A PROBLEM SIMPLIFICATION APPROACH THAT GENEHATES
HEURISTICS FOR CONSTRAINT-SATISFACTION PROBLEMS

Rina Dechter April 1985
Judea Pearl CSD-850014

A PROBLEM SIMPLIFICATION APPROACH THAT GENERATES HEURISTICS
FOR CONSTRAINT-SATISFACTION PROBLEMS

by
Rina Dechter and J udea_ Pearl

Cognitive System Laboratory, Computer Science Department, U.C.L.A

ABSTRACT

Many Al tasks can be formulated as Constraint-Satisfaction problems (CSP), i.e., the assign-
ment of values to variables subject to a set of constraints . Recognition of 3-dimensiopal
objects, puzzles solving, electronic circuit analysis and truth-maintenance systems are examples
of such problems, and these are normally solved by various versions of backtrack search. In this
work we show how advice can be automatically generated to guide the order by which the
search algorithm assigns values to the variables, so as to reduce the amount of backtracking.
The advice is generated by consulting relaxed models of the subproblems | created by each
value-assignment candidate. The relaxed problems are chosen to yield a backtrack-free solu-
tions, and the information retrieved from these models induces a preference order among the

choices pending in the original problem.

We identify a class of CSP whose syntactic and semantic properties make them easy to
solve. The syntactic properties involve the structure of the constraint graph while the semantic
properties guarantee some local consistencies among the constraints. In particular, tree-like
constraint graphs can be easily solved and are chosen therefore as the target model for the
relaxation scheme. Optimal algorithms for solving easy problems are presented and analyzed. A
scheme for constructing a "best” constraint-tree approximation to a given constraint graph is
introduced and, finally, the utility of using the advise is evaluated in a synthetic domain of

CSP problem instances.

1. BACKGROUND AND MOTIVATION
1.1 Introdui:tf‘t;ion

An import,ani component of buman problem-solving expertise is the ability to use knowledge
about solving easy problems to guide the solution of difficult omes. Only a few works in Al
[Sacerdoti 1974, Carbonell 1983 have attempted to equip machines with similar capabilities.
Gaschnig [Gaschnig 1979] Guida et al. [Guida 1979}, and Pearl [Pearl 1983] suggested that
knowledge about easy problems could be instrumental in the mechanical discovery of heuris-
tics. Accordingly, it should be possible to manipulate the representation of a difficult problem
until it is approximated by an easy one, solve the easy problem, then use the solution to guide

the search process in the original problem.

The implementation of this scheme requires three major steps: 1. simplification 2. solu-
tion 3. advice generation. Additionally, to perform the simplification step, we must have a sim-

ple, a-priori criterion for deciding when a problem lends itself to easy solution.

This paper uses the domain of constraint-satisfaction tasks to examine the feasibility of
these three steps. It establishes criteria for recognizing classes of easy problems, provides special
procedures for solving them, demonstrate a scheme for geunerating good relaxed mode;ls, and
introduces an efficient method for extracting advice from them. Finally, the utility of using the

advice is evaluated in a synthetic domain of problem instances.

Constraint-satisfaction problems {CSP) involve the assignment of values to variables
subject to a set of constraints. Understanding three-dimensional drawings, graph coloring, elec-

tronic circuit analysis, and truth maintenance systems are examples of CSPs. These are

normally solved by some version of backtrack search which may require exponential search

time (for example, the graph coloring problem is known to be NP-complete.)

The following paragraphs summarize the basic terminology of the theory of CSP as
presented in [Montanari 1974] and extended by [Mackworth 1977) and [Freuder 1982]. Some
observations are presented regarding the relationships between the representation of the prob-

lem and the performance of the backtrack algorithm.
1.2 Definitions and Nomenclature

Formally, the underlying model of a CSP involves a set of n variables X, . . . ,X, each having a
set of domain values D, . ..,D,. An n-ary relation on these variables is a subset of the Carte-

sian product:
p € DyXDyXx,...,xD,. , (1)

A binary constraint R, between two variables is a subset of the Cartesian product of their

domain values, i.e.,
R, C D,XD,. (2)

A network of binary constraints is the set of variables X,, ... X, plus the set of
binary constraints between pairs of variables and it represents an n-ary relation defined by the
set of n-tuples that satisfy all the constraints. Formally, Given a symmetric network of con-

straints between n variables, the relation p represented by it is:
p = (2,2, - - . ,2,) | 2,€D,and (2;,2))€R,; for all ij} . (3)

Not every n-ary relation can be represented by a metwork of binary constraints with n vari-
ables, and the issues of finding the best approximation by such network are addressed in [Mon-
tanari 1974]. In this paper we will discuss only relations induced by network of binary con-

straints and henceforth assume that all constraints are binary and symmetric.

Each network of constraints can be represented by a constraint graph where the vari-
ables are represented by nodes and the non-universal comstraints by ares. The constraints
themselves can be represented by the set of pairs they allow, or by a matrix in which rows and
columns correspond to values of the two variables and the entries are 0 or 1 depending on
whether the corresponding pair of values is allowed by the constraint. Figure 1 displays a typi-

cal network of constraints (a), where constraints are given using matrix notation (b).

Rq2
X1 /X2

o oo
o_.Om
O a0 0

oy
]

X3

(a) (b)

FIGURE 1

Several operations on constraints can be defined. The useful ones are: union, intersec-
tion, and composition. The union of two constraints between two variables is a constraint that
allows all pairs that are allowed by either one of them. The intersection of two constraints
allows only pairs that are allowed by both constraints. The composition of two constraints,
R,, R,; “induces’ a constraint R,; defined as follows: A pair (2,43} i allowed by R, if there is
at least one value z,€D, such that (z,,2,)€R |, and (2;,2;)€ R2y. If matrix notation is used to
represent constraints, then the induced constraint R;; can be obtained by matrix multiplica-

tion:

Ry = Ry Ry (4}

A partial order among the constraints can be defined as follows: R;; C R’,; ifl every pair
allowed by R;; is also allowed by R’;; (this is exactly set inclusion). In this case we say that R
is smaller (or stronger) than R';. We can also say that R’ is a relaxation of R,;. The smal-
lest constraint between variables X; and X is the empty constraint, denoted &, which does
not allow any pair of values. The largest (i.e. weakest) is the universal constraint, denoted

£

U,;, which permits all possible pairs. A corresponding partial order can be defined among net-
works of constraints having the same set of variables. We saj that R C R’ if the partial order

s satisfied for every pair of corresponding constraints in the networks.

Finally, we define the notion of equivalence among networks of constraints: two net-
works of constraints with the same set of variables are equivalent if they represent the same

n-ary relation.

Cousider, for example, the network of figure 2, representing a problem of four bi-valued
variables. The constraints are z;ttached to the arcs and are given, in this case, by sets of pairs.
The direction of the arcs only indicates the way by whick constraints are specified. The con-
straint between X; and X,, displayed in part (b), can be induced by R, and R, Therefore,
adding this constraint to the network will result in ap equivalent network. Simtlarly, since the
constraint R,; can be induced from R,; and Ry, it can be deleted without changing the rela-

tion represented by the network.

The process of inducing relations in a given network makes the constraints smaller and
smaller, while leaving the petworks equivalent to each other. Moutanari called the smallest
network of constraints which is equivalent to a given network R, The Minimal Network. The

minimal network of constraints makes the ‘‘global’ constraints on the network as “local” as
g

possible. In other words, a minimal network of constraints is perfectly explicit.

[y

ot

(a) (b)

FIGURE 2
Every biary-constrained CSP problem can be represented by a metwork of constraints.
A tuple in the relation represented by the network is called a solution. The problem is either to
find all solutions, one solution, or to verify that a certain tuple is a solution. The last problem
is fairly easy while the first two problems can be difficult and have attracted a substantial

amount of research.
1.3 Backtrack for CSP

The algorithm mostly used to solve CSP problems is backtrack. Given a vertical order of the
set of variables X;,X,, ...,X, and a horizontal order of values in each variable's domain

Z; 1,%; 2, %; b algorithm Backtrack for finding one solution is given below:

Backtrack
Begin
1. Assign z, ; to X, (if allowed by a unary constraint}
2. k=1
3. while k< n-1
while X;+, has more values /*values z,,z,, . . . ,2; Were already selected*/
choose the first value zg+, ,; of X;+), 8.t. constraints(z,2;, . . . , 2}, T4+ ,) = true
then erase (temporarily) zg+yy, . - . , %+ ; from domain of X;+,
k=k+1
goto 3

© %N o

end :

10. k=k-1 (backtrack since no value at (5) exists).
11. If k==0 exit , no solution exists.

12. end

13. exit with solution

End.

In line 5 of the algorithm all the constraints between X;4+, and previous variables in the verti-
cal order are checked. The value chosen should be consistent with all the previous instantiated
values under those constraints. For Backtrack to find all solutions the above algorithm shouid

be modified slightly by adding another outer loop and terminating only when k=0.

Montanari considered the question of finding the minimal network M of a given net-
work R as the central problem in CSP, implying that once it is available the problem is virtu-
ally solved. The following two lemmas elaborate on this issue by relating the minimal network
_ to the backtrack algorithm.

Lemma 1:

Let R and R’ be two equivalent networks such that R” C R, then given the same order for
instantiating variables, any sequence of values that is explicated by Backtrack on R’ will be
explicated also by Backtrack on R when Backtrack looks for all solutions.

Proof:

The order between the metworks implies that any sequence of values which is consistent under

R is also consistent under R.

-1

Conclusion:
Given a network R and a fixed order of variables' instantiation, Backtrack's performance, when
looking for all solutions, is most efficient on the minimal network, relative to all networks which

are equivalent to R, since it is contained in all of them.

We now show.that when the .algorithm seeks only one solution then, using the minimal

network, the solition can be found easily in many cases. Some more definitions are required.

Given an n-ary relation p, representable by a network with n variables, the projection
ps of the relation p on a subset S of the variables is not always representable by a network with
IS| nodes. If for any subset of variables, S, pg is representable by a network with |S] variables
then p is said to be a Decomposable relation. Given an n-ary decomposable relation p,
represented by a minimal network M, then for any subset S of variables the subnetwork of M
restricted to the nodes in S, is a minimal network of ps- In this case M is also said to be

decomposable.

For example, the network in figure 3 is minimal but not decomposable. The relation

represented by M is:
p = {(zl,l'1'2,1'23,1’31,1)’(21,1!12,2’23,'2’:4,2)'(ILZ'ZZ,’.}'IS‘I'ZQ.S)} (5)

(Note that X, is a non-binary variable.)

If $ = {X|,X.,X3} it can be shown that p,, given by

Ps = {(Il,l’2'2,1’33,1)'(31,1'12,2’33,2)1(11‘2'22.2’23,l)}’ (8)

cannot be represented by a network with 3 variables. (For more details see [Montanari 1974]).

Lemma 2:

If M is minimal and decomposable network then Backtrack wiil find one solution without back-

tracking at all.

|11 |010

FIGURE 3
Proof:

From M's decomposability it follows that any projection p, has a minimal network which is the
subnetwork of M that is restricted to the variables in S. Therefore, any tuple of the variables in
S that satisfy all the constraints in the minimal subnetwork is part of an p-tuple in the n-ary
relation represented by M, and therefore it can always be extended.
O
The complexity of finding a solution given a minimal and decomposable network M is,
therefore, O(n* k) where n is the number of variables and k is the maximum cardinality of the
value domain for all variables. In the previous example of a nondecomposable minimal net-
work Backtrack may explore the path z,,, Z;, 23, and since it cannot be extended to a 4-
tuple relation satisfying M the algorithm will have to backtrack. ‘lu conclusion we see that
solving a CSP problem , finding all or one solution, is easier when the minimal network is avail-

able, but this does not guarantee backtrack-free search unless the network is also decompos-

able.

Backtrack and its performance on CSP problems were extensively discussed in the Al
literature. Most researchers have been trying to identify the major maladies in its performance,
to provide a corresponding cure, and to analyze the results. These works can be classified along

the following dimensions:
1. The problem objectives: finding all or finding one solution

2. control parameters: controlling the order of variables’ instantiation, order of values’ ina-
tantiation, or manipulating the problem’s representation by pruning values or propagat-

ing constraints.

3. cure implementation: preprocessing the cures prior to the start of the algorithm, or

incorporating them dynamically into the algorithm while it searches for solution(s).

Mentioning only few studies, we start with [Montanari 1974} who considered the task of
finding all solutions, and discussed the solution of a problem by propagating the constraints
and pruning pairs of values from them. In light of the previous lemmas these methods can be
regarded as a preprocessing phase to a backtrack algorithm although the latter was not men-
tioned explicitly. Mackworth [Mackworth 1977] extended Montanati’s work by introducing
consistency checks to cure the maladies of Backtrack. Haralick and Eliot {Haralick 1980] dis-
cussed the task of finding all solutions and examined various methods of value pruning includ-
ing lookahead mechanisms which are incorporated into the algorithm. Freuder [Freuder 1982]
considered the problem of finding one solution to a CSP problem and provided a procedure to
select a good ordering of variables which is performed as a preprocessing to Backtrack. Other
works in analyzing the average performance of Backtrack were reported by [Nudel 1983, Pur-
dom 1985] and [Haralick 1980] all estimating the size of the tree exposed by Backtrack while

searching for all solutions.

10

It seems that the only parameter not considered for controlling Backtracks’ performance
is the order by which values are assigned to variables. Part of the reason can be explained by
the following theorem.

Theorem 1:
Given the objective of finding all solutions and given a fixed ;rertical order for variables’ instan-
tiation, thejsearch tree exposed by Backtrack is invalsiant to the order of values’ selection. (All
search t,1-ees5 which are identical up to an ordering of branches are considered the same.)
Proof:
Any sequence of values that is explored by Backtrack w.r.t. a specific order of variables is con-
sistent under this subset of variables, and it may or may not lead to a solution. The only way
Backtrack can find out if it is extensible to a solution is to continue and explore it. Therefore,
Backtrack which tries to find all solutions will have to search this sequence for any order of
value assignment.

O

Similarly, Backtrack that looks for one solution, in a CSP that has no solution, will

expose the same search tree under any order of value assignment, given a fix vertical order.

The above theorem states that value-selection strategies cannot be used to improve
Backtrack's performance for the task of finding all solutions. [n this paper we address the
objective of finding a single solution to CSPs. Although this ‘problem is easier it can still be
very difficult (e.g. 3-colorability) and it appears frequently. Theorem proving, planning and
even vision problems are examples of domains where finding one solution will normally suffice
[Simon 1975}, and, the order by which values are selected may have a profound effect on the
algorithm’s performance. In the following section we outline a gel;eral approach to devising

value selection strategies.

11

1.4 General Approach for Automatic Advice Generation

Following the model of the A’ algorithm that uses heuristics to guide the selection of the next
node for expansion, we now wish to guide Backtrack in selecting the next node on its path.
We assume that the order of variables is fixed and therefore the selection of the next node
amounts to choosing a promising assignment of values from a set of pending aptions. Clearly,
if the next value can be guessed correctly, and if a solution exists, the problem wil! be solved in
linear time with no backtracking. Backtrack builds partial solutions and extends them as long
as they show promise to be part of a whole solution. When a dead-end is recognized it back-
tracks to a previous variable. The advice we wish to generate should order the candidates

according to the confidence we have that they can be extended further to a solution.

Such confidence can be obtained by making simplifying assumptions about the continu-
ing portion of the search graph and estimating the likelihood that it will contain a solution
efen when the simplifying assumptions are removed. It is reasonable to assume that if the sim-
plifying assumptions are not too severe then the number of solutions found in the simplified
version of the problem would correlate positively with the number of solutions present in the
original version. We, therefore, propose to count the number of solutions in the simplified
model and use it as a measure of confidence that the options considered will lead to an overall

solution.

To incorporate the advice generation into the backtrack algorithm, line 5 should be

replaced by the following:

5a. eliminate all values of X;+, which are not consistent with z,, . . . ,z;.
5b. /* let zg41 4, - « . .Tg~1 cll the remaining candidates for assignment®/
advise((Zz+1.1, - - - Zae1oh (Zk411s - - 5T k+1e))

Sc. assigh T g+ to o

12

The advise procedure takes the set of consistent values of X;+, and order them according to

the estimates of the number of possible solutions stemming from them.

The remaining sections describe the advice-giving algorithm, provide theoretical
grounds for it, and report experimental evaluation of its performance. In section 2 we establish
criteria for recognizing classes of easy CSP problems and introduce an efficient method of
counting the number of solutions. Section 3 describes a process of approximating a given C5P
problem by an easy relaxed one. Section 4 evaluates the utility of using the advice using a syn-

thetic domain of CSP problems.

13

2. THE ANATOMY OF EASY CONSTRAINT-SATISFACTION PROBLEMS
2.1 Introduction and background .

In-;general, a problem is considered easy when its representation permits a solution in polyno-
mial time. However, since we are dealing mainly with backtrack algorithms, we will consider a
CSP easy if it can be solved by a backtrack-free procedure. A backtrack-free search is one in
which Backtrack terminates without backtracking, thus producing a solution in time linear

with the number of variables.

The discussion of backtrack-free CSPs relies heavily on the concept of cobstraint
graphs. Freuder [Freuder 1982] has identified sufficient conditions for a constraint graph to
yield a backtrack-free CSP, and has shown, for example, that tree-like constraint graphs can be
made to satisfy these conditions, with a small amount of preprocessing. Our main purpose here
is to further study classes of constraint graphs lending themselves to backtrack-free solutions
and to devise efficient algorithms for solving them. Once these classes are identified they can be
chosen as targets for a problem simplification scheme: constraints can be selectively deleted
from the original specification so as to transform the original problem into a backtrack-free
one. As already mentioned, we propose to use the “‘number of consistent solutions in the
simplified problem” as a figure-of-merit to establish priority of value assignments in the back-
tracking search of the original problem. We show that this figure of merit can be computed in

time comparable to that of finding a single solution to an easy problem.

Definition: ([Freuder 1982]) An ordered constraint graph is a constraint graph in which

the nodes are linearly ordered to reflect the sequence of variable assignments executed by the

14

Backtrack search algorithm. The width of a node is the number of arcs that lead from that
node to previous nodes, the width of an ordering is the maximum width of all nodes, and the

width of a graph is the minimum width of all the orderings of that graph.

|
A C B c A B 1
|
B B A A C C |
: DIRECTION OF
INSTANTIATION
FIGURE 4

Figure 4 presents six possible orderings of a constraint graph. The width of node C in
the first ordering (from the left) is 2, while in the second ordering it is 1. The width of the first
ordering is 2, while that of the second is 1. The width of the constraint graph is, therefore, 1.
Freuder provided an efficient algorithm for finding both the width of a graph and the ordering

corresponding to this width. He further showed that a constraint graph is a tree iff it is of

width 1.

Montanari [Montanari 1974] and Mackworth [Mackworth 1977] have introduced two
kinds of local consistencies among constraints named arc consistency and path consistency.
Their definitions assume that the graph is directed, i.e., each symmetric constraint is

represented by two directed arcs.

Let R;{x,y) stand for the assertion that (x,y) is permitted by the explicit constraint R,;.

Definition: ([Mackworth 1977]): Directed arc (X,.X,) is arc consistent iff for any value x €

15

D, there is a value y €D; such that R,{z,y).
Definition ([Montanari 1974]): A path of length m through nodes (4y,¢;, - - - ,¥) i3 path con-

sistent if for any value z€D; and y€D, such that R, (z,y), there is a sequence of values

5n€D;, ..., zm-1 €D; such that

.Ri,;',(z'zl) and R:t.’,(zv%) and - - R‘-M,-_(z__l,y). | (7)

R, may also be the universal relation e.g., permitting all possible pairs.

A constraint graph is arc (path) consistent if each of its directed arcs (paths) is arc
(path) consistent. Achieving “arc consistency’’ means deleting certain values from the domains
of certain variables such that the resultant graph will be arc-consistent, while still representing
the same overall set of solutions. To achieve path-consistency, certain pairs of values that were
initially allowed by the local constraints should be disallowed. Montanari and Mackworth have
proposed polynomial-time algorithms for achieving arc-consistency and path consistency. In
[Mackworth 1984] it is shown that arc consistency can be achieved in o(ek®) while path con-
sistency can be achieved in o(n®k®), where n is the number of variables, k is the number of pos-
sible values, and e is the number of edges.

Theorem 2([Freuder 1982)):

a. If the constraint graph has a width 1 (i.e. the constraint graph is a tree) and if it is arc

consistent then it admits backtrack-free solutions.

b. If the width of the constraint graph is 2 and it is also path consistent then it admits

backtrack-free solutions.

a
The above theorem suggests that tree-like CSPs (CSPs whose constraint graph are
trees) can be solved by first achieving arc counsistency aiid then instantiating the variables in an

order which makes the graph exhibit width 1. Since this backtrack-free istantiation takes

16

O(e-k) steps, and on trees e=n-1, the whole problem can be solved in O(nk®). The test for this
property is also easily verified: to check whether a given graph is a tree can be done by a regu-

lar O(n?) spanning tree algorithm. Thus, tree-like CSPs are easy.

The second part of the theorem tempts us to conclude that a width-2 constraint graph
should admit a backtrack-free solution after passing through a path-consistency algorithm. In
this case, however, the path-consistency algorithm may add arcs to the graph and incréase its
width beyond 2. This often happens when the algorithm deletes value-pairs from a pair of vari-
ables that were initially related by the universal constraint (having no connecting arc between
them), and it is often the case that passage through a path-consistency algorithm renders the
constraint graph complete. It may happen, therefore, that no advantage could be taken of the
fact that a CSP possesses a width-2 constraint graph if it is not already path consistent. We are

not even sure whether width-2 suffices to preclude NP-completeness.

In the following section we give weaker definitions of arc and path consistency which
are also sufficient for guaranteeing backtrack-free solutions but have two advantages over those

defined by [Montanari 1974 and [Mackworth 1977] :
1. They can be achieved more efficiently, and

2. They add fewer arcs to the comstraint-graph, thus preserving the graph width in a

larger classes of problems.
2.2 Algorithms for achieving directional consistency
The Case of Width-1

Securing full arc-consistency is more than is actually required for enabling backtrack-free solu-
tions in constraint graphs which are trees. For example, if the constraint graph in figure 5 is

ordered by (X,,X,,X3,X,), nothing is gained by making the directed are (X3, X,) consistent.

17

FIGURE 5
To ensure backtrack-free assignment, we need only make sure that any value assigned to vari-

able X, will have at least one consistent value in Dy. This can be achieved by making only the
directed arc (X;,X;) consistent, regardless of whether (X;,X;} is consistent or not. We, there-
fore, see that arc-consistency is required only w.r.t a single direction, the one specified by the
order in which Backtrack will later choose variables for instantiations. This motivates the fol-
lowing definitions.

Definition: Given an order d on the constraint graph R, we say that R is d-arc-consistent if
all the directed edges which follow the order d are arc-consistent.

Theorem 3:

Let d be a width-1 order of a constraint tree T. If T is d-arc-consistent then the backtrack
search along the order d is backtrack-free.

proof:

Suppose that X,X,, . ..,X; were already instantiated. The variable X;4, is connected to at
most one previous variable {from the width-1 property), say X, which was assigned the value
z,. Since the directed arc (X,.;~,) is along the order d, its arc-consistency implies the existence
of a value z;4+, such that the pair (z,.z;+,) is permitted by the constraint R,y Thus, the

assignment of z;+, is consistent with all previous assignments.

18

u]

An algorithm for achieving directional arc-consistency for any ordered comstraint graph

is given next (The order d =(X,,X,,...,X,) is assumed)

DAC- d-arc-consistency

1: begin

2, Fori=nto 1 by -1 do

3 For each are (X;,X;);j < ido
4. REVISE{X,, X))

5 end

6. end

7. end

The algorithm REVISE(X,,X;), given in [Mackworth 1977] , deletes values from the domain D;

until the directed arc (X},X]) is arc-consistent.

REVISE(X,,X,)

1. begin

2. Foreach x€D; do

3. if there is no value y€D, such that R;{z,y) then
4. delete x from D;

5. end

6. end

To.prove that the algorithm achieves d-arc-comsistency we have to show that upon ter-
mination, any arc (X;,X;) along d (j < i), is arc-consistent. The algorithm revises each d-
directed arc once. It remains to be shown that the consistency of an already processed arc is
not violated by the processing of coming ares. Let arc (X,.X,) (j < i) be an arc just processed
by REVISE(X;,X,). to destroy the consistency of (X;,X,) some values should be deleted from
the domain of X; during the continuation of the algorithm. However; according to the order by
which REVISE is performed from this point on, only lower indexed variables may have their set
of values updated. Therefore, once a directed arc is made arc-consistent its consistency will not

be violated.

19

The algorithm AC-3 [Mackworth 1977] that achieves full arc-consistency is given for

reference:

AC-3
1. begin
Q <- { (XuX)) l (XI!XJ) € arcs, I% .l}
while Q is not empty do
. select and delete arc (X;,X,,) from Q
REVISE(X},X,,)
if REVISE(X},X,,) caused any change then
Q <- QU{(X;, X)) | (X;,Xy) € arcs iz€k,m}

w1

end
.end

o= No o

The complexity of AC-3, is O(ek®), while the directional arc-consistency algorithm takes ek’
steps since the REVISE algorithm, taking k® tests, is applied to every arc exactly once. It is
also optimal, because even to verify directional arc-comsistency each arc should be inspected
once, and that takes k* tests. Note that when the constraint graph is a tree, the complexity of
the directional arc-consistency algorithm is O(nk?).

Theorem 4:

A tree-like CSP can be solved in O(nk?) steps and this is optimal.

proof:

Givep that we know that the constraint graph is a tree, finding an order that will render it of
width-1 takes O(n) steps. A width-1 tree-CSP can be made d-arc-consistent in O(n-k*) steps,
using the DAC algorithm. Finally, the backtrack-free solution on the resultant tree is found in
O(n-k) steps. Summing up, finding a solution to tree-like CSP’s takes, O(n-k) + O(nk?) + O(n)
= O(nk?). This compleﬁity is also optimal since any algorithm for solving a tree-like problem
must examine each constraint at least once, and each such examination may take in the worst
case k* { especially when no solution exist and the constraints permit- very few pairs of values).

=]

20

Interestingly, if we apply DAC w.r.t. order d and then DAC w.r.t. the reverse order we
get a full arc-comsistency for trees. We can, therefore, achieve full arc-comnsistency on trees in
O(nk?). Algorithm AC-3, on the other hand, can be shown to have a worst case performance on
trees of O(nk?). On general graphs, however, we shell next show that (full) arc-consistency can-
not be achieved in less then e-k® steps and, therefore, the the AC-3 algorithm is optimal.
Theorem 5: |
A lower bound for achieving (full) arc-consistency on graphs is ((e-k°).

Proof:
We present a problem instance that cannot be made arc-consistent in less then ¢-k3. The prob-
lem, has n variables connected in a cycle, as shown in figure 8. The connections between ;he
variables will be described for the 3-element network but can be easily extended to any number
of variables. Variable X has k values, Variables Y, and Z, have k+1 values each. The con-
straint from X to Y maps values in X to values in Y which are incremented by 1. The con-
straints between Y and Z and between Z and X are both the equality mapping, except that
k+1 of Z is mapped to k of X. The inconsistent arc is (Y,X) since the value 0 of Y has no pair
in X. Removing 0 from Dy makes the arc (Z,Y) inconsistent. This arc is examined and 0 is
deleted, which make now the arc (X,Z) inconsistent and so on. Since we assume that any exam-
ination of an arc is an O(k?) operation, and since at most one value is deleted from an arc while
it is examined, each arc will be examined k-1 -times, (there is just one solution: X=k, Y=k+1,
Z=k+1), and the complexity in this case is (Un-k*). Therefore, in general achieving arc-
comsistency is (e k?).

o}

Returning to our primary aim of studying easy problems, we. now show how advice can
be generated for solving a CSP using a tree-like approximation. Suppose that we want to solve
an n variables CSP using Backtrack with X,X;, . .., X, as the order of instantiation. Let X

be the variable to instantiate next, with z,,,z;, . . . ,z; the possible candidate values. To

21

01,2 . k+1} =Y
X Ryz= ‘1" [V 70]
* {'011021 [l‘k+1}'-z
Rzx= | | | l/
10,1,2,....k} =X
Y
2/
' {a) (b)
FIGURE 8

minimize backtracking .we should first try values which are likely to lead to a consistent solu-
tion but, since this likelihood is not kﬁown in advance, we may estimate it by counting the
number of consistent solutions that each candidate admits in some relaxed problem. We gen-
erate a relaxed tree-like problem by deleting some of the explicit constraints given, then count
the number of solutions consistent with each of the k possible assignments, and finally use
these counts as a ﬁgure— of merit for scheduling the various assignments. In the following we
show how the counting of consistent solutions can be imbeded within the d-arc-consistency

algorithm, DAC, on trees.

Any width-1 order, d, on a constraint tree determines a directed tree in which a parent
always precedes its children in d (arcs are directed from the parent to its children). Let N(z;)
stand for the number of solutions in the subtree rooted at .Y, consistent with the assignment of

zj; to X;. It can be shown that M:) satisfy the following recurrence:

22

Mz;) = I Yy Mz,) (8)

{CI'X; is 8 child of IYJ} {3cf€Dr| R}:(’;h‘:l’)}

From this recurrence it is clear that the computation of N(z;} may follow the exact same steps
as in DAC; Simultaneously with testing that a given value z; is consistent with each of its chil-
dren nodes, we simply transfer from each child of X; to z;; the sum total of the counts com-
puted for the child's values that are consistent with z;,. The overall value of N(z;;) will be com-
puted iater on ‘by multiplying together the summations obtaineﬁ from each of the children.
Thus, counting the number of solutions in a tree with n variables takes O(nk?), t:he same as

establishing directional arc-consistency.
The Case of Width-2

Order information can also facilitate backtrack-free search on width-2 problems by making

path-consistency algorithms directional.

Montanari had shown that if a network of constraints is consistent w.r.t all paths of
length 2 (in the complete network) then it is path-consistent. Similarly we will show that direc-
tional path-consistency w.r.t. length-2 paths is sufficient to obtain a backtrack-free search on a
width-2 problems.

Definition: A constraint graph, R, ordered w.r.t. order d = (XI,JYQ, .. .,X,}, is d-path-
consistent if for every pair of values (x,y), x€X, and y€X; such that R,{z,y) and i<j, there
exists a value z€X; , k>] such that Ry(z,z) and Ry{z,y) for every k > 1

Theorem 8:

Let d be a width-2 order of a constraint graph. If R is directional arc- and path-consistent w.r.t
d then it is backtrack-free.

Proof:

To ensure that a width-2 ordered constraint graph will be backtrack-free it is required that the

next variable to be instantiated will have values that are consistent with previously chosen

23

values. Suppose that Xj, Xy, . . .,X; were already instantiated. The width-2 property implies
that variable Xj+; is connected to at most two previous variables If it is connected to
X; and X, 4,5 < k then directional path consistency implies that for any assignment of values
to X;X, there exists a consistent assignment for Xj+,. If X;4+; is connected to ome previous
variaBie, then directional arc-consistency ensure the existence of a consistent assignment.
O
An algorithm for achieving directional path-consistency on any ordered graph will have
to mapnage not only the changes made to the constraints but also the changes made to the
graph, ie., the arcs which are added to it. To describe the algorithm we use the matrix
representation for constraints. The matrix R;; whose off-diagonal values are 0, represents the
set of values permitted for variable X;. The algorithm is described using the operations of
intersection and composition:

The intersection R,; of R';; and R"; is written: R;; = R, 8§ R,

Given a network of constraints R = {V,E) and an order d = (X;,X;, - . . ,X,), we next

describe an algorithm which achieves path-consistency w.r.t. this order.

DPC-d-path-consistency
begin
(1) Y¥’=R
(2) for k=mnto 1 by -1 do
(a) v i<k connected to k do
Y, = YO,',' Yy Yu- Yi, /‘ this is REVISE(1,k)
(b) o l,j _<_ k s.t. (,\'i,.X'k),(Xj,Xk)GE do
Yy=Y; 8 YaYu Ty
E <' E U (X,,X})
end
end

Step 2a is the equivalent of the REVISE(i k) procedure, and it performs the directional arc-
consistency. Step 2b updates the constraints between pairs of variables transmitted by a third
variable which is higher in the order d. If X, X, 1,j < k are not connected to X then the rela-

tion between the first two variables is not effected by X, at all. If only one variable, X, 1s

24

connected to X;, the effect of X; on the constraint (X;,X;) will be computed by step 2a of the
algorithm. The only time a variable X, effects the constraints between pairs of earlier variables
is when it is connected to both. It is in this case only that a new arc may be added to the

graph.

The complexity of the directional-path-consistency algorithm is O{nk®). For variable X;
the number of times the inner loop, 2b, is executed is at most O((s-1)%) (the number oi—j different
pairs less then i), and each step is of order k*. The computation of loop 2a is completely dom-

inated by the computation of 2b, and can be ignored. Therefore, the overall complexity is

(i-17K =0(n"F) (9)

1 a2

Applying directional-path-consistency to a width-2 graph may increase its width and
t:herefore, does not guarantee backtrack-free solutions. Consequently it is useful to define the
following subclass of width-2 CSP problems.

Definition: A constraint graph is regular width-2 if there exist a width-2 ordering of the

graph which remains width-2 after applying d-path-consistency, DPC.

A ring constitutes an example of a regular-width-2. Figure 7 shows an ordering of a
ring's nodes and the graph resulting from applying the DPC algorithm to the riné. Both
graphs are of width-2.

Theorem 7:

A regular width-2 CSP can be solved in O(n’k%)

Proof:

Regular width-2 problem can be solved by first applying the DPC algorithm and then perform-
ing a backtrack-free search on the resulting graph. The first takes O(n*k?) steps and the second

Ofe k) steps.

25

DPC
X3 -—=+ X3

FIGURE 7
The main problem with the preceding approach is whether a regular width-2 CSP can
be recognized from the properties of its constraint graph. One promising approach is to iden-
tify nonseparable components of the graph and all ita separation vertices [Even 1979].
definition: A connected graph G(V,E) is said to have a separation vertex v if there exist ver-
| tices a and b, such that all the paths connecting a and b pass through v. A graph which has a
separation vertex is called separable, and one which has none is called nonseparable. A sub-
graph with no separation vertices is called a nonseparable component.
An O|E}) -algorithm for finding all the n(.msepara.ble components and the separation vertices is
given in [Even 1979]. It is also shown that the conpectivity structure between the nonseparable

components and the separation vertices has a tree structure.

Let R be a graph and SR be the tree in which the nonseparable components
C,,C,, .. .,C, and the separating vertices V|, V,, .. ., V, are represented by nodes. A width-1
ordering of SR dictates a partial order on R, d*, in which each sep‘arating vertex precedes all
the vertices in its children compounents of SR.

Theorem 8:

If there exist a d* ordering on R such that each nomseparable component is regular-width-2

26

then the total ordering is regular width-2.

Proof:

Let d% be the order induced by d° on component C, and let P, be its parent separating vertex.

When algorithm DPC reaches a node X, which is not P, within this component, then if X is

not a separating vertex, it bas arcs leading back only to nodes within this component. [the X

is a separating vertex, then since it is not the parent of component C, al! his children nodes

were already processed and, therefore, it has arcs leading back only to nodes within its parent

component C. In both cases DPC adds arcs only within the component C. Therefore, if 4’
indu;:es an order d% which is regular-width-2 for all components, then 4° is regular-width-2.

O

As a corollary of theorem 8 we conclude that a tree of simple rings is regular-width-2.

In figure 8, a graph with 10 nodes identified by its components and its separating vertices is

given, with a possible d* ordering which, in this case, is regular-width-2.

c c G
3 4 J +
F E F
|
Cz H +
c E
c
¢y D ¢
A
8
R SR THE ORDERED GRAPH
{a) ' {b) {c)
FIGURE 8

27

2.3 Summary and conclusions

Of the three main steps involved in the process of generating advise -- simplification, solution,

and advice generation -- this section provides the following:

1. The simplification part: we have devised criteria for recognizing easy problems based on
their undeflying constraint graphs. The introduction of directionality into the ﬁotions
' of arc and path consistency enabled us to extend the class of recognizable easy prob-

lems beyond trees, to include regular width-2 problems.

2. The solution part: using directionality we were able to devise improved algorithms for
solving simplified problems and to demonstrate their optimality. In particular, it 1s
shown that tree-structured problems can be solved in O(nk?) steps, and regular width-2

problems in O(n®k®) steps.

3. The advice generation part: we have demonstrated a simple method of extracting
advice from easy problems to help Backtrack decide between pending options of value
assignments. The method involves approximating the remaining part of a the task by a
tree-structured problem, and counting the number of solutions consistent with each
pending assignment. These counts can be obtained efficiently and can be used as

figures-of-merit to rate the promise offered by each option.

28

3. THE SIMPLIFICATION PROCESS

The previous section suggests that a tree constraint-graph, being associated with
an easy CSP, é;n be made a target to the simplification process from which advice vjvill
be extracted. We, therefore, discuss here the issues involved in approximating a network
of binary constraints by a tree of constraints. We seek a good approximation since the
closeness of the approximation tree to the original network will determine the reliability

of the advice generated.

If the network R has an equivalent tree representation we would obviously like
to recognize it and find such a representation. This, however may not be explicit in the
constraint network; a network may contain many redundant constraints which, if elim-
inated, would still represent the same overall relation. For exampie, any one of the arcs
in the network of figure 9 can be eliminated producing a tree-structured comnstraint
graph representing the same relation. Note that in this figure, and throughout this sec-
tion, there are multiple arcs between variables which connect values. Two values are
connected if they are permiited by the constraint. Another example is given in figure
10 in which two 3-nodes networks, R, and R,, are displayed. These two networks are
equivalent, because they both represent the equality relation p = {(0,0,0),(1,1,1)} and,
uniike that of figure 9, both are maximali, that is, the addition of any pair of values to
any one of the constraints (i.e relaxing any specific constraint) will result in a network
representing a larger relation. Nevertheless, R, can be transformed into R, by simul-
taneously allowing the pair of values (1,0) between (Z,X) and disallowing the pair (0,1)

between (X,Y). The question raised by this exampie is:

29

(0,1)

(0,1)

(0,1)

FIGURE 9

X
X (0,1) (0,1)

(0,0) (0,1) Y(OM)Z

R
1 Ry

FIGURE 10
What networks have a tree representation and how to perform the transformation into

a tree?

The two examples given display two levels of operation to be considered in the
process of transforming a network into a tree. The first is a macro operation involving
the deletion of whole arcs (i.e. total elimination of constraints between a pair of vari-
ables) while the second is a micro operation, that merely modifies the arcs by adding

and deleting pairs of values. In our approach we will consider only macro operations of

30

arc deletions; the use of micro transformations introduces a higher level of difficulty to
which we will not relate at this point. Considering only arc deletions, a network R can
be transformed into an equivalent tree only if some of the arcs are redundant, i.e. they
represent constraints that can be inferred from others. This immediately raises the

question of testing whether a given constraint is implied by others.

5.

This question is the inverse of the oneposed by Montanari [Montanari 19_74] who
claimed that the central problem in Constraint-Satisfaction Problems is the transforma-
tion of the original network R into its minimal mpmsent;;ion, M, which is the most
redundant network that represents the same relation as R. Our interest is the opposite,

transforming R into one of its least explicit equivalent petwork.

Definition:
a. A network R is maximal if there is no network R,RC R such that R ~ R’
b. A network R is arc-maximal if any arc deletion results in a network represent-

ing a larger relation.

A maximal network is arc-maximal but not necessarily vice-versa.

lemma 3:

An arc-consistent constraint tree is maximal.

proof:

In an arc-consistent tree, for any permitted pair of values there is an n-tuple in the rela-
tion which contains this pair. Disallowing this pair will eliminate such tuple from the
relation, thus making the relation smaller. In other words any arc-consistent constraint

tree is minimal network for that relation.

31

An immediate conclusion is that arc-consistent tree-network is arc-maximal. In
general, deleting an arc from a tree-constraint may result in a larger relation even when
it is not arc-consistent. Let T, and T, be the two disconnected subtrees generated from
deleting arc (A,B) and let p, and p; be the projection of p on the variables in T, and T}
: respectively. The relation obtained after deleting the arc {A,B) from T is the product of
p; and py (i.e. any n-tuple that is the concatenation of a tuple in p; and a tuple in p,}.
Therefore if there is a tuple in p, with A=a and a tuple in p, with B==b then the rela-

tion resulting from deleting arc (A,B) permits the pair (a,b).

In most cases a CSP problem will not be arc-redundant, because if it is posed by
humans its specification has already passed through some process of redundancy filter-
ing, and therefore arc deletion will almost always generate larger relations. The third
question on which we will focus, therefore, is:

Given a network of constraints, R, what is the spanning tree, T, that will best approxi-

mate R?.

To discuss the quality of approximations, the notion of closeness between rela-
tions must first be agreed on. Let p be the relation represented by R and p, the rela-
tion represented by a relaxed network R,, i.e., p C p,. A intuitively appeuling measure

for the closeness of R to R, may be:

MR.R,) = ,if‘l— (10)

where [p| is the number of n-tuples in p. This measure satisfies:
a. M(p.p) =1 -

b. Ifp C p, € py then

1 2 M(R,R,) 2 M(R,Ry)

32

M is a global property of two relations and the task of finding the spanning tree
which yields the lowest M is very complex. Instead we propose a greedy approach: at
each step delete the least "valuable” arc which leaves the network connected, namely,
the arc deleted keeps the resulting network closest to the original one. To pursue this
approach we need to define a measure of constraint strength, called weight, for each
are, that will estimate the coutribution of that'ﬁ_arc to the overall relation. Let R be a
network of constraints and R the network after the arc (X,Y) was eliminated, i.e. the
constraint between X and Y becomes the universal constraint. Let / and I be the size
of the relations represented by R and R’ respectively. n‘{z,-,y,-) is the nuﬁber of tuples
in the relation represented by R having X==z; Y=y,, R'(X,Y) is the constraint induced
by R on the pair (X,Y), and r(X,Y) is the local constraint given between X and Y in R.
The following is satisfied

=1 - 2 n (2,9;) (11)
(2,9,)€R(X,Y) - X.Y)

therefore

ﬂ' .’Z.‘, .
(am) RN -rx !

Since we have no way of knowing the quantities n‘(z,y) and the structure of the

—l'=1...
{

induced constraint R (X,Y), we will estimate them both by a constant,c and R’ respec-

tively. This gives:

{ ¢ .
T =1 -TIR - X, V)| (13)
The only quantity we can actually examine is HX,Y), therefore to maximize -IL the

above formula suggests choosing the constraint {X,Y) with the most number of allowed

value-pairs. Our first measure of constraint-weight is, therefore, defined by:

33

m(X,Y) = |[1{X,Y)| (14)

For instance, the weight of the universal constraint is m,(X,Y) = ¥%, and if (X,Y) = ¢

then the weight becomes m(X,Y} = 0.

In what follows we develop another measure of constraint strength by adopting
notions from probability and information theory and by showing that the problem of
ﬁndi_;ng s constraints tree approximation can be partially mapped into the problem of
finding a tree-structured joint probability distribution [Chow 1968].

n-ary relations and probability distributions.

Let P(X) be a joint probability distributioz of n discrete variables X, X,, . . . X,
. A product approximation of P{X) is defined to be a product of several lower-order dis-
tributions (also called marginal distributions) in such a way that the product is a proba-
bility extension of these lower order distributions. A particular élass of product approx-
imation considers only second order components where, each variable is conditioned
upon at most one other variable. The relationships between the variables can be there-
forelrepresented by a tree. Given a directed spanning tree of the variables (the direction
is from parehts to sons) as in figure 11, the distribution function associated with it is

given by the product:

= I1 Plz;|z,; 15

P(X) Xe{zyy - - - ,22) (s' p{t]-) (:)

p(¥) is the parent index of variable X;, and P(z;|z,)) = P(2,) if 0 O denotes the root of
the tree. Chow [Chow 1968] has shown that if the measure of distance between two

probability distributions P and P, is given by:

P(X)

then the closest tree-dependence distribution to P is the one that correspond to the

IP.P,) = T P(X) log 2L (18)
X

maximum spanning tree wien the weight of each arc is (X, X;). {X,X]) is Shanon's

34

PIX) = P(Xq)“P(X5 | Xq) « P{X3|Xp) * P(Xg [Xp) « P(Xg | Xp) « P(Xg | X5)

FIGURE 11
mutual information between X; and X, defined by:

Plz;,z;)
= . . ———— l,_ 1 -
) = 2 PR et)

KP,P,) can be interpreted as the difference of the information contained in P(X) and

that contained in P,(X) about P(X).

Chow's results are remarkable in that a global measure of closeness can be max-
imized by attending to local measures on individual arcs. We therefore, attempt to
adopt chow’s results to our need. Mapping probability distributions to constraints rela-

tions, we say that a relation p is associated with a distribution function P, if:

_|o if (z,,2,, .. .,2,)Ep
Pp(zl,zc, e aZy) = 1 otherwise (18)

]

Let p; be the relation represented by a constraint-tree,t, and let P, and P, be

the distributions associated with relations p and relation p,, baving sizes of ! and /,

respectively. The "distance” between the two distributions:

35

1 I, &
1P,P,)=1%, TlogT = logT (19)
Xe¢p

. ' . ¢ .
is a monotone function of T whose inverse was already proposed as a measure of close-

ness between two relations (where one contains the other). Accordingly, finding the
closest tree dependence distribution P, to P, will result in the closest approximation of

L
a tree relation p, to p. Equivalently, in order to minimize 7 ve need to find the max-

imum spanning tree w.r.t the measure I(X;X;). From the given mapping between rela-

tions and distributions (Eq. (18)) we get that:

P(I.',Ij)=f£:;’_xi)‘ (20)
Play =2 1)

where n(z; z;) is the pumber of tuples in p having X; = z; and X; = z;, and n{z;) is

the number of tuples in p with X; = z;. Substituting (20} and (21) in (18) we get

o) nlEE)
f1X:%;) = g} ! log! n(z;)n(z)) ' #2)

_ l_) ﬂ(l"-,l'-)
= logl + | :V“J:Jn(z,,z,—)iog—-—’—-n(x;)n(zj) (23)

Consequently the appropriate measure of arc weight is:

) = LR s)alz) -

The question now is how to obtain the quantities n(z,), n(z,,z,) needed for com-
puting m. To find them accurately, we need to inspect the list of tuples permitted by
the global relation which, of course, is unavailable. In the case of probability distribu-
tions the marginal probabilities P(z,), and P(z,z,) are estimated by sampling vectors

from the distribution and calculating the appropriate sample frequencies. This cannot

36

be done in our case since finding even one tuple that satisfies the network solve the
entire problem. All that we have available is the network of constraints and, therefore,
we must approximate the weight m(X,Y) by examining only properties of the arc (X,Y).

This leads to approximations:

. [1 (2,2 €r(X;, X)) (25)

n(x"’fi) = 1o otherwise

~

_ n(z;) = Nx() | {26)
Where Ny(z;) is the number of pairs in the constraint i{X;,X;) with X; = z;, Substi-

tuting (25) and (26) in (24) we get:

1
miXoX) = Y log— (27)
(Suzi) er(XnX;) n(xl:) n(zj)
= - Y (logn{z;) + logn(z;)) {28)
(2.2))
= - Y n(z;)logn(z;) - 3 n(z;)logn(z)) (29)
z, 2,
The behavior of this measure can be illustrated in some special cases:
a. If the constraint {X,Y) is the universal constraint (and assuming k values for
each variable) then my(u(X.Y)) = -2% (k-1)logk = -2k(k-1)logk
b. If {X,Y) is the empty constraint $(X,Y) then we define mo(P(X,Y)) =0
c. If any value of X; is allowed to go with exactly r values of X; then
my = - 2k-rlogr. If r=1 we get my =0
d. when only one value in one variable is permitted with all the values of the other
m; = —kl(}gk

We see that this measure considers not only the number of the pairs allowed but also

37

their distribution over the k? slots available. For uniform constraint (like case ¢) it can

be seen that

my = -2N-logr (30)

when N is the size of the constraint.

We next give an example showing the behavior of the accurate measure of .

weight, m, compared with their estimates, m,.

Consider the relation between 3 binary variables, X,Y,Z, given by:

p = {{1.1,1),(1,0,0),(1,1,0),(0,0,0)} (31)
where the order of the variables is (X,Y,Z}. A network representing this relation is given

in figure 12 where the nodes are the variables and the lines correspond to permitted

pair of values between pairs of variables.

X 0,1

FIGURE 12
The accurate measures of n(z,,2,), and, n(z,) for the pair (X,Y) are given by:

n(0,0)=1 , 0(0,1)=0 , n(1,0)=1 . n(1,1})=2, o(X=0)=1, n(X=1)=3. Therefore, substi-

tuting in (268) we get:

m(x,Y)=1og-é- + log ~21f3+ztog 33; —log 1(‘)8

38

Similarly , for the two other pairs, we obtain:

4
m(X,Z) = log 720

1
m(Y,Z) = log T08
This suggest that the relation may be best approximated by a tree constituting of the
arcs (X,Y) and (Y,Z). Iﬁdeed, the elimination of the arc {X,Z) will not change the rela-

tion at all whereas it is not possible to express p by removing either (Y,Z) or (X,Z) only.

By comparison, the network R and (32) give the weight estimates:
m?(X!Y) = -4, m2(er) = -4, m?(XrZ) = -4

Which, in this case, fail to distinguish between the various constraints.

In conclusion, we suggest to generate tree-approximations for networks using the
maximum spanning tree algorithm. Two measures for constraint-strength, to be used by

the algorithm, are proposed and justified.

39

4. THE UTILITY OF THE ADVISE-GENERATION SCHEME

We compare here the performance of Advised Backtrack (abbreviated ABT} with that
of Regular Backtrack (RBT) analytically, via worst caég analysis, and experimentally, on

a random constraint problem.
4.1 Worst case analysis

An upper bound is derived for the number of consistency checks performed by the algo-
rithms as a function of the problem's parameters and the number of backtracks per-
formed. A consistency check occurs each time the algorithm checks to verify whether or

not a pair of values is consistent w.r.t. the corresponding constraint.

Let #B, and #Bg be the number of backtracks, and N(ABT) and N(RBT) the
number of consistency checks performed by ABT and RBT, respectively. The problem’s
parameters are n, the number of variables, and k, the number of values for each vari-
able. Parameters associated with the constraint graph are |E|, the number of arcs, and

deg, the maximum degree of variables in the graph.

The number of backtracks performed by an algorithm is equal to the number of
leaves in the search tree which it explicates. We assume that
Number of nodes expanded = ¢ #B
approximately holds for some constant ¢. (This truly bolds only for uniform trees where
¢ is the branching factor.) Therefore we use the number of backtracks as a surrogate for
the number of nodes expanded. Let #C, and #C; be the maximum number of con-

sistency checks performed at each node by ABT and RBT, respectively. We have:

40

N < #B-#C (32)

Considering RBT first, the number of consistency checks performed at the i**
node in the order of instantiation is less then &-deg{s). That is, each of this variable’s
values should be checked against the previous assigned values for variables which are

connected to it. We get:
N(RBT) < k-deg-#Bg (33)

The ABT algorithm performs all of its consistency checks within the advice gen-
eration. For the i** variable , a tree of size n-f is generated. The consistency checks
performed on this tree occur in two phases. In the first phase, for each variable in the
tree, the values which are consistent with the already assigned values are determined.
The number of consistency checks for a variable v in the tree equal k-u{v), where w(v)
is the number of variables connected to v which were already instantiated. Therefore,

for all variables in the tree, we have

kY o) < KIE] . (34)
v€tree

The second phase counts the number of solutions. We already showed that the count-

ing takes no more then (n-i)-k* which is bounded by nk’. Hence,
MABT) < (k|E| + nk*)#B, (35)

We now want to determine the ratio between #B, and #By for which it will be
worthwhile to use Advised Backtrack instead of Regular Backtrack and, a first approxi-

mation, will treat the upper-bounds as tight estimates. If

MABT) < MRBT)) (368)
then

(k-|E| + n'k?)#B, < k-deg-#Bp , (37)

and therefore

41

(38)

Since

ELS,,, (39)

deg
(38) will hold if
#Bg nk '
>n+ —.
#8, — " deg (40)

Therefore, ABT is expected to result in a reduction in the number of consistency checks

only if it reduces the number of backtracks by a factor greater than (n+-§e—';-). Thus,

the potential of the proposed method is greater in probiems where the number of back-

trackings is exponential in the problem size.
4.2 Experimental results

Test cases were generated using a random Constraint-Satisfaction Problem Gen-
erator. The CSP generator accepts four parameters: the number of variables n, the
number of values for each variable k, the probability p, of having a constraint (an arc)
between any pair of variables, and the probability p, that a constraint allows a given
pair of values. Two performance measures were recorded: the numBer of backtrackings
(#B) and the number of consistency checks performed. The latter being an indicator of
the overall running time of the algorithm. What we expect to see is that the more

difficult the problems, the larger the benefits resulting from using advised Backtrack.

In our experiments we use m,, the size of the constraint, as the weight for
finding the minimal spanning tree. Using the alternative weight, m,, is not expected to
improve the results for two reasons. First, the problems generated were quite homo-

geneous and we have shown that for such problems both weights are the same. Second,

42

the reduction in the number of backtrackings was so drastic that further improvements

due to modified weights seems unlikely.

Two classes of problems were tested. The first, containing 10 variables and 5
values, were generated using p, = p,=0.5, and the second with 15 variables and 5
value?;,' generated using: p;==0.5 and p,=0.8. 10 problems from each class were gen- .
erat,eldl. and solved by hoth ABT and RBT. The order by which the variables were
instantiated was determined, for both algorithms, by the structure of the coastraint
graph. Namely, variables were selected in decreasing order of their degrees which closely
correlate with the criterion of minimum width. [Freuder 1982] The order of value selec-
tion is determined by the advice mechanism in ABT and random in RBT. Therefore,
while ABT solved each problem instance just once, RBT was used to solve each problem
several (five) times to account for the variation in value selection order. When a prob-
lem has no solution, the number of backtracki:igs and consistency checks in RBT is
independent on the order of value selection, and in thése cases the problem was solved

only once by RBT.

Figure 13 and figure 14 display performance comparisons for both classes of
problems. In figure 13, the horizontal axis gives the number of backtrackings that were
performed by RBT and the vertical axis gives the pumber of backtrackings performed
by ABT for the same problem instance. The darkened circles correspond to problem
instances from the first class while empty circles correspond to instances of thec second
class. We observe an impressive saving in #B when advise is used, especially for the
second class in which the problems are larger. Figure 14 uses the same method to com-
pare the number of consistency checks. Here, we observe that in many instances the
number of consistency checks in ABT is larger than in RBT, indicating that in these

cases the extra effort spent in "advising” backtrack, was not worthwhile.

43

These results are consistent with the theoretical prediction of the preceding sub-
section. If we substitute the parameters of the first class of problems in (42) we get that
#B, should be smaller than #Bg by at least a factor of 20 (25 for the second class of
problems) to yield an improvement in overall performance. Many of the problems, how-
ever, were not hard enough (in terms of the number of backtrackings required by RBT)

to achieve these levels.

Figure 15 compares the two algorithms in only those problems that turned out
to be difficult. it displays the number of comsistency checks in the cases where the
number of backtrackings in RBT were at least 70. We see that the majority of these

problems were solved more efficiently by ABT than RBT.

Experiments were also performed on the n-queen problem for n between 6 and
15 and on the 3-colorability problem on a set of random graphs. In all cases the
pumber of backtrackings of ABT was smaller than RBT, but the problems were not

difficult enough to get a net reduction in the number of consistency checks.

Experiments related to the ones reported here were performed by Haralick et al.
[Haralick 1980]. The Forward-Checking lookahead mechapism (reported to exhibit the
best performance considering the number of cousistency checks) can aiso be viewed as
an automatically generated advice in the sense discussed here. However, since the task

was to find all solutions, the results cannot be directly related.

In conclusion, advice should be invoked on problems which are hard for RBT
and, therefore, one needs a way of recognizing when a problem instance is difficult. For
example, Knuth [Knuth 1975] has suggested a simple sampling technique that require
very small computation to estimate the size of the search tree. These estimates can be

used in conjunction with a parametrized advice generation that adapt itself according

14

to the expected size of the tree. Namely, smaller problems will be guided by a weaker
form of advice (e.g. based on partial trees) that is obtained more efficiently. Indeed in
[Dechter 1985] we show experimentally that weaker advise is sufficient for reducing the

amount of backtracking, therefore resulting in a more efficient search altogether.

15

£l WQ_Q_H_

T oSt Gcl 00l GL 0% G2
G| I [[! | I .lj
ee 0O 0 o o om A
(D O 00 OO ele e @ |
o © @ ..+r
O —
@ —
Vag-Hag | _
@) O o O %l

H 0O~ © WO T M N -

Vgg «+—

00Sv

000t

00SE

184 HOd SOHIO3HI AIDNILSISNOD #

000€

ht

0062

aynd

000¢

0061

0001

00S 0S¢

|

“

00S

ool

00G1

000¢

00G<

18V HOd SHI3IHO AODNILSISNOD #

0005

G aynati
194 HO4 SHIIHI AINILSISNOD #

00sy coovr 00SE 0008 00S¢ 000<

00G1L 000t 00S

T

| | _ | | |

i Y

009G

ooolL

0061

000<¢

00G¢

000€

00G¢
009¢€

19V HOd SHOIHI AJDNILSISNOI #

References

[Carbonell 1983] Carbonell, J.G., “‘Learning by analogy: Formulation and generating plan

(Chow 1968]

[Dechter 1985]

[Even 1979]

[Freuder 1982}

[Gaschnig 1979]

[Guida 1979]
[Haralick 1980]

[Knuth 1975]

from past experience;” in Machine Learning, Michalski, Carbonell and
Mitchell, Ed. Palo Alto, California: Tioga Press, 1983.

Chow, C.K. and C.N. Liu, “Approximating discrete probability distributions
with dependence trees,” IEEE Tranaaction on Information Theory, 1968, pp.
462-467.

Dechter, R., UCLA, Los Angeles California, 1985. Phd thesis, in prepara-
tion.

Even, S., Graph Algorithms, Maryland, USA: Computer Science Press, 1979.

Freuder, E.C., “A sufficient condition of backtrack-free search.,” Journal of
the ACM, Vol. 29, No. 1, 1982, pp. 24-32.

Gaschnig, J., “A problem silﬁilarity approach to devising heuristics: first
results,” in Procecedings 6th international joint conf. on Artificial Intelli-
gence., Tokyo, Jappan: 1979, pp. 301-307.

Guida, G. and M. Somalvico, ‘A method for computing heuristics in problem
solving," Information Sciences, Vol. 19, 1979, pp. 251-259.

Haralick, R. M. and G.L. Elliot, “Increasing tree search efficiency for ccon-
straint satisfaction problems,” Al Journal, Vol. 14, 1980, pp. 263-313.

Knuth, D. E., “Esimating the efficiency of backtrack programs,” Mathematics
of computation, Vol. 29, No. 129, 1975, pp. 121-136.

[Mackworth 1977]Mackworth, A.K., “Consistency in networks of relations,” Artifficial intelli-

gence, Vol. 8, No. 1, 1977, pp. 99-118.

[Mackworth 1984]Mackworth, A.K. and E.C. Freuder, “The complexity of some polynomial

comsistancy algorithms for constraint satisfaction problems,” To appear tn A/
Journal , 1984,

{Montanari 1974] Montanari, U., “Networks of constraints :fundamental properties and appli-

[Nudel 1983

cations to picture processing,”’ information science, Vol. 7, 1974, pp. 95-132.
Nudel, B., "Consistent-Labeling problems and their algorithms: Expected

complexities and theory based heuristics.,” Artificial Intelligence, Vol. 21,
1983, pp. 135-178.

46

[Pearl 1983]
(Purdom 1985]
[Sacerdoti 1974]

[Simon 1975]

Pearl, J., “‘On the discovery and generation of certain heuristics,” Al Maga-
zine, No. 22-23, 1983,

Purdom, P.W. and C.A. Brown, The Analysis of Algorithms: CBS College
Publishing, Holt, Rinehart and Winston, 1985,

Sacerdoti, E. D., “Planning in a hierarchy of abstraction spaces,” Artificial
Intelligence, Vol. 5, No. 2, 1974, pp. 115-135.

Simon, H. A. and J. B. Kadane, *‘Optimal problem solving search: all or none
solutions.,” Artificasal Intelligence, Vol. 8, 1975, pp. 235-247.

