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FUSION, PROPAGATION, AND STRUCTURING IN BAYESIAN NETWORKS
ABSTRACT

Bayesian networks are directed acyclic graphs in which the nodes represent propo-
sitions (or variables), the arcs signify the existence of direct causal dependencies between
the linked propositions, and the strengths of these dependencies are quantified by condi-
tional probabilities. A network of this sort can be used to represent the causal
knowlcdgcofadomaincxpcftandtumsintoacomputationalarchitecturcifthclinks
are used not merely for storing factual knowledge but also for directing and activating
the data flow in the computations which manipulate this knowledge.

The first part of the paper deals with the task of fusing and propagating the im-
pacts of new evidence and beliefs through Bayesian networks in such a way that, when
equilibrium is reached, each proposition will be assigned a certainty measure consistent
with the axioms of probability theory. It is shown that if the network is singly connected
(e.g. tree-structured), then the propagation of updated probabilities can be accomplished
by an isomorpbic network of parallel and autonomous processors, and that the impact of
new information can be imparted to all propositions in time proportional to the longest
path in the network.

The second part of the paper deals with the problem of finding a tree-structured
representation to an ensemble of probabilistically coupled propositions using auxiliary
(dummy) variabies, traditionally known as “hidden causes”. It is shown that if such a
tree-structured representation exists then it is possible to uncover the topology of the
tree uniquely by observing pairwise dependencies among the available propositions (i.e.
the leaves of the tree). Moreover, the entire tree structure, including the strengths of all
internal relationships can be reconstructed in time proportional to nlogn, where n is the
number of leaves.



FUSION, PROPAGATION, AND STRUCTURING IN BAYESIAN NETWORKS

Judea Pearl

1. INTRODUCTION

This study was motivated by attempts to devise a computational model for bu-
mans’ inferential reasoning, namely, the mechanism by which people integrate data from
multiple sources and generate a coherent interpretation of that data. Since the
knowledge from which inferences are drawn is mostly judgmental--namely, subjective,
uncertain, and incomplete--a natural place to start would be to cast the reasoning process
in the framework of probability theory. However, the mathematician who approaches |
this task from the vantage of probability theory may dismiss it as a rather prosaic exer-
cise. For if one assumes that human knowledge is represented by a joint probability dis-
tribution P(xy, . . - »X,) OO a set of propositional variables xy, . . -, %, the task of draw-
ing inferences from observations amounts t0 simply computing the marginal probabilities
of a small subset, Hy, . . . ,Hy, of variables called hypotheses, conditioned upon a group
of ihstantiatcd variables ¢, * * - e, called evidence. Indeed computing
P(H,, ... Hey, . . . ep) from a given joint distribution on all propositions is mercly

an arithmetic tediousness void of theoretical or conceptual interest.

It is not hard to see that this textbook view of probability theory presents a rather
distorted picture of human reasoning and misses its most interesting aspects. Consider,
for example, the problem of encoding an arbitrary joint distribution P(xj, . . ., x,) on a

computer. If we need to deal with » propositions, then to store P(xy, . - ., x,,) explicitly



would require a table with 2" entries--an unthinkably large number by any standard.
Moreover, even if we find s;omc economical way of storing P(xy, - - - » x,) (or rules for
generating it), there still remains the problem of manipulating it to compute the proba-
bilities of propositions which people consider to be interesting. For example, to computc
the marginal probability P(x;) would require summing P(x1,-.., X,) Over all 2*~ =1 combi-

nations of the remaining n—1 variables x;, j#i. Similarly, computing the conditional

: P(x;,
probability P(x;}x;) from its textbook definition P(x;}x;) = —(%x—)l)- would involve divid-
4

ing two marginal probabilities, each resulting from summation over an exponentially
large number of variabile combinations, Human performance, by contrast, exhibits an
opposite complexity ordering; probabilistic judgments on a smail number of propositions
(especially 2-place conditional statements such as thc likelihood that a patient suffering
from a given discase will devclop a certain type of complication) are issued swiftly and
reliably, while judging the likelihood of a conjunction of many propositions is done with
great degree of difficulty and hesitancy. This suggests that the elementary building
blocks which make up human knowledge are ot the entries of a joint-distribution table,
but rather the low-order marginal and conditional probabilities defined over small clus-

ters of propositions.

Further light on the structure of probabilistic knowledge can be shed by observing
how people handle the notion of independence. Whereas a person may show reluctance
to giving a numerical estimate for the conditional probability P(%}x;), oo hesitation will
normally be encountered when that person is asked to state merely whether x; and x; are

dependent or independent, namely, whether knowing the truth of x; will or will not alter



the belief in x;. The 3-place relationships of conditional dependency (i.e. x; influences x;
given x,) are likewise judged by people with a great deal of clarity, conviction, and con-

sistency.

This suggests that the notions of dependence and conditional dependence are
moﬁ: basic than the numerical values attached to probabﬂxty judgments, contrary to the
picture painted in most textbooks on probability theory, where the latﬁ:r is presumed to
provide the criterion for testing the former. Moreover, the nature of probabilistic
dcpcﬁdency between propositions is similar in many respects to that of connectivity in
graphs. For instance, we find it plausible to say that a proposition g affects proposition
r directly, while s influences r indirectly, via g. Similarly, we find it natural to identify
the set of propositions which directly aﬁect the truth value of ¢, and to describe them as
the direct neighbors of ¢, which isolate q from all other influences. This suggests that
the fundamental structure of human knowledge can be represented by dependency
graphs and that mental tracing of links in these graphs are responsible for the basic steps

in querying and updating that knowledge.
1.1  BAYESIAN NETWORKS

Assume that we decide to represent our perception of a certain problem domain
by sketching a graph in which the nodes represent propositions and the links connect
those propositions that we judge to be directly related. We now wish to quantify the
linksbywcightsthatsignifythesmngthandtypeofdcpcndcndabetweenthemnect-
ed propositions. If these weights are to be interpreted later as conditional probabilities,



two pfoblems must first be attended to: consistency and completeness. Consistency

guarantees that we 6o not averload the graph with an excessive number of parameters;
overspecification may lead to contradictory conclusions, depending on which parameter
is consuited first. Completeness protects us from underspecifying the graph dependen-

" cles.

One of the attractive features of the joint-distribution representation of probabili-
ty is the tranSpareﬁcy by which one can synthesize consistent probability models or
detect inconsistencies therein. In this representation, all we need to do is to assign non-
negative weights to the atomic compartments in the space (i.e., conjunctions of proposi-
tions), make sure the wcié,hts sum to one, and a cbmplete model, free of inconsistencies
is created. By contrast, the synthesis process in the graph representation is much more
hazardous. For example, assume you have three propositional variables, x;, X5, X3, and
you want to express their dependencies by specifying the three pairwise probabilitics
P(xy, x2), P(x3, X3), P(x3, %1)- It turns out that this will normally lead to inconsisten-
cies; unless the parameters given satisfy some non-obvious relationship, there exists no

probability model that will support all three probabilities.

Fortunately, the consistency-completeness issue has a simple solution, stemming
from the chain-rule reprcsehtation of joint-distributions. Choosing an arbitrary order on
the variables x;, * * - X, We can write:

P(xysxz, *°° Fn) = Ploglta—y ~ - 2)P(q—ilin=2 *** F1) y P(x4jxg,%1) P(xa}x1)P(x1)

In this formula, each factor contains only one variable on the left side of the condition-



ing bar, and in that way the formula can be used as a prescription for consistently quan-
tifying the dependencies among the nodes of an arbitrary graph. Given a graph G, as-
sipanarbitraryordcrtoitsnodu andimposedireeﬁonalityonthclinkspoinﬁngﬁ-om
low-order to high-order nodes. To each node x; assign an arbitrary function F,(x;,S;)

© satisfying

S, Fi(x,S) = 1

0s Fi(x;,8) =1
where 5, is the set of x;’s parents and the summation ranges over all values of x;. This
assignment is complete and consistent; it defines a joint distribution function given by the

product:

P(x; -+ x,) = l:[Fi(xiasi)

and the functions F,(x;,5;) are the marginal distributions P(x,|S,) dictated by
P(xy, * ** %,). For example, the distribution corresponding to the graph of Figure 1

. can be written by inspection:

P (xy, X2, X3 X4 %5 X = P(xglxs) P(xslry, x3) P(xqlxix2) P(xaley) P(xalx)) Pxy)-

This also leads to a simple method of constructing a dependency-graph represen-
tation to any given joint distribution P(x; ** ' x,). Westartby imposing an arbitrary
order d on the set of variables, x; * ** X, then choose x; as a-.root of the graph, and

assign to it the marginal probability P(x;) dictated by P(x;, * * * x,). Next, we form a



Figure 1

pode to represent x,; if x; is dependent on x; 3 link from x, to x, is established and
quantified by P(x,jx;). Otherwise, we leave x, and.xz.unconnected and assign the prior
P(x;) to node x5. At the i** stage, we form the node x; and establish a group of directed

links to x; from the smallest subset of nodes S; G {x; * * * X1} satisfying the condition:
P(x;lS) = Pxilxic1s -o0s 1)

It is easy to show that the minimal subset S; is unique. Thus, the distribution

P(x;, ' %), together with the order d uniquely prescribe a set of parent nodes for
ecach variable x;, and that constitutes a full specification of a directed acyclic graph which
represents the dependencies imbedded in P(x;, * ** X,). We shall call this graph
“Bayes Network™ or “Influence Network", interchangeably; the former to emphasize the
judgmental origin of the quantifiers, the latter to vindicate the directionality of the links.

When the nature of the interactions is perceived to be causal, then the term "Causal Net-



work” may also be appropriate. In general, however, an influence network may also
represent associative or inferential dependencies, in which case the directionality of the

arrows is used mainly for computational convenience.

In the strictest sense, these networks are not graphs but hypergraphs, because the
dependency of a given node on ifs k parents requires a function of k+1 argumeats
which, in general, could not be specified by & two-place functions on the individual links.
This, however, does not diminish the advantages of the network representation in
highlighting the essential interactions between the variables, and in modelling the com-

putational processes involved in inferential reasoning.

Note that the topology of a Bayes petwork may be extremely sensitive to the node
ordering d; a network which has an inverted-tree structure in one ordering may turn into
a complete graph if that ordering is reversed. For example, if xy, ..., X4 stands for the
outcomes of n independent coins and X, represents the output of a detector triggered if
any of the coins comes up HEAD, then the influence network will be an inverted tree of
n arrows pointing from each of the variables Xy, ..., X, toward X, On the other hand,
if the detector’s outcome is chosen to be the first variable, say x,, then the underlying

influence network would be a complete graph.

This sensitivity may at first scem paradoxical; d can be chosen arbitrarily,

whereas people have fairly uniform conceptual structures, ¢.8., they agree on whether a



stem from the dominant role causality plays in the formation of these networks. Thus,
the standard ordering imposed by the direction of causation also induces identical topolo-
gies on the networks that people adopt for encoding expericntial knowledge. It is easy
to speculate that if it were not for the social convention to adopt a standard ordering of
events, conforming to the flow of time and causation, buman communication would be-

come an impossible task.
1.2 CONDITIONAL INDEPENDENCE AND GRAPH SEPARABILITY

To facilitate the verification of dependencies between the variables in a Bayes net-
work, we need to establish a clear correspondence between the topology of the network
and various types of independence. Ideally, we would have liked to associate indepen-
dence between variables with the lack of m&ﬁﬁty between their corresponding nodes.
Likewise, we would have liked to require that if the removal of some subset S of nodes
from the network renders nodes x; and x; disconnected, then this mﬁm should indi-

cate conditional independence between x; and x; given S, namely,
P(xlx;, §) = P(x;15).

This would provide a clear graphical representation to the notion that x; does not affect

 x; directly but, rather, its influcnce is mediated by the variables in S.

Unfortunately, Bayes networks do not provide this simple representation of in-
dependence; a modified criterion of separability is required that takes into account the
directionality of the arrows in the graph. Consider a triplet of variables xy,x5,x3, where

x, is connected to x3 via x,. The two links, connecting the pairs (x, x2) and (x5, x3),
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can join at the midpoint x, in one of three possible ways:
(1) tail-to-tail, x; + x3 = X3
(2) head-to-tail, x; > x; X3 Or X - xy "Xy
(3) head-to-head, xy = %2 “ X3
From the method of constructing the network, it is clear that (assuming x,, x;, X3 arc
the only variables involved) in cases (1) and (2) x, and x5 are conditionally independent
given x,, while in case (3) x, and x3 are marginally independent (i.c., P(x4lx,) = P(x3))
but may become dependent given the value of x,. Morcover, if x, in case (3) has des-
cendants x,, x5 * - , then x; and x3 may also become dependent if any one of those
descendant variables is instantiated. These considerations motivate the definition of a
qualified version of path connectivity, applicable to pathﬁ with directed links, and sensi-
tive to all the variables whose values are known at a given time. |
DEFINITION: (a) A path P is connected with respect to a subset S, of evidence vari-
ables if all successive links along P are joined w.r.t. S,.
(b) Two links, meeting head-to-tail or tail-to-tail at node X,
are joined w.r.¢. S, if X is not in S,.
(c) Two links meeting head-to-head at node X, are joined w.r.t. S, if
X or any of its descendants is in S,. |
This definition permits vs to define separability with respect to a subset of observations

which, in turn, provides a graphical criterion for testing conditional independence.

-

DEFINITION: A subset of variables S, is said to separate x; from x, if there is no
path between x; and x; which is connected w.r.t. S,.

11



It is not hard to see that if S, separates x; from x;, then x; is conditionally in-
dependent of x; given S,. Moreover, the procedure involved in testing separation w.r.t.
a given subset S, is only slightly more complicated than that of testing whether S, is a
scparating cut set, and can be handled by visual inspection. In Figure 1, for example, |
one can easily verify that variables xi%x‘nd' x4 are separated w.r.t. §, = {x;} or

S, = {xy, x4} but not w.r.t. S, = {x,, x¢}, because x¢, being a descendant of xs, "joins

the head-to-head links at x5, which amounts to forming a connected path between x5 and

x30

Note that whereas the structure of Bayes networks together with the directionality
of its links depend strongly on the node ordering used in the network construction, con-
' ditional independence is a property of the underlying distribution and is, therefore,
order-invariant. If we succeed to find an ordering 4 in which a given conditional in-
dependence relationship becomes graphically transparent, that relationship will remain
valid in ali other orderings even though it may not induce a graph-separation pattern in
the correspondiﬁg networks. This permits the use of Bayes ncﬁvoril.:s for determining by
| inspection the influence neighborhood of any given node, namely, int;mal set § of vari-
ables that renders a given variable independent of every variable not in §. The separa-
tion criterion for Bayes networks dictates that the influence neighborhood consists of
three types of neighbors: the direct parents, direct successors, and all direct parents of
the latter. Thus, for example, in a Markov chain the influence chghborhood of any
non-terminal node consists of its two immediate neighbors, while ‘in trees the influence

neighborhood consists of the (unique) father and the immediate successors. In Figure 1,
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however, the influence neighborhoods of x5 is {x,, x5, X3}-
1.3 AN OUTLINE AND SUMMARY OF RESULTS

The first part of the paper (Section 2) deals with the task of fusing and propagat-
ing the impacts of new evidence and beliefs through Bayesian networks in-such a way
that, when equilibrium is reached, each proposition will be assigned a oertamty measure
consistent with the axioms of probability theory. We {irst argue (Section 2.1) that any
viable model of human reasoning should be able to perform this task by a self-activated
propagation mechanism, i.e., by an array of simple and autonomous processors, com-
municating locally via the links provided by the Bayes petwork itself. In Section 2.2 we
then show that these objectives can be fully realized in tree-structured networks, where
cach node h.as only one father. In section 2.3 we extend the result to networks with
multiple parents, as long as they are singly connected, i.e., there exists only onc (un-
directed) path between any pair of nodes. In both cases, we identify belicf parameters,
communication messages, and updating rules which guarantee that equilibrium is
reached in time proportional to the longest path in the network and that, at equilibrium,
.each proposition will be accorded 2 belief measure consistent with probability theory.
Possible approaches to achieve autonomous propagation in more general networks are

discussed in Section 2.4.

Of these approaches, the second part of the paper (Section 3) explores the feasi-
bility of turning a Bayes network into a tree by introducing dummy variables. In Section

3.1 we argue that such a technique would mimic the way people develop causal models,
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that the dummy variables correspond to the mental constructs known as "hidden causes”,
and that humans’ relentless search for causal models is moﬁvatcd by their desire to
achieve computational featurcs similar to those offered by tree-structured Bayes net-
works. After defining (in Section 3.2) the notions of star-decomposability and tree-
decomposability, Section 3.3 treats triplets of random variables and asks under what
conditions one is justified in attributing the observed dependencies to one central cause
represented by a fourth variable. We show that these conditions are readily testable
and, when the conditions are satisfied, that the parameters specifying the relations
between the visible variables and the central cause can be determined uniquely. In Sec-
tion 3.4 we extend these results to the case of a tree with n leaves. We shdw that if
there exists a set of dummy variables which decompose a given Bayes network into a
tree, then the uniqueness of the triplets’ decomposition enables us to configure that tree
trom pairwise dependencies among the variables. Morcover, the configuration pro-
cedure takes only O(nlogn) steps. In Section 3.5 we evaluate the merits of this method

and address the difficult issues of estimation and approximation.

14



2. FUSION AND PROPAGATION

2.1 AUTONOMOUS PROPAGATION AS A COMPUTATIONAL PARADIGM

Once an influence network is constructed, it can be used to represent the generic
causal knowledge of a given domain, and can be consulted to reason about the interpre-
tation of specific input data. The intcrpteétion process involves instantiating a set of
variables corresponding 1o the input data end calculating its impact on the probabilitics
of a set of variables designated as hypotheses. In peneral, this process can be executed
by an external interpreter who may have access to all parts of the network, may use its
own computational facilities, and may schedule its computational steps so as to take full
advantage of the network topology with respect to the incoming data. However, the use
of such an interpreter scems foreign to the reasoning process normally exhibited by hu-
mans [Shastri and Feldman, 1984). Our limited short-term memory and narrow focus of
attention, combined with our inflexibility of shifting rapidly between alternative lines of
reasoning seem to suggest that our reasoning process is fairly local, progressing incre-
mentally along prescribed pathways. Moreover, the speed and ease with which we per-
form some of the low level interpretive functions, such as recognizing scencs,
comprehending text, and even understanding stories, strongly suggest that these
processes involve a significant amount of parallelism, and that most of the processing is

done at the knowledge level itself, not external to it.

A paradigm for modelling such phenomena would be to view an influence net-
work not merely as a passive parsimonious code for storing factual knowledge but also

as a computational architecture for reasoning about that knowledge. That means that
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the links in the network should be treated as the only pathways and activation centers
that direct and propel the flow of data in the process of querying and updating beliefs..
Accordingly,.wc assume that each node in the network is designated a separate proces-
sor which both maintains the parameters of belief for the host variable and manages the
communication links to and from the set of ncighboriné, logicaily related, variables.

The communication lines are assumed to be open at all times, i.e., each processor may
at any time interrogate the belief parameters associated with its neighbors and update its
own. In this fashion the impact of new evidence may propagate up and down the net- |

work until equilibrium is reached.

The ability to update beliefs by an autonomous propagation mechanism also has a
profound effect on sequential implementations of evidential reasoning. Of course, when
this architecture is simulated on sequential machines, the notion of autonomous proces-
sors working simultaneously in time is only a metaphor; howevez, it signifies the com-
plete separation of the stored knowledge and the individual computations from the con-
trol mechanism which schedules these computations to achieve some control strategy
goal. This guaranteés an ultimate flexibility for a sequential controller; the computations
can be performed in any order, without the need to remember which parts of the net-
work have or have not been updated already. Thus, for example, belief updating may
be activated by changes occurring in logically related propositions, by requests for evi-
dence arriving from a central supervisor, by a predetermined Me, or entirely at
random. The communication and interaction between individual processes can be simu-

lated using a blackboard architecture [Lesser and Erman, 1977] where each proposition

16



is designated specific areas of memory to access and modify. Additionally, the uniformi-
ty of this propagation scheme renders it natural for formulation in object-oriented
languages: eachnodeisanobjectofthesamegenerictypcandthebelicfpanmetm_are

the messages by which interacting objects communicate.

Ihcasynchronmmnamreofthismoddrequiraasoluéonmaninsmbﬂitypmb-
lem. If a stronger belief in a given hypothaismeansageatcrexpectaﬁonfortheoc-
currcnccofacertainmanifataﬁonandif,inmm,agrcatcrccrtaintyintheowmence
of that manifestation adds further credence to the hypothesis, how can one avoid an in-
finite updating loop when the two processors begin to communicate with one another?
We will show that in singly-connected networks such looping can be avoided by main-
taining several belief parameters, one for each link, to identify the individual sources of
belief in addition to its overall magnitude. Thus, a major objective of the next two sec-
tions is to present an appropriate set of belief parameters, communication messages, and
updating rules which guarantee that the diffusion of updated beliefs is accomplished in a

single pass and complies with the tenets of Bayes calculus.
2.2  BELIEF PROPAGATION IN TREES

We shall consider influence networks which are tree structured, namely, every
pode has only one incoming link. Additionally, we allow each node to represent a mul-
tivalued variable which may represent a collection of mutually exclusive hypotheses
(e.g., identity of organism: ORG/, ORG3,...) or a collection of possible observations

(e.g. patient’s temperature: high, medium, low). Let a variable be labeled by a capital

17



letter, ¢.8., A, B, C, ..., and its possible values subscripted, €.8., A1, A2, .o A,. Each
directed link A - B is quantified by a fixed conditional probability matrix, M(BlA),

with entries: M(BJA); = P(B;lA)- Normally, the directionality of the arrow designates
A as the set of causal hypotheses and B as the set of indicators or manifestations for

these hypotheses.

The instantiated nodes, constituting the incoming evidence or data will be denoted
by D. For the sake of clarity we will distinguish between the fixed conditional probabili-

ties that label the links, e.g. P(A|B), and the dynamic values of the updated node proba-
bilities. The latter will be denoted by BEL(A,), which reflects the overall belief accorded

to proposition A; by all data so far received. Thus,
, A
BEL(A;) = P(A/D)
where D is the value combination of all instantiated variables.

Consider the fragment of a tree depicted in Figurc 2. The belief in the various
values of B depends on three distinct sets of data: i.e., data from the tree rooted at B,
from the tree rooted at C, and from the tree above A. However, since A scparatcs B
from all variables except its descendants (see Section 1.2), this implics that the influence
of the latter two sources of information on B are completely summarized by their effect
on A. More formally, let D (B) stand for the data obtained from the tree rooted at B,

and D*(B) for the data obtained from the rest of the network. We have

18



Figure 2
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P(BjlA;, D*(B)) = P(BjiA)
(1)

which also leads to the usual "inter-siblings” conditional independence:

P(B,,ClA) = P(B/A) - P(CiA), @

since the proposition C = C; is part of D*(B).
Data Fusion

Assume we wish to find the belief induced on B by some data D, part of which,
D¥(B), comes from above B and part, D4(B), from below. Bayes theorem, together

with (1), yields the product rule

BEL(B;) =P(B,ID*(B), D4(B)) = «P[D«B)IB] - P[B/D*(B)], &)

where « is a normalizing constant. This is a gencralization of the celebrated Bayes for-

mula for binary variables

O(HIE) = M(E) O(H)
4)

where M(E)=P(E|HYP(E|H) is known as the likelihood ratio, and O(H)=P(HVP(H) as

the prior odds [2].

Eq.(3) generalizes (4) in two ways. First, it permits the treatment of non-binary
variables where the -mental task of estimating P(EII_{) is often unnatural, and where con-
ditional independence with respect to the ncgations of the hypotheses is normally violat-
ed (i.e., P(Ey, EQH) # P(E,[H)P(EJH)). Second, it identifies a surrogate to the prior
probability term for any intermediate node in the tree, even after obtaining some eviden-
tial data. According to (3), the multiplicative role of the prior probability has been tak-

20



moverbythatporﬁonofbeliefwhichisbased6n1yonthecvidcnc=gatheredbythcnct-
work above a variable, i.e., excluding the data collected from its descendants. Thus,
the product rule (3) can be applied to any node in the network, without requiring a
separate prior probability assessment. The root is the only node which requires a prior
probability estimation. Since it has no network above, D*(root) should be interpreted as

the available background knowledge which remains unexplicated by the network below.

Eq.(3) suggests that the probability distribution of every variable in the network

can be computed if the node corresponding to that variable contains the parameters

N(B;) = P(DB)IB)) -

and

q(8,) = P(B,D"(B)).
©)

q(B;) represents the causal or prospective support attributed to B; by its ancestors and
A(B;) represents the diagnostic or retrospective support B receives from its descendants.
ThctotalstrcngthofbclicfinB,wouldbeobtainedbyﬁsiugth;letwosupporuviathc
product

BEL(B)) = a\(B)) q(B))-
)

Whereas only two parameters, A (E) and O(H), were sufficient for binary variables, an
A-valued variable needs to be characterized by two n-tuples:

h-(B) = x(‘81): X(Bz), seey x(Bn)
®)

21



g(®) =4(81), 4(B2) ---» q(B.)-
)

To see how information from several descendants fuse at node B, note that the
data D,(B) in (5) can be partitioned into disjoint subsets, D3, D3, . . ., D, one for
each subtree emanating from (the m children of) B. Since B “separates” these subtrees

apart, conditional independence holds:

A(B) = P(D4B)B) = [1 P(D3IB)
k (10)

and, so, A(B,) can be formed as a product of the terms P(D%|B,) if these are delivered to

processor B as messages from its children.

Thus, we see that, atcachnodeofaBayatree,theﬁmioncfallinoomingdatais

purely multiplicative.
Propagation Mechanism

Assuming that the vectors A and ¢ are stored with each node of the network, our
task is now to prescribe how‘thc influence of new information spreads through the net-
work, namely, how the parameters ¢ and \ of a given node can be determined from the
g’s and \'s of its neighbors. This is done easily by conditioning egs.(5) and (6) on all
the values that the neighbors can assume. For example, suppose E is the k™ son of B;.

To compute the k" multiplicand in the product of (10) from the value of A(E), we write

P(D5IB) = ? P(DE)B;, E)) P (ij;)

and obtain (using (1) and (5))



p(D}B) = 2;. NE)) P(E;|B)

Namely, P(DX|B;) is obtained by taking the \ vector stored at the k* son of B and multi-
plying it by the fixed conditional-probability matrix that quantifies the link between B

and E. Thus, tthvectorofcachnodecanbeeomputedfmmthersofitschildrenby
multiplying the latter by their respective link matrices, and then multiplying the resultant

vectors together, term-by-term, as shown in (10).

.Asimila.ranalysis, applied to the vector g, shows that the g of any node can be
computed from the g of its father and the A’s of its siblings, again after multiplication by
the corresponding link matrices (sce Appendix I). Moreover, no direct communimﬁon
with the siblings is necessary since the information required of them already resides at
the father’s site (for the purpose of calculating its A, as in (10)) and, so, it can be
delivered down to the requesting son. Thm results, together with some efficiency con-
siderations [Pearl, 1982], dictate the following propagation scheme (the proofs of validity

are outlined in Appendix I).

1. Each processor computes two message vectors: 2 and z. P is seat to every son
while z is delivered to the father. The message P is identical to the belief distribution
BEL of the sender and is computed from ) and ¢ using (7). ris computed from )\ using

the matrix multiplication:

r=M-'A
- (11)

where M is the matrix quantifying the link to the father. Thus, the dimensionality of £



equaltothenumberofhypotbmmanagedbythefather Each component of z
represents the diagnostic contribution of the data below the host processor to thc belief
in one of the father’s hypotheses. It corresponds to a single term of the product in (10).

2. When processor B is called to update its parameters, it simultaneously inspects
the P(A) message communiu;ted by the father A and the messages 7,, L, .--» communi-
cated by cach of its sons and acknowledges recciving the latter. Using these inputs, it

then updates ) and g as follows:

3. Bottom-up propagation: ) is computed using a term-by-term multiplication of

the vectors £y, I3, ---» (as in (10)):

NB) = (2 % ey % - -+ = 1@
k (12)
4. Top-down propagation: q is computed using:
q(B) = B [1 P(BIAPP(AY(L'),
J (13)

where B is a normalizing constant and ¢’ is the last message from B to A ac-
knowledged by the father A. (The division by ¢’ amounts to removing from 2(A) the
contribution due to D(B) as dictated by the definition of ¢ in (6). An alternative way,

avoiding this division, would be to obtain from the father directly the message

g(A)I](zg) (i.e., %‘,i)-) where k ranges over the siblings of B.)
[}
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5. Usingthcupdatedvaluuof).andg,themmsagazand;arethenrwom- N
puted as in step 1 and are postcdonthcmasage-boards reserved for the sons and the

father, respectively.

This updating scheme is shown schematically in Figure 3, where multiplications

;ind divisions of any two vectors stand for term-by-term operations.
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Terminal and data nodes in the tree require special treatments. Here we have to

distinguish between the two cases:

1. Anticipatory node: a leaf node that has not been instantiated yet. For such
variables, 2 should be equal to ¢ and, therefore, we should set A={1,1,...,1) (also im-

plying z=(1,1,...,1)).

2. Data-node: a variable with instantiated value. Following eqs.(5) and (6), if
the j* state of B was observed to be true, we set & =4 =(0, ..., 0,1,0, ..., 0) with 1 at

the j* position.



Similarly, the boundary condition for the root node is established by substituting

the prior probability instead of the message B(A) expected from the father.
An Dlustration

Figure 4 shows six successive stages of belief propagation through a simple binary
tree, assumingthatupdaﬁngisacﬁvatedbychanguinthebeﬁefparametmofndgh-
boring processes. Initially (Figure 4a), the tree is in equilibrium and all terminal nodes
are anticipatory. As soon as two data nodes are activated (Figure 4b), white tokens are
placed on their links, directed towards their fathers. In the next phase, the fathers, ac-
tivated by these tokens, absorb the latter and manufacture the appropriate number of to-
kens for their neighbors (Figure 4c): white tokens for their fathers and black ones for
the children (the links through which the absorbed tokens have entered do not receive
new tokens, thus feﬂecting the division of P by r'). The root node now receives two
white tokens, one from cach of its descendants. That triggers the production of two
black tokens for top-down delivery (Figure 4d). The process continues in this fashion
until, after six cycles, all tokens are absorbed aggl_ti:ne petwork reaches a new equilibri-

um. ' : oW
t » o 1 )
ta} tod o

Figure 4
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| Properties of the Updating Scheme

L. The local computations required by the updating scheme are efficient in both
storage and time. Foranm-arytreewithnvaluapernod;,eachpromsorshould store

n2+mn+2n real numbers, and perform 212+ mn+2n multiplications per update.

2. The local céamputaﬁons and the final belief distribution are entirely indepen-
dent of the control mechanism that activates the individual operations. They can be ac-
tivated by either data-driven or goal-driven (e.g., requests for evidence) control stra-

tegies, by a clock, or at random.

3. New information diffuses through the network in a single pass. Infinite relax-
ations have been eliminated by maintaining a two-parameter system (g and r) to decou-
ple top and bottom evidences. The time required for completing the diffusion (in paral-

lel) is equal to the diameter of the network.



2.3. PROPAGATION IN SINGLY-CONNECTED NETWORKS

The tree structures treated in the preceding section require that only one variable
be considered a cause of any other variable. This restriction simplifies computations but
its }'epmentational power is rather limited, because it forces us to group together all
causal factors sharing a common consequence into a single node. By contrast, when
people associate a given observation with multiple potential causes, they weigh one
causal factor against another-as independent variables, cach pointing to a specialized

area of knowledge. As an illustration, consider the following situation:

Mr. Holmes received a phone call from his neighbor notifying him that she
heard a burglar alarm sound from the direction of his home. As he was prepar-
ing to rush home, Mr. Holmes recalled that the last time the alarm had been trig-
gered by an earthquake. Driving home, he heard a radio newscast reporting an
earthquake 200 miles away [Kim and Pearl, 1983}.

Mr. Holmes perceives two episodes which may be potential causes for the alarm
sound, an attempted burglary and an earthquake. Even though burglaries can safely be
assumed independent of earthquakes, still the radio announcement reduces the likeli-
hood of a burglary, as it "explains away” the alarm sound. Moreover, the two causal
events are perceived as individual variables each pointing to a separate frame of
knowledge. .



This interaction among multiple causes is a prevailing pattern of human reason-
ing. When a physician discovers evidence in favor of one disease, it reduces the credi-
bility of other diseases, although the patient may as well be suffering from two or more
disorders simultaneously. A suspect who provides an alternative explanation for being
pmscntatthcsccncofthecrimeappearslmlikelytobegﬁlty, even though the expla-
nation furnished does not preclude his committing the crime.

This section extends the propagation scheme to graph structures which permit a
pode to have multiple parents and captures "sideways” interactions via common succes-
sors. However, the graphs are restricted to be singly connected, namely, at most one

path (undirected) exists between any pair of nodes.
Fusion Equations

Consider a fragment of a singly connected network, as depicted in Figure 5. The
link B - A partitions the graph into two parts: an upper subgraph G, and a lower sub-
graph Gy, the complement of Gy,. These two graphs contain two scts of data which we
shall call D, and Dy, , respectively. Likewise, the links C - A, A -X,and A - Y de-
fine the subgraphs G¢,, Gax, and G,y which contain the data sets D&y, Dax, and Dyy,
respectively. Since A is a common child of B and C, it does not separate G5, and G&,
apart. However, it does separate the following three subgraphs: G5, {UJ G&i» Gax, and

Gy, and we can write -
P(DB.:h DEA’ DA-Xs DA-YHI) = P(D;Ar DE\‘AI) P(DA—XMI) P(DA_Y“I)

(14)
Thus, using Bayes rule, the overall strength of belief in A; can be written:
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BEL(A)) = P(A/D5x, Dér» Dax» Day) = @ P (AD5x, D& P(DixlA) P (DA.}’IAi)(l
where a is a normalizing constant. Further partitioning over the values of B and C, we

get

BEL(A)) = a P(DixlA) P(Dariadl % P(A,|B/C,) P(B,|D34) P (CelDEV] 16

Eq.(16) shows that the probability distribution of each variable A in the network could
be computed if three types of parameters are made available: (1) the current strength of

the causal evidence, , contributed by cach incoming link to A;

ws(B)) = P(8,D54) an

(2) the current strength of the diagnostic evidence, A, contribute& by each outgoing link

from A;



Ax(A) = P(D)lA)
(18)
and (3) the fixed conditional probability matrix, P(A}B, C), which relates the variable A
to its immediate causes. Accordingly,wclctcachlinkcarrytwodynamicmmem,ﬂ

and A, and let each node store the information contained in P(A|B,C).

With these parameters at hand, the fusion equation (16) becomes

BEL(A) = @ A,(A) Ay(A) 3 P(AiB/Cy) m4(By) ma(Ch)
° (19)

Alternatively, if the two parameters 7w and \ are available at a given link, we can com-

pute the belief distribution of the parent node by the product

(20)

Proﬁagatlon Equations

Assumingthatthcvectomnandharestorcdwdthéachﬁnk,6urtaskisnowto

prescribe how the influence of new information spreads through the network.

Updating A

Starting from the definition of A,(8;) = P(Dpa 1B,) we partition the data Dy, into

its components: A, Dix, Day, D¢,, and summing over all values of A and C we get

M(B) = aS [ (€I M(Ar) hy(An) P (AxlBCp)
y i 1)

Eq.(21) shows that only three parameters (in addition to the conditional probabilities

P(A|B, C)) need to be involved in updating the diagnostic parameter vector A ,(B):
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w4 (C), Ax(A), and Ay(A). This is expected since Dz, is completely summarized by X,
Y, and C.
Updating &

The rule for updating the causal parameter m4(A) can be obtained from the for-

maula:

nx(A) = ary(AD SPABLCY) wA(B)7A(CH)]
2 (2)

Thus, similar to A,(B), wx(4) is also determined by three neighboring parameters:

Ay(A), m4(B), and m,(C).

Eqs.(21) and (22) also demonstrate that a perturbation of the causal parameter,
m, will not affect the diagnostic parameter, \, on the same link, and vice versa. The
two are orthogonal to each other since they depend on two disjoint sets of data. There-
fore, any perturbation of beliefs due to new evidence propagates through the network
and is absorbed at the boundary without reflection. A new equilibrium state will be
reached after a finite number of updates which, in the worst case, is equal to the diame-

ter of the network.

Eq.(21) also reveals that if no data is observed below A, (i.e., all \'s pointing to
A are unit vectors), then all \’s emanating from A are also unit vectors. This means
that evidence gathered at a node does not influence its spouses until their common son
gathers diagnostic evidence. This reflects the special connectivity conditions established
in Section 1.2, and matches our intuition regarding multiple causes. In Mr. Holmes's

case, for example, seismic data pertaining to earthquakes would not have influenced the
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likelihood of a burglary prior to receiving the neighbor’s telephone call.
2.4 SUMMARY

The preceding two sections show that the architectural objectives of propagating
beliefs coherently, through an active:-network of primitive, identical, and autonomous
processors can be fully realized in siﬂgly-connected graphs. Instabilities due to cyclic
inferences are avoidéd by using multiple, source-identificd belief parameters, and equili-
bdumisguaranteedtobcrcachedinﬁmeproporﬁonaltothenctworkdiamctcr.

The primitive processors are simple, repetitive, and save for performing the ma-
trix multiplications, require normtggy?.lﬂ Thus, this architecture lends itself naturally to
hardware implementation, capable of real-time interpretation of rapidly changing data.
It also provides a reasonable model of neural nets involved in cognitive tasks such as
visual recognition, reading comprehension [Rumelhart, 1976], and associative retricval

[Anderson, 1983], where unsupervised parallelism is an uncontested mechanism.

It is also interesting to note that the marginal conditional probabilities on the links
of the network retain their viability throughout the updating process. This is remarkable
because P(A|B) only defines the belief of A under very special sets of circumstances, |
namely, wﬁen the value of B is known with absolute certainty, and when no other evi-
dential data is available. In normal circumstances, though, all internal nodes in the net-
work are subject to some uncertainty and, more seriously, after-observing evidence e,
the relation between BEL(A) and BEL(B) is no longer governed by P(A|B), but by
P(A|B, ¢), which may be vastly different. The ability to maintain a constant set of
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weights on the links is essential, since having to adjust the weights with the arrival of
cach new data would be computationally prohibitive. One is tempted to speculate,
therefore, thatthismaybethercasonthatpeoplechoosethemarginalcondiﬁonalpmba-
bilities as standard primitives for organizing stable conceptual information which, in
furn, also explains why people are more proficient in assessing the magnitude of thesc
relationships rather than of any other probabilistic quantity.

The efficacy of singly-connected networks in supporting autonomous propagation
raises the question of whether similar propagation mechanisms exist in less restrictive
networks (¢.g., the one in Figure 1), in which multiple parents possess cCOmmon ances-
tors, thus forming (undirected) loops. So far, our investigation has failed to find a pro-
pagation method for loops: that retains all the advantages cited above. For example, a
straightforward way of handling the network of Figure 1 would be to appoint a local in-
terpreter for the loop xy, X3, x3, x5 that will pass messages directly between x; and xq,
accounting for the interactions between x, and x3. This amounts basically to collapsing
no;ics x, and x; into a single node, representing the compound variable (xy, x;). The
method works well on small loops, but as soon as the number of variables exceeds 3 or
4, collapsing requires handling huge matrices and washes away the natural conceptual
structure imbedded in the original network.

An alternative method would be for each node to continue communicating with its
neighbors as if the network was singly-connected, ignoring the possibility of loops. This
will set up messages circulating indefinitely around the loop, until equilibrium is ap-
proached. The convergence and coherence properties of such a process are yet uncer-



A third method of propagation is based on “stochastic relaxation” [Geman and
Geman, 1984]. Each processor interrogates the states of the variables within its influ-
ence neighborhood (see Section 1.2), computes a belief distribution for the values of its
host variable, thenselectsoncofthaevaluawithprobabiﬁtythathuaht)hemputed
belief. The value chosen will subsequently be interrogated by the neighbors upon com-
puting their beliefs, and so on. This scheme is guaranteed convergence, but usually re-
quires very long relaxation times to reach a steady state.

Finally, an approach which is discussed more fully in Section 3 is based on the in-
troduction of auxiliary variables that turn the network into a tree. Consider, for exam-
ple,thetrceofFiguicZ. TheleavéC,D,E,Fareﬁghﬂywupledinthemethatno
two of them can separate the other two. Therefore,ifwewcremmmxctaninﬂum
network based on these variables alone, a complete graph would ensue. Yet, the inclu-
sion of the variables A and B manages to turn that graph into a tree. The question is
now: Which networks can be broken up into trees by introducing dummy variables? In
some respect, this method is similar to that of appointing external interpreters to handle
non-separable components of the graph, because the dummy variables are assigned pro-
cessors that mediate between the original variables. However, the dummy-variables
scheme enjoys the added advantage of uniformity: theprowmreprucnungthedum-
my variables can be identical to those representing the real variables, in full compliance
with our architectural objectives. Moreover, there are strong reasons to believe that the
promsofrwrganizingdammumbyaddmgﬁcﬁﬁmnmmimiamimpormm
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component of conceptual development in human beings. These considerations are dis-

cussed in the section that follows.



3. STRUCTURING CAUSAL TREES
3.1 CAUSALITY, CONDITIONAL INDEPENDENCE AND TREE ARCHITECTURE

Human beings exhibit an almost obsessive urge to conceptually mold empirical
phenomena into structures of cause-and-cffect rclanonshqx This tendency is, in fact, so
compulsive that it sometimes comes at the expense of premuon and often requires the in-
vention of hypothetical, unobservable cntities such as "ego”, "clementary particles”, and
"supreme beings” to make theories fit the mold of causal schema. When we try to ex-
plain the actions of another person, for example, we invariably invoke abstract notions
of mental states, social attitudes, beliefs, goals, plans and intentions. Medical
knowledge, likewise, is organized into causal hierarchies of invading organisms, physical
disorders, complications, clinical states, and only finally, the visible symptoms.

We take the position that, like many other psychological compulsions, human ob-
session with causation is computationally motivated. Causal models are only attractive
because they provide effective data-structures for representing empirical knowledge,
namely, they can be queried and updated at high speed with minimal external supervi-
sion. This position behéovca us to take a closer look at the structure of causal models
and determine what it is that makes them so effective. In other words, what are the
computational assets of those fictitious variables called "causes” that make them worthy
of such relentless buman pursuit, and what renders causal explanations so pleasing and

comforting once they are found?
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The paradigm expoiii;ded in this paper is that the main ingredient responsible for
the pervasive role of causal models is their centrally-organized architecture, i.¢., an archi-
tecture in which the dependencies among the variables are mediated by one central

mechanism.

If you ask » persons in the street what time it iis., the answers will undoubtedly be
very similar. Yet instead of suggesting that somehow the answers evoked, or the per-
sons surveyed tend to influence cach other, we postulate the existence of a central cause,
the standard time, and the commitment of cach person to adhere to that standard. Thus,
instead of dealing with a complex n-ary relation, the causal model in this example con-
sists of a network of n binary relations, all connected star-like to one central node which
serves to dispatch information to and from the connecting variables. Psychologicaily, this
architecture is much more pleasing. Since the activity of cach variable is constrained by
only one source of information (i.c., the central cause), no conflict in activity arises; any
assignment of values consistent with .thc central constraints will also be globally con-
sistent, and moreover, a change in any of the variables can communicate its impact to all

other variables in only two steps.

Computationally speaking, causes arc names given to auxiliary variables which
encode a summary of the interaction between the visible variables and, once calculated,

permit us to treat the visible variables as if they were mutually independent.

The dual summarizing-decomposing role of a causal variable is analogous to that
of an orchestra conductor; it achieves coordinated behavior through central communica-
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tion and thereby relieves the players from having to communicate directly with each oth-
er. In the physical sciences, a classical example of such coordination is exhibited by the
construct of a field (e.g. gravitational, electrical, or magnetic). Although there is a one-
to-one mathematical correspondence between the electric field and the electric charges in
terms of which it is defined, nearly every physicist takes the next step, and ascribes phy-
sical reality to the electric field, imagining that in every point of space there is some real
physical phenomenon taking place which determines the magnitude and direction which
tag the point. This psychological construct offers a tremendous advantage without which
it is hard to conceive the development of the electrical science. It decomposes the com-
plex phenomena associated with interacting electric charges into two independent
processes: (1) the creation of the field at a given point by the surrounding charges and |
(2) the conversion of the field into a physical force once another charge passes by that
point.

The advantages of centrally coordinated architectures are not unique to star- -
structured networks, but are also characteristic of tree structures, because every internal
node in the tree centrally coordinates the activities of its neighbors which, otherwise, are
completely independent of each other. In a management hierarchy, for example, where
employees can only communicate with each other through their immediate superiors, the
passage of information is swift, economical, conflict-free, and highly parallel. These
computational attributes, we postulate, give rise to the satisfying sensation called "in-
depth understanding”, which people experience when they discover causal models con-

sistent with observations.

39



The topological concept of central coordination is parallel to the probabilistic no-
tion of conditional independence. In our preceding example, the answers to the question
nwhat time it is” would be viewed as random variables that are boﬁnd together by a
spurious correlation (Simon 1952, Suppes 1970) and become independent of cach other
once we know the state of the mechanism causing the correlation, i.e., the standard
time. Thus, conditional independence captures both functions of our orchestra conduc-

tor: coordination and decomposition.

The most familiar connection between causality and conditional independence is
embodied in the scientific notion of a state. It was devised to break up the influence that
the past exerts on the future by providing a sufficiently detailed description of the
present. In probabilistic terms this came to be known as a Markov property; future

events are conditionally independent of past eveats, given the current state of affairs.

Conditional independence, however, is not limited to separating the past from the
future; it is often induced on events which occur at the same time and constitutes, in
fact, the most universal and distinctive characteristic featured by the notion of causality.
In medical diagnosis, for example, a group of co-occurring symptoms often become in-
dependent of each other once we know the disease that caused them. When some of the
symptoms directly influence each other, the medical profession invents a name for that
interaction (e.g., complication, clinical state, etc.) and treats it as a new auxiliary vari-
able which again assumes the decompositional role characteristic of causal agents; know-
ing the exact state of the auxiliary variable renders the interacting symptoms indepen-

dent of each other. In other words, it constitutes a sufficient summary for determining



the likely development of cach individual symptom in the group, and so, additional
knowledge regarding the states of the other symptoms becomes superfluous.

Given that tree-dependence captures the main feature of causation and that it
provides a convenient computational medium for performing updating and predictions, it
is very suggestive to assocmte causal models with tree-structured Bayes networks, like
those treated in Section 2.2. However, unlike with the trees of Section 2.2, we now as-
sume that only the leaves are directly accessible to empirical observations and the inter-
nal nodes represent hidden causes; namely, we do not know any of the conditional pro-
babilities that link the internal nodes to the leaves, nor the structure of the tree--those
would have to be learned. The Bayesian network corresponding to the leaves only, will
most probably be a complete graph. However, to be able to use the computational ad-
vantages of tree structures, as developed in Section 2.2, we invent new variables and at-

tempt to restructure the network into a tree.

Our first task would be to assume that there exist dummy variables which decom-
pose the network into a tree, and then ask whether the internal structure of such a tree
can be determined from obscrvatioﬁs made solely on the leaves. If it can, then the
structure fo@d would constitute an operational definition fdr the hidden causes often
found in causal models. Additionally, if we take the view that "learning” entails the ac-
quisition of computationally cffective representations for nature’s regularitics, then the
procedure of configuring the tree may reflect an important component of human learn-

ing.
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ArclatedstrucmingtaskwastrcatedbyChowand Liu (1968), who also used
tree-dependent random variables to approximate an arbitrary joint distribution. Howev-
er, in Chow’s trees all nodes denote observed variables, and so, the conditional probabil-
ities for any pair of variables is assumed given. By contrast, the internal nodes in our
trees denote dummy variables, artificially concocted to make the representation tree-like.
The problem of configuring probabiiistic models using auxiliary variables is mentioned
by Hinton ef al. (1984) as one of the tasks that a Boltzmann machine should be abie to
solve. However, no performance results have been reported and it is not clear whether
the relaxation techniques employed by the Boltzmann machine can casily escape from lo-
cal minima and whether it can readily accept the restriction that the resulting structure
be a tree. The method described in the following sections offers a solution to this prob-
lem, but it assumes some restrictive conditions: all Wla are bi-valued, a solution

tree is assumed to exist and all inter-leaf correlations are known precisely.
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3.2 PROBLEM DEFINITION AND NOMENCLATURE

Consider a set of n binary-valued random variables x;, * * *, %, with a given pro-
bability mass function P(x; - - x,). We address the problem of representing P as a
marginal of an (n+1)-variable distribution Pg (xy, ..., Xy, w), that renders x;  * * * , X,

conditionally independent given w, i.c.

Pxy, “ s Xns w) = fIP,(xilw)P,(w)
m @)

PGy o) = alIPLue=1) + A=) [[P,(zlw=0)
i=)

i=1 (24)
The functions Ps (x; | w), w=0, 1, i=1, ..., n, can be viewed as 2x2 stochastic ma-
trices relating each x; to the central hidden variable w (se¢ Fig. 6a), hence we name Ps a
star-distribution and call P star-decomposable. Each matrix contains two independent

parameters, f; and 2;, where

fi=P, (x=1jw=1)

g =P, (x=1|w=0)
(25)

and the central variable w is characterized by its prior probability P, (w=1) = a (see.

Figure 6b). *2

Pg{xo | Wi

PS(X1 I W) PS(XS I W)

X3

(a) (b)

Figure 6
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The advantages of having star-decomposable distributions are several. First, the
product form of P, in (23) makes it extremely easy to compute the probability of any
combination of variables. More importantly, it is also convenient for calculating the
conditional probabilities P(x;|x;), describing the impact of an observation x; on the pro-
babilities of unobserved variabfw. The computation requires only two vector multiplica-

tions.

Unfortunately, when the number of variables exceeds 3, the conditions for star-
decomposability become very stringent, and are not likely to be met in practice. Indeed,
a star-decomposable distribution for » variables has 2n+1 independent parameters,
while the specification of a general distribution requires 2"—1 parameters. Lazarfeld
(1966) considered star-decomposable distributions where the hiddea variable w is permit-
ted fo range over A values, A>2. Such an extension requires the solution of An+A-1
non-linear equations to find the values of its An+\—1 independent parameters. In this
paper, we pursue a different approach, allowing a larger numbér of binary hidden vari-

ables, but insisting that they form a tree-like structure (see Figure 7), i.e., each triplet
forms a star but the central variables may differ from triplet to triplet. Trees often por-
tray meaningful conceptual hierarchies and, computationally, are almost as convenicnt as

stars. X
1 W4 — X7

Figure 7

44



We shall say that a distribution P(x,%3, * " * » x,) is tree-decomposable if it is a

marginal of a tree distribution
Pp(xy %3, " " s XpsWisW2 © 77 W) mSn-—2
where wy,wy, " " ,w,,,corrwpondtothcintcmalnodaofanunroowdtrecrand

Xy, X, * U0, X tOtS leaves. Given a tree structure and an assignment of vanablu to
its nodes, the form of the corresponding distribution can be written by inspection. We

first choose an arbitrary node as a root. This, in turn, defines a unique father F(y;) for
each node y; € {x1, * ** » %m» Wi- + + + , Wy} in the tree, except the chosen root, y;.

The joint distribution is simply given by the product form:

Pr(xy *** Xpa Wy """ Wa) = P()l)nﬁlpb'il F(y)l
i=2 (26)

Forcxamplc,ifinFigure?wecﬁoosewzasthemotweobtain:

Pr(xl . s x,”wl ..-w0=

P(x7lwg) P(xglws) P(xslws) P(xqlw3) P(xaw1) P (xaw1) P(xyjwq) P(w1lw2) P(wsiw) P (wqlwa) P(w;

Throughout this discussion we shall assume that each w has at least three neigh-
bors; otherwise it is superfluous. In other words, an internal node with two neighbors
can simply be replaced 'by an equivalent direct link betweea the two. Note that any two
leaves are conditionally independent given the value of any internal node on the path

connecting them.
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If we are given Pr(xy, * " Xy, Wy, " w,,) then, clearly, we can obtain
P(xy, * * * X,) by summing over the w's. We now ask whether the inverse transforma-
tion is possible, i.e., given a tree-decomposable distribution é(xl, -+ + Xx,), Can we re-
cover its underlying extension Pp(x; - - * X, Wy " w,,) 7 We shall show that: (1)
the tree distribuﬁon Py is unique, (2) it can be recovered from P using nlogn computa-
tions, and (3) the structure of T is uniquely determined by the second order probabilities
of P. The construction method depends on the analysis of star-decomposability for tri-

plets which is presented next.



3.3 STAR-DECOMPOSABLE TRIPLETS

In order to test whether a given 3-variable distribution P(xy,x;,x3) is star-

decomposable, we first solve ¢q.(24) and express the parameters a.f;,8; &s a function of

the parameters specifying P. This task was carried out by Lazarfgld (1966)

the scven ]omtoccurrcncc probabilities

pp =P (x=1, =1, x=1) |

and led to the following solution:

Define the quantities

and let ¢ be the solution of

pi = P (x=1)

py = P (x=1, x=1)

{i/] = py — PPy

)

Uik

_PPp — PyPix

[ ]] Ukl

S
Y R =

—e— — —

pp & Spi
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27

(28)

(29)

(30)

(31)



f+Kt-1=0

The parameters a,f;,8; are givea by:

Moreover, the differences f;—g; are independent of py,

1
) .2

U]

(32)

(33)

(34)

(35)

(36)

The conditions for star-decomposability are obtained by requiring that the preced-

ing solutions satisfy:
(a) S; be real

(b) 0=f,;=<1

(c) 0sg,;=<1

Using the variances

r

o = [p; (1-p)]

and the correlation coefficients

&GN



Py—PPj
0y (38)

Py =
requirement (a) is equivalent to the condition that all three correlation cocfficients are
non-negative. (If two of them are negative, we can rename two variables by their com-
plements; the newly defined triplet will have all its pairs positively correlated.) We shall

call triplets with this property positively correlated.
This, together with requirements (b) and (c), gives (see Appendix II):

Theorem 1: A necessary and sufficient condition for three dichotomous random vari-
ables to be star-decomposable is that they are positively correlated, and that the inequal-

ity:

PuP PuPi
—p‘l =P 5-1;;1 + a0 (g —PyPa)
]

(39)
is satisfied for all /e{1, 2, 3}. When this condition is satisfied, the parameters of the
star-decomposed distribution can be determined uniquely, up to a complementation of

the hidden variable w, i.e., w=(1-w), fi~g;» a~(1—-a).

Obviously, in order to satisfy (39), the term (py - pyPu) must be non-negative.
This introduces a simple necessary condition for star-decomposability that may be used

to quickly rule out many likely candidates.

Corollary -- A necessary condition for a distribution P(xy, x,, x3) to be star-

decomposable is that all correlation cocfficients obey the triangle inequality:
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Pi = PjiPix
(40)

(40) is satisfied with equality if w coincides with x;; i.e., when x; and .x, are in-
dependent given x;. Thus, an intuitive interpretation of this corollary is that the correla-
tion between any two variables must be stronger than that induced by their dependencics

on the third variable; a mechamsm accounting for direct dependencies must be present.

Having established the criterion for star-decomposability we may address a relat-
ed problem: Suppose P is not star-decomposable, can it be approximated by a star-
decomposable distribution P that has the same second-order probabilities?

The preceding analysis contains the answer to this question. Note that the 3rd

" order statistics are represented only by the term py, and this term is confined by €q.(29)
to a region whose boundaries are determined by 2nd- order parameters. Thus, if we in-
sist on keeping all 2ad-order dependendies of P in tact and are willing to choose pyy S0
as to yield a star-decomposable distribution, we can only do so if the region cr-

cumscribed by (29) is non-empty. This leads to the statement:

Theorem 2: A necessary and sufficient condition for the 2nd order dependencies among

the triplet x; x; X3 to support a star-decomposable extension is that the six inequalities:
PyPix PyPik '

—L =2 SL +0'}Gk (pjk— p,jpa) =123

Pi Pi (41)

possess a solution for x.
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3.4 A TREE-RECONSTRUCTION PROCEDURE

Wea:enowmdytocon&onttbecenﬂalpmblemofthis&cﬁon: Given a tree-
decomposable distribution P(xy, - * * x,), can we recover its underlying topology and

the underlying tree-distribution Pr(x;, * * ', %y, W1y * " " Wp)?

Thc construction method is based on the observation that any three leaves in a
tree bave one and only one internal node that can be considered their center, i.c., it lies
on all the paths connecting the leaves to each other. If one removes the center, the three
Jeaves become disconnected from cach other. This means that if P is tree-decomposable
then the joint distribution of any triplet of variables x;,;,x; is star-decomposable, i.c.,
P(x;, x;, x;) uniquely determines the parameters a.f;,g; as in €q.(33), (34), and (35),
where a is the marginal probability of the central variable. Moreover, if we compute the
star decompositions of two triplets of leaves, both having the same central node w, the
two distributions should have the same value for a = Py(w=1). This provides us with a
basic test for verifying whether two arbitrary triplets of leaves share a common ceater
and a successive application of this test is sufficient for determining the structure of the

entire tree.

Consider a 4-tuple x, x5, %3, x4 of leaves in T. These leaves are interconnected

through one of the four possible topologies shown in Figure 8. The topologies differ in
1: :4 1 : 2 1 2 1 Xz
2 3 3 4 4: :3 4 3

(a) (b) el ) (d)
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the identity of the triplets which share a common center. For example, in the topology
of Figure 8(a), the pair [(1,2,3), (1,2,4)] ghare a common center and so does the pair
[(1,3,4), (2,3,4)]. In Figure 8(b), on the other hand, the sharing pairs are

[(1,2,4), (2,4,3)] and [(1,3,4), (2,1,3)], and in Figure 8(d) all triplets share the same
center. Thus, tﬁe basic test for center-sharing triplets enables us to decide the topology

of any 4-tuple and, eventually, to configure the entire tree.

We start with any three variables x,, x,, and x3, form their star decomposition,
choose a fourth variable x4, and ask to which leg of the star should x, be joined. We
can answer this question easily by testing which pairs of triplets share centers, decide on
the appropriate topology, and connect x4 accordingly. Similarly, if we already have a
tree structure T;, with i leaves, and wish to know where to join the (i+1)* leaf, we can
choose any triplet of leaves from T; with central va;iable'w, and test to which leg of w
should x, be joined. This, in turn, identifies a subtree 7,' of T; that should receive
x;,1 and permits us to remove from ﬁmher.consideraﬁom the subtrees emanating from
the unselected legs of w. Repeating this operation on the selected subtree T, will even-

tually reduce it to a single branch, to which x;, is joined.

It is possible to show (Tarsi and Pearl 1984) that by choosing, in each state, a
central variable that splits the available tree into subtrees of roughly equal-size, the join-

ing branch of x;,4 can be identified in at most log_L(i) tests, where k is the maximal
k=1 -

degree of the tree T;. This amounts to O(nlogn) tests for constructing an entire tree of n

leaves.
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So far we have shown thatthest:mctureofthetreeTmbcunoovcreduniquely.
Next we show that the distribution Py, likewise, is uniquely determined from P, i.e.,
that we can determine all the functions P(x; | w)) and P(w, | w) in (4), for i=1, - - - n
and j, k=1, 2, - - - m. The functions P(x; | w)) assigned to the peripheral branches of
the tree are determined directly from the star decomposition of triplets involving adja-*
cent leaves. In Figure 7, for example, the star decomposition of P(x; xy xs) yiclds ‘:
P(x, | wy) and P(x; | w;). The conditional probabilities P(w; | w;) assigned to interior
branches are determined by solving matrix equations. For example, P(x; | w,) is ob-

tained from the star decomposition of (xi, ¥s, ¥7), and it is related to P(x; | wy) via

P(xy | wp) = SP(x) | w)P(wy | w))

This matrix equation has a solution for P(w; | wa) because P(x; | wy) must be non-
singular. It is only singular when fy =gy, i.c., when x, is independent of w.l and, there-
fore, independent of all other variables. Hence, we can determine the parameters of the
branches next to the periphery, use those to determine more interior branches, and so

on, until all the interior conditional probabilities P(w; | w)) are determined.

Next, we shall show that the tree structure can be recovered without resorting to
3rd order probabilities; correlations among pairs of leaves suffice. This feature stems
t-om the obscrvation that when two triplets of 8 4-tuple are star-decomposable with
respect to the same ceatral variable w (e.g. 1,2,3 and 1,2,4 in Fig. 8(a)), then not only
theva.luaofaarethesamcbuta]sothefandg parametenuaodatedwiththctwo
common variables (e.g. 1 and 2 in Fig. 8(a)) must be the same. Whereas the value of a
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depends on a 3rd order probability, the difference f;— 8, depends only on 2nd order
terms via eq.(36). Thus, requiring that f;—g; in Fig. 8(a) obtains the same value in the

star decomposition of (1,2,3) as in that of (1,2,4), leads to the equation:

[12](13] _ [12]114]
@ T Ra @,

and, using (28), this yields

P13Pa2 = P1aP12 -
(43)

An identical equality will be obtained for each f;—g;, =1,2,3,4, relative to the topology

of Figure 8(a). Similarly, the topology of Figure 8(b) dictates

P12P4a3 = P14P3
(44)

and that of Figure 8(c):

P12P34 = P13P24
(45)

Thus, we see that each of these three topologies is characterized by its own distinct
equality, while the topology of Figure 8(d) by having all three equalities hold simultanc-
ously. This provides the necessary 2nd-order criterion for deciding the topology of any
4-tuple tested; if the equality pyPy = PuPp holds for some permutation of the indices,

we decide on the topology 1> @— @< {, i it holds for two such permutations, the
entire 4-tuple is star decomposable. Note that the cquality ppy = papy must hold for

at least one permutation of the variables, or else the 4-tuple would not be tree-

decomposable.



3.5 CONCLUSIONS AND OPEN QUESTIONS

This section provides an operational definition for entities called "hidden causes”,
which are not dire§ﬂy observable but facilitate the acquisitior of effective causal models
from empirical data. Hidden causes arc viewed as dummy variables which, if held con-
stant, induce probabilistic independence between sets of visible variables. It is shown
that if all variables are bi-valued and if the activities of the visible variables are governed
by a tree-decomposable probability distribution, then the topology of the tree can be un-
covered uniquely from the observed correlations between pairs of variables. Moreover,

the structuring algorithm requires only alogn steps.

The method introduced in this paper has two major shortcomings: It requires
precise knowledge of the correlation coefficients and it only works when there exists an
underlying model that is tree-structured. In practice, we often have only sample esti-
mates of the correlation coefficients, and it is therefore unlikely that criteria based on
equalities (as in eq.(43)) will ever be satisfied exactly. It is possible, of course, to relax
these criteria and make topological decisions by secking proximities rather than equali-
ties. For example, instead of searching for an equality p;py = PaPy» We can decide the
4-tuple topology on the basis of the permutation of indices that minimizes the difference
PyPu — PP Experimeats show, however, that the structure which evolves by such a
method is very seasitive to inaccuracies in the estimates py;, because no mechanism is
provided to retract erroneous decisions made in the early stages of the structuring pro-
cess. Ideally, the topological membership of the (i+ 1)? leaf should be decided not

merely by its relations to a single triplet of leaves chosen to represent an internal node
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w, but also by its relations to all previously structured triplets which share w as a center.
This, of course, will substantially increase the complexity of the algorithm.

Similar difficulties plague the task of finding the best tree-structured approxima-
tion to a distribution which is not tree-decomposable. Even though we argued that na-
tural data which lend themselves t; causal modeling should be representable as tree-
decomposable distributions, t.hes.cl ciistributions may contain internal nodes with more
than two valué:. The task of determining the parameters associated with such nodes is
much more complicated and, in addition, rarely yields unique solutions. Unique solu-
tions, as shown in section 3.4, are essential for building large structures from smaller
ones. We leave open the question of explaining how approximate causal modeling, an
activity which humans seem to perform with relative ease, can be embodied in computa-

tional procedures that are both sound and efficient.



" APPENDIX I
THE VALIDITY OF THE UPDATING SCHEME FOR TREES

Fromthefactthe&isonlyinﬂuenwdbychmgapmpagaﬁngfromthebottom
mdéonlybychangafromthetop, itiscleartﬁatthetrecwﬂlreachequﬂibﬁum after a
finite number of updating steps. It remains to show that, at equilibrium, the updated
parameters P(V;), in every node V, correspond to the correct probabilitics
P(V,|D*(V), D4(V)) or (see eq.(3)), that the equilibrium values of A(V;) and ¢(V,) actu-
ally equal the probabilities P(D,(V)|V,) and P(V,|D*(V)). This can be shown by induc-

tion: bottom-up for A and then top-down for g.

Validity of A: \ is certainly valid for leaf nodes, as was explained above in setting
the boundary conditions. Assuming that the A’s are valid at all children of node B, the
validity of A(B) computed through steps (11) and (12) follows directly from the condi-
tional independence of the data beneath B's children (10).

Validlryofg:‘ if all the \'s are valid, thenEisiralidfortherootnode. Assuming
now that P(A) is valid, let us examine the validity of q(B), where B is any child of A.
By definition (eq.(6)), g(B) should satisfy:

q(B;) = P(8/D*(B)) = ?P(BEIAJ)P(AJID'(A)’ D«5))
where § depotes the set of B’s siblings. The second factor in the summation differs from

P(A)) = P(A;ID*(4), D,(A)) in that the latter has also incorporated B's message (') in
the formation of A(A;) (eq.12). When we divide P(A;) by (z');, as prescribed in (13),



the correct probability ensues.
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APPENDIX II

CONDITIONS FOR STAR-DECOMPOSABILITY

Let
p; =P (x=1)
Py = P (X,‘=1, xj=1)
@-1)
Pijk =p (x‘=1, 1131, xt=1)

The seven joint-occurrence probabilities, py, pa, P3, P12, P13, P23, P123s uniquely define the
seven parameters necessary for specifying P(x;, %2, x3), for example:

P(x;=1,x=1,x=0=pn~ Pn

P(x;y=1,x,=0)=py —p12 &
and will be used in the following analysis.

Assuming P is star-decomposable (egs.22 and 23), we can express the joint-
occurrence probabilities in terms of @, f;, & and obtain seven equations for these seven
parameters.

pi=afi+ (1-a) &
I-2)
py = offy + (1-a) 8.3
(-3)

P = ofififi + (1-a) 838
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(-<4)

These equations can be manipulated to yield product forms on the right-hand

sides:

py — pip; = a(l=a)(f; - 80U — g) -

a-s)
pipge — Pypa = a(1-a) £i8i (5 —8)e —1i)
(I-6)
Eq.(TI-5) compriscs three equations which can be solved for the differences
- fi—a, i=1, 2, 3, giving
1
ijl[ik] |2
fi—au=58==% [.Lé].l]_l]
-7
where the bracket [ij] stands for the determinant
(i1 = py — Pp;
(11-8)
These, together with (II-2), determine f; and g; in terms of S; and a (still unknown):
\ 1
1-a |2
fi=pi +5; [";a"
) @)
1
a 12
8 =P~ S [Tj_‘:
) (1-10)

To determine a, we invoke eq.(II-6) and obtain



~ where ¢ is the solution to

2+Kt—-1=0
and K is defined by:
p s Sp

_ [k, i) _ PP = PyPa
Wi ™ "] ]

(T-11)

©-12)

(U-13)

@-14)

Itmbeeasilyveﬁﬁedthatx(and,thcrefore,a)obtainsthcsamevalueregardlasof

which index i provides the parameters in (1I-13).

From eq.(II-13) we see that the parameters S; and ., of P govern the solutions of

(I-12) which, in turn, determine whether P is star-decomposable via the resulting values

of a, f; &- These conditions are obtained by requiring that:
(a) S; be real
(b) 0=f;=1

Requirement (a) implies that, of the three brackets in (11-‘7)., cither all three are non-

negative or exactly two are negative. These brackets are directly related to the correla-

tion coefficient, via:
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-1 )
oy = ] s (1=p)] 2lpy (1=} 2 = ﬁ{;‘; s

and so, requirement (a) is equivalent to the condition that all three correlation coeffi-
cients are non-negative. If two of them are negative, we can rename two variables by

their complements; the newly defined triplet will have all its pairs positively correlated.

Now attend to rcquir:cmcnt (b). eq.(11-9) shows that f; can be negative only if §;
is negative, i.e, if §; is identified with the negative square root in (1-7). However, the
choice of negative S; yiclds a solution (f’, &', ') which is symmetrical to that stemming
from a positive S; (f;> 8i» @)» with ' = g, 8’ =f @' = 1-a. Thus, S; and f; can be
assumed non-negative, and it remains to examine the condition f; < 1 or, equivaiently,

. s ) -
t = —‘7 (see (I1-9) and (TI-11)). Imposing this condition in (I-12) translates to:
i : .

PPk
P S +oy0ilox — pyPal
ik Y kOilPg — PyP 16)

Similarly, inserting requirement (c), 8;=0, in eq.(11-12) yiclds the inequality:

Py
Tl | @17

which, together with (TI-16), lead to Theorem 1, Section 3.3.
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Figure Captions

Figure 1 - A typical Baye; netﬁvork representing the distribution
P(xy - - - xg) = P(xelxs) P(xslxa,x3) P(rafr1xo) Plxslxy) P (xafx;) P(xy)-

Figure 2 - A segment of a tree illustrating data partitioning.

Figure 3 - Thcintemalsmlctureofasingleprocasorperformingbe!iefupdaﬁng
* for variable B.

Flgurc4-1hcimpactofnewdatapropagatathroughauébyamessage-passmg
process. '

Figure 5 - Fragments of a singly connected network with multiple parents, illus-
trating data partitioning and belicf parameters.
Figure 6 - (a) Three random variables, x;, x2, X3 connected to a central variable w
by a star network.
(b) Dlustrating the three parameters, a, f;» 8, associated with each link.
Figure 7 - A tree containing four dummy variables and seven visible variables.

Figure 8 - The four possible topologies by which four leaves can be related.



