MEMORY BASED PROCESSING FOR CROSS CONTEXTUAL REASONING:
REMINDING AND ANALOGY USING THEMATIC STRUCTURES

March 1988

Charles Dolan
CsSD-850010

UNIVERSITY OF CALIFORNIA
Los Angeles

Memory Based Processing for Cross Contextual Reasoning:

Reminding and Analogy Using Thematic Structures

A thesis submitted in partial satisfaction of the
requirement for the degree of Master of Science

in Computer Science

by

Charles Patrick Dolan

1984

© Charles Patrick Dolan, 1984 —

TABLE OF CONTENTS

page
1 IDETOAUCEION covviirersiessraresssresmmsssnasesansaseussnsansassnsossastissansansanansansansasanse 1
1.1 Recognizing Planning Failuresccooveiicnenceinmmmnsniinisessnnenene 1
1.2 Why have Knowledge about Planning Failures? .cccccvirvvvenniccncienes 4
1.3 Related WOTK coocerreercisnsscssismssnssssasnsstessarsnnsansssnssssanessissssensasscancs 5

1.3.1 Conceptual Primitivesccoceeemmerisnscsscnsnmnsiisacsenen: 5

1.3.2 Understanding Planningcccccoeeniinnmmnnnnncsiononcnanee 6

1.3.3 Memory Organizationccccicviimisnesmisscsminaisassenes 7

1.3.4 Planning Falluresoococeceenivimeeinsnnnsscscsssssisnsnsssasenss 8
1.4 Features of CRAM .cvcccciiimnmsmssnssscsnsssssmsnsssnasansstsnensscssssnssass 9
1.5 APDPTOBCH couceiriisinmessnuscsesesircassianssan sttt e 9
1.8 Guide t0 the Readericcicrmirimiosiiminnmsesnsisisaisansanniseenios 10
9 Thematic Abstraction ULIts ...ccccecrecvsvssessemnninnrennninnsssissnsenecsenensssen 11
2.1 Planning Errors on Multiple Levelso.cccoeiccicnisnmncierniitnnnnecercenns 11

2.1.1 Multiple reasons for a goal failurecccoeeirsniiiansnne 14

2.1.2 Learning new TAUs through combinationccccecercees 16
2.2 TAUS iD CRAM .oorrerereescoresnistessssasnessssssansasassanssnanissseasenissesssansananss 19
2.3 TAUs Index Memory in CRAM .ooiciiiniinnrsercstsecaniacennanines 24
2.4 Conelusionsceeeiveeecssesecse reeeveesesasesssbesarareseteeasttessannaanasasesnasnnte 24
3 TAU ReCOEDILION cvecremcuimsrsrmmmassesensassssisssmsmanssssssscssassmssssassansasasasases 27
3.1 TAU indexing - 8 TeVIEW .oveoeiciiconminnininsnisanectsssenenensanstassasascsass 27
3.2 TAU processing reeebveressssesssesaseebiarasseesanerissastressiasaratasnansissrbrasarasase 29
3.3 TAU re-iNdeXing ..ccccocemmrmsesrermesesesasssssmnsasnsissssannsassamssssisnesseassasananens 32
3.4 TAU Disambiguationccoeeeeeissseeerscnisisnsmstanimannsnnscssssstssssssannaee 32
3.5 CONCHISIONS ..eeevvuieerersneeeressesssstesssnssssstassesnsssssnssananarissasansiassarsesseasasas 33
4 Representation and Memory OrgaBizationcoccociiuiesrinssessccnese 35
4.1 Memory Representationcioseeerccmsmieeisnessscnnesisianniisinnsinancnans 35
4.2 ACT, STATE, GOAL, and PLAN Representationcccceccscnuivanen a7
4.3 Memory OTganizationcceceeescrceininimnmamnmassnsneasissatsisinsnsmsssasasecs 40
4.4 Where Hierarchical Organization Fails ..ccoceveeiiiinininccnininianens 42
4.5 Bottom-Up Recognition of Structuresccecmciiiniininininenee 44
5 Process MOlcccooereeveessrrnsescsemsisriessnnmssmsassntassssisessssrssastasesassssstnsises 45
5.1 Memory INCOTPOTALION .oocovrriensreccsesitsnasemimnisesss s sssstsnstsnsasasensanes 46
5.2 EXPOCLALIONS ...coveomniescieeeininniinnns e 47

5.2.1 Expectation iNdeXINg ..o 49
5.3 Processing RUISooeiiireiiimimmirn it 49
5.4 Reasoning in Hierarchical MemMOTY .cccviiinmisiorsneneiissciniiisnninniannnnee 49

5.4.1 Processing Rule Inheritance rereneesseesssserneneeas 49

5.4.2 Expectation Non-inheritancecccocoiieiiniinriciisiinrane. 50

5.4.3 J-link Inheritanceccccccsmsmmmmmnceenicncnsiossnanneissnsnseseans 51

5.4.4 Pattern Based Reasoningcccererevemcnnicccinnionciiniacininns 52
B.5 CONCIUSIONS .ovcecerreecserececterssrniesrarssisasastassssstsrsntassatssassasssssnssosssnessnnis 53
68 Implementation Details and Trace ... 54

onclusions and Future Work ..ooovvoccvieecrcciinnmmrnrrcsinnsssiscennnnncccnienes

7C
7.1 Conclusions ..
7.2

Future ' Work

--

--

7.2.1 COMMON SENSE ...oeeevvrrrreccmecrrtiorrnessssnrasssersssessssssssinanasases
7.2.2 PATSIIE .oocvcecverassensssiessnssasnninssesssssnmsnssnsnesne e nesssesaons
7.2.3 Representationcoceeceeeeeereimemnnineinsiensnsniasassssse o
7.2.4 Learning and Thematic MeMOTY ccovvmniiininneccciniinnisnnes
7.2.5 Analogical Reasoningccoevemcensensnsrcnrirnnnnnnesnineeciinans

BIBLIOGRAPHY

v

LIST OF FIGURES

Figure 1-1: Story similarities ...
Figure 1-2: Schank’s primitive ACTS ..ocoooirmcirmsrmmarnmisssemsssniescisssnasees
Figure 1-3: ﬁlots for Schank’s CD ACTS ooceeerrereerecssrrisnesntnssaseneasssssns
Figure 1-4E‘$S:chank and Abelson’s classiﬁcation of goal types
Figure 1-5:‘I-links ...
Figure 2-1: TAU instances with no IRAEXINE coveerrnrermrrnnsnessercecsssnsranannens
Figure 2-2: TAU instances with indexing on surface features
Figure 2-3: Stories indexed by multiple TAUS .coooieriiiiiniieiesieeen
Figure 2-4: Template for TAUSULTERIOR ..ooocounmmmmarmcirinnsemcensissnns
Figure 9.5: TAU-ULTERIOR for The Fox and the Crow
Figure 2-6: Template for TAUSVANITY .ooocoriniisinimmmanissnsnnissnsass
Figure 2-7: TAU-VANITY for The Fox and the Crowcccccceeeees
Figure 2-8: Template for TAU-CONF-ENABLccoormiiciiiinnnanicnaes
Figure 2-9: Composite planning structure of The Fox and the Crow
Figure 2-10: TAU-SUCKEREDocimmommncniniinnrmnninscienecnsannaces
Figure 2-11: Final TAU relationships for The Fox and the Crow ..
Figure 2-12: Conceptual representation for The Fox and the Bear
Figure 2-13: CRAM template for TAU-ULTERIORcocvviirirnninenee
Figure 2-14: TAU-ULTERIOR for The Fox and the Bear
Figure 2-15: Conceptual representation for The Fox and the Apple
Figure 2-16: Template for a specialization of TAU-CONF-ENABL

Figure 2-17: CRAM episodic MEMOrY ..cveuriormsuesnmicnsmnmmsusssisarsrrssacees

Figure 3-1: TAU-ULTERIOR revisitedcccooicnncnnisnninmnsnscnsnsenens: :

Figure 3-2: Conceptual representation for The Fox and the Crow

page

o =1 o o

12
13
13
14
15
18
16
17
17
18
19
20
21
22
22
23
25
29
30

Figure 3-3: TAU-ULTERIOR for The Fox and the Crow

Figure 3-4: Dyer’s TAU indexing rules
Figure 3-5 P-CONT-faillccccoivnmmnniiinnninnaniin
Figure 4-1: MFRAME structurecocveveeenees
Figure 4-2: Discrimination net for PTRANS '
Figure 4-3: The MFRAME for PTRANS

P T L L L L LT R T R RN A L Y)

Figure 4-4: Memory nodes for &FALLING and &LEAVING

Figure 4-5: Memory organization around &FISHINGccccoouvnivinnirnns

Figure 4-6: Representation FISHING -

Figure’5-1: CRAM top level understanding loop

Figure 5-2: Empty CRAM mMemoryccveees
Figure 5-3: CRAM’S memory with 2 1/2 stories ..
Figure 5-4: CRAM’s memory with 3 stories

Figure 5-5: Example processing rules

Figure 5-6: CRAM memory with default I-links

vi

....................................

31
32

36

4]
42

45
47
48
48
50
51

CHAPTER 1
Introduction

This research addresses the problem of how people understand stories
about planning failures. Plahning failures occur when people either use
inappropriate methods to accomplish a goal or fail to take action to avoid
undesirable situations Se.g. locsing a job). A planning error is a particular
instance of failure to plan well (e.g. telling off one’s boss). Goal failures are
the undesirable consequences of planning failures.

How do we know when we are committing a planning error? When
we read or hear about someone else’s behavior, how do we know when they
commit a planning error! These are the questions which are addressed in
this thesis.

There are a large class of planning failures which are so common that
metaphorical sayings have been associated with them, such as these (from
Dyer’s work [DYERS3)):

"Cutting off your nose to spite your face”,
*Burning your bridges behind you", and
"Counting your chickens before they're hatched”.

Often admonitions against planning errors are given in adage form. Some ex-
amples are:

"A bird in the hand is worth two in the bush”,
"Don’t bite the hand the feeds you”, and
*Nothing ventured nothing gained".

1.1 Recognizing Planning Failures

The problem of understanding planning errors is addressed by con-
structing a computer model which analyzes stories that contain planning er-
rors. A model which can recognize planning errors in narratives, will also be
useful for recognizing planning errors in plans which a planner generates.
For any particular story we want the computer to find the planning failure.
Also, if there is another story in memory which contains the same planning
failure, we would like the program to find the similar components in the two
stories. Finding the similar components in two situations is the first step to
drawing an analogy. The theory presented here is implemented in a com-
puter program CRAM (Causal Reasoning in Associative Memory)}. CRAM
takes the conceptual representation of a story, inds causal and intentional
relationships among the pieces of the story, and recognizes planning errors
where they occur. This is the first pass for a system which would crtique

plan created by a plan generator.

One of the stories that CRAM understands, The Fox and the Bear,
is given below. This story contains the planning error of allowing oneself to
be deceived.

The Fox and the Bear

The Bear was at the stream catching fish to eat. He
had several on the bank already. The Fox came to the
Bear and told him that all the bees had left the tree
and that there was honey there. The Bear left his fish
and went to get the honey. The Fox took the Bear's
fish back to his burrow to eat.

This story illustrates an interesting aspect of the types of planning errors
considered in this thesis. A planning errors on the part of one character in a
narratiye is often a planning for another character. success on After pro-
cessing this story, CRAM recognizes it as an instance of an ulterior motive.
Since there are no other stories in memory, no comparisons are made. When
CRAM processes the next story, The Fox and the Crow, it again finds an
instance of an ulterior motive.

The Fox and the Crow

The Crow was sitting in the tree with a piece of
cheese in her mouth. The Fox came to the bottom of
the tree and said to the Crow, "You have such a
beautiful voice. Please sing for me.” '

She was very flattered that the Fox liked her voice
and so she started to sing. When she opened her
mouth, the cheese dropped out. The Fox picked up
the cheese and ran away laughing.

Because CRAM recognizes that these stories contain the same type of plan-
ning error, it uses the description of the planning failure to draw on analogy
between them. Once an analogy has been drawn, techniques of analogical
reasoning can be used to transfer knowledge from one context to another
(CARB83, DOLAS3]. The common elements it finds are given in figure 1-1.

Contrast these stories with,

"CRAM is designed to take a story’'s conceptual representation, as output
by a conceptual analyzer, and find the planning error(s) in the story. CRAM
does not take natural language as input.

-Deceiver-
Fox <-> Fox

-Deceived-
Bear <--> Crow

-The Lie-
The Fox came to the Bear and told him that all the bees
had left the tree and that there was honey there.
The Fox came to the bottom of the tree and said to the
Crow, "You have such a beautiful voice. Please sing for me.”

-The Planning Error- both characters disable the condition
which allows them to maintain contol of
an object

The Bear left his fish and went to get the hoaey. -

<=2
She was very flattered that the Fox liked her voice and
she started to sing.

-~The Goal Failure-
The Bear looses control of the fish.

The Crow looses control of the cheese.

Figure 1-1: Story similarities

The Fox meets the Crow again

The Crow was walking along the ground with a piece

of cheese in her mouth. The Fox came up to her and

said, "Crow, that’s a nice piece of cheese you have

there. Give it to me or I'll eat you instead.” The Crow

was frightened and gave the cheese to the Fox.
Here the Fox is just invoking a particular plan for getting the cheese,
THREATEN-PLAN [IWILE'TS], and the Crow gives in. There is no planning er-
ror here, and hence CRAM would not cite this story as similar to either of
the previous two stories.

The structures used in CRAM for recognizing planning errors are
Thematic Abstraction Units (TAUs), refinements of the TAUs used in the
BORIS program [DYERS3]. A review of TAUs is given in Chapter 2.

1.2 Why have Knowledge about Planning Failures?

Knowledge about common planning failures has applications to
several tasks in artificial inteiligence. In story understanding, known plan-
ning errors can provide better expectations about what will happen in a par-
ticular situation. Expectations are used in natural language processing to
more efficiently read text. It is easier to take an input and figure out if it fits
an expectation than to derive its meaning bottom-up. For example, a pro-
gram that knows about,

"Cutting off your nose to spite your face”
will get a better understanding of the following story from Dyer [DYERS3].

Ghetto Riots

Blacks wanted to protest the bad living conditions
within the inner city, so they rioted. As a result, their
own homes and businesses were destroyed, and out-
siders became more afraid to invest in the area.

A program with knowledge about riots and investing will be able to under-
stand this story and make the causal connection between the riots and the
fear of the investors. However it takes knowledge about planning failures to
understand the "point” of the story, that demonstation through violence is
counterproductive. When a program detects the use of possibly bad plans,
it should set up expectations for possible undesirable consequences.

Knowledge about planning failures is also useful when formulating
plans to solve problems or achieve goals. A program which knows about,
*Don't bite the hand that feeds you"
would know to check inter-relationships with other entities before trying to
counter-plan against them. Planning advice expressed in this abstract way is
much more useful than specific prohibitions such as:

don’t fight with your boss,
don't fight with your wife, and
be careful about fighting with co-workers.

These admonitions are correct but are not general enough to be useful in
other situations. The adage above is applicable in any situation where there
are inter-relationships among counterplanning agents.

Planning failures allow the solution of a certain class of analogical
reasoning problems dealing with planning and counter-planning [DOLAS3].
The recognition of an adage-like planning error allows us to find an analo-
gous situation in memory. The description of the planning error gives us a
mapping from elements in one story to elements in another. Once we have a
similar story and an analogical map we can start using techniques of analogi-
cal reasl(:ning [CARB83, GENTS3| to transfer knowledge from one situation
to another.

Knowledge about planning failures can also be turned into knowledge
about how to counterplan by a simple realization. Things which are bad
planning on the part of one character are good planning on the part of the
character who tricked him. Many people’s first reaction to The Fox and
the Crow is that the Fox is very clever.

1.3 Related Work

Natural language processing and story understanding have been stu-
died by many researchers. No attempt is made here to review all potentially
relevant literature. Instead, systems and theories which have had a
significant effect on the design of CRAM are covered.

1.3.1 Conceptual Primitives - Instead of using words to represent con-
cepts, CRAM uses conceptual primitives to express knowledge about the
world. For example, the primitive for physical movement, PTRANS,
[SCHAT72| is used to represent *walking”, "jumping”, and "falling”. Having
conceptual primitives is important for a number of reasons. The foremost
reason for decomposing knowledge into primitives is to allow us to express
conceptual similarities and differences. For example,

*John walked to the store”
and
“John ran to the store”

both imply that John changes his location from some unspecified location to
"the store”. Furthermore, we know that in both cases John traveled under
his own power by moving his legs. These similarities should be evident in
our representation. However, John's manner of traveling is faster in the
second case and this difference should also be reflected in our representation.
Sentences whose meaning is similar, regardless of their grammatical struc-
ture, should have conceptual representations which are similar.

Schank’s Conceptual Dependency theory (CD) [SCHAT7Z| provides a
notation for representing actions and states. CRAM uses Schank’s ACTs to
represent actions by characters. Figure 1-2 gives the 11 primitive ACTs.
With each ACT there are several possible slots that may be appended. There
are 7 possible slots, shown in Figure 1-3. A primitive ACT along with its
slots comprises a conceptualization. For example, the representation for,
*John walked to the store”, is,

PTRANS actor JOHN
obj JOHN
to STORE
instr (MOVE actor JOHN
obj (BODY-PART name LEGS
owner JOHN))

where the objects, STORE, JOHN, and LEGS are not decomposed further in
this implementation.

BODY-PART name LEGS

ATRANS transfer of ownership

PTRANS physical change of position

PROPEL application of physical force

MOVE movement of a part of the body

GRASP “grasping” of an object by a character

INGEST taking an object inside a character

EXPEL expulsion of an object from a character

MTRANS transfer of mental information between characters
MBUILD construction of new information from old by a character
SPEAK producing sounds -

ATTEND direction of a sense organ

Figure 1-2: Schank’s primitive ACTs

actor - the character performing the act

obj - the object to which the act is performed

from - state before the ACT

to - state after the ACT

instr - something instrumental in the performance of the ACT
mode - POS if the ACT occurred, NEG if it didn’t

manner - an optional modifier.

Figure 1-3: Slots for Schank’s CD ACTs

owner JOHN

is the representation for "John's legs”. In order to represent the sentence,
"John ran to the store” we only have to append the modifier, manner FAST,
to the representation.

A second advantage gained by using a conceptual representation is
economy of inference rules. In both cases, "walk” and "run”, we want to
infer that John is no longer at his previous location. Without a system of
conceptual primitives, we would need an inference rule for every word
denoting movement. In CD, a primitive is defined by the set of inferences
that can be made from that primitive.

1.3.2 Understanding Planning - To understand planning, 2 pro-
gram needs a representation for goals that are served by the plans. It is use-
ful to have a taxonomy for goals, because some inferences are shared among
goals of the same type. For example, when an understander encounters a
character with a goal of satisfying a recurring need (food, sleep, sex) it
should not be surprised when the goal occurs again later. Likewise, an
understander should know that a goal of preserving the current state
(health, family) is not activated unless something has happened to threaten

that state. Schank and Abelson [SCHA77| have broken down character
goals into several categories,

S-GOALs - satisfaction of recurring needs
(e.g. S-SLEEP, S-HUNGER)
E-GOALs - enjoyment goals
(e.g. E-ENTERTAINMENT, E-SPORTS)
A-GOALs - achievement of a long term desire
(e.g. A-STATUS, A-WEALTH)
P-GOALs - preservation of health, possessions, ete.
e.g. P-HEALTH, P-STATUS} -
C-GOALs - crisis level P-GOALs)
-GOALs - 3 goal instrumental in achieving another goal
D-GOALs - Delta goal, similar to an I-GOAL but where
o general planning is used instead of canned

script based plans (e.g. D-PROX - change in location)
Figure 1-4: Schank and Abelson’s classification of goal types

The PAM program [WILET7S, WILES3] was capable of understanding
stories very similar to The Fox meets Crow again. PAM had knowledge
about what PLANSs are useful in achieving which GOALs and what ACTs and
STATEs give rise to which GOALs. For each conceptualization in the input,
PAM tried all of its inference rules to determine if the new concept related
to any of the others in the story. PAM had no mechanism for remembering

past stories or for detecting bad planning by characters.

1.3.3 Memory Organization - Most story understanding programs do not
retain any of the stories they read. They start with a fresh memory before
reading each story. Two programs, IPP [LEBOS0] and CYRUS [KOLOS0],
have attempted to model the way that people store episodes and form gen-
eralizations from stories they have read. IPP read stories about terrorism. It
was able to take stories straight from the UPI news wire and parse them
into its internal representation. It could also form generalizations, finding as-
pects of a story that could be predicted from other aspects. For example,
after reading a number of stories about bombings in Northern Ireland, IPP
formed the generalization that all bombings in Northern Ireland are done by
the IRA. IPP had two major limitations. It understood stories at a very
shallow level, simply filling slots in frames for various terrorist activities it
knew about. Also, IPP had no notion of causality, (i.e. which slots in its
frames were causes and which were effects), therefore it made some false
generalizations that a person would not have made. IPP decided at one
point that no one was ever hurt in bombings in El Salvador.

CYRUS understood stories about the activities of then Secretary of
State, Cyrus Vance. CYRUS was also able to form generalizations. In the
case of diplomatic meetings, CYRUS generalized that when Vance was meet-
ing with the Arabs or the Israelis it was about the Arab-Israeli peace.
CYRUS had a much wider array of memory structures to use in understand-

ing stories. By using the FRUMP program [DEJO79] as a front end, CYRUS
was also hooked up to the UPI wire. In answering questions about Vance's
activities, CYRUS was able to use temporal knowledge, when an activity oc-
curred, and also reason about its generalization hierarchy. CYRUS, like IPP,
had no causal knowledge about the domain witkin which it was understand-
ing.

1.3.4 Planning Failures - The BORIS program [DYERS3] implements a
theory of in-depth understanding which includes a theory of planning
failures. BORIS has two domains in which it understands stories: divorce
and kidnapping. BORIS contains a large amount of causal knowledge. Dyer
gives nine causal/intentional links, I-links, which allow conceptual structures
for PLANs, GOALs, and ACTs and STATEs to be connected.

In the example above, "The Fox meets Crow again”, the Fox’s
GOAL to get the cheese, a D-CONTrol, is connected to other concepts with
three I-links. A ’motivation’ link connects it to the Crow’s possession of the
cheese. An ‘Intention’ link goes to the instance of THREATEN-PLAN used by
the Fox. The Crow giving up the cheese is connected to the GOAL with an
‘achievement’ I-link. I-links declaratively represent many of the inference
rules used in PAM. By representing intentionality with links instead of rules,
BORIS gets many inference chains "for free”. Figure 1-5 gives the I-links
used in CRAM.

GOAL PLAN ACT or STATE

intention -PLAN

achievement -ACT

realization -ACT or STATE

enablement -GOAL

thwarting -ACT or STATE

plan-blocking -ACT or STATE

resulting -ACT or STATE
disablement -ACT or STATE
motivation -GOAL

Figure 1-5: I-links

There are two differences between this set and the ones used by Dyer.
Another I-link has been added, "disablement”, which connpects a STATE
with the ACTs that it disables. Omitted from the set was "suspension” for
GOALs which suspend other GOALs. This was omitted because it does not
occur in any of the stories examined here.

Dyer's Themstic Abstraction Units (TAUs) are representations of
planning errors such as the ones given in the adages above. In BORIS,
TAUs were activated by deviations in the expected chain of events. TAUs
were used in question answering to point out important events and also in
understanding for the affect information associated with planning failures.

1.4 Features of CRAM

Except for the fact that CYRUS had no knowledge about GOALs and
PLANs, CRAM has a memory model similar to CYRUS, but with the addi-
tion that Dyer's I-links connect concepts that are causally related. TAUs are
used to recognize the planning errors, but in CRAM TAUs are represented
declaratively as opposed to representing each TAU with the LISP code for
recognizing it. Also there is only one TAU recognition process. Because of
the memory structure, TAUs are indexed of memory nodes for PLAN and
GOAL failures which are likely to be produced by particular planning errors.
ggilsﬂ ;S)rovides more robust recognition than activation by deviations as in

CRAM uses the same approach as PAM in connecting an input with
other story elements. Because of the memory organization employed in
CRAM, expectations and inference rules can be indexed off memory nodes.
This way CRAM doesn't examine every rule in the knowledge base to ex-
plain an input. _

1.5 Approach

The approach taken in CRAM is to structure the memory organiza-
tion and process model so that TAU recognition is easy and efficient. Situa-
tion features are used to index specializations of memory structures. Situa-
tion features include: I-links, relationships between characters and objects
(e.g. possession), and relationships between characters (e.g. proximity).
These same situation features are used in the representation for TAUs.
’fI‘AUs are indexed off of memory structures which share some situation
eatures,

The inference rules are grouped according to the memory structure.
Rules which apply to a situation are indexed under the memory node for
that situation. This organization gains two things for the program. First, it
makes the application of causal knowledge more efficient because only rules
that apply to a situation are examined. Second, it makes an explicit state-
ment about the “level of generality” of a given piece of knowledge. For ex-
ample, rules and expectations associated with MTRANS are indexed at one
level of generality. After an MTRANS a character would be expected to
know what was MTRANSed. The expectations for FLATTERY, a specializa-
tion of MTRANS, are indexed at a lower level. The TAU recognition process

uses both the "evel® of an inference rule and the number of rules which
were applied to derive a fact to decide whether or not a character should
have anticipated the consequences of an ACT.

During the comprehension process, CRAM groups concepts according
to whether or not they have been connected with I-links. Concepts are
grouped according to which ones are causally connected. These groups are
also used in the representation for TAUs.

Two aspects of this TAU theory make it unique. First the representa-
tion for TAUs makes it possible to encode "how" to recognize a planning er-
ror in a single procedure, while the information about the planning errors
themselves are encoded declaratively. Second, the representation for TAUs
allows the formulation of theory of TAU learning, which is not possible
when TAUs are represented procedurally.

1.8 Guide to the Reader

This thesis is divided into two major parts. Chapters 2-3 present ex-
tensions to Dyer's TAUs [DYERS3|. Chapter 2 presents an extended
analysis of the two stories in Section 1.1 and explains in detail how TAUs
are represented, how they are indexed, and how TAUs index stories.
Chapter 3 gives the details of how TAUs are recognized and disambiguated.

Chapters 4-8 give more detail on the implementation and process
model. Chapter 4 explains the knowledge representation and memory organi-
zation. Chapter 5 presents the details of the process model, including
memory incorporation, the process of finding the right memory node for a
conceptualization and a review of explanation-driven reasoning, the method
used for connecting the memory structures with I-links. Chapter 6 contains.
an apnotated trace of CRAM running on "The Fox and the Bear”.

10

. CHAPTER 2
Thematic Abstraction Units

The TAUs used in CRAM are refinements of the ones in BORIS
EYERSL"]. In BORIS, ‘each TAU was implemented as a demon (i.e. 2 piece of
ISP code) which contained the information necessary for recognizing the
occurrence of that particular TAU. Little restriction was placed on the con-
tents of the CONDITION and ACTION parts of these demons. This
scheme does not provide a general theory of TAU recognition. Each demon
embodies a portion of the TAU recognition theory. CRAM uses a declara-
tive representation for TAUs. This has two important advantages. The first
is efficiency and clarity; CRAM uses only one demon to recognize all TAUs.
Changes in the theory of how TAUs are recognized are thus reflected in a
single procedure. Second, a declarative representation for TAUs aids in the
development of a theory of TAU acquisition. It is difficult to postulate a
TAU acquisition theory if the concepts being learned do not have a uniform
structure.

Dyer [DYERS3] also discusses how TAUs relate to one another. He
points out that some TAUs are more general than others. He also points out
that different TAUs can index the same planning failure and can thereby
share some components. These ideas, which were not taken any further in
that research, are extended here to show how more specialized TAUs are
cgnstructed and how to determine exactly which components two TAU
share. :

This chapter presents two views of TAUs. The first is that TAUs are
used to index episodes in memory. In Section 2.1 we will see how stories
can share multiple TAUs. The second view, presented in Sections 2.2-3, is
that TAUs are a knowledge source for dealing with planning failures. This
is the way that TAUs are used in CRAM. :

2.1 Planning Errors on Muitiple Levels

In this section we will see how the information contained in TAUs
helps us pick out the various planning errors in a story. Any story may con-
tain multiple planning errors. For example, The Fox and the Crow con-
tains at least two on the part of the Crow:

- letting herself be deceived '
- singing when she still had the cheese in her mouth

The first is called TAU-ULTERIOR, and the second TAU-CONF-ENABLE
(for "confused enablement”). Later we will see that this story actually con-
tains three distinct planning errors. It is very important that the under-
standing model account for multiple, related thematic structures. To see

11

why, look at Figure 2-1; it shows what memory organization would look like
if there were no more fine-grain indexing of episodes than TAU-ULTERIOR.
Considering the number of times people encounter ulterior motives, the
number of episodes would be very large. We can not even postulate a pro-
cess which would pick out an appropriately similar story in a new situation
given this organization.

- TAU-ULTERIOR

TAU TAU
0 TAU, 2

Figure 2-1: TAU instances with no indexing

Figure 2-2 shows what a memory would look like if we also indexed
off of surface features, for example, the fact that the story contained a fox, a
crow, and some cheese. In this case, a person would only find an appropriate
episode if the current situation also had a fox, a crow, and some cheese; this
would not be very likely.

A program that understands planring should be able to pick out
stories that are similar on the planning level. Figure 2-3 shows an example
of what some parts of such a memory might like. Such a memory, organized
on the planning level, allows an understanding system to pick out the most
appropriate story for use in the current situation. If we look at the two
stories, The Fox and the Crow and The Fox and the Bear we see that
they share two TAUs, TAU-ULTERIOR and TAU-VANITY which in turn,
grouped into the composite TAU TAU-SUCKERED. The TAUs TAU-
SUCKERED and TAU-VANITY are fully explained below. TAU-ALLY-
ENABL and TAU-NEGLECT are simple specializations of TAU-CONF-
ENABL. TAU-ALLY-ENABL is the planning failure as a result of alienating
allies. TAU-NEGLECT is the planning failure of loosing control of an object
by neglecting to guard it. The thick black lines indicate links of a speciali-
zation hierarchy. The elipse around TAU-ULTERIOR and TAU-VANITY in-

When more than one story is found which shares the same planning
structure, surface features are used to select the most similar story among
those. This more fine-grain selection is not present in the implementation
presented here.

12

fox, fox,
cTow bear

TAU TAU
o TAU1 cat, 2

eagle,

SOW

Figure 2-2: TAU instances with indexing on surface features

dicate that those TAUs are components of a larger thematic structure,
TAU-SUCKERED.

TAU-SUCKERED

........

TAU-CONF-ENABL £ N
...................... N okl e Iy

TAU-NEGLECT

TAU-ALLY-ENABL

The Fox and the Crow

The Fox and the Bexr

Figure 2-3: Stories indexed by multiple TAUs

The point is that by indexing off of multiple planning errors, we are more
likely to find a story which is similar on the planning level.

13

2.1.1 Multiple reasons for a goal failure - When we refer to multiple
TAUs here, we mean multiple TAUs which refer to the same GOAL failure.
A story with more than one GOAL failure can easily contain multiple TAUs.

Next we will look at the planning structure of The Fox and the
Crow as it relates to TAU-ULTERIOR, TAU-VANITY, and TAU-CONF-
ENABL. We can see how TAUs are represented in CRAM by looking at
TAU-ULTERIOR. Figure 2-4 shows the representation for TAU-ULTERIOR.

TAU name TAU-ULTERIOR
- binding-spec ‘
?state (STATE)) :
?goal (GOAL actor ?x -
obj ?y
[Pmtrans (MTRANS actor ?y
to 7x
obj ?72)]
[2act (ACT actor ?y)]
constraints
achievement(?state,?goal),
motivation(?z,?gcal2),
achievement(?goal2,?act),
disables(?act,?state),
goal-conflict(?goal, (GOAL actor ?y
: Obj ’W)) ’
achievement(?act, (GOAL actor ?y
obj w))
not-ocbvious~result(?act,?mtrans).

Figure 2-4: Template for TAU-ULTERIOR

The binding-spec gives a list of concepts which must be found in the story
for this TAU, associated with variables. The constraints are semantic rela-
tionships among the concepts in binding-spec. In very simple terms, the
binding-spec shows what makes up the TAU for activation purposes and the
constraints provide both a further specification and a program for recogniz-
ing the TAU. The recognition process is covered fully in Chapter 3. This
TAU can be restated in English as follows,

There is a STATE which achieves a2 GOAL for a character.
Another character transfers information to the first, which
motivates a GOAL for that character. The first character acts to
achieve the new goal and disables the original state. The act
achieves a GOAL for the second character which was in conflict
with the original GOAL.

This TAU does not specifically mention the truth or falsehood of the infor-
mation transmitted between the characters. This TAU is activated by the
detection of falsehoods. By far, most situations recognized as having this
TAU will have a falsehood in them. It is not required, however, that the pro-

14

gram determine the truth of a statement by a character in order to apply
TAU-ULTERIOR. This agrees with the informal protocols taken by the au-
thor which indicate that most people think that the key element of deceit is
an ulterior motive rather than lying is.

Using this TAU we get the following planning structure for The Fox
and the Crow, shown in Figure 2-5.

TAU-ULTERIOR

i
Istate The Crow has the cheese
7goall The Crow wants the cheese

mirans e Fox tells the Crow
that she has a nice voice
?goal2 The Crow wants to show off
?act The Crow sings

Figure 2-5: TAU-ULTERIOR for The Fox and the Crow

Similar to the template for TAU-ULTERIOR, we have a template for
TAU-VANITY shown in Figure 2-8 which encodes the planning failure of al-
lowing your vanity to get the better of you. The major conceptual
difference between this TAU and TAU-ULTERIOR is that with vanity we
have the specfic mention of a vsin ‘?belief* which is an enablement condition
on a PLAN for the conflicting GOAL. Stated in English this TAU says,

A character appraises some part of himself as GOOD. This causes
him to enact a PLAN to achieve a GOAL. However, the ACT
which realizes the PLAN causes the failure of another GOAL.

From this TAU we get the same type of decomposition of The Fox and the
Crow based on the elements of the binding-spec shown in Figure 2-7.

The structure for TAU-CONF-ENABL is much simpler than the pre-
vious two. This TAU occurs whenever a character tries to achieve one
GOAL, and does not realize that his actions remove an enablement condition
on the continued achievement of another GOAL.

15

TAU name TAU-VANITY
binding-spec.
[?betief (KNOW actor ?x
obj (APPRAISAL obj (BODY-PART owner ?x)

value GOOD))|
?goall (GOAL actor ?x)]
?plan (PLAN actor ?x)
?goal2 (GOAL status FAILED
actor 7x)]
constraints !
intention(?gcali,?plan),
realization(?plan,?act),
enablement((APPRAISAL obj (BODY-PART owner ?x)
_ value GOOCD),
?act) ’
thwarting(?act,?goall).

Figure 2-6: Template for TAU-VANITY

VTAU-VAHITY
?belief The Crow believes she has a nice voice
?goall ' The Crow wants to show off
?plan The Crow plans to sing
?goal2 The Crow wants the cheese

Figure 2-7: TAU-VANITY for The Fox and the Crow

2.1.2 Learning new TAUs through combination - Now we take the
planning structures for TAU-ULTERIOR and TAU-VANITY and include
them with the structure for TAU-CONF-ENABL, and we get the structure
shown in Figure 2-9. This graph shows the two different ways that stories
can have multiple TAUs. The lines between concepts indicate that the two
concepts are instantiated by the same concept in The Fox and the Crow.
The first is very simple. Both TAU-ULTERIOR and TAU-VANITY have
TAU-CONF-ENABL as a sub-component. Whenever this happens in a situa-
tion, the component TAU ends up simply adding constramts to the other
TAU, creating a specialization or more specific TAU than before. This is in-
teresting because it gives us a simple, non-trivial way of making a specializa-

16

TAU name TAU-CONF-ENABL
binding-spec
?goall (P=GOAL actor ?x)]
?goal2 (GOAL actor 7x)]
?act, (ACT actor ?x)]
constraints
intention(?goal2,?plan),
realization(?act,?plan),
resulting(?act,?statel),
achievement(?state1,?goall),
disablement(?state2,?state1).

Figure 2-8: Template for TAU-CONF-ENABL

TAU-VANITY TAU-ULTERIOR
bellef sstate
?gosii ?goall
— ?plan 7mtrans
7goal2 |
?
reslized-by TAU-CONF-ENABL Fgoal2
?
1goall fact
7goal2
_»ACT tact

Figure 2-9: Composits planning structurse of The Fox and the Crow

tion of a thematic structure.

The second type of type of sharing that goes on between TAU-
ULTERIOR and TAU-VANITY is more interesting because it is more com-
plex. It is more complex because it is not simple subsumsion, and therefore
there may be other relations among the concepts in the TAU which are not
already explicit. In a case such as this we can form a new TAU called
TAU-ULTERIOR-VANITY, and specify it as having all the components and
constraints of both its components. This is relatively uninteresting because

17

in theory any two TAUs might be joined in this "corjunctive” manner. If,
instead, we infer a new concept,

KNOW actor FOX
obj (GOAL actor CROW
obj (ATTEND obj CROW))

that the Fox knew about the Crow's GOAL to have attention paid to her,
then we can easily get to a much more interesting TAU by combining the
two TAUs. |

TAU name TAU-SUCKERED
binding-spect

7goal2 {P-GOAL actor ?x)]

?goall {(GOAL actor ?x)]

?know (KNOW actor ?y

obj ?goall))

?act (ACT actor ?y)]

?mistake (ACT actor ?x)]

constraints
intention(?goalt,?plani),
enablement (?plan1, ?sub-goal1, ?sub-goall),
resulting(?act, ?state),
achievement(?state,?sub-goalt),
intention(?sub-goall, ?sub-plan),
realization(?mistake,?sub-plan),
resulting(?mistake, ?state2),
thwarting(?state2,?goall).

Figure 2-10: TAU-SUCKERED

The *?mistake’ which is given as an arbitrary ACT in the binding-spec is
defined in the last three constraints of the TAU. The "?mistake’ is an ACT
that is a realization of the *?sub-plan’. It causes ‘?state2’ which thwarts
"?goal2’.

This type of léarning is extremely interesting because it is driven both
from the initial structures and from the data. The story of The Fox and
the Crow, when it instantiates the two TAUs, TAU-ULTERIOR and TAU-
VANITY, allows a mapping to be made between the components of the two
thematic structures. It is this mapping which allows them to be combined in
a non-trivial way to form TAU-SUCKERED. Without a specific episode,
which istantiates multiple TAUs, it is not feasible to combine TAUs because
there is no way to construct the mapping. ’

From the top level, then, the TAU relationships of The Fox and the
Crow involves multiple containment relationships among the TAUs as dep-
icted in Figure 2-11. It is the containment relationships which are used to
cross-index planning errors among stories. There is a large difference
between two TAUs occurring in a component/containment relationship and

18

just occurring in the same situation.

TAU-CONF-ENABL

Figure 2-11: Final TAU relationships for The Fox and the Crow

2.2 TAUs in CRAM

TAUs are a knowledge source for dealing with understanding failures.
As a result of bad planning on the part of narrative characters, some con-
cepts do not get connected with I-links by CRAM. Without additional
knowledge, the relationships among these concepts would not be found.
When they are recognized as part of a TAU, they are integrated with the
rest of the story. For example, CRAM has no knowledge about ulterior
motives as a standard plan for achieving a GOAL. Instead it treats it as an
exceptional case by using a TAU. As an illustration, consider Figure 2-12
which gives an abbreviated conceptual representation for The Fox and the
Bear.

People seem to check the validity of what they hear against what
they already know. It is this mechanism that detects deceit or possible de-
ceit. However people do not seem to be constantly checking new inputs
against past ones for contradictions. Deceit can be detected, post hoe, after
the discovery of an ulterior motive, as mentioned in the previous section. In
order to handle ulterior motives without using a TAU, CRAM would not
only have to check for an ulterior motive after every occurrence of the prim-
itive act MTRANS, but it would have to keep track of everything the char-
acters say and keep checking for contradictions. This would impose a large
processing overhead for a situation which is encountered quite often in read-

19

LOC actor BEAR obj STREAM
M-FISHING actor BEAR
POSS-BY actor BEAR obj FISH
PTRANS actor FOX to STREAM
MTRANS actor FOX to BEAR
obj (LOC actor HONEY

obj TREETL
PTRANS sactor BEAR from EAM
GRASP actor FOX obj FISH

Figure 2-12: Conceptual reﬁraentation for The Fox and the Bear

ing stories and is probably not how people do it.

Instead TAU-ULTERIOR is indexed off of the memory nodes P-
CONT-fail and LIE-ACT. P-CONT-fail is the memory node for the failure
of 3 GOAL to preserve control over an object. The presence of the GOAL
failure is inferred when the Fox steals the fish. In addition to being indexed
off of the GOAL failure, when an obviously false statement is detected,
CRAM can use TAU-ULTERIOR to set up expectations for GOAL conflicts
between characters. Figure 2-13 shows the internal representation for
TAU-ULTERIOR in CRAM. This is more restricted than the version present-
ed in Section 2.1 and can be thought of as a specialization of that TAU.
The reason for the restriction is that in Aesop’s fables we do not need the
full generality of that representation. In the remainder of the thesis,
representations will refer to the world of Aesop’s fables. This is the sense of
ulterior motives presented in Figure 2-13.

This TAU as instantiated for The Fox and the Bear is shown in
Figure 2-14. In the story, ’?act2’ is the bear leaving the stream to get the
honey. The concept bound to ‘?act1’ is representing the fact that the
bear no longer has the fish. This is inferred from the P-CONT-fail. The
first three ‘constraints’ test for I-links.

The ‘not-obviocus-result’ constraint is a statement about the
processing state which says that we have found no causal or intentional con-
nection between these two concepts yet. This is represented in CRAM by
mantaining the story as & graph where edges are I-links. ‘not-obviocus-
result(?x,?y)” is true if ‘?x’ and ’?y’ are in disjoint sub-graphs.
This is important in distinguishing ulterior motives from more straightfor-
ward plans such as threats, as in the story The Fox meets Crow again,
presented in Chapter 1. The fact that there is no I-link between these con-
cepts means that this is an exceptional condition. Without TAU-ULTERIOR,

" CRAM does not currently check inputs against its knowledge of the world
but only detects deceit either post hoe or when it is mentioned specifically as
such.

20

TAU name TAU-ULTERIOR
binding-spec
?mtrans (MTRANS actor 7z to ?x)]
?7act2 (ACT head ?do)]
?7p-cont (GOAL actor ?x
manner gFAIL
obj (POSS-BY actor ?x
obj 7y))]
[*grasp (GRASP actor ?z

obj ?y)]
constraints
resulting(?mtrans,?act2),
thwarting(?act1,?p~-cont),
resulting(?act2,?act1),
aot-ocbvious-result(?grasp, ?mtrans)

Figure 2-13: CRAM template for TAU-ULTERIOR

CRAM would not be able to make any connection between the Fox grabbing
the cheese and his flattery of the Crow. The comstraint ‘not-obviocus-
result’ is the opposite of ‘obvicus-result’ which is uged in the
representation for TAU-CONF-ENABL in The Fox and the Apple.

After recognizing TAU-ULTERIOR, CRAM creates an instantiation of
that TAU. It contains the variable bindings for conceptual objects which
match the patterns and satisfy the constraints. Figure 2-14 gives the instan-
tiated TAU for The Fox and the Bear. The slot ‘BINDINGS’ gives the
correspondence between variables in the template of Figure 2-13 and the ele-
ments of the story.

.

Another story which is processed and indexed by the CRAM program
is an adaptation of The Dog and the Shadow:

The Fox and the Apple

The Fox was walking along with an apple in his
mouth. He was on the bridge when he saw a bunch of
grapes in the tree above him. He jumped up to try to
grab the grapes. When he opened his mouth he
dropped his apple in the river. Also the grapes in the
tree were too far up for him to reach, so he ended up
with nothing.

The conceptual representation for this story is given in Figure 2-15.

21

{TAU INSTANTIATION-OF &TAU-ULTERICR
BINDINGS
[?DO2 . PTRANS]
[?2 . (POX)]
[?GRASP . (GRASP ACTOR (FOX)
OBJ (FPISH))]
[?MTRANS . (MTRANS ACTOR (FOX) .
TO (BEAR)
OBJ (LOC
ACTOR (HONEY)
OBJ (PLACE
NAME (TREE))))}]
[{?ACT2 . (PTRANS ACTOR (BEAR)
) FROM (PLACE NAME (STREAM))
70 (PLACE NAME (TREE))
OBJ (BEAR))]
[?ACT1 . {LOC MODE (NEG)
ACTOR (BEAR)
OBJ (PLACE NAME (STREAM)))]
[?P-CONT . (GOAL MANNER (PAIL)
0OBJ (POSS-BY ACTOR (BEAR)
OBJ (FISH))))
(?Y . (FISH)]
[?X . (BEAR))]

Figure 2-14: TAU-ULTERIOR for The Fox and the Bear

PTRANS actor FOX
LOC actor APPLE obj mouth(FOX)
LOC actor FOX obj BRIDGE
ATTEND actor FOX obj GRAPES
LOC actor GRAPE obj TREE
PTRANS actor FOX to TREE manner JUMP
GOAL act.or FOX
QI:OSS-BY actor FOX obj GRAPES)
PTRANS obj APPLE from mouth Fo><)
LOC mode NEG actor FOX obj

Figure 2-15: Conceptual representation for The Fox and the Apple

22

This story can be processed in terms of a specialization of TAU-
CONF-ENABL which is possessed by CRAM. This TAU represents the plan-
ning failure for

*A bird in the hand is worth two in the bush”.

The essential elements of this TAU are given graphically in Figure 2-16. The
ares labeled with lowercase letters indicate I-links.

POSS?B!
1
D-CON'I" ' P-CONT-Eail
i

+=1-+ =t

! !

! H
ACT--result-chain---ACT

With the additional constraints
1 - the objects in the GOALs are of similar type.
2 - the result hnk is obvious

Key
m - motivation
t - thwarting
i - intention
r - resulting

Figure 2-16: Template for a specialization of TAU-CONF-ENABL

The second constraint in Figure 2-16 is the most important. It states
that the result link should have been obvious. In CRAM this is tested by
looking at how many rule applications were required to construct the I-link.
Il;) an I-link took more than one rule application to find, it is not considered
obvious. .

The two constraints ‘not-cbviocus-result’ and ‘obvious-

23

E 3
result’ are attempts at representing what is obvious . The common aspect
of these two constraints is that they do not refer to pieces of the representa-
tion, but to the internal state of CRAM, the working memory and the se-
mantic memory organization.

In TAU-ULTERIOR we examined the state of the working memory to
see if two concepts have been connected with I-links. In TAU-ULTERIOR
the key constraint was ‘not-cbvicus-result’, a condition based on the
processing state of the program. In TAU-CONF-ENABL the key constraint
was not one on the processing state but on the state of the memory organi-
zation. That is, if the understander did not think that jumping up to get
the grapes would obviously make the apple drop out of the Fox's mouth, it
would not get reminded of any stories through TAU-CONF-ENABL. This is
because TAU are used to encode planning failures, not GOAL failures which
are beyond the planners control.

2.3 TAUs Index Memory in CRAM

TAUs serve to index memory. Stories which contain similar planning
errors will be indexed under the same TAU. Figure 2-17 shows part of the
CRAM memory after processing the following three stories:

The Fox and the Crow,
The Fox and the Bear, and
The Fox and the Apple.

The portion of the memory shown is associated with the node P-CONT-fail.
The ’-=X-’ lines indicate indexed entries. Indexing means that there is a
D-net [CHARS0| attached to the entity, which uses the concept pointed to
as an index. Lowercase entries stand for concepts from the stories.

There are two TAUs indexed under P-CONT-fail, TAU-ULTERIOR
and TAU-CONF-ENABL. Indexed under the generic TAUs are specific in-
stantiations such as the one in Figure 2-14. The concepts which were found
in the instantiation of TAU-ULTERIOR are encircled by the dotted line.

2.4 Conclusions

TAUs differ from other knowiedge sources because they characterize
exceptional situations. The exceptional situations are recognized primarily
with the constraints

not-obvicus-result and
obvious-result.

The *not-obvious-result’ constraint tests for exceptions to what CRAM knows
about planning. It does this is by looking at which concepts CRAM has con-
nected with I-links. The ‘obvious-result’ constraint tests for exceptions in a

Knowing what is, or is not, obvious in planning is important in assessing the
planning of others. While a very interesting research issue, the problem of
representing obviousness is beyond the scope of this thesis.

24

?-CONT-fail

H H H crow-has-cheese

+=X~+ b4 +=X+ i '

' ! ! m d

H H H b !

fox~loose-apple | crow-looses- i

! : cheese---t-—--cheese-dro;;s
= s % & 808 I RN N N + & & 4 9 8 8 20
‘s -bear-lcoses-fish . i
t - . l '] -
apple-drop T EE RN i I) - =
: ' . . +---t-+ . :
! . H . H
H bear-has-fish d---fox-theft . x
x " EEEEENERENRENINENRN NN = - =
' . P . H
; .fox-mtrans~-r--hear-departure f . E
"TEEEEEERNEENNENIE NN N N T EEEENRENRENENNNENINE] [l
! 1 i
i ! !
1ABBC0N?—EN?BL ?AU—ULTERIQR -------- +
1
==X+ +X=+

.
(back to P-CONT-fail)

Key
X - indexing
m - motivation
t - thwarting
r - resulting
d - disablement

Figure 2-17: CRAM episodic memory

character’s planning behavior; that is, doing things which obviously
wouldn’t work. It does this by looking at its own memory organization to
see if the consequences of an action "look” obvious. '

As CRAM acquires more causal knowledge in the form of processing
rules, more things will "look” obvious. The same thing happens with people.
No causal relation is easy to deduce but once it is learned it is considered
obvious.

25

TAUs are useful because they organize information about exceptions
at a higher level than ACTs, STATESs, GOALs, and PLANs. If this informa-
tion were indexed at these lower levels, it would be stored many times. In
addition it would be checked each time one of these lower level structures
was encountered. Recall the example for MTRANS from "The Fox and
the Bear” in Figures 2-12 and 2-13. Instead of including large amounts of
detailed planning information at every memory node, we use TAUs to
represent common planning errors and index them off the GOAL and PLAN
failures that they cause. .

_ In addition TAUs can index stories that are analogically similar 'at the
GOAL/PLAN level because they represent information at the GOAL/PLAN
level and not at the ACT/STATE level. TAUs make statements about the
PLANSs and GOALs active for characters. Because TAUs represent exception-
al situations, the representation of a TAU has to make assertions about the
processing and memory states in order to distinguish TAUs from normal
planning and counter-planning situations.

In comparison with the BORIS [DYERS3| program, the major exten-
sions which CRAM makes are the indexing of multiple stories by the TAUs
which they contain, and the movement of knowledge about how to recognize
TAUs out of the representation of the TAUs and into a single procedure.

26

CHAPTER 3
TAU Recognition

The previous chapter described the representation for TAUs. If we
had a completely processed story with all the I-links in place, we could, in
principle, be able do TAU recognition with the following algorithm:

for all TAUs in the database

match the ‘binding-spec’ against the
concepts in the story :

check the ‘constraints’
until a mateh is found

However, using this algorithm, we must compare each TAU with each con-
ceptual entity in the representation of a story in order to recognize that a
TAU should be instantiated. This nullifies the advantages we gain by pro-
viding a compact declarative representation for planning errors. For that
reason we instead index TAUs off of memory structures and provide an
efficient method for recognizing TAUs from their representation. In addition,
the algorithm presented in this chapter, starts recognizing TAUs before the
actual planning error occurs, and therefore could also be adapted for plan
critiquing in a plan generator.

3.1 TAU indexing - a review

In CRAM TAUs are indexed off of memory structures as shown in
Figure 2-5. The methods used in CRAM for activating TAUs are those
given by Dyer [DYERS3|. TAUs are activated by three things:

GOAL failures
PLAN choices
expectation failures

There are memory nodes for GOAL failures, so activation of a TAU
may occur when we access a GOAL failure memory node during processing.
For example, this allows CRAM to recognize an uiterior motive, even when
no expectation for deceit has been generated through detecting a lie. An ex-
ample of this was presented in Chapter 2. P-CONT-fail had two TAUs,
TAU-ULTERIOR and TAU-CONF-ENABL indexed under it. CRAM models
an understander who does not know that crows have awful voices but is stiil
able to recognize deception by detecting the ulterior motive. This agrees
with one informal protocol in which a listener claimed not to know that

27

crows do not sing, but was still able to detect the planning error.

The reason for indexing TAUs under GOAL failures is that a charae-
ter who experienced a goal failure may have committed a planning error.
One area which still needs exploration is the indexing of many TAUs under
very general memory nodes such as P-CONT-fail. It is clear that people do
not activate this TAU for every planning error they know about whenever
someone looses control of something.

There are two ways to activate TAUs by PLAN choices. The first is to
index the TAU under the memory node for the PLAN. This will result in a
search for a TAU every time that PLAN is executed. This method is used
when executing PLANSs for very important GOALs. For example if a student
had a GOAL failure as a result of turning in a poorly typed paper, he would
have a TAU indexed under the PLAN for turning in a paper. The TAU
would embody the adage,

"An ounce of prevention is worth a pound of cure”.

This TAU would remind him to proof-read the paper before turning it in.
The TAU is indexed under the PLAN itself because the price for committing
the error is high. The trade-off [DYERS3] is the cost of extra processing dur-
ing planing vs. the cost of recovery in case of failure.

_ TAUs may also be activated with PLAN choices after the PLAN has
failed. An example of this is found in the common planning error-of waiting
to wash the dishes until the morning after the party. In executing the PLAN
for getting dishes clean, a person might note that it would have been much
easier to wash them right after the meal, before the food had dried and
stuck to the plates. This would bring up the above adage. In this case, the
TAU is indexed under the actual failure of the PLAN because the price for
bad planning is relatively low [DYERS3, p. 87| compared to the extra effort
it takes to think about the dishes after a party.

Expectation violations are another means of activating TAUs. In this
situation, we index the TAU off of the memory node for an event which does
not occur, but which a reader would expect in normal circumstances. Dyer
[DYERS3] gives the following story as an example:

Car Aflame

Henry came upon an over-turned automobile with a
driver unconscious at the wheel. The car was on fire
and Henry barely managed to drag the driver from
the wreck before the car burst into flames. A month
later, Henry was sued for having injured the driver’s
back when pulling him out of the wreck.

After Henry rescues the driver, the reader expects some show of gratitude

from the driver. The lawsuit is a violation of this expectation. This story is
understood with a TAU, TAU-UNJUST-RETALIATION.

28

The question of exactly which structures to use for indexing requires
collecting protocols from people. The limited number of protocols collected
for this research (5) indicate that for The Fox and the Crow and The
Fox and the Bear, good places to activate TAU-ULTERIOR are,

1) when the deceived character actually looses control
of the object or

2{ when the deceived character does something to allow
the deceiver character to take the object, i.e. when the
loss of control can be predicted.

3.2 TAU processing

TAU recognition involves two distinet activities, (1) finding the con-
cepts in the story that match the ’binding-spec’ and (2) testing the ‘con-
straints’. In Figure 3-1, the =» points to the conceptualization from which
the TAU is activated. Where a TAU is indexed affects when it is recognized.

- TAU
binding-spec
?mtrans (MTRANS actor ?z to ?x)]
7act2 (ACT head ?do)]
- ?p-cont. {(GOAL actor ?x
manner FAIL
obj (POSS-BY actor x

Pgrasp (GRASP actor 7z obj 'yl

obj ?y)]
constraints

resulting(?mtrans,?actl),
thwarting(?act1, ?p-cont)
resulting(?act2,?act1),
not-obvious-result{?grasp, ?mtrans)

Figure 3-1: TAU-ULTERIOR revisited

If the -» is moved higher, the TAU is triggered ealier in processing the story,
lower -- later. The rules for deciding where to index a TAU are given in Sec-
tion 3.3 TAU re-indexing.

As an example, let’s look at how TAU-ULTERIOR gets applied to The
Fox and the Crow. Figure 3-2 shows the conceptual representation for the

story.

29

LOC actor CROW obj TREE
LOC actor CHEESE obj mouth(CROW)
1. PTRANS actor FOX to TREE
MTRANS actor FOX to CROW
obj "you have a nice voice”
MTRANS actor FOX to CROW
obj "sing for me"
SPEAK actor CROW manner SONG
2. PTRANS actor GRAVITY obj CHEESE from mouth(CROW)
GRASP actor FOX obj CHEESE

Figure 3-2: Cé';nceptua.l representation for The Fox and the Crow

We will start the analysis at the second PTRANS. It is recognized as
an instance of dropping something by the fact that GRAVITY is the actor. A
causal link to the Crow’s singing is inferred, i.e. that the SPEAK resuited in
the PTRANS. One of the checks made at that memory node is to see if any
character possessed the object which was dropped. We check for this condi-
tion by looking for either a POSS-BY or a LOC. A P-CONT-fail is inferred
from this loss of possession because the Crow had the cheese before she
dropped it. The demon ‘TAU-RECOGNITION’ is spawned to check for the
occurrence of all TAUs indexed under the P-CONT-fail node. One instance
of the demon is spawned for each TAU and the checking is done in parallel.
In this case two demons are spawned, one for each of TAU-ULTERIOR and
TAU-CONF-ENABL. This discussion will center on the recognition of TAU-
ULTERIOR. Since the TAU is spawned on P-CONT-fail, the recognition
process immediately gets a match for *?p-cont’ with

GOAL actor CROW
obj {POSS-BY actor CROW

obj CHEESE)

After matching this concept, *TAU-RECOGNITION’ searches for concepts in
working memory to match ‘?mtrans’ and ‘?act2’ which will also satisfy
the first three constraints in Figure 3-1. The concepts it finds are

MTRANS actor FOX

to CROW
manner RE
obj (SPEAK actor CROW
manner SONG)
and
SPEAK actor CROW
- manner SONG

If the concepts had not been found, ‘TAU-RECOGNITION’ for this TAU

30

would have stopped.

Since it did succeed in finding the concepts, it sets up an expectation
for the ”Pgrasp’ pattern . The last concept is processed. It matches with
*?graap’ and satisfies the last of the ’constraints’. At this point
CRAM decides that this is an occurrence of TAU-ULTERIOR and indexes
ihe new instantiation under that TAU using the concept that matched
’?p-cont’ as the index. CRAM produces the mapping of story elements to
TAU pattern variables shown in Figure 3-3.

(TAU INSTANTIATION-OF &TAU-ULTERIOR
BINDINGS (
{?D02 . SPRAK]
[?MTRANS . (MTRANS ACTOR (FOX)
70 (CROW) ,
0B (SPEAK ACTOR (CROW
MANNER (SONG))
MANNER (REQUEST))]
{7ACT2 . (SPEAK ACTOR (CROW)
MANNER (SONG))]
[PACT1 . (PTRANS ACTOR (GRAVITY)
FROM (BODY-PART NAME (MOUTH)
OWNER (CROW)})
OBJ (CHEESE))]
[?GRASP . (GRASP ACTCR (FPOX)
OBJ {CHEESE))]
[?2 . (FOX)1
[?P-CONT . (GOAL MANNER (FAIL)
OBJ (POSS-BY ACTOR (CROW)
OBY (CHEESE)))}
{?Y. (CHEESE)]
[?X . (CROW)])

| Figure 3-3: TAU-ULTERIOR for The Fox and the Crow

" The TAU-ULTERIOR used in the current implementation of CRAM is a
specialization of the one presented in Section 2.1. The only GOALs are
possession GOALs and the only way to get something is to GRASP it.

31

3.3 TAU re-indexing

The fact that we can point to the place in a TAU where it is indexed
is important for re-indexing TAUs. Dyer [DYERS83| gives two strategies for
deciding whether to index on a memory structure before or after the goal
failure occurs, based on a trade-off of processing time vs. good planning per-
formance. Figure 3-4 shows Dyer’s indexing rules.

if the goal to be achieved has IMPORTANCE < NORM
and the situation arises infrequently
then don’t build access link to the associated TAU
until most of the pattern has been recognized
(possibly after a failure has occurred)

if the goal to be achieved has IMPORTANCE > NORM
or the situation occurs frequently
then build access links to the sssociated TAU
as early as possible (i.e. before a failure
has occurred)

Figure 3-4: Dyer’s TAU indexing rules

In our representation for TAUs, we simply have to move the TAU index to a
concept above the = in the *binding-spec’ to cause recognition to occur
earlier. The index is moved below the current location of the -» to make
recognition occur later.

3.4 TAU Disambiguation |

, We need to deal with the case of multiple TAUs indexed off of the
same structure. This happens in CRAM where TAU-ULTERIOR and TAU-
CONF-ENABL are both indexed because both share the memory node P-
CONT-fail. Since there are cases where a TAU indexed off a very general
memory node such as P~CONT-fail will not be instantiated, we need to
know when to stop looking for a particular TAU.

Since the processing is very heavily demon-based [RIES79, DYERS3]
the natural solution to this problem is to spawn a demon for each TAU in-
dexed under the memory structure. The memory structure for P-CONT-fail
is shown in Figurg 3-5. Thus two demons will be spawned when P-CONT-
fail is encountered .

However this is not the only place where TAU-ULTERIOR is indexed. It is
also indexed off of the memory node for lying as was mentioned in Chapter
2. The code for detecting lies is not implemented in CRAM and so it only
finds them if they are mentioned as such.

32

P-??N'.I'.‘

isa

P-CO!?T-fa:Ll
i

bmm——pm——
| !
i]

A H .
TAU- TAU~ .
CONF DECEIT
ENABL

3

Figure 3-5 P-CONT-fail

Now we have to deal with the question of when to kill the demon for
the TAU which is not present. The method used in CRAM is to have each
instantiation of ’TAU-RECOGNITION’ count the number of concepts it
finds after it is spawned (i.e. the ones below the =» in Figure 3-1). The
demons can then be queried to find out how many patterns they have recog-
nized. Demons which fall behind in the number of concepts they recagnize
are killed. In the current implementation this is a numberic threshold.

3.5 Conclusions

For the recognition process, the representation of TAUs used by
CRAM has several advantages over that used in BORIS [DYERS3|. First, the
indexing point in the TAU allows a quick decision to be made whether or
not to continue processing a particular TAU. If the concepts above the —»
are not found, recognition stops. This means that a large number of TAUs
can be indexed off of memory structures without imposing a large processing
burden on the program.

An additional advantage is that if we want to re-index a TAU, we can
use the indexing point, indicated by the —» in the examples here, to make
TAU recognition occur earlier or later for any particular TAU. The pattern
pﬁ)in{‘edUto by the = is used to locate the memory node at which to index
the TAU.

Another advantage is that the representation- gives us a metric to
measure the "goodness” of the match during the recognition process. The
metric is the number of concepts recognized by the TAU-RECOGNITION
demon after it was spawned on that particular TAU. This number is com-

" A pumeric threshold is probably not the best to decide when a demon
should be killed, but it provides an approximation. .

33

pared among TAUs spawned to explain the same GOAL failure. Again, this
means we can index a number of TAUs off the same memory node without
worrying about possible conflicts. For example, we saw that a story can have
both TAU-ULTERIOR 2nd TAU-VANITY, but we would not want a story to
have the two adages,

"Pride goeth before a fall” and
"Nothing ventured, nothing gained”

x
because they are contradictory. This is also important in using TAUs as
planning critics.

thontraditory themes is a literary device which is not accounted for by this
theory. ,

34

CHAPTER 4
Representation and Memory Organization

This chapter describes the way that ACTs, STATEs, GOALs, and

PLANs are represented in CRAM. ‘I?:? also covers the representation and or-

anization of memory nodes. These are the same memory nodes used for
‘AU indexing in the previous chapters. :

The representation format used in CRAM is slot/filler, sometimes re-
ferred to as frame representation. A conceptual object is represented with a
'head’, indicating the type of object, and several 'slot/filler’ pairs indicating
properties of the object. A 'slot’ is a property name and a 'filler’ is the value
of that property. Objects are grouped into classes which share the same set
of possible 'slots’. For example, ACT and STATE are representation classes.
The fillers for slots can be other concepts, with siots and fillers, or atomic
concepts. Atomic concepts are those which have no slots. For example, the

representation for
_ "The fox walked to the tree”
is

PTRANS actor FOX
: obj FOX
to (PLACE name TREE)
instr (MOVE actor FOX
obj (BODY-PART name LEGS
owner FOX))

where the words in capital letters are either heads or atomic concepts and
slots are indicated with lower case letters. In this example, the heads are:
PTRANS, MOVE, PLACE, and BODY-PART. The atomic concepts are: FOX,
TREE, and LEGS. Frame 'heads’ are also called primitives when referring to
the set of concepts which have that 'head’. In the above example PTRANS is
a primitive ACT.

4.1 Memory Representation
The frames for memory nodes are called MFRAMEs. These are loose-
ly related to Schank’s MOPs (Memory Organization Packets) {SCHA82a] in

that each MFRAME has an index to similar but more specialized
MFRAMEs. Figure 4-1 shows the slots for a MFRAME.

MFRAMEs are organized into a specialization hierarchy [LEBOZ0, KOLOS80]
by the isa links and the spec-MFRAME discriminator.

35

MFRAME isa -parent-MFRAME-
instantiation -conceptualization-
spec-MFRAMESs -discriminator-
demons -expectations-
rutes -processing-rules-

opt-itmal I-links
where }he structure of I-links is
tink-name MFRAME
: Figure 4-1: MFRAME structure

In addition, the ‘Instantiation’ slot holds the concept that the
MFRAME organizes. For MFRAMEs that hold concepts encountered in a
story, this is an ACT, STATE, PLAN, or GOAL from the story. MFRAMEs
that represent uninstantiated concepts have patterns, with free variables,
which are matched against story concepts during memory incorporation. If
an MFRAME has a filled in concept in its instantiation slot then it is part of
an episode. If it has a pattern, then it is a concept template.

Concept template MFRAMES also contain knowledge. This knowledge
defines the meaning of the concept. The *demons’ slot tells which demons
- should be spawned if this memory structure is activated. In CRAM, demons
are used for

-memory search
-inference
-expectation
-TAU recognition

Demons have three major parts: TEST, +ACT, and KILL [DYERS3|. When a
demon is spawned it is placed on the agenda. If its TEST part (a LISP ex-
pression) becomes true, the +ACT part (another LISP expression) is execut-
ed. If the KILL part becomes true before the TEST part does, the spawned
demon is removed from the agenda. The 'rules’ siot holds the set of all the
processing rules which can be applied when connecting this MFRAME to
another MFRAME.

MFRAMESs have 18 optional slots, one for each direction of the 9 pos-
sible L-links of Section 1.3.4. The I-links with the names for forward and

36

backward directions are given below.

LINK Forward Backward

intention intends intended-by
achievement achieves achieved-by
realization realizes realized-by
enablement thwarts thwarted-by
plan-blocking blocks blocked-by
resuiting resulting-in result-of
disablement disables disabled-by.
motivation motivates motivated-by

There are also two links for temporal relations: “follows’ and “foliowed-by’.
4.2 ACT, STATE, GOAL, and PLAN Representation

The ACTs used in this implementation are those given in Section
1.3.1, Schank'’s CD ACTs. The ’heads’ for the AGCTs are: ATRANS,
PTRANS, PROPEL, MOVE, GRASP, INGEST, EXPEL, MTRANS, MBUILD,
SPEAK, ATTEND. There are 7 possible siots an ACT can have: actor, obj,
from, to, instr, mode, manner.

More complex conceptual activities, such as “fishing”, are represented
with pointers to the memory node for that activity and a slot for the "actor’.
The representation for "The Fox is fishing" is

MFRAME isa &FISHING
actor FOX

Words in capital letters prefixed by a '&' are pointers to concepf templates.
There are 4 primitives for STATEs in the forest micro-world.
APPRAISAL - 3 subjective judgement on the quality of something
POSS-BY - a character possessing an object
LOC - the location of an object or character
HEALTH - the physical health of a character
These primitives take 4 slots:
mode - can be filled by either POS or NEG to
indicate the truth or falsity of the STATE.
actor - the character or object to which the STATE refers
obj - the value of the STATE
manner - a modifier

For example, the representation for "The Fox says the Crow has a good

37

voice” is

MTRANS actor FOX
obj (APPRAISAL actor (BODY-PART name MOUTH
ownar CROW)
obj GOOD
manner SONG)

The tag GOOD is used as part of a three place ordering: GOCD, NEUTRAL,
and BAD. This ordering is used in CRAM any place a metric is required.

: There are two types of objects in CRAM: primitive objects, which are
represented as atomic concepts, and complex objects. Examples of primitive
objects are: FOX, BEAR, and HONEY. These are primitive because for this
domain, the decision was made not to provide a more complex representa-
tion for these objects. In the original conceptual dependency theory
[SCHAT2] these were referred to as picture producers. There is some infor-
mation associated with primitive objects. For example, FOX and BEAR are
tagged as animates, and HONEY is tagged as a food. Besides the primitive
objects in the forest two types of complex objects are required. The complex

object types are

BODY-PART and
PLACE

The slots for complex objects are

owner - the owner of the BODY-PART or the character
who lives at the PLACE.
name - a distinguishing name for the object
spec - for objects with sub-parts, a specification of
a sub-part (e.g. BRANCHES of the TREE)
relation - for PLACEs, another PLACE with
a specific relationship to the first.

The representation for the complex objects is designed to have the same
characteristics as the primitive ACTs, namely, that conceptually related ob-
jects have similar representations but that differences are also reflected. For
example, when representing the location of characters who are "at the
stream” we want to make sure that the representation reflects the close
proximity of the characters. Hence we may infer that these characters can
talk to each other. However, we don't want to say that all the characters
who are near the stream are in it, or CRAM would infer that they were all
engaged in an activity associated with the stream (e.g- bathing, fishing,
drowning, etc.). For example, the representation for "near the bank of the
stream” is)

This is obviously not an adequate representation of "good voice”, but the
emphasis in this research was not placed on finding a correct representation
for "talent”. Instead, the emphasis was placed on using a representation in
detecting planning errors, given that we have some adequate representation
for "talent”.

38

PLACE name STREAM
spec SHORE
relation NEAR

This specifies a PLACE which is at the STREAM, more specifically, the
SHORE, and in particular not exactly at the SHORE, only NEAR it.

GOALs and PLANs are represented with simply an ‘actor’ for the
desirer and an ‘obj’ for the objective of the desire. A GOAL represents the
desire of a character; a PLAN is a decision by a character to take some ac-
tion to bring about a GOAL. CRAM uses the GOAL types of Schank and
Ableson [SCHA77] described in Section 1.3.2. The GOAL types required
for the stories presented here are D-GOALs and P-GOALs. The delta GOALs
used are D-KNOW, for the goal of a character knowing something, apd D-
CONT, for the goal of a character gaining possession of an object. The P~
GOALs used are P-CONT, for the preservation of control of an object, and
P-HEALTH for preservation of physical well-being. In order to denote GOAL
and PLAN types, we use pointers to memory nodes for the generic GOAL and
PLAN types. For example there are memory nodes for P-CONT, D-CONT,
and P~CONT-fail. A representation for the Fox having a D-CONT goal for
the cheese is

MFRAME isa &D-CONT
instantiation
(GOAI. actor FOX
obj (POSS—BY actor FOX

obj CHEESE))

Along the same lines,

MFRAME isa &GRAB-PLAN
(PLAN actor FOX
obj (POSS-BY actor FOX
obj CHEESE))

represents an instantiation of GRAB-PLAN by the Fox to get the cheese.

This representation is more flexible than primitives for specific GOALs
and PLANs because we don’t need to specify the GOAL and PLAN types at
parse time. For axample, the sentence, *"The Crow was disappointed”, can
be represented by

GOAL actor CROW
manner FAIL

Later, if 2 story mentions the reason for the failure, the *obj’ slot and the
pointer to the GOAL type can be filled in. Likewise, we can represent "The
Fox tried to get the cheese” with the PLAN above, without the pointer, i.e.,

" This representation does not deal with issues of affect. For a good
treatment of this subject, see Dyer [DYERS3].

39

PLAN actor FOX
manner FAIL
obj (POSS-BY actor FOX

obj CHEESE)
since we don’t know the actual plan that the Fox employed.

4.3 Memory Organization

Two of the slots in the MFRAME frame are used for implementing
hierarchical memory: ‘isa’ and "spec-mops’. The 'isa’ slot is used to point to
the generalization of a memory node. For example, P-CONT is a generaliza-
tion of both P~CONT-fail and P-CONT-succeed hecause it does not specify -
the status of the GOAL.

The "spec-mops’ slot points to a discriminator which determines if a
given concept is an occurrence of a more specialized memory node. Figure
4-2 gives the discrimination net for PTRANS. Figure 4-3 gives the internal
representation for &PTRANS.

actors=ob]

*

{ from=s

| (PLACE ...)

o e e ol o - o

SLEAVING

7]

- - -

'.Ln?t:- MOVE obj (BODY-PART name LEGS)
bm————— -
!
SWALKING

Figure 4-2: Discrimination net for PTRANS

The elements of the NET in figure 4-3 are pairs,
{[pattern memory-node]
where ‘pattern’ specifies the additional conceptual features which discrim-

MFRAME isa &2ACT
actor ™
instantiation
PTRANS actor 7x from 7z
to ?y obj 'w
spec-mops
NET
[PTRANS instr (MOVE obj (BODY-PART name (LEGS))))
WAI_KING]
PTRANS mannerqgliw 2IUMPING]
PTRANS act.org f) &FALLING]
PTRANS actor
obj x
from (PLACE))

[» ¥

rules
RULE-SET
&movement-rule
&getting-there-rule

Figure 4-3: The MFRAME for PTRANS

inate 'memory-node’ from its generalization. So, for example, if a PTRANS
has "actor’ GRAVITY, then it is an occurrence of ZFALLING. The last [‘{:ed
pair shows the discriminator for a character departing from a location. The
discriminating features are that the ‘from’ slot is filled and the ’actor’ and
*obj’ slots are the same. Phrases or words in lowercase preceded by an '&’
are processing rules. Figure 4-4 shows the memory nodes for &FALLING
and &ZLEAVING.

Consider the RULE-SETs used by these three MFRAMEs. There are two
rules applicable to all PTRANSes. The ‘&movement-rule’ expresses the
knowledge that a PTRANS changes the LOC of an object. The "&getting-
there-rule’ states that a PTRANS to a place is connected with an ‘achieve-
ment* link to a GOAL of being at that place. These rules are general and ap-
ply to all physical movement of objects. For that reason they are indexed
under &PTRANS and not more specific nodes. If we did not use an
MFRAME hierarchy, we would have to repeat these rules for each of the
more specific forms PTRANS can take. This would be quite inefficient from a
processing point of view and also would not reflect the kinds of generaliza-
tions that humans make.

The more specific nodes, &FALLING and &LEAVING, have more
specific rules. The ‘Zdrop-rule’, indexed off the node &FALLING, states that
jumping up can cause a character to drop what it is carrying. These nodes
also have demons associated with them. &FALLING has a demon to check
whether 2 P-CONT~fail should be instantiated. &LEAVING spawns a demon

41

| ACT |
B +
!
{isa
L] *
{ PTRANS |
! rules |
+* +
' '
] !
lisa iisa
| PALLING !] LEAVING H
! demcnis | | rules |
+ + ! demons |

Figure 4-4: Memory nodes for &FALLING and &LEAVING

to update the database and assert that the character who left is no longer at
the *from’ slot.

4.4 Where Hierarchical Organization Fails

Even in the forest micro-world we have situations where the discrimi-
nation hierarchy does not work. There is not always a primitive to use as a
conceptual feature. One place where this happens is in the story "The Fox
and the Bear". Here there is mention of an activity, FISHING, which can-
not be classified based on a conceptual ACT. There is no single ACT associ- *
ated with Gshing. However there is a distinct memory structure for this ac-
tivity. In this model, memory structures without specific instantiating ACTs
serve three purposes.

The first is to provide memory connections to other structures. Some
PLANs and GOALs are *achieved-by’ and ‘realized-by’ larger activities. For ex-
ample, the S~HUNGER goal and the CATCH-FOOD-PLAN, intended by this
goal, are both connected to the FISHING structure by ’achieves’ and ‘realizes’
links respectively. Another way to think of higher level memory nodes is as
scripts that only get mentioned, not fally instantiated. That is because in
CRAM there is no more detailed representation of what it means to fish,
only the abstract concept connected to other concepts.

The memory nodes for higher level activities also organize inference
rules and expectations associated with that activity. For example, there are
props and settings associated with an activity. The mention of these things
needs to be connected to another node for the instantiation of that activity.

In The Fox and the Bear, the mention of the fish on the bank is linked to
the instantiation of the FISHING structure with a ‘resulting’ link. There is an
expectation from FISHING to see fish and also to see characters eating fish.
This allows the mention of the prop to be connected to the concept for the
activity. The organization of memory around &FISHING is shown in Figure
4-5.

cox P
[]
tisa > {isa
. S=HUNGER<===== e ==FISHING=========>CATCH-FOOD-PLAN
: ‘I" achieves realizes ‘ ‘I‘
* . +
intention

Figure 4-5: Memory organization around &FISHING

Memory nodes also provide a higher level representation than simple
ACTs and STATEs. For example when a parser comes across the sentence,

"The Bear was fishing in the stream”
it needs a structure with which to represent this. In the CRAM model, this

sentence is represented with an instantiation of FISHING and a LOC. The
representation is shown in Figure 4-6.

MFRAME isa &FISHING
actor BEAR

LOC actor BEAR
obj (PLACE name STREAM)

Figure 4-8: Representation FISHING

4.5 Bottom-Up Recognition of Structures

There are two ways that structures such as FISHING can be instan-
tiated. The first was alluded to above; we can determine that a particular
structure should be instantiated from some lexical item in the input. This
lexical item may be a word or an idiomatic phrase. Another method is
through expectation. In CRAM, whenever a scene (LOC) is mentioned, and
does not get connected to any other structure, expectations are set up for all
the activities which usually take place in that setting. This is the case with
the STREAM and FISHING. Mention of the STREAM causes an expectation
for other elements of the FISHING activity, specifically FISH. These higher
level activities have no ACT associated with them, but, as in Figure 4-5,
they are linked to other ACTs, PLANs, and GOALSs. The concepts linked to
the activity are used as expectations. Subsequent inputs are checked to see
if they satisfy expectations for a particular activity. In this manner, the
mention of the Bear at the stream and the fish on the bank are sufficient to
instantiate the FISHIMG structure,

CHAPTER 5
Process Model

The process model is;the description of how the knowledge structures,
deseribed in the last chapter, are used to understand a story. The parts of
the process model that are covered in this chapter are:

- Memory Incorporation - finding the right memory node
under which to index a concept.

- Expectation - generating expected :events from the memory
node found for a concept.

- Causal Reasoning - the application of processing rules
for forming I-links.

The top level processing loop for CRAM is given in Figure 5-1. The words in
CAPITALs will be explained in the following sections, The '#'ed entries are
where inputs can get EXPLAINED?. A concept is considered explained if it is
connect with an I-link to some other concept in the story.

for each concept in the story
MEMORY INCORPORATION (concept)
CHECK EXPECTATIONS -
if EXPLAINED? (concept) then
else SPAWN DEMONS

RUN ACTIVE CAUSAL RULES on(concept)
if EXPLAINED? (concept) then
SPAWN DEMONS
else
ADD concept TO *WORKING-MEMORY#
SPAWN DEMONS

Figure 5-1: CRAM top level understanding loop

45

5.1 Memory Incorporation

The placement of a concept in the memory hierarchy is very impor-
tant. Placing a concept under too general a memory structure will inhibit
the application of knowledge potentially applicable to the situation. For ex-
ample, when classifying a PTRANS, it is important to be able to tell "falling”
from "departing” as in Chapter 4. The node for "falling” has knowledge
about characters possibly losing control of the object which fell. The node
for "departing” has information about GOALs associated with departing and
expectations about arrivals later in the story.

There are two ways that an input gets placed in memory; One is
bottom-up, by specific reference. For example, the representation of the
sentence,

*The bear was fishing in the stream”
is immediately placed at the memory structure FISHING.

The other type of incorporation, the type referred to by MEMORY
CLASSIFICATION in Figure 5-1, is top-down. For each memory node, there
is an index of specializations of the concept it holds. For example, in the
sentence, "John killed his brother”, we can get bottom-up to the MURDER
node, but it takes a top-down process using the “spec-mop’ index of MURD-
ER to check the relation between the killer and victim to get to the FRA-
TRICIDE memory structure.

During the memory incorporation phase, a concept is compared to the
'spec-mop’ index of the MFRAME where it is initially classified. This may
result in the concept being placed at a more specific memory structure. This
process is repeated, classifying the concept at successively more specific
MFRAMESs, until no further specializations can be found.

As an example, take the sentence, "The Fox told the Bear there was
honey at the tree”, which is represented as,

MTRANS actor FOX -
to BEAR
obj (LOC actor HONEY

obj TREE)

The first step is to recognize that this is an MTRANS. Then CRAM looks
at the 'spec-mops’ discriminator for the generic MTRANS and sees that this
is an occurrence of the structure for telling someone the location of some-
thing, MTRANS-loc. This classification makes knowledge associated with
MTRANS-loc available for explaining this and subsequent inputs. Some
knowledge structures indexed under MTRANS-loc are expectations for D-
CONTrol GOALs motivated by the MTRANS.

46

Figure 5-2 shows a portion of CRAM’s memory before any stories are
processed. The tree structures indicate 'isa’ links. The diamond under P~
CONTfail indicates a choice between two possible TAUs. For clarity, the I
links which also connect these memory nodes are not shown.

PTRANS MTRANS P-CONT GRASP
Ll S 7]\ | S |

Walking Request Lie : Take

<> ~ P~CONT-fail
TAU-ULTERIOR <>

TAU-ULTERIOR TAU-CONF-ENABL

' Figure 5-2: Empty CRAM memory

After CRAM has processed some stories it has concepts from those
stories indexed in its memory. Figure 5-3 shows CRAM’s memory after pro-
cessing The Fox and the Apple 2nd The Fox and the Bear. At the bot--
tom of the diagram is shown the processing state near the end of The Fox
and the Crow. The labeled arcs indicate I-links. The box around TAU-
ULTERIOR indicates that CRAM has just determined that this TAU is con-
tained in the story.

Figure 5-3 shows CRAM's memory after all three stories have been
processed. The X'ed arcs indicate the concepts which CRAM uses to index
the new instances of the TAUs it has found.

5.2 Expectations

With each MFRAME comes a set of expectations which are activated
each time a concept is classified at that node. For example, in the forest
micro-world, indexed under MTRANS-loc is an expectation,

if the thing is something the hearer likes (food)
then EXPECT a goal to have the cbject
or a sub-goal for a plan to get the obiect

Expectations can explain an input much more efficiently than running
through all the applicable processing rules. In the example above there is a
standard GOAL, S-HUNGER, motivated by acquiring new knowledge about
food. It is more efficient to generate this expectation off of MTRANS-ioc
than to perform a PLAN/GOAL analysis after the character has already
started to achieve the GOAL.

47

GRASP

AL

Jumping
Walking l Request Take
fox-mtnn]

fox-jump apple-drop T
/.!\ P-CONT-fail
fox-walking] fox-arrivai fox-theft
. TAU-ULTERIOR <>

bear-departure b
'AU-ULTERIO TAU-CONF-ENABL

_

A

P

GOAL r
| |
[:m-loc H_cheen-loc H fox-comes }effox-fatterytefox-request }{crow-liup I-F:heu«(;&HTax-gnﬂ

Figure 5-3: CRAM’s memory with 2 1/2 stories

TN e |
Jumrin;.l!“n:d?:\m-fi::qé , \}“‘ e Take

fox-jemp apple-drop < fox-lmnu r\
_ P-CONT-fail

fox-wajking foxdyrrival x-Hattery fox-theft fox-grab

TAU-ULTERIOR <>

bear-departure fox-comes fox-request
TAU-ULTERIOR TAU-CONF-ENABL

-

P. Y
P Y i

Figure 5-4: CRAM’s memory with 3 stories

5.2.1 Expectation indexing - The expectations are indexed off of two
places in the memory structure. (1) They are indexed off of MFRAME:s.
These expectations are spawned when the new conceptualization is either
explained or added to *CLASSIFICATION-WM# as shown in Figure 5-1. (2}
Expectations are also indexed off of processing rules. When a rule fires, it
may spawn some expectations. This is good because the rule acts as an extra
condition on the demon’s activation. Indexing expectations off of rules takes
more knowledge out of the demons, where it is represented as LISP code,
and puts in into the declarative 'pattern-&-constraint’ notation used by
TAUs and_processing rules. The ‘pattern-&-constraint’ notation is explained
in the next section. '

The demons take the input concept and use its slots to create a new
concept. The demons are run at every cycle to see if the expected input has
occurred. When it does, the I-link is made and the new input is considered
explained in the sense of the EXPLAINED? test of Figure 5-1.

5.3 Processing Rules

Processing rules are constrained causal and intentional links. Two ex-
ample processing rules, "&drop-rule’ and ‘2too-high-rule’ are given in Figure

The first rule states that a character jumping up can cause him to drop
what he is carrying. The second rule states that the location of an object
can thwart a goal to get it, if the object is above the character who wants it.

The process of rule application is as follows:

if both the ‘ante’ and ‘conseq’ patterns are found
in working memory
and the constraints are true
then form the I-link indicated between the two concepts

5.4 Reasoning in Hierarchical Memory

This section describes how CRAM uses its memory hierarchy to rea-
soning about concepts. Most of the power of CRAM'’s reason process comes
from the way concepts are indexed in memory and the way knowledge is
shared among structures in the hierarchy.

5.4.1 Processing Rule Inheritance - Processing rules express general
knowledge about possible situations which might occur in memory. They are
not fired unless both the *ante’ and ‘conseq’ parts are matched by elements
of working memory and all the comstraints are satisfied. The reasoning
mechanism can be characterized as passive. For this reason it is completely
safe to allow processing rules to be inherited from more general down to
more specific situations, as opposed to active methods such as hypothesis
and test. Active methods do not work well with generalization hierarchies
because often more specialized situations make hypotheses created from

49

IF the concepts
7ante = (PTRANS actor ?x
obj 7x
manner JUMP) and
?conseq = (PTRANS actor GRAVITY
obj ?
frojmy(BODY-PABT name ?z
owner ?x))
are found in *WORKING-MEMORY# and the constraint
location(?y,(BODY-PART name ?z owner ?x)) ~
is met "
THEN assert a RESULT link between ?ante and ?conseq

IF the concepts
7ante = (LOC actor ?x
obj ?7y) and
conseq = (GOAL actor ?z
obj (POSS~-BY actor ?2

obj ?x

are found in *WORKING-MEMORY#» 2:)nd the comstraint
above(?y,?z)

is met

THEN assert a THWART link between ?ante and ?conseq

Figure 5-5: Example processing rules

more general situations obsolete. An example of this is the forward inference
from the GRASP ACT that a character has a D-CONT GOAL which the
GRASP achieves. At a more specific node, GRASP-food, the proper forward
inference is that the character has an S-HUNGER GOAL which it is achiev-
ing. In the current implementation of CRAM, this mistake is made because
there is no memory node for GRASP-food.

Inheritance allows for a more efficient memory organization. All that
has to be specified is that a node is, for example, a D-CONT and all the
knowledge applicable to that GOAL type is available.

5.4.2 Expectation Non-inheritance - There are two reasons why expecta-
tions are not inherited from more general situations. The first was men-
tioned above. Expectations are an active reasoning mechanism. The second
reason is that expectations are created in people by seeing a specific event
sequence repeated a number of time under certain circumstances. The cir-
cumstances are embodied by all the discriminations it takes to go down the
memory hierarchy to a particular MERAME. The event sequence is the com-
bination of the event which is classified at that node and the ones which are
expected. Expectation inheritance would not model the way people create
expectations.

30

5.4.3 I-link Inheritance - Inheritance of I-links is important because we
want to accurately model the default reasoning processes of people. People
are too good at common sense reasoning to be working very hard at it. That
is, they cannot possiblely be cycling through a huge database of inference
rules all the time. Therefore we must postulate some memory-intensive or-
ganization of real world knowledge about PLANs, GOALs, ACTs, and
STATEs which will allow CRAM to process concepts efficiently.

In contrast to this design goal, PAM [WILET78| completely instantiat-
ed the PLAN/GOAL structure for each input until it was completely ex-
plained. This created a large memory structure for each story. CRAM, how-
ever, allows inputs to exist unconnected to other inputs unless the
knowledge for making the connection is right at the surface, i.e. indexed at

MFRAME for the specific situation or inherited in causal rules from more
general situations.

Inheritance of I-links from higher levels allows defaults to be used
when they are needed to satisfy either rule or TAU ‘constraints’. For exam-
ple, CRAM uses an I-link going one way at a very high level to express that
for each PLAN there must have been a GOAL. If the GOAL is ever actually
needed, it can be derived by a simple pattern match with the PLAN and an
instantiation of the GOAL. Figure 5-8 shows a portion of the CRAM
memory with the default I-links in place. Default I-links are those which
can always be expected to hold.

: ' grabbing somthing
achieveg—=—==- o e e —— of someone else’s

| ! .
! D-GOAL<--intended---—--- PLAN . 4=====GRASP .
! L by : ! .
! x b 4 x .
H ! ! ! .
+=>D=CONT<~-intended--GRAB-PLAN<———=~=== >»GRASP-OBJECT
by realiz- i
ation ?

X indicates specializations which are indexed under
a memory node.

Figure 5-8: CRAM memory with default I-links

51

5.4.4 Pattern Based Reasoning - Because of the declarative nature of the
representation presented here, all the reasoning is heavily dependent on the
pattern matcher. For example, in order to derive the implicit goal for a
GRAB-PLAN, the pattern for the PLAN,

PLAN actor ?x
obj (POSS-BY actor ?x

obj ?y))

is matched with the actual input pattern. The intended-by slot of GRAB-
PLAN, Figure 5-3, is followed back to D-CONT which. has as its pattern,

GOAL actor 7x
obj (POSS-BY actor x

obj ?y))

which is then instantiated with the proper character and object from the
PLAN. Llinks to generic structures express default conditions: For this rea-
son there is no complementary intends I-link from D-CONT to GRAB-PLAN
because there are several PLANs available for that GOAL.

Another example is finding a GOAL from an ACT which ‘achieves’
that GOAL. Referring to Figure 5.3 we can see that there is a default I-link,
*achieves’, from the generic GRASP to the D-CONT node. To get the instan-

_tiated goal, take the specific GRASP,

GRASP actor FOX
obj CHEESE

* and match it with the generic GRASP,

GRASP actor ™x
obj 7y

and instantiate the generic D-CONT,

GOAL jactor ?x
obj (POSS-BY actor ?x

obj ?y)
with the bindings from above to get
GOAL actor FOX .

obj (POSS-BY actor FOX
obj

52

5.6 Conclusions

One of the important ideas in this theory of understanding planning
failures is that we need a tight, well-defined memory representation and a
good clean processing model in order for a TAU to be represented non-
procedurally. As we saw in Chapter 2, we need to make statements in
representing TAUs about both the state of processing (TAU-ULTERIOR})
and the state of the memory representation (TAU-TOO-RISKY). This pro-
cess model provides those features.

53

CHAPTER 6
Implementation Details and Trace

The current implementaion of CRAM has the following knowledge
structures: : :

29 memory nodes
5 TAUs

10 causal rules

11 demons

15 constraint types

The code for the demon management is an adapation of the McDYPAR code
YERS3. MOORS4, DOLAS4]. The representation system used was T-CD
OLA84|. The following is an annotated trace of the CRAM model running

on The Fox and the Bear. The entire run, with all trace facilities turned

on, took just over 3 minutes on an Apollo DN300 in T. The majority of the

CPU time was spent in the pretty printer.

> {index-story fox/hear-story) -

Figure 2-1 is repeated here. It gives an abbreviated representa-
tion for the story. The text for the story is in Section 1.1.

LOC actor BEAR obj STREAM
M-FISHING actor BEAR
POSS-BY actor BEAR obj FISH
PTRANS actor FOX to STREAM
MTRANS actor FOX to BEAR
obj (LOC actor HONEY

obj TREE)
PTRANS actor BEAR from STREAM
GRASP actor FOX obj FISH

a» Starting to index a new stoxry #»

Each conceptualization in the story is labeled with a mnemonic
name to help the reader in interpreting the trace. None of the
names are used in the processing

Indexing #{REF.1073 &BEAR-LOC}

54

The conceptualization for "The Bear was at the stream.”

Classifying (LOC ACTOR (BEAR)
OBY (PLACE NAME (STREAM)))

When no bottom-up inferences are assumed, classification starts
at the very top of the MFRAME tree.

Starting at #{REF.285 SMFRAME}

Note how the classification process moves down to more specific
levels. :

Moving to #{REF.289 &STATE}
Moving to #{REF.433 SLOCATION}
Moving to #{REF.803 SPLACE~-LOCATION}

ZPLACE-LOCATION is the memory node for a thing's being at
a location. It indexes knowledge about how things get to places.

Placed at #{REF.803 &PLACE-LOCATION}

In the current implementation of CRAM the entire conceptuali-
zation and only the conceptualization is used to index the new
MFRAMEs.

#{RE¥. 1073 &BEAR-LOC} placed, indexing off
#{RE¥.B803 SPLACE-LOCATION} with
(LOC ACTOR {(BEAR)
OBJ (PLACE NAME (STREAM))})

Running demons

Explaination fails because there are no other MFRAMEs in work-
ing memory to which to connect this structure.

Attempting to explain #{RE¥.1073 S&BEAR-LOC} in terms of,
#{REF.803 SPLACE-LOCATION} and one of »CLASSIFIER-WM» nodes.

#{REF.1073 SBEAR-LOC} not explained. Adding another node
to *CLASSIFIER-WM»
#{WM-NODE.2223 #{REF.1073 &BEAR-LOC}}

Indexing #{REF.1074 SBEAR-FISHING}
This is the representation for "The Bear was fishing.” As we saw
in Section 4.4 there is no primitive representation for this con-

cept. NO-ACT is an ACT used as a place holder for such
representations.

55

Classifying (NO-ACT)

It is assurﬁed that the parsing process would immediately place
any mention of fish at the memory node M-FISHING.

Starting at #{REF.1001 SM~FISHING!}
Placed at #{RE?.1001 SM-FISHING}

#{REF. 1074 SBEAR-FISHING} placed, indexing
" off #{RE¥.1001 SM-FISHING} with -
(NO~-ACT) :

Running demoms

Attempting to explain #{REF.1074 SBEAR-FISHING} in terms of
#{REF¥.1001 SM-FISHING} and cne of *CLASSIFIER-WM# nodes.

to explain #{REF.1074 SBEAR-FISHING} in tezms
of *CLASSIFIER-WM#»

The explanation process works up the memory tree from the
node in working memory in parallel. As an example, if we had a
memory hierarchy like this,

1
7N / N\
VAN BN /N
3 .4 5 6 7
/7 \
8 9

and nodes 8 and 9 were in working memory, the knowledge
structures associated with each node would be examined in the
following order.

6 and 9, then
2 and 3, then
1

That way, a very general explanation rule is not applied when
there is a more specfic one available from another node.

Explaining #{REF.1074 SBEAR-FISHING} in terms of
(#{REF.1074 SBEAR-FISHING} #{REF.1073 &BEAR-LOC})

Explaining #{RE¥.1074 SBEAR-FISHING} in terms of
(#{REF.1001 SM-FISHING} #{REP.803 SPLACE-LOCATION})

Explaining #{REF.1074 SBEAR-FISHING} in texms of
(#{REF.285 SMFRAME} #{REF.433 S&LOCATION})

56

Explaining #{REF.1074 SBEAR-FISHING} in terms of
(#{RE¥.289 &STATE})

There are two expectation demons indexed off of M-FISHING,
SETTING-EXPECT and PROP-EXPECT to set up expectations
for mentions of the STREAM and FISH.

Spawning demcn: SETTING-EXPECT. 2235
(SETTING-EXPECT

¢ #{WM-NODE.2234 #{REF.1074 SBEAR-FISHING}}
- (STREAM))

:--ii---:;---s-----s--- SETTING-EXPECT.2235 sasaszzsazas
TEST: "Look for a setting which will be explained by"
"+the MFRAME which spawned this demon”

ACT: "connect the two MFRAMEs"

Spawning demom: PROP~-EXPECT.2236
{ PROP-EXPECT #{WM-NODE.2234 #{RE¥. 1074 S&BEAR-FPISHING}}
(FISH))

AEESEEEEENEERBESIENENEEES PROP-EXPECT . 2236 mussasazzsazazss
_ TEST: "1.00k for the mention of a prop associated"
"with the MFRAME on which this demon is spawned"

ACT: "Connect the MFRAME to the first MFRAME"

#{REF.1074 SBEAR-FISHING} not explained. Adding another
node to »CLASSIFIER-WMs ° .
#{WM~-NODE.2234 #{REF.1074 SBEAR-FISHING!!
At this point the *CLASSIFIER-WM# has the following structure,
[]

&BKAI'I—LOC SBEAR-FISHING

] 1
wm~node.2234 wa-node . 2223

Indexing #{REF.1078 SBEAR-HAS-FISH}
ﬁali’;E}R-HAS-FISH is the representation for "The Bear has some
sn.

Classifying (POSS-BY ACTOR (BEAR)

57

OBJ (PISH)})
Starting at #{RE¥.285 &MFRAME}

Moving to #{REF.289 &STATE}
Moving to #{REF.432 S&POSSESION}

The node &POSSESSION is the structure for possesion of ob-
jects by actors. The only knowledge contained there is that
possesion achieves the GOAL D-CONT.

Placed at #{REF.432 &POSSESION}

#{REF.1078 SBEAR-HAS-FPISH} placed, indexing
off #{REF.432 SPOSSESION} with
(POSS-BY ACTCOR (BEAR)
OBJ (FISH))

Running demons

The demon set up to recognize the occurence of FISH is fired.
The BEAR possessing fish is explained as a result of the M-
FISHING occurence. Because the current input was explained
with an expectation, it is not processed with any causal rules.

Executing demon? PROP~-EXPECT .2236
Linkine #{REF.1074 SBEAR-FISHING} and
#{REY. 1078 &BEAR-HAS-FISH}
with RESULT mode FORWARD
Xilling demon: PROP-EXPECT.2236

This time the new concept is not added to the *CLASSIFIER-
WM# but connected to another node in the memory. The working
memory now looks like this,

&BZAR-'-!'ISHING
]
r
{
&BBAEI—LOC &BEAR-E}IAS-FISH
]
wn-node.2234 wn-node.2223

where the 'r’ indicates the 'resulting’ I-link.
Indexing #{REF.1047 SFOX-ARRIVAL}

ZFOX-ARRIVAL is the representation for "The Fox walked over
to the stream.”

58

Classifying (PTRANS ACTOR (FOX)
T0 (PLACE NAME (STREAM))
0BT (FOX)
MANNER (WALKING))
Starting at #{REF.285 SMFRAME}

Moving to #{REF.288 &ACT}
‘Moving to #{REF.378 &PTRANS}

This is classified as a generic PTRANS.

Placed at #{REF.378 &PTRANS}

The FOX arrives on the scene.

#{REF. 1047 SFOX-ARRIVAL} placed, indexing
off #{REF.378 L&PTRANS} with
{PTRANS ACTOR (FOX)
TO (PLACE NAME (STREAM))
OBJ (FOX)
MANNER (WALKING))

Running demons

Attempting to explain #{REF.1047 SFOX-ARRIVAL} in terms of
#{REF.378 SPTRANS} and one of *CLASSIFIER-WM# nodes.

Trying to explain #{REF.1047 SFOX-ARRIVAL} in terms
of #CLASSIFIER-WM»

Here we see CRAM working up the memory hierarchy from the
nodes in the *CLASSIPIER-WM#, It starts at the bottom with
the nodes which are actually in the memory,

Explaining #{REF.1047 SFOX-ARRIVAL} in terms of
(#{REF. 1047 &FOX-ARRIVAL} #{REY¥.1078 SBEAR-HAS-FISH}
#{REP. 1073 &BEAR-LOC})

It continues by going up from each of those nodes in parallel.

Explaining #{REF.1047 SFOX-ARRIVAL} in terms of
(#{REP.378 &PTRANS} #{REF.432 SPOSSESION}
#{REF.803 SPLACE-LOCATION})

Whenever a conceptualization matches the ante or conseq parts
of a rule, the match is announced before the constraints are ex-
amined. The constraints for &MOVEMENT-RULE are not
satisfied by this situation.

59

Attempting to explain #{REF.1047 SFOX-ARRIVAL} in terms
of #{REF¥.188 SMOVEMENT-RULE}

The EWALKING-ALONG-RULE tries to explain a character’s
arrival at some place in terms of a previous mention of the char-
acter just "walking along” to no place in particular.

Attempting to explain #{REF.1047 SFOX-ARRIVAL} in terms
of #{REF.177 SWALKING-ALONG-RULE}

Explaining #{RE¥.1047 SPOX-ARRIVAL} in terms of
(#{REF.288 SACT} #{REF.433 SLOCATION})

BExplaining #{REF.1047 SFOX-ARRIVAL} in terms of
(#{REF.289 &STATE})

#{REF. 1047 SFOX-ARRIVAL} not explained. Adding another node
to *CLASSIFIER-WM»
#{WM-NODE.2249 #{RE¥.1047 &FOX-ARRIVAL}}

The working memory now looks like this,
&BEAR;?ISHING

r
.]
. 1
s.nml =LOC &BEAR—?AS-PISK &!’O!—ARR..l IVAL
[]
wa-node.2234 wn-node . 2223 wn-node .2249

The FOX tells the BEAR about the location of some honey.
Indexing #{REF.1082 SFOX-MTRANS}

Classifying (MTRANS ACTOR (FOX)
TO (BEAR)
OBJ (LOC ACTOR (HONEY)
OBJ {PLACE NAME {TREE))))
Starting at #{REF.285 SMFRAME}

Moving to #{REF.288 SACT}
to #{REF.377 SMTRANS}
Moving to #{REF.458 SMTRANS-LOCATION}

MTRANS-LOCATION is the memory structure for telling some-
one about the location of something. This memory stiructure
indexes an expectation for the recipient of the information to at-
tempt to get the object.

60

Placed at #{REF.458 SMTRANS-LOCATION}

#{RE?. 1082 SFOX-MTRANS} placed, indexing
off #{REF.458 SMTRANS-LOCATICN} with
(MTRANS ACTOR (FOX)
TO (BREAR)
OBJ (LOC ACTOR (HONEY)
OBJ (PLACE NAME (TREE))))

Running demons

_ ; | RE
Attempting to explain #{RE¥.1082 SFOX-MTRANS} in terms of
#{REF.458 SMTRANS-LOCATION} and one of #CLASSIFIER-WMe
ncdes.

to explain #{REF.1082 SFOX-MTRANS} in terms of
#CLASSIFIER-WM» '

Explaining #{REF.1082 SPOX-MTRANS} in terms of
(#{REF.1082 &SFOX-MTRANS} #{REF.1047 SFOX~-ARRIVAL}
#{REF.1078 SBEAR-HAS-FISH} #{REF.1073 SBEAR-LOC})

Explaining #{REF.1082 SFOX-MTRANS} in terms of
(#{REF.458 SMTRANS~LOCATION} #{REF.378 SPTRANS}
#{REY.432 &SPOSSESION} #{REF.803 SPLACE-LOCATION})

Explaining #{REF.1082 SPOX-MTRANS} in terms of
(#{REP.377 &MTRANS} #{REF.288 SACT} #{REF.433 SLOCATION})

BExplaining #{RE?.1082 SPOX-MTRANS} in terms of
(#{RE¥Y.289 ASTATE})

Here we see the expectation of movement spawned. This is an
example of how expectations compile into one step, a multiple
step GOAL/PLAN sequence. The justification for the inference is
still contained in default links for D-CONT and WALK-PLAN.

Spawning demon: PREDICT-MOVEMENT . 2264
(PREDICT-MOVEMENT #{WM-NODE.2263
#{REF. 1082 SFOX-MIRANS}})
#{REF. 1082 SFOX-MTRANS} not explained. Adding another node
to *CLASSIFIER-WM»
#{WM-NODE.2263 #{REF.1082 &FOX-MTRANS}}

After this node has been added to the working memory it looks
like this,
SBEAR-FISHING

!
r
[]

[]

61

&BEAI'!-LOC &BEAR—I;INS-FISH &rox-?RRIVAL &Fox-!’»!‘I'R.ANS
wn-node . 2234 wn-node. 2223 wn-node.2249 wm-node.2263

The BEAR leaves for the TREE.
. Indexing #{REF.1086 &BEAR-DEPARTURE}

Classifying (PTRANS ACTOR (BEAR)
FROM (PLACE NAME (STREAM))
TO (PLACE NAME (TREE))
OBJ (BEAR))

Starting at #{REF.285 SMFRAME}

Moving to #{REF.288 SACT}

Moving to #{REF.378 &PTRANS}

Moving to #{REF.531 SLEAVING}
Placed at #{REF¥.531 S&LEAVING}

#{REF.1086 SBEAR-DEPARTURE} placed, indexing
off #{REF.531 SLEAVING} with
(PTRANS ACTOR (BEAR)
FROM (PLACE NAME (STREAM))
T0 (PLACE NAME (TREE)) :
OBJ (BEAR))

Running demons

The PREDICT-MOVEMENT demon fires. This is an inference
which would have taken several step in a PAM type model.

Executing demcn: PREDICT-MOVEMENT.2264
Linking #{REF.1082 &FOX-MTRANS} and
#{RE¥.1086 SBEAR-DEPARTURE}
with RESULT mode FORWARD

An expectation has taken care of explaining this concept. Now
the working memory is this,

&m—l-usxmc) mm—nm;anmx
r T
! !
&BEAR-LOC SBEAR-HAS-FISH SFOX-ARRIVAL SFOX-MTRANS

] (] 1 [}
wm-node.2234 wn-node.2223 wm-ncde.2249 wm-node,. 2263

62

The demon DEPARTURE is used to maintain consistency. It as-
serts in the data base that the BEAR is no longer at the
STREAM.

Spawning demon: DEPARTURE. 2303
(DEPARTURE #{WM-NODE.2263 #{REF. 1086 SBRAR-DEPARTURE} })

Killing demon: PREDICT-MOVEMENT.2264
The FOX grabs the fish.
Indexing #{REF.1091 SFOX-THEFT}

Classifying (GRASP ACTCOR (FOX)
OBJ (FISH))
Starting at #{REP.285 SMFRAME}

Moving to #{RE¥.288 SACT}
to #{REY.376 SGRAB~ACT}
Placed at #{RE¥.376 &GRAB-ACT}

#{REY¥. 1091 SPOX-THEFT} placed, indexing
off #{RE¥.376 SGRAB-ACT} with
. (GRASP ACTOR (¥OX)
OBJ (FISH))

Running demoms

Executing demon: DEPARTURE.2303

MFRAME-OBJECT.2306 is the MFRAME containing the concep-
tualization for the BEAR no longer being at the STREAM.

Linking #{REF.1086 &BEAR-DEPARTURE} and
{MFRAME~OBJECT.2306 (MFRAME ...)}
with RESULT mode FPORWARD

Xilling demon: DEPARTURE.2303
Attempting to explain #{REF.1091 SPOX-THEFT} in terms of
#{REF.376 &GRAB-ACT} and one of *CLASSIFIER-WM» nodes.

Trying to explain #{REF.1091 SFOX-THEFT} in terms
of sCLASSIFIER-WMa

Explaining #{REF.1091 S&FOX-THEFT} in terms of

(#{REP. 1091 SFOX-THEFT} #{MFRAME-OBJECT.2306 (MFRAME ees)}
#{REF. 1047 SFOX-ARRIVAL} #{RE¥?.1078 &BEAR-HAS-FISH)
#{REF.1073 &BEAR-LOC})

Explaining #{REF.1091 SFOX-THEFT} in terms of

63

(#{REF.376 LGRAB-ACT} #{REF.433 SLOCATION} #{REP.378 &PTRANS}
#{REY.432 SPOSSESION} #{RE¥.803 SPLACE-LOCATION})

Attempting to explain #{REF.1091 SFOX~-THEFT} in terms
of #{REF.273 A&TAKE-RULE}

Matched against #{REY.1078 &BEAR-HAS-FISH}

Trying constraint #{CONSTR.279 NON-EQUALITY}

Connecting a mop to the current input
#{REF.1078 SBEAR-HAS-FPISHK}-->
#{WM-NODE.2234 #{REF.1078 SBEAR-HAS-FISH} },_ :

The FOXs theft of the FISH is linked in as a DISABLEMENT of
the BEARs possesion of the FISH. '

Linking #{REF.1091 &FOX-THEFT} and
#{REY.1078 SBEAR-HAS-FISH}
with DISABLE mode FORWARD

After this MFRAME is linked to the &BEAR-HAS-FISH, the
working memory looks like this,

BEAR~-FISHING SFOX-THEFT BBAR-?EPARTURE
\ /)
xr d xr
S !

&BEAR-LOC &.BZAR-E;AS-?ISH &?0!-?33“& &FO!-I:E'RANS

1)
wm-node.2234 wn-node.2223 wm-node.2249 wm-node.2263

TAKE-RULE has the demon FIND-P-CONT-FAIL indexed under
it.

Spawning demon: FIND-P-CONT-FAIL.2324
(FIND-P-CONT-FAIL
#{WM-NODE.2234 #{REF.1078 SBEAR-HAS~-FISH}}
({CHEESE) (HONEY)
(APPLE) (GRAPES) (FISH))
((POX) (CROW) (BEAR)))

EESENSEEESEEENREEEEREENE rm—P-m-?AIL-._2324 ARNEEREREARTEE
TEST: "Lock at the cbject of the current concept.”
"See if it is one of the things in OBJECT-LIST."
"Check to see if it got away from an actor in®
"ACTOR-LIST."

ACT: "Set up a (P-CONT manner (FAIL)) and assert it"
*"into memoxry."

64

placing new inpukt,
#{REF. 1091 S&FOX-THEFT}-->
#{WM-NODE.2234 #{REF.1 078 SBEAR-HAS-FISH}}

Spawning demon: D-CONT.2334
(D-CONT #{WM-NODE.2234 #{REF.1091 &FOX-THEFT}})

ESEERESEESEESERERENEENIEN D—CQNT,2334 EEEEEAEETEEESEINERES
ACT: "asgsume that since a character grabbed®
"something that he wants it.”

There is a last pass in the program to spawn and test any
demons which are attached to the last conceptualization found.

ssSearching for TAUs which resolve explanation splintersss

Executing demon: D-CONT.2334
Linking #{RE?.1091 &FOX-THEFT} and
#{MFRAME-OBJECT.2337 (MFRAME ...)}
with INTEND mode BACKWARD

KXilling demon: D-CONT.2334

Executing demom: FIND~P-CONT-FAIL.2324
Linking #{MFRAME-OBJECT.2306 (MFRAME .+.}} and
#{M—OBJ'ECT.2357 (MFRAME ...)}
with THWART mode FORWARD

P-CONT-fail has two invocations of TAU-RECOGNITION in-
dexed under it, one for TAU-TOO-RISKY and one for TAU-
ULTERIOR.)

Spawning demon: TAU-RECOGNITION.2371

{ TAU-RECOGNITION .
#{WM-NODE.2234 #{MFRAME-OBJECT. 2357 (MFRAME ...)1}
#{RE¥.789 S&TAU-TOO-RISKY})

EEEETEEINEEEREEEREESENEEN TAU-RECOGNITION.2371 zzazanzzznss

SPAWN: "Search BINDING-SPEC for a form which matches”
"the mop on which this TAU was spawned. Run the"
"constraints of the TAU to get additional”

65

"binding." _
TEST: "Look at incoming concepts to see if they satisfy”
"anymore comstraints.”

ACT: "Index the TAU in the MFRAME on which it was”
"aspawned. "

Spawning demon: TAU-RECOGNITION.2372

{ TAU-RECOGNITION
#{WM-NODE.2234 #{MFRAME-~OBJECT.2357 (MFRAME ...)}}
#{REF.790 &TAU-ULTERIOR}) ’

a1 PP T P L TAU-RECOGNITION.2372 suzzssassz=a
SPAWN: "Search BINDING-SPEC for a form which matches”
"the mop on which this TAU was spawned. Run the"
*"constraints of the TAU to get additional”
» L}
 TBST: "Look at incoming concepts to see if they satisfy”
"anymors constraints.®

ACT: "Index the TAU in the MFRAME on which it was"
"spawned."”

This is the first invocation of TAU-RECOGNITION.

TAU recognition spawned on
#{MFRAME-OBJECT.2357 (MFRAME ...)!}
for #{REFY.789 &TAU-TOO-RISKY}

First it matches the conceptualization from which it was
spawned to the one under which is was indexed.

Matched #{VAR.1147 ?P-CONT} against
#{MFRAMBE-OBJECT.2357 (MFRAME ...)}}

Once it has found all the concepts contained in the spec before
the indexing concept, it can try some of the constraints.
Attempting constraints .
Trying constraint #{CONSTR.1163 THWARTING}
Trying constraint #{CONSTR.1164 RESULTING}

One of the INTENTION links specified in the descripion of
TAU-ULTERIOR is not there.

86

Trying constraint #{CONSTR.1165 INTENTION}
failed

Here are the bindings which TAU-RECOGNITION process has
found so far.

Bindings in effect at spawn tine,
((#{VAR. 1147 ?P-CONT} . (GOAL MANNER (FAIL)
: OBJ (POSS~BY ACTOR (BEAR)
- . OB (FISH))))
(#{VAR.1149 ?Y} . (PISH))
(#{VAR.1148 ?X} . (BEAR)))

Here is the second invoeation of TAU-RECOGNITION.

TAU recognition spawned on
for #{REF.790 ATAU-ULTERICR}

Matched #{VAR.1168 ?P-CONT} against
#{MFRAME-OBJECT .2357 (MFRAME ...)}

Attempting constraints

Since the TAU demons did not get spawned until after the story
was completely processed, all the constraints for &TAU-
ULTERIOR are satisfied at this time.

constraint #{CONSTR.1183 THWARTING}
Trying constraint #{CONSTR.1184 RESULTING}
Trying constraint #{CONSTR.1185 RESULTING}
Trying constraint #{CONSTR. 1186 NO-CONNECTION}

Bindings in effect at spawn time,
((#{VAR. 1175 ?DO2} . #{Head PTRANS})
(#{VAR.1172 ?Z} . (FOX))
(#{VAR. 1171 PGRASP} . (GRASP ACTOR (FOX)
OBJ (F¥FISH)))
(#{VAR. 1173 ?MTRANS} .
({MTRANS ACTOR (FOX)
TO (BEAR)
OBJ (LOC
ACTOR (HONEY)
OBJ (PLACE NAME (TRER)))))
(#{VAR. 1174 ?ACT2} . (PTRANS ACTOR (BEAR)
FROM (PLACE NMAME (STREAM))
TO (PLACE NAME (TRER))
OBJ (BEAR)))

67

(#{VAR.1176 ?ACT1} . (LOC MODE (NEG)
ACTOR (BEAR)
_ OBJ (PLACE NAME (STREAM))))}

(#{VAR.1168 7P-CONT} . (GOAL MANNER (FAIL)

OBJ (POSS-BY ACTOR (BEAR)

OBJ (FISH))))

(#{VAR.1170 ?Y} . (FISH))
(#{VAR.1169 ?X} . (BEAR}))

Killing demon: FIND-P-CONT-FAIL.2324

Here CRAM recognizes that &TAU-ULTERIOR is contained in
this story.

Executing demon: TAU~-RECOGNITION.2372
TAU #{REF.790 &TAU-ULTERIOR} recognized.
Instantiating with,
(TAU ISA &TAU-ULTERIOR
BINDINGS
({(#{VAR. 1175 ?D02} . #{Head PTRANS})
(#{VAR.1172 7?2} . (FOX))
(#{VAR.1171 ?GRASP} . (GRASP ACTCR (FOX)
- OBJ (FISH)))
(#{VAR. 1173 ?MTRANS} . :
(MTRANS ACTOR (POX)
- TO (BEAR)
OBJ (LOC ACTOR (HONEY)
OBJ (PLACE NAME (TREE))})))
(#{VAR. 1174 7ACT2} .
(PTRANS ACTOR (BEAR)
FROM (PLACE NAME (STREAM))
TO (PLACE NAME (TREE))
OBJ (BEAR)}))
(#{VAR.1176 ?ACT1} .
(LOC MODE (NEG)
ACTCOR (BEAR)
OBJ (PLACE NAME (STREAM))))
(#{VAR.1168 ?P-CONT} .
(GOAL MANNER (FAIL)
OBJ (POSS-BY ACTOR (BEAR)
OBJ (FISH))))
(#{VAR.1170 ?Y} . (FISH))
(#{VAR. 1169 7?X} . (BEAR))
(#{VAR.1169 ?X})))

Xilling demon: TAU-RECOGNITION.2372

68

CHAPTER 7
Conclusions and Future Work

7.1 Conclusions

Abstract knowledge about planning is hard to capture. TAUs are

used to capture abstract knowledge about bad planning, the same :
knowledge that people express using adages. Knowledge about bad planning

can be used to critque plans, and it can also be turned around in counter-
planning to trick other planners into making mistakes. What has been
shown in this thesis is that we can have a specialization hierarchy of plan-
ning errors, and we can chunk smaller planning errors together to make
larger ones. The relationships that arise among TAUs as a result of these
operations are used to cross-index episodes with multiple planning errors for
better recall.

We have also shown that TAUs can serve as a very abstract indexing
scheme for stories in episodic memory. TAUs can index analogically similar
stories because they represent information a} the GOAL/PLAN level and not
at the ACT/STATE or context feature level .

We have also presented an implementaion of TAUs which uses a
"binding-spec’ and ‘constraints’. The "binding-spec’ is an ordered list of con-
cepts. The ’constraints’ are relations among the concepts. This works well
because the order information aids in the recognition process. Once 2 TAU
has been activated, incoming concepts only have to be compared against one
concept, the next undetected concept in the ‘binding-spec’. This has
ramfications for TAU indexing. If the overhead for TAU recognition is low
many TAUs can be indexed 2t single memory node.

7.2 Future Work
This thesis has left a number of avenues open for further exploration.
representing what is common sense
interaction of TAUs and parsing

TAU learning and the organization of thematic memory
analogical reasoning driven by TAU recognition

" Context feautures are observable surface features of a situation such as
*the tall man” or "in the restaurant”.

69

w.2.1 Common Sense - Poor planning often involves not using "ecommon
sense”. Recognizing planning failures requires knowing which specific
knowledge is common sense. Two constraints were used to capture part of
this meta-knowledge in this work. They both had to do with detecting
whether or not a particular causal link was "obvious”. The constraint names
used for these tests were:

not-obvious-rasutt and
obvious-result.

The *not-cbvious-result’ constraint tests to see if CRAM has currently made
any causal connection between two concepts. The ’obvious-resuit’ constraint
checks to see if the causal link between two concepts was easy to derive, i.e.
took a small number of rule applications.

In both the above cases the factors for determining whether or not
some knowledge is common sense are based on the internal state of CRAM,
not on an unchanging standard of what is obvious. By assuming that what
CRAM has represented is "common sense”, we get around the problem of
representing "common sense” itself. It is very likely that people do the same
type of introspective computation when determining whether or not some-
thing is obvious. However, people also have specific knowlege which they
know is not common sense. An example of this type of knowledge is techni-
cal knowledge.

7.2.2 Parsing - The current implementation of CRAM does not include a
parser. In order to be accepted as a valid cognitive model, CRAM needs to-
accept natural input rather than input distilled from English by a human
transiator. The issue here is one of representation validity. Since the
representation for TAUs is declarative, it depends on all the "right” links be-
ing present between concepts, and on concepts being expressed in the
"right” representation. The only way to show that a representation is not
ad hoc is to be able to "parse into” that representation from natural
language.

There does not seem to be any interaction between TAUs and
language understanding at the word level. Once a TAU is spawned, it can
set up expectations that may affect word disambiguation, but it is not likely
thla.t people "parse into”™ TAUs except for the case of parsing adages them-
selves.

7.2.3 Representation - The representation presented in this thesis is very
sparse; it only represents those features which are required by the pattern
matcher for recognizing TAUs. It is not likely that CRAM'’s current
representation will be adequate when natural language input is used. A
more robust representation system would be Wilensky's PEARL system
TLES3|, where primitives such as PTRANS and MTRANS have their own
jerarchy. The hierarchy of primitives is respected by the pattern matcher,
which allows more specific concepts to match more general ones, but not the
other way around. This is a more robust representation format than the sim-
ple slot/filler representation used by CRAM.

70

7.2.4 Learning and Thematic Memory - Generating 2 new TAU through
specialization is fairly simple. A GOAL failure is found that instantiates two
TAUs, one of which contains the other; a specialization i formed hy adding
the constraints of the contained TAU to the containing TAU. However,
there is a problem: Once a specialization has been created, how does a pro-
gram check that it has never been generated before?

Acquiring new TAUs through combination is much more complex. In
Chapter 2 we saw that we could combine TAU-ULTERIOR and TAU-
VANITY to get TAU-SUCKERED. In general, given a goal failure which in-
stantiates two different TAUs, we can chunk the two TAUs together to form
a new composite TAU, using the elements of story to establish a correspon-
dence between the elements of the two TAUs.

It would be helpful in testing theories of TAUs to have a large data-
base of stories that contain TAUs indexed into a semantic memory. It is
difficult to test a particular process, such as TAU learning, without having a
large number of examples. The indexing schemes presented in this thesis,
both for MFRAMEs and TAUs, are primitive. Part of the reason they work
is the limited size of the domain. To test a better, more psychologically valid

memory organization, a larger number of stories needs to be handled.

7.2.5 Analogical Reasoning - In Section 1.1 it was pointed out that
recognizing a particular TAU gives an analogical mapping from one story to
any other story that instantiates that TAU. How can analogical stories aid
in understanding the current story? One simple way is that the analog may
have contained TAUs which were not found in the current story. With this
new information, those TAUs can’'be activated in the current context.

A question which requires much more investigation is “What expecta-
tions can be generated from an analogical story?”. It has been shown that
once a TAU is activated, expectations are generated from the ‘binding-spec’.
Are there other, more detailed expectations which can be extracted from an
analogical situation?

71

[BEW173]

[CARB33]

[CHARS0]

[CULL78]

[DEJO79]

[DOLAS3)

[DOLAS4|

[DYERSI]

[DYERS3]

BIBLIOGRAPHY

Bewfék, T., Illustrator, Trcaaury of Aesop’s Fables, Avenel
Books, New York, 1973.

Carbonell, J. G., "Learning by Analogy: Formulating and
Generalizing Plans from Past Experience”, in Machine
Learning: An Artificial Intelligence Approach, R. Michalski,
J. Carbonell, and T. Mitchell (Eds), Tioga Publishing
Company, Palo Alto, Calif., 1983.

Charniak, Eugene, Riesbeck, C. K., McDermott, D. V.,
Artificial Intelligence Programming, Lawrence Erlbaum As-
sociates, Hilsdale, New Jersey, 1980.

Cullingford, R. E., Seript Application: Computer Under-

_ standing of Newspaper Stories, Technical Report 116, Yale

University, Department of Computer Science, 1978, Ph.D.

. Disseration.

Dejong, G. F., Skimming Stories in Real Time: An Ezperi-
ment in Intergrated Understanding. Technical Report 158,
Yale University. Department of Computer Science, 1979.
Ph.D. Dissertation.

Dolan, C. P., "Reasoning Analogically”, Term Project
Winter 1983.

Dolgn, C. P., Representations for Conceptual Objects: T-
CD*, Discrimination Net, and Demon Control Siructures,
Tools Note 1, UCLA Artificial Intelligence Laboratory,
1984.

Dyer, M. G., "The Role of TAUs in processing Narratives”,
Proceedings of the Third Anual Conference of Cognitive
Seience Socsety, Berkely, Calif., 1981.

Dyer, M. G., In-Depth Understanding: A Computer Model

of Integrated Processing for Narrative Comprehension, The
MIT Press, Cambridge, Mass., 1983.

72

[DYERS&3a]

[GENTS3)]

[LEBOS0]

[LEHNS2]

[LEHNS3]

[KOLOS80|

[MEEHT7]

[MOORS4]

[RIEGT9)

[RIES75]

[RUMET5]

[SCHAT72|

Dyer, M. G., "Understanding Stories through Morals and
Remindings”, in Proceedings of the Eight International
Joint Conference on Artificial Intelligence, 1983.

Gentner, D., "Structure-Mapping: A Theoretical Frame-
work for Analogy", Cognitive Science, Vol 7, 1983.

Lebowitz, M., Generalization and Memory in an Integrafed
Understanding System, Technical Report 188, Yale Univer-
sity, Department of Computer Science, Ph.D. Dissertation,
1980. ‘

Lehnert, W. G., "Plot Units: A Narrative Summarization
Strategy”, in Sirategies for Natural Language Processing,
W. Lehnert and M. Ringle (Eds), Lawrence Elbaum Associ-
ates, Hillsdale, New Jersey, 1982.

Lehnert, W. G., Dyer, M. G., Johnson, P., and Yang, C.,
"BORIS - An In-Depth Understander of Narratives”,
Artificial Intelligence, Vol 20, No 1, 1983.

Kolodner, J. L., Retrieval and Organization Strategies in
Conceptual Memory: A Computer Model, Technical Report
187, Yale University, Department of Computer Science,
Ph.D. Disseration, 1980.

Meehan, J., The Metanovel: Writing Stories by Compuler,
Technical Report 74, Yale University, Computer Science
Department, Ph.D. Dissertation, 1879.

Moore, J. D., Implementing McDypar in T, Tools Note 2,
UCLA Artificial Intelligence Laboratory, 1984.

Reiger, C., Small, S., "Word Expert Parsing”, in The
Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, 1979.

Riesbeck, C. K., "Conceptual Analysis”, in Schank (Ed)
Coneceptual Information Processing, American Elsevier,
New York, 1975.

Rumelhart, D. E., "Notes on a Schema for Stories”, in
Language, Thought, and Culture: Advances tn the Study of
Cognition, D. Bobrow and A. Collins (Eds), Academic
Press, New York, 1875.

Schank, R. C., "Conceptual Dependency: A Theory of Na-

tural Langauge Understanding”, Cognitive Psychology, Vol
3, No 4, 1972.

73

[SCHA77|

[SCHAS1]

[é~f$HA82a.] '

[SCHAS2b)

[STEINT9]

[WILE7S]
[WILES1]
[WILES3]

[WINST9)

Schank, R. C. and Abelson, R. P., Seripts, Plans, Goals,
and Understanding: An Ingquiry into Humaen Knowledge
Structures, Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1977.

Schank, R. C. and Reisbeck, C. K., Inside Computer
Understanding: Five Programs plus Minialures, Lawrence
Erlbaum Associates, Hillsdale, New Jersey, 1981.

Schank, R. C., Dymanic Memory: A Theory of Reminding
and Learning in Computers and People, Cambrdige Univer-
sity Press, Cambridge, 1982.

Schank, R. C., READING AND UNDERSTANDING:
Teaching from the Perspective of Artificial Intelligence,
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1982.

Stein, N. L. and Glenn, C. G., "An Analysis_of Story
Comprehension in Elementary School Children™, in New
Directions in Discourse Processing, R. O. Freedle (Ed),
Ablex Publishing Corporation, New Jersey, 1979.

Wilensky, R. Understanding Goal-Based Storses, Technical
Report 140, Yale University, Department of Computer Sci-
ence, 1978, Ph.D. Dissertation.

Wilensky, R. "PAM" in Inside Computer Understanding, R.
Schank and C. Riesbeck (Eds), Lawrence Erlbaum Associ-
ates, Hillsdale, New Jersey, 1981.

Wilensky, R., Planning and Understanding: A Computa-
tional Approach to Human Reasoning, Adison-Wesley Pub-
lishing Company, Reading, Mass., 1983.

Winston, P. H, "Learning by Creating and Justifying
Transfer Frames”, in P. Winston (Ed) Artificial Intelli-
gence: An MIT Perspective, MIT Press, Cambridge, Mass.,
1979.

74

