The network is represented by a
server which always delays each customer according to
the network delay distribution function before passing
the customer to its destination Server. As a resuit, the
module invocations are dependent upon each other,
and their arrivals are non-Poisson distributed. Furth-
er. the queueing discipline on a ¢computer is also used
for the corresponding server queue. For an AND.
FORK operation, the moduje invocation is split into
several modules and routed to their approptiate
servers, For an AND-JOIN operation, the module fol-
lowing the join waits until all precedent modules com-
plete their executions. The precedence and logical rela-
tionships among modules are preserved in the simuia-
tion. Therefore, PAWS provides a flexibility for testing
different types of task control-flow graphs. However, it
uses idealized external inputs (e.g., Poisson task invoca-
tion arrivals) and does not include the detailed operat-
Ing system overhead.

We have performed the simulation to obtain the
mean PTP times for selected types of task control-flow
graphs. To reach the steady state of the queueing sys-
tems. the task is invoked ten thousand times for each
simulation rua. Further, each simulation experiment is
repeated five times with different initial random
numbers to reduce the statistical fluctuation. In this
paper. let us consider the sample task control-flow

graph in Figure 1a with its parameters given in Table
1. It consists of sequential threads, ap And-Fork to
And-Join, an Or-Fork to Or-Join, and a loop. These
modules are assigned to thres identical computers for
processing, and the system has 3 constant network de-
lay of 0.2 second for message exchanges among comput-
ers. Figures 0 to 12 present the mean response times
whole task for the moduyle
assignments (Table 2). We aggregate the response
times of sequential threads, the and-fork to and-join,
the or-fork to or-join, and the loop, and finally obtain
the PTP time for the entire graph. Besides this
control-low graph, we have also studied the perfor-
maace of the analytical model for various types of
control-low structures. The fact that mean response
times from the analytical model tompare closely with
that of simulations reveals that the assumptions used
it the analytical model (independent and Poisson
module invocation arrivals} are good approximations
for response time estimations.

The PAWS simulation is very time-consuming.
Depending on task invocation rates and control-flow
graphs, each simuiation point requires five to eight
hours of VAX-11/780 processing time. While for the
analytical model,. the response time computation for a
given module assignment under various loading en-
vironments tequires less that one minute of CPU time.
This represents a reduction of three orders of magni-
tude in computation time!

. MEAN EXECUTION TIME EXECUTION TIME

YODULES in sec) DISTRIBUTION
1.2, 3, 4, % 1 EXPONENTTAL
6, 7, 8, 9, 10 2 EXPONENTIAL
11,12,13.14,15 3 EXPONESTIAL

Table 1. Module Execution Times for the Sample

Coutrol-Flow Graph (Figure 1a)

W CPU 1 CPU 2 CPU 3
A,
o"“t: mooULES PROCESSING woOULES PROCESSING WODULES PROCESSING
ASSIGNED LOAD (SEC) PER ASSIGHED LOAD (SIC)PER ASSIGNED LOAD (SEC) PE
ASS IGNMENTS ASK INVOCATION] TASK [NVOCATION TASK INVOCATION
S g il |
o571, 5.125 2,4, 8, 5.87% 1, &, 10, 14 s go2s
A g, 12, 13 11, 13
1
1, 3, 5, 2, 6,8, 9, N
B 7, 13 3.128 11, 12, 1s 8.878 4, 10, 14 4,620 i
Table 2. Module Assignments & Computer Processing

Load for the Sample Control-Flow Graph
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We now desctibe the model validation via the
DPAD simulator*. The DPAD system is a real time
DP system which processes radar return signals for
space defense applications. The DPAD simulator pro-
vides detailed operating system operations for module
scheduling and [PC message exchanges among comput-
ers. Further, non-Poisson task invoeation arrivals are
used. Its task control-low graph is shown in Figure
13. The moduile assignment and module priorities are
shown in Table 3. The processing thread for precision
track function is indicated by shaded modules in Fig-

"ure 13. For input data to the analytical model, we col-
fected the IMC data. module execution times {Table 4)
and invocation rates in every 100-msec time interval
{rom the DPAD simulator. Since the DPAD System
uses a priority module scheduling policy rather than
FCFS. queueing formulas were derived to compute the
moduie response times for this scheduling discipline.
The PTP time was generated for each of these time in-
tervals. To obtain the 909 confidence intervals for the
task response time, the simulation was repeated five
times. From Figure 14, we note that the PTP time
predictions are close to the simulation measurements.
This indicates that the model also provides a good
response time estimation for non-Poisson task invoca-
tion arrivals with priority module scheduling policy and
[PC overhead.

o
']
C; ==—— Amalytical
- Pradictiong
[75]
z Simalation
. 30y Confidance
[P
= =
[
a.
=
= =4
o -
[
fung
—
- 1}
=
= T
s ] : 4 -
2 el ]
. -
- /
ooy
[« 18

e’ |

a. €30. toge,  1$P0. 2004

TIME (MSEC!

Figure 14. Comparing Analytical Predictions with the
DPAD Simulation '

24540. 3cod.

“The DPAD simulator was originally developed at
TRW and subsequently enhanced at UCLA to include
Lacifities for measuring IMC data. module execution
time and invocation statistics.

II-9

- LY TIT]
AEECHS1OmM tdace
Trab AD

Rapal (NHEMPACE

»
couman Pt 08.CT BrCEImIMATIon
fRagx A CLAYHIFICa I
- o e
erCision
TRACHE
3 -
;
5 LIF
Ragam
IHrEeeace
HOCCISING
(1 NEMMsHGS | OE.ar [l
Eham g Thacm

INIFRCEWT
A G Al
<ommyr

tmrracEr rom

Figure 13. The Task Control-Flow Graph for the

DPAD System
COMPLTERS UODULE ASSIGNVENT
Mo(1), N,(L1), M, (1), M (1),
CrU 1 1 2 4 (-]
Iacl). llo(l). !15(1). Kzz(i)
Mo(L1), Mg(1}, Mo(L), M. .(1},
coU 2 3 ] 9 17
Mls(l), llg(ﬁ}. Yapn(8), “21(5)
U 3 LI SQ Ill{ll. !12(1). u13;3L
u14:2). LIFIS Y Maqld}
foi) : Module x with priericy 1. H‘{L) has

higher priority than Hy(;) o>,

Table 3. A Module Assignment for the DPAD System

WEAM CXECTION oour. o
HOoLES TOr e VARZATION l
1 0157043 9.3001831
2 Q.211822 0.32T414
1 3. 197477 4.200c86
[} 0.422261 0.385611
5 9.119127 0.00042
[ 9.12r824 Q.257118
b d,J3%322 ¢..7TH%"2
] 1. 128161 4.307%35
9 0.d53929 4.3040¢0
14 2. 5315741 9.000226
11 0.390000 2.000000
12 0.200c00 9.300000
13 0.11433L §.302354
14 9. 111388 3.201847
L8 0. 383000 0.900000
16 8.717701 0.3000%0
17 L.31711) 4.J00633
i3 0.636483 0.302184
19 1139837 9.93c003
20 §.695341 0.000012
1L 3.-3c223 a.300253
22 a.280:71 a.317e5:
2z 9,164 0.305:43

Table 4. Module Execution Times {Including Output
[PC) for the DPAD System Averaged over 35
100-msec Time [ntervals



4. MODEL APPLICATIONS

The proposed model can be used to study the
effect on response time of such design issues as module
assignment and precedence relationships, module
scheduling disciplines and database management algo-
rithms. With the response time as a performance
measure, the model can be used to study the tradeoffs
among various design choices and to provide us insight
into planning and evaluating distributed systems.

4.1 Moduie Assignment and Precedence Rela-
tionships

The assignment of modules to computers is an

important problem in DP system design. Module as-
signment affects the response time, throughput, and
systemn reliability. The factors that afect the module
assignments are: a) computer processing capacities and
their utilization factors, b) IMC among modules, and ¢)
‘logical and precedence relationships among modules.
Several approaches to the assignment problem in distri-
buted systems have been proposed +'2. However, each
of these approaches has its shortcomings such as
neglecting queueing effect and precedence relationships.
Therefore. the "optimal’ module assignments generated
by them do not provide low response times on the ac-
tual systems. Qur proposed model takes both comput-
er load and precedence relationships into consideration.
For a given module assignment, a module scheduling
policy and a data management algorithm, the task
response time can be estimated from the- proposed
model. The proposed model can be used to investigate
the performance in terms of task response time of
module assignment strategies with various module pre-
cedence relationships at different operating environ-
ments. This study provides insight into the interrela-
tionzhip among precedence relationships, module as-
signment and task response time,

4.2 Module Scheduling Disciplines

For a given module assignment, the scheduling
policy for module execution affects the respounse time.
For example, to reduce operating system overhead, in-
vacations for the same module may be delaved until a
predefined number of module invocations have arrived
and are executed in a batch manner. To avoid excessive
waiting, 1 time-out mechanism may be used in con-
junction with this scheduling policy. The proposed
mode]l can be employed to study the relationships
ameng time-out comstant, batch size, operating system
overhead aad the PTP time for this scheduling algo-
rithm. Further, it can investigate the optimal assign-
ment of module priorities for head-of-line priority
scheduling pelicy and the relationships among schedul-
ing policy. module assignment and the PTP time,.
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4.3 Database Management Strategies

Distributed systems require protocols to ensure
internal and mutual data consistency for simuitaneous
access of replicated data files. These protocols require
extra IPC, processing, and increase module response
delays. Commonly used techniques for consistency
contruls are locking, timestamp, and exclusive-writer
protocol '*". [n the proposed model, the effect of [PC
can be inciuded as a special module execution. If the
module execution has to be delayed for bandling the
data consisteacy problem, the module execution time 3
correspondingly “ prolonged. Thus the model can be
used to study the overhead in terms of PTP time of
several commonly used database comcurrency control
algotithms such as locking, timestamping, and the
exclusive-writer protocol. The results of these investi-
gations should provide insight into the performance as
well as overhead of concurrency control algorithms for
distributed systems at various operating environments.

5. CONCLUSIONS

A new task response time model is presented for
estimating the PTP time for distributed processing sys-
tems. The model maps the module response times into
the task control-Bow graph as arc weights and esti-
mates the PTP time from the weighted task control-
flow graph model. Since this approach considers the
queueing effects, the interconnection network delays,
and the logical relationships among moduies, the model
provides accurate PTP time prediction. Simulation ex-
periments reveal that the proposed model provides fair-
ly accurate PTP time. The model can be used to study
module assignment problem aand the effect of pre-
cedence reiationships among modules on the PTP time.
In addition. it can be used to study other design issues
such as module scheduling policy, database manage-
ment algorithm, ete. Thus this model serves as a valu-
able tool for the systematic planning and designing of
distributed processing systems.
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Appendix

Computation of Mean Module Response Times
with Dependent Invocations

Consider a computer allocated with modules of o
distinct control-flow subgraphs. Each subgraph con-
sists of one or more sequential threads which may be
invoked simultaneously (See Figure 8a). Assume that
the " subgraph consists of sequential threads, and
the ;" sequential thread comprises 4, (/) modules for
j=12,..6. For a subgraph consists of a single sequential
thread, then ¢, = 1. Let M, (j:4) be the &* module (start-
ing from the entry module) of the ;» sequential thread
for the i* subgraph. In addition, let P, (j:kt) be the pro-
bability of invoking , {j;¢) given that A (;:t) is execut-
ed for im12 o j=1.2, .5, 2nd 1 €< t<d, ;). Thus if
a subgraph does not contain any or-fork, P, {jkt) = 1
for all & and t. For a subgraph containing a branch of
an or-fork, the modules in this branch- are not invoked
il the control branches to the modules that do not re-
side on the same computer. Thus we have,

P (k) =1 (A1)

and P, (jiki+a) = tﬁ-l P (jiti+1) (A.2)

[ET

for 1 < k< k+a <4, ().
Mean Waiting Time for Entry Moduies

Let W, (;;&) be the mean waiting time for module
M. (:k). According to the assumptions 1a and 2a, the
mean waiting time for M, (1:1} (i.e. an entry module)
for all i=1.2_.v under the first-come-frst-serve discip-
line is the average time to complete the current module
execution aad all the modules in the job queue on the
computer when the invocation for \, (1.1) arrives. Thus

we have I L -
Wl =W,+T ¥ ¥ (a0 (51 (A.3)

LE JURE RN ¢ 7]

where:

m, (s1) = average number of invocations for M, (51
waiting in the job queue,

T () = average execution time for M, {a:1),

W, = mean residual module execution time
foh A
=
=T vy 5 M) m, (a0,
] pal tamy =

7, {s1) = second moment of execution time for o, (s:1),

M (et} = invocation rate for M, (#1).



Based on Little’s result'® (i.e., n, (st) =), (5:0) W, (2t))
and substituting the computer utilization of M, {r1),
o, (s:0) = A, (1) T, (#:1), inte Eq.(A.3), we have
e b oAln
W L) = W, +% © T op(an) Wi (A4)

rm] twl twml

For simplicity in notation, we can order the
thread index j such that the execution sequence for the
bulk module invocations is to execute module M, (5:1)
before module M, (r;1) for j<s. Thus the mean waiting
time W, (j:1) is

W, (1) = W, (1]) + "_‘:l z, (1) (A.3)

=)

for i=1,2_..v, and 4 > j 22.

Mean Waiting Time for Non-Entry Modules

Let us consider the waiting time for the non-
entry modules M, (5:¥) (i.e., with £>2). After completing
its execution, a module invokes its succeeding module,
if any, and places the invocation at the end of the job
queue. Since these invocation arrivals are dependent
and non-Poisson distributed, we need to keep track of
the invocations generated from the modules residing on
the local computer as well as the newly arrived module
invocation from other computers. The waiting time for
the non-entry modules can be divided into three com-
ponents. The first component, W1, (j:k), is due to the
executions of the succeeding modules invoked by the
module invocations whick are being executed or wait-
ing in the job queue upon the arrival of the invocation
for M, (j:1). The second component, W2, {j:k), is due to
the waiting for the module executions invoked by the
bulk module invocations (i.e., M, {s1), #=1, - -$ and
es6j). The last component, W3, {j:k), is the waiting time
due to the module invocations from other computers
that arrive after the invocation for the entry module
and their succeeding modules. Thus,

. b din-Eey

WL =Y % ¥

ta] sae] tam]

Aat) P, (a1 +E-1) 2, (£t+E-1)

v b il _
+ T 8 T an)P {nni+i-l) zfatdE-1) (A.8)

r=] sml tal

The first term of Eq.{A.8) is the total time for execut-
ing the succeeding modules invoked by M, {s:t) waiting
in the job queue upon the arrival of the invocation for
M, (7:1). Similarly, the second term is the execution
times of the modules succeeding the module A, (r1)
which bas probability p, (#¢) of being executed when
the invocation for M, (j:1) arrives.

According to the definition of invocation proba-
bility P, (&:1,0+k-1),

A (m+k-1) = %, (5:8) P, (0:t,04E-1) (A7)
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Applving Little's result and substituting Eq.{A.7) and
g [5:t) = 5. (£:4) T, (0:0) into Eq.(A.6), after some algebraic
manipulation, it yields

A THN A

W, =S T T

r=] s=] =]

o, (nt+E-1IW.(n0+ T(n0]  (A8)

The second component of W, (j.&} is

1= ‘i
we, (j:k}-glP,{r;l.k) IR+ T P (nLk-1) z{sk-1} (A9)
3=l syl
The first term in Eq.{A.9} is the éxecution times for the
modules succeeding the entry module(s} (M, («1) for
s<j) that are executed before A, (;:1) in the bulk
module invocation. The second term is the execution
times of those modules succeeding the entry module(s)
(M, (5.1) for 1>} executed alter M, (5:1).

The third component of W,{j:k) is used to keep
track of the new module invocations that arrive after
the ipvocation for the entry module M, (;:1} and their
succeeding modules subsequently generated from the
newly arrived invocations. Thus, we have

r .r
W3, {j:k) = [W, (:k-1) + 3, (76-1)] © T A1) 7{n1)

Tam] yml

[

L r
Wk L N (01) Pre1.2) 2(e:2)

raxl st

+ )22

’ .l

W, (UG T Mel) Plerk-l) T{ek-1) (AL10)
ml.i_(i]?:-l

Due to the first-come-first-serve scheduling, those
module invocations [rom other computers arriving dur-
ing the response time (waiting plus execution) of
M, (j:k-1) contribute a part of the walting time for
M, (k1. Thus the first term of Eq[A.10) is the total
time for executing those module invocations artiving
during the response time of M, (j;k-1). Likewise, the
remaining terms of Eq.{A.10) are the times for execut-
ing those module invocations from the same computer
where P, (s:1,2) represents the probability that A, (s:1)
invokes M, (52}, After substituting A, [o:)
= ()P, (61t} and o, (s1) =X, (60 I (50)  iDto
Eq.(A.10}, and simplifying. we have

£-1 - ¥ (4
W3, (ik) = CUW i)+ 3, G 8 8 adak-t)
iml rm] sl

42 k-t

(A-11)

Therefore, the mean module waiting time for M, () is

W, (k) = WL, (ik) + W2, (j:0) + W3, (k) (A.12)

for im12,..v, j=12..b,and 4, (12 £2 2

The mean module waiting time for each module
is expressed in Eq.(A.4), (A.5) or (A.12). They can be
determined by solving this set of linear equations. The
mean response time for each module is the sum of its
mean waiting time and mean execution time.
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PRECEDENCE RELATIONS AND TASK ALLOCATION
FOR DISTRIBUTED REAL-TIME SYSTEMS

1. INTRODUCTION

Although computer speed has increased several orders of magnitudé during the past
decades, the demand for computing capacity increases more rapidly. Many real-time
applications require speed capability not achievable by a single processor. One approach to
this problem is via distributed data processing (DDP} that concurrently processes an
application on multiple processors. If properly designed and planned, DDP provides a more
economical and reliable approach than the centralized processing with a single high-speed

processor.

Task partitioning and task allocation are two major steps in the design of DDP systems
[CHUS0]. If these steps are not done properly, an increase in the number of processors in a
system may actually result in a decrease of the total throughput. Assuming the software for an
application (a task) has been partitioned into a set of program modules (or, subroutines), we
study how to properly allocate (assign) these modules to the set of processors in the DDP

system.

We shall first present the three important input parameters for task allocation:
intermodule communrication (IMC), accumulative execution time (AET) of each module, and
precedence relations (PR) among program modules. Next, we propose an objective function for
task allocation that is based on IMC and AET. A task-allocation aigorithm based on that
objective function is then proposed. The PR states that a program module should not be
enabled before all its predecessor(s) finish execution. Simulation and analytical results are
shown and they reveal that the program-size ratio between a module and its predecessor

module plays an important role in task allocation, in terms of task response time. An improved
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task-allocation algorithm, based on PR, IMC, and AET, is then proposed. Examples are given

to illustrate the performance improvement when PR is considered in the task allocation.
2. ANEW OBJECTIVE FUNCTION FOR TASK ALLOCATION
2.1 Key Parameters’

The three parameters that play important roles in module assignment are intermodule
communication (IMC), accumulative execution time (AET) of each module, and precedence
relations (PR) amorg program modules. The AET for a module M; during a time interval

(£5,¢4+1) is the total execution time incurred for this module during that time interval, i.e.,

T{tpts+1) = Nyt tiw )y titisy)

where N(¢;,t44,) = number of times module M; executes during (¢;,¢;+,), and Yilthtasy) =
average execution time of M; during (¢;,/4+;). Both the y; and AET can be expressed in
machine-language instructions (MLI) executed. Although the execution time of a machine-
language instruction varies from instructior to instruction, we can use the mean instruction
execution time given the mix ratios for various different instructions. Our study reveals that
both the number of module executions and the AET are almost indeperdent of module

assignments when the load offered to the system is fized. Fig. 1 shows that the AETs produced

by five different assignments for a module in a space-defense distributed system ! are almost

identical.

IMC is the communication between program modules through shared files. When a
module on a processor writes to or reads from a shared file on another processor, such IMC
becomes IPC (interprocessor communication) and requires processing overhead. The

importance of [PC minimization has been recogrized by many researchers [CHU78, GENT78,

! This system, the Distributed Processing Architecture Design (DPAD) system, will be used as
an example in Section 3. A portion of its control-and-data-flow graph is given in Fig. 2.

[1]-2
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IRAN82, WU84, CHU8B4b]. IPC can be reduced by assigning a pair of heavily commuaicating
modules to the same processor. IMC can also be assumed to be independent of module
assignments |[LANS85]. A method for estimating both IMC and AET has been reported in
[CHUS84bj.

IPC varies with module assignments because the occurrence of IPC between two
communicating modules depends on whether these two modu]ps are assigned to different
processors. For example, if two modules communicate through a replicated shared file and
reside on different processors, then the file is repiicated on each processor. When a module
updates the file, it updates the copy on its local processor. It then sends the updates to the
remote processor, resulting in IPC which requires processing load on both the sending and
receiving processors. Such IPC is eliminated if the two modules are assigned to the same

processor since both modules are sharing the same local file copy.
2.2 The Objective Function

Since each module can be assigned to any of the S processors, there are $7 different
ways to assign J modules to S processors, assuming that each module is assigned to ore and
only one processor. This can be represented by an assignment tree with 57 leaves, each leaf
corresponding to a possible assignment. This tree has J levels, each representing a module. At
each non-leaf node there are S downward branches, each representing the choice of a processor

to host the particular module. An example with J = 23 and S == 3 is shown in Fig. 3.

An ezhaustive search approach for module assignment is to search every leal of the
assignment tree. The optimal module assignment is the one that minimizes (or maximizes, e.g.,
throughput) the given objective function. Exhaustive search is usually undesirable because of
the enormous amount of time required. For example, if the computation time for a leal is 250

js on a computer system, then the enumeration for a tree with 3% Jeaves requires about 10
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days of processing time which is prohibitive.

Existing approaches to task allocation can be divided into three categories: graph-
theoretic [JENN77, STON77, STON78a, STON78b, RAO79, BOKH79, BOKH81, CHOUS8?2|,
integer 0-1 programming approach [CHU89, CHU80, MA82], and heuristic approach [GYLY78,
EFE82]. Many of these methods try to minimize a job's total cost which is déﬁned as the sum,
across all processors, of both processing cost and IPC cost dedicated to that job. This might be
acceptable for a distributed system shared by muitiple simultaneous non-real-time applications
(jobs), each having program modules running on some or all of the multiple processors. Such
applications attempt to maximize t‘he total throughput. For a distributed system with identical
processors, their formuiation is equivalent to the minimization of IPC since the-processing cost

is fixed.

For real-time systems, response time is the most important performance measure. A
computer system is designated solely for a specific application, i.e., the system is not shared by
any other application. The system is required to finish a certain task within a specified time
limit. Merely minimizing IPC alone may not produce a good assignment. In fact, a minimum-
IPC assignment will assign all program modules to a single processor which will saturate the

system and thus yield poor response time.

The processor with the heaviest loading in a distributed system is the one that causes
the bottleneck. For instance, for a system with three processors, an assignment requiring 58%,
809, and 81% of processor utilizations might have a better response time than a second
assignment with 209, 40% and 90% utilizations. This is mainly due to the fact that the
second assignment has a bottleneck processor more heavily loaded than the first assignment,
and queuing delay is a non-linear function that rises rapidly with the level of bottleneck

(processor load).
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The processor load consists of the loads due to 1) program module execution and 2)
IPC. Therefore, both AET and IPC play important roles in module assignment and thus
influence task response time. AET is usually represented in MLI (see Section 2.1). The number
of transferred IPC words can be converted into the MLI's spent by both processors that send

and receive the IPC.

For a given assignment X, the work load L(r; X} on a given processor r is

L(rX) = _)f.lz,-.T,- + §1 [IPC(r,s;X) + IPC(a,ri)] o
b 8§ um
Py

where X -——[zj,.] is the assignment matrix in which z;, = 1 indicates that module M; is assigned
to processor r. The first term in the equation is the AET for all modules assigned to processor
r. The second term is I[PC overhead which consists of two parts: overhead due to the IPC
originated from processor r to other processors, and incoming messages to processor r from
other processors. For a system whose file-update messages dominate the IPC traffic, we can
ignore other types of IPC such as module enablement messages and system control messages.
The total overhead due to outgoing [PC at processor r is

ﬁ IPC(r,8;X) = wé zj, ﬁ Vj* i 8,

8=l Fe=l k] s (2)
Iy a#ky

where K is the number of files used in the distributed system; ij i3 the IMC message volume

sent from M; to update the replicated file F; 8,, indicates whether a replicated copy of F

S
resides at processor s; the term ), 8, gives the number of remote copies of F, that must be
Smm]
adke

updated; and w is a weighting constant for converting the message volume into MLI's. For a

system with message-broadcasting capability, a file update need only be sent out once; thus the

S
term 3, 8;, in eq. (2) should be replaced by the constant one.

S m=]
sy
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Similarly, the total overhead at processor r for incoming IPC from all remote sites is

i [PC(S,I‘;X) = wé ézjl § ij Bkr

=1 =] el kel 3
:ir :#r ! ®)
Based on our previous discussion, we propose to use the work load of the bottleneck
processor (in unit of ML) as the objective function for module assignment, i.e.,
S
Bottleneck{ X) = max { L(r;X)
L

1

(4)
We want to find the assignment that yields the minimum bottleneck [CHU84a| among all

possible assignments in the assignment tree, i.e.,

m}n { Bottleneck{ X) }

(5)
Substituting eqs. {1) and (4) into eq. (5) yields
s
min {ma.x [AE T(r) + IPC( r)] }
X re=l - (8)

where AET(r) and [PC(r) are the total module execution time and total IPC overhead

incurred at processor r.

A good assignment can be obtained from minimizing IPC and balancing processor loads
among the set of processors. A minimum-bottleneck assignment generally has low IPC and

fairly balanced processor loads because:

1. If the loads were not fairly balanced for an assignment, the bottleneck (highest load among
all processors) would be high and this assignment would not be a minimum-bottleneck

assignment.

2. If a given assignment had high IPC, the sum of processor loads over all processors would be
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IPC during Phase I, heavily communicating modules are combined into groups if the AET's of
the resulting groups are not too large. Each group is a set of modules which will be assigned as
a single unit to a processor during Phase [I. The computation required for Phase I is small
because this phase is a linear-time algorithm. Phases [I assigns the module groups to available
processors such that the bottleneck (in the most heavily utilized processor) is minimized. Our

algorithm assumes that
1. there are J modules, M|, M,, . . ., M, and S processors;
2. the average AET (over the peak-load period), T}, for all modules M; (; = 1,...,J) are given;

3. the average IMC between any module pair M; and MJ-, IMC; , (s = 1./, =1..J)is

given.

ALGORITHM [-A:
Phase I: Combine modules with large IMC into groups to reduce total system load.
1.1 Initially list all module pairs (M;, M;) in the descending order of IMC volume.

Calculate average AET and average processor load:
AET « é T;7J
Jm=l
PL -~ é T;/S§
jm=l
Set threshold values for IMC volume and for processor load:
e!MC - AET X a %
05, - PLXB%
Let each program modaule form a distinct group (a set):
GJ - {MJ} J‘ = l,...,J

1.2 If no more pairs exist in the module-pair list
go to Phase II.
Pick the next pair of modules, M; and Mj, and delete this pair from the list.

I1-11



1.3 If IMC; ; = 040
go to Phase [I.

1.4 Find the group G, that contains M,, and the group G, that contains MJ- (ie., M, € G,
, Mj € G,).
If s =t (i.e., if M; and M; are already in the same group)
go to Step 1.2.

1.5 B T,+ T, >08p
go to Step 1.2.

1.8 Combine the two groups G, and G; into a single one:
G, - G, UG,
G, - O
T, « T,+ T,
T, - 0

1.7 Go to Step 1.2.

Phase II: Assign module groups to processors.

2.1 Perform an exhaustive search through the new assignment tree for the assignment that
has the smallest bottleneck.

2.2 Stop.

Note Phase I reduces J modules to G groups, G < J, which corresponds to a much
smaller assignment tree. Let us now discuss the rationale of Steps 1.3 and 1.5, respectively.
Step 1.8: For a pair of modules whose IMC is smaller than the IMC threshold Oc(a % of
m'), merging them gives little benefit in terms of the [PC saved. Our experience reveals that
o should range between 1% to 10%.

Step 1.5:  Our assignment algorithm reduces large I[PC. However, when merging two groups
into one, we should leave some processing capacity in the resulting new group for
accommodating the remaining IPC and the possible grouping with some other module groups.
If two groups were combined and formed a group that was too large, we could not obtain a
balanced-load assignment during Phase II. Therefore, the processor-load threshold 8p; is

limited to B %5 of the average processor load PL.
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3.2 Example 1: the DPAD System

In this section we demonstrate the performance of both the proposed objective function
and Algorithm [-A by applying them to an example system, the Distributed Processing
Architecture Design (DPAD) system. The DPAD system was developed to manage the data
processing and radar resources for a space-defense application [GREESO, HdFFSO]. A portion
of its control-and-data-flow graph is given in Fig. 2. The twenty (20) modules are to be

assigned to three processors.
3.2.1 Performance of the Proposed Objective Function

- The average AET and IMC during the peak-load period for all modules of the DPAD
system are given in Table 1. The identified peak-load period is from 1.0 s to 2.0 s of mission
time. For example, Tg = 32,055 MLI is the average of ten measured AET vaives within the
period, at each increment of 100 ms. Column 3 shows the file(s) updated by the write-module.
Each IMC value in coll;mn 4 is the total file-update volume for 100 ms, written to the file in
column 3 by the write-module in column 1; like AET, this IMC value is an average of ten
values in the peak-load period. Column 5 lists all the modules which read the updated file. If
a read-module for a file and the associated write-module are on different processors, both

processors would have a copy of the file and IPC occurs for updating the replicated file copy.

A FORTRAN program was developed to compute the proposed objective function for
ecvery assignment in the assignment tree. When an assignment {corresponding to a tree leafl)
yields a bottleneck value smaller than the smallest bottleneck obtained so far, that assignment
is saved. The last ten saved assignments, denoted as Assignment #1 through #10 (Fig. 4),
were simulated with the DPAD simulator and their performance compared. Figs. 5a shows the
CPU utilization for the minimum-bottleneck Assignment #1. We note that the loads for the

three processors are quite balanced during the peak-load period. The processor loads for
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Write AET File IMC Size Read
. . )

el ML Modules

M1 8885 none
M2 2700 Fl14 124 | M3
M3 1590 F115 144 Ml13
Fli8 112 | Mi13
M4 10410 ™07 314 | M5 Mo.MT
M5 1860 F119 68 M7
M6 1950 Fl21 a8 M7
M7 1680 F122 a7 M13
| F120 82 | Mi13
Mé M10,M18
M8 32055 F123 1588 MQ.MIT.MIQ.M_ZQ_
Fl124 6387 Mé Mlo0.M1i8
M9 18600 F125 208 M13
: 127 1 M8
M10 3380 ™3 1T Mis
(M1L1 0 Modul
- (M12) ) odyle Not |
M13 253035 F131 30371 Ml4

F147 1800 Mi13
Ml14 16860 F132 019 M23

M15) 0 odyle Not Implemented
Mlé 4170 F135 100 Mil8
M17 6240 F136 100 M18
F137 229 | M19
M18 3975 F138 36 M8
F139 244 | M20
M19 9705 F139 599 | M2o
M20 2010 F140 82 1 M21

M2] 195 F14] 32 1 Radgr
M22 leqr0 —E142 1 242 | M23

F113 4593 | MIM
M23 17025 | Fl12 5112 | Radar
[_Radar F1l1 14737 | M22

Each Transferred IPC Word Has Been Converted To 3 MLIs.

Each AET and IMC Value Is an Average of Ten Values
Over the Peak-Load Period Between 1.0 and 2.0 Seconds.

TABLE 1, AET aup FiLe-UppaTE IMC (1N MLI) per 100 Ms
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Assignments #2 through #10 are also fairly balanced. This verifies our conjecture that the
minimum-bottleneck objective function provides balanced loads. For comparison, Figs. 5b and

5c show the processor loads for an arbitrary assignment and a manually generated knowledge-

guessed ! assignment [HOLL82]; they are less balanced and their bottleneck loads are much

higher than that of Assignment #1.

Fig. 6 shows the Precision-Tracking port-to-port time (the DPAD terminology for
response time for a task thread) for Assignments #1 through #9 as well as the above arbitrary
assignment. The arbitrary assignment has a poor performance because two of its three
processors are saturated. Note that the performance difference between a good and a bad

assignment can be substantial. Poor assignments yield poor response time.

Fig. 7 compares the port-to-port time for the Precision Tracking thread between the
knowledge-guessed assignment and Assignments #1 through #9. Similar results were obtained
for other tactical threads. The experiments reveal that our proposed objective function

generates good module assignments.
3.2.2 Application of Algorithm I-A To the DPAD System

Let us now apply Algori'thm I-A to the DPAD module assignment problem. Table !
shows the IMC between a module and each file it accesses (updates or reads). For Phase I of
Algorithm I-A, this table is reorganized into Table 2 which provides IMC size between all
module pairs. (Phase II uses Table 1). Fig. 8 shows the merging process of Phase I where 5%
and 75% are used for the @ and B respectively. Column 1 in Fig. 8 lists the IMC values in
descending order, column 2 displays the modules combined into a group, and column 3

calculates the total AET for all modules in the group.

1 The knowledge-guessed assignment was obtained by a combination of intuitive insight and
trial-and-error. It was one of the best assignments known to the authors in terms of port-to-
port time for the DPAD system.
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Write Files IMC Size [ Read
F1l14 124 [ M3
M3 FL1s 144 Mi13
M4 FlLz 314 M5
M4 Fli7 314 M8
M4 Fl17 314 M?
M4 Fl16 112 | M13
M3 Fll9 68 M7
M6 F121 88 | M1
M? F122 67 Mi13
M8 F123. F124 7955 M6
M8 Fl23 1568 M9
M8 F123. F124 | 7953 M10
M8 F120 82 | Mi13
Mg FI23. F124 | 7955 | M16
M8 F123 1568 M17
M3 F123 1568 M19
M8 F123 1568 M20 |
M9 F125_ 806 ML13
M10 F127 1 M8
M10 F134 1 Mi18
M13 F13] 30371 Ml4
14 F147 1800 M13
Ml14 Fi32__ | 5019 M23
| Ml6 F135 100 | Mi18
M17 F136 100 | My
Mi8 F138 36 M8
18 F137 229 | M19
Mi1g F139 244 | M20
L M19_ F139 299 | M20 |
M20 Fl40 82 | M2t
M2l Fl41 32 | Radar
| M22 F113 4593 Ml
[ _M22_ Fl13 4593 M2
| M22 F113 4593 M4
| M22 F113 4593 M8
| M22 F142 - 242 | M23 |
L M23 |  Fl112 5112 | Radar |
L Radar Flll 14737 M22

Each Transferred IPC Word Has Been Converted To 3 MLIs.

Each IMC Value Is an Average of Ten Values
Over the Peak-Load Period Between 1.0 and 2.0 Seconds.

TABLE 2. TotaL FiLe-UppaTe [MC PER 100 Ms For
MoDULE PAIRS FoR ExampLE 1
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IMC(i,3) Modules in the Exec. Time of

(in MLI) Merged Group the Merged Group
IMC(13,14) = 30371 13-14 25305+16860=42165
IMC( B8, 6) = 7955 6-8 1950+32055=34005
IMC( 8,10) = 7955 6-8-10 34005+3360=37365
IMC( 3,16) = 7955 6-8-10-16 37365+4170=41535
IMC(14,23) = 5019 Can’t group 13-14-23  Note 1
IMC(23, 1) = 4593 1-22 8865+16410=25275
IMC(22, 2) = 4593 1-2-22 25275+2700=27975
IMC(22, 4) = 4593 1-2-4-22 37975+10410=38385

Can’t group Note 1
IMC(22, 8) = 4593 4 5 4_6-8-10-16-22
IMC(14,13) = 1800 Note 2

Can’t group Note 1

_IMC( 8, 9) = 1568 6-8-9-10-16

Can’t group Note 1

Can’t group Note 1
IMC( 8,20) = 1568 6-8-10-16-20 41535+2010=43545
IMC(.9,13) = 806 Can’t group 9-13-14 Note 1

Can’t group Note 1
IMC(19,20) = 599 6-8-10-16-19-20

IMC( 4, 5) = 314
(Phase I finishes because IMC(4,5) = 314 < 0,¢ )

Note 1: Otherwise, the merged group would have a total AET greater than
OPL.

Note 2: M3 and M, are already in the same group.

Fic, 8, PHAsSE | oF ALGOR!THM [-A For DPAD ExamPLE
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"
For this example, AET = ﬁ T;/20 = 8,933 MLl and PL = i T,/73 = 59,555
J =] FE |

MLI. Thus 8;yc = 446.7 MLI and 8p; = 44,666.3 MLI. Phase I finishes when IMC, 5 = 314

MLI is considered since 314 is smaller than 8,,,,. The resultant groups are:

6,8,10, 16,20
7
9
13,14
17
18
10 19
1 21
12 23,(11,12,15)»

VBN IEWN

* Modules M), My,, and M;; are not implemented in the DPAD and thus have zero AET.

We have merged 20 modules into 12 groups. This implies a reduction from 3%° possible
module assignments to 312 possible group assignments which reduces the computation time

from 10 days on a VAX-11/780 to two minutes.

To evaluate the effectiveness of our Algorithm I-A, the best assignment obtained from
the algorithm is compared with that from the exhaustive search (Fig. 9). We note that the
module assignment generated by Algorithm I-A provides response-time performance comparable
with that from the exhaustive search. We have also used our DPAD simulator to simulate the
four assignments (Assignments A-1 through A-4) reported in [MA82] which minimizes the sum
of AET and IPC and thus, does usually not generate balanced-load assignments {see Section
2.2). Therefore the assignment generated by our algorithm performs better than that of

[MAB82], as shown in Fig. 10.
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4. PRECEDENCE RELATIONSHIP AND MODULE ASSIGNMENT

Another important factor that needs to be considered in task allocation is precedence
relation (PR) among program modules. In this section we describe several experiments on PR
and study its impact on response time. In Experiment No. 1, we compare three assignments of
assigning nine (9) modules to three processors (Fig. 11). PR _‘_jexists in the control-low graph
from one module to another. Assume the job arrival is a Poi_s.tson process with arrival rate A
and each job enables module M) which is placed in the ready q:ueue of M,’s residence processor
waiting to be processed. Upon the completion of execution, a module enables the succeeding
module in the control-flow graph; the enabled module is placed in the ready queue of its
residence processor. The execution time of every module is assumed to be conatant (i.e.,
deterministic service time) and equal to one time unit. To simplify our analysis and to isolate
the PR effect, we further assume there is no IMC between modules and thus no IPC overhead
between processors. The three load-balanced assignments in Fig. 11 are simulated with PAWS
simulator [BERR82], using FCFS queuing discipline. Simulation results (Fig. 12) reveal a
significant difference in response time among these assignments. The pipeline assignment (#2)
yields the best response time. Vertical bars in the figure represent 90%-confidence intervals for
each simulation point. Since all assignments yield balanced loads and there is no IPC
overhead, the response-time discrepancy among these assignments is due solely to PR among

modules.

In Experiment No. 2, each module has an ezponential, instead of deterministic,
execution time with a mean of one time unit. All other parameters remain the same as those
used in Experiment No. 1. Simulation results (Fig. 12) exhibit that the response times for all
three assignments are about the same. This is because when every execution time (service
time) is exponentially distributed, each processor in the system can be treated individually as

an M/M/1 queue. Since all modules have the same service time distribution and the same

I11-25



'ASSIGNMENT #1 (SEQUENTIAL)

COMPUTER |1 2 3

MODULES# [ 2 § 3§ |
3 6 9 1 1TIME
UNIT
ASSIGNMENT #2 (PIPELINED) !
2 1TIME
UNIT
COMPUTER |1 2 3 l .
1 2 3 3 lT IME
MODULES# |4 5 ¢ i UNIT
7 8 9 .
¥
g | 1TIME
ASSIGNMENT #3 (SKEWED) UNIT

COMPUTER |1 2 3

MODULES# |5 6 4

F16, 11, PRECEDENCE RELATIONSHIP ExrerIMENT No, 1:
Task CONTROL-FLOW GRAPH AND THREE MODULE ASSIGNMENTS
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invecation (arrival) rate in this experiment, all load-balanced processors are treated as identjcal
M/M/1 queues, and thus all modules have identical wait-time. Experiment No. 1 reveals that
precedence relationship does have an impact on task response time. Experiment No. 2 reveals

that module execution-time distributions alter the PR's effect oD response time.

Experiment; No. 3 is for testing the effect of module size ip precedence relationship.,
Modules are assumed to have exponential execution times with the mean valyes shown in Fig.
13a. The three assignments in Fig. 13b are simulated and the experimental results (Fig. 14)
reveal that assigning two consecutive modules to the same processor yields good response times
if the ezecution time of the second module is much larger than that of the first module. We
denote this as our PR rule #1. For example, in Assignment #1, M, and M, are assigned to
the same processor. If the second module is much smaller than the first one, it ia better to
separate two consecutive modules and assign them to distinct processors. This is our PR rule
#2. In Assighment #1, M, and M; are assigned to different processors. Because Assignment
#1 satisfies PR rules for all pairs of consecutijve modules, it yields the best response time.
Assignment #2 is the worst because jt violates PR rules for all module pairs. Assignment #3
violates PR rule #1 for some module pairs (e.g., separation of M, from M,) and satisfies PR
rule #2 for some other pairs (e.g., separation of M, from M,), therefore its performance lies

between Assignments #1 and #2.

Experiment No. 4 is similar to No. 3 except with different execution times as shown in
Fig. 13c. The same three assignments in Fig. 13b are used in the experiment. From Fig. 14 we
note that Assignment #2 yields the best performance because it satisfies PR rules for all pairs
of consecutive modules. Assignment #1 is the worst since it violates PR rules for all module
pairs. We repeated these experiments with deterministic execution times and obtained the

same results. The intuitive reasons for the PR rules are as follows:

1. If the arrival process for a module is highly random such as Poisson, there are occasions
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for bursty arrivals. On the other hand, if the job arrival process is deterministic, the
work load is evenly spread aver the time; therefore the average queue-length at every
processor as well as the average module wait-time should be smaller than that of a

Poisson arrival process.

2. If two consecutive modules are assigned to the same processor and if the second module
is much larger than the first one, the second one will a‘;t as a regulating valve which
regulates the task flow into the next processor. For iﬁstance, in Assignment #1 of
Experiment No. 3, although there are bursty arrivals for M), the invocation arrivals for
Mj at Processor 2 are not bursty and are fairly evenly spread over time because M, at
Processor 1 is a large module. As a result, the queue (containing invocations for M,
and M,) at Processor 2 is short and yields short wait-time for My and M. In the same

manner, M, acts as a regulating valve for the task flow into Processor 3.

3. The reason that Aasignmeni #2 of Experiment No. 3 yields poor response time is mainly
due to the fact that the size of M is small. Bursty invocation arrivals for M, result in
bursty arrivals for M, at Processor 2 (i.e., there is no regulating valve between
Processors 1 and 2). As a result, there is a high probability to have several arrivals for
M, in Processor 2's ready queue. A newly invoked arrival for M, at Processor 2 may
find a prev_iously arrived M, in execution and possibly some other M,'s waiting in the
queue. After the first (the oldest) M, in the queue finishes its execution, it invokes an
M, arrival and places that arrival at the end of the queue. Thus, Mj invocations will
experience a long wait-time because of the large My's in front of them. Later on, there
will be multiple Mjy's nezt to each other which will then quickly finish their execution
(because the Mj size is small) and generate bursty invocations for M, at Processor 3.

Having noted that the module-size ratios of consecutive modules influence response time, we

need to determine when two consecutive modules M| (of module size y,) and M, (of module
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size ¥,) should be located in the same processor.

Consider the control-flow graph in Fig. 15 where all modules have deterministic
execution times. Let y)=y,, y3=y, (thus, the module-size ratio ry, = y,/y, = 3.4 = Y4/ ¥3
), and job armval rates Ay = Ny. Both Assignments #1 and #2 result in balanced processor
loads. We like to use the module-size ratio Tyo( = r::u) as a key paramet;er to determine if
M, and M, (also, My and M,) should be co-located. That is, if r12 is greater than some
threshold value, M, and M, should be assigned to the same processor; otherwise they should

be separated.

Because of the symmetry in this control-low graph and in loading on both processors,
the two threads in the graph have the same response time, which is W+ Yy + Wot Yo = 1wy
+ Y3 + wy + y,), where w; is the queuing wait-time for module M, Given any module
assignment for any control-flow graph, a model developed in {CHU84c| can estimate the wait-
time w;'s for all modules. Since y;, ¥, ¥3, and y, are constants {independent of module

assignment), the wast-time ratio between Assignments A; and A, R, = R(A/A,) =

wiA)) + wy(A)
wi(Ag) + wy(Ay)’

can be used as a measure for selecting a good assignment. If R, < 1,

then Assignment #1 is better than Assignment #2, ie., we should assign the consecutive
.moduies M, and M, to ome processor, and the other comsecutive modules M; and M, to
another processor. If B, > 1, then Assignment #2 is better and consecutive modules should
be run on different processors. Fig. 16 shows the wait-time ratio R, for various module-size
ratio ry o = yo/y,. The horizontal axis is processor utilization p = p; + Py, where p, = Ay,
and Py = Ny, are contributed by the execution of M, and My, respectively. Note that as 12
decreases, R, increases until reaching approximately to 1.7; then it reverses the trend and
decreases. R, varies only slightly with the processor utilization. Curves for wait-time ratio can

be obtained in the same manner when the execution time of each module is changed from a
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deterministic value to an exponentially or hyperexpomentially distributed one. Since the
execution times of most program modules are more deterministic than exponentially or
hyperexponentiaily distributed, the following discussions will be for deterministic execution

time.

We shall now study the execution of three consecutive modules (Fig. 17), using the
wi{A,) + wyA,) + wy(A,)
wi{Ag) + wy(Ag) + wylAy)

wait-time ratio B, = Our analysis shows that if the size of M,

is fixed (thus, p; = A,y; is fixed), as the size ratio of M3 to My (ra3 = ya/ys = §3/py)
decreases, R, increases to a certain point and then reverses the trend and decreases (Fig. 18).
Likewise, fixing M, and varying the size ratio of M, to M), we observe similar results. These
relations between R, and r;; are similar to the previous observations for the two-module
threads as shown in Fig. 16. Similar relations are also observed for a control-low graph
consisting of four modules in each thread. When y,, ¥3, and y; (Fig. 17) vary simultaneously,
the wait-time ratio is shown in a 3-dimension contour plot (Fig. 19). Note that when both size
ratios r| o and rp3 are large, the wait-time ratio R, is the smallest. Thus assigning all three
consecutive modules in a thread to the same processor (i.e., Assignment #1) yields. better
response time, which is consistent with our previous observations. If r, 4 is large while ry3 is
small, or vice versa, then the benefit from one module pair (e.g., M; and M)) is canceled out by
the penalty from another pair (e.g., My and Mj). As a result, both assignments have similar
wait-time (i.e., R, = 1). If both ry5 and r) 5 are small, then Assignment #2 is better than

Assignment #1.

Our experimental observations reveal that in assigning modules to processors, each pair
of consecutive modules in a control-low graph can be treated independently, and using the PR
rules on each individual pair of consecutive modules in task allocation yields good task

response time.
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5. MODULE ASSIGNMENT ALGORITHM CONSIDERING PR
5.1 Algorithm P-I-A

We shall now include the PR rules into our task-allocation algorithm. The decision on
whether to group two consecutive modules should be based on the two possibly conflicting
factors: ‘IMC size and PR (i.e., module-size ratios). Therefore, IMC indez and PR indez are
introduced. In Step 1.1 of Algorithm I-A, let us define the IMC index and PR index between

modules M; and M; as follows:

IMC; ;

<oy ___{L s a .
¥ i,j) = i=1,...J j=1..J
[MC( OIMC
1 -R,(r;;
¥ pplini) = T‘i'dl f=1,...,% j=1,.,J

where R, is a function of module-size ratio r; ; (see Fig. 16). Note that a R, value on the Y-
axis of Fig. 16 always lies in the range of [0, 2]. This value is translated into the PR index
'YPR(i,j) — the condition R, < 1 (R, > 1) corresponds to a positive (negative) 'yPR(i,j)
which prescribes the grouping (separation) of modules M; and MJ-. For simplicity, we divide
the range [0, 2] on the Y-axis into Npg equal-size intervals for evaluating the PR index. The
interval size is [pp = 2.0/Npp. At the break point between grouping or separating two
consecutive modules, R, == 1. Thus, the function (1 - R,)/Ipp gives the PR index ‘pr( i,7)
for any given module-size ratio 7, ;. For example, if we choose to have 20 PR levels within the
range [0, 2], we have an interval size [pgp = 2.0/20 = 0.1. If R, = 1.4, then ¥, =4, which
is against the grouping of modules M; and MJ-. To introduce PR rules in our algorithm, we
shall replace Step 1.3 of Algorithm I-A with the following:
13 If ‘yIMc(i,j) + ‘yPR(s',j) <0
go to Step 1.2.

Let us denote this generalized algorithm as Algorithm P-I-A (adding the initial "P” for PR).
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There exist three variables in Algorithm P-1-A — a, B, and Npp (or, [pg). For a given
distributed system (e.g., the DPAD system), if Npp is fixed, then all ?PR('.’ J) values are
uniquely determined. [n that case, increasing the & value will reduce the IMC influence on
module assignment (see new Steps 1.1 and 1.3), assuming a fixed B value. On the other hand,
reducing the Npg will reduce the PR influence. If we reduce Npp by half and double the a
value, ther the minimum-bottleneck assignment generated by Algorithm P-I-A will remains
unchanged because both 'yIMC(i,j) and ‘yPR(:',j) are reduced by half, and thus the sum
¥ IMC( i,j) + % PR('.’ j) does not changes its sign (positive or negative). Therefore, theoretically
one of the two variables @ and Npp can be fixed. Table 3 contrasts 'YPR's and ¥y e
(rounded to the nearest integers) for various values of @ and Npp. We summarize At.he heuristic
task-allocation algorithm as follows:

Fix the number of PR intervals, Npp;

Do & = a,% to ay%;

Do B = B,% to B%;
Perform Algorithm P-I-A;
end;

end;

The experimental results on DPAD and other systems reveal that using Npg = 20 and a
b;et.ween 1% and 10% generates good assignments. A good range for B is between 80% and

120%. This is because too small a B would retard proper module grouping while too large a B

makes it impossible to balance processor loads during Phase II.
5.2 PR Has No Effect on Example 1

Applying Algorithm P-I-A to the DPAD system produces the bottlenecks as shown in
Fig. 20. Simulation reveals that the response-time performance of the assighment with a
bottleneck of 74,985 MLI (generated by @ == 3% and B = 60%) is slightly better than the one
with a bottleneck of 74,312 MLI (for &« = 4% and B = 70%). This shows that a smallest

bottleneck does not necessarily yield the best response time. However, assignments with close
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bottleneck values always yield similar response times.

The above assignment with a bottleneck of 74,985 MLI performs ouly slightly better
than the assignment generated by Algorithm I-A (Fig. 21). I[n fact, using the same parameters
a = 5% and B = 75% as were used in Algorithm [-A in Section 3.2.2, Algorithm P-I-A will
generate the same assignment as Algorithm [-A. This can be seeﬁ by considgring the colum:_: of
e for NPR = 20 in Table 3, and the column of s Py for @ == 5%. Those pairs of modules
recommended to be grouped by Algorithm I-A (i.e., IMC; ; > 8;y) are also recommended by
Algorithm P-I-A f(i.e., ‘YIMC‘( ,7) + 'pr( i,j) > 0). Further, those module pairs not
recommended to be grouped by Algorithm I-A (i.e., IMC; ; = 8;,/c) are also not recommended
by Algorithm P-I-A (i.e., ?[MC’( i,J) + ?PR( 1,j) = 0). For example, IMC\, 3 = 5,019 MLIs >
8/c = 446.7 (see Section 3.2.2) and thus Algorithm I-A recommends grouping M, and My,.
On the other hand, ‘Y[Mc(l4,23) + 1PR(14,23) == 10 + (-4) == 6 > 0 and therefore, Algorithm

P-I-A also recommends grouping M,, and M.
5.3 Example 2: PR Has Effect on Module Assignment and Response Time

An example is given in this section to show that a significant response-time
improvement can be achieved when PR is considered in task allocation. Consider the control-
flow graph shown in Fig. 22 where each program module has a deterministic execution time of
either 100 or 1,000 ps. Thus the size ratio of each pair of consecutive modules is either 0.1 or
10 (with four exceptional pairs whose size ratios are 1.0). According to the PR rules derived in
Section 4, we should assign M, and Mg to the same processor, and My on a different processor.
Using the model of [CHU84b), we can estimate the AET for a specified time interval for each
module. In this example let us assume a time interval of 100 job arrivals, the intebaﬁval time
is exponentially distributed, and each arrival invokes the entire control-flow graph once. The
estimated AET's are shown in column 2 of Table 4. Let us further assume that the IMC sizes

for all communicating module pairs are about equal, either 1,400 or 1,500 ps as shown in Table
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Write AET* File IMC* Read

Module {(in us) Updated (in us) Modules
1 10,000 101 1400 2
2 125,000 102 1400 3,4,5
3 6,250 103 1400 12
4 3,750 104 1400 6
5 2,500 107 1400 7,8
6 37,500 106 1500 9
7 2,500 108 1400 10
8 25,000 109 1500 11
9 3,750 110 1400 14
10 25,000 111 1500 13
11 2,500 112 1500 13
12 62,500 105 1500 14
13 2,500 113 1400 14
14 12,500 114 - 1400 15
15 100,000 -- -- -

* AET and Total IMC during a l00O-~arrival period

TaBLE 4, AET anp IMC For EXAMPLE 2
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4 and Fig. 23, so that the IMC plays a much less important role than PR. Given these PR,
IMC, and AET, the module assignments generated by Algorithms I-A and P-1-A are shown in
Fig. 24. Both assignments yield fairly balanced processor loads with similar bottleneck values.
Therefore, if they differ significantly in response time, it is due to the PR. Note that for the
assignment generated by Algorithms P-1-A, most module pairs are assigned (either co-located or
separated) according to our PR rules instead of by IMC size. For example, the module size
ratio ryg is Yg/y4 = 10; thus, M, and Mg are co-located on Processor 3. On the other hand,

rs = 0.1; thus, Mg is separated from M, although IMCy g is larger than IMCy4.

These two assignments are simulated via the PAWS simulator. The average response
time for each job arrival is measured from when the job arrives at the system until it finishes
the execution of M;s. Fig. 25 portrays the response time for the two assignments. Note that
Algorithm P-I-A yields better response time than that of Algorithm I-A, with 10.8%

improvement at processor utilization p = 20% and 25.7% improvement at p = 80%.

8. CONCLUSIONS AND DISCUSSIONS

The three important parameters in task allocation are accumulative execution time
(AET) of each module, intermodule communication (IMC), and precedence relations (PR)
among program modules. AET always contributes to processor load; its contribution is
independent of task allocation. IMC is the communication between program modules through
shared files. When a module on a computer writes to or reads from a shared file on another
computer, it requires extra processing and communication overhead known as IPC
(interprocessor communication). Therefore, a task-allocation algorithm should try to minimize

IPC by assigning a pair of heavily communicating modules to the same computer.
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In this paper, an objective function for the minimization of the bottleneck processor
load (based on IMC and AET) is proposed for task allocation. An algorithm is developed,
based on this objective function, for grouping module pairs to reduce botk the [PC and the
search space for good modules assignments. This algorithm is able to generate assignments

comparable with that from the exhaustive search.

The t‘]}ird parameter for task allocation is the precedence relationship (PR) in which a
program module can not be enabled before all its predecessor(s) finish execution. Simu.lation
study and analysis revealed that the module-size ratio of two consecutive modules affects task
response time. Two simple rules are: 1) Assigning two consecutive modules to a same processor
yields good response times if the ezecution time of the second module is much larger than that of
the first module; 2) If the second module is much smaller than the first one, it is better to
separate two consecutive modules and assign them on two distinct processors. Allocating the

modules according to IMC values and the PR rules yields performance improvement.

A heuristic algorithm that considers PR, IMC, and AET was developed for task
allocation. The algorithm was applied to two example systems. The results revealed that
module assignments considering PR may yield better response time than assignments without

PR consideration.
8.1 Future Research Areas
Many related issues in task allocation still need further investigation.

a. Replication of files — A file-replication policy should be developed to decide how many
copies of a replicated file are needed and where these copies should reside, for either
access speed, fault-tolerance, or reduction of file-update message volume. Data

consistency among the copies is a major concern that affects performance.
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Replication of program modules — Some modules might be so frequently invoked that
their processing requirement cannot be met by a single processor. [t is desirable to
assign identical copies of such a module on multiple computers with each processing a
subset of invocations for that module. Techniques need to be developed to decide a)
the needed number of copies for a program module, b) the file structure (centralized,
replicated, or partitioned [CHU76]) for the files accessed by a replicated program
module, ¢) the number of copies {and the sites) a file should be replicated and/or
partitioned into, and d) the policy for distributing module invocations among all

computers which run a copy of the invoked module.

Task scheduling policy — Scheduling policy plays an important role in real-time
systems. Besides the FCFS discipline, there might be other scheduling policies more
suitable for distributed real-time systems. One approach is to schedule multiple
invocations of a module in a group and process them as a batch. As a result, some of
the operating overhead {e.g., the initializing housekeeping code) can be shared by all
invocations in the batch. Of course, this reduced overhead should be weighed against

the increased overhead in task scheduling.

Branching probability vs. precedence relation — If the branching probability between
two consecutive modules is very small, the effect of the PR on task response time will be
small because the arrival processes of these two modules can be treated as independent
from each other [CHUS84c]. In this paper, a branching-probability cutoff point of 0.5
was arbitrarily chosen to determine whether the PR between two consecutive modules
should be considered, or ignored. More studies need to be performed to decide on a

better cutoff point for the branching probability.
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FAULT TOLERANT LOCKING FOR TIGHTLY COUPLED SYSTEMS

1. INTRODUCTION

In a tightly coupled system, multiple copies of shared files are maintained in different
shared memory modules to meet high survivability. Data updates should be applied to all file
copies to keep mutual consiatency among the copies. However, if a processor fails during an
update process, some file copies may have been updated while others have not, resuiting in
mutual inconsistency. To recover from this type of failures, the Fault Tolerant Locking (FTL)
protocol (1] is introduced on top of the conventional consistency-control protocols. FTL
detects a processor failure, identifies and recovers inconsistent file copies, and releases the file
lock so that other processors may lock and use the file again. FTL also prevents processors
from reading and updating out-of-date or inconsistent file copies in the failure of shared

memory modules and/or paths.

We shall first describe the FTL principal, its implementation and operations. Then we
present the time relationship about the lock-holding time. Next, we discuss the FTL
experimental results from SDC testbed which provide information about the performance and

characteristics of FTL. Areas for further research and experimentation are identified.

2. PRINCIPAL OF FTL

In order to provide the status of a file, a word that indicates the current state (free,
locked, update-initiated, or failed) is appended to each file copy in the shared memory
modules. File copies are updated, one at a time. In this manner, if a processor fails during a
file update, we can tell which copies of the file have been completely updated, which particular
copy is partially updated, and which copies have not been updated at all. Other processors

that attempt to lock this file in problem would detect the processor failure by a time-out
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mechanism. Based on the status of all file copies, the inconsistent copy can be detected and

recovered from any consistent copy.

To prohibit further accesses to failed copies, each processor maintains a file copy status
table in its local memory. When a processor experiences a memory or path failure while

accessing a file copy, it marks the failure on the local status table.
3. FTL OPERATIONS
3.1 Implementation

To implement the FTL in a tightly coupled system for the BMD application, shared

records ! are duplicated in different shared memory modules (Fig. 1). Each record copy has a
Lock Word (LW) that indicates one of the four possible states of the copy: free, locked,
update-initiated, or failed (Fig. 2). To simplify our discussion, we assume each file has two
copies: the primary copy and the shadow copy. Each processor maintains the Record Status
Table (RST) in its local memory which indicates the status (good or failed) of each record copy

in the shared memory modules.

Before accessing a record copy, a processor first checks the RST to determine if the
copy is good. Then it reads the LW of the record copy. If the LW of the copy indicates
'failed’, the processor marks “failed” on the RST and tries the other copy (this wil} be discussed
in section 6). If the requested copy is being locked or update-initiz{ted {by some other
processor), the processor repeatedly checks the LW until the copy becomes free, or until a
predetermined time-out period elapses. When the processor finds the copy is free, it locks the
copy and does the same process for the second copy. Then it prepares updates in its local

memory. When all updates to the record are ready, the processor marks 'update initiated’ on

! Por the BMD system, records rather than files are used as a unit of data items for locking and
recovery.
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FIGURE 1. A TIGHTLY COUPLED DISTRIBUTED SYSTEM WITH FTL
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FIGURE 2. DUPLICATED RECORDS AND RECORD STATUS TABLE

REC
#

1
2
3

123

LW LC DATA

LW = LOCK WORD

LC = LOCK COUNTER

REC
#

128

Each lock word indicates one of four states:
Free, Locked, Update-initiated, or Failed.

REC

4
r

s o NN

128

COPY #1 COPY #2

LwtC DATA

¢ e s NN

(a) Duplicated Records In Shared Memory Modules

Each entry indicates one of two states: Good or Fatled.

TV—=-4

(b) Record Status Table (RST) In Each Processor



the LW of the first copy and performs the update. After completing the update onto the
second record copy in the same manner, the processor releases the lock for both copies. In
normal operations with no failure, if there is no lock contention, the FTL update procedure can

be shown in Figs. 3 and 4.
3.2 Detection of Processor Failure

When two o; more processors request to lock the same record simultaneously, only one
of them will obtain the lock grant. Other processors might experience time-out and initiate the
recovery process undesirably. To prevent this from occurring, Lock Counter {LC) is introduced
for each record copy. After a processor successfully locks a record copy, the LC of the copy is
incremented by one. When a record copy is currently locked, a processor trying to lock the
same copy will repeatedly request to lock the copy until it succeeds. When the processor finds
that the LC of the requested record copy has been incremented while waiting for a lock grant
(this implies that the record has been released by its holding processor and locked by some
processor again), the processor resets the time-out counter and continues requesting for the
lock-grant (Fig. 5). If the LC remains unchanged after a predetermined number of lock
requests (i.e., time-out period), the processor currently holding the lock is considered failed
(Fig. 8). The processor that detects the time-out then increments the L C of the record copy by
one. This prevents other processors from detecting the same failure. _To prevent false failure
detection, the time-out period (determined by the number of repeated lock requests) must be

larger than the lock-holding time of any application program.
3.3 Technique for Reducing the Time-Out Period for Performance Improvement

To have quick failure detection, the time-out period should be short. However, a short
time-out period may cause false failure detections. To avoid this, the processor that holds the

lock can increase the LC periodically should it hold a lock longer than the pre-specified time-
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FIGURE 3. FTL PROCEDURE FOR RECORD UPDATE

 TASK RECORD X  RECORD X’
AT PROCESSOR AT SM, AT SM,
LOCK D W) 1= 1 SM: SHARED
REQUEST 2) f~———Ll(X) =77 — MEMORY
i
create (laRERR
& UPDATE
TEMPORARY 5
RECORD
Q) LW(X) = 2* UPDATE
UPDATE —
5).——_LH£X') o= 2) UPDATE
Lock 6 LWX) .= g T
RELEASE 7) S Y E———
i

LW: O = FREE, 1 = LOCKED, 2 = UPDATE INITIATED

IV-6



FIGURE 4. FTL PROTOCOL FOR RECORD UPDATE

1) Lock Record X (LW(X): = 1)

2) Lock Record X’(LW(X'): = 1)

3) Create and update temporary record in local memory
4) Mark lock word (LW(X): = 2) and update record X
5) Mark lock word (LW(X'): = 2) and update record X’
6) Unlock record X (LW(X): = 0)

7) Unlock record X’ (LW(X): = 0)

LW: 0 =Free, 1 = Locked, 2 = Update-initiated
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FIGURE 5. EXAMPLE OF THE FTL TIME-OUT MECHANISM: NO-FAILURE CASE
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FIGURE 6. EXAMPLE OF THE FTL TIME-OUT MECHANISM: FAILURE CASE
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out period. This will prevent other processors from generating undesirable time-out signals.
3.4 Recovery from a Processor Failure

The processor reads the L Ws of all copies of the requested record when it detects a
time-out on a record. Based on the FTL status table as shown in Fig. 7, the processor takes
the appropriate recovery action: either discarding the inconsistent record copy and dperating in

a :degraded mode, or copying from the consistent record copy into the inconsistent one.

4. RECORD LOCK-HOLDING TIME

In this section, we present the record lock-holding time as a function of various system
parameters. This may shed light on the interrelationship among the number of retries, the

retry period for lock-request, FTL overhead, and response time.

The lock-holding time, T; (diagramed in Figs. 8 and 9), is the sum of the time for
locking record copy X°, T, the execution time for an application process (including read and

update of record copies), T, and the time for releasing record copy X, To. That is,

T =T+ Ty+ T

Since the FTL requires reading a record copy (before copying the record into the local
memory) and updating the primary and shadow copies, there are three memory accesses for

each record update. Thus,

N, =3N,
where
N, == Record size in words,
N,, = Number of memory cycles for accessing a record

The execution time for an application process, T4, is the sum of the execution time of that
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FIGURE 7. FTL RECOVERY PROCEDURES FOR A PROCESSOR FAILURE

LOCK STATUS TABLE

LW LW | RECOVERY | INCONSISTENT | UPDATE
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FIGURE 9. TIMING DIAGRAM FOR FTL LOCK-HOLDING TIME
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process without memory conflict and the additional delay due to memory conflict. Thus,
T,=T,+(1+P)N, =T, +3(1 +P)N,

where

T, == Execution time of a process without memory conflict, and

P, = Probability of memory conflict for each memory cycle.
5. FTL EXPERIMENTAL RESULTS VIA THE SDC TESTBED

A set of experiments was performed for evaluating the feasibility of the FTL protocol
via the BMDADC testbed. Three experiments characterize the FTL protocol urder no-
processor-failure situation, in terms of 1) overhead of the FTL protocol, 2) choice of lock-
request retry period, and 3) choice of time-out period for processor failure detection. Another
experiment studies the FTL protocol recovery time in the presence of processor failures. These

experiments were performed at SDC [2,3] and we shall discuss the implications of the results.
5.1 Overhead of the FTL Protocol

For the management of distributed databases, a cﬁnsistency-control protocol enhanced
with the FTL protocol requires more processing than a baseline system without fault-tolerance.
Fig. 10 compares the measured processor utilization for both systems. The system with the
FTL protocol uses more processor resources since it requires addit‘ional lock and update to the
second copy of each record. As a result, the lock-holding time of the FTL system is longer
than the baseline system. Because of larger processor utilization, port-to-port times are also
increased for the FTL system. Fig. 11 compares the port-to-port time for the Track Thread of
the two systems. The experiment with 711 threat detections reveal that the load differences
between the two systems for Track Initiate and Track are rather smail and the FTL system still

satisfies the port-to-port time requirements [2].
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5.2 Choice of Lock-Request Retry Period

When a processor fails to obtain a lock grant for a record, it retries repeatedly until it
receives a grant or reaches a time-out (i.e., detects a failure). If the period between retries
(retry period) is too short, the number of shared memory conflicts increases. If the retry period

is too long, the processor may be waiting for a lock even though the record is free. !

Experiments were performed by inserting a delay loop in the lock p%ocedure. The retry period
can be controlled by varying the number of the loop iterations. Each loop (retry) iteration is
about 0.95 ms. Fig. 12 displays the lock-grant time as a function of the retry period. We
noted that the lock-grant time is rather insensitive to the retry period. A slightly lower average

lock-grant time occurred at ten loop iterations (9.5 jus simulated time).
5.3 Choice of Time-Out Period for Processor Failure Detection

The time-out period for detecting a processor failure during a record update should be
longer than the maximum lock-holding time for any task. The time-out period is measured as
the maximum number of lock requests for a record. If the time-out period is too long, a
processor would issue unnecessary requests for a lock that is held by a failed processor. On the
other hand, if the time-out period is too short, the processor would initiate undesirable recovery
processes. Again, the time-out period is implemented by repeating iterations of a loop. Each
iteration rums for about 54 psec. The experiment shows that 13 iterations (corresponding to

850 ps) is the lowest number that yields no false time-out detection as shown in Fig. 13.

1 Queuing of lock requests is not feasible since memory modules do not have emough
intelligence for queuing handling. Queuing handling at the processor would be costly because
of the required interprocessor communication (IPC) among processors.
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5.4 Performance of the FTL Protocol With Processor Failures

This set of experiments study the time required to detect and to recover from a
processor failure. To emulate a failure, the processor is forced into an infinite loop while it
holds a lock. It was shown that the time for detecting the failure and completing the recovery

is within 2 to 10 ms for a task with a maximum allowable of 40 ms port-to-poﬁ time.

The performance of FTL was also measured under heavy loads. The port-to-port times

for processing 1153 object-detections are well under the maximum allowed port-to-port time, 50

ms.

8. FTL FOR MEMORY AND PATH FAILURES
8.1 Shared Memory Failures

When a processor detects a memory failure, it notifies all the other processors. We
proposed previously to use the fault-tolerant message-passing technique for such notification.
However, implementation of this technique on CMS-I results in a significant increase in system
utilization and port-to-port time. This is in part due to the Kernel Operating System (KOS)
for CMS-1 that does not provide interrupts for messages received. As a result, whenever the
processor accesses a record copy in a shared memory, it needs to check duplicated message
boxes {2], which requires large processing overhead. Further, two or more processors may

detect the same memory failure independently and may cause system thrashing.

Therefore, an alternative technique is introduced for handling memory failure that does
not require message passing. When a processor requests a record from a shared memory
module and detects 2 memory failure, it marks this fact on its local RST (without notifying the
other processors). It also marks 'failed’ on the LW of the record copy if the LW is still

accessible. When a second processor finds that the L W on its requested record copy is marked
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"failed’, this second processor marks the failure of that record in its RST. If the L W of that

record copy is inaccessible, this record copy will not be accessed by any processor anyway.
6.2 Path Failures

A single point failure in the crossbar switch may prevent a set of processors from
accessing a particular memory module. This prevents updating the records. in that memory
module and it causes data inconsistency. However, this record may be accessed by other
processors that are not blocked by that single point failure, and they might retrieve
inconsistent data. This can be avoided by maintaining the status of the ul other record copy
in the LW of each record copy. When a processor detects a copy failure, it marks the failure
on its RST and on the LW of the other copy (the non-failed copy). Later, when a second
processor accesses the non-failed copy, the L W will reflect the failure of the other copy. This
second processor should then mark that information on its local RST in order to avoid further

accesses to that record copy.

In the following, we summarize the technique for detecting memory and path failures
that do not require message passing. The PDL codes for its implementation are given in the

~ Appendix.

1) Records are duplicated on different shared memory modules and each record copy has a lock
status word which indicates: a) the lock state of its record copy (free, locked, update-

initiated, or failed) and b) the status of the other copy (good or failed).

2) Each processor is required to read the lock word before accessing the record copy and, if

either of the record copies is failed, should mark the fact on its local record status table.
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7. AREAS FOR FURTHER RESEARCH

Testbed results reveal that the FTL is capable of detecting processor failures and
recovering from inconsistency between record copies in case of processor failure, yet satisfying
the real-time requirements. To assure data consistency in case of shared memory and path
failures, the FTL prohibits further accesses to those record copies that are inaccessible by other

processors.

Testbed results reveal that using message passing technique on CMS-I to notify other
processors about memory and path failures was too costly. This is in part due to the faqt that
the Kernel Operating System (KOS) does not provide interrupts for messages received. An
alternative technique for handling memory and path failure without message passing has been
proposed. The KOS for CMS-II does provide interrupts for message passing and thus
eliminates much of the overhead involved with CMS-I. Thus, we recommend that both the
message-passing and non-message-passing techniques be experimented on CMS-I1 to compare

their performances.

Currently, the FTL protocol is implemented with one-mode locking. Under such
locking protocol, a record is locked exciusively whenever there is a read or write to the record.
Locking increases the probability of lock conflict and degrades performance. Therefore, for '
certain BMD threads, two-mode locking (exclusive lock for write and shared lock for read) or
three-mode locking (reserve, upgrade, and exclusive lock [4]) may be used to reduce lock-grant

time and port-to-port time. Further experimentation in this area should be performed.
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APPENDIX

A PDL IMPLEMENTATION OF THE FAULT-TOLERANT
LOCKING PROTOCOL.
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TYPE DECLARATIONS FOR FTL

TYPE

TRACK_DATA = RECORD
OBJECT_STATUS :OB_STAT;
PULSE_TYPE :OB_STAT;
RETURN_COUNT :INTEGER;
XTR_LIFE : INTEGER;
KOR_LIFE : INTEGER;
POD_LIFE : INTEGER,;
IPP_LIFE : INTEGER;
RTE_LIFE : INTEGER;
STATE_TIME :INTEGER;
THREAD_TIME :INTEGER;
PULSE_TIME INTEGER

END;

LOCK_STAT = (FREE, LOCKED, UPD_INITED, FAILED);
REC_STAT = (GOOD, FAILED);

LOCK_WORD = RECORD
LOCK_FLAG : LOCK_STAT;
LOCK_COUNT : INTEGER;
STAT_OTHER_COPY : REC_STAT;
END;
TRACK_RECORD = RECORD
REC_LOCK : LOCK_WORD;
REC_DATA : TRACK_DATA,;
END;

TRACK_FILE = ARRAY [1..128] OF TRACK_RECORD;
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VARIABLE DECLARATIONS AND INITIALIZATION
OF THE RECORD STATUS TABLE

VAR
REC_STAT_TABLE : ARRAY [1..2,1..128] OF REC_STAT;
TRACK_COPY  :ARRAY [1..2] OF “TRACK_FILE;

{Pointers to duplicated TRACK file}
TRACK_REC  : TRACK_DATA; {Local ccpy of a record}
REC_ID : INTEGER;

RSTAT : INTEGER;
8 | : INTEGER;

BEGIN

{Initialization of Record Status Table}
LOOP FOR I:'=1 TO 2:
LOOP FOR J:=1 TO 128:
REC_STAT_TABLE(1J) := GOOD;
ENDLOOP;
ENDLOOP;

{Initialization of pointers to Track File copies}
TRACK_COPY(1) :: INTEGER := MSGADDR(1);
TRACK_COPY(2) :: INTEGER := MSGADDR"(2);

ooooooooooo
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USE OF A RECORD OF THE TRACK FILE

{The following shows how to lock a Track Record, make a local copy,
update locally, update shared memories, and unlock it. The Track
Record is identified by 'REC_ID’}

{Lock the record}

RECORD_LOCK (REC_ID,RSTAT);

{If both copies are inaccessible, then go to error routine}
IF RSTAT=-1 THEN ERR_ROUTINE;

{Make a local copy of the record}
TRACK-REC := TRACK_COPY(RSTAT)"(REC_ID).REC_DATA;

{Update the local copy}
WITH TRACK_REC DO

<< UPDATE THE LOCAL COPY >> ;
ENDWITH;

{Update copies in the shared memory}
RECORD_UPDATE(REC_ID,TRACK_REC);

{Unlock the record}
RECORD_UNLOCK(REC_ID);
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Subroutine RECORD_LOCK

PROCEDURE RECORD_LOCK (REC_ID:INTEGER, VAR RSTAT:INTEGER);
{RSTAT: return status
1 or 2: successful lock and use copy#1 or copy#2
-1 :unsuccessful because both copies are failed}

CONST
MAX_TRY = 100; {Time-out Period}

VAR
I :INTEGER;
STAT: INTEGER;

BEGIN

WITH LW1 = TRACK_COFY(1)"(REC_ID).REC_LOCK, {Lock word of copy#1}
LW2 = TRACK_COPY(2)"(REC_ID).REC_LOCK {Lock word of copy#2}

DO
START:

IF REC_STAT_TABLE(1,REC_ID) = GOOD THEN
IF REC_STAT_TABLE(2.REC_ID) = GOOD THEN

{In case that both copies are accessible}

START1: {Lock-request to copy #1}
CUR_COUNT := LW1.LOCK_COUNT;

LOOP1:
LOOP FOR NO_LOOP:=1 TO MAX_TRY: {Try until time-out}

IF LW2.STAT_OTHER_COPY = GOOD THEN
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Subroutine RECORD_LOCK (Cant'd)

{When LW?2 tells that copy#1 is good}
<< EXCLUSIVE ACCESS TO LW1.LOCK_FLAG>>;
CASE LWI1.LOCK_FLAG OF

FAILED:BEGIN {LW1 tells that copy#1 is failed}
<<RELEASE OF EXCLUSIVE ACCESS>>:
REC_STAT_TABLE(1,REC_ID) := FAILED;
LW2.STAT_OTHER_COPY := FAILED;

{Mark the failure of copy#1 on LW2}
GO TO START;
END;

FREE: BEGIN {Successful Lock}
LWLLOCK_FLAG := LOCKED;
<<RELEASE OF EXCLUSIVE ACCESS>>;
LWI1.LOCK_COUNT := CUR_COUNT+1;
GO TO START2; {For the lock of copy#2}
END;

OTHERWISE: {Copy#1 is locked or being updated)
‘<<RELEASE OF EXCLUSIVE ACCESS>>:

ENDCASE;

{When the lock-count has been changed, then start counting
from the beginning} ,
IF CUR_COUNT <> LW1.LOCK_COUNT THEN
GO TO STARTI;
ENDIF;
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Subroutine RECORD_LOCK (Cont'd)

ELSE
{If LW2 tells that copy #1 is failed, then mark it on the
local record status table and LW1}
REC_STAT_TABLE(1,REC_ID) := FAILED;
LW1.LOCK_FLAG := FAILED;
GO.TO START; .

ENDIF;

ENDLOOP;

{When time-out is detected, the lock-count is incremented
to prohibit further detections by other computers}

<<EXCLUSIVE ACCESS TO LW1.LOCK_COUNT>>;

IF CUR_COUNT = LW1.LOCK_COUNT THEN
LW1.LOCK_COUNT := LW1.LOCK_COUNT+1;
<<RELEASE OF EXCLUSIVE LOCK>>;

RECONF (REC_ID, STAT); {Recovery from failure}
IF STAT=-1 THEN ERR_ROUTINE; ENDIF; {When recovery is unsuccessful}

ELSE {The failure is detected and recovered by another computer}
<<RELEASE OF EXCLUSIVE LOCK>>;
ENDIF;

GO TO START;
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Subroutine RECORD_LOCK (Cont'd)

START?2: {Locking of copy #2}
IF LW1.STAT_OTHER_COPY = GOOD THEN
{When LW1 tells that copy#?2 is 0.k.}
CASE LW2.LOCK_FLAG OF
FAILED-BEGIN {When copy#?2 is already marked failed on its LW,
then mark it on the local record status table and the LW1}

REC_STAT_TABLE(2,REC_ID) := FAILED:;
LW1.STAT_OTHER_COPY := FAILED;
END;

OTHERWISE: {Lock copy#2}
LW2.LOCK_FLAG := LOCKED;

- ENDCASE;

{When LW!1 tells that copy#2 is failed, then mark it on the
local record status table and the LW2}

ELSE
REC_STAT_TABLE(2,REC_ID) := FAILED;
LW2.LOCK_FLAG := FAILED;

ENDIF;

RSTAT := 1;
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Subroctine RECORD_LOCK (Cont'd)

ELSE {The record status table tells that only copy#1 is available}

START3:
CUR_COUNT := LW1.LOCK_COUNT;

LOOP3:
LOOP FOR NO_LOOP:=1 TO MAX_TRY:
<<EXCLUSIVE ACCESS TO LW1.LOCK_FLAG>>;

CASE LW1.LOCK_FLAG OF

FAILED: BEGIN
<<RELEASE OF EXCLUSIVE ACCESS>>;
REC_STAT_TABLE(1,REC_ID) := FAILED;
RSTAT:=-1;
ESCAPE LOOP3;
END;

FREE: BEGIN
LW1.LOCK_FLAG := LOCKED:
<<RELEASE OF EXCLUSIVE ACCESS>>;
LW1.LOCK_COUNT := CUR_COUNT+1;
RSTAT:=1;
ESCAPE LOOP3;
END;

OTHERWISE: <<RELEASE OF EXCLUSIVE ACCESS>>;
ENDCASE;

IF CUR_COUNT = LW1.LOCK_COUNT THEN
REC_STAT_TABLE(1,REC_ID) := FAILED:
LW1.LOCK_FLAG := FAILED;

RSTAT := -1;

ELSE
GO TO START3;

ENDIF;

ENDIF;
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Subroutine RECORD_LOCK (Cont'd)

ELSE IF REC_STAT_TABLE(2,REC_ID) = GOOD THEN
{When the record status table teils that only copy#2 is available}

START4:
CUR_COUNT := LW2.LOCK COUNT;
LOOP4: ) :
LOOP FOR NO_LOOP:=1 TO MAX_TRY:
< <EXCLUSIVE ACCESS TO LW2.LOCK_FLAG>>;
CASE LW2.LOCK_FLAG OF
FAILED: BEGIN
<<RELEASE OF EXCLUSIVE ACCESS>>;
REC_STAT_TABLE(2,REC_ID) := FAILED;
RSTAT:=-1;
ESCAPE LOOP4;
END;
FREE: BEGIN
LW2.LOCK_FLAG := LOCKED;
<<RELEASE OF EXCLUSIVE ACCESS>>;
LW2.LOCK_COUNT := CUR_COUNT+1;
RSTAT:=2;
ESCAPE LOOP4;
END;
OTHERWISE: < <RELEASE OF EXCLUSIVE ACCESS>>;
ENDCASE; '

IF CUR_COUNT = LW2.LOCK_COUNT THEN
REC_STAT_TABLE(2,REC_ID) := FAILED;
LW2.LOCK_FLAG := FAILED;

RSTAT := -1;

ELSE
GO TO START4;

ENDIF;

ELSE {No copy is available}
RSTAT := -1;
ENDIF;
ENDIF;

ENDWITH,;
END;
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Subroutine RECORD_UPDATE and RECORD_UNLOCK

PROCEDURE RECORD_UPDATE (REC_ID:INTEGER, TRACK_REC:TRACK_DATA);

VAR
L INTEGER,

BEGIN
LOOP FOR I:=1 TO 2:
IF REC_STAT_TABLE(LREC_ID)=GOOD THEN
WITH TRACK_COPY(I)*(REC_ID) DO
REC_LOCK.LOCK_FLAG := UPD_INITED;
REC_DATA := TRACK_REC;
ENDWITH;
ENDIF;
ENDLOOP;
END;

PROCEDURE RECORD_UNLOCK (REC_ID:INTEGER);

VAR :
I: INTEGER;

BEGIN
LOOP FOR I:=1 TO 2:
IF REC_STAT_TABLE(LLREC_ID) = GOOD THEN
TRACK_COPY(D)*(REC_ID).REC_LOCK.LOCK_FLAG := FREE;
ENDIF;
ENDLOCOP:
END;
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