CHARACTERIZATION OF INTERMODULE COMMUNICATIONS AND HEURISTIC
TASK ALLOCATION FOR DISTRIBUTED REAL-TIME SYSTEMS

Lance Min-Tsung Lan April 1985
CsSD-850012

UNIVERSITY OF CALIFORNIA
Los Angeles

Characterization of Intermodule Communications and

Heuristic Task Allocation for Distributed Real-Time Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science
by

Lance Min-Tsung Lan

1985

© Copyright by
Lance Min-Tsung Lan
1985

The dissertation of Lance Min-Tsung Laa is approved.

| //sz

Bruce Rothschifd
éMJ—QJ\
Tomas Lang / 0

M; giu—cf-a--L

‘Milos D. Ercegovac

A

Wesley W. Chu, Committee Chair

University of California, Los Angeles
1985

To

Show-Fung (Shirley)
and our
Moms dnd Dads

TABLE OF CONTENTS

1 INTRODUCTION ...coceeciecaresaaccraniss

1.1 WHY DISTRIBUTED PROCESSING ...cvoevverens eernoeesansssasesaseses
1.2 TASK ALLOCATION ceensesssstessesseasenes
1.3 BACKGROUND AND-RELATED WORKS
1.3.1 Graph Theoretic Approach cecssnseseerenassssnsnes
1.3.2 Integer 0-1 Programming Approa.ch
1.3.3 Heuristic Approach . . cemaesssnsssasasase
1.4 OUTLINE OF DIS ER.TATION cesssscanseasesens cereressannesnnnne

2 LEASUR.EMENTS OF IMC nceceicnercnrossesanannessensssnsssassasse

MODULE EXECUTION FREQUENCY AND IMC PER

PRDDDRD 0
OO-1 i "

EFFECT OF MODULE ASSIGNMENT ON
MEASUREMENTScoovnvirnriaonacas

EXECUTION eeeseatastssasarnsebtassaassensarnssmsa T st st s bt sesesn
IMC VS, TIME ..ccccvvnvssenssirssnssssssansassamssnsssassnssessassssssstssnssssnsssnss
EFFECT OF SIMULATOR RANDOMNESS ON IMCcccunn..
IMC FOR YARIOUS TASK THREADSccovcinecrininisinas
EFFECT OF NUMBER OF OBJECTS ONIMCcceueueene
DOMINATING IMC _........... seressasensssstassns
ALTERNATIVE REPRESENTATION OF IMC cvvvvvveerererseennss
ACCUMULATIVE EXECUTION TIME ...ccoccmieeceeccnsanscnsacssenns

2.10 CONCLUSIONS i~ -

3 ANALYTICAL MODEL FOR IMC ESTIMATION «.cunveecmecemecmncones
3.1 ESTIMATION OF KEY PARAMETERScvvueemseresesroserseeres
3.2 ESTIMATION OF N{t),2141) seerereeeessrmmmrererssesssssesesesssmssssssssee
33 AN EXAMPLE OF ANALYTICAL IMC ESTIMATION
34 CONTROL IMC oooooeooooeooeeosmoeserassseessseesrmesemssensssnaestassseasemmseens

3.5 CALCULATION OF SYSTEM RESOURCE UTILIZATION

4 MODULE ASSIGNMENTcooiveicisineniasnennasssasarnsissmssssssssnmsasosarsnsenss
4.1 KEY PARAMETERS IN MODULE ASSIGNMENTccccee.e.
4.2 A NEW OBJECTIVE FUNCTIONocioiiiiiniinereccsiniseninnenns

4.3 PERFORMANCE OF THE PROPOSED OBJECTIVE

FUNCTION .coecciiiiicnrirenisssnssaressnrsstssamessssssaessnsssssnsassassssssssasnss

4.4 HEURISTIC MODULE ASSIGNMENT WITHOUT

PRECEDENCE RELATIONccccciiinnannsnnesenssanssrasacssssascassnseses

4.5 APPLICATION OF ALGORITHM I-A TO THE DPAD

SYSTEM ...

5 MODULE ASSIGNMENT WITH PRECEDENCE RELATIONSHIP

5.1 PRECEDENCE RELATION EXPERIMENTScccirvviiiiennanen.

iv

page

00 =3 O s b €O b= b=t a

5.2 TASK ALLOCATION WITH PRECEDENCE RELATION ... 109
5.3 MODULE ASSIGNMENT WITH PR FOR DPADc....... 113
54 EXAMPLE OF RESPONSE-TIME IMPROVEMENT BY PR 118
6 CONCLUSIONS AND DISCUSSIONS occmsseeresssssssnssssnnnsssansasssssanases 124
8.1 CONCLUSIONS oovomoeresecocnsnsissmessssnssssessssssessssssessssssnsssissssaseses 124
8.2 FUTURE RESEARCH AREAS ..ooo.overruscasecne SO 125
REFERENCES ccccocvrsemsesssnnss S S—— 128
Appendix A DESCRIPTION OF THE TRW DPAD ..ecmrmecissssssssnnnen 134
Appendix B THE UCLA DPAD SIMULATOR .oovocvocccressssnsssusessesassens 147
B.1 CONVERSION TO SINGLE-BATCH-JOB SIMULATOR 148
B2 SIMULATOR TRANSFER FROM VMS TO UNIXcccoourueee 153
B.3 ENHANCEMENTS TO SIMULATOR ..cvvuuencceroncirmsemssassssesess 155
Appendix C COMPUTING OBJECT DETECTION TIMES ..ccocoovrrven 157
Appendix D MODULE-ASSIGNMENT SELECTION PROGRAM 184

'LIST OF FIGURES

Figure 2-1: Module M, Enablements ceerearenenessenssesssssssresiranes

Figure 2-2: Module Mg Enablementsccveiiscnrsiisnnasiiciccsnscinnas eeeesees

Figure 2-3: Number of Enablements for the 23 Modules in the.DPAD

| Table 2-1: Intermodlile Communication (Words) Per Enablement
Figure 2-4: IMC(08,08) — 1.5MIPS, 40 Objects, Single Run .cocccrceecnnnen.
Figure 2-5: IMC(08,09) — 1.SMIPS, 40 Objects, 5 Separate Runs
Figure 2-6: IMC(08,00) With C.L from 5 RUDS ccoeeerrssrccssrmsrsssnsesssssoes

Figure 2-7: IMC(08,09) with C.I. from 10 Runs .. cresrasnasaas

Figure 2-8: IMC(02,03) with C.L from 10 RUDS oooovvserrsrrsssssssssrsssessssss
Figure 2-9: IMC(08,09) for Various Number of Objectscccoeveeereeurencs _
Figure 2-10: IMC(08,08) for Various Number of Objectscveeccreisnreeen

Figure 2-11: Relative IMC Sizes

Figure 2-12: Alternative IMC Presentation cerneressenesssnsnssars
Figure 2-13: Accumulative Module Execution Timeccseseccmecsserscrses
Figure 2-14: My Enablements for Various Module Assignments
Figure 2-15: AET for Mg for Various Module Assignments veereesnrerasnnsrass _
Figure 2-16: IMC(22,4) for Various Module Assignments reeresassasssnasrsans
Figure 3-1: Control-and-Data-Flow Graph for DPADcccceoeiimnieccscnnnece
Figure 3-2: Estimation for Execution Frequency of Module M,
Figure 3-3: Comparing Measured and Estimated Resultsccccueee...
Figure 3-4: IPC in a distributed processing systemcccccoececemsecuccsnsss
. Figure 4-1: Two module assignments for the DPAD system
Figure 4-2: Port-to-port time for Detect/Verify threadccccoecvivencenes

vi

page

" 52
54
59

Figure 4-3: Port-to-port time for Precision Track thread ...ccccccccccccrannns 62

Figure 4-4: Assignment TTee ..c.ccccovnisimirecsisssorarssssmsnsssssasssnsssssmsrninsnenas 83
Table 4-1: Module Accumulative Execution Times ..ccccccvviiinicicnnncnen. 69
Table 4-2: File-Update IMC (in MLI) et seemeneeresesoe 70
Figure 4-5: Top 10 Assignments From Enumerationc.cecouevevemseraecs 72
Figure 4-8: Processor Loa.dsz'for Top 2 Assiénments b 73
Figure 4-7: Processor Loads for Two other Assignments renvenne . T4
Figure 4-8: TRK PTP: Compare Arbitrary and Top 9 Assignments ... 75
Figure 4-9: P-T-P Comparison for S/V- Thread ..c.ccoecceinscsseersusiassacenss 7
Figure 4-10: P-T-P Comparison for Track Initiation Thread 78
Figure 4-11: P-T-P Comparison for Precision Track Thread 79
Table 4-3: M-M IMC Table ..cvvcvvvrrvsncen O
Figure 4-12: Example of Phase I Evaluation of Algorithm reesrresensmnesssases 84
Figure 4-13: Compare S/V PTP: Heuristic vs Exhaustiveccccccceene. 86
Figure 4-14: Comparé TI PTP: Heuristic vs Maustive 87
Figure 415: Compare TRK PTP: Heuristic vs Exhaustive .ccccocoveeuce. 88
Figure 416: TRK PTP: Heuristic and 4 Ma Assignmentsc.cccceceeueee. 89
Figure 5-1: Experiment NO.L ccenniniennninnnissacnesiisenensnssaienas censsessanessees 91
Figure 5-2: Results of Experiment NO.1 .cveisenscccrcicnnnninscssinsnans 93
Figure 5-3: Results of Experiment No.2 tesvessssnessssseesssssesantrsssasiasnarass -- 94
Figure 5-4: Experil;zent INO.3 ciieeerrrsrrnnerrsnnsesessasssasssansrssssassasssasnansrassesssass 96
Figure 5-5: Results of Experiment N0.3occoseurscsoscemscsssssssnsissssssrasenes 97
Figure 5-8: Results of Experiment No.4 ..cviinimninsrntimssccemscscssenscnsases 99
Figure 5-7: Analytical Study on PR - Deriving Waiit-Time Ratio 101
Figure 5-8: Wait-time ratio as a function of size-ratioccccocevuirnerucen. 103
Figure 5-0: PR Experiment on Three Consecutive Modulesccccovee.. 105

vit

Figure 5-10: Results of Three-Module Analytical Studyccereeerereraenne
Figure 5-11: Wait-time Ratio for Various M1, M2, and M3 Sizes
Table 5-1: Compare PR Index with IMC Index ..cccccvceemniiinsciiinnsennensnnne.
Figure 5-12: Minimum bottlenecks for DPAD by Alg.HEUccccccnee
Figure 5-13: Compare assignment A-PR ‘and A-NO-PR ..cccoreeervmcrrrnencnes

Figure 5-14: A iSa.mple Task Control-Flt;w Graph .ccccivnnerreennnerieenne
Table 52: AET for modules in Fig. 514cccvveneaaes eerrassasssansionsans
Table 5-3: IMC list for for the system in Fig. 514 .ccvvvrcoiciniiincicicncnnea.
Figure 5-15: A Sample Task Data-Flow Graph ...

Figure 5-16: Assignments for the system in Fig. 514 .cccerrrnerivsnscccncnecs
Figure 5-17: Response time for assignments in Fig. 518ccccevrvrcrenenee
Figure A-1: Distributed Processing Architecture Design (DPAD) System
Figure A-2: d-RTOS Tasks . teteeeesnsesarsassssssisssssnsssnnsesantnesese
Figure A-3: File Updatea.in the DPAD . veessmesresssessssansnessrssnsnes
Figure A-4: Definition of Processing Threads
Figure A-5: Sequence of Threads | censecevene cesvesasasssasssssessssasinassas
Figure A-6: Data Flow-in the DPAD tressecesssssusasessreunssssssarasssas
Figure A-T:.Control Flow in the DPAD cnesesssesessruesassassssssessassresas
Figure A-8: Partial Control-and-Data-Flow Graph in the DPAD

Figure B-1: Message Ordering Mechanism in DPAD Simuiator
Figure C-1: SKYMAP, the Input Scenario Fileccccovivmicninisncicanene
Figure C-2: Detection Times for Objects by Various BEAMs
Figure C-3: Detection Times for Each Object ...ccovvviimeicnivcnscncnnnnnn.
Figure D-1: Output From Tree Enumerationc.cccceesmcsisinccnnianes

viil

112
114
115
117
118
119
120
121
123
135
137
138
140
143
144

145

146
152
159
161
183
165

LIST OF NOTATION

Roman Capitals

E - Qualifier for module enablement: Vi{E;ty,ti+1), Lif Eitpstaey)-
F - File: F,

I- Interval size between PR levels: Ipg

IMC - Alternative presentation of IMC Volume: IMC;{¢;,¢+1)-

J - Number of I;lodnla

K - Number of files

L - Average message length: La(Wity ti+1), La(Rity taay)-

M - Module: M;.

N - Number of module invocations: Nj{¢;,t3+1)-

Also, Number of PR levels: Npp.
Q - Processing-cost matrix with elements ¢;,

R - Qualifier for read

S - Number of sites (processors, or computers)

T - Accumulative execution time (AET) of a module: T{M;ty,t,4)).
V - M-F or F-M IMC Volume: V;{R;t;,t4+1)s V,-;(Wity tae 1)y

w- Qualiﬁ;ar for write

X - Assignment matrix with elements z,

Small Roman

h - Time index: (t,,,f,,.,.g

f‘ - Module index: M;

§ - Module index

k - File index: F},

p - probability: pju(Eitstse1)s Pl Withtaer): Pl Ritustiar)-
q - Element in processing-cost matrix Q: g,

r - Site (processor) index

8 - Site (processor} index.

Also, memory storage requirement for module M;: s;.

t - Site (processor) index

z - Execution time (ET) of a module per enablement: z{#;,#4+,)-

Also, Element in assignment matrix X: 2.

Greek

a- Percent;ge to decide IMC threshold 8¢

B - Percentage to decide processor-load threshold 85
8 - Indicator function

~ - Importance indices for IMC and PR: Y00 Yer

0 - IMC and processor-load thresholds: 8, 0

\ - Arrival rate for taské

p - Processor utilization

ACKNOWLEDGEMENTS

I would like to express special thanks to my committee chairman,
Professor Wesley W. Chu, for his guidance, friendship, encouragement, and
?!iinsightful comments during the entire course of this‘ research. I also thank
' Mike L. Gréen,-—Edwa.rd Y. S. Lee, and Richard P.-Y. Ma of TRW for their
assistance in installing the DPAD Simulator at UCLA, Kin Kwong Leung for
shariné with me his analytic model for estimating module response time and
task response time [CHU84b| in my study of precedence relationship, and the
members of my dissertation committee: Professors Milos Ercegovac, Tomas
Lahg, Bruce Rothschild, and Harold Borko for their encouragement. Thanks
also are due to Jung Min An, Joseph ﬁmni:iter, Joseph Hellerstein, and Leslie
J. Holloway, for their stimulating discussions during this research, as well as

Salpy Manjikian, Wendy Hagar, Aeri Lee, and Laurel Cornachio for their

secretarial and administrative assistance.

Additionally, I would like to thank my grandma Pern-Tow, my parents
Chio-Dong and Shu-Kuan, and other members of my family for their love and
emotional support. I would always remember the lesson my lat'e father-in-
law, Dr. Jin-Liu Hsu, taught me;: '‘Always be honest in research.’
Unfortunately he passed away one month before I ﬁnilsh this dissertation.
Finally, I express special thanks to my wife Show-Fung (Shirley) whose love,

patience, semsitivity, and devotion kept my motivation going up to the

xii

completion of my Ph.D.

This work was supported in part by US. Army Contracts No.

DASG60-79-C-0087 and DASG60-83-C-0018.

May’16, 1952

1970-1974,

1974-1976

1976-1977
1977-1978
1078-1679
1980-1981
1083-1984

1978-1984

VITA

» Born, Kangshan, Kaohsiung Hsien, Taiwan

' B.S. in Electrical Engineering,

National Taiwan University
System Engineer, China Steel Corp., Taiwan

M.S. in Computer Science,
University of Nebraska ~ Lincoln

Systems Programmer, Nebraska State Dei)a.rtment of
Labor, Lincoln, Nebraska

Member of Technical Staff, Technology Semce Corp.,
Santa Monica, California

Member of Technical Sta.tf, OAO Corp.,
Los Angeles, California

Member of Technical Staff, RFA Associates,

_Consultant to Rockwell Intgrnationa.l, Los Angeles

Research Assistant, Computer Science Department,
University of California, Los Angeles, California

PUBLICATIONS

D. W. Embley, M. T. Lan, D. W. Leinbaugh, and G. Nagy, "A Procedure for
Predicting Program Editor Performance From the User’s Point of View", Inil.
J. Man-Machine Studies, Nov. 1978, pp. 839-650.

M. T. Lan and G. Moring, "JOVIAL 73 Automated Complexity Analyzer”,
Contract Final Report, #F04704-798-C-0059, OAO Corp., Les Angeles, Calif,,
Sep. 30, 1980, for the MX Missiles Project.

xiv

W. W. Chu, L. J. Holloway, and M. T. Lan, "Task Allocation in Distributed
Data Processing”, IEEE Computer Magazine, Nov. 1980, pp. 57-69. (Also in P.
L. McEntire & R. E. Larson (ed.), Distributed Computing: Concepts and
Implementations, TEEE Press, 1984, pp. 109-119).

W. W. Chu, J. Hellerstein, and M. T. Lan, "Research on the Shared Database
Kernel for the BMD Application”, Contract Report CSD-820430, UCLA, April
1982, for U.S. Army, Bal.ljst_.ic‘_l\(ﬁssile Defense Agency.

W. W. Chu, J. Hellerstein, and M. T. Lan, “The Exclusive-Writer Protocol: A
Low-Cost Approach for Updating Replicated Files in Distributed Real-Time
Systems”, The Third Intl. Conf. on Distriduted Computing Systems, Miami/Ft.
Lauderdale, Florida, Oct. 18-22, 1982, pp. 269-277. (Also in P. L. McEntire &
R. E. Larson (ed.), Distributed Computing: Concepts and Implementations,
IEEE Press, 1984, pp. 219-227). :

W. W. Chu, J. Hellerstein, and M. T. Lan, "Database Management Algorithms
for Advanced BMD Applications”, Contract Report CSD-830430, UCLA, April
1983, for U.S. Army, Ballistic Missile Defense Agency.

W. W. Chu, J. Hellerstein, and M. T. Lan, "Database Management Algorithms
for Advanced BMD Applications”, Contract Report CSD-840031, UCLA, April
1984, for U.S. Army, Ballistic Missile Defense Agency.

W. W. Chu, M. T. Lan, and J. Hellerstein, "Intermodule Communication
(IMC) Estimation and Its Applications. in Distributed Processing Systems”,
IEEE Trans. on Computers, vol. C-33, no. 8, Aug. 1984, pp. 691-899.

ABSTRACT OF THE DISSERTATION

Cl;#.racteﬁzation of Intermodule Communications and
Heuristic Task Allocation for Distributed Real-Time Systems
by
Lance Miﬁ-Tsung Lan
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor Wesley W. Chu, Chair

Distributed processing ha;'. the potential for providing lower cost,
better response time, and Higher availability than centralized processing. In a
distributed real-time system, a fixed set of application program modules reside
permanently on a set of computers (or, processors). Module executions are
invoked by a stream of external stimuli (arrivals). A key work in the design
of distributed real-time systems is task allocation (module assignment) —
assigning the program modules onto the set of computers such that the
processing of each stimulus (event) can be finished within a prescribed time

limit.

The three important parameters in task allocation are intermodule
communication (IMC), accumulative execution time (AET) of each module,
and precedence relations (PR} among program modules. IMC is the
communication between program modules through shared files. When a
module on a ;:omﬁuter writes to or reads from a shared file on another
computer, IMC results in IPC (interprocessor communication), an overhead to
the processor load. Therefore, a task-allocation algorithm should try to
minimize IPC by assigning a pair of heavily communicating modules to the
same computer. On the other hand, AET always contributes to processor

load; its contribution is independent of task allocation. Constructing a

simulator to measure the IMC®and AET is time-consuming. A mode! is

therefore developed to estimate these values, based on the control-and-data-
flow graph and branching probability. Estimated results for a space-defense
application match closely with the measured values obtained from a simulator

of this application.

A program module can not be enabled before all its predecessor(s)
finish execution; this relation is called the precedence relation (PR).
Analytical results indicate ‘that the size ratio of two consecutive modules
plays an important role in task allocation. Generally if the execution time of
the second module is much larger than the first one, then assigning these 2

modules to a same computer is beneficial to response time.

Given J modules and § computers, there a.r:;" module assignments.
It is not feasible to enumerate through all these assignments to find the
optimal assignment when § and J are large. A heuristic algorithm is proposed
to find sub-optimal assignments, based on the concept of minimum bottleneck,

using IMC and AET data and PR rules. Simulation results indicate that the

algorithm generates good assignments.

CHAPTER 1
INTRODUCTION

©
X X
t

1.1 WHY DISTRIBUTED PROCESSING

wh

Although the computer speed has increased several orders of
magnitude during the last 30 years, user demand for computing power is
increae;ing more quickly. In the early '50s, it was estimated that 50 IBM
Corp. model 704 main{rames would satisfy the computational requirements of
the U.S. [MALL82]. By the end of that decade, everf sizable business
establishment, college, and government agency had at least one computer.
Nowadays, the demand for computation is still chaﬁenging the computer

architects.

One example is a real-time computer system embedded in a space-
defense radar system where the computer must process the data stream
returned from a continuously scanning radar in real time. Besides real-time
applications, computer speedup is desired in applications of lengthy,
repetitive nature. The quality of computational results in areas such as
meteorology, cryptography, image processing, and somar aad radar

surveillance is proportional to the amount of computation performed.

For example, in the VLSI automatic testing, every chip produced by a
_semiconductor manufacturer should be tested extemsively. A speedup for
testing a chip would increase the production volume and/or reduce the use of
testing machines and technicians. Another example is in VLSI design
automation where simulating a 10%instruction sequence requires 49 minutes-
of CPU time and.: simulating a 10‘-in§:tmction sequence requires 250 hours I'
[BLANS4]. If vﬁe can speed up the simulator, the product design cycle will be
significantly shortened because many simulation runs are usually necessary

before a chip design is finalized.

Many applications require speed capability not achievable with a single

computer (or processor). ! The two obvious approaches to this problem are
faster cireuits and distributed data processing (DDP). This thesis deals with -
DDP which provides for simultaneous execution of multiple program modules
of a task. In DDP, all processors should be equal (i.e., no master/slave
relations) and each can access any network resource without the interference
from centralized controllers. If properly applied, DDP can be a much cheaper
technique than a single high-speed computer. Hundreds of microprocessors
can be interconnected to provide a processing entity that outperforms the

cost/performance ratio of a supermainframe.

1 "Computer” and "processor” are used interchangeably in this dissertation.

1.2 TASK ALLOCATION

Task partitioning and task allocation are two major steps in the design
of distributed processing systems [CHUS0]. If these steps are not done
properly, an increase in the number of computers in a DDP system may
actually result in a delc‘i'ease of the total throughput?'..' This is the w:.felﬁl-known
saturation effect. In this dissertation, we assume the software sys£em for a
DDP application has been well partitioned into a set of program modules (or,
subroutines). We then .;.'.tudy how to properly allocate (assign) these modules
onto the multiple computers of the DDP system in order to realize the
benefits of DDP. (In this dissertation, "task allocation” and "module

assignment” are used interchangeably for step 2.)

 The three important parameters for task allocation are intermodule
communi;:ation (IMC), accumulative execution time {AET) of each module,
and precedence relati?ns (PR) among program modules. IMC. is the
commurication between progi'am modules through shared files. When a
module on a computer writes to or reads from a shared file on another
compauter, it requires extra processing and communication overhead which we
shall refer to as IPC (interprocessor communication). A task-allocation
algorithm should try to minimize IPC by assigning a pair of heavily
communicating modules to the same computer. The AET contribution to
processor load is independent of task allocation. Finally, the precedence

relation specifies that a program module can not be enabled before all its
3

predecessor(s) finish execution. Analytical and experimental results indicate
that the module-size ratio between two consecutive program modules plays an

important role in task allocation.

1.3 BACKGROUND AND-RELATED WORKS

Existing module-assignment methods can be divided into four
categories: queueing model approach, graph theoretic approach, integer 0-1
programming approach, and heuristic approach. Existing queueing models do

not consider IMC and therefore do not provide good assignments.

1.3.1 Graph Theoretic Approach

In general, this approach can handle only 2-processor module
assignment problems. Each module is represented by a node in a weighted
graph where positive numbers assigned to the nodes represent the expected
cost of each module due to its execution. IMC cost between each pair of
modules is fepraented by the weight of a nondirected arc connecting the two
nodes [JENN77, STON77, STON78, RAO79, BOKHT79, CHOUS2|. The arc
weight then becomes the interprocessor communicat::on (IPC) if the pair of
modules are not coresident on. a processor. Any pair of coresident modules is
assumed to have zero IPC cost. An additional node is also provided for each
processor; an arc between a module node and one of the two processor nodes

represents the processing cost of running the module on the other processor.

The module assignment strategy in this model is to minimize total cost,
defined as the sum of processing cost and IPC cost. In order to represent the
assignment of modules to processors an assignment matrix X is defined such

that

1 if module M; is assigned Processor s

Zis = | 0 otherwise

Processing cost is given by the @ matrix,
Q@ = {q,-,}, i=1,...J, s=1,...§

where J is the total number of modules, S is the number of processors (sites)
in the system, and ¢;, represents the processing cost for module M; on
Processor s. A value of infinity, ¢; = %, implies that module M; cannot be

executed at Processor ».

Let v;; represent the IMC volume between M; and M;. The total cost
for processing a given task can then be expressed as an objective function of
the assignment X.

Cost(X) = g E{M.. + 2 va.-fz,-.z,z}

t®e 5 <i (1-1)

The first term of eq. (1-1) represents the processing cost for each module on
its assigned processor. The second term represents the IPC cost between

non-coresident modules. The normalization constant w is used to scale
. . 5

processing cost and IPC cost to account for any differences in measuring
upits. The minimum-cost module assignment is obtained by performing a

min-cut algorithm on the graph [HARAS9).

While this method is \‘conceptually simple, it has several limitations.
First, an extension of the ﬁiljn-cut algorithm to an arbitrary number of
processors quickly becomes computationally intractable. An extension to four
or more processors has been proposed for cases where the IMC pattern can be
constrainted to be a tree [STONT7S]. Second, a weighted graph represents
only the data flow; it does not show the control flow (the precedence
relationship) among the modules of a task. The min-cut algorithm does not
consider the precedence relationéhip. Third, the method assumes ;)ne-time
exet;'.ution of modules. But, in almost all real-time systems, program modules
reside in the systems during entire mission time and a module is invoked (i.e.,
enabled) to execute by each occurrence of certain type(s) of events, e.g. the
completion of a preceding module in the control flow or an arrival of a radar

search return.
1.3.2 Integer 0-1 Programming Approach

This method stems {rom the file allocation problem where the model is
formulated as an optimization problem and is solved via 8 mathematical
programming technique [CHU69, CHU80, MAS2]. As with the graph theoretic

approach, the goal is to achieve optimal system performance by minimizing

8

the total cost defined in eq. (1-1) over the module assignment X. In addition,
the minimization is done subject to some constraints which may be imposed
by a given environment or the design specifications. For example, a limited-

memory constraint is represented by

ez, SR, s=1,...5
2

where s; reprééﬁts the amount of memory storage required by module M; and
R, represents the memory capacity at Processor s. Load balancing can also

be achieved through imposition of constraints.

The integer 0;1 programming approach can handle any number of
processors. However, it is time-consuming to optimize the performance for a
. system with a large number of processors and modules. And it is rather
complex to express the precedence relationship and its effect on task raponse'

time analytically.
1.3.3 Heuristic Approach

Gylys and Edwards proposed a heuristic algorithm for module
clustering [GYLY78, EFES2]. The process of assigning two modules to the
same processor is called fusion. The algorithm searches for a pair of modules
with the largest IMC and checks to see whether the fusion of these two
modules satisfies the real-time and memory constraints. If it does, that p‘air is

fused. Otherwise, the pair with the next largest IMC is chosen as a possible

candidate. The fusing process continues until all eligible pairs are examined.
Although simple and fast, this approach again sssumes one-time execution of

modules. And, it does not consider precedence relationship.

After examining the above approaches, we are motivated to develop a.

heuristic algorithm that can remedy their shortcomings.

1.4 OUTLINE OF DISSERTATION

To provide a testbed for testing our theories and model analysis, we
use a simulator that simulates a BMD (Ballistic Missile Defense) application
— a distributed procésing_system for a defense unit to process the radar
returns (input scenario). This BMD application (Distributed Processing
Architecture Design - DPAD) and its simulator are presented briefly in
Appendix A. Our UCLA DPAD Simulator is a m;)diﬁed version of the one
originally developed by TRW/Redondo Beach, and we have made several
enhancements (see Appendix B) for performance measurements, statistics

gathering, data reduction, curve plotting, and reduced simulation time.

Since IMC and AET dramatically impacts the performance of
distributed systems, a methodology is proposed to measure and present their
values over the time (Chapter 2). IMC for file-update traffic and AET of the
DPAD are presented as an example. From the iﬁsights obtained with our
IMC measurements and other data from the simulation, an analytical model is

constructed in Chapter 3 to estimate the IMC in a distributed processing
8

system. This model is then applied to the example DPAD system. The

results show that the model provides good estimation.

Next, we present an objective function for task allocation that

‘;_!';exprmsa the processor load of a bottleneck proc_eaabr in terms. of IMC and

' AET (Chapter.4). The basic idea is to find a task-allocation algorithm that

assigns the modules to processors such that the load of the bottlemeck
processor is minimized. To avoid the enumeration of a huge number of
possible module assignments, a heuristic algorithm based on the objective
function -is proposed and shown to generate good assignments. Chapter 5
discusses the relationship between the precedence relation (PR) and task
allocation. PR specifies that a progré;n module can not be enabled before all
its relevant preceding module{s) finish 'their execution. Simulation and

analytical results indicate that the size ratio of two consecutive modules plays

‘an important role in task allocation. Task response time can be reduced by

properly allocating the PR-related modules. An improved heuristic algorithm
for task allocation is presented based on PR, IMC, and AET. The algorithm
considering PR is applied to both. the DPAD system and another distributed
system example. It yields better response time than the algorithm which does
pot consider PR. Finally, the conclusions and areas of future research are

given in Chapter 8.

CHAPTER 2
MEASUREMENTS OF IMC '

Communication between program modules is ca;lled intermodule
communication (IMC). When two fnodules are assigned to different
computers, their IMC creates interprocessor communication (IPC), thereby
requiring both the sending and receiving computers to execute instructions for
I/O processing. If the modules reside on -the same computer, no IPC is
incurred. In general, IPC should be nmm:nzed to reduce the CPU cycles

spent on I/O, thus improving the response time and throughput [CHUSO0J.

Since the total volume (words) of module-enablement messages is
normally mu<_:h smaller than the fileeupdate messages, we consider only the
IMC volume between each pair of modules. Here, we report the IMC
measurements and characterize the IMC in terms of how it varies with time,

number of objects, task threads, and module pairs.

3.1 MODULE EXECUTION FREQUENCY AND IMC PER EXECUTION

A program module is enabled every time a predefined event occurs, e.g.
Mo is enabled by each radar return while My is enabled whenever both M

and M; finish their execution. Therefore, a module could execute muitiple

10

number of times during a time interval. The IMC volume from a sending

module M; to a receiving module M;, for the time interval from #; to #,,4,

Viftiti+y), has two components: !

1. The number of times the sending module executes during the interval,

" Nftutier)

2. The average message volume sent to module M; per ezecution of M; during

the interval, U;}(ti,t‘.;.l).

Thus, we have

Viltutier) = N{titiay) * ”.",'(totaer)

Regarding the number of module executions, Figures 2-1 and 2-2 plot
N{t,,ts+1) (tx+1-t, = 100 ms) for modules M; and Mg, respectively. (The
vertical lines indicate 90% confidence intervals which are discussed in Section

2.3.) Both Figures 2-1 and 2-2 were obtained from DPAD simulations of a

three-computer distributed system for a scenario with 40 objects. 2 Figure 2-3
presents N{t,,t,+,) for all twenty-three modules in the DPAD for the same

scenario.

1 p is simply an integer index; we reserve f and j for indexing other items in
this thesis.

2 IMC does not change significantly with module assignment or the number of
computers. See Section 2.9.

11

No.

of enablemente

8a

b

00 1900 1500 2000 2500 3000 3500
. t.img(msac)

FIGURE 2 -1. TASK 01 ENABLEMENTS - 1.5 MIPS, 40 OBJECTS

No. of enuablemenis

21

30

L

18

18

500

1000

1500

2000

2500

3000
time{msac)

3500

FIGURE 2-2. TASK 08 ENABLEMENTS - 1.5 MIPS, 40 OBJECTS

13

160

No. of F
Exec. [

0E

{4 4 a4 4 2 8 8. 2

‘‘‘

uuuuuu

LLLLL

11111

T p—"——

LLLLLL

LLL

111111

NG ENG TENo) (RN
-"“4 —" ~—— _.4 A
PN RN JENa e
NG END) TENAR) 3N
S e

N TEnen

Fisc, 2-3 No. OF MODULE EXECUTIONS

Module M, is executed once for each radar return except thdse
SEARCH returns with no detection. So, Figure 2-1 reflects offered load:
loading increases as more objects are detected and loading decreases when no
more object detections occur (about 2 seconds after the first detection).
Flgure 2-2 shows a sum.la.r trend for My but with fewer ‘module executions.
This is because only Precision-Tracking radar returns mvoke Mg (see Figures
A-4 and A-7) while SEARCH returns with detection, VERIFY returns,
Coarse-Tracking returns, and DISCRI (discrimination) returns passed down

from M, would invoke other modules (M,, M,, or the pair M4 & Miq).

Table 2-1 shows the IMC between the module pairs, measured in words
sent per ezecution of the sending m.odule. A blank entry in this matrix means
that no ﬁmage words are sent out from the sending module. In mest cases,
a module execution results in sending a constant number of words to 6ther
modules, so v,-}(t;,t,,....l) simplifies to v . For example, a module M, execution
always causes 13 words to be sent to Mj (10 words for file updates and 3
words for message header). However, there are cases in which v is not a

constant (e.g. vitﬁ). In these cases, the matrix entry has two numbers.
2.2 IMC VsS. TIME

In our simulation, we measured IMC in 100 ms intervals for each pair
of modules. Figure 2-4 shows the IMC for the file updates sent by module M;

to Mg. (This result is obtained from the same simulation which generated the

15

INMTIGVNT 43d (SGUOM) NOLLVIINNWWOD JTNGONSIINT *T-C Fvl

92/0 ot SE gt | sc
B €0l 21
£ol
9 [sz/0 9/0
B 9
8
e/t - 9
Los /el .
T
B €l
N |3 1% ot/d 9031 13 i
£
9
[9
oL/l |sz7olsz/obz70
st
/o]
€2 22 1202 6 BL £ 9 SL ¥ €L 2 W O 6 8 (9 § ¥ € 2 1

€2
22
12
02z
6l
8l
it

9
Sl

141
€1
el
i

-_ e M W N @ M~ @

16

Words senl from Task 08 Lo Tesk 09

. 14QL

830

seq.
43Q.
420
350,
280

214

i &

0

500

1000

1500

2000

2500

3000
time{msac)

3530

FIGURE 2 -4, IMC (08,09) - 1.5 MIPS, 40 OBJECTS (SINGLE RUN)

17

curves in Figures 2-1 and 2-2.) Note that the activities of M increase from
tactical time 0 (when the system is empty) to a peak point at about 2 seconds
(when all objects in the scenario move out of the surveillance area). This

curve can be divided into three phases:

1. Initial phase. Objects are initially detected and kept in track, and thus the
image arrival raie is greater than the image drop rate, where the image
arrival rate is defined as the rate at which images are changed from
TRACKI (track-initiate) stage into TRACK (precision tracking) stage,
and the image drop rate is defined as tﬁe rate at which TRACK images
are dropped from further tracking due to image redundancy or image’s

not being classified as-one of the top five threats.

2. Steady phase. After 1.2 seconds, fewer objects are detected {about 2 or 3
every 100 ms) and the image arrival rate is almost equal to the drop

rate.

3. Trailing phase. After 2 s, no images arrive but many are dropped.

Two dips appear in the steady phase because the image drop rate is slightly
higher than the image arrival rate during those two short periods. Clearly,

the curve shape is highly scenario-dependent.

18

The curve in Figure 2-4 is similar ! to the one in Figure 2-2 which
shows the number of enablements for Mg, because U;'g is a constant, 23

words, most of the time (See Figure 5-3).
2.3 EFFECT OF SIMULATOR MDOMNESS ON IMC

In the UCLA DPAD simﬁlat.or, random numbers are used in
determining events, such as
Cross Tr;ﬁc Rejection
Impact Point Prediction
Known Object Recognition
Redundant 'frack Elimination
Passive Object Discrimination
We have enhanced the simuia.tor to permit multiple runs, each with a
different starting seed for the random number generator. Figure 2-5 shows

five curves as the results of five such replication runs.

Since IMC varies with cross traffic rejection, impact point prediction,
ete., we are interested in the mean IMC and the associated 90% confidence
interval (C.L). This confidence-interval approach will be used for all of the

measurements in this study, e.g., the number of module enablements

1 The difference in curve shapes results mainly from the time lapse between
the instant that module M is enabled and the instant that this enablement’s
execution is finished and messages are sent. That is, an enablement may be
counted in a 100 ms interval, but its execution is finished and the IMC
incurred and counted in the next 100 ms interval.

19

3500

630

G0 "M88) 01 g0 »8eB)] WOJ) JUSS8 SPION

L L v L \
., - \\\.m
4goYs !
CEEEE . .
o
1. s o
. Lad]
| ; .
| ,
— ' -t
“ '-oo ‘ -
) ‘ [=
) e ger? >
\\\x.. o
= o
MRy > 128
y : o e .
A\ K ...\t\“lu“r
S0 -
‘. P
= e
e
S actnl o
o
T i P=%
-~ -
..'pﬂoﬂ”-..”.-f.lﬂz
.) o
P io]
un
'y 4 'l [1 Il '] [_§ |
[=] = = (=] 1] = = o
oD - ™~ ™~
-...-.w @ M/-..- 9—““ o ™~ - 0

timei{msec)

FIGURE 2-5, IMC (08,09) - 1.5 MIPS, 40 OBJECTS (5 RUMNS)

N

presented previously in Section 2.1 and the port-to-port times presented in
Section 2.1. Figure 2-6 shows the‘ means and confidence intervals, for the five

curves in Figure 2-5.

. Many C.L's in Figure 2-8 are quite large. Since this mean IMC curve
for_'5:‘;replication runs is not precise enough, 10 replications Were perfo_rmed as

shown in Figure 2-7. Comparing Figure 2-7 with Figure 2-6, we note that the

width of the C.L's have been reduced almost by 50%. !

3.4 IMC FOR VARIOUS TASK THREADS

- Where there is an image d_etected, first there is' processing in the
Search/Verify (S/V) thread and then in the Coarse-Tracking thread (See
Figures A-4 and A-7). For both of these threads, activity d_rops very quiekly
whlen there is no new image arrival, i.e., it is sensitive to image' arrivals. That
is why the plot of IMC between modules 2 and 3 over time, IMC(02,03), for

the S/V thread shows a saw-toothed shape (Figure 2-8).

On the other hand, the activity for Precision-Tracking thread rises
steadily (as shown in Figure 2-4) because a detected image is held in this
thread until dropped by redundant track elimination or passive object
diserimination. At about 1.2 s of the tactical time, activity reaches a constant

level. And then, at about 2 s when all objects leave the surveillance area, the

1 The confidence intervals for 15 replication runs were also derived, but they
showed only slight improvement over the 10-run resuits.

21

Horde sent from Taek (8 to Taqk 09

SelL

430

920

354

280

214

140

0

0 500 1000 1500 2000 2500 3000 3500
t ime{mseac)

FIGURE 2-6, IMC (08,09) WITH C.I, FROM 5 RUNS - 1.5 MIPS,
40 ORJECTS

Worde eent from Taeasesk 08 to Task 09

311 8
430
420
350
280

214
140]s

70

500

1000

1500

2000

2500

3000
{ ime{msec’

3500

FIGURE 2-7. IMC (08,08) WITH C.1. FROM 10 RUNS - 1.5 MIPS,

40 OBJECTS

23

Worde sent from Tesk 02 Lo Task 03

120
105-

1 8

Y-

500

1000

1500

2000

2500

2000 3500
i ime{msec)

FIGURE 2-8, IMC (02,03) WITH C,I, FROM 1C RUNS - 1.5 MIPS,

40 OBJECTS

activity level enters the trailing phase.

2.5 EFFECT OF NUMBER OF OBJECTS ON IMC

Figure 2-9 shows how the IMC changes with number of objects in the

scenario. In general, the increas:ing number of objects increases IMC !
because the larger object population results in more activity for each

processing thread and, thus, more shé.red-ﬁle updates.

Let us examine the region between 2 and 3 tactical seconds. In our
experiment simulating three computers, each running at 1.5 MIPS rate, the
40-object runs generate heavy load on the computers. Thus, one or more of
these computers are oécasionally saturated during that period, and certain
module enablements are discarded because of the enablement queue overflow.
Therefore, some activities are eliminated undesirably and the measured IMC
are smaller than they should be. (The measurement for 40 objects is
somewhat inaccurate during that period). On the other hand, the 30,l 20, 10,
and O-object runs do not saturate any computer’s load. As a result, the IMC

for 40 objects are smaller than that for 30 and 20 objects during that period.

Since we already had a feeling about the statistical variation of the
IMC for ten replication runs, only sample means of IMC will be presented for

the rest of IMC discussions; the confidence intervals will not be shown.

! One exception in the simulation is the IMC transferred from module M3 to
M,,. See the last paragraph of this section.

25

Worde sent from Task 08 to Tesk 09

FIGURE 2-9, IMC (08,C9) FOR VARIQUS MUMBER OF QBJECTS

63
SelL -
== o QP OBJECTS
______ 10 _0BJETTS
—— 20 ORIECTS
i S LB EC TS
4sur ——n e ns 40..ORIECTS
4200
k1% B
280
214 \
1400 4
LA
74 \
l*' \
0 OBJECTS h \‘
a 4 = ‘
=2 \ , . . . ;
0 S00 1000 1500 2000 2500 3000 35040
time(msec)

Figure 2-10 shows the IMC for another communicating path, from Mg
to M,. This IMC(08,08) is similar to IMC(08,09) as shown in Figure 2-9, but
the ratio of their IMC sizes is about 5:1. We now briefly explain this

. similarity and the scale difference.

Modﬁle Mg processes a precision track radar return and updates a.
record (20 words lon-g) in the OBJSTV file (Object State Vectors). It then
distributes that updated record to modules Mg, Mo, Mys, My, Mz, M;q, and
Mz, Almost every time it updates OBISTV, it a.lso updates a record (100
words long) in file COVMTX (Covariance Matrix) and distributes the updated
r§cord to Modules My, Myq, and M,s. Therefore,

IMC(08,08) - IMC(08,10) = IMC(08,18)

and _
IMC(08,09) = IMC(08,17) = IMC(08,19) = IMC(08,20)
. as we have observed; the symbol * =" here means that two corresponding

figures are identical. (See Figure 2-11 in the next section).

Since those OBJSTV updates distributed to Module M; (ie,
IMC(08,09)) are also distributed to M,, Mo, and M,s IMC(08,06) should
have been 6 times (100+20 to 20) as large as IMC(08,09). However, there are
some occasions when OBJSTV records are updated and no COVMTX update
follows. This explains why the scale ratio of the above two figures is about

5:1 instead of 6:1.

27

Worde eent from Task 08 to Taauhnﬁ

3150

280G,
; S—— aa. oaseeTs

g4§u.
2100
175d
1400
1054
700

350

0 S00 1000 1500 2000 2500 3000
. t ime{meec)

FIGURE 2-10. IMC (08,05) FOR VARIOUS NUMBER OF OBJECTS

3500

Although IMC increases in gemeral with the number of objects,
IMC(13,14) is an exception. This IMC remains constant when the number of
objects is varied. This is due to the fact that 50 radar scheduling commands
(# constant a._mount of messages) are sent to Ml; for each module 13
ngecution, which occurs eve;ry 5 ms. Th:s'radar schedt_xli.né rate does not

rcha.nge with the number of objects. -
2.8 DOMINATING IMC

In the last section, we noticed the large difference between IMC(08,08)
and IMC{(08,09). This motivated us to compare the relative IMC sizes among
all module pairs. All those pairs with non-zero IMC are shown in Figure 2-11,
where they are all plotted on the same scale to reveal the relative magnitude.
These are the average IMC obtained from ten replications (see Section 2.3).
The IMC;; varies with module pair and time. For example, IMCy4 is quite
large during 1 to 2 seconds, IMCyz is always.small, and IMCyy, is always
large. This figure discloses those pairs of communicatiné modules with
dominating IMC. The dominating pairs are:

(13,14)

(08,08), (08,10), (08,16)
(22,01), (22,02), (22,04), (22,08)
(14,23)

(14,13)

(08,09), (08,17), (08,19), (08,20)
29

IIIIII

1002, 035

IIIIII

vvvvvv

s Fy [t 2

‘F16, 2-11, IMC BETWEEN MODULE PAIRS

uuuuuu

1013, 14)

2 2 P & L

111111

vvvvvv

IIIIII

llllll

1 L] v FF L

llll

llllll

122,023

T]

111111

IM0(22,04%

11022, 08

d N -
' . L ' 4 . e L ! I

2 e

[H(22, 23

E

Fig., 2-11, (CONTINUED)

31

If we enlarge all these small figures, we can see that, just like the
IMC(13,14) described before, IMC(14,13) is constant independent of the time.
This is again due to the constant rate of radar command scheduling. IMC for
“all other module pairs varies with the time, (e.g. see the IMC(08,09) and

IMC(02,d3) shown before). : “i!‘

2.7 ALTERNATIVE REPRESENTATION OF IMC

Since the measured IMC is caused by file updates, there is an
alternative way to present the IMC — IMC between a module and a file it
writes (updates) or reads. The IMC from a module to a file it writes is
referred to as Module’-to-Filg IMC, or M-F IMC. The IMC from a file to a
module which reads the file is referred to as File-to-Module IMC, or F-M IMC.

There is no F-M IMC in the DPAD system because its modules only
read local file copies. Fig;ure 2-12 displays the average M-F IMC for the
DPAD for the same ten replications that generate Figure 2-11. Each plot
V(ik) gives the IMC size produced by module M; in order to update file F.
Note that only twenty-six (26) V(i,k)'s are non-zero and thus shown here.

Again, they are all plotted on the same scale to reveal the relative magnitude.

2.8 ACCUMULATIVE EXECUTION TIME

As stated in Section 2.1, a program module M; might be executed

multiple number of times during a time interval (¢,44+,). For each time of its

32

W5 802,110 BG03, 115)] B0, 116)] (04, 117)
T
005,197 Bits, 120 k07, 1220 jueng, 120);

IIIIII

008, 1293 b8, 1200 1003, 125)] B10, 120
h-:""“*-L—J /f% T ' — :
010, 1303 (13, 130)3 u<14,147ﬁ (14,132)

LLLLLL

|||||

"""""

nnnnnn

F16.2-12 Mobute-FiLe (M-F) [MC For THE DPAD

33

r— T T T Y

0019, 139)] Fucan, 1400 FuCa, 1403 U2z, 140

U(23,112);

llllll

"
-

3

C1g, 2-12, (CONTINUED)

34

execution, its execution time (ET) contributes to the CPU load. An
important piece of information which can be measured from the DPAD
simulator is the accgmulat:’ve load caused by M; due to its multiple times of
exe.cution during a time interval. Let us call it accumulative ezecution time
(AET) for M, .dehoted as ﬂ{t‘,t“l).f’ﬂ”.Both the average ET and AET can be
expresséd in machine language instructions (MLI) executed. Although the
execution time of one mﬁchine—language instruction varies from instruction to
instruction, we can find the mean instruction execution time given the mix
ratios for various different instructions. Our measurement results are given in

Figure 2-13 where each plot T(i) shows the module AET T{t,,,+ 100ms) for

module M; during all 100 ms intervals.

2.9 EFFE.CT OF MODULE ASSIGNMENT ON MEASUREMENTS

In general, IMC and AET change with diﬂ'erent module assignments.
However, our study shows that the number of module executions, IMC, and
AET are all almost independent of module assignments if a fized offered load
is input to the distributed system. For example, Figure 2-14 shows the
number of times module Mj executes duriﬁg 100 ms intervals under a scenario
with 40 objects in the DPAD simulation; Figure 2-15 displays the AET for Mg
during the intervals; and Figure 2-16 exhibits the IMC from Ma to M,
measured from the DPAD simulation. In each figure, five curves represent
five different module assignments. Note that the five curves are so Vclose to

each other. This is a very important observation which makes the module
35

" 45,000

MLI

g A - A ¥ T

F16,2-13 ACCUMULATIVE MODULE EXECUTION TIME

36

of Executlione

21

24

14

18

13 .

L

500

1600 1500 2000 2500 3000
t ime{moac)

F1g, 2-14 NUMBER OF M8 ENABLEMENTS FOR VARIUOQS

MODULE ASSIGNMENTS

37

3500

([§

14

14

in

560 1990 1500 2000 2500 3000 3500
t.ime(msec)

L=

Fig, 2-15, AET ofF Mg FOR VARIOUS MODULE ASSIGNMENTS

38

300

3

2400, B

N
-t
o
=
L]

1800
15004

1200

Worde sent from Task 22 to Task 04

1] R

e

3eQa

0 500 1900 1500 2000 2500 3000
time(msec)

Fig, 2-16, IMC(22,4) FOR VARIOUS ASSIGNMENTS

39

o~
assighment problem a lot easier.

2.10 CONCLUSIONS

A method for presenting both the IMC and AET has been shown in
this chapter. We found that béth IMC apd AET vary with time, number of
objects in the scenario, task threads, and module pairs. Hox;lever, :;the
measurements indicate that IMC and AET exhibit almost no variation with
various module assignments. Both 'IMC and AET data are important

parameters for module assignments.

Using simulation experiments to characterize IMC is quite time-
consuming. Thus, we have developed an analytical model in the next chapter
to "estimate IMC based on the data volume sent per execution instance,

branching probabilities for control flow, and number of objects.

CHAPTER 3
ANALYTICAL MODEL FOR IMC ESTIMATION . o
S N S i

A Ny

This chapter presents an a._n:alytical model for IMC estimation, which jis
developed to a.voici the time-consuﬁﬁng coding and running of simulation-
experiments. A distributed applica.tibn consists of J program modules M,
Ms,, ..., My on S computers. Graph models have been developed [BAERSS] to
study vaﬁous aspects of computer systems and other more general systems.
Figure 3-1 is the same as Figure A-8; it shows a portion of the control-and-
data-low graph of the DPAD system. The granularity ?f modules is at the
subroutine level rather than thé' instruction level as is being used in data flow
machines [TRELS2]. A control-and-data-flow graph is a control flow graph
superimposed by files and the associated data flow between modules and files.
The graph has an entry pointrand a t&mination point [CHUSO]. Each square
box represents a computational module, and each directed arc represents the
precedence relationship between the two connected modules. The sequence of |
module execution is referred to as the control flow. Module M; causes M, to
follow it by sending an enablement to M,’s computer which is referred to as

'MJ- enables M,". Data flow is represented by broken lines and consists of

reads and writes by modules to the set of K shared data files F|, Fy, ..., Fg.

41

ENTRY

g ...MoouLe M, ' & ...Excustve OR

(Cx D)Fusfy A ® .0

Fig., 3=1. PART OF THE CONTROL-AND=-DATA-FLOW GRAPH
ForR THE DPAD sysTem

42

Modules communicate through shared files and module enablements; such

communication is referred to as Intermodule communication (IMC).

Our model for estimating the IMC between each communicating pair of
modules is presented in Sections 3.1 and 3.2 where it is assumed that 1) the
distributed program has been partitioned, in terms of functions, into a set of
modules, 2) the function of each module is fully specified, and 3) the files used
by each module are known. Section 3.1 develops a methodology to estimate
all key parameters in terms of number of module executions. Section 3.2
shows how to obtain the number of module executions for each module in the
control_flow. Next, in Section 3.3, this model is applied to the DPAD. The
estimated results are compared with those measurement results presented in
Chaf)ter 2, as a validation of the IMC and AET model. Finally, the IMC
incurred for control functions and system resource utilization in distributed

processing systerms are di‘scussed.

3.1 ESTIMATION OF KEY PARAMETERS

| Three types of IMC exist: Module-to-Module (M-M) for module
enablements, Module-to-File (M-F) for file updates (writes), aad File-to-
Module (F-M) for file reads (see Fig. 3-1). Here we estimate each for all
specified time intervals (fy,444+1)’s. The interval size, fy41-6y for the
estimation should be properly selected. Too short intervals prevent us from

observing the trend of workload changes while too long intervals are not

43

sensitive enough to reveal the dynamic behavior.

For M-M IMC, the number of module M, enablements by AM; during

time interval (t‘,t*.q.l) is

N;'(tlstb-l- l)pj'l(E; t tl-l- 1)

where N{t;,t4+1) = number of times module M; ezecutes during (&, t44,),
referred to as ezecution frequency of M;
Pl E; ty,ti+1) = Drobability that an execution of M; enables M, ,
referred to as enabl?ment probability.

Thus, the M-M IMC volume from M; to M, is

Vil Eitytisy) = N{tytis1)pial Eitys tart)Lja(Eitastre) @)

where L, (E;t;,t441) = average number of words (enal;lement-messa.ge length)

sent from M; to M, when M; enables M,.

~ For M-F IMC, the number of updates to F), by M; is

N{tutie)oa{ Witibie)

where pu(Wity taey) = probability that an execution of M; updates file F} .

Therefore, the IMC message volume (number of words) sent from M; to Fy is

Va{ Wity tia) = Nitatiar)2l Wits biar) L Wity tie) (>2)
32

where L Wity ti+y) = average number of words (record length) written per

update.

Similarly, the F-M message volume for read response sent from file F,

to M; is

ValRitutier) = Ni{tutiae)2a(Rititir)) Lin(Bity, th+1) 33)

where p;(R; t,,t,,.ﬂ) = proba.blhty that an execution of M reads file F} , and

Ly(Ritytyay) = average number of words M; rea.ds from F .

Finally, the sccumulative ezecution time (AET) for M; during (thtss1)

T{tutier) = Nititie))Z{t0tisr)
‘ (3-4)

. where z;{t,,t44+)) = average ezecution time (ET) of M; during (#;,44+). This
. time can be expressed in terms of machine-language instructions (MLI)

executed.

Sincé egs. (3-1) — (3-4) require values for N{¢;,t;+), we show how it

can be estimated in the nex_t section.

3.2 ESTIMATION OF N{t,,ti+)

To estimate Nf;,f1+1), We use only the control flow portion of the
graph. There are three basic types of control flows: sequential, conditional
branching (Exclusive OR), and parallel (AND). Loop control flow is a variant
of conditional branching because the control is conditionally branched back
to some previous point. Therefore, in this thesis, we assume control flow

graphs with no loops.
45

Estimation for the execution frequency of module M; within (¢;,¢3+1),
N{ty,ti+1), requires knowledge of the enablement probabilities p;{E;¢;,¢4+1)
for all incident ares (i-f)'s from M;'s into M;. Enablement probabilities must

satisfy the following two conditions:

1. If more than one Exclusive-OR arc leaves M; , then every such arc i-m
has a.n enablemeﬁt probability p,-_(E;t,,t,‘:,.,) such that

Do Eititiey) =1
m

2. If there are more than one AND arcs leaving M;, each arc i-m has
Pim Eitisti+s) = 1. Note that sequential flow is a special case of
Exclusive-OR flow (and AND flow) where only one arc leaves M; and

Piml Eitistis1) = 1.

A control low graph with no loops can be viewed as an acyelic directed
graph and hence has a partial ordering of modules where the relation "partial
order” is denoted as M; < M; when M; enables M; .We can use the
topological sorting algorithm [KNUT73] to embed the partial order of the J
modules into a linear order and rename these modules into My, My, ..., M;
such that whenever M; enables M;, i < j . Let the entry node be M, and
assume the number of entries into the control flow graph, Ny(f;,f4+)), is
given. To étima.te N{t),t4+1)'s, we consider the modules M;s in their
ordered sequence § == 1, 2, ..., J. Doing so eihsures that for each j, N{t;,ts+1)
is known if M; enables M;. I
46 |

1.

The following estimation rules are used:

If M; has only one incident are and this arc emits from M;, then .

Nitytysrr) = N{ti- By tanr- Ay)pi Bity- A tye-Ay) (25)

| |ﬁrhere the notation ""-=" indicates an approximate estimation, and A;is
I.?l'the average'Mr;o-M; enablement delay. An: enablement delay is the
duration starting from when M; completes its execution and enables M;
until when M; completes its execution. This includes the wait time of
M; in scheduling queue plus its own execution time. Normally the
module execution time is much smaller than the time interval (£341~t;).
(See the discussion on interval size at the beginning of Section 3.1.) If

the wait time is also small, then A;; is 'neg].ig'ible compared to (¢54,-t3)

and eq. (3-5) reduces to

Nfty,tier) = N{tutie) pid Eitisban)
(3-8)

For example, if M, in Figure 3-1 executes 10 times within a time
interval, p,3(E) = 0.5, and A, 3 is negligible, then M executes 10 X

0.5 = 5 times within that same interval.

If multiple arcs (i-j)'s enter module AM; in the Exclusive-OR manner,

then

Ni{t,tyay) = 2 N{ty-Aj tae1 A5 i Bty Bty -55) @

Eq. (3-7) sums over all the modules M; which have an outgoing arc
47

connected to module M; since any of these M's might enable M;. For
example, consider M;; in Figure 3-1 and assume 4;;3's are negligible.

Then

Nultuta+r) = Na(titae1) T Nelts taa1)p7 13 B) + Ny(8 tar1)P4,13(E)

+ Nyg(thtis1)

If multiple ares (i-7)'s join at M; in the AND manner, M; cannot enter
the scheduling queue until all its predecessor modules M;s have

completed their execution. If such a wait time is negligible, then

Nftytisr) = any [Ndtatasrr) 2 Ertastisn)] a8

since all these predecessor modules enable M; the same number of
times. For example, for M; in Figure 3-1 we have Na(fyfi4)) =
Ny{ty,t4+1) %X 1.0 = Ng(t;,£,41)X1.0. If enablement delays are not small,
then from the predecessors M;'s we must d.eterm.ine the module M,

that finishes execution last and eq. (3-8) becomes

N{tytier) = Ny(i-8sj le1-8s))
(3-9)

To compute all the Nty ti+1)’s, we always start from the top of the

control flow graph, obtaining them in the topologically sorted sequence. Once

we know how to obtain all Nj{;,£i+1)'s, We can use eqgs. (3-1) — (3-4) to

estimate the desired IMC and AET profiles.

48

In the estimation of IMC and module AET, some values may be
difficult to obtain, e.g., enablement probabilities p,-;-(E;t;,t,,...l)’s and average
module execution time z; in eq. (3-4) for some modules. In these cases, a
simulation can be used to estimate these values. Since su.ch a simulation is

applied to a smaller subsystem, it usually is much simpler than simulating the

: entiré system.
3.3 AN EXAMPLE OF ANALYTICAL IMC ESTIMATION

In this section, we apply the estimation methédology of Sections 3.1
and 3.2 to DPAD Detect/Verify processing for modules My, M;, M,, and M;.
Search/Verify processing determines the presence of potentially threatening
objects and consists of: 1) a radar-sean_:h ret}lrn with object detection that
causes modules M,,, M;, and ‘Mz to execute in sequence (i.e., in their
topologically sorted order), 2) a radar-verify delay of 8 to 15 ms, and 3) a
radar-verify return th.at causes modules My, M, M,, and Mj to execute in
sequence. A radar-search return with no detection is simply discarded by My,
and so M;, M,, and M; are not enabled. We shall estimate No(ty,t4+) and
the IMC written by M, which consists of 13 words to update file Fy;, {i.e.,

Ly 114(W) = 13) whenever M, enables My,

We let N{d; t\,t4+1) be the number of module M; executions for Detect
processing, Nj{v;ty,é4+1) be the M; executions for Verify processing, and
N{ty,ty+,) be the total M; executions for both Detect and Verify processing.

49

Clearly,
Nityutie1) = Ndity,tye)) + Niwtytiey)

Because each module’s execution time is short (less than 1 ms) compated to

the measurement interval (¢ 4~¢; == 100 ms),
N{dity,tiay) = Npo(ditytysy) forj=1,2
and

Nj(";tistﬁi-l) = sz(";tl-atl'l'l) for J = 1,23

The radar-detection time for each object and, thus, the number of
radar detections in 100 ms intervals (i.e., Nos(d;t},t34)) are computed from
the input scenario (the sky map). For simplicity, only the first 400 ms of
radar-detect and radar-verify oéera.tions are shown in Fig. 3-2(a). The
a.lgoriﬁhm for coniputing object detection times is given in Appendix C. The

time-shift due to radar-verify delay (A = 10 ms) is shown in the figure, i.e,
Ny 383, t541) = Npo{ d544-10,4441-10)

Fig. 3-2(b) shows how Ny({;,t4+)) Was estimated. From eq. (3-2) we can

obtain V2’114("V;ti:tul) as follows
Vo na Wit taer) = No(vitytiaq) X 13(words)

Figs. 3-3(a) and 3-3(b) plot the estimates for Na(#y,f4+1) and V514 Wits,the1)

along with their measured values. Since the average execution time for M,

50

TAMIINT HOVZ ONING Gy TIndOW 40 AON3NO3Md NOLLMD3X] ' 2~ *o14

Teaxejur yoeg buyang patiyiaa puw pajoslaqg s3193[qo Jo IaqunN (q)
. L]
o Butessatoad uOTIEDTITIBA JOJ SUOTINODXS ey JO I8N =
SUOTIROTITI2A uomnmo JO IB3qUNN = Aimmz
butesasoad UOTI0SIBP 0] SUOTINOSXD 4 W JO JoquUNN =
SUOT30939p 308(qO JO Joquny = (p) PN

N

it ¢ oL € 9 _A:_J.:Ju %y

0 -6 0 0 0 0 0 Z 0 09 § € ¥ % -1l 6 9 OL $ & OF ZL 8§
© 0 0 0 0 0 0 t 0 0 €' £ t T T 9 S T § £ T € 9 ¥ 9 £ Ol z ¢ ¢ | %r
O 0 0 0 0 0 0 I 0 O0E T T T T § ¥ ¥ § T E S 9 ¥ S ¥ O 1 £ ¢ | P
000 0057 0007 0051 0001 006 008 00¢ 009 00s 00F 00f 00Z 001 [k Teazsau;
0062 ooV 0061 oovl 006 008 0O 009 00S OOF OOE OOZ 0Ol O h suryy,
s300(q0 3O o...d.u.. UOTIEOFIFASA pue oWyl uoyloalsg ()
™ I it to_ q —AI {revowy
TR AW s N -----ﬂm.--.mm_m.m e b H__---m. o i ——y
' _. ' _. _. —— i | _. _ ! { .._:t._:
L] [1] Y vl
v

we LAl
" t 0 g

e .
b o L . m Bl AT + - LN " . B bt St AR a0t L S LS
e Y KN ! i I e

51

]
3
1 1

| e— nEASURED
R ISTIMATED

...
»
il
-
0

M

MOADA SENT FROM NODULE 2 YO F1LE 114
]

-

——

0 ."o T T %08 W0 1808

9 = UM T TT BT 7] £] i
. L lsglanes) O Lisa{asee)
A) No. or Moout Ny DAICUTIONS, ity thed) N M lll: Faon 'z'ﬂ Piae, 3,134, (Wita, Se1)

I'I-li

i

ACCLTLAL AT IVE EXEC, T

- y_—

i
¥

0 100 1596 D98 506 000 3500
TINECawen)

) Moows My ACCUMAATIVE EXECUTION TINE, Ta (ty.they)

Fig,3-3. COMPARISON BETWEEN MEASURED AND ESTIMATED VALUES

o

(i.e., zs(ts,t4+1)) is 500 MLI and Ny(tpti+1)=Na(v:t5,ti+1), the AET for M;
li.e., Ts(tits+y)] is estimated from eq. (3-4). Both the measured and
measured AET are shown in Fig. 3-3(c). All three charts in Figu;'e 3-3 exhibit
close correspondence between the estimated and measﬁfed values. This -giva

a validation Ift;r the estimati;n n;etl:;bdology."
3.4 CONTROL IMC-

So far in this thesis only apiah’cation IMC was studied. However,
distributed processing systems require a significant number of control
functions to. support application file access (e.g., read-requests, lock-requests,
and lock-releases) and to maintain the distributed processing system {e.g.,
status monitoring). These functions are carried out by control modules,

resulting in control IMC.

Control IMC consists of reads and updates (writes) by control modules
(e.g., lock managers) to control files (e.g., lock status files). Once the file
access and distributed system maintenance functions are known, control IMC
can be derived from application IMC. For example, in Fig. 3-4, assume that
module M; at computer 1 updates application file F, at computer 2 for
N{t),t4+,) times during (t4,t4+1). Since every F, update requires a lock-
request and a lock-grant, control module M, at computer 1 writes N{¢;,t5+1)
lock-request messages to control file F'y at computer 2 while Mp at computer

2 writes N{¢;,23+1) lock-grant messages to Fy at computer 1.

53

CoMPuTER 1 ~ CoMPUTER 2

----- -
APPLICATION MODULE | CONTROL MODULE
PTTTTTTTN
C) APPLICATION FILE _________}CONTROL FILE
IpC

Fig.3-4, IPC IN A DISTRIBUTED PROCESSING SYSTEM

54

3.5 CALCULATION OF SYSTEM RESOURCE UTILIZATION

The utilization of a systém resource (i.e., computer, shared memory, or
bus channel) is defined as the fraction of time the resource is busy. Resource
utilization is an important measure in distribﬁted processing systems since it
is directly related to queueing delays and throughput. Each IPC message -
incurs a processing cost at the sending computer and a processing cost at the
receiving computer. It also increases network traffic. Therefore, IPC

degrades the performance of distributed processing systems.

The utilization of 2 computer can be estimated from module AET, the
processing cost for sending and receiving IPC messages at this computer site,
and operating system overhead. The utilization of a channel can be derived
from the channel bandwidth (fn words/s) and the IPC volume to be sent on

this channel.

35

CHAPTER 4
MODULE ASSIGNMENT

After discussion of IMC measurement and estimation, we shall now
" proceed to the study of module assignment problem. Section 4.1 identifies
key parameters that should be consiciered in- a module assignment. Section
4.2 describes the concepts of module assignment tree and enumeration
procedure, and an objective function based on the concept of minimum
bottleneck is propos:d as a criterion for finding good module assignments. In
Section 4.3 the objective function is applied to the DPAD system and is
shown to yield good response time. Section 4.4 presents a heuristic algorithm
based on that objective function that drastically reduces the computation
time in finding good assignments from a huge problem space. This heuristic
algorithm is applied to the DPAD (Section 4.5) and has yiel'do-ad good response

time.
4.1 KEY PARAMETERS IN MODULE ASSIGNMENT

The three parameters that play important roles in module assignment
are intermodule communication (IMC), accumulative execution time (AET) of
each module, and precedence relations (PR) among program modules.

Chapter 2 shows that both the number of module executions and the AET
' 56

are almost independent of module assignments if a fized load is offered to the

distributed system.

Our second parameter, IMC, is the cbmmunication between program
modules through shared files. IMC can a.lsq be assumed to be independent of
module assignment (see Chapter 2) and a :nl'lethod for estimating both IMC
and AET has been proposed in Chapter 3. When a module on a computer
writes to or reads from a shared file on anotﬁer computer, such IMQ becomes
IPC (interprocessor communication) and causes processor overhead. The
importance of IPC minimization has been recognized by many researchers
[CHU78, GENT7S, IRAN82, WUS4, CHUS4]. A task-allocation algorithm
should reduce IPC by assigning a pair of heavily communicating modules to

the same computer.

[PC varies with module assignments because the occurrence of IPC
between two communicating modules depends on whether these two modules
are assigned to different processors. For example, 1f two modules
communicate through a replicated shared file and reside on different
processors, then the file is replicated on each processor. When a processor
updates the file, it updates the copy on its local processor. It then sends the
updates to remote processors, resulting in IPC which requires processing load
on both the sending and receiving processors. The IPC is eliminated if the
two modules are assigned to the same processor since both modules are

sharing the same local file copy.
57

The processor load for a computer is the sum of 1) load due to program
module execution and 2) load due to IPC. Therefore, both AET and IPC play
important roles in module assignment and thus influence task response time.
These two components should be normalized and expressed in the same unit.
* Our approach is to convert the number of words transferredfdue to IPC fnfc;;
the number of machine-language instructions (MLI's) spent By the -procésdr
in transferring or rece_iﬁng the IPC.. A good module-assignment algorithm
should at least follow these two rules: - |

R1) co-locate M; and M; to the same computer if the IMC volume between
them is large. This eliminates the large IPC.
R2) Balsnce the loads on all computers.

For example, Figure 4-1 shows two module assignments for the DPAD
System. Module assignment A only considers balancing the module
processing load (due to AET) among computers.‘ For example, both modules
M,3 and M;, have large accumulative execution time (see Figure 2-13), so
they are assigned to different computers. Module assignment B cossiders
both rules specified above. Since there is a large IMC between modules M,
and M, (Figure 2-11), they were co-located. Similarly, My, Mg, M, and M,
were co-located. Using the UCLA DPAD Simulator, response times (referred
to as port-to-port times) were generated for both module assignments. Fig.
4-2 portrays these measurement results (with 80-percent confidence intervals)

for the DPAD Detect/Verify processing thread. Fig. 4-3 portrays the port-

58

ASSTGNMENT A B
COMPUTERS 1 2 .3 1 2 3
MODULE # 2 3 1 1 13 3.

5 4 7 2 14 5

8 6§ 14 4 23 7

g 10 16 § 9

19 3 18 8 7

20 v o a- 10 18

2 3 16 19

20

21

2

AVERAGE

nggl.s 0,218 0.385 0.417 0.205 0.517 0,278

_ASSIGNMENT A: BASED ONLY ON BALANCING MODULE LOAD

ASSIGNMENT B: BASED ON BOTH MODULE LOAD AND IMC

Fig. 4-1.

TwO MODULE ASSIGNMENTS FOR THE DPAD sysTEM

Port—-Lo—-port Limalimseac)

r L L S s T v
1a 'MEAN; ASSIGNMENT A i
| . v+ MEAN; ASSIGNMENT B I

! % ,) l

. ‘ |

32- -
r4-1 d
24 |]

g 3 COMPUTERS 4
CPO speep: 1.5 MIPS

i 550 S00 950 1000 1250 1500 1950 2000 2250 2500
100 meec intervals

Fie. 4-2, PORT-TO-PORT TIME FOR DETECT/VERIFY THREAD

to-port time for the Precision Track thread. The overall superiority of
assignment B clearly demonstrates that IMC plays an important role in

module assignment.
4.2 ANEW OBJECTIVE FUNCTION

Let us ﬂrsf define the concept of module assignment tree. Consider a
software system which ﬁu been partitioned into a fixed number of program
modules. Given the control and data flow graph, the problem of mbdule '
assignment is to assign the program modules into a number of processors such
as to meet the performance requirements. The main design requirement in
real-time systems is to meet the response time constraint, or port-to-port (P-
T-P) time in BMD terminology. In this dissertation, we concentrate on

distributed real-time systems where response time is the main design concern.

Since each module can be assigned to any of the S processors there are
S/ different wa.js to assign J modules to § processors, assuming that each
module is assigned to one and only one processor. This can be represented by
an assignment tree with S’ leaves, each leal corresponding to a possible
assignment. This tree has J levels, each representing a module. At each
non-leaf node there are S downward branches, each representing the choice of
a processor to host the particular module. An example with J = 23 and S =

3 is shown in Fig. 4-4.

81

Port—-to—port time(msec)

=4 — MEAN; ASSIGNMENT i

¥ o .+« MEAN; ASSIGNMENT
33 |]
28 i - - <
24 -
o - .
16 | y
14
8 d
4]

0255630 500 1200 1500 1800 2100 2900 2,00 3000
100 msec intarvals

£i6, U-3, PORT-TO-PORT TIME FOR PRECISION-TRACK THREAD

M1

M2.

M3

M4

M5

M23

Fig, 4-4, AN ASSIGNMENT TREE

ASSIGNMENT FOR THIS

PARTICULAR TPEE LEAF.

Bl
M1
M2

A
M3
M5

Ei

63

The module assignment problem is to search through the leaves of tﬁe
assignment tree to find the particular assignment which yields the minimum
value of an objective function (or maximum value in some cases, e.g,
maximum system throughput.) An ezhauative search through all leaves is
usually undesirable because of the enormous amount of time involved. For
example, when the computation txme for one leave requires 250 ms, the

enumeration for a tree with 3% leaves takes around 10 days.

For a real-time application, th;a key performance measure is response
time. Normally a computer system is dedicated to a single application. The
computer is required to finish a certain predefined processing within a time
limijt. Merely minimizing IPC alone may not produce a good assignment. In
fact, a minimum-IPC assignment will assign all program modules to a single
processor which might be saturated, resulting in poor response time. The
processor with the heaviest loading in a distrib;xted system is the one that
causes the bottleneck. For iﬁstance, for a system with three processors, an
assignment requiring 58%, 60%, and 81% of processor ntiliza.fions might have
a better response time than a second assignment with 20%, 40% and 90%
utilizations. This is mainly due to the facf that the second assignment has a
bottleneck processor more heavily loaded than the first assignment, and
queueing delay is a non-linear function that rises quickly with the level of

bottleneck (processor load).

For a given assignment X, the work load L(s;X) on a given Processor s

L{s;X) = i z,T; + i [IPC(a,t;X) + ﬂ’C’(t,a;X}]
j=l1 ::i : (4-1)

s

The first term is the AET for all modules assigned to Processor s. The second
term is IPC overhead which consists of two parts: overhead due to the IPC
originated from Processor s to other processors, and incoming messages to
Processor s from other processors. F<—>r a system whose file-update messages
dominate the IPC.traﬁc, we can ignore other types of IPC such as module
enablement messages and system control messages. The total overhead due
to outgoing IPC at Processor s is

ima £X) = 03 7, 5y Va S8

tawl fmml b=l tam]
. tyky ! 1 1) (4-2)

where K is the number of files used in the distributed system; Vj; is the M-F
IMC message volume sent from M; to update the replicated file F; é.t a

remote Processor ; 8, indicates whether a replicated copy of F, resides at

Processor ¢; the term i 3, indicates the number of remote copies of F} that

tam]
taky

must be updated; and w is a weighting constant for converting the message

volume into MLI's. For a system with message-broadcasting capability, a file

update need only be sent out once; the term i&h in eq. (4-2) then reduces

tem]
t¥,

65

to 1.

Similarly, the total overhead at Processor s for incoming IPC from all
remote sites is

ﬁIPC(ts,X)—wﬁ é T g Vie 8,

'W'l ‘t!*o jet (4-3)
Based on the discussion above, we propose to use the work load (in

unit of MLI) of the bottleneck processor as the objective function, i.e.,

Bottleneck(X) = max {L(J,X) }
(44)

The module assignment problem is to search through the assignment tree to
find the assighment that yields the minimum bottleneck among all possible
assignments [CHUS4al, i.e.,

min {Bottleneclc()q }
(45)

or,
min { [AET(a) + IPC(a)]}
=) (4-8)
where AET(s) and IPC(s) are the total module execution time and total IPC
overhead incurred at Processor s. Section 4.1 has shown that a good

assignment can be obtained from minimizing [PC and balancing processor

loads among the set of processors. A minimum-bottleneck assignment
66

generally has low IPC and fairly balanced procﬁsql;]pads because:

1. If the loads were not fairly balanced for an assignment, the bottleneck
(highest load among all processors) would be high and this assignment

would not be a minimum-bottleneck assignment.

w fE

. : . ~ w ‘ ")
2. If a given assignment had high IPC, the sum of '‘processor loads over all

processors would be high and thus, yiéld high bottleneck.

Eq. (4-6)' is different from minimizing the sum of processor loads
[STONT7],

ap {3 [azrto + paa] }

sl

(4-7)

An assignment obtained by eq. (4-7) can be quite unbalanced. In a
homogeneous system all moduia will be assigned to a single processor as
stated above. Our minimax principle is also used in [SHEN85] which
considers only one-time execution of a task while we accumulate the
processing load of multiple executions of the task. (Note that each external

stimulus cause an execution of the task.)

In the objective function (see eq. {4-1)), AET for a module A; is
represented as a single value T;. IMC information between a module and a
file is also represented as a single value V;, (eq. (4-2)). However, the
measured or estimated value of AET, T{f,,t44,), varies from one interval to

another. Since we are concerned with system performance during the peak-
87

load period, we shall use the average AET and IMC during the peak-load

period for computation in our objective function.

4.3 PERFORMANCE OF THE PROPOSED OBJECTIVE FUNCTION

- In this section we evaluate the performance of the proposedl,i; objective
fun&ion by applying it to the DPAD system. Table 4-1 shows the average
AET for the peak-load period for every module in the DPAD experiment
where the identified peak-load period is from 1.0 sec to 2.0 sec of mission
time. For example, Tg (=32055 MLI's) for module Mg is an average of ten
measured values Tg(1.0sec, 1.1s¢c), Ty(1.1sec, 1.2s¢c), . . ., Tg(1.92ec, 2.0s¢c).
The IMC information was estimated in the same manner. ‘The results are
shown in column 3 of Table 4-2. Column 2 shows the file(s) dpdate'(i by the
write module. Column 4 lists all the modules which read the updated file. If
a read modﬁle for a file and its associated write module are on different
processors, both processors would have a copy of the file and IPC occurs for

updating the replicated file copy.

A FORTRAN program was developed to compute the proposed
objective function for every éssignment in the DPAD assignment tree. When
an assignment (corresponding to a tree leave) yields a bottleneck value
smaller than the smallest bottleneck ever obtained so far, that assignment is
saved and printed out (see Appendix D). The last ten such assignments were

selected (Fig. 4-5). These ten assignments were then simulated with the

68

TABLE 4-1
ACCUMULATIVE EXECUTION TIME (AET) PER 100 MSEC

(UNIT: MLI)
(Modnle AET

M1 8865
M2 2700
M3 1590
M4 10410
M5 1860
M6 1950
M7 1680
M8 32055
M9 18600
M10 3360
Mi11 0
M2 © 0
M13 25305
_ Ml4 16860
M15 0
M8 4170
M17 8240
M18 3975
M19 9705.
M20 2010
M21 195
M22 16410
| M23 17028

MLI = Machine Language Instructions

EACH AET IS AN AVERAGE ACROSS THE PEAK-LOAD PERIOD,
FROM 1.0 SECOND TO 2.0 SECONDS.

69

- TABLE 4-2, FILE UPDATE IMC (in MLI) PER 100 MSEC

Write Fie ™G Read
Module M Size Modules
' M1 none
M2 114 124 o)
M3 F115 124 MI3
» F116 12 MI3
F117 314 MS, M8, M7
MS F119 68 M7
M5 F121 68 M7
M7 FI2 671 M3
F120) M13
M6, M10, M16
M3 F123 1568 MO, M17, M19, M20
F124 6387 M5, M10, M16
MO F128 %06 M3 '
F127 1 M3
M10 F134 1 M3
M) Module Not Implemented
M12) - Module Not [mplemented
MI13 FIo1 30371 Mia
F147 1800 M3
M4 F132 019 M3
mMis) Module Not Implemented
M6 F138 100 Mis
M7 F136 100 Mis
Fi37 229 Mi9
M3 Fi38 3 M8
F139 244 M20
MI19 F139 09 M20
M0 F140 62 M21
M21 F1d1) Radar
. F142 242 M3
F113 2593 M1, M2, Mé, M3
M3 St 112 Radar
Radar Fi11 a7 V2

* EACH TRANSFERRED WORD = 3 MLIs

'EACH IMC SIZE IS AN AVERAGE ACROSS THE PEAK-LOAD PERIOD,
FROM 1.0 SECOND TO 2.0 SECONDS.

70

DPAD simulator and their performance is compared. Figs. 4-6(a) and (b)
show the CPU utilization for Assignments #1 and #2. We note the loads of
the 3 procast;l-s are quite balanced during the peak-load period between 1.0
 sec. and 2.0 sec. Assignments #3 through #10 exhibit similar load-balanced
be!iavior. This coincides with our expectation that our objective functfion (ihe
m};:imum-bottlcneck model), egs. (4-1). thru (4-8), provides good balanced

‘p“rocwsor loads. For comparison, Figs. 4-7(a) and (b) show the processor

loads for an arbitrary assignment and a knowledge-guessed ! manually
generated assignment [HOLL82]. These two assignments are less load-
balanced compared with Assignments #1 and #2, and have much higher

bottleneck loads. .

Fig. 4-8 shows the _Prt;cision-'l‘racking port-to-port time for
Assignments #1 through #9 as well as the arbitrary assignment. The
arbitrary assignment has .a poor performance because two of its three
proc-usors are saturated as wzm. previou;ly shown in Fig. 4-?. Note that the
performance difference between 2 good and a bad assignment can be

substantial. Poor assignments yield poor response time.

Fig. 49 compares the port-to-port time for the Detect/Verify thread

between the knowledge-guessed assignment and Assignments #1 through #9.

! The knowledge-guessed assignment was obtained by a combination of
intuitive insight and trial and error. It was one of the best assignments
known to the author in terms of port-to-port time for the DPAD example
system. :

71

av

*(ITH 40 11NN N1) D3ASK 00l ¥3d AVO1 §.408§3D008d KHOVA SI 1-AVOT1 "1

"NO3ANT1L108 HNWINIRW 3HL HI1M LNAWNDISSV 3JHL 1ON S1

aGvo’l TVI0L ROWINIR 3HL HLIM LRIWNDISSY NV

hbGecee . SLehl - Slehl
ctteee GLehil slenl
9%hcee gothi GLehi
ytyeee clihl clenl
- clleee hinhi tconl
90htce tL0GL 6cBtl
cyctee TA RV 628tL
y0hhce tinsi thotl
glolce 9hGSL 60L0L
glslee ci96l 02hol
01 TVLGL ND23ANITLIOH E£-AVO1
SLINJIRND1SSY

GOo8tL hoowl
gEonl 6L04L
tlutl Qotnl
GlLewl 6hehl
sleyl hinkl
h9Shl tL0GL
Glewl glISL
cotsL ELnsl
9nGsL tetal
9GSl 2196l
¢=avo1 1-avol

aoob oL sS1NS3y

‘e

:310N

A33N

. =311104

tce ¢ctil OLEOO LelEl €122l "HININW
Elc c2tic ottoo ¢clete telel puc
€Ll cetle 0LE0O clete telel pat
clt L12t€ 02200 tEEct CLLtL Ulh
cll LLI2EE 0200 tEtet citil uis
cte 1E2EL 02200 LELeL Chill ul9
ctl LECEL 02200 LELct Clitl U3l
£2e ccetl OEL0O Letit 2ttt yig
g2t cetel Otfoo tettt Littl 436
g2t c2tetl OLECOo 12l 1Lltl ylol

INIWNDISSY

NOILVHAWNNIg-¢ '914

~a

(1}

1NIWNDISSY G3L1I31IS aNOD3S (§)

(Rosdyndy)

HOHV3S JALLSNVHXI AH 631037138
SINIWNDISSY FINGOW ¥OJ SHOSSIDONd WML NI Nolivziiiin gy '9-b 914

g N33 0 usE ey \
Se ... - i
L] .o-uf.- u.c
KR “n T
“ "“
. i p
H e
!

{ "
- —-

U
.
-
L]
b Pe m“
N
>
-
- - - —“ P
o - m
L
=

(15}

ANFWNDISSY d3ILD313S ASHld (V)
. faeswjewyy
L1 ([)}] ([]}] (131} [L11] " ﬂ-_

L)

\

(\./ .
\ ps
\ s ;
l/ i
1m, s
NS
) |
VR
e ———— 4.-
p
- - . - n

(%) NOILYZITILN

73

SINIWNDISSY HIHIO OML ¥04 SHOSSIDOMd IIWHL NI NOILVZITLLN [d) ‘/-4 "9l

INIWNDISSY QISSIND-ITATTHONN V () INIWNSESSY ABVHLIGHY NV (V)

74

tIncuyawpy PEILITN I .
st [[1Y [b!] 110 [[(4] 103 m- 4858 e [121] "2 [[st .Q.a
I.l-.lnl -
— {
) N
T .]
N A vt | 3]
b
L
\
|
4
| 1 % un
. T RCN : /
.I-l-..l. . u‘\
| 3] -o\./ R N
NG ;
P S \ : &
— vo H 3
r o]
b z 3
| 14] H
& ¥ /
— u.co -)- \:
. h 2 oSO T v Iy \.
D = ""H. lllllllll up..- ff L
e . A s-
ol b MW AN
e A - re e .- N N . Ll

N

() NOILYZITILN

< 1oe . ' .
hrv] — s e s I EEA 3
£ AN —" -
—r P — p— L .
............... sEn &
5o e |
S ——————— e Y
T — —— - —a= 3
i agan e
S 18 /\ o
t ———5E AR
- -\
4
=}
= 7 \
' {
s'-?- -
- sa- -
40 i
k18
20 b -
\ARBITRARY
14 & q
. ”__/,—‘ 9 SeLeCTED \\\\
ad -/ M
u
0 Sd0 1000 1230 2009 2820 30L¢ 3840
' ' L imei{mzec)

Fic4-8, PTP TIME FOR THE PRECISION-TRACKING THREAD --=(OMPARE AN
AR2ITRARY ASSIGNMENT AND 9 ASSIGNMENTS SELECTED BY

EXHAUSTIVE SEARCH

75

Figs. 4-10 and 4-11 are for the Track Initiation thread and the Precision
Tracking thread. Our experiments confirm that the proposed objective

function is able to generate fairly good module assignments.

4.4 HEURISTIC MODULE ASSIGNMENT WITHOUT
PRECEDENCE RELATION '

An exhaustive search through an entire assignment tree is prohibitively
time-consuming. In order to drastically reduce the computation time, we
shall develop a heuristic algorithm for selecting good assignments from a huge

problem space.

In the following we propose a two-phase heuristic algorithm for module
assignment. Let us denofe_it as Algorithm I-A, for the initial characters of
"IMC" and 'AET'. In order to avoid heavy IPC, Phase I merges heavily
communicating modules into groups if the resulting group does not have too
large an‘ AET. This phase- is a linear-time algorithm, requiring little
computation time. Each group is a sef of modules which will be assigned as a
single unit to a processor in Phase II. Phases I assitns the n-xodule groups to
the available processors such that the bottleneck (in the most heavily utilized

processor) is minimized. Our algorithm assumes that
1. there are J modules, M, My, . . ., M, and § processors;

2. the average AET, T, (over the peak-load period) for each module M; is

given;

76

TORT-TD-TORT

3
——Et 3
£ T W S m .
........ ensassa NEEN &
21 e ——SEN & 1
2 SED 4
.............. . ASER L
P
g. o
z 4
g 509 1600 1540 2090 2550 3800 I330

Limei{meec)
Fig, 4-9, P-T-P TIMe FOR SEARCH/VERIFY THREAD -- (OMPARE AN

KNOWLEDGE~GUESSED ASSIGNMENT AND 9 ASSIGNMENTS SELECTED
BY EXHAUSTIVE SEARCH

77

TORT-TO-PORT

&

18

14

14

h— p—p

1
S HUEan Yl

A

e o e~ a—

-2
9

330 1000 520 2000 2520 3000
tLimei{msec)

216, 4-10, P-T-P TIME FOR TRACK-INITIATE THREAD == COMPARE A

KNOWLEDGE-GUESSED ASSIGNMENT AND 3 ASSIGNMENTS
SELECTED BY EXHAUSTIVE SEARCH

78

PORT-TO-PORT (MSEC)

2

3-8
13-4
14
ia

11: 8

A p

-z
3

KNOWLEDGE -GUESSED

s s s RS Y 3
—— i —— —q‘a [1
e = 2551 7

deserssasas

-—--—---—B‘B' €

............... A T]

———— el

cdo 10319

1821

-l

2994

2540 30490
Limelaszec)

Fig. 4-11, PTP TIME FOR THE PRECISION-TRACKING THREAD --COMPARE THE
KNOWLEDGE-GUESSED ASSIGNMENT AND 9 ASSIGNMENTS SELECTED

BY EXHAUSTIVE SEARCH

79

A

in

33

3. the average IMC, IMC; ;, (over the peak-load period) between any module

pair M; and M, is given;

ALGORITHM I-A:

Phase I Merge modules with large IMC into groups to reduce total system

1.1

1.2

1.3

1.4

1.5

load.
Initially list all module pairs (M;, M;) in the descending order of IMC

volume.

Calculate average module size & average processor load:
AET - _ﬁl T;/J
o
PL - i T;/S
sam]
Set threshold values for IMC values & for processor loads:
Opg =~ AET X a %
0p; - PLXB %

Let each program module form a distinet group (a set):
G -{M} i=1..,J

If no more pairs exist in the module-pair list

go to Phase II.
Pick the next pair of modules, M, and M;, and delete this pair from
the list.

If MC,, < O
go to Phase II.

Find the group G, that contains M,, and the group G, that contains
M, (i.e.,, MG, , M,EG),).
If s = ¢ (i.e., if M, and M are already in the same group)

go to Step 1.2.

UT,+7T >0

go to Step 1.2.
1.6 Merge the two groups G, and G, into a single one:
G, - G, UG,
Gg - g
T, - T,+ T}
T‘ -0

1.7 Goto Step 1.2

Phase II: Assign merged groups to processors to minimize the bottleneck.
2.1 (We now have ¢ groups, ¢ < J, which corresponds to a much smaller
assignment tree with S possible assignments.)
Perform an exhaustive search through the new assignment tree to
locate good assignments.

2.2 Stop.

In the following we provide some discussions’on Steps 1.3 and 1.5.

" Step 1.3: When we reach a pair of modules whose IMC is smaller than the
IMC threshold 83,0 (@ % of AET), merging them gi.va little benefit in terms
of the IPC saved. The @ % should range from 1% to 10%.

Step 1.5: Our assignment algorithm tries to eliminate major IPC. When
merging two gr?mp into one, we should leave some processing capacity in the
resulting new group for accommodating the x;ema.ining IPC as well as some
other small groups. If two groups were merged and formed a group that is
too large, Phase II would not be able to produce a balanced-load assignment.
This is the reason why processor-load threshold 8p; is based on the parameter

B % and average processor load PL.

81

4.5 APPLICATION OF ALGORITEM I-A TO THE DPAD SYSTEM

Let us now apply the heuristic Algorithm I-A to the DPAD module
assignment problem. Table 4-2 shows IMC between a module and the files it
accesses. For Phase I of Algorithm I-A, this table is reorga.nlzed into Table
4-3 which provides IMC size between module pairs. (Phase II uses Table 4-2) !'
Fig. 4-12 shows the merging process of Phase I where 5% and 75% are used
for the @ and P respectively. Column 1 lists IMC in the descending order,

column. 2 displays the modules merged into one group, and column 3

calculates the total AET for all modules within the group.

Since in this example we have 3 processors and 20 modules, the PL =

§TI3=59555MLI and the AET = ﬁT;l20=8933 MLI. Phase I

fmal fml

finishes when it reaches IMC, 5 = 314 MLI because 314 is smaller than 5% of

AET. The resultant groups are:

Group Modules
1 1,2,4,22
2 3
3 5
4 6,8,10,16,20
s 7
6 9
7 13,14
8 17
9 18
10 19
11 21
12 23,(11,13,15)*

82

TaBLE U4-3, FILE UPDATE IMC (in MLI) PER 100 MSEC FOR MODULE PAIRS

14737

Write Files mMC Read

Module Invoived Siza Modhle
M2 F114 124 M3
M3 F115 144 MI13
M4 F117 314 M3
M4 . F117 - 314 M5
M4 F117 314 M7
M4 . F116 112 Ml13
M5 F119 68 M7
Mb F121 63 M7
M7 F12 67 M13
M8 F123, F124 7955 M6
M3 _F123 1568 M
M8 F123, F124 7955 Mi0
M8 F120 62 Mi3
M8 F123, F124 7953 Mi6
MB F123 1568 M17
M3 F123 1568 Mi9 -
M3 F123 1568 M20
M9 F125 806 M13
Mi10 Fi27 1 M3
M10 F134 1 Mi18
M13 F131 30371 M4
Mil4 F147 1800 M13
Mi4 F132 5019 M23
M16 F135 100 Mi18
M17 F136 100 Mi13
Mi18 F138 36 MB
Mig F137 29 M19
M18 F139 244 M20
M19 F139 399 M20
M20 F140 62 M21
M2l F141 32 Radar
M22 F113 4593 Ml
M22 F113 4593 M2
M2 Fi13 4593 M4
M22 Fil13 4593 M8
M22 F142 242 M23
M3 Fl12 5112 Radar
Radar F111 M22

» EACH TRANSFERRED WORD = 3 MLIs

83

Modules in the Exec. Time of

IMC,‘ b LI) Merged Group the Group
IMC(13,14)=30371 13-14 25305+16860=42165
MC(8, 6)= 7955 6-8 1950+32055=34005
m™MC(8,10)= 7955 ' 6-8-10 34005+3360=37365
mc(8,16)= 7955 6-8-10-16 © 37365+4170=4153S
IMC(14,23)= 5019 Can't group l3-14-23

Otherwise, 42165+10725=52890> 0.,
IMC ({22, 1)= 4593 1-22 8865+16410=25275
mMCc (22, 2)= 4593 1-2-22 25275+2700=27975
IMC (22, 4)= 4593 1-2=4-22 ' 27975+10410=38385
™MC (22, 8)= 4593 Can't group? l=2=4-6-8-10-16=22
Otherwise, 38385+41535=79920> 6.,
m™MC(14,13)= 1800 Modules already in same group
mMC(8, 9)= 1568 Can't group 6-~8-9-10-16
Otherwise, 41535+18600=60135> 8,
mMC(8,17)= 1568 Can't group 6-8-10-16-17
-~ - otherwise, 41535+6240=47775> @p.
mwCc(8,19)= 1568 Can'%t qroup 6=-8-10-16-19
- Otherwisa, 41535+9705=51240> ePL
MC(8,20)= 1568 6-8-10-16-20 41535+2010=43545
mc(9,13)= 806 Can't group 9-13-14
Otherwise, 42165+18600=60765> 8,
m™MC (19,20)= 599 Can't group 6-8-10-16-19-20
Otherwise, 43545+9705=53250> 8.
me(4, S)= 314 '
(Phase I finishes because IMC(4,5)= 314 < aIMC
* Two large groups would otherwise be merged into one.

Fig. 4-12, Example of Phase-I Evaluaticn of the Algorithm

84

* Modules M,;, Myg, and M3 are not implemented in the DPAD; each has

a zero AET, T;.

_ We have merged 20 modules into 12 groups, a reduction fro§n 3%
possible module assignments to 312 possible group assignments which reduces
the algorithm’s computation time (CPU time) from 3 days down to less than

one minute on a VAX-11/780.

To evaluate the effectiveness of our heuristic algorithm, the best
assignment obtained by this algorithm is compared with that by the
exhaustive search, as shown in Figs. 4-13 through 4-15. We note that the
module assignment generated by the proposed heuristic algorithm provides
comparable performance to that from the exhaustive search. We have also
used our DPAD simulator to simulate the four assignments (Assignments A-1
through A-4) reported in [MAS2]. Fig. 4-16 shows that our heuristic
algorithm performs better than that of [MAS2]. This is mainly because our

algorithm provides better load-balancing than [MAS2).

85

3 L v
g 1) i
A 3 . HEURISTIC
o , 7
E oo i EXHAUSTIVE
. ’
o .
[.3
- i
21 5]
L]
S-- :: P
g]]
0 500 1000 1500 2000 2500 3000 3500
t Ima{m=ec)

FIG| 4-13; .
PTP TIME FOR DETECT/VERIFY THREAD--COMPARE BEST ASSIGNMENT

SELECTED BY HEURISTIC ALGORITHM AND BEST ASSIGNMENT SELECTED
BY EXHAUSTIVE SEARCH

8¢

PORT-TO-PORT

14 | |
HEURISTIC,
1€ | - _EXHAUSTIVE
14 -
14 z .
1 l
g]
a -
. . . . !, .
| 800 1000 1500 2600 2500 3000 3500
t Ime{maec)

Fig. 4-14, PTP TIME FOR TRACK-INITIATE THREAD --COMPARE

BEST ASSIGNMENT SELECTED BY HEURISTIC ALGORITHM AND
BEST ASSIGNMENT BY EXHAUSTIVE SEARCH

87

PORT-TO-PORT

N

18

16

14

1

D)
¥

EXHAUSTIVE

0

500 900 1500 2000 2500 3000
t.ime{m=ec)

Fig. 4-15,

BEST ASSIGNMENT SELECTED BY HEURISTIC ALGORITHM AND

PTP TIME FOR PRECISION-TRACKING THREAD---COMPARE

BEST ASSIGNMENT SELECTED BY EXHAUSTIVE SEARCH

88

3500

PORT-TO-PORT

n

3500

4q.
pa——
] .0
................. 72
1t (1 ss |
|
g i |
N b
.’:"- ! i
30 i L
.30 N i | ;
Ht [
| I3\ |
' 2.":" [: % k ! |
, HER AV
HERS B
i & i WY { | ;
EL B-l \'\ l
18 ; A\ \ II J
,\ \ F ! l“ :.:"'.c \.\ i
i 17 §
14 jo A'3K3'§,* .. J ! 1
I VAARLAS, |
g j\! i
HEurRISTIC
0 500 1600 1500 2000 tzéau)3'000
Ime{msac

Fig, 4-18, PTP TiME FOR PRECISION-TRACK THREAD -- COMPARE
. BEST ASSIGNMENT SELECTED BY HEURISTIC ALGORITHM AND

- Ma’s FOUR ASSIGNMENTS

89

CHAPTER 5
MODULE ASSIGNMENT WITH PRECEDENCE RELATIONSHIP

Algorithm I-A considers only IMC and AET. Another factor that
peeds to be considered is the precedence relation (PR) among program
modules. In this Section 5.1 we describe several experimepts on PR and study
its impact on module assignment in terms of response time. Simple PR rules
are obtained on whether two modules should be co-located on a single
processor or separated on different processors. Section 5.2 includes these PR
rules in the reﬁsed task—allocatién_ algorithm (Algorithm P-I-A). In Section
5.3, Algorithm P-I-A is tested on our DPAD example system and shown to
yield only slightly better response time than Algorithm I-A (which does not
consider PR), because the size of most DPAD modules are in the same order
of magnitude and therefore PR has little effect on the resﬁohse time. When
we apply Algorithm P-I-A to another example system (Section 5.4), significant

improvement is obtained over Algorithm I-A.

5.1 PRECEDENCE RELATION EXPERIMENTS

For the first experiment, we compare three assignments of assigning
nine modules to three computers (Fig. 5-1). The precedence exists in the

control-flow graph from one module to another. Assume the job arrival is a
90

Fig, 5-1. ExPerIMENT No. 1
THREE ASSIGNMENTS TO BE COMPARED

ASSIGNMENT #1 (SEQUENTIAL)

COMPUTER |1 2 3
1.4 7 A
MODULES# |2 5 8 l
- 3 6 9 1 ItimMe
l UNIT
2
ASSIGNMENT #2 (PIPELINED) 1 1rme
UNIT
COMPUTER |1 2 3 -
- Y
123 3 1 lrive
MODULES# |4 5 6 [UNIT
7 8 9 B
| Y
g | 1TiMe
ASSIGNMENT #3 (SKEWED) UNIT

COMPUTER |1 2 3

MODULES# [§ 6 4

91

*

Poisson process with arrival rﬁif A, each job enaéles module M; which is
placed in the ready queue of M;’s residence computer waiting to be processed,
and upon the completion of execution a module will enable the execution of
the next module in thg control-low graph. The execution time of every
module is a constant (deitermin_istic service time) and equal to one time unit'.,'
To simplify our analysis and to isolate the precedence effect, we further
assume there is no IMC .between modulé and thus no IPC overhead between
computers. The three assignments m Fig. 51 are simulated with PAWS
simulator [BERRS82]. The queueing discipline at all computers is FCFS. All
three assignments result in balanced loads on the computers. However,
simulation results (Fig. 5-2) reveal a significant difference in response time
.a.mong the three assignments. The pipeline assignment (Al) yields the best
response time. (V ertical bars in the figure represent 90%-confidence intervals
for each simulation point). Since we assume Do lPé overhead and all
assignments are load-balanced, the response-time discrepancy is due solely to

précedence relation.

In our second experiment, the execution time of each module is
changed from a constant to ezponentially distributed service time with a meen
of ope time unit. All other parameters remain the same as those used in
Experiment No. 1. Simulation results (Fig. 5-3) exhibit that the response
times for all three assignments are about the same. This is because the three

computers form a Jackson network. Each computer can be treated

92

£
tn
T

SEQUENTIAL (1) -
PipeLINE (2)

SKEW (3)

U‘P-T-Pzgespouég TIME

[]
L

n
qn
¥

20

18

14

0 1020 30 40 S0 &0 90 80
UTILIZATION

Fig, 5-2, ResuLTs oF ExPerRIMENT No.l
(DETERMINISTIC IXECUTION TIME)

[+]

100

40

P-T-P RESPONSE TIME
il
in

29

20

18

10

48,

4

L

1020 30

30 S0 &0 73 80
UTILIZATION

Fie, 5-3, RESULTS oF EXPERIMENT No, 2
(EXPONENTIAL EXECUTION TIME)

94

30

100

-~
individually as an M/M/1 queue for calculating the queuveing wait time for
each module, and since all modules have the same execution-time {service-
time) distribution and the same arrival rate in this particular case, all load-
balanced computers are treated as idemtical M/M/1 queunes, and thus all
modules have idéntical wait tlme.% { Experiment No.l reveals that precedence
relationship does have an impac;t on task répon’se time. Experiment No.2
reveals that module exeéution-time distributions alter the PR’s effect on the

response time.

Experiment No.3 is for testing the effect of module size on precedence

relationship. Modules have deterministic execution times as shown in Fig. 5-

4(a). The three assignments in Fig. 5-4(b) are compared. The results (Fig.

5-5) reveal that assigning two consecutive modules to a same computer will

yield a good response time if the ezecution time of the second module is much '

Iargef than the first one. We shall call this our PR rule #1. For example, in
Assignment #1, M, and M, are assigned to the same computer. If the second
module is much smaller than the first one, it is betlter to aseparate two
consecutive modules and assign them on two distinct computers This is our PR
rule #2. In Assignment #1, M, and M; are assigned on two different
computers. Finally, the performance of Assignment #3 lies between
Assignments #1 and #2 because Assignment #3 observes PR rule #2 for
some module pairs (e.g., separation of M, from M,) and violates PR rule #1

for some module pairs (e.g., separation of M, from M,).

95

A EXECUTION
l Time (sec)

M1

A 4

M2

l

M3

!

MA

l

M5

|

M6

1

10

10

10

EXPERIMENT

No. 3

(A

AssiGN-

MENT

1

Fie. 5-4,

PU 1
M1,M2
M1,M6
M1, M4

(B)

ey 2
M3,M4
M2,M3
M2,M5

96

CPU 3
M5, M6
M4, M5

M3,M6.

A EXECUTION
L TiMe (seC)

M1

|

M2

!

M3

Y
MG

il

s |

M6

10

10

1

10

EXPERIMENT

No. 4
(®)

ExPERIMENTS No.3 & No.4

MX—— —DQAV A~ —-3IAD

550
500
ss0]
500
450+
400
aso]
soaj
2504
2004
150%

sn{

Fis. 5-5. ResuLTs oF EXPERIMENT No, 3

0

5

10

15

20 2

YT T T T T

5 30 35 40 %S SJ 5SS
UTILIZRTION

97

60 65

N LS |

700 7S5 84

Experiment No. 4 is similar to No. 3 except with different execution
times as shown in Fig. 5-4(c). The same three assignments in Fig. 5-4(b} were
simulated. Now, Assignment #2 yields the best performance (Fig. 5-6)
because it folléws the PR rules for most pairs of comsecutive modules.
Assignment #1 is the worst since it seriouéiy violates the PR rules. We
repeat these experimeﬁts with exponentiallj distributed execution times.
They yield the same results. The intuitive reasons for the PR rules are as

follows:

1. If the arrival process is highly random such as Poisson, there would be
periods of bursty arrivals. If the job arrival process is deterministic,
the- work load is evenly spread over the time. As a result, the average
qdeﬁe-length at every computer should be smaller (smaller average
.module wait-time) than that of a Poisson arrival process. Thus, “let
smal! j&bs (modules, in our case) run first, while large jobs wait” yields

less average wait-time.

2. For two consecutive moduies assigned to a single computer, if the
second module is much larger than the first one, the second one will
act as regulator valve which regulates job flow into the next computer.
For instance, in Assignment #1 of Experiment No.3, M, at Computer 1
is a large module, therefore the arrivals of M; at Computer 2 won’t be
in bursty mode — instead, arrivals for M; are fairly evenly spread over

the time, which results in short queue at Computer 2 and thus, short
98

MI~— =-2@0 G 123G

3904
360
3304
300

2704

Fig, 5-6. ResuLTs oF EXPERIMENT No. 4

F

BREL AL BN S S L B N S R N Ty

10 15 20 S 30 35 40 45 S0 S5 60 6%
UTILIZATION

99

wait time for My and M, at Computer 2. In the same manner, M, acts
as a regulator valve for job flow into Computer 3. On the other hand,
the poor response time of Assignment #2 is mainly due to the fact that
- there is a hxgh poss1b1]1ty that an M, arrives whﬂe a previous M, is still
in execution. (and more other M,’s might be waiting in the queue), even
if M, arrival process at Computer 2 is not bursty. That is, there ;s a
high probability Ato see several Mz’s exist, one ;fter anothef, in the
queue. After the first M, finishes execution, an M, is enabled and
placed behind all existing M,'s in the queue. This particular M3 would
experience a long wait timé because those M,'’s in. front of it have a
large execution time. Later on, we see multiple My's nezt to each other
which will then quickly finish their execufion one after another
(because of the small é:ltecution time of M;) and dump multiple M,

arrivals to Computer 3 in a bursty mode.

Having realized that the module-size ratio of consecutive modules influences

response time, we should determine whether two consecutive modules M; and

M, (with a module-size ratio z,/2;) should be separated or co-located.

Consider the control-flow graph in Fig. 5-7 where all modules have

z
deterministic execution times. Let z,==2,, z;=z, (thus, % = 3_4), module-
1

3

size ratio r; ; = 7;/z;, and job arrival rate Ay equals to A,. Both Assignments

#1 and #2 balance the processor loads. We like to determine the benefit or- .

100

Ass1GN- |
MENT CPU 1 CPU 2
1 M1,M2 M3,MY4
2 M1,M4 M2,M3

Frg, 5-7, EXPERIMENT FOR DERIVING WAIT-TIME
RATIO RN(A1/A2) BETWEEN ASSIGNMENTS A; AND
Ao , AS A FUNCTION OF THE CORRESPONDING
SIZE RATIO x2/xl

101

penalty of assigning M, and M, to a same computer in term's of response time
as a function of r . That is, we are looking for a threshold value 8 such
.that: if rj 3 > @, M; and M, should be assigned to a same computer,
otherwise they should be assigned to separated comﬁuters. More generally,
we are looking for a relation (a function) which maps a size ratio into a

benefit index (or penalty index if negative value).

Because of the symmetry in this control-low graph and in loading on
both computers, the two threads in the graph have the same response time,
which is w, + 2, + vy + 2z, (or w3 + 23 + w, + z,), where w; is the queueing
wait-time for module M; A model has been developed in [CHUS4¢c] to
estimate the wait time w; for any given module assignment on any control-
flow graph. Since .z,, z,, 73, and z, are constants independent of module
a.ssignment,. the ;nait-timc ratio between two assignments, R, = R(AIIA?) =

0,(4,) + wolA,)
wy(Aj) + wy{Ay)

above: If R, < 1, then Assigﬁment #1 is better than Assignment #2, i.e., we

, can be used as a measure for the benefit index mentioned

should assign the consecutive modules M; and M, to one computer, and the
other pair of consecutive modules My and M, to another computer. If R, >
1, then Assignment #2 is better than Assignment #1 and comsecutive
modules should be run on different computers. Fig. 5-8(a) shows the wait-
time ratio R, for various module-size ratio r, 2 = Zp/z;. The horizontal axis

is the processor utilization p == p; + p2 where p; = \;z; and py = Az, are

102

——— AR

L T Ty

—my mgy wmw

X
- a. 3.40
i .;21. 2.4 y ol 3?.'n.:m
%— ‘ 35
" = i ————————— N
T [-)
— i 0.1 (= oy
P [] .
[? oy
i, i
s ———— s
————
8
b (10
- ~ad

L] - » - - - - " w - . L] - - - - W - " - - .
LN R
{€) HYPERDXPONENTIAL DEC TME
-
i
X i
[-zz - 3.1 4 Xa
i T by LE e 0
S . Do ’ - -4 -
= DL B R -3
.3 :
zed s H '-"i ¢l
nod 2 ! .06
e —— T —————————— P —————— . i .
pr———————————— P i 201w
L e
1
1
wad ad
i
L,
. - - = - u e N - LI h . » - - L] L b | - - W
oL amhveh of iy

Fig, 5-3, WAIT-TIME RAT1O BETWEEN TWO ASSIGNMENTS AS A
FUNCTION OF PROGRAM MODULE=SIZE RATIO

i03

contributed by the execution of M; and M,, respectively. Note that as r,
decreases, R, increases until reaching approximately to 1.7; then it rev;e-rﬁes
the trend and decreases. R, only -vary slightly with the processor utilization.
Figs. 5-8(b) and 5-8(c) are obtained if the execution time of each module is
cha;nged from ; deterministic va.lué to an exponentially or hyperexponentially
distributed random variable. Since the execution times of mosi programs are
more deterministic than exponentially or hyperexponentially distributed, the

following discussion will be for deterministic execution time.

We shall now study the execution of three consecutive modules {Fig.

(A, + wo{A) + wy(A
5-0). Now the wait-time ratio is R, = wl: AS T ::((Al; T :’f A:; . Our
1 2 3

" analysis shows that if the size of M, is fixed (thus, p; = A2, is fixed), as t;he
ratio of M to My (ry3 = 2y/z; = py/py) decreases, the wait-time ratio R,
increases to a certain point; R, then reverses the trend and decreases (Fig. 5
- 10). Likewise, fixing M; and varying the size ratio of M, to M,, we observe
similar results. These relations between R, and r;; arer similar to our
previous observations for the two-module-thread cases as were shown in Fig..
5-8. Similar relations are exhibited for a control-flow graph consisting of four
or five modules in each thread. Finally, if z;, 25, and z; in Fig. 5-9 are varied
simultaneously, the results are shown in a 3-dimension diagram {Fig. 5-11(a))
and the corrapbnding contour plot when projected on the 2-dimensional

plane (Fig. 5-11(b)). Note that when both size ratios ry3 and ry are large,

104

N A
iy I

| 1 | Xy | A
‘ W

| lwz : 75
X210 2 | Xs [5 -
s I
X313 | X6 | 6

=X X=X Xz=Xg N =X

ASSIGN- _
_MENT CPU 1 CPil 2
1 M1,M2,M3 M4, M5, M6
2 M1,M5,M3 M4, M2,M6

Fic. 5-9, EXPERIMENT ON 3 CONSECUTIVE MODULES
IN EACH CONTROL-FLOW THREAD

105

QrrDe ME—~— —A—D¥

F1g, 5-10. WAIT-TIME RATIO AS A FUNCTION OF MODULE-
SI1ZE RATIO X3/X2 (FOR VARIOUS PROCESSOR
] UTILIZATION) FOR 3-MODULE EXPERIMENT

.
8l

a. 1: pl = 10%; o2 + p3 = 20%
2: pl = 15%; p2 + ol = 30%
9.7 3; ol = 20%; o2 + o3 = 40%
&: pl = 25%; p2 + »3 = 50%
0.5 S: pl = 30%; p2 + p3 = 0%
Q.5=

]
3
"

o
.
*F

[=)
.
(7]

[=]
N
—

‘- l—l—l—-Ll -

o
(@]

“w
(¥
&
Y]
=4
7]

Q.4 a.3 1.2 i.3 2.4 2.2

ST BmnT
M e A

106

WTRATIQ

1.62 -

1.26 A

FIG. 5-11(a) 3-D DIAGRAM FOR HAIT-TIME RATIO AS A
FUNCTION OF BOTH MODULE-SIZE RATIOS,
X2/X1 AND Xs/Xz

0.83 -

.53 -
5.8Q

3.4

(1}

AHOZ/ARC2 Y

a3.2
g.2

107

1.

3.4

o

M32/RRT1

ConTour PLOT OF THE 3-D DI1AGRAM

SHOWN [N 5-11(a)

F[Gu 5"11(3)

"

[)
[(A1

L

—
¥
’
1
r
4
4
1
[
1]
[]
g
’
r
r
I
! \
i AR
§ f v
{ !)
-.-]
H 1
-..]
[]
§ v
H [N
! 1
!]
ks L
H
[
[
.
.
h. .
g -~ B i
--s \ -~ ™~ ™ _ ."
r \ ’
-.. \ \ o
L \ ‘n.-
/ / VR
. / /
K "y
» . .
o \ -~ -
v-s \ - ...J/
-~ /s '
- \ - N
e /s
v
o v , ‘
Pl \ ’ s
ot -
-~ \ 4 P ~
-) . .
P \ - .\\ \ L
lllllll - \ - \\ 4 /
- — - -~ !
- - - / !
- -
- P 4
. — - - “~ \\\
llll.\ll\l —_— - . e o oo
- —
- - -
- - - - ~ —-—
- e e T _— e e e e tmam ————— T T
v - : v I Y T r
o E w o :"
. '
™ ™ o - o
[v d al BN o gl]

mmmm—
- — -

108

the wait-time ratio R, is the smallest. Thus, assigning all three consecutive
modules to a.same computer (i.e., Assignment #1) yields better response time,
which is consistent with our previous observation. If one of the ratios ry3
and ry, is large while the other is small, then the benefit from one module
pair is canceled out bj;w!;{;he penalty from another pair. As a result, both
assignments have similar wait tima; If'both r,3 and ry, are small, then

Assignment #2 is better.

Our experimental observations reveal that in assigning modules to
computers, each pair of consecutive modules in the control-flow graph can be
treated independently, and using the PR rules on each individual pair of

consecutive modules in task allocation yields good task response time.
5.2 TASK ALLOCATION WITH PRECEDENCE RELATION

We shall now include the PR rules into our task-allocation algorithm.
The decision on grouping two conpsecutive modules or not should base on the
two possibly conflicting factors: IMC and PR (ie., module-size ratio).
Therefore, IMC indez and PR index are developed. First let us define (in Step.

1.1) the following IMC index and PR index between modules M; and M;:

MC;.
. o l:l . .
~ ,j) = i=1..0 j=1.,J
IMC(eIMG

. w1 -Rylry) :
Vpglid) = "T;-'"- i =L j=1.,J

where z; is the average module size of M;, and R, is a function of r; ; (see Fig.
5-8). Note that a R, value on the Y-axis of Fig. 5-8 always lies in the range
of [0, 2). This value should reflect the PR index ¥ PR(,j) — a positiv;e
(negative) R, should correspond to a positive (negative) 1lPR(f,j} and
presc.:riba the co-location (separation) of modules M; and M. For simplicity,
we divide the range [0, 2] on the Y-axis into Npp equal-size intervals for PR
index levels. The interval size is Jop = 2.0/ Npg. Because R, equals 1 at the
break point between grouping or separating two consecutive modules, the
function (1 - f)/Ipg gives the PR index 1PR(:',') for any given module-size
ratio. For example, if we choose to have 20 PR levels within the range [0, 2],
we have an interval size Jpy = 2.0/20 = 0.1. If f determines the R, to be
1.4, then ¥y pr =% which opposes the grouping of the‘modules. To complete
our new algorithm, lwe should -replace Step 1.3 of Algorithm I-A with the
following:

go to Phase II.

Let us denote this generalized algorithm as Algorithm P-I-A (adding the

initial "P" for PR).

There exist three variables in Algorithm P-I-A — a, B, and Npp {or,
Irg). For a given distributed system (e.g., the DPAD), if Npg is fixed, thea all

'pr(i,) values are uniquely determined. In that case, adjusting the a value

110

will influence the sign (positive or negative) of the sum ¥, [f,j) + % PR(:‘, 7
and thus determine whether M; and M; should be co-located on a computer
(assuming a fixed B value). If we reduce Npp by half and double the a value,
then the minimum-bottleneck assignment generated by Algorithm P-I-A will
remains unchanged because both ¥ lﬁc(’.’ j)7and ¥ PR(:‘,J’) are reduced by half.
However, if we reduce Npp while keei)ing a.%constant a, the influence of PR is
reduced. On the other hand, increzmingj NPR while keeping a constant a will
result in less IMC infiluence. Table 5-1 contrasts <y PR’S and % IMG"S for various
values of @ and Npp. ¥,5's and ¥,,,.8 in this table have been rounded to the
nearest integers. We summarize the heuristic task-allocation algorithm,
Algorithm HEU, as follows:

Fix the number of PR intervals Npp;

Do @ = a,% to a;%; |

Do B = B, % to B,%;
Perform Algorithm P-I-A;
end;

end;
The experimental results on DPAD and two other systems reveal that using
Npg = 20 and @ between 1% and 10% generates good assignments. A good
range for P is between 80% and 120%. This is because too small a2 B would
retard proper module grouping while too large a 8 makes it impossible to
balance the loads during Phase II.

111

YIMC(I,J)

~~
-
o™
[.)
L
[+ 4
V-P Mw. 0222111.]1.00000000000000.009000000000
' -
o v QOO OOoOOOO0O - NN - - 0000000000000 00C00000O00QOO0
[R
r ﬂooooo.ﬂo “ MU NANNOOOCOO0O0000000000QCCO00C0OO00O0
- -— .
n
~ v ~O0O00O0O0«~—0O -— N T FNANMNNOO D000 000000000000QOO000
i [} 1 [4'] -
4 ‘ |
Q ™ - - - [o] W T TMMNNNN O OO0 O0O000000000000C 00000000
o | O I D R DO B AN | Lo -
o
- O N = - un FO NN A e rsrO000000 0000000000000 0C0C
- [0 D B B N B BN -— o~
o oe :
Ay m ...-J?--D—-D—.J.J_M“.J- ﬂuz vu-..u?.-ruhw.l.hwﬂ.nn.‘alalolml000000000000000000000
_ -
:n.u. A
(=] AQ O 0N OO OB P o OOV NINININANrE -~~~ 0000000000000 QCOC0OC0
r.ﬂ. [N R I I B B ” .
o .
[=] 3“—..4.4.4.49.4 w AT SO DOOMNMAUNNNNE OO0 0000C000000Q0O000000
u [I I I [I | N~ v~ —
= [=] W o o 0 00 O oD "y OOV OOUOWOONINININNNrEres =~ 0000000000000 00
o Lo I I I o | OMNNNY™™ e —
- 1 L] -
. | Me-t-o@ome S TOOCMrNSOMOECOMOINOEOMOMMMNDO MM oo
wd NIW et o e] 3838“azaznaaaa99“““82832“6756780800
= ~— e e 0 M - L (3] N ~— - - 0 - - N~ —

CoMPARE Yor AND Yue

TaBLE 5-1,

112

5.3 MODULE ASSIGNMENT WITH PR FOR DPAD

Applying Algorithm HEU to the DPAD produces the bottlenecks
shown in Fig. 5-12. Simulation reveals that the response-time performance of
the assignment with a bottleneck of 74985 MLI (genefa.ted by a = 3% and B
-—---60%) is sﬁgﬁtly better thin the one with a bottleneck of 74312 MLI
(generated by @ = 4% and B = 70%). This result shows that a smallest
bottleneck does‘ not necessarily yiel_d the best response time. However,

assignments with close bottleneck values always yield similar response times.

The assignment with a bottleneck of 74985 MLI performs only slightly
better than the assignment gex;erated by Algorithm I-A (Fig. 5-13). In fact,
using the same parameters @ = 5% an& 8 ;7‘775% as were used in Algorithm
I-A in Chapter 4, Algorithm P-I-A will generate exactly the same asslgnment
as Algorithm I-A because of the following reasons. Consider Table 5-1 and
" imagine a column of ¥,, . for @ = 5%. A pair of modules recommended to be
grouped by Step 1.3 of A]Qorithm I-A are recommended the same by Step 1.3
of Algorithm P-I-A. ‘And a pair not recommended to be grouped by
Algorithm I-A are not recommended by Algorithm P-I-A. For instance, both
IMC,3 < AET X 5% according to Algorithm I-A and v,,,(2.3) + ¥p.(2,3)
= 0 + {-2) < 0 according to Algorithm P-I-A, which recommends separating
M, and M, On the other hand, both IMCyyz > AET X 5% and

¥ A1423) + ¥ PRl 14,23) > 0, which recommends grouping M, and Mys.

113

A (3LVYIN3IYD

YY)
LEhoL
L6h6L
8E69L
ZiEnl
2ithl
_ SOLSL

1]}

lgnbl
LEh6L
teh6l
6t69L
citnl
citnl

BL69L
cithil
cienl
gee9l
cityl
cithi
S0L5L

36

gt69L
CIEnl
cithl
8E69L
citnl
ciEnl

GOLSL SOLSL

73

BE69L 9£69L
clEkl 2itnl
cityl 2i1enl
BE69L gE69L
2itnl 21Enl
ClEnL cienl
G0LSL
19 373

CTo407 ¥4

'NIH WHLI¥O09TY
(Vdd ¥0d4 SNJ3N3TL108 WAWINI}

BE69L
clEnl
4817
8E69.L
(4117
ciend
SNLsl

ih

6E69L
0009.
0009L
ge69.L
00094
0009.
Sg6hL

st

AR ww_m
19908 1990¢
6tL6L o6tl6l
6EL6L 6fl6l
19908 1960y
6EL6L o6El6l
6EL6L 6EL6L
6tLLL 6tLLL
24 1

30CT
3011
2001
%06
08

30L
%09

114

PORT-TO-PORT

20

14

1a

14

o
[} I

1

No PR

0 500
Fie. 5-13,

1000 1500 2000 2500 3000
) time(msec)
PTP TIME FOR PRECISION-TRACK THREAD =--

COMPARE ASSIGNMENTS WITH AND w/0 PR

115

3509

5.4 EXAMPLE OF RESlPONSE-TIME IMPROVEMENT BY PR

An example is given in this section which demonstirates that a
considerable improvement on response time can be obtained by considering
PR in the task-allocation. .; ;;Copsider the control-flow graph shown in Fig. 5-14
where each program modtilie has a deterministic execution time of either 100
or 1000 us, thus the size ratio of every pair of consecutive modules is either
0.1 or 10. According to the PR rules derived in Section 5.1, we should assign
M, and My on the same computer, and Mg on a different computer. Using
the model of [CHU84b], we can estimate the AET for a specified time interval
for each module. In this éxample let us assume a time interval of 100 job
arrivals, the inter-arrival time is exponentially distributed, and each arrival
invokes the entire control-low graph once. The estimated AET’s are shown
in Table 5-2. Let us further assume that the IMC sizes for all communicating
module pairs are about equal, either 1400 or 1500 jus as shown in Table 5-3
~ and Fig. 515, so that the IMC plays a less important role than PR. Given
these PR, IMC, and AET, the module assignments generated by Algorithms
I-A and P-L-A are shown in Fig. 5-16. Both assignments have fairly balanced
processor loads with similar Sottleneck values. Therefore, if they differ
significantly in response time, it is due to the PR consideration. Note that for
the assignment generated by Algorithms P-I-A, most module pairs are
assigned (either co-located or separated) according to our PR rules instead of

by IMC size. For example, the module size ratio r,q is z¢/zy = 10, and M,

116

14 100

- 1 100us
B
}
i BRANCMEING . 2 1000
i PROSASILITIES AR

9.5 e

E J—-];.;— 3?3“-]
: 3 100 § |1o0 s |00
[]
S T :
: 12 | 1000 6 1poo| 7 froo] 8 Jroo00
] K]
| 9 hoo| 10 !xno 1 |00
®~%
: \\\\\\\\\\\\~ . 13 |100
i Yo '
| ¢
]
: _

SRCBASILITY Q.2 " IT oucmARILITY Q.8

15 1000

1
(&)

FIG; 5'1”:
A SAMPLE TASK COMTROL-FLOW GRAPH

117

o~

Table 5-=2.

AET for Modules in Figure 5-14

Exec Time/job arrival

Module x4 X (invocations/arrival) AET/100 arrivals
1 100 X 1 = 100us 10,000us
2 1000 X 1.25 = 1250 125,000
3 100 X 0.625 = 62.5 6,250
4 100 X 0.375 = 37.5 3,750
5 100 X 0.25 = - 25 2,500
6 1000 X 0.375 = 375 37,500
7 100 X 0.25 = 25 2,500
8 1000 X 0.25 = 250 25,000
9 100 X 0.375 = 37.5 3,750

10 1000 X 0.25 = 250 25,000
11 100 X 0.25 = 25 2,500
12 . 1000 X 0,625 = 625 62,500
13 100 X 0.25 = 25 2,500
14 100 X 1,25 = 125 12,500
15 1000 X 1 = 1000 100,000

118

Table 5-3. IMC List For The System In Figure 5-14

From To :

Module Module IMC/100 Arrival File-1D

6 9 1500 106

10 13 1500 111

8 11 11500 109

1 U 1500 | 112

12 14 _ 1500 105

1 2 1400 101

2 3 | 1400 102

2 4 1400 102

2 5 1400 102

3 12 1400 103

4 6 1400 104

5 | 1400 107

5 8 1400 107

7 10 1400° 108

9 14 1400 110

13 14 1400 113

14 15 1400 114

119

115

Fig. 5-15, DATA-FLOW GRAPH FOR THE SYSTEM
IN Figure 5-14

120

ASSIGNMENT #1 ASSIGNMENT #2

"(ws0 CONSIDERING P.R.) _ (CONSIDERING P.R.)
CPU1 CPU2 CPU3) CPU1 CPU2 CPU3
7 3 - 3

10 4 5

13 5 15 7

14 6 8

15 '8 10

11 11

12 12

13

14

Fig. 5-16. Module Assignments for the System

121

and Mg are co-located on computer 3. On the other hand, rgg = 0.1 and M,

is separated from Mj although IMCy g is larger than IMC4.

These two assignments are simulated via the PAWS simulator. The
average response time for each job arrival is measured from when the job
arrives at the system until it finishes the execution of M;s. Figure 38
compares the response time between the two assignments. Note that
Algorithm P-I-A yields better response time than Algorithm I-A, with 10.8%
improvement at processor utilization p = 20% and 25.7% improvement at p

= 80%.

122

Fig. 5-17. Compare task response time for
assignments in Fig. 5-16

l!ﬂﬂ-j

ME—-t B0

CHAPTER 6
CONCLUSIONS AND DISCUSSIONS

8.1 CONCLUSIONS

The three important parameters in task allocation afe intermodule
communication (IMC), accumulative execution time (AET) of each module,
and precedence relations (PR} 2mong program modules. IMC is the
communication between program modules through shared files. When a
module on a computer writes to or reads from a shared file on _another
computer, it requires extra processing and communication overhead known as
IPC (interprocessor communication). Therefore, a task-allocation algorithm
should try to minimize IPC by assigning a pair of heavily communicating
modules to the same computer. On the other hand, AET always contributes
to processor load; its contribution is independent of task allocation. We have

proposed a methodology to ineasure and characterize both IMC and AET.

From the insights obtained with our simulation and the IMC
measurements, an analytical model has been constructed to est'ima.te the IMC
and AET in a distributed processing system. This model was applied to the
DPAD system and it has been shown that the model i; able to provide fairly

accurate prediction.
124

An objective function for task allocation that considers both IMC and |
AET is proposed. It is based on the model of bottleneck processor. An
heuristic task-allocation algorithm based on this objective function was also

presented to effectively search for good assignments.

The third parameter for task allocation is the precedence relationship
(PR) which specifies that a program module can not be enabled before all its
predecessor(s) finish execution. Simulation study and analysis reveal that the
module-size ratio of two consecutive modules affects task response time. A
set of PR rules are generated to determine if the consecutive modules should
be co-located on the same computer. Allocating the modules according to the

PR rules yields performance impi-ovement.

An improved -heuﬁstie.ﬂgoﬁthm for task allocation was prwented;
based on PR, IMC, and AET. The algorithm was applied to the DPAD
system and another distributed system example. The results reveal that a
module assignment considering PR yields better respbnsé time than an

assignment without PR consideration.
8.2 FUTURE RESEARCH AREAS

Many related issues in task allocation remain unsolved and need

further investigation.

a. Replication of files — A file-replication policy should be developed to

125

decide how many copies of a replicated file are needed and where these
copies should reside, for either access speed, fault-tolerance, or
reduction of file-update message volume. Data consistency among the

copies is a2 major concern that affects performance in file replication.
i

Replication of program niadula — Some modules might be so
frequently invoked t.hat their processing requirement cannot be met by
s single processor. It is desirable to process identical copies of a given
module on multiple computers, each processing a subset of invocations
of that module. For that, techniques need be developed to decide a)
the needed number of copies for a program module, b) the file
structure (centralized, replicated, or partitioned [CHU78]) for the files
accaséd by a replicated program module, ¢) the number of copies (and
the sites) a file should be replicated and/or partitioned into, and d) the
ﬁolicy for distributing module invocations among all computers which

run a copy of the invoked module.

Task scheduling policy — Scheduling policy plays an important role in
real-time systems. Besides the FCFS discipline, there might be other
scheduling policies more suitable for distributed real-time systems.
One possibility is to schedule multiple modules and process them as a
batch. As a result, some lines of code (e.g., the initializing
housekeeping code) can be shared by all modules in the batch. This

reduction of overhead should be weighed against the increased

126

complexity in task scheduling.

127

ANDE75

REFERENCES

G. A. Anderson, "Computer interconnection structure: taxonomy,
characteristics and examples,” ACM Computing Surveys, 7
(1975), pp. 197-213.

ARNO79 R. G. Amold, R. P. Ramseyer, L. B. Wing, and E. A. Householder,

BERNS1

BERRS2

BLANSg4

BOKH79

BOKHS1

"MMBC architecture,” in Proc. 1at Intl. Conf. on Distributed
Computing Systems, Oct. 1979, pp. 707-724.

J. L. Baer, "Graph Models of Computations in Computer
Systems,” Ph.D dissertation, Report No. 68-48, UCLA-
10P14-51, Univ. of Ca.hforma, Los Angeles, 1968.

C. T. Baker, "Logical distribution of applications and data,” [BM
- System Journal, vol. 19, no. 2, pp. 171-192, 1980.

Philip A. Bernstein and Nathan Goodma.n, "Concurrency control
in distributed database systems,” ACM Computing Surveys,
vol. 13, no. 2, pp. 185-221, June 1981.

Robert Berry, K. Mani Chandy, Jay Misra, and Doug Neuse,

"PAWS 2.0 — Performance Analyst's Workbench System:
User’s Manual,” Information Research Assocxates, Austin,
Texas, December 1982.

Tom Blank, "A survey of hardware accelerators used in computer-
mded design,” IEEE Design 8 Test of Computers, vol. 1, no.
3, pp- 21-39, Aug. 1984.

S. H. Bokhari, "Dual processor scheduling with dynamic
reassignment,” [EEE Trans. on Software Eng., vol. SE-5, no.
4, pp. 341-349, July 1979.

S. H. Bokhari, "On the mapping problem,” IEEE Trans. on
Compauters, vol. C-30, no. 3, pp. 207-214, Mar. 1981.

128

CHU69 Wesley W. Chu, "Optimal file allocation in a multiple computer
system,” IEEE Trana. on Computers, vol. C-18, no. 10, pp.
885-889, Oct. 1969. .

CHU78 Wesley W. Chu, "Performance of file directory systems for
distributed data bases,” in Proe. AFIPS National Computer
Conf., vol. 45, pp. 577-587, 1978.

CHU7T8 Wesley W. Chu, D. Lee, and B. Ifia, A distributed processing
: system for naval data communication networks,” in Proe.
AFIPS National Computer Conf., vol. 47, pp. 783-793, 1978.

CHUS0 Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan, and Kemal
Efe, "Task allocation in distributed data processing,”
Computer, vol. 13, no. 11, pp. §7-89, Nov. 1980.

CHUS2 W. W. Chu, J. Hellerstein, M. T. Lan, and L. Holloway, "Research
on the shared database kernel for the BMD application,”
Dept. Computer Science, Report # CSD-820430, Univ. of
California, Los Angeles, April 30, 1982.

CHUS3 W. W. Chu, J. Hellerstein, M. T. Lan, and J. M. An, "Database
management algorithms for advanced BMD applications,”
Dept. Computer Science, Report # UCLA-ENG-83-20
(CSD-830430), Univ. of California, Los Angeles, April 30,
1983.

CHUS4a W. W. Chu, J. Hellerstein, M. T. Lan, J. M. An, and K. K. Leung,
"Database management algorithms for advanced BMD
applications,” Dept. Computer Science, Report # UCLA-
ENG-84-07 (CSD-840031), Univ. of California, Los Angeles,
Apr. 1984.

CHUS4b W. W. Chu, M. T. Lan, and J. Hellerstein, "Estimation of
intermodule communication (IMC) and its applications in
distributed processing systems,” I[EEE Trans. on
Computers, vol. C-33, no. 8, pp. 691-699, Aug. 1984.

CHUS84c¢ W. W. Chu and K. K. Leung, "Task-response-time model & its
applications for real-time distributed processing systems,”
5th Real-Time Systems Symposium, Austin, TX, Dec. 1984.

CHOU82 T.C.K. Chou and J. A. Abraham, "Load balancing in distributed
systems,” IEEE Trans. on Software Eng., vol. SE-8, no. 4,
pp- 401-412, July 1982.

129

CHOW?78 Y. C. Chow and W. H. Kohler, "Models for dynamic load '
balancing in a heterogeneous multiple processor system,”
IEEE Trans. on Computers, vol. C-28, no. 5, pp. 354-381,
May 1979.

DENN6S Denning, P. J., "The working set model for program behavior,”
Comm. ACM, 11, 5, pp. 323-333, May 1968.

'DESP78 A. Despain and D. Patterson, "X-tree a structured multiprocessor
computer architecture,” in Proc. Sth Symp. on Computer
Architecture, Silver Spring, MD: IEEE Computer Society
Press, 1978, pp. 144-151.

- EFES2 Kemal Efe, "Heuristic models of task assignment scheduling in
distributed systems,” Computer, vol. 15, no. 6, pp. 50-36,
June 1982.

FENGS1 Tse-Yung Feng, "A survey of interconnection networks,"”
Computer, vol. 14, no. 12, pp. 12-27, Dec. 1981.

FISH73 George S. Fishman, Concepts and Methods in Diserete Event Digital
Simulation. New York, NY: John Wiley & Sons, Ine., 1973.

GARC78 Hector Garcia-Molina, "Performance comparison of two update
algorithms for distributed databases,” in Proc. 3rd Berkeley
Workshop on Distributed Data Management and Computer-
Networks, Aug. 1978, pp. 108-119.

GQENT78 W. M. Gentlemen, "Some complexity results for matrix
computations on parallel processors,” J. of ACM, Jan. 1978,
pp. 112-115. _

GOKE7?3 R. Goke and G. J. Lipovski, "Banyan networks for partitioning on
multiprocessor systems,” Proc. lst Symp. on Computer
Architecture, Silver Sprint, MD: IEEE Computer Society
Press, 1973, pp. 21-30.

GREESO M. L. Green, E. Y. S. Lee, S. Majumdar, and D. C. Shannon, "A
distributed real-time operating system,” in Proec. Symp.
Distributed Data Acquisition, Computing, and Control, Dec.
1980, pp. 175-184.

GREES0 M. L. Green, E. Y. S. Lee, S. Majumdar, and D. C. Shannon,
*Phase III of Distributed Processing Architecture Design
(DPAD) program - the DDP Underlay simulation
experiment: tactical applications and d-RTOS models,”

130

TRW Defense and Space Systems Group, Special Report
35010-79-A005, May 15, 1980.

GYLY76 V. B. Gylys and J. A Edwards, "Optimal partitioning of workload
for distributed systems,” in Proc. COMPCON Fall 76, Sep.
1978, pp. 353-357.

HAES80 K. Haessig and C. J. Jenny, "Partitioning and allocating
' computational objects in distributed computing systems,” in
Proc. IFIP Congress 1980, Melbourne, Australia, pp. 593-

588, ' .

HARABO F. Harary, Graph Theory. New York, NY: Addison-Wesley, 1969.

HOFFS0 R. H. Hofman, R. W. Smith, and J. T. Ellis, "Simulation software
development for the BMDATC DDP underlay experiment,”
in Proe. 4th Intl. Computer Software and Applications Conf.
(COMPSAC), Oct. 1980, Chicago, pp. 569-577.

HOLLS2 L. J. Holloway, "Task Assignment in a Resource Limited
Distributed Processing Environment,” Ph.D dissertation,
Dept. Computer Science, Univ. of California, Los Angeles,
1982. -

IRANS2 K. B. Irani and K.-W. Chen, "Minimization of interprocessor
commupication for parallel computation,” IEEE Trans. on
Computers, vol. C-31, no. 11, pp. 1067-1075, Nov. 1982.

JENN77 C. J. Jenny, "Process partitioning in distributed systems,” in Proe.
: NTC 1977, pp. 31:1-1 — 31:1-10.

KINN79 L. L. Kinney, W. D. Johnson, R. R. Ramseyer, and K. L. Stephens,
"Modular missile borne computer hardware modules,”, in
Proc. 1st Intl. Conf. Distributed Compuling Systems, Oct.
1979, pp. 736-7486.

KNUT73 D. E. Knuth, The Art of Computer Programming; Vol. I
Fundamental Algorithms. Reading, MA: Addison-Wesley,
1973.

LEUN82 K. K. Leung, Task response-time model, dissertation in

preparation, Dept. Computer Science, University of
California, Los Angeles, 1985.

131

LOCAS0 B. N. Locanthi, The Homogeneous Machine, Technical Report”

3759, Dept. Computer Science, California Institute of
Technology, Jan. 1980.

MAS2 P.Y.R. Ma, E. Y. S. Lee, and M. Tsuchiya, "A task allocation
model for distributed computing systems,” IEEE Trans. on
Computers, vol. C-31, no. 1, pp. 41-47, Jan. 1982,

MAHM78 S. Mahmond and J. S. Riordon, "Optimal allocation of resources
" in distributed information networks," ACM Trans. on Data
Base Systems, vol. 1, no. 1, pp. 483-497, Mar. 1976.

MALLS2 Efrem G. Mallach, "Computer architecture,” Mini-Micro Systems,
Dec. 1982, pp. 246-250.

MARKS2 Pauline Markenscoff, "A multiple-processor system for real-time
control tasks,” in Proc. 9th Annu. Symp. on Computer
Architecture, Apr. 1982, pp. 274-280.

PRICS1 C. C. Price, "The assignment of computational tasks among
processors in a distributed system,” in Proc. Natl. Comput.
Conf., May 1981, pp. 201-2886. ' o

4

RAMS79 'R. R. Ramseyer and R. G. Arnold, "An overview of the MMBC
architecture from the requirements and constraints poiht of

view," in Proc. 1st Intl. Conf. on Distributed Computing

Systems, Oct. 1979, pp. 747-758.

. RAO79 G. S. Rao, H. S. Stone and T. C. Hu, "Assignment of tasks in a

distributed processing system with limited memory,” IEEE
Trans. on Computers, vol. C-28, no. 4, pp. 291-299, Apr.
1979. .

RILE71 W. B. Riley, "Minicomputer networks — A challenge to maxi-
computers?” Electronics, vol. 44, pp. 56-82, Mar. 29, 1971.

SAUESla C. H. Sauer and K. M. Chandy, Computer System Performance
Modeling. Prentice-Hall, In¢., 1981.

SAUESIb C. H. Sauer, E. A MacNair, and J. F. Kurose,
“Computer/communication system modeling with the
Research Queueing package, Version 2,° IBM Report No.
128 (39850), November 2, 1981.

132

e

SHENSS C. C. Shen and W. H. Tsai, "A graph matching approach to
optimal task assignment in distributed computing systems
using a minimax criterion,” [EEE Trans. on Computers, vol.
C-34, no. 3, pp. 187-203, Mar. 1985.

STON71 H. S. Stoﬁe, *Parallel processing with the perfect shuffle,” [EEE
Trans. on Compsuters, vol. C-20, no. 2, pp. 153-161, Feb.

1971.

STON77 H. S. Stone, "Multiprocessor scheduling with the aid of network
flow algorithms,” IEEE Trans. on Software Eng., vol. SE-3,
no. 1, pp. 85-93, Jan. 1977.

STON78a H. S. Stome, "Critical load factors in two-processor distributed
systems,” IEEE Trans. on Software Eng., vol. SE-4, no. 3,
pp- 254-258, May 1978.

STON78b H. S. Stone, and S. H. Bokhari, "Control of distributed processes,”
Computer, Vol. 11, No. 7, pp. 97-106, July 1978.

STON79 Michael Stonebraker, "Concurrency control and consistency of
multiple copies of data in distributed INGRES,” [EEE
Trans. on Software Eng., voL. SE-5, no. 3, pp. 183-194, May
1979. ..

TREL82 Philip C. Treleaven, David R. Brownbridge, and Richard P.
Hopkins, "Data-driven and demand-driven computer
architecture,” ACM Computing Surveys, vol. 14, no. 1, pp.
93-143, Mar. 1982.

TSUC80 M. Tsuchiya, "Considerations for requirements engineering of
distributed processing systems,” in Proc. Symp. Distributed
Data Acquisition, Computing, and Control, Dec. 1980, pp.
61-65.

VICK79 Charlie R. Vick, "A dynamically reconfigurable distributed
computing system,” Ph.D "dissertation, Dept. Electrical
Engineering, Auburn Univ., Auburn, Alabama, Dec. 1979.

WUS4 William S.-F. Wu, "Minimization of interprocessor communication
for parallel computation on an SIMD multicomputer,” Ph.D
dissertation, Dept. Electrical Engineering, U. of Michigan,
Ann Arbor, 1984. ,

133

APPENDIX'A
DESCRIPTION OF THE TRW DPAD

The TRW Distributed Processing Architecture Design (DPAD) was
developed to manage the data procasihg and radar resources in the BMD
Application [GREE20]. The DPAD system is shown in Figure A-1. It consists

‘of four components:
1. thé radar interface
2. the interconnection_ network
3. the distributed Re.al-Time Ope;ating System (d-RTOS)

4. twenty-three (23) tactical application-program modules
To validate the DPAD concepf, TRW produced a simulator consisting of a
fully coded d-RTOS and simulators for the other three components. Extensive
statistical recording and reporting facilities were included in. order to assess
performance. The original DPAD simulator was developed for the BMDARC
testbed and made use of up to eight VAX-11/780 computers interconnected
by a PCL 11-B data bus [HOFFg0, GREES0). Later, this simulator was
moved to TRW at Redondo Beach, California where it runs as multiple batch

jobs on a single VAX-11/780 (under VMS}.
134

COMPUTER SYSTEM |

T

_TACTICAL
APPLICATION:

Ml} 1o J'M.I

DISTRIBUTED
REAL TIME
OPERATING SYSTEM

(a-rT10S)

A
1
[]

COMPUTER SYSTEM

. TACTICAL
APPLICATION

My, e M3

DISTRIBUTED
 REAL TIME
OPERATING SYSTEM

(d-rT0S)

FIGI A_l'.

———

INTERCONNECTION NETWORK

RADAR

THE DISTRIBUTED PROCESSING

ARcHITECTURE DEsigN (DPAD) SySTEM

135

Réid'mg on each computer is a copy of the d-RTOS. The d-RTOS
consists of six cyclically executed tasks (see Figure A-2) responsible ‘for
scheduling application modules, shared data management, and resource
management. Apphca.tlon modules are scheduled for execution based on their
priority and are executed without interrupts. The role of shared database
management is to ensure the consistency of the replicated shared data. Thls

is facilitated by the foﬂoﬂg design constraints:
1. There is only a single writing module for each shared data file.

2. It a module references a shared data file, then a copy of that file is present
on the computer to which the module is assigned. Thus every module
reads only local file copies and this incsrs no [PC.

Finally, resource management is co_neerned with reassigning modules when an

overload condition is detected.

Of particular interest to shared database ma.naéement is the procedure
for updating a replicated shared file (see Figure A-3). When a module M;
updates a file Fj, M; places an entry for F, in the Task Completion Queue
(TCQ) of the d-RTOS, indicating the file and record modified. When the d-
RTOS task COMPLETE reads this entry from the TCQ, it formats and sends
a file-update message (containing the updated record) to all computers which
have a éopy of that file. This file-update process causes [PC which might

degrade the system performance. At a receiving computer, the d-RTOS task

136

v

" DATA INPUT HANDLER
— (DATAIN)

RECONFIGURATION P_ﬂESGlEDULEB
- (PRESCH)

I
=

TASK COMPLETION HANDLER]
(COMPLETE)

Fig, A-2. THE 4-RTOS Tasks

137

avdd 3HL NI S3tvadn T4 "¢-¢ N9

- ———

T4
VIVa QRIVHS

_
L -

-1 ILTIM0D

- Tl
i

13IHs

ASvl

HISHid

114W0)

200

NIVivd

—— —— e — ——

|
|
i
_
|
|
i
_
t
1
_
I
I
[
_
}
_
i

sTid
Vivd GRS,

) e e s

138

DATAIN reads the update message and posts the update. Similarly, when M;
enables M, , M; places an entry for M, in the TCQ. The d-RTOS then sends

an enablement message to the computer where M, is assigned.

Two intérconnection networks are considered in the DPAD: a bus and
a totally connected"__ poiﬁt-to-point interconnection. In both cases, the
networks are assumed to be error free and infinitely fast, ie., the network
delay is assumed negligible. The TRW DPAD simulates these networks by
using the VAX/VMS mailbox communication facility.

Thg radar interface is simulated by the System Environment and
Threat Simulator (SETS) which is driven by a predefined detailed sky map.
Based on the sky map scenario, the SETS reports initial detecrti;ns and
updates the position of objectsvt‘aver time. A verified radar return is referred
to as an smage.. Since an object changes its position, it may have severé.l
associated images. For each radar return, the SETS provides the tactical
applications with the radar command type as well as the time at which the

return was received.

The tactical application modules are driven by the radar. There are

twenty-three application modules ! which are employed in seven processing

threads (see Figure A-4). For example, the SEARCH/VERIFY thread

! However, Modules M;;, M,,, and M;; are not currently implemented in tle
simulator. _

139

Figure A4a: DEFINITION OF PROCESSING THREADS

SEARCH Y.
1 Ve/r\irﬁsof?radar return
2) Control flow: See Figure A-4b

COARSE TRACKING. ‘
1) Performs cross traffic rejection and known object recognition.

2) Control flow: 4, {5, 6}, 7, 13 |
({5,6} means that Modules 5 and 8 can be executed in parallel.)

CANCEL COARSE TRACKING.
1} Cancels a standing order for coarse tracking.
2

Coatrol flow: 4, 13,

PRECISION TRACKING.
1) Tracks objects to obtain an accurate estimate of their position.
2) Control flow: 8, 9, 13

REDUNDANT TRACK ELIMINATION.
1) Determines if an image matches an already known object.

2) Control flow: 8, 10

ELIMINATE NONTHREATENING OBJECTS.
1} Determines if an object is threatening.
2) Control flow: 8, {16, 17}, 18

INTERCEPT PLAN.

1} Establishes an intercept plan for a threatening object.
2} Control flow: 8, {18, 17}, 18, 19

140

Object

Detection
Module 22
Execution (200MLI)
" Mpdt?l:f——— M_oa'ule 23
Execution (200 MLI) Execution (200 MLI
(Schedule a VERIF
‘ radar command to be
Mpdule 2 sent 7.5 mgec later)
Execution (50 MLI)]
(Process the -
detected object & SETS
store record for Execution (5 MLI)
later verification) (Radar simulation)
Module 22
. Execution (200MLI)
. Module 1
* MLI=Machine Language Execution (200MLI)
Instruction; -
Execution 'tl:ime=MLI divi?:id Modlile 2 .
¥ processor apeed Execution (800MLI)
** Radar receives the VERIFY (Ob]ecvteu_nzﬁ\; being
command about 9 to 15 msec
after Module 23 finishes
execution. : Module 3

Execution {500MLI)
(Initiate Coarse Track)

Module 13
Execution (500MLI)
(Establish a standing
order for Coarse Track)

FigureA-4b. Search/Verify Parailel Activities

141

procésa an initial image detection, then schedules another radar pulse to
verify the presence of an object. The time from beginning to end of a
processing thread is its port-to-port (PTP) time. The processing threads are
a.pphed in a plpehned manner, as depicted in Figure A-5. Communication
between modules is accomplished by use of shared files (see Figure A-8). All
files in the DPAD are named with an integer number greater than 100. The

overall control flow of the modules is shown in Figure A-7.

A portion of the control-and-data-flow was shown in Figure A-8. M,y
consists of two separate routines: M)y, and Mjsp. My;, is periodically
enabled every 1 ms to schedule radar commands: it enables M, which in turn
| enaﬁl& M,s. All other modules are enabled by the radar returns, directly or
indirectly. Returns of different types (e.g. Detect, Verify, Coarse Track, or
Precision Track) are processed by different threads of modules; M, does the

thread selection.

142

SEARCH/VERIFY

= s

CANCEL (COARSE TRACKING)®

COARSE
TRACKING | 3
@)——=IMAGE DROPPED

(PRECISION gONTHREAT INTERCEPT REDUNDANT-TRACK
TRACKING) ATION PLANNING ELIMINATION

(thread)® = the thread is executed z times,
and the superscript * means 0 or more times

FigureA-5: Sequence of Threads

143

144

GV 00 T MOTSTOWINOD CZ-Y 09N

HHATN

-
SO NV DN
e | M
-
E Ryl]
el AVIN -.N E M.N HE
4 32084
oHIsS
— bl ot [om] J E.T1 e
X |

oy

145

cLOCK
Q@)oo " '
l
Z THREAD |
R 1 |seLEcTioN :
MS':'_/J;OARSEW PRECISION § }
5]<_ VERIFY ~ o _YTRACK TRACK g
“““"h q N
7T . & R
~ ///(‘k\fx_
2.3 o
- 9] [0
‘ r
[}
END ‘

@ .. .ExcLusive OR
L AD

J ++ JODULE MJ

@...FILE FK

Fig. A-8, PART oF THE CONTROL-AND=-DATA=-FLOW GRAPH IN DPAD

146

APPENDIX B
THE UCLA DPAD SIMULATOR

The DPAD simulator at the University of California, Los Angeles
(UCLA) is a modified version of the TRW DPAD simulator. In the TRW
DPAD simulator, each tactical computer (also referred to as a CPU) in the
target network is simulated by a VAX/VMS batch job. The tactical
computers (the VMS batch jobs) communicate by using the VMS mailbox
system function. The batch jdbs maust be synchronized so that the simulated
CPUs keep rougl.xly the same simulated tactical time. To this end, messages
are sent between the batch jobs to synchronmize the execution speed of the
simulated computers. When a job suspends execution while waiting for a
synchronization message, the VMS scheduler selects the next job to run. It
can be one of the DPAD simulator jobs or another job ﬁnrelated to the
simulator. If the next job is a simulator job, the d-RTOS for this job must
ensure that its tactical time is the smallest among all the simulator jobs;
otherwise, it goes into a futile loop, testing and waiting for all other simulator
jobs to proceed to larger tactical times. Thus, if n computers are simulated,

there will be n-1 batch jobs in a futile loop.

147

Futile loops made the time to do a simulation quite long and prevented
us from making the large number of runs necessary to study the effect of
va.rying the scenario, module assignment, and database kernel design. Thus,
the TRW simplator was modified and moved to the UCLA VAX-11/780
(under UNIX). The UCLA version runs 3 to 10 times faster depending on the

VAX load, number of objects simulai;ed in the scenario, and number of

computers simulated for the target systém. 1 The following sections describe
the process of converting the multi-i)a.tch-job simulator to a faster single-
batch-job version, changing it from the VAX/VMS operating system to the
VAX/UNIX at UCLA, and providing enhancement to the UCLA version.

B.1 CONVERSION TO SINGLE-BATCH-JOB SIMULATOR

_The popular event-schedﬁling simulation method [FISH73] was adopted
to eliminate the futile-loop bottleneck. The modified simulator uses only one
" batch job no matter how many computers are simulated, (which also reduced
the memory space required during a simulation). The teéhniqua used in
these modifications on data structures, event scheduling, message

communication, and the generation of statistical reports are mentioned below.

a. Daia Structure: In the TRW simulator, data for a batch job refer to a
single computer. For instances, a simulated local tactical time is

represented by TACTIME, and a module enablement queue by

! More objects or fewer CPUs usually means busy CPUs. And the busier the
" simulated CPUs, the smaller this speedup factor.

148

ENABQUE(10,40,4), which means that the queue has 10 priority levels,
40 entries per level, and 4 words .per entry. To provide the same type
of information for the different computers, the UCLA simulator
dimensions most variables and arrays in FORTRAN COMMON
statements by ;:ompnter. For example, ENABQUEZiO,@,«i) becomes
ENABQUE(10,40,4,20) and TACTIME becomes TACTIME(20).
Variables and a.rfays appearing in FORTRAN executable statements

are modified accordingly.

Event Secheduling: To simulate the parallel activities of multiple
computers, the UCLA simulator maintains a clock, represented by the
aforementioned TACTIME(CP-U], for each CPU. Thus, it becomes
easy fo always schedule the simulated CPU with the smallest value of
TACTIME(CPU). The UCLA simulatof,maintains an event queue as

follows.
TACTIME CPU TASK .
T 1st event
Ind event .

Eatire . . . 3rd event
Event |
Queue

l -

There are as many entries in the event queue as there are computers in
the simulated system. Each entry tells when its corresponding
computer is to be scheduled for its next activity. Events in the queue

are ordered in the ascending TACTIME sequence; i.e., the first event
149

has the smallest TACTIME. The simulator always schedules the first

event to happen and deletes that event from the queue.

When the current scheduled event finishes all its activities,
TACTIME(CPU) is advanced properly. Then, the simulator creates a
new event and :'mertsé it into the event queue according to the
TACTIME sequence.. The new event created is for the same CPU to
execute the d-RTOS mutﬁe specified which is next to the one just

finished in the cyclic order. This new event has the following contents:

TACTIME : the tactical time when the current event finishes; also the

occurring time for the newly created future event.
CPU : same value as the current event's CPU.

TASK : the next d-RTOS routine to be executed.

To conclude, the UCLA simulator uses only one job to simulate all

computers. This greatly reduces the delays due to futile loops.

Mca#age Communication: Computers can send "module enablement”
command messages or shared-data update messages to another
computer. The complicated (and thus ‘time-consuming) mailbox
function, used for intercomputer communication in. the TRW
simulator, has been replaced in the UCLA simulator by a simple °

procedure with 20 message collectors, MESSAGE(20,1000), each

150

collecting messages sent to its associaied computer from others. Fig.
B-1 shows the role of MESSAGE collectors in the simulator. Note that
input and output buffers are FIFO queues while the MESSAGE
collectors are not. A message is inserted into the MESSAGE collectorr
indicated l;y the message 'da'i;inﬁ.tion and it is inserted according to its

arrival time.

Let us justify the existence of the MESSAGE collectors by an
example. Assume CPU i starts an event E1 before CPU j starts E2.
E2 will not be scheduled to happen until E1 has been completely
simulated, although in the target system these two events overlap in
time. (Remember that we have only one batch jéb.)» Assume both E1
and E2 generate messages for CPU k at the end of their executions and
assume E2 finishes earlier than El m the real world. But E2 will not
generate messages in the simulation earlier than E1. We must
compensate such a distortion and this is done by reordering messages
in MESSAGE collector for CPU k, through message insertions

according to their arrival times.

Statistical Output Files: Code was added to the d-RTOS operating
system to extract statistical information such as CPU utilization in
target computers (named as ZTG files in the simulation), shared-data
update message volume from one application module to another

(named as ZTU file), and number of times each module is executed
151

ML ONIAIYYY ¥I3HE OL INIGHOIIV
GO T4V MILNGHOD V LV ONIAIYYY SIIVSSM

*HOAVINHIS ML N1 WSINVIDM 9NIYIQUO JVSSM 'T-a H_:w_.“_

HOLVUYAHOD ML | |

(0001’ QZ) TNSSAN
h 0z
1 R
(000T*€) TNSSH -
4 - ¢
| bt
(0007’ 2) TENSSIH
A -1 . A
1 LI 1
(000T*T) TOWSSAH
I PP | 1
_ L b ¥3INdW0D
H3I1NM0D HIAI DN e INION3S 10

40 §344n8 Lndwl

434nq ndino

152

(named as ZTO files). Two classes of statistical files can be
distinguished. When we request for a file of the first class, a file should
be generated for each CPU. Since there is a copy of d-RTOS in each
batch job in the old-version simulator, multiple CPU utilization files
were generated; each for one CPU. Because there is only one ba.tcia job
in the new version, statistical records of a given type {e.g. 'CPU
utilization) -are wﬁtten into the same opened FORTRAN file, with 2
digital characters added in front of each record to indicate the
particular CPU this record applies to. After the simulation, the
combined file is sorted off-line to recover the individual files for various

CPUs.

Let us now consider files of the second class (e.g. ZTO and ZTU
files). The old-version simulator generated a ZTO file from each batch
job, each file supplying only part of the complete information
requested. On the other hand, the new version naturally produces a

single ZTO copy for the complete information requested.
B.2 SMULATOR TRANSFER FROM VMS TO UNIX

Despite the potential portability of FORTRAN IV and the fact that
both TRW/Redondo Beach and UCLA use the same VAX-11/780 hardware,
problems arose because TRW uses FORTRAN-PLUS under VMS while UCLA

153

employs F77 under UNLIX. 1 Two major problems encountered were the

pumber of characters allowed for a variable name and -the number of file units

allowed for a program.

a. Variable’ Name: FORTRAN-PLUS allows up to 14 characters in a
variable name while UNIX only allows 8. Long variable names improve
program readability and facilitate enhancements. It required much

effort to rename variables while still preserving their uniqueness and

their meanings.

b. File Unit Number: This problem was worse than the previous one in
terms of the effort needed to correct it. UNIX allows only 20 logical file
units (units O through 19) in s FORTRAN program. The TRW
simulator generates more than 30 different statistical report files, each
with its own unit number. The technique of “combine and then sort”
is used to solve the problem. Frequently requested files are assigned
their own file unit between 1 and 19. All other outputv files use unit 0.
File unit numbers in the WRITE statements were changed to 0, and a
code was added in front of each output record to indicate the original
individual file. Sorting routines were written to sort the output file

from unit O into separate files.

1 FORTRAN-PLUS and F77 are different versions of the FORTRAN .
language.

154

B.3 ENHANCEMENTS TO SIMULATOR

We have made the following modifications to the simulator to improve

its performance and functionality.

s Circular Quenes: There are 23 program modules in the TRW DPAD
application model. Some files (repr;ented as FORTRAN variable
arrays) have as their sole function ‘the information transfer from one
program module to another; records of a file are generated by one and
used by the other. In the original simulator, the receiving module reset
the records to zero (or blank) and then distributes this update so that
the same record spaces could be re-used. This technique creates
unnecessary IMC. We have changed those modules which
communicate in this mu;ner to use eircular quenes instead. Much IMC

_ was eliminated and CPU utilizations dropped in the range of 10 to 30
percents, which depends on the nul_:nbexj of receiving modules resid@ng
on a particular CPU, frequency of receiving records, and record

lengths.

b. Functions for gathering IMC Statistica: In order to study the role of
inter-module communications in task allocation, we need to know how
many messages afe generated by what application modules, and to
what modules these messages are sent. Special measurement routines

have thus been inserted in the simulator to measure the IMC.

155

Replication Runs: In order to eliminate the bias resulting from the
random number generator, we modified the simulator so that, for each
run, it would start with a different initial seed for the generator. A
UNIX command procedure was used to repeat the simulation a

specified number-of times, each time starting with a different seed.

Tool for Data Reduction and Plotting: To handle the huge amount of
output statistical data from simulations, particularly from replic;;ted
runs as described above, several data reduction routines and plotter

routines were developed.

156

APPENDIX C
" COMPUTING OBJECT DETECTION TIMES .

Tt
The input scenario is represented i)y the SKYMAP file A(Fig.' C-1).
START TIME and END TIME are the time instances when an object enters
and leaves the sky area covered by the indicated radar BEAM. The following

2 steps calculate the detection times for all objects in the scenario.
a) Perform the following algorithm for each BEAM-ID number:

1. Divide BEAM-ID by 15, obtaining the quotient q and the remainder r.

2. f r=0
then { q <- q-1;
r<-15;}
(This BEAM direction is searched during the r-th round of radar search.)

3. Caleulate the time instance t in milliseconds
t < 57(r-1)+(q+1)+7

e.g. BEAM-ID = 332
332/15=222
57x(2-1)+(22+1)+7 = 87 ms
4. If t < START-TIME for the object to show up within
the search-range of this beam,
then { t <-- t+855;
goto 4}
5.1f t > END-TIME
then terminate;
Else
{ Record t as a Detection Time for this BEAM;
t <-- t+855;
go to 5; }
157

Note: After performing this algorithm for all the BEAM-ID numbers,
we obtain the object detection times as shown in Fig. C-2.

b) List all Detection Times for each object (Fig. C-3).

158

THE SKYMAP FILE, TTSKYMAP.DAT, CONTAINS 42 OBJECTS

SEQUENCE CBJECT BEAM START END
NUMBER ID D TIME TIME
1 47 211 o 1000
1 47 212 800 2000
2 69 332 0 800
2 69 - . 375 600 1600
3 56 482 0 400
3 56 . 528 300 2000
4 80 - 408 0 1000
5 67 603 0 500
5 67 646 400 1000
6 36 259 o 00
6 36 260 700 - 2000
7 35 350 0 500
7 35 351 400 1500
7 35 399 1400 2000
8 70 - 246 0 950
8 70 290 200 1600
8 - 70 288 1500 2000
9 o4 291 0 800
9 64 335 700 1600
9 A 380 1500 2000
10 81 322 0 800
10 81 318 700 1500
11 45 3% 0 400
11 45 442 300 1100
11 45 488 1000 2000
12 75 546 0 2000
13 59 205 Q 2000
14 57 341 0 800
14 57 386 700 1600
14 - 57 431 1500 2000
15 58 255 0 800
15 58 300 600 2000
le 46 300 0 800
16 46 346 700 1600
16 46 347 1500 2000
17 65 207 0 1000
17 65 251 800 2000
18 77 329 0 800
18 77 325 700 1600
18 - 71 366 1500 - 2000
19 8l 321 250 800
20 74 . 283 0 800
20 74 281 700 1600
20 74 278 1500 2000

Fig. C-1. SKYMAP, Input Scenario File

21 25 265 0 800
21 25 267 700 1600
21 25 270 1500 2000
22 .70 291 500 950
23 02 232 0 1000
23 a2 229 800 2000
24 78 190 0 400
24 78 - 189 300 900
24 78 187 800 2000
25 43 756 0 1000
26 61 745 0 1000
27 55 660 0 1100
28 71 591 0 500
28 ysl 635 400 1000
29 62 608 0 1000
30 33 583 0 800
31 72 552 0 800
32 44 533 0 2000
33 63 474 0 2000
34 68 463 0 2000
35 76 460 0 1500
36 34 447 0 1000
37 73 418 500 1500
37 73 459 1300 2500
38 24 358 500 1000
39 26 176 500 1500
40 37 173 500 2000
4 48 165 500 1500
42 2 130 500 1500
43 0 0 0 0

Fig . C-1{(Con.) SKYMAP, Input Scenario File

160

THE SKYMAP FILE, TTSKYMAP.DAT, CONTAINS 42 CBJECTS

SECUENCE OBJECT BEEM START END DETECTION

BBEEKES@@ommmqqqmmmmpwwmuww%

MR N b bt b b b bt b
AT e T T 'S

Fig' C-ZQ

ID
47
47

EﬁﬁEddd&&&ﬁS&Eﬁﬂﬂ%d&ﬁﬁﬂﬁﬁﬁﬂéé8%&8&3398&&%%

ID

221
212
332
375
482
528
408
603
646
259
260
350
351
399
246
290
288
291
335
380
322
318
396
442
488
546
205
341
386
431
255
300
300
346
347
207
251
329
325

- 366

321
283
281
278

700
1500
250
0
700
1500

TIME
1000
2000
800
1600
400
2000
1000
500
1000
900

2000 .

500
1500
2000

950
16Q0
2000

800
1600
2000

800

1500
400

1100
2000
2000
2000

800
1600
2000

800
2000

800
1600
2000
1000
2000

800
1600
2000

800

800
1600
2000

TIME
22, 877,
934, 1789
87
: 830
97
1012, 1867
149 T
162
. 906
196
1108, 1963
289
1171
(Not Detected)
309
1110
1851
312
1113
1971
371
998
319
379
1294

329, 1184

534, 1389
600
1458 ,
(Not Detected)
(Not Detected)
825, 1680
(Not Detected)
886
1798
648
1449
770
1397
(Not Detected)
314
710
1451
(Not Detected)

Detecticn Times for Objects by Various BEAMs

lel

21 25 665 0 800 538

21 25 267 700 1600 1507

21 25 270 1500 2000 1678

22 70 291 500 950 (Not Detected)}
23 82 232 0 1000 365

23 82 229 800 2000 1049, 1904
24 78 190 0 400 (Not Detected)
24 78 - 189 300 900 476

24 78 187 ‘800 2000 1217

25 43 756 0 1000 343

26 6l 745 0 1000 570

27 55 660 0 1100 849

28 7l 591 - 0 500 332

28 7 635 400 1000 {Not Detected)
29 62 608 0 1000 _ 447

30 33 583 0 800 730

31 72 552 o} 800 671

32 44 533 0 2000 442, 1297

33 63 474 0 2000 495, 1350

34 " 68 463 0 2000 722, 1577

35 76 460 0 1500 551, 1406

36 34 447 0 1000 664

37 73 418 500 1500 719

37 73 459 1300 2500 1349, 2204

38 24 . 358 500 1000 715

39 26 176 500 1500 589, 1444

40 37 173 500 2000 1273

41 48 165 500 1500 817

42 22 130 500 IS00 529, 1384

43 0 0 o} 0

Note:AncbjectwithmrethanaxeDetectimTi:re
means that it is detected multiple times by
the radar and recurdant images are generated.

Fig, C-2 (Con.) Detection Times for Cbjects by Various BEAMs

162

OBRJECT DETECTION
NUMBER TIME

OBJECT DETECTION
NUMBER TIME

1 22,877,934,1789 21 538, 1507, 1678
2 87,830 22 (Not Detected)
3 97,1012, 1867 23 365, 1049, 1904
4 149 24 476, 1217
5 162,906 25 . 343 -
6 196, 1108, 1963 26 570
7. 259,1171 27 849
8 309, 1110, 1851 28 332
9 312,1113,1971 29 447
10 371,998 30 730
11 319,379, 1294 31 671
12 329, 1184) 2 442, 1297
13 534, 1389 a3 495, 1350
14 600, 1458 4 722,1577
15 825, 1680 35 551, 1406
16 886, 1798 36 664 ,
17 648, 1449 37 719, 1349, 2204
18 770, 1397 38 715 :
19 314 39 589, 1444
" 20 710,1451 40 1273
Fig . C-3. Detection Times for Each Cbject

163

-

APPENDIX D
- MODULE-ASSIGNMENT SELECTION PROGRAM

. " The program selects the module assignﬁ:ents from the enumeration
tree according to the -objective function. Variable MINMAX keeps the
minimum “bottleneck load” evaluat;ad so far in the tree search. It is
initialized with a large value, 999999 MLI's. Whenever a module assignment
is evaluated to have a bottleneck smaller than MINMAX, the bottleneck value
replaces the old MINMAX value and a line is printed to log this particular
assignment.. Fig. D-1 shows the printout from this program; Progressively
better assignments are obtained. The first- column .displays the module
assignment with the minimum bottleneck found so far and the next column
shows the associated bottleneck value. Of the 23 numbers shown in the
assignment, the j-th number with a value of 1, 2, or 3 means ﬁlodule M; being
assigned to processor 1, 2, or 3 in the particular assignment. Within each
row, the bottleneck is the largest of those three load values in columns 3, 4,
and 5, each column representing a processor in the distributed system. The
rightmost column shows the total load of the 3 processors, i.e., the total

system load.

164

LoWVAS IATLSIMDG WoHT SYNISTH NIV -9t
FLELET »wnY zeiog Cyvil C9718 = 1veutw c [A I 0 coo0 1 LI] 1
02gLET =wrt FL. LYY 11 pchLlEg = vewuie | [= A | oze00 rgr vt]
FLCLET wo¢ze IESCH eeEce - € i geceo00 121101 1
q6LLLS tsv28 ocscl 114+ o : B £ [2 | p2200 [- I]
rLEOCT “2¢ern 4189 TLLCE - € it [] vzt 1l]
0920E2 qpeea BLSrO sy = € g1 gzEo00 LI -] 1
9CsoLZ t6vz8 CHLED E¥eve = [[| eoz32o0 te1 v]
Etuf 111 4 2S108 F#LOGB yiogg - € LI I) przov rzvy o d
F¥0bZE Bsel €9198 £7I9d = E [oggodo s21 ¢t]
FCLETT s550¢ loOCAe ioree = c | I] ogto0 el 1 1
ZEIETT oteeL yIvee "7a = € [| goztoo0 [BRI |]
18 I G098 9OYCE 9aCs, = € &z gEgTO0 g1l 1
gvsers spacE SLLCH siiteé = E zee ozco0 F I I I 1
BueOTe L6560 LHTLTS H3LYE = 1 4 cz ozzo00 i]
TCYOTT zErsn BI0SS #1056 = € F-3) pgeEeoo [O IO O) 1.
grizee THYOR PE9LE "eis = c gz ozeg00 rEv el L)
ro41iC cozen &0OLG &00(4 = € geEl [- - 111 e]
(111§ bt gz0v8 Orfes =#%91 obiLsd = € z1el gTeEooO [N I) §
yOEITTE coBce &Zvea =P [3-4 L1 4 cteT ozgeo0 el I
|sosned i1] &70101 =P¥e] 470101 £ zet [- t11 1t)
o L 1ot o “242C@ BSCI0l ~pT0 asciof E zgEni ogeEop0 [L I |]
0190 poris ¥1GL0Y gsci1ol =reel] wislol - geeo00] 1
qcLace putiE L6001 YOLLOL wpeo}| ¥OLEOD 14 zelL oEgcooO et 1
gL potiE cuv00t 3] wpuoy] &FIVOL 1] zeEN gzLoo 11108 §
a1iee anced oveas 0BESON =pro]| 0BESON 4 egr ogeod tt 11y]
Zeives B6ELE SL186 L7E501 =P 595504 T a1 p2eto0 [I A 1
. TEAILE At L(YLvh LoLLal =pro) LOLLDE = (- I) [3 11110 t 11
[: 5 4 L onrt osree 2i6L0l =pro]| 22OLOY = 1 [I [- [N I I B | I I M
L [i T4 b 0 scECHS TeBLod =Pe0) pcely - 1 12111 oezo00 [A | [I
aceiIe L] peci1of 910CHE ~P¥O glogil = [4 1 E1 1 o200 11111 11 L]
rip?1e o ce2101 101511 ~peo) joiell =] [oztaoO s et [BRI
QOFLET o B3Lo8 TELORT =pP00 griovl - sgz zeeet gl 100 1 E1 1l [SEER I A |
yOTLET 0 £6598 11000S 1O - zge geee ofro090 PEes [T A L
DLIHIIT [+ £59c8 LCHERS LETCHL = | - sz2et oF100 [118V 8
9916 Q y7c80 TOBCH1 EOBCH! - g rzezd ol to@ t1 ey s 1V ET
oscane 1 8 s1zea ECicyt cCisy) = red zT1 & o1100 [3 I I | [I O L
L T4 I [+] ysocH cEeSY) TTYSHY = zZ a2t oti10goQ 1t (SR I I L
opvLah o a1908 290LH] TI0LP) = geLe zeel ol 100 s 10t $ LY E) A
ronLET] €sr08 1SELMD L1574 2 30 ce gzer ot 100 [[I L
71 1.1l L] €i1G6L Leobtl LLGBYY = seEQ rzet il gtr1o00 [N 1 st
9ELEL o w2l TyiONl celggl = gcT) t2el1 [111 1d 111 [
Seiess 1] 8489¢ ELZIGN ceeinl - gee 2z168 8 gli1o0d0 Lyl (3 I I L
L F . bt o yIL7e TISIGE =pe0R 294qic) = - zeti 1 ott1o00 11811 R
qe6L0Le 0 98z6¢ Q0LES) 00LLs) = 3% - ter1 o1100 [N
Z9802 0 ookt sgecsl s9ECsE = el ezt eolti109 R rr1 1t
1 213 I [] SEICT? 400178 SOOI - cEe] o1100 111t 18y
oeoree 0 6029 L1191 L7410 1 B -2 -] 11t ott1a0 AR RN [I A
Lalid)] o ZDLEC YESBLY =Pro yoSBLL - 121 11111 o100 111l R R R
avesi 0 goCzz 0.62801 =¥*07 oibgng = vewugw | S8] r1 vl eaV100 [I I] BEEEER
Fe0P0C M ﬂNu:— rpLOE =Pve] Oﬂmv \d ¥ B L1t UG - 1 R 100 11 B T % I LI L 1"
o | 1 i 1 INHNOISSY 3 iKW
0 . - [oBeq yno gous £asl V1LY K1 VT

1

165

¥ANZTT

geczee

95¥Zie
9eaSTE
Seee
FOVETT
s E b
BoYYLZ
[: 131 -1
oLsizE
»EICTE
¥SICIE
10 bt
F91CCT
h i T
FS7ECT
OLEEET
FEPEES
0OsCES

R LT
sceve
Geve
wwns|ziENe
=wnsjczove
a N @ﬂ!uh
ey @ﬂgh
=wns|evee
=ans|s0c0¢
wensiGTrOL
wuns|gence
R LIE T
awns|gCLG9
T
1rET
P
Py,
awnd h??'ﬁ

ewnsl f66¥L

soBEL
BroKt
EL8tL
1124 13
SLENL
FISNL
CLTHL
cerst
K6SL
THSEL
80204
FeRLL
[141:13
LiTE4: 14
eL
[3:0: 12
[L4: 18
LSl
cLETL

seEve
SLEVL
BoENL
ewces
PIRNL
£10¢L
0ci1SL
chvee
9¥ESL
Z19sL
veudd
9E0LL
oceal
0Lzl
2958L
066¢
1b4L
cocre
14818

AMMEOONAOTATNNNNNOOR
L L L L R Rl Rk]

(030H11N0))

-“-ﬂ—-ﬂ-—-ﬂ“-ﬂ-ﬂ—ﬂﬂ

I I L L L L L Rl L

TEAOANNAMN NN =N

-mGAGANNGINGUNNNOOR
Nﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂﬂﬂﬂﬂ—--
B N T T R T R0 k- L]

P YT I L L L L L L - L]
T L L L L L LG L

11 Y

eoon EZI1C
tcooe ¢ICE
coo0 ZI1ZE
zoo LCECE
go0 CECE
zoo 1€ 2
zoo 1€ ¢
coo0o 121013
coo0 121
ceo 1E1R
coo 1T
too 12711
coo 1Tt
zoo 1211
zo0 1248
coo vz
goo 12L0
too V1
so0 1Z 1Y

£ sbey yne Jnus

I €
¢ T
z €
£E 2
€ <
F £
1 €
| I -4
] 1
1\
[S
]]
1]
] 1
1 1
] ¥
]]
))
1 1
chnt

- o o wn e (O

P L e B R R Kl L
---—---——----——-ﬂuﬂ

10

-k U R WS b W WS g el D em b O
-
-

1 unr

166

Since it takes several days to enumerate the entire tree, the program is
designed to have a checkpoint written out in a temporary output file for
every 3!! assignments evaluated. When a computer system failure occurs, the

program can continue the enumeration from the most recent checkpoint.

i
h

“From the program output we picked the last ten assignixients (shown
in Fig.4-20) and simulated each of them with the DPAD simulator. See

Section 4.3 for the results.

Although the 10 selected assignments have progressively smaller
bottlenecks, they are not exactly the 10 assignments in the search tree which
have the 10 smallest bottlenecks: For example, after the assignnient with the
bottleneck 743d8 MLI was printed on Fig. D-1 (the 3rd line from the bottom),
‘an assign.ment with a bottleneck 74310 was not printed. Nor was an
assignment with a bottleneck 74400. But, both 74310 and 74400 might well
be among the 10 smallest bottlenecks. Therefore, there are many more
assignments that have better (or ' comparable) performance than the 10

selected ones.

167 -

