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ABSTRACT OF DISSERTATION

Distributed Simulation,

Algorithms and Performance Analysis

by
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Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985
Professor D.S. Parker, Co-Chair

Professor R.R. Muntz, Co-Chair

Simulation is one example of an application that show-s. great potential benefits
from distributed processing. The conventional approach to simulation, that
of sequentially processing the events, does not ex;;]oit the natural parallelism
existing in some simulation models. This is particularly true in large models,
where submodels often interact weakly and can be simulated in parallel. The
decreasing cost of multiprocessor systems also suggests that a distributed
approach to simulation can be workable. Moreover, such an approach can be
very attractive, since time and memory limitations, often major constraints

with simulation programs, may be alleviated by distributing the load among



several processors.

Distributed simulation requires a set of processors that can communicate by
sending messages along the links of a communication network or via a shared
memory. The processors each simulate a submodel of the overall model and
interact when necessary. Submodel interactions produce the interprocessor

communication in the simulator.

Two methods for distributed simulation are studied in this thesis. Both
methods are applicable to discrete time simulation models and are fully
distributed in the sense that they require no central control. In one method,
each processor can simulate independently as long as it is certain that no
events will arrive that belongs to the past of the simulation process. In the
second method, processors are not concerned about future arriving events.
They simulate independently and roll back if an event arrives that belongs to
the past.

The thesis consists of two parts. The first presents some centralized and
distributed algorithms for efficient utilization of the second method. The issue
of load balancing is also discussed in this part and some heuristic algorithms
are presented.

The second part of the work consists of mathematical modeling and analysis of

models of both methods. The analysis gives some insight into the effects of

different system parameters on the performance. The performance of each

xi



method is compared with the other and also with single processor simulation.
The mathematical models are then confirmed and complemented with the
simulation resuits. Finally, results of the implementation of the second

method are presented.
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CHAPTER 1

Introduction

System simulation is a technique of solving problems by observing the changes
of a dynamic model of a system over time [GOR 89]. A model is defined to be
the body of information about the system, gathered for such a study. The
types of changes within the system identify different types of systems. If
changes ocecur smoothly and continuously over time, the system is called a
continuous system. However, if the changes occur at discrete points in time,
the system is a discrete system. It is often not possible to refer to a system as
totally continuous or discrete. Rather, the approach to modeling a sysfem and
the attributes of interest classifies the system and its model as being

continuous or discrete.

The mathematical model of a continuous system typically consists of
differential equations. An example is the continuous model of an inventory
control system. The rates at which orders are placed or met are used to
construct differential equations that describe attributes of interest such as the

inventory level.

Throughout this work, only the problem of simulation of discrete systems is

studied. Therefore, the term system and simulation model will implicitly refer



to discrete systems and models. In a discrete model, changes, or events, occur
at discrete points in time. An example of such a model, is a bank teller. The
points of arrival and departure of customers are some events of interest that

occur at discrete points in time.

In the conventional approach to discrete system simulation, the basic
structure is a queue of simulation events or an event queue. An event denotes
a change in the state of the system to be simulated. The time at which the
change occurs is the simulatson time or the time of occurrence of the event.
Events are sorted in increasing order of simulation time in the event queue.
In the event based simulation, the processor simulating the system, also called
the ssmulator, removes the event with the lowest simulation time and
advances its simulation clock to that of the event. The elapsed computation
time is called the real time of the processor. Simulation of one event, may
result in generation of one or more events in the future of the simulation
process. The generated events are placed in the proper position in the event

queue.

The next event to be simulated may be one of the latest generated events.
So, a processor cannot remove more than one event simultaneously, if strict
sequencing of events is essential. However, if the system to be simulated
consists of concurrent processes, strict sequencing of events is not necessary.

It is only essential that events within each process be simulated in sequence.



In addition, at the points of interaction of two processes, the events need to

be ordered.

An example of such a loosely coupled system is a distributed file management
system. As long as transactions on different sites are independent of each
other, the order of simulation of the events should only be observed for
events occurring within each site. Consider four transactions a,a’ on site A
and b,b’ on site B. ais independent of b and b’. However, assume that a’ will
result in generation of another transaction a’’ for site B. An order in which

"

events may occur in the simulated system is abb’a’a”. As a result of loose
coupling, simulation of the events corresponding to the transactions do not
have to follow the above order exactly. In fact, simulation in any of the
following orders is computationally equivalent to the above serial
execution (BEG 80].

abb’a’a” , aa’bb’a” , aba’'b’a” , bb’aa’a” , baa'b’a”
For such a loosely coupled system, a distributed' simulation method can be

effective.

The distributed simulation techniques studied here require a set of processors
that can communicate by sending messages along the links of a
communication network or via a shared memory. The simulation model is
divided into submodels that can operate concurrently. The processors each

simulate a submodel and interact when necessary. In the above example, each



of the siteﬁ is a reasonable choice for a submodel to be simulated by a single
processor. Submodel interactions produce the interprocessor communication
in the simulator. Since the event queue is not centralized in such an
environment, a major task of a distributed simulation algorithm is to

synchronize event processing at the points of interaction.

Maintaining the correct simulation time sequence is termed synchronization.
A number of different methods for distributed simulation have been suggested
in the past. Distributed discrete event simulation methods vary in the degree
of looseness of the synchronization and the approach to control of the system.
Throughout this work, two particular methods for distributed simulation are
studied. Both methods impose a distributed control over the operations and

no shared variables are used.

In one of these methods, a processor will not simulate unless it is certain that
all the future arriving events {in real time) belong to the future of the
simulation. In the other method, the processors are not concerned about
future external events. If any such event arrives that has happened in the
past of the simulation process, the processor adjusts its operation by rolling
back to a consistent state in the past. Some differences are obvious. One
method may unnecessarily keep a processor waiting. Consequently deadlock
can occur. The other, introduces the extra overhead due to the roilback

operation.



In this tﬁ&sis, the emphasis is on the second method described above.
Algorithms are suggested that will result in efficient implementation of that
method. A study of the performance of both methods is done by
mathematical modeling and analysis. In the analysis, the performance of the
two methods are compared. In addition, each distributed simulation method
is compared with single processor simulation. The analytic results are
confirmed and complemented by simulation. Finally, results of an actual

implementation of the second method are presented.

1.1. The Environment

In this section, we discuss the simulation model and the simulation process in
single and multi-processor environments and establish the requirements and

assumptions for the material in the following chapters.

The simulation models considered are assumed to be discrete event models.
The simulation process in the single processor case is performed with the
conventional event based simulation approach. 'I"he processor maintains an
event queue which contains the non-simulated events in their simulation time
order. As mentioned, the simulation time of the event is the time of
occurrence of that event in the system to be simulated. The nezt event to be
simulated is the event that has the lowest simulation time. The processor
removes the next event from its event queue, updates its simulation clock to

the simulation time of the event and simuiates that event. As a result of



simulation.of an event one or more events may be generated that are placed
in the proper position in the event queue. At ary point in time, there may be
multiple events that have the lowest simulation time. The real time order of
simulation of such events or the order in which the next event is being

selected, depends on the model.

To simulate a similar model with multiple processors, the model needs to be
decomposed into submodels or objects (both terms will be used). The
submodels correspond to subsystems in the system to be simulated that can
operate concurrently. One or more submodels are assigned to each processor.
Similar to the conventional approach, each processor maintains its own event
queue and simulation clock. Two submodels need to interact wheﬁ one (5,)
generates an event that is to occur in the other, (S;). To pass the generated
event to the relevant submodel, the processor simuiating 5, sends a message
carrying the event to the processor simulating S;. Such a message will be
called an event message and the simulation time of-the event it is carrying will
be referred to as the simulation time of the message. The message carries
other information such as the identities of the source and the destination
processors. Different distributed simulation methods may require other
information to be included in the message. This will be described when the

methods are being studied.



A processor that receives an event message, can in general be in any state in

its simulation process. The distributed simulation method needs to make sure

that events that arrive from outside the submodel, inter-submodel events, are

simulated in the proper order with respect to the events that are generated

internally, intra-submodel events.

In our study of distributed simulation methods, we make the following

assumptions about the simulation model.

M1.

M2.

M3.

M4.

Ms.

The model is decomposable into submodels, such that the operations of
the submodels and their interactions can be clearly defined. The

decomposition process is not discussed in this work.
Each submodel is assigned to one and only one processor.

Events within each submodel must be simulated in increasing order of
simulation time. However, independent events occurring at different

submodels do not require such strict ordering.

The order of simulation of events with the same simulation time is
immaterial (This can be weakened to restrict only events within the

same submodel).

The simulation model is non-terminating in the sense that the
simulation process does not terminate as a result of absence of

simulation events..



Ms.

M7.

Ms.

M9.

M1o.

The simulation model is sound. That is, both (i) the simulation clock
of the processor in single-processor simulation is a non-decreasing
function of real time and (ii) given a non-terminating model, the

simulation clock increases in finite time.

Given the seed of the random number generator, the simulation model
is deterministic. 1.e. the current state of the model and the current

input from the event queue can uniquely determine the next state.

Every event that is generated as a result of simulation of another event
has a simulation time strictly greater than the simulation time of the
event that caused its generation. In other words, the simulation time of
generation of an event is strictly less than the simulation time of

cccurrence of that event,

Only a bounded number of simulation events can be generated or

simulated in finite time.

Every event requires finite and non-zero processing time. Note that the

finiteness follows from M6.

Considering these assumptions, the following shows the steps taken by every

processor in simulating the submodel and interacting with other processurs.

Note that in what follows, events are assumed to be in the proper order. The

synchronization problem will be discussed later.



while not -done do
begin
remove the next event {rom the event queue;
increase the simulation clock of the processor to the simulation time of
the event;
if the event belongs to another submodel then
/* event is generated by this submodel but is to occur at a different one
*/
send the event to the relevant processor;
else
begin
simulate the event;
put any events generated on the event queue;
end

end

According to the above, a processor sends an inter-submodel] event only after
its own simulation clock reaches the simulation time of the event. In other
words, the event was generated at an earlier time, but it is transmitted only
when the sending processor simulates up to the point of occurrence of the

event,



An altern#tive approach is to send the inter-submodel event at the time of
its generation. This means that the processor that generates an inter-
submodel event allows the event to affect the receiving submodel, possibly
before it reaches that time itself. The performance tradeoffs depend on the
model being simulated. If generated inter-submodel events cannot be
canceled, the latter approach may be advantageous. However, if event
cancellation occurs frequently, the former approach is a better choice. The
term future scheduling refers to the second approach in transmission of inter-
submodel events. To be consistent with the analytic models of Chapters 4
and 5, the former approach is assumed throughout this work. It should be
mentioned that the materials of Chapters 2 and 3 are independent of this
assumption. However, the implementation results of Chapter 6 are based on a

model that utilizes the second approach.

In the model we adopt for the operation of the processors, a processor and
the inter-submodel event it is transmitting have the same simuiation time at
the time of transmission. Note that this does not exclude the simulation of
models that have a non-zero simulation time delay in inter-submodel
interactions. The delay can be modeled and simulated by either the sending

or the receiving processors.

In addition to the above assumptions (M1-M10) on the simulation model, we

need to make the following general assumptions regarding the processing

10



environment. These are assumed to apply throughout this work, unless
otherwise mentioned.
Gl. Processors are working correctly with no errors, infinite loops,

unnecessary idle periods and breakdowns.

G2. Sufficient storage is available to store messages and maintain all data

structures. i.e. no blocking can occur as a result of unavailable storage.

G3. The communrication medium is reliable. Messages are delivered to their

destination in finite time without any errors.

G4. The communication medium does not necessarily preserve the FCFS
ordering of the messages. i.e. messages transmitted between the same
source-destination pair may not be received in the order they have been

sent.

Note that the assumptions M1-M10 and G1-G4 are not too restrictive. In
fact, except for M3,M4 and M8, these assumptions are satisfied by many
simulation models. The more restrictive assum‘ptions, M3 and M4, are
required to ensure concurrent operations in the model. As will be discussed in
chapter 2, assumption M8 removes the possibility of infinite loops in the

process of simulation.

11



1.2. Previous Work

A number of different methods for distributed simulation have been suggested
in the past. Methods vary with the nature of the simulation model, continuous
or discrete, and with their approach to synchronization and control. Detailed
description of some of these methods appear in (PWM 79| and [PEA 80|. In
this section, two methods for distributed event-oriented simulation are

presented.

The processors simulating each submodel and the links along which they
transmit event messages, form a directed graph which we call the
communication graph of the model. In this work, if such a graph cannot be
identified, a completely connected graph is assumed. Considering this graph,
the processors have two distinct ways in which to assure proper sequencing of
events while guaranteeing loose synchronization. In one of these methods, each
processor can simulate independently as long as it is certain that no external
events will arrive that will be in its simulation past. In the other method, the
processors do not require this knowledge. Each processor simulates
independently until it receives an event in its simulation past. When such an
event arrives, the processor rolls back to a point prior to the simulation time

of the incoming event.

12



1.2.1. Distributed Method Suggested by Bryant, Peacock et. al. and

Chandy et. al.

The first approach, that of strictly requiring the proper sequencing of events
on each link, has been dealt with in great detail in several papers [BRY 77,79,
[CHM 78,79,81), [PWM 79] and [PEA 80|. Their approaches are basically
similar. The basic algorithm, the so called "Link Time" algorithm, by Peacock

et al., [PEA 80, is as follows.

A time stamp is assigned to each link of the communication graph. Its value, is
the simulation time of the earliest non-simulated event message transmitted
on that link. Strict sequencing of events on each link is observed. Therefore, a
processor can safely simulate up to the time given by the smallest time stamp
on its incoming link. Processors remove the event with the minimum time
stamp, simulate to that point and then repeat the cycle by removing the next
event. Clearly, the minimum value can be determined only when all the links
contain at least ome non-simulated event. A problem arises when a link is
empty; in this case the processor has to wait for the arrival of an event
message on the empty link. Waiting can create deadlock if processors form a
directed or even undirected cycle in the communication graph. Figure 1-1
shows two cases of deadlock. Labels on the links are the time stamps and

those with a "—" sign, specify an empty link.

13



Figure 1-1. Examples of Deadlock

-In Figure 1-1 (a), all the processors are blocked. A and C cannot advance
although each has an event on one of its incoming links. This type of deadlock
remains indefinitely if no deadlock detection and removal scheme exists. In
part (b), the blocked processor C cannot advance because A is not generating
event messages for D frequently enough. With unlimited buffer storage, C can
advance as soon as A generates an event for D and D does so for C. Deadlock

can zlso occur if there is limited buffer space on the links.

To avoid deadlock, the notion of a null message has been introduced. A null
message is a simulation message that has no content except for a time stamp.
Once a processor transmits an event message with time stamp s on one of its
outgoing links, it will also transmit a null message with the same time stamp

on all of its other outgoing links. This way, a processor informs all its
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neighbors that it is not sending any event messages prior to s. Therefore, the

neighbors can use this value in their computation of the next safe simulation
period.

The null message can prevent occurrence of deadlock in the case (b) of Figure
1-1. A sends a null message with time 15 to D and D will in turn, send one
with the same time stamp to C. C can update the link time of (D,C) to 15 and
then safely simulate to 12. However, the deadlock of case (a) is not resolved

with this method.

The deadlock shown in (a) can be resolved if the system to be simulated has
the property that an event with simulation time s, can only generate events
that occur at a time >s+¢, where ¢ is a fixed non-zero value. In such a case,
the null message with this lower bound ¢ can prevent the deadlock problem.
With such an assumption, given A's simulation clock is 15, A will send a null
message with time stamp 15+¢ to B. B is certain that it will not be generating
any events for any time less than ¢ away, retransmits the null message with
time stamp 15+2¢ to C. C will either simulate to time 16 if 16 <15+2¢, or it
will increment the time stamp of the null message and send it to D again. The
null message will go through the loop, until its time stamp exceeds 20 at A or
18 at C. In fact, it is enough that only one of the processors in the cycle have

the mentioned non-zero property in the simulation ciock advance.
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The method, although simple and workable, can be very inefficient if the time
increments are small. Note that when e=1 and A’s and C’s ingoing links have
time 1000, over 900 messages need to be sent until the normal simulation can
resume. Bryant [BRY 77|, [BRY 79|, further improves this method by adding
a more global information gathering algorithm to the system. In this extension,
processors are grouped into equivalence classes. Each class is a strongly
connected component of the communication graph. Within each class, the
local clock values (similar to the minimum link time values}), are broadcast
along a tree spanning all the processors of the class. Using this information,
the processors in each class can find the minimum link time of all the links

incoming to the whole class and then compute a safe simulation period.

Larger time increments can be obtained this way.

As an extension to the Link Time Algorithm, Chandy and Misra [CHM 79]
have assumed the existence of a prediction facility for the simulation model.
Each processor can correctly predict certain steps of the simulation process in
the future. For each submodel, there is a prediction function L, which at any
time ¢, can correctly predict the behavior of the model until a time s>¢. This
is shown by L{t)==s. The prediction function uses the current state and the
history of the system to make a prediction. It is assumed that the predictions

improve as real time increases. i.e. if L({t)=s, then L(t+Al)>s.
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Chandy and Misra [CHA 81|, also consider the case of finite buffer storage.
Deadlock becomes even more probable if processors are blocked as a result of
unavailability of buffer storage. To avoid this type of deadlock, they suggest a
deadlock detection and recovery scheme. In this approach, the processors
simulate until deadlock. Deadlock is detected by a dedicated process that runs
concurrently with the simulation and checks for the occurrence of deadlocks.
Recovery is done distributively by finding the processor(s) that can proceed
and therefore break the deadlock. The approach is similar to Bryant's global
information gathering algorithm. The performance of the method proposed by
.Chandy et. al. has been measured by simulation and the results appear in
[SEE 79]. In this work, the simulation models are networks of queues, with and
without feedback. The results show the dependency of the performance
measure on the number of branches connecting the queues and the
performance degradation with feedback which is to some extent due to the

number of null messages transmitted.

1.2.2. The Rollback or Time Warp Method

The Rollback or Time Warp method is a different approach to distributed
simulation, suggested by Jefferson and Sowizral [JES 82]. This method gives
more autonomy to the processors performing the simulation. The processors
simulate independently and synchronize their operations at the points of

interactiows.
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The methéd requires that the simulation model be represented by objects that
interact with each other by sending messages. Messages consist of event
messages carrying simulation events or control messages that regulate the
distributed operations. Event messages carry two time stamps that are the

simulation times of generation and the occurrence of the event.

A group of simulation objects is assigned to a processor. Every processor has a
scheduling queue that gives the information about which object to simulate
next. Throughout this work, the scheduling order is considered to be the
conventional event scheduling. i.e. in non-decreasing order of simulation times.
However, because of the existing concurrency, other scheduling policies may

improve performance.

An object has an input queue and an oulput queve. These queues contain all
the simulation messages received or sent by the object respectively. The input
queue is in fact the event queue of the object. The processor’s event queue
consists of its objects input queues. In addition; the processor maintains a
state queue that consists of the state of the objects at regular points in time
(checkpoints). For this purpose, the processor needs to save the state of all its

assigned objects regularly.

The simulation time of an object, called the Local Virtual Time (LVT) by
Jefferson and Sowizral [JES 82], is the simulation time of that object’s last

simulated event. Similarly, the simulation time of a processor, or Processor’s
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Virtual Time (PVT) is the simulation time of its last simulated event. Note
that this definition applies to the case where the scheduling is in increasing

order of simulation times.

Processors simulate events in the proper simulation time order. Generated
events are sent to the processor on which the receiving object resides. When
transmitting messages (simulation or control messages), all objects whether
they reside on the processor or not, are treated similarly. In [JES 82}, the
event messages are sent at the simulation time of generation of the event.
(Note that this is different from our model of processor operation discussed in
section 1.1. This difference is made to simplify the.presentation here and will
have an affect only on the performance of the system, if it has an affect at
all.) If the simulation time of the event, s,, is greater than the simulation time
of the receiving object, s,, the event is simply queued in the input queue of
the receiving object and the simulation continues. However, if 5, < s,, i.e. if
the event has occurred in the simulation past of the object, then the receiving
processor’'s simulation is interrupted. The receiving processor has to roll the
object back to a consistent state in the past. The rollback operation involves
the following steps :

{i) Restoration

The processor must restore the state of the object to a checkpoint s,

immediately prior to the simulation time of the received event, s,.
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(ii) Cancellation

Once an object rolls back, it needs to undo everything it has done during
[3.,8,)- This includes cancellation of all event messages that have been
generated by the object during the simulation of this interval. These messages
will be referred to as obsolete event messages. For the cancellation step,
Jefferson and Sowizral [JES 82|, suggest that for each obsolete event message
an anti-message be transmitted by the rolled back object. An anti-message
contains the same text, time stamp and address as the original message. It is
also treated very similarly to the original message. The rule is that when an
event message and its anti-message meet inside the same input or output
queue, they are both removed. Hence, if the original or its anti-message has
not yet been simulated, the two will meet in the output queue of the sending
object or the input queue of the receiving object. This will immediately resuit
in removal of both. If either of the two messages are simulated, the receipt of
the other will cause a rollback and a subsequent. removal of both from the
input queue.

In one approach to cancellation, called aggressive cancellation, the anti-
messages are transmitted immediately after the object’s state is restored to
the time of the checkpoint prior to the simulation time of the event.
Jefferson [JEF 84] suggested a variation to the aggressive approach in which

an obsolete event message is canceled only after the processor reaches the
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simulation time at which a previous event message had been sent apd the
message is proven to be obsolete (lazy cancellation). This approach is superior
to aggressive cancellation if events simulated are relatively independent and
cancellation of one does not affect many others. However, in the cases where
the inter-submodel events are dependent, the lazy cancellation can degrade

the performance by delaying the cancellation of obsolete event messages.

The above methods for cancellation does not require that the communication
media have the FCFS property. If messages are delivered in that order, a
different approach may be taken that will not use as many messages to cancel
the obsolete messages. A rolled back object need only send one message per
destination that has received obsolete messages. The canceling message carries
the simulation time to which the object has rolled back. The object receiving
a cancellation message can take the appropriate actions once it finds the point
in simulation time to which the other object has rolled back. A minor
modification makes it possible to use the second approach to cancellation

without requiring the FCF'S property.

(iii) Simulate forward

The final step of the rollback operation is to resimulate the behavior of the
object up to a time equal to the simulation time of the event that caused
rollback. If the states of the objects are saved after simulation of every

event, the checkpointing is perfeet and the "simulate forward” step is not
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needed. Otherwise, this step is required to reproduce the past states of the
object that have not been saved within the interval (s.,s,). With the
deterministic property of the simulation model (assumption M7, section 1.1),
the states that were reached during the previous simulation of this simulation
time interval, will be exactly reproduced in the "simulate forward” phase.
Consequently, events that have been generated during (s.,s,) need not be
canceled in the cancellation phase. Hence, during the “"simulate forward”

period, the processor does not transmit any generated events.

Performing the above three steps, the rollback operation is completed for that
object. The simulation can be resumed from the simulation time s,. Clearly it
is possible that the simulate forward step can be interrupted by receipt of an

event that causes another rollback.

An object that is rolled back may in turn roll back one or more objects. This
is possible if one or more obsolete events have already been simulated. If not,
only their removal from any queues are required. Therefore, the occurrence of
a single rollback can propagate among the processors and cause many others

to rollback, possibly more than once. Figure 1-2 shows this effect.

The vertical lines in Figure 1-2 are the points at which the state of the
objects are saved (checkpoints). The arrows show the transmission of the
event ¢; from one object to the other. The simulation time of the events are

in the order of the indices of the arrows. Note that the vertical arrows in this
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Figure specify the distributed simulation model we assumed in Section 1.1
i.e., an inter-submodel event is transmitted when the object that generated

the event reaches the simulation time of the event.

In Figure 1-2, object 2 has to rollback after it receives an event with
simulation time s, from object 1. The circles show the simulation time of each
object at the time that the roliback occurs. Depending on when the
cancellation messages are received by each object, affected objects are rolled
back in different orders in real time. An undesirable order for the example of
Figure 1-2 is given in Table 1-1.

With respect to the Time Warp simulation, we make the following

assumptions that apply throughout this thesis.
T1. To cancel obsolete messages, the aggressive cancellation approach is used.
T2. The roliback operation never fails and requires finite processing time.

Considering the two methods described, the potential advantages of the Time

Warp method are:

(i) The processors simulate continuously instead of waiting, although
sometimes the work they do is not useful. Clearly this can be an

advantage if the processors are dedicated to simulation.

(ii) There is no overhead for detection and removal of deadlock.
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The potential disadvantages are :

(i) More storage is required to store the history that may be needed in case

of rollback.

(i) Some work may become obsolete as a result of simulating ahead of

incoming events.

(iii) Extra processing time is required for the roilback operations. This

includes checkpointing, restoring the state and simulating forward.
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1.3. Scope of the Thesis

This work is divided into two parts, algorithms and performance analysis.
The first part, Chapters 2 and 3, include extensions to the Time Warp

method.

Chapter 2 will begin with a discussion of conditions under which simulations
with the Rollback method will progress in real time. Next, two algorithms are
presented that deal with some aspects of this method. The first distributed
algorithm finds a lower bound on the effective simulation time of the system.
The second algorithm deals with the multi-rollback effect and suggests an
approach to find the optimal rollback order to minimize rollback overhead.
This way each processor will have to roll back at most once if it is affected by
another processor's rollback. The latter algorithm requires that some global

information be obtainable by a single processor.

In Chapter 3 the problem of assignment of objects to processors, or the so-

called "load balancing” problem, is discussed. For a majority of distributed

systems, the following issues are of major concern.

(i) Deadlock. The system has to be deadlock free, or an efficient deadlock
detection and removal scheme needs to exist. The Time Warp method is

inherently deadlock free so this issue is immaterial.

(i) Division of task into subtasks, We must divide a simulation model into

submodels that can efficiently be run in a distributed environment. This
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problem is not discussed in this work. It is assumed that the model is
divided effectively into submodels and that enough submodels exist that

will not overload the system.

(i) Task allocation, Finally, an efficient policy is required that will assign the

subtasks to the processing elements such that throughput is maximized.

It is the last issue that is discussed in Chapter 3. In some cases, the best
object assignment policy is a dynamic one that responds responds quickly and
efficiently to the changes in the system. However, in this work only the static
load balancing problem is discussed. The static strategy can be used as an
initial policy and then complemented by a dynamic one. In fact, because of
the nature of simulation, it is often possible to obtain a large amount of
information about the behavior of the system ahead of time, so static load
balancing is ofter reasonable. This information can be used to suggest an

efficient object-processor configuration.

In part two of this work, the performance aspects of the two distributed
simulation methods are studied. Chapter 4 includes a model of Time Warp
that exploits weak interactions between submeodels. The model is a fairly
simple one and the mathematical analysis is limited in that only the two
processor case is considered. However, the results do provide some insight into
the effects of system parameters on performance. The mathematical analysis

of the two processor model is complemented with a K-processor simulation.
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Chapter S.includes a model of the Link Time algorithm with the extension of
a prediction function. The statistical assumptions are similar to those of
Chapter 4. Similar to the previous model, the mathematical analysis is limited
to the two processor case. Simulation of the same model extends the results to
a K-processor system for comparison. The performance measure in Chapters
4 and 5 is defined to be the simulation time advance per unit real time in a
K-processor environment over the same parameter in a single-processor case.
This performance measure enables us to both compare the models of the two
distributed simulation methods and compare distributed and centralized

simulations.

Chapter 8 contains the implementation results of the Time Warp method.
This approach for distributed simulation has been implemented at the Rand
Corporation. The system performing the simulationm consists of five Xerox
Dolphin machines that run a version of Interiisp. The Dolphin processors are
dedicated to the simulation and a Vax-750 on the same ethernet gathers
statistics about the simulation. The application or the simulation model is

the simulation of a version of Game of Life {GAR 70].

Finally, in Chapter 7 a summary and conclusion of the work is presented and

future research topics i this area are suggested.
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CHAPTER 2

The Time Warp Method and Related Algorithms

In this chapter, some aspects of Time Warp simulation are studied and two
algorithms are presented for efficient implementation of this simulation
method.

First, we discuss the progress of simulation time with Time Warp method.
Recall the soundness property of the model defined under M6, Section 1I.1.
That is, the simulation clock of the processor in a single processor simulation
is a non-decreasing function of real time and increases in finite time given
that the model is non-terminating. In a distributed simulation with no
central control, there is no concept of a central simulation clock that can
show the progress of simulation time. Therefore, we need to have a global
variable that can show the progress. This variable can truly represent the
simulation time advance if at any point in thé execution no events with
smaller simulation time are generated. Such a variable will be called the
effective simulation time of the system. To further define effective simulation

time, we need to introduce some other terms.

An event message that is transmitted by a processor is called an in-transst

event message until it is placed within the input queue of the receiving object.
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An object’s simulation progress time or spt, is defined to be the simulation
time of its earliest event that can possibly cause generatior and/or

transmission of other events. Specifically,

sgpt = simulation time of the object when the object is being
simulated.

simulation time of the earliest event on the object’s input

queue when the object is not the current object that
is being simulated.
= simulation time of the event that caused rollback when the

object is in rollback operation.

Given the above, we define the term minimum simulation lime or according to
[JES 82, the global virtual time, GVT at time ¢, as

GVT(t) = min (min spt of objects at ¢, min simuia.tion time of in-transit
event messages at !}

It will be shown later that the GVT(!)is the eﬂ'e(.:tive simulation time of the

system at time &.
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2.1. Simulation Time Progress

The roilback operation and its possible propagation among other processors
raises a question regarding the simulation time progress of the system. The
question is whether there is a situation in which processors never perform
any useful work. It is shown below that the assumptions listed in Chapter 1,
Section 1.1 are sufficient to prove that the system is guaranteed to simulate
ahead and perform useful work that will not be undome. Under these
conditions, the effective simulation time of the system, is a non-decreasing
function of real time and increases in finite time with non-terminating models.

To show this, we need to prove the {oilowing.

Lemma 1

The GVT of Time Warp simulation is a non-decreasing function of real time,

i.e., for every point in real time ¢ and 720, GVT{{+ T) > GVT(i).

Proof

This result is proved by contradiction. Assume that there is a ¢ such that for
some T>0, GVT(t+ T)<GVT(¢).

This implies that at real time ¢+ 7T, there is either an object with spt = X or
an in-transit event message with simulation time X such that X<GVT(¢).
Since at real time ¢ such an object or event did not exist, an event must have

been transmitted after ¢ that is in-transit at ¢+ 7 or caused an object to roll
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back. But this is also not possible. Every object at real time ¢ has either (i)
simulated up to the simulation time GVT{t) correctly (i.e. will not roll back to
a simulation time less than GVT{t)), or (ii) it will receive an event that

causes it to roll back to that time.

Considering case (i), the object will not generate events with simulation time
smaller than GVTY(t) after ¢ according to the soundness of the simulation
model {assumption M6). In case (ii), even when the checkpointing is not
perfect, the object will simulate to the time of the event that caused rollback
in finite time (G1-G3, T3). Furthermore, it will not transmit any events that
are generated during the "simulate forward” period (follows from M7 and the
Time Warp definition). Once it simulates up to the time GVT{t), all

subsequent generated events have a simulation time > GVT(t).

Hence, after time ¢, no events can be generated that have a simulation time

less than GVT(t) and so the statement of the lemma is correct. \

According to the above, all objects at time ¢ have either correctly simulated
up to (not including) the simulation time GVT{t} or they can do so in finite
time. Hence, the value of GVT at any time can be considered as the effective

simulation time of the system.

We showed that the effective simulation time cannot decrease. In what

follows, it will be seen that it increases in finite time.
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Theorem 1

In Time Warp simulation, for every real point in real time ¢, thereis a T>0

such that GVT(t+ T) > GVT(¢).

Eroof

Assume that the statement of theorem is not correct, i.e., there is a point in
real time £ such that for all T>0, GVT(t+ V< GVT(!). But, according to
the above lemma we have, for every real time ¢ and
T>0,GVT(t+ T)>GVT(t).

"From the last two statements it follows that there is a point in real time ¢

such that for all T>0, GVT({+ T)=GVT(¢).

This implies that the system remains in effective simulation time GVT{t)
indefinitely. According to assumptions G1-G3 and T2 (sec. 1.1}, such an state
cagnot be the result of failure of operations or infinite loops outside the
simulation process. Considering M8, events with simulation times GVT{t) or
less must have been generated at simulation time .less than GVT(t). Now let,
tg = min(r: GVT(7)=GVT())
With the definition of GVT, all events with a simulation time less than
GVT(t) must have been generated at real times less than ¢;. Now, the
number of events with simulation time less than GVT{¢) is bounded (M9).
According to M10, all such events must eventually be processed in finite time

and we know that any events they generate must either (i) have a time stamp



greater thé.n GVT(¢t) or (ii) they have been generated before ¢,. Hence, the
system cannot remain in effective simulation time GVT(t) indefinitely. So the
statement of the theorem is correct. \

Lemma 1 and theorem 1 show that with Time Warp simulation the simulation
time progresses. However, we did not discuss the rate at which the simulation
time advances compared to single processor simulation. Clearly, this depends

on many issues. Some of these issues are studied in chapters 3,4 and 8.
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2.2. Minimum Simulation Time (GVT) Algorithm

GVT has several important uses. First and most important, it helps resolve an
issue of major concern in Time Warp simulation: memory usage. The amount
of storage that maintains state and input/output queues grows as the
simulation progresses. In a large or complex simulation, these queues can
become enormous. However, when the simulation has advanced far enough,
some earlier entries of these queues will typically not be used. It is desirable to
reduce storage usage by removing the unnecessary information from the
queues periodically.

As was mentioned in the previous section, at any real time f, the earliest time
to which an object can roll back is bounded below by the immediate
checkpoint prior to the GVT at . Recall that GVT at any time is the
minimum of the simulation pfogress times of all objects and in tramsit
messages at that time. Therefore, all messages with a simulation time prior to
a checkpoint before GVT may be discarded. The Time Warp storage problem
may be mitigated by repeatedly finding GVT and removing unnecessary

information.

In addition to its garbage collection aspect, the GVT can be useful in other

areas of Time Warp simulation. For example :

(1) Since the effective simulation time at any time ¢ is the GVT at that time,

this value can be used to determine when a process has terminated.
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(2) The GVT value can be used by some objects to controt the flow of
messages. Objects may inspect this value, and, if their current simulation

time is too far ahead of it, may temporarily suspend operation.

(3) The speed of simulation and the relative speed of the processors can be
estimated with the GVT. These ratios can be used to balance the load
dynamically between processors by transferring objects from slower

processors to faster processors.

We now discuss the GVT algorithm. Note that by simply letting all the
processors broadcast their simulation times, it is not possible to get a value
for GVT. The problem is caused by the existence of messages still in transit.
A processor that broadcasts its simulation time may later receive an event

message that causes it to rollback and therefore invalidate its reported value.

The goal is to have an algorithm that distributively finds GVT and also does
not interrupt the simulation process except for a short period of time. The
algorithm must run concurrently with, but not alter, the simulation process.
Note that the exact value of GVT may not be obtainable if the simulation is

in progress while the algorithm is running.

2.2.1. A GVT Algorithm

The algorithm presented here finds-a lower bound on GVT and needs the

following preparation by the system:
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(1)
(2)

(3)

(4)

Each processor has a mode of operation that is either pormal or find.

Receipt of event messages must be acknowledged by the receiving
processor. Each processor maintains a list of all its unacknowledged
messages which will be called the unacknowledged message list. Note that
this acknowledgement is different from the acknowledgements that may
exist in the communication protocol. We require that the
acknowledgement be done at the simulation level. Once an event message
is received by a processor and put in the input queue of the receiving
object, an acknowledgement is sent to the sending processor. Each
acknowledgement message carries the mode of the acknowledging

Processor.

One of the processors is assigned to initiate the algorithm. The process of
selecting this processor is not discussed here in detail. One way is to
assign one of the processors permanently to this job at the beginning of
each simulation run. An alternative is to let the processors select the
initiator by a process such as voting. The important point is that for

each run of the algorithm one and only one processor be the initiator.

The initiating processor knows the total number of processors currently

executing and can communicate with all other processors by sending and

receiving messages.
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The initia;ting processor starts the GVT computation by executing the
following routine:
Find _GVT
begin
newgvt = o0 ;
proc__reported =0 ;
broadcast message START ;

end Find _GVT ;

Upon receipt of a START message, a receiving processor executes:

Process _Start
begin
mode = find.

minl = minimum simulation time of unacknowledged messages,;

min2 = minimum simulation time of acknowledged messages carrying
mode= find since the end of the previous GVT computation
(min2 = 0 if no previous GVT computation was made};

min3 = the processor’s simulation time;'

local _min = min (minl,min2,min3) ;

send a message REPORT({local _min) to the initiating processor;

end Process _Start ;



In what follows, the variable local _min defined in the above routine will be
referred to as the local minimum. Each time the initiating processor receives

a REPORT (reported _value) message, it executes:

Process__Report (reported __value)
begin
newgvt = min (newgvt, reported _value);
proc _reported = proc _reported +1;
if (proc__reported === NUMBEROFPROCESSORS) then
broadcast message NEWGVT (newgvt) ;

end Process _Report ;

Upon receipt of the message NEWGVT, each processor executes :

Process _ NewGVT(newgvt)
begin
mode = normal;
update the value for GVT;
remove all the information belonging to a time prior the immediate
checkpoint before newgvt;

end Process NewGVT;
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2.2.2. Algorithm Correctness

In this section, we give a proof that the algorithm produces a correct lower

bound on GVT. Let us begin first with an informal discussion of its operation.

In this algorithm every processor is responsible for considering the simulation
times of its assigned objects as well as the simulation times of all the event
messages that have been sent by this processor but have not been accounted
for in the GVT computation by the receiving processor. At real time ¢, the set
of in-transit messages transmitted by a processor is a subset of Iits
unacknowledged messages. The minimum simulation time of the latter is

therefore a lower bound on the minimum simulation time of the former.

In Process _Start, the value of the second variable (min2) is included in the
computation of the local minimum to avoid problems that can arise in

situations similar to the one shown in Figure 2-1.

The vertical lines in Figure 2-1 indicate the times at which processors receive
the START message and respond with the local minima. Note that processor
2 has received an acknowledgement for the message with time s,. However, the
acknowledgement has been sent after processor 1 has reported its local
minimum at which time it had not received that message. If processor 2 looks
only at its unacknowledged messages, it will not consider the time s,. If that
message causes a roliback at processor 2, then the resulting GVT c.an be

incorrect.
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Figure 2-1. Example of an Incorrect Result

The problem occurs because all the processors do mot report their local
rminimum at the same time and the processor sending the acknowledgement
for message with time s, has done so after it has computed its local minimum.
Although the message has been received, its simulation time has not been
considered by the receiving processor in its computation of local minimum. To
avoid the problem, a processor needs to know whether the acknowledgement
for a message has been sent before or after thg computation of the local
mirimum. If the acknowledgement has been sent after the computation then

the processor sending the event message is still responsible for its time stamp.

An acknowledgement that carries a mode normal informs the processor
receiving the acknowledgement that its time stamp will be considered in the
GVT computation by the processor that sent the acknowledgement. However,

an acknowledgement carrying mode find requires that the processor that sent
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the message include the time of the message in its calculation of the local
minimum.

To prove the correctness of the algorithm, we prove the following.

Theorem 2

Let ¢, and ty, be the points in real time at which the first and last processors
receive the START message. The result of the algorithm, GVT", is a lower

bound on GVT(tg).

Eroof
Recall that
apt{t) = simulation progress time of processor ¢ at ¢
and
est{t) = simulation time of the earliest transmitted event
from processor i, in transit at time ¢
Then

GVT(t) = min(min(spt{1),eat{1)))
]
Also, let {t; i=1,.,K and #;<t;+,} be the points in real time at which the
processors receive the START message. Now suppose that the theorem is not

correct and GVT >GVT(¢;). Let X=GVT{lyg}. We first prove the following

lemma.
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Lemma 2

If X<GVT, then at least one object ¢ rolls back to a simulation time <X
after its reporting time, ¢;.

Proof of the lemma

According to the definition of GVT, if X is the value of GVT{) then at time
tx either (i) there is an object ¢ that has a simulation time equal to X or (ii)

there is an in-transit event message with simulation time X.

If (i) is true then an object {f5£K)} must have rolled back to a simulation time
< X after its reporting time ¢;. Therefore, if (i) is true then we are done. Now
if we assume (i) is false, then (ii) must be true. The object receiving the in-
transit message has a simulation time >X at . If the simulation time of the
object is equal to X, then similar to the case (i), we can show that the object
must have rolled back at least once after it sent its report. If the simulation
time of the object is greater than X, then the object rolls back once it receives
the in-transit message with simulation time X. In any case, (i} or (ii), at least
one object rolls back to a simulation time <X after it sends its report and the

statement of the lemma is correct. \

Back to the theorem

Now, consider one such object f;, that rolls back to a simulation time <X
after its reporting time. The rollback has been caused by receipt of an event

from another object #,. Similar to #;, object s, must have rolled back to a



simulation. time <X after its reporting time. Otherwise, it would have
accounted for the time X in its report. Following the above argument, we have
objects i},15, . . . ,i, such that each object ¢; rolled back to a simulation time
< X after its reporting time and then sent an event with a simulation time
<X to i, (1<j<n). Also, esch such event that caused rollback was

transmitted during the time interval {(¢,,f5).

Consider the last object s, in this list. Note that a "last™ object does exist,
since only bounded number of events can be transmitted during the finite time
interval (¢;,¢g). The event that caused this object to rollback has been sent
by an object i,4, and it does not have the same properties as those mentioned
above. Then, i,4; sent the event either (i) before its reporting time or (ii)
after the reporting time but i,4, did not rollback to a time <X after its

report and before it sent the eveat.

In the case (i), 1,4, does not receive an acknowledgement for that event from
i; or it receives one with the "find” mode. In the case (ii), the reported local
minimum of §,4, is less than the time of the event it sends to f|. In either
case, f,4, must have accounted for the simulation time of that event in its
report. Since simulation time of the event was <X, the GVT algorithm could
not have produced a value >X. Hence, the statement of the theorem is correct

and the algorithm returns a value GVT such that GVT < GVT(ix).



We showed that the algorithm computes a correct lower bound on GVT once
the initiator starts the computation. We need to discuss how different runs of

the algorithm affect each other.

The GVT computation process consists of a broadcast by the initiating
processor (START message), a response as an ecko by all processors
(REPORT) and a further broadcast by the initiator (NEWGVT), to give the
final result. A processor’'s operation as far as the GVT computation is
concerned, consists of cycles of pairs of (normalfind) mode. This is shown in
Figure 2-2. In this Figure, processor 1 is the initiating processor. Arrows with

labels b and g correspond to broadcast and echo messages, respectively.

Note that the second broadcast does not take place until all processors have
responded to the first with their local _min. Then it is not possible for two
processors to be in two pormal modes, belonging to two consecutive runs of
the algorithm. However, it is possible that a START message belonging to the
next run reaches a processor, before it receives the NEWGVT message of the
previous run. The problem can be alleviated by a second echo to acknowledge
receipt of the NEWGVT message. An alternative is to make sure that a
processor remembers not to change its mode to pormal in Process  NewGVT

unless the total number of START and NEWGVT messages it has received are

even.
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9 find normal
b e b b
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Real Time
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Figure 2-2. Cycles of Normal and Find Modes.

2.2.3. More about the GVT Algorithm

The frequency of initiating a GVT computation depends on the application. A
processor may ask the initiator to start whenever it needs more storage. It

may also depend on the simulation rate of any of the processors.

The problem of finding the GVT, is similar to some existing problems in
distributed systems. Issues such as determining a consistent global state of

the system or termination of a distributed process are similar to the GVT
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problem. .These issues have been studied in the past [DIS 80], [FRA 80,
[MIC 82} and [CML 83]. However, often these solutions require that the
commubnication media preserve the FCFS property, i.e., messages transmitted
from the same source to the same destination are received in the same order

they have been sent.

One of the complications of distributed decision making processes is the
existence of in-transit messages. A valid local view of a process can be
invalidated by the arrival of a {previously in-transit) message, a message that
has not been accounted for by any of the sending or receiving processors.
With the FCFS property, the sending processor can delegate the
responsibility for existing in-transit messages to the receiving processor. This
can be accomplished by transmitting a control message to the receiving
processor. The receipt of the control message assures the receiving processor
that no in-transit messages exist on that link that belong to a time prior to
the sending time of the control message. The receiving processor can then
make decisions, knowing that any other message after that time will be

accounted for by the sending processor and will not invalidate the result.

Without the FCFS property the receipt of messages needs to be confirmed by
acknowledgements. A link can be assumed to be clear of any in-transit
messages if the sending processor has received all the acknowledgements.

Waiting for acknowledgements before making a decision can be unnecessarily
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time consuming. The algorithm presented above reports a local view of the
problem without exchanging any information with the processor’s neighbors.
The response is immediate and is based on knowledge that has been gathered

ahead of time.

In addition, no particular broadcast mechanism is assumed here. A broadcast
mechanism such as a minimal spanning tree [DAL 80| or the shortest path
tree [WAL 80], not only improves the overall communication cost and the
response time but also can give a more global view of the problem to the

intermediate processors on the tree.

The algorithm can also be modified such that the role of the initiating
processor is restricted to starting the GVT computation. The information
gathering and final determination of the GVT can be done distributively by
all processors once each local obtained value is broadcasted to all. It is
essential only that one and only one processor starts one phase of a GVT

computation.

2.2.4. Implementation Results

Jefferson and Sowizral have suggested a different algorithm to compute GVT
[JES 83]. In this algorithm (algorithm GV'T2), an initiating processor starts
the GVT computation by broadcasting a START message. Upon receipt of
this message, every processor will acknowledge receipt of the message and

start a GVT computation phase. The initiator will send an END message



when it r'eceives all the acknowledgements to its START message. The
processors will terminate their GVT computation phase when they receive the
END message and then send their local minimum to the initiator. During the
GVT computation phase, each processor computes its local minimum by
minimizing over its spt and the unacknowledged messages. Their algorithm
requires three broadcasts interleaved with two echoes as opposed to 2
broadcasts and one echo in the previous algorithm (algorithm GVT1).
However, their approach does not require the definition of a mode and
therefore its inclusion in message acknowledgements. In their algorithm,
after the first and before the third broadcast, there is a real time interval
during which all processors are busy computing GVT. The minimum of the
local minima values during this shared GVT computation period guarantees a
correct result. Because of the extra broadcast-echo pair algorithm GVT?2

takes longer to compute GVT than algorithm GVTI.

The two algorithms (GVT1 and GVT2) were implemented and were shown to
be working and producing satisfactory results by tests. The time consumed
by either of the two algorithms was small. The implementation results of
Chapter 6 show that often less than 1% of the total running time was spent
on the GVT computation. Clearly, by increasing the frequency of GVT
computations, this fraction will be increased. However, with a frequency that

was sufficient for the application, the GVT computations showed to be a
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small fracﬁon of the total run time of the system. The resuits did confirm
the initial observation that the algorithm GVTI responds faster to the GVT
computation request. Table 2-1 gives the relative speed of the two algorithms
that were obtained by several runs of the two for different simulation tests.
The column numbers are the number of processors involved in the test. The

other entries (relative speed) r is given by

a-b
a

r =
where a and b are the average response times of GVT2 and GVTI1
respectively. The tests were done on the simulation of models of the Game
of Life for several board sizes. The details of the simulation and the

implementations appear in Chapter 6.

Table 2-1. The Relative Response Time of the Two algorithms.

2 3 4 5
test 1 0.44
test 2 0.46
test 3 0.59

test 4 0.20 | 040 | 0.54 | 0.10
test 5 0.37 | 0.40 | 0.47 | 0.21
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2.3. Optimal Rollback Order

We have mentioned that a single rollback can propagate among the
processors and cause some others to rollback too. One processor may need to
rollback more than once if the cancellation messages are not received in the

proper order. Figure 1-2 in the previous chapter shows this effect.

Considering that each rollback involves some processing time and may involve
transmission of several messages to cancel obsolete events, it is desirable to
reduce the number of rollbacks to one for each affected processor. The
following algorithm finds the optimal rollback order, in which each processor
rolls back directly to its final rollback point. For example, in Figure 1-2, if
processor 4 receives cancellation message for e; before any other messages, it
can roll back directly to ¢;, without performing three rollbacks to ¢;, c5 and
¢y

In this section, we study the Rollback method in an environment in which it
is practical to introduce a global coordinator. The simulation process remains
distributed and the coordinator supervises the rollback operations among all
affected processors when and only when a rollback is necessary. The
coordinator receives enough information about inter-submodel events to
detect the occurrence of a rollback and coordinate the rollback operations. It
finds affected processors and reports rollback times to them. In other words,

the coordinator finds the optimal order in which the processors need to roll
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back to avoid further rollbacks. This way, the problem that was mentioned
with processor 4 in Figure 1-2 does not occur. Note that some affected
processors may have not simulated the obsolete event(s). In that case the
term rollback time refers to the earliest time the processor has received an
obsolete event from another affected processor and all those events received

after that time must be removed from the event queue.

The coordinator does not have any information about the object assignment.
To the coordinator, an interaction takes place between two processors rather
than two objects and processors rollback rather than objects. Clearly, by
supplying more information to the coordinator, it is possible to track the

times to which objects need to roll back.

First, we view the problem of finding the affected processors and the rollback
times as a graph problem. Let G be the simulation history graph il it is a
labeled multigraph, with K vertices as the processors. A directed edge (p,q)
exists in G iff p has transmitted an event message to q. The edge is labeled
with the simulation time of that event message. This multigraph is different
from the communication graph defined in Section 1.2. In this graph, edges
develop as simulation progresses. Given that a processor rproc needs to roll

back to s, the optimal rollback order can be obtained by the following

algorithm.
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Algorithm rollback order (a)

Input:G - a simulation history graph, rproc - a processor id, s, - simulation
time to which rproc should be rolled back.

Output:a list of affected processors and their rollback times.

begin
construct a marked labeled muitigraph H by removing from G all edges
with labels less than s, and subsequently removing the subgraphs
disconnected from rproc;
for i=1to K-1do
for every acyclic directed path P in H of length ¢ from iproc to ¢
such that the labels of the edges of P are in increasing order do
begin
add an edge {rproc,q) to the graph and. label the edge with the
label of last edge of P;
mark the new edge “essential”;
if another "essential” edge ingoing to ¢ exists then
remove the "essential” edge with the higher label;
end;
L ={(gql)| qis avertex in H, [ is the label of the "essential” edge of g}
return L,

end;

93



Note that g does not need to rollback if it has not advanced to that time. It
only needs to remove obsolete messages that were sent by those processors

that have rolled back.

Each directed path that resulted in the addition of an "essential” edge,
corresponds to a sequence of event messages, ordered in increasing simulation
time. The path origin, rproe, has invalidated the transmission of the first
event message in the sequence by rolling back to a simulation time prior to
the event's time stamp. Clearly all other messages that were subsequently
sent are also obsolete and need to be canceled. Vertices along the path are
affected by as much as the label of their incoming edge on P. The edge with
the lowest label gives the earliest time the processor corresponding to that

vertex is affected.
In what follows we show that the algorithm correctly identifies all affected
processors and their rollback times.

Broof by contradiction

Assume that the algorithm is not correct. In that case either (i) there is at
least one affected processor that is not identified or (ii) there i3 at least one

affected processor with an incorrectly computed rollback time.

Case (i) i3 not possible. Note that any affected processor lies on a directed
acyclic path with increasing labels from rproc. (This path is of length <K -1

since otherwise it would contain a cycle.) Since the algorithm adds an edge to
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the graph for every such path and only removes ore when multiple identical
destination processors exist, there must remain an "essential” edge from rproc

to every affected processor. Hence all affected processors are identified.

Considering case (ii), let p be an affected processor with an actual rollback
time s where the computed rollback time s' is not correct. ie., s7£s’.
Consider all directed acyclic paths from rproc to p. The actual and computed
rollback times, correspond to different paths with different "essential” edge
labels. However, this i1s not possible. The algorithm searches all possible such
paths and selects one that has the smallest label, s’ for its corresponding

"essential” edge. If s is the actual rollback time, it must be the smallest such

label. Hence, the two values must be equal. \
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2.3.1. Implementation Detalis

The above method for finding the directed paths distributively for each
occurrence of a rollback can be costly and inefficient. Therefore, we require
that the relevant information be available to 8 processor which we called the
coordinator. In addition, the communication medium must preserve the FCFS
property.
Every time that a processor sends an event message to another processor, it
also sends a message to the coordinator, carrying a tuple (sp,dp,st) where

sp = the processor sending the event

dp = the processor receiving the event

st = simulation time of the event

The coordinator maintains a data structure that represents the graph in
tabular form. For each processor p, the coordinator has a table of the form
shown in Figure 2-3.

The first row gives the simulation time of event ‘messagm in the order they
have been transmitted, i.e. one column for each outgoing edge of p. The entry
corresponding to row p; and column s, (p,,4;), gives the simulation time of the
next transmitted event from p to p; after s.. In other words, for all i (p;,8;)>3;
or (p;8;)=NULL. The former condition indicates that no event has been
transmitted from p to p; after a;. The coordinator can build this ta.‘ble as

simulation progresses. With any message transmussion from p;, to p; with
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Figure 2-3. The Table for Processor p.

simulation time s, the coordinator adds a new column headed s to table of p,.
It then enters s in the entry (p;s), and makes all other null entries of the p-
th row equal to 5. Columns can be removed from this tables as new values for

GVT are computed and also when obsolete event messages are removed.
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As far as the coordinator is concerned, the simulation time of a processor is
the minimum of the simulation time of its last transmitted event and last
received event that caused rollback. This time, which is a pseudo ssmulation
time, is a lower bound on the actual simulation time of the processor. The
coordinator detects the need for a rollback if a processor receives an event
with a time stamp lower than the processor’s pseudo simulation time. Note
that a processor may receive an event in its simulation past, although this is
not detectable by the coordinator. This can occur if the processor receives an
event message with with simulation time between its pseudo and actual
simulation times. This event message will necessitate a rollback however, the
latter type of rollback does not affect any other processor and does not

produce any inconsistency in the operations.

Once the coordinator detects occurrence of a rollback, it can find the optimal
rollback order with the following algorithm. Then, it can broadcast the resuits
to all other processors to update their information. While the algorithm is
being executed, the processor rproc that is the first rolled back processor has

to wait for the results.
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Algoritﬁm Rollback Order (b)

Input : p, rproc processors; s, a time stamp on an event message from p to

rproe, causing it to roll back to time s,.

Output : A list (rollbacklist) of tuples (p,q,8), where p is the processor causing

a rollback, ¢ is the rolled back processor and s is the simulation time of the

event that caused rollback.

begin

(1) templist = {(p,rproc,s,)} ;
/* This list at any time contains information about the latest point each
processor needs to roll back to. Imitially, the list contains the first
processor that has been rolled back and its time of rollback. The list is
sorted in the simulation time order and at most one tuple exists for each

processor */
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(2) while templist is not empty do

begin
(3} remove first entry (p,q,8) from templist;
(4) add (p,q,4) to rollbacklist;
(5) find column s, in table of ¢ with smallest s,, such that s3> s;
(6) for each non-null entry (p;,s,) in column s, do
(7) if p, is not in the rollbacklist then
begin
(8) insert (¢,p;,9;) in templist ;
end;
(9) remove entries from rollbacklist with duplicate destination
processors
leaving one with smallest simulation time;
end;

(10) return rollbacklist ;

end algorithm rollback order;



2.3.2. Algorithm Correctness and Complexity

The algorithm of the previous section follows the graph theoretical idea
explained earlier. As it advances it traverses the edges of the directed paths.
Note that each time through the while-loop in step 2, the new edge added (if
any) has a label greater than the last entry added to the rollbacklist.
Therefore, the strict sequencing of labels in increasing order is maintained. In
that case all the traversed paths result in an “essential” edge. On line 9, if
there is more than one path ingoing to the same vertex, the one that occurs
earlier in simulation time is considered. Therefore, during the i-th run of the
while-loop, the templist contains the last edge of all the effective paths of
length <i. Since there are at most K-1 processors that can be affected and
one is found each time through the loop, templist contains at most K-r

elements at the beginning of the i-th run of the while-loop 2.
The following is a worst case timing analysis of the algorithm :

The time dominant statements are those in the while-loop. During the i-th
run, statement 3 has a complexity O(1), since the list is sorted. Similarly,
statement 4 is of order O(1). Statement 5 is of order O(logX), where X is the
maximum number of columns found in the tables after the column indicating
the rollback time. Note that this is the same as the maximum number of
obsolete events that were generated by one processor. Statement 6 reqﬁires a

sequential search through all the entries of a column and is then O K}.
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Statement 7 corresponds to another sequential search through a list of
elements and hence is of O(§). Statement 8 is an insert in a sorted list of size
at most K-i. Finally statement 9 is a sequential search through a list of K-i
elements. Loop 2 is executed at most K-I times, and hence the overall
algorithm complexity is

O(K® + KlogX)

where

K = the number of affected processors

and

X = the mazimum number of obsolete events sent by a single processor
The computational complexity obtained above seems to be rather high,
particularly when K is large. In fact, it is in such a situation that an optimal
rollback order can be useful. When K is large, the number of affected

processors can also increase and multiple rollbacks become more probable.
To see this, let

n{k) = the number of rollbacks needed in the worst case when k
processors are affected by a rollback

Then, n(k) satisfies the following equation

n(k) =k X n(k-1) + k

The above formula is derived as follows. Let processor rproc roll back and

assume its rollback affects k other processors. In the worst case, all these
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processors have simulated the obsolete events that were sent by rproc and
have produced other obsolete events. Let events e;,e,, . . . e, be the earlier
obsolete events (in simulation time) that were sent by rproc to the &
processors. Without loss of generality let the simulation time of t‘hese events
be in the order of their indices and be denoted by s,,s,,...,s,. Suppose
processor k that has received the event e, (the latest in simulation time),
receives the cancellation message first (in real time). It needs to undo
everything since s,. In the worst case, k¥ may roll back k-1 processors which
takes n(k-1) rollbacks. Note that we are excluding rproe, although this
processor may also be affected if it advances to the time of the obsolete

messages sent by processor k.

Consider the case where any other processor ¢ receives the cancellation for
message e; after (in real time) e;,, was received by processor i+ and all the
obsolete events it had transmitted after e;,, are canceled and affected
processors are rolled back. Hence, each processor.s of the k processors needs

to rollback once to the time ¢; and each can affect k-1 others. The formula

then follows.

Given the above formula, nfk}is of order k. Given K Processors, one causes a
rollback, ome is the rolling back processor and in the worst case, the
remaining (K-2) may have to rollback. Then O(( K-2)!) rollbacks may be

required until the rollback operation is complete if the cancellation messages



are not received in the proper order.

Comparing the two worst case results, one for the computational complexity
of the algorithm and the other for the possible number of rollbacks in the
case of absence of such an algorithm, encourages an alternative approach to
the control of the rollback operation such as the algorithm and structure

suggested here.

It should be noted that O(k!) rollbacks require at least O(k!) obsolete
messages. The worst case is only one of the permutations of these many
messages. The probability of occurrence of such a case can be very low.
Nevertheless, other undesirable cases, although not as bad, can still arise with
higher probabilities. It should also be noted that the the computational cost
of the algorithm does not include the overhead due to the table construction
and message transmission to gather the data.

The feasibility of such an algorithm depends to a great extent on the
broadcast mechanism. The information about external events needs to be
broadcast quickly and efficiently. The coordinator can become a bottleneck if

the rate of external events is high.
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CHAPTER 3

Assignment of Objects to Processors

The problem discussed in this chapter is that of assignment of objects to

processors. The objective is to improve performance and increase speed of

simulation by an optimal distribution of objects among the processors. It is

assumed that the simulation model has been divided into objects and the

objects can be run efficiently on the processors.

Following the discussion of the previous chapter, the effective simulation

time of every processor at any time ¢ is the value of GVT at time ¢.

Therefore, faster simulation implies faster growing GVT. Factors affecting

the rate of growth of GVT are:

(1)

(2)

(3)

The distributed processing overhead. This includes synchronization and
message processing.

The overhead due to Time Warp simulation. This consists of GVT
computation, checkpointing, rollback processing and finally amount of
work that is lost as a result of rollbacks.

The degree of concurrency that exists between the processors

performing the simulation.



The last two factors are Time Warp-related and will be studied in order to
obtain optimal object-processor configurations. The objective is then to assign
objects to processors in such a way that the Time Warp overhead is reduced
and concurrency is increased. In some cases, the best object assignment
strategy is a dynamic one, flexible enough to respond quickly to the changes in
the system. However, throughout this work, only the problem of static
assignment of objects to the processors is studied. The results can be used for
an initial object assignment and then complemented by a dynamic load

balancing techrique.

The types of Time Warp overhead that can particularly be affected by an
assignment policy are the rollback processing time and the wasted simulation
time. These can be reduced by reducing the number of rollbacks. Note that a
rollback can occur by transmission of an event from an object with lower
simulation time to one that is farther ahead. However, this is only a necessary
condition. If an object is allowed to transmit events with time stamps greater
than its own simulation time, receipt of an event from a slower object may not
cause a rollback.

Depending on the simulation model, objects differ in their ability to cause
rollback or their ability to be forced to rollback. Figure 3-1 shows the
communication graph of a model with different types of objects as far as

rollback is concerned. Some objects can be subject to rolling back and also
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cause others to rollback (nodes 3 and 4), some may need to rollback but
cannot cause others to do so (node 5), some can cause rollback but cannot
be subject to rollback (node 2). Note that, node 2 is only simulating events

that are generated by node 1. Finally those that carnot do either (node 1).

In this work, we make no distinction among the different types of objects
mentioned. That is, we assume that all objects can be subject to rolling

back and can also cause others to rollback.

Objects on the same processor are simulated sequentially and cannot cause
each other to rollback as long as no inter-processor event transmission
occurs. Therefore, transmission of an event message between two processors
not oaly increases the overall communication cost but also increases
probability of rollback and the rollback processing overhead. Hence the
communication cost between two objects is assumed to be the interaction
rate or the number of event messages transmitted between the two per unit
simulation time. Clearly, this measure is reasonable when the simulation

model is well-behaved. We assume the system is stable enough that such an

.

Figure 3-1. Objects with Different Rollback Capabilities
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average approximates the actual interaction between objects during any unit

simulation time interval.

Consider the communication graph of the simulation model. Label each edge
(1,7) with ¢;;, the average number of events transmitted between s and j per
unit simulation time. To reduce inter-processor communication and therefore
reduce possibility of rollbacks, we need to divide the nodes of this graph into
fragments such that the sum of the inter fragment link labels is minimized.
But first, we need the values for ¢;;. How these values are obtained, will be

discussed next. Therefore, the problem of object assignment consists of two

subproblems:

(1) Given matrix C = {c,-,-}, find an optimal assignment of objects, satis{ying
the requirements of lower rollback processing time and less wasted
simulation time. Clearly, the best object assignment policy in this case is
to assign all objects to one processor. However, in addition to the above,
we like to maintain the highest level of concurrency.

(i) Find matrix C.

In this problem, it is assumed that the processors to which the objects are

assigned have equal processing powers. Furthermore, the cost of

communications between every two processors in terms of delay or

communication processing overhead are the same. In that case, by reducing

overall traffic, the overall cost of communications in the simulator is reduced.



3.1. Optimum Object-Processor Assignment Given C

To satisfy the requirements of lower rollback processing and less wasted -
simulation time, we need to aliocate objects on the processing elements such
that the amount of communications between objects on different processors is
as small as possible. As mentioned, this means placing more frequently
communicating objects on the same processor. Not considering other
objectives, the best we can do is to allocate all objects on one processor and
therefore, reduce the inter-processor communications to zero.

To deal with the other requirement of reducing wasted simulation time, we
need to balance the simulation time of the objects as much as possible. Since
no assumption is made on the connectivity of the communication graph, we
wish to minimize

| LVT{t) - LVT{t) | for all objects s and j and time ¢
where LVT[t) is the simulation time or the Local Virtual Time of object ¢ at

real time ¢. Looking at the system over a long time period ¢, we have

LVT{) = ty,

where ~; is the simulation rate of object ¢, i.e. unit simulation time progress
per unit real time.

We therefore, wish to minimize the difference in simulation rates of the
objects. But the simulation rate of an object i on processor k is equal to the

stmulation rate of the processor and is
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L _ average real time processing of processor k per simulation event
B

-:— = average ssmulation lime per event of object &
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N = total number of objects
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Note that in our study an object can only be assigned to one processor. This
may not be true in general when multiple processors are responsible for each

object for fault tolerance. This issue is beyond our discussion.

We have

{3- = the rate at which simulation time of object v grows on processor k

in the absence of rollback

N X\
The simulation rate of processor k is inversely proportional to ) —84. To
T ad ]

minimize the difference in simulation rates of the processors and therefore

minimize wasted simulation time, we need to minimize



1 1 .
| By Y | for all pasrs k,i
Y —Ba Y. Ba
(=] Fk il ¥

Until this point, our conclusion is that to improve performance, we need to
minimize inter-processor communications and the difference in the simulation
time of the processors. Both these objectives are best met in a single-
processor environment. To optimize multi-processor simulation, we need to
deal with concurrency requirements. Given K, the maximum number of

available processors, the ideal simulation rate is

K
Ligea = ‘—:‘

N
where A = 37\, and g is the processing rate per event of the processor in a

sl
single processor situation. The 1deal simulation rate 1s hard to achieve. We
therefore define 7 to be the degree of tolerance we choose to be away from

the ideal rate. The simulation rate constraints of the processors can be

rewritten as

r
Ciget -7 < N—i STliea v 7 forall k<K

2 Aiﬂik

The smaller 7, the closer the objects are in simulation time.



Summarizing the above, the problem is
o K N
Mazmize ¥, Y} c,-‘,-ﬂ,-kﬁjk (1)
kel imly <5
saubject tol';y, g -7 < —NP——F,-J,,I + 1 forall k<=K
> AiBa (2)

K
where the variables 3, € {0,1} and for any {, ¥ 3, = L.
kol

This a quadratic 0-1 integer programming problem with linear constraints
[GYE 76}, [MLT 82]. The objective function (1), minimizes the inter-processor
communications. This is done when the inter-object communications within a
processor is maximized. The constraints (2), minimize the difference in the
average simulation time of the processors and bound this difference by 2r.
Solving this optimization problem by integer-programming methods is in
general time consuming [KAM 76], [HAN 79|. In fact, the problem of finding a
feasible solution to meet {2) is NP-complete [GAJ 79]. The initial objective of
faster simulation is then, not achievable if too much processing time is spent
on object allocation. Therefore, a faster heuristic that if not optimal gives a

reasonable feasible solution is desirable.

The first question is the existence of a feasible solution for this problem.
Clearly, this depends on 7. In the algorithms bYelow, an initial value for 7 is
given to be an arbitrary percentage of the defined measure for ideal simulation

rate. This value is then increased, if no feasible solution can be obtained. It



will be shown later that a better initial value for r can be obtained by running
the last algorithm presented below. Another approach is to perform a binary
search in the range of the values of r. That is, when an initial value proves to
be infeasible, then a rather large value of r is tested for feasibility. Once a
feasible value is obtained, with a binary search approach the range between
feasible and infeasible values is tightened until a satisfactory result is

obtained.

The number of available processors is an input to the following algorithms. In
the first two algorithms, it is possible to obtain a result with smaller number
of available processors. However, the last algorithm only produces object-

processor configuration that uses the maximum number available.



3.1.1. Heuristic Algorithm 1

The algorithm presented here, considers the primal form of the optimization
problem (1). The algorithm groups objects into fragments in such a way that
the inter-object communications within a fragment is maximized. In the
process of grouping the objects, the constraints in (2) are checked for
satisfaction. The approach is similar to the minimal spanning tree algorithm of

Kruskal, [KRU 56.

In order to optimize on the computational complexity of this algorithm, the
Union-Find algorithm of Tarjan [AHU 75| was used. The Union-Find
algorithm finds the two sets containing two elements and performs a union on

the two in the least costly way.

The algorithm gives the optimal solution when the communication graph
corresponds to the graph of an equivalence relation with the sum of the loads

assigned to the object of each class are as close as possible.
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begin Algorithm H1
done = false ;
sort the links of the graph in decreasing order of cost, ¢,; ;
while ro! done do begin
for n=1to N do fragment(n) = object n ;
while all links are not considered do begin
remove the largest link (1,5) from the sorted list ;
if (fragment of 13~ fragment of j) and
((fragment of 1 U fragment of j) does meet the upper bound in (2))
then /* fragment of i == the fragment containing object i */
fragment of 1+ = fragment of ¢ U fragment of j ;
fragment of j = NULL ;
end
if number of non-null fragments > K then
combine fragments such that the bounds in {2) are satisfied ;
if number of non-empty fragments < K then
done = true;
else increase 7 or perform a binary search;
/* At this point, the grouping of objects has not been successful. The
constraints (2) are slightly perturbed and a new run of the algorithm is
resumed */

end

end Algorithm H1
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3.1.2. Heuristic Algorithm 2

This algorithm divides the communication graph of the objects into two
subgraphs (fragments) in such a way that the inter-fragment communication
is minimized. Each subgraph that does not meet the upper bound in (2) is
then treated as a graph and the division process continues unti! all fragments
meet the upper bound in (2). The lower bound constraint is then checked
and the fragments with low loads are combined to meet the lower bound.
Similar to the previous algorithm, if the process does not succeed with a
particular value for r, it is increased and the process is repeated. To divide
the graph into two fragments with minimum inter-fragment communication,
the mincut-maxflow algorithm is used [EVE 78], [EDK 72|, [DIN 70] and
[FOF 62]. In fact, the optimization problem (1) without constraints in (2) and
K=2 is equivalent to the maxflow-mincut problem [PIR73a}, [PIR73b],
[PIR 74}, [RSH 79] and [STO 77). Note that if the objects on the source side
are assigned to one processor and those on the sink side are assigned to the

other, the communication cost between two processors is minimized.

Similar to the previous algorithm, the resulting configuration is only bounded
above by K, the maximum number of available processors; it does not

guarantee all K processors will be utilized.



begin Algﬁrithm H2
done = false ;
while not done do
begin
fragments = { graph };
if there is a {fragment X exceeding the upper bound on load then
begin
use min-cut algorithm to divide X into two fragments Y,Z ;
fragments = fragments - X + Y + Z ;
end
if number of fragments < K then done = true;
else
begin
combine the fragments such that total number is reduced and the
upper bound requirements are met;
if number of fragments > K then
increase r or perform a binary search;
end

end Algorithm H2
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3.1.3. Heuristic Algorithm 3

This algorithm works on the constraints (2) of the optimization problem. It
first divides the objects into K fragments such that the load is evenly
distributed. It then tries to exchange objects in different partitions so as to

minimize the communication cost.

The initial problem is then to divide a set of N elements { N= number of
objects) into K sets in such a way that the difference in the sum of the
elements of every pair of sets is minimized. That is, given a set

(ApAg, * * - ,Ap), divide the set into K subsets Py, k=1,...,K such that

[ 33 M~ 3 Xl for all pairs k and |

X, m P A, in P
is minimized. This problem was studied by Karmarker and Karp, [KAK 82].
The approach taken in the following algorithm is to assign the largest
element to the set with smallest sum first. The algorithm initially sorts the
elements of the set. [t then assigns the first K largest elements to K sets.
Starting from largest in the remaining elements, elements are added one by

one to the set with lowest sum. The idea is to increase the sum of the

elements in the smallest set by the largest number possible.

Unlike the first two algorithms, this algorithm is constrained by the number
of available processors. If all different configurations are needed, we need to

run the algorithm for different values of K.

78



This algorithm could be used as a pre-processing test for the first two
algorithms. The result can tell us whether it is at all possible to meet the
constraints in (2). It is possible that even before the ezchange operation in the
Algorithm 3., the sets do not meet the bounds in (2). This implies infeasibility
of the solution with the choice of r. 7 should be increased until a feasible

solution is obtained. Clearly this algorithm does not guarantee an optimal

solution for 7.
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begin Alg.orithm HS
sort the loads ()\;) in decreasing order;
assign the first K to K sets (5,,5,,...,5k);
while all objects are not considered do
begin
take next element;
add element to the set Sg;
sort the sets in decreasing order;
end;
/* At this point the objects are partitioned into sets in such a way that the
sum of the loads of objects in each partition is close to each other. */ -
do until no improvements can be made or time is over
exchange objects such that the inter-fragment communication cost is
reduced and the load constraint (2) is not disturbed ;

end Algorithm H3



3.2. Approximate Evaluation of C

The second part of the object assignment problem is to evaluate the matrix

C = {e;;}, where

¢;j = average number of events transmitted between i and §

per unit simulation time.

These values can be obtained in several ways. One approach is to perform a
flow analysis of the behavior module. This is the module that is activated
when the object is being simulated. The data can also be obtained from the
user or a short sample run of the simulation.

Each data acquisition method by itself, may provide a poor estimate of the
data. Therefore, an approach that combines all the three methods has been
chosen.

Initially, a flow analysis of the behavior module is performed. The data

obtained by the flow analysis of the behavior module of object §, consists of

(i) The destination objects of the generated events by . In the case where
the flow analysis does not produce an explicit result, the destination is
assumed to be the set of all possible neighbors of the object. This set can

be provided by the user or a short sample run of the simulation.

(1i) The average number of transmitted events to any destination, i.e. Ny =
Number of events from f to j per unit simulation time. Similarly, some of

these values may not be explicitly derived from the flow analysis. In this
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case, user or the sample run data can be used as an estimate.
(it} Average simulation time advance of the object for each bekavior module
activation, s;.

Having this information, the communication graph of the object is
constructed. This graph is further modified as follows to obtain an open

queuing network model. Let

N;;
N,.=—2L  foralliandj

If

YN > YN,
ol § ol

then create a source node source and let (source,:) have the label
Nog=YN;- LN
ol § ol j
Otherwise, if

Z: N".J. < ZN’J.‘.
ol § al j
then create a node sink and label the link (i,sink), with the value
No=YN;-Y Ny
ol § ol j

Figure 3-2 shows the ingoing and outgoing links of object ¢ with the labels

mentioned.
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Figure 3-2. Object { with the Incident Links.

Let also
K
Total; = Y N';;
J =0
Then, we define

r;; = probability that receipt of an event meassage by s will

result in generation of an event ‘o j

=_N_":'_

Total'-

Now assuming that the arrivals from source to any object ¢ forms a poisson
process with rate ry,, we can use the following equations [KLE 75|, to obtain

A;, the rate of simulation event arrivals to object .

K
Ap =gt YA
=

forall ¢

Ty



Having computed X;'s, then

w;; = number of events from i to j per unit simulation time

= Nr;j  Joralliand;

and finally,

¢ = Wyt wy



3.3. Implementation Resuits

The three heuristic algorithms of this chapter were programmed and tested on
different test cases. The object-processor assignment results for variable

number of processors of {wo test cases appear in this section.

Case 1, is a graph model, shown in Figure 3-3. The labels on the edges give
the values ¢;;.

The load of an object is considered to be the total number of event messages

received and sent by that object per unit simulation time. i.e., Y Cif
Jor ddiy

The results of running the programs for the algorithms H1 and H3 for 2-5
processors appear in tables 3-1 to 3-8. In these tables K denotes the number

of available processors, Total elapsed time is the cpu time in milliseconds to

()

Figure 3-3. The Communication Graph of Test Case 1.
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obtain the resuits, Number of iterations is the number of times 7 had to be
incremented for a feasible solution, Maz (Min) load is the allowed upper
(lower) bound on the load given by the constraints in (2), Cost matriz gives

the average number of event messages transmitted between two processors

per unit simulation time, p, = denotes the percentage that the

rt'lul

average simulation rate is away from the ideal rate. Finally

p = interaction rate between processors
Y, a{1-Bu)(1-8,)
__ for sl ikl

Z Cij

for all i,

where 3;, is defined as before.

Tables 3-1 and 3-2 show that H1 and H3 produced the same results when
K=2. In other cases, i.e. when K >2, the results obtained were different.
Hl's running time is considerably lower than H3. H3 shows to spend a high
fraction of time on the part where objects on different processors are
exchanged to produce lower interaction rates. Hl.produces results that give
lower inter-processor communication but have a wider gap in the simulation
rates of processors. The results obtained by both aigorithms show that the
cases of K> 2 for this model are rather undesirable cases for the distributed
simulation. The interaction rates between the processors are high. This is due
to the fact that the communication graph cannot be divided into more than

two fragments in such a way that the resulting fragments are still weakly
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interacting.

For this test case, algorithm H2 tends to create a large number of fragments,
each with one or two nodes. This is because the mincut in the graph is one
that separates one node from the graph. Subsequently, the program spend
considerable time in the process of combining these small fragments into larger

ones. The results that were obtained are superior only to an arbitrary

assignment policy.

Table 3-1. Results of HI, K=2, Case 1.

I K=2, Total elapsed time == 3

Number of iterations = 1, Max load = 99. Min load = 81
Processor | Objects Total Load Cost Matrix
”1 14,578 89 60 29

Do 2.3,6,9,10 91 29 62
p =032, p, = 0.02

Table 3-2. Results of H3, K=2, Case 1.

K==2, Total elapsed time = 15
Number of iterations = |, Max load = 99, Min load = 81
L —

Processor | Objects Total Load Cost Matrix
1 1,4,57,8 89 60 29
Do 2,3.69,10 91 29 62

p = 0.32, p, = 0.02
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Table 3-3. Resuits of H1, K=3, Case 1.

Number of processors == 3, Total elapsed time == §

Number of iterations = 3, Max load == 78, Mi'“ load = 48

Processor | Objects | Total load | Cost  matrix
P1 1,23 52 32 13 7
23 4578 76 13 48 15
P 6.9,10 52 7 15 30

p == 0.38, p, = 0.26

Table 3-4. Results of H3, K=3, Case 1.

Number of processors = 3, Total elapsed time = 12
Number of iterations =1, Max load == 66 _Min load = 54

mReR AR TS S S———"
Processor | Objects | Total load | Cost matrix
) 1,249 65 28 20 17
P2 36,10 60 20 30 10
'N 578 55 17 10 28

p = 0.54, p, = 0.08

Tabie 3-5. Results of H1, K==4, Case 1.

Number of processors = 4, Total elapsed time = 5
Number of iterations = 2. Max load = 54, Min load = 25

Processor | Objecta | Total load Cost  matrix
P 1,2,3 52 32 10 3 7
P2 4.7 47 10 16 3 13
Pa 58 29 3 8 16 2
D, 6.9.10 52 7 13 2 30

p = 0.47, p, = 0.57




Table 3-6. Results of H3, K==4, Case 1.

Number of processors == 4, Total elapsed time == 15
Number of iterations = 1. Max load = 50 . Min load == 40

e ——
Processors | Objects | Total load Cost  matrix
Py 1,7,9 50 4 11 14 21
P2 3.4 40 11 6 10 13
P3 56 10 4 10 0 16
Ps 2.8.10 50 21 13 18 0

p =094, p,=0.11

Table 3-7. Results of H1, K=5, Case 1.

Number of processors = 5, Total elapsed time = §

Number of iterations == 2_Max load = 43.2 Min load = 20.8
Processor | Objects | Total load Cost  matrix
P 158 12 2 7 5 o 8
P2 23 39 7 18 7 7 0
Ps 1 21 57 0 1 8
P 6,10 41 o 7 1 16 17
pe 7.9 37 8 0 8 17 4

p == 0.66, p. = 0.41

Table 3-8. Results for H3. -

Number of processors = 5, Total elapsed time = 13
Number of iterations =1 Max load == 39.6_Min load = 32.4
Processor | Objects | Total load Cost  matrix
" 1,2 3 14 10 9 0 0
28 4,5 39 10 4 3 I 21
Ps3 3,10 as 9 3 0 22 4
Pq 6,9 33 0 1 22 0 10
pe 78 37 0 21 4 10 2
p = 0.88; p, = 0.01
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The second test is the simulation of a version of the Game of Life, briefly
described in Chapter 8. The board size is 8 X 8. Each square is a simulation
object and the communication graph is shown in Figure 3-4. The squares are
numbered from 1 to 64 in row major order. In the Figure 3-4, only the

objects that interact with others are shown.

The results of the second test case for algorithms H1 and H3 for 2-5
processors appear in tables 3-8 to 3-16. The numbers within each square give
the processor number to which the object representing that square is

assigned.

Similar to the previous case, for two processors both algorithms H1 and H3
produce the same results. When K=3 and K=35, H1 divides the graph into
fragments in such a way that the inter-processor interaction is lower than
the results of H3. However, H3 balances the load more evenly between the

processors. When K={ unexpectedly, H3 gives a better result overall.

In all cases, H1's running time is considerably lower than H3. Most of H3's
effort is spent in the phase where objects are exchanged to produce looser
coupled fragments. It can also be seen that for K>3, the coupling is rather

tight and the interaction rate is bigher than desirable.



Figure 3-4. The Communication Graph for the Test Case 2.
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Table 3-9. Results of Hl, K=2, Case 2.

212421112 12)1}2
21212)2 11421242
212]211 11121212
211 1112¢112]1]1
21211114111 11]1
21211111111 }1]t1
1121211 11111111
2]112]211{111]2

Total elapsed time = 21, Number of iterations « 1
Max Joad = 52.8, Min load = 43.2

Processor Total load Cost matrix
P 48.17 48.17 0
P 48.17 0 48.17
p=0,p. =0
Table 3-10. Results of H3.

2121212114§112]2
2121212 |2}1]2]2
2121211121212
2111112111211 11
2(2)j1f11111]1
212¢1i1)11)11)1111
1121211411 )J1{11{1
21112)]2(1¢1]11}2

Total elapsed time = 422, Number of iterations = 1
Max load = 52.8, Min load = 43.2

Processar Total load | Cost AT
P 48.17 48.17 0
P> 48.17 0 48.17
p=0,p.=0
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Table 3-11. Results of Hl, K= 3, Case 2

NSRS
N [ O VN N PO N )
it [t Tk 1t Rt [t Lt |t
bt fab [lad Jo=t [0t Jod Jomst frma
s Stah b [tas [ret [ o= foms
=t fo—a Jioh Jres Jomi Joms Jpmss foua
Gl 0 78 [TV O [P 1A (]
bt Lot frt Joun fomt Doma | ind e

Total elapsed time = 30, Number of iteratians = 1
b2 0] & 35 Minload = 20

Processor | Totalload | Cost  matrix
" 30.34 12 9 9
P2 n 9 24 0
Dy 3 S 0 24

p=0.12, p, = 0.06

Tahle 3-12. Results of H3, K=3, Case 2,

Lod [lad [BD == 1= =2 Jlad (L
NG [N [ [N | [ [
i [t oes Qb | tad et Jimt Joma
Lod [ [0 [0 Jlad Lo [r=e |
[SHISRISRISR ISR R L[]
L ld [ 0D = | |ad |02
— i [ [l [ [N D |
DD b [t T 1= [l [l

Total elapsed time = 433, Number of iteratians = 1
Max load = 38, Min load = 29

Processor | Total load | Cost MAatTix
P 32 18 4 10
2} 1n.17? 4 26 1
P 13 1¢ 1 2

p=031,p = 0.0
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Tahle 3-13. Results of Hl, Kmd, Case 2.

212011 V2T ]2
slsfifa[i]2{2t
slalafafifa]2(2]
sfaftf2l1 2T
22111 af21
2211 [2]4lal212
12121441211
21 fal2[1f a1

Total elapsed time = 28, Number of iterations = 1

Max - 26 4 -
Processor | Total load | Cost  matrix
F-2 23.17 12 ¢ 4 7
Ps n17 o 12 7 4
Py 25 4 7 14 0

p=045,p = 0.04

Table 3-14. Results of H3, K=4, Case 2.

Ll (P R[S A PN PN N

= L IR | Tl [dn [N

LA SB[ RE WIS RIS IN]

N [ U | e [ i

B IS [l [l FLad Jlad [ fie

Ll L SR Ca IR N P N )

b fomt free b F aa | [

o lw]ela|—

Total elepsed time = 490, Number of iterations = |

Max icad = 26.4 Min load = 21 6
P e T ———

Processar | Total load | Cost  mawix
Py 23 16 2 4 13
Pa 28 2 18 3 4
- 23.17 4 3 16 0O
A 23.17 3 4 0 16

p=1033,p =004
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Table 3-15. Resuls of Hi, K=5, Case 2.

s e s [0 [0 (i e
SN [TF SN (W (Sry [Ny g P
IS SIS NI

HHHMMINLM

vl [ [t Jimt Joma |00 [
M [ [ o= [r=s Jo=a frma Joma
=t Ylod {Lad [Cad [rad Ji=a Jies foa
b fad JLod Jlod |0=t Jomt fomd ] g

Total elapsed time = 26, Number of iterations = 1

 — -3 TN D —

Processar | Total load | Cost  matrix
P 184 10 ¢ 1 4 3
P2 19 0 12 0 & 1
P 19 1 0 14 0 4
P 20 4 6 0 10 Q
P 20 3 1 4 0 12

p={0.5 p =004

Table 3-16. Results of H3, K=, Case 2.

e e I 18 IR [N [t |
= Lo I [ En G [ [N f
G [ el find (L2 |5 L

S flad Fim. == FL IDD [N |

N It flad | f e e | &
Cab Jlab [0 JLad [ [IND ] B (U0
= e a

o [l Jm [ = [l (D

Total clapsed time = 399, Number of iterations = 1

Max losd = 21, Min joad = 17

Processar otal load | Cost  mamix
P 19.08 6 1 2 5 3
P 19.08 1 8 a 2 8
Py 20.08 2 0 12 6 0
Pa 19.09 s 2 6 6 0O
Pe 19.01 s 8 O 0 6

p=0.6p = 0.04
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CHAPTER 4

Analyzis of the Rollback Method

In this chapter, a mathematical model of the Rollback method for distributed
simulation is presented and analyzed. The results of the analysis are then
compared with simulation results. Simulations are also performed on less
constrained version of the mathematical model. The mathematical analysis is
restricted to the case where two processors are performing the simulation and
the interaction rate between the processors is low. The case of more than two

processors are studied by simulation.

The mathematical model considers the collection of objects assigned to each
processor as a single sequential process. In this case, once an object rolls back
all objects on that processor need to roll back too. Therefore, throughout this
chapter the rollback operation is performed on a processor and not only on
one object residing on that processor. This ass.umption s equivalent to

assigning one object to one processor.
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4.1. The Performance Model

Given K processors, the simulation model is divided into weakly interacting

submodels, each being simulated by one processor. As mentioned, each

submodel corresponds to a set of one or more objects that are simuiated

sequentially. The processors are assumed to be dedicated to simulation, each

with a never empty queue of events. We further make the following

assumptions :

(1)

(3)

(4)

The simulation time of each submodel is updated instantaneously at the
beginning of processing an event.

The real time to initialize each submodel (i.e. the real time until the

beginning of processing the first event) and the real time to process an

event for each submodel are iid exponential with mean -1—. Thus, g is the
n

speed of each processor in events per unit real time.

The simulation time advances are iid exponential with mean % for
:

submodel . Thus, X; is the simulation rate for submodel ¢ in events per
unit simulation time.

Each event for submodel f independently generates an event for another
submodel with probability p; . Any submodel is equally likely to be the
receiver of the generated event. Later it will be assumed that p,=p for

all 1<i<K.
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(5)

(7)

(8)
(9)

The real time to transmit a message between two processors is a constant

d. This constant is initially assumed to be negligible.

The real time to perform rollback is a constant multiple of the average
time needed to simulate the wasted simulation time. The constant

multiplier, r, is initially assumed to be zero.

Checkpointing occurs at the beginning of processing every event and
therefore checkpoints are perfect. In addition, this process takes negligible
processing time. The assumption of perfect checkpoints can be relaxed in
the case where r>0. Note that in the case of non-zero r, the simulate

forward period can be included in the rollback processing period.
The GVT computation does not interfere with the simulation process.

The real time to process an arriving message is negligible.

(10) Processors do not sent inter-submodel events that belong to their

simulation future. i.e. each event is transmitted when the simulatioa clock
of the processor reaches the simulation time of the event. This
assumption can be relaxed in the case where the communication delay in

the simulator is not zero.
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4.2. The Performance Measure

The performance measure is the speedup which is defined to be the ratio of
the useful simulation time per unit real time in a K-processor system over the
same quantity in a uni-processor system when all processors have the same
speed p (see assumption 2 for the definition of p). To express the speedup in

terms of system parameters, let us first define the following variables :

3,(t) = simulation time of submodel i at time ¢

st}

~; = lim assuming the limit ezists

t—o0

Then
useful simulation time at real time t = min (s¢))
1<i<K
= GVT(})
Let

useful stmulation time at real time ¢

e = lim
t—00 t

Therefore, for K processors

= min (v

€K-proceasor L<i<K
]

Note that if there are no intersubmodel events {p,=0) or no rollbacks, then

L= Now if the entire model were simulated on a single processor, then
i

there would be no rollbacks. For this processor the rate of events per unit
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simulation time is Y] \; and therefore
1<i<K

—

Cringle processor —
2N
1<i<K

The speedup is defined as :

€K processor

PK =

€oingle processor

When K=2, then

min(v1,72)

p p—i
S S
(A FA)

In the case where p;=p,=0, then :

p = (A+Xz) min(1/),1/x,)

= 1+a when ry=a); ,a<1

(1)

Clearly this quantity is maximized when X ==),, i.e. the submodels have

identical simulation rates.
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4.3. The Analysis of the Two-processor Model

In this section the performance of the two-processor system is analyzed and
compared with the simulation resuits. Depending on the two simulator
parameters communication delay, d and rollback processing multiplier, r, the
mathematical analysis are performed slightly different. Subsections 4.3.1 -

4.3.3, each present a different case.

4.3.1. Negligible Communication Delay and Rollback Processing

Time (d=r=0)

4.3.1.1. The Analysis

Rollback occurs if a processor receives an event with a simulation time lower
than that of the processor. According to general assumption 7, the processor
receiving such an event, rolls back to the simulation time of the event and
resumes operation. With zero communication delay and rollback processing
time, this is a point where the two processors synchronize their simulation
clocks. Note that if objects are allowed to generate or schedule events in their
simulation future, rollback does not necessarily synchronize the simulation
clocks of the two processors on which the two objects reside. In the present
model, the assumption is that the objects cannot schedule events in their

simulation future. Let

N(t) = the number of rollbacks by real time ¢
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and

ty = real time at which k-th rollback occurs

and
Yo =44,
The sequence {Y, : k>1} are iid and can be considered as the time between

renewals of the renewal process {N(t) : t>0}.

The simulation time of each processor immediately after the k-th rollback is
given by :

¥ (1) = min(ay(y),82(t;))
The sequence {s*(¢;) - s¥ () : k>1}, (4=0), is iid and s*(t,) - a*(t,,) is
the effective simulation time of each processor during the real time between
k-1st and k-th rollback ({k-th renewal). This term can be considered as the

reward of the renewal process defined above and we have

s
T = t—'rgj 4
= %—‘}}g-:-%- if E1Y,] is finite
— Elmin(s,(t,),84(t)))] 9
£y} @)

Next, the expected values in (2) are evaluated. Let

Ty = real time of the k-th intersubmodel event

ay =1 if the k-th intersubmodel event was generated by submodel §
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Then {T} - T}, : k>1},( Ty=0) is iid exponential with mean ————.
Bpytppe

e . pi
{oy : k>1} is iid and Play, =} = -p—+p_ Note that {T;-T;_,} and {a;} are
17 P2

independent. Now let

k° = the number of intersubmodel events up to and including

the event that caused the first rollback

and let
' (1) = simulation time of submodel i at real time t in the
absence of rollback.
Then
tl el Tk' aﬂd

* = min{k>1: (ay=1 and &'|(T) <&y Tp))or (ap=2 and o'y( T} <o",(Ti))}

Figure 4-1 gives a diagram of simulation time of the processors as a function of

real time. In this Figure, the second inter-submodel event creates a rollback.

Since & is independent of Ty-T_, for all k, then

E[tll = E[k’] E[Tl]

kl
_Elk] 3)

— #lpr¥p)
If we define C, = &’ |( T;)-9"5( T}) then

* = min{k>1: (=1 and C;<0) or

(az=2 and C,2>0) }

Considering the disjoint events
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Figure 4-1. Simulation Time of the Processors.

Ay ={ay=12and C, >0} and

App = {a;=2 and C, <0}
then

P{k‘>k} == P{rHAleAjZ}

7=l
2 2 k
=My - U N4l
vym=] fpem] el
2 2 k
=X o ¥ AN (4)
fyemi 1=l =i
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At this point, we need to make the independence assumption that
{a;} and {C}} are independent. In fact the two sequence are not independent,
since ay=1 (or 2) implies that C; has a positive {or negative} jump at T,.
However if p; and p, are small enough, this jump should be smali relative to
C, and the assumption is reasonable { p, and p, are small if the rate of
interaction between submodels is small). Note that with the independence
assumption, the effect of the positive (or negative) jump of C; at T, is ignored.
The processor that causes the rollback at that time, increases its own
simulation time for the amount of that jump. This will reduce the probability
of rollback and also the amount of wasted simulation time. Therefore, it is
expected that the analytic result for the speedup be lower than the speedup
that can be obtained as p grows. This effect will be shown later when the

analytic and simulation results are compared.

Now let B ={Cj>0} and BJ-2={Cj<O}. Then with the independence

assumption
k k _ k
{4} = [TPla;=i} (N B} (5)
1=l y=l je=l

To make the analysis simpler and obtain an explicit result for the speedup, we

assume that p,=p,=p, so that

Pla;=i} = 12
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Then from (4) and (5)

P >H =2*Y - }23 P{ﬁ B;;}

faml iy el =l

o+
Hence E[k’] = 2 and from (3)

Elt) = ﬁ (6)

At this point, we need to calculate the useful simulation time during one

renewal cycle , that is

min($,{¢,),85(¢,)} = min(s"\(¢),8"s(¢)))
8" (t)+38'o(ty) - |8'4(8y)-8"5(4))]
2
LT+ T - |G )
- 2

The sequence {s'(T) - s'{Ty,): ¥>1} is iid and k' is independent of

8'{ Tyw1)-8"{ T}) for k>k". Hence from Wald's equation [ROS 70},

Els'{T,*)| = Els'{ T))|El¥]
= 2513'1'( Tl)]

The simulation time of submodel ¢ at the time of the first intersubmodel event

can be written as

, N
3 1'( Tl) = S Paitni

where
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N = Total number of events up to and including the first
intersubmodel event
©ai =1 if the n-th (inter or intra) submodel event was generated by i
=0 otherunse

X, = Simulation time advance of processor s if it generated

the n-th (inter or intra) submodel event

With the assumption that p;=p,=p we have

N
N

Ele™| N =Ee ™ |

A N
= lip——+
-

The condition on N can be removed having P{N=£k} = (1-p)*!p. Then

-, _ p(2>‘|'+8)
Ele™] = 2p\;+(1+p)s

Furthermore,

E[s'{T))] = —diaE[c_“"] when 3=0

Then
’ R
B AT} = 3
and
BTy = - | (®)

At this point we need to derive EJ| C}+|] to determine {7).
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E;[c—lck ‘] — bz E[C—CC. ‘|k¢=k]P{kt=k}
-]

= § B NA AaUADINA UA )

k=i 7=l

PUA (AaUAINA A )

J=i

where

A ={e;=1and C; >0}, Ajp = {a;=2 and C; <0}

and

A'i'l ={G*=l and Ck <O} ' A".g ={0k=2 and Ck>0}

Due to the independence assumption for {a;} and {C,};

He %) = 3 B IHI (BBl Bial U Bl "2

k=1
k-1
PN (BalUBIN(Beal JBu}
J=l
where B;; = {C;>0} and Bj ={C'J-<’O}. But for each j, (BJ-,Usz) is the

certain event, hence

E-IC—JC;'] — i 2—*E[c—'ct] . (9)

Jrma]

C; can be written as :

k
o= $(C-Cpa), Co=0

Ju=l

where {C'J-—C‘J-_l:jz 1} is iid. Letting ¥(s) = E[c"c‘], we can rewrite (9) as

Ee% = 35 274 (¥(s)*

k]
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_ (s
T 2-¥(s)

But C, is the difference in simulation times of the two processors at the point

of the first intersubmodel event, so

N
Cl = 2 (‘Puanl_{l_(pnl)Xﬂ)

na]

With the assumption that p,=p,=p

oo k
\]’(8) = E E[c-c(v.;X.: —(l-ﬁf’-l)x-':)] (l_p)k—lp
k=]

g Al )\2 k k-1
2N i Evrraiweny | RS i

kom] -8

P[2A 1 ha+(Ag-)1) 4]

= —282+(X2—>\l)(p+l)8+2p)\lkz (10)
Hence
He?%] = pAiAzta(Xe-21)/2)
252+ s(Ag-AJ(1+ p/2)+ P A (11)
For the case that A\;=\,=X\ then
. 2
Bl = Bt
(pA2/2-4°)
Therefore C,* has density i‘dgﬂeva—&'!!l and
HICY) = —= (12)
M2

It follows now from (1),(2),(6),(7).(8) and (12) that, if p,=P,=p and

A =Ag=X, then
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p = 2A1-Vp2) (13)

For the case of X\;3)\;, the roots of the denominator of (11) have been
numerically evaluated and used to compute Ef|C;.|] and hence p. The results

appear in the next section.

4,3.1.2. Numerical and Simulation Results

In Figure 4-2, the speedup p is plotted as a function of p, the interaction

probability. The results are plotted for different values of the parameter

Mg

- The upper curve is the numerical result of equation (13), i.e. a=1.
1

a =

Note that if a7£1 the speedup drops off more slowly as p increases than if
a=1. Also, if p<.05, reasonable speedup (i.e. close to 1.5) is obtained even if

a=.5. Furthermore, when p is close to zero, the speedup is close to 1+a.

In order to analyze the model, an independence assumption was made in
section 4.3.1 that is expected to be reasonable if p is small. Therefore the
model without the independence assumption was. simulated in order to test
the effect of this assumption. Simulation results in the form of 95% confidence
intervals are also shown in Figure 4-2. Each confidence interval was obtained
from 10 independent runs of a simulation whose duration was 7000 events
(inter and intrasubmodel events). It can be seen that when p<.08 the
approximations appears to be a good one. Furthermore, the simulation

results tend to give a higher speedup than the analytic results as p grows. This
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is because the independence assumption ignores the effect of the last event in
simulation time of the processor that causes the rollback. The simulation of
this event reduces the probability of rollback and also the amount of wasted

simulation time. Consequently, the speedup is greater without the assumption.

In Figure 4-3, the simulation results for the speedup is plotted for different
values of p and a. Note that a==1I corresponds to perfect balance of load on
the processors. The load balancing is most effective when p is small. In the
case when p is large (close to 1), only one processor is doing usel‘ﬁl work at any

time and hence the load balancing is not a factor any more.
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Figure 4-2. Analytic and Simulation Results for the Speedup (d=r=0).
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Figure 4-3. Simulation Results for the Speedup (d=r=0).
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4.3.2. Negligible Communication Delay and Non-zero Rollback

Processing Time

4.3.2.1. The Analysis

In this section, the two processor model is analyzed when the assumption
about negligible rollback processing time is relaxed. In this modified model, it
is assumed that the real time to perform rollback is a fraction r>0, of the real
time required on the average to simulate the wasted simulation time. The

analysis is carried out for the case when p,=p,=p and p,=p,=p.
Let

t,b = the real time at which the n-th rollback begina

t,© = the real time at which the n-th rollback ends

ther

"= (tne - tn—le)

will be called the n-th cycle of operation of the processors, (Figure 4-4).

I l
i 9 tnsl 3G

n

real time
———————

Figure 4-4. The n-th Cycle of the System.
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Let also

Au = sl(tne) - 82“:!)

be the difference in simulation times of the processors at the end of the n-th
cycle, The cycle durations {Y;: i>>1) are not independent of each other. Note
that A, depends on t,b - ¢,°, that is a portion of Y,. In fact A, is the
simulation time advance of the processor that caused rollback during the real
time the other processor is performing the rollback operation, i.e. the real time
interval of length ¢,°-t.®. Hence A, depends on Y, and it also affects Yoer

the duration of the next cycle..
Similar to the previous case, let

8'{t) = simulation time of submodel ¢ at real time t, in the absense of rollbacks

T, = real time of the k-th inter submodel event after time ¢, ,°

ay =t if the k-th inter submodel event after t, |° was generated by submodel ¢

Then given A, _; = 8, we have

tnb - tn—le = Ti'{S)

where

k'(6) = min{k>1 : {ap=1,8'\( T}) +6<8'y( T}))
or{a=2,8"o( T, ) <s'y( Ti) +6)}

We also have {T,~T,_, : k>1} are iid. exponential with mean 2L, {o, : k>1}
up

are iid. and Pr{e,=i} = /2 and finally {T,-T,_, : k¥>1} and {a, : k>1} are
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independent.

Letting

Cp = 8"y(Ty}) - 4'o(T})

it follows that
k'(8) = min{k>1:(ay=1,C; < b)or{a,=2,C,> )}
With the assumption that {a,} and {C,} are independent, similar to the case
where r=0,
PlE'(6) >k} =2
Therefore, k'(8) has the same distribution as k* = k'(0). Hence ¢,%-t, ,° is

distributed as T, from equation (6)

Now, let X, be the useful simulation time advance during the n-th cycle. Then

X, is distributed as

min(s’ ( Ty )+6,8'5(T;0)) if 620, or
min(s’ ( T;),8'o( Tr)-0) if 6<0
In the case where 620

X, = min(8' (T2} +6,8'o( Tyr))

3'1( Ty Ho+s"y( Tpe)-| Ck'+51
2

We have
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Similar to the case where r=0,

E[e_'c*'] _ pAAs + a(A-2a)2]
282 + s(Aa-M)(1+p/2) + pPA Ny

When A\, = \; = X, we have

-C,s 272
e =
Ele pr¥2-5*

and hence Cj- has density 5[2&/2_6—%\/@::[

Considering the above, E| Cpr5+6]]

rdl 5 . 0 . o0 —_—
_ >~122/2 [ At+8) VP + [(t+6)VPRAL + [(1+6)e VPRt
oo i 0

]

r

— 10 —_ 0 — 00 —_
= 1\521”3 [ At+6)VPHAL + 2 [(t+6)VPRd + [(t+8)e VPR gt
o . 0

— o 0

— — o0 N
AVPZ 2’2 [(t-)e VPRt + 2f(t+6)e* VP dt + [(t+8)e v P dt
0 ) : 0

e o) )
A/ p/2 2 e -hJpl2t Avp2
= [ INSp/2e VP2 AL+ 2 [(-t+8)e VPR gt
> k\/p/2£ VP {( Je

—— . 6 _
— M/pf2 2 __ 4 2¢‘>“/P’2‘5fye"‘/"’2'dy
2 (\/p/2) 0

= I_ + )\\/p/_gc—)u\/;/% I_{CNﬁv(y_

W N/772 )} for y € (0,6)

\/pl2
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e IVIZE
Ap2

Therefore,

ElX,] = 1/2{5[.,'1( Tyl + Elo'o Ty)] + 6 - E“C&'(‘S)""s”}

e-wﬁs
6-16+ )\\/_/5
1 + P

PA 2
1 e:')“/-”ﬁ‘s
= - e 620
o~ oy 1702

Similarly, when 8§ <0, we have

EIX, 1 e’“‘/”_"‘i‘s
T 2
Hence

>From general assumption 6, we have ¢,° - tub is'distributed as ﬂle' + 4.
H

Therefore,

VpR(4
Bt _ ) = ﬂ[m + —=—]
- p AVP/2

But, the duration of the n-th cycle Y, satisfies

ETYa] = E“ne - tnb] + Eltnb - tu—lc]
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=+ 'X[[6|+

Hp B

WPt ]
Apl2

(15)

Now if A\; = Ag = X, then the identity of the subsystem that caused the

rollback does not matter and

E“Aal Ituc_tnbzﬁ = %

and hence

EllA,] | &,q=d = £, -,1)

|

Removing the conditions in {14), (15) and (16), we have

8 +

1 Evle-)‘\/v—ﬁlé..xll

E[Xn] = P)N -

2x/pl2

E‘[Yn = L + - [E“An l”

E“As” =r E“An—l” +

Assuming that A,—A in distribution as n —oo0 , from (16'), we have

A\pl2

Elc-)-\/ﬂzlA

e MP2|8|

\/p/2

e VPRIAL ]
A2

Hial = r[Euan + El*_:_ﬂt]

A proof for the correctness of this assumption appears in Appendix A,

the inequalities,

\/p/2

1 - \VpRE|A]] < EleVPPIAl < 1

the following can be derived
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(16)

(14')

(157)

(16')

(17)

Using



Al < r[ElIAI] + ‘—]

A/p/2
r 1
A1 < (1) 19
Also we have,
1

El|al] > r[EuAu W~ -E[IAII]

— r

T 19)

Then we have,

8% = lim £, =~ 2A/p/2
_ 1 i

and

-Avpi2|A
ElY] = limE[Y,,]="'l'"+ﬂ A”+£[°—=_ﬂ]
R =00 Bp B X\/p/2

I SRS
=t pETlAII

Hence
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and using (19),

1
Ex A
ETY]

IA

® |~

iy

_ L[ljl-r),_g_gm]
M 1+ry2p

At this point, we assume that the system is ergodic in the sense that

i t),sq(¢
o mina().et) _ Fx]
t—+00 2 E[Y]
The formal proof is given in Appendix A. Then

a.3.

N EREV/THN I 2[1 -(1-r}\Q/2]

l+_l_r_r_\/§; = 1+ r/2p (20)

As mentioned, ris the ratio of the real time to rollback s seconds of simulation
time to the real time needed to advance s seconds of simulation time. It is

shown in Appendix A that r <1 is required for ergodicity.

Recall that the general assumption 7 requires that the checkpoints be perfect.
In that case, the rollback operation does not include the “simulate forward”

step. In the case where r> 0 this assumption can be relaxed and the "simulate
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forward” period can be considered part of the rollback operation. This implies

larger values for r, that is workable as long as r< 1.

4.3.2.2. Numerical and Simulation Results

In Figures 4-5 to 4-7 the bounds on the speedup given by equation (20) is
plotted as a function of p, the interaction probability. The different Figures
correspond to different values of r, the rollback processing multiplier. The area
between two curves in each Figure, is the area in which the speedup is

expected to be.

In the same Figures, the confidence intervals obtained by the simulation of a
similar model are presented. The simulation model excludes the independence
assumption and has the same characteristics described in section 4.3.2.2. As
can be seen, in comparison with the case r=0, the independence assumption is
reasonable for smaller range of p. Furthermore, the range for p reduces as r
grows. This behavior can be expected. Noie that r multiplied by the wasted
simulation time gives the equivalent of rollback pllocessing time in simulation
time. With the independence assumption, the wasted simulation time is
greater than the case without it. As r grows, the amount of wasted simulation
time in the performance becomes more eflective. Therefore, the analytic results

confirm with those of simulation for smaller values of p.

In Figure 4-8, the simulation results are presented for different values of r. It

can be observed that including r in the model slightly changes the speedup
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(even r==.5). However, if checkpointing is not done frequently, the "simulate
forward” period will become large. This corresponds to increasing value of r,
possibly more than 1. It was shown in Appendix A that for r>1 the system
becomes unstable, in the sense that more time will be spentron rollback
processing than on simulation. Hence, checkpointing needs to be done

frequently enough to avoid such a case and also not use excessive memory.
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Figure 4-5. Analytic and Simulation Results for the Speedup (d=0,r=.1).
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4.3.3. Non-zero Communications Delay and Rollback Processing

Time (d >0,r>0)

4.3.3.1. The Analysis

In this section both the assumption of negligible communication delay and the

assumption of negligible rollback processing time are removed from the model.

In the new model, it is assumed that

(1)

(2)

There is a non-zero communication delay between the processors

performing the simulation. The communication delay is assumed to be a

constant d.

The rollback processing factor r is greater than zero.

Considering the above, let

t,9 = real time at which the event that causes the n-th rollback is generated
t ® = real time at which rollback operation begins,

t,° = real time at which the n-th rollback operation ends

As before, let (¢, ,°,¢,°) be the n-th cycle and its length be denoted by Y,, i.e.

Y.

n-1

=t,° -, ,° Figure 4-9 shows the n-th cycle. Also, let

n n

An = "l(tuc) - 32(‘56)

then

|A,| = difference in sim. times of processors at the end of n-th cycle

= gim. lime advance of the processor that caused the n-th rollback
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and

X, =min (#(t,),22(t,) - min (sy(ts1),5(6,,"))
= useful ssmulation time during the n-th cycle

Note that

min (#(t,%),22(6,)) > min {s,(6,9),0(8,9))
The equality holds if d=0. In the case of non-zero d, it is possible that the
processor that caused rollback did not have the smaller simulation time at the
time it transmitted the event. The receiving processor may be behind in
simulation time at ¢{,?, but has advanced ahead of the time of the event while
the message is in-transit. Hence

X, > X,

= min(8,(t,%),80(¢,%)) - min(8,(¢,_1%),82(¢a_1"))

If A,_;>0 then &,(¢,_,°) 2 so{t,_") and

X, = min(8y(¢,7)-8,(¢, ")+ A,y , 82(£,7)-80(2, 1)) (21.a)
| 1 |
tn-l tuﬂ tnsl t.CI
real time

Figure 4-9. The n-th Cycle of Operation.
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Otherwise, if A, ;<0 then #,{£,_;°) < s5(¢,_;°) and

Xn = min(sl(tag)_sl(tn—le) ' 82(‘:’)“82(tn—le)—al-l) (21.[))

Let also T}, a; and s'{t) be defined as before.

But ¢,7-t, ,° is distributed as Ty ;) where

k',(d) = min{k> (e, =1,9"|( T+ 4, <o o T, +d))
or (0p=2,8'o( Tp) <o \( T +d)+4,_}

Then
k’u(d)
E[tug_tn-lc] = E[Th',(d)] = —El‘:,'w_l (22)
Also

3'1‘{ Tk+d) = s'l{ Tk) + Ds'

where D; is the simulation time advance of subsystem i during a real time

period of length d.

Now assume that D, is a constant equal to its mean, i.e. assume that

D; =D =1§i =1,2

and let

Cy = 8" |(T)-3"o( Th)
Then

E'(d) = min {k>1: (ap=1,C+A, <D or (a,=2,C,+A, ;> -D)}

=min {(k>1: (-DLCy+A,,<D) or (ay=1.C,+A,  <-D) or
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(ap=2,Cx+4,  >D)}
Given that A, | = §, then
k'(d,8) = min {k>1: (-DL C,+6< D) or (a,=1,C4,+6<-D) or
(ab=1,Ck+6>D)}

Now consider the disjoint events
Ay = {a,=1,G,+6>D} = {a,=1}N By,
Akz = {ak=2fck+6<—p} = {ak-—=2}an2
We then have

P{k'(d,é])k} P (AaUAR)

j=l
2
=¥ Z P ﬂA
'l-] u-l
Here we make the same assumption that we made in the case where d=0. We
assume that {a,} and {C,} are independent, it then follows that

P{k'(d,6) >k} = 2*V' Y‘Ptﬂ ]

Il-ll syl

k
=27*P Lﬂl(leUsz)}

= z*P[ﬁ (c;+6 ¢ {—D,D]]}

-]

Therefore

Elk(dg)] =1+ S 2P n(c«usq B DD]]} (23)

k=]
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To evaluate the term within the summation, note that CJ- =C;,+ C:"Cj-l

where C}—CJ-_, is independent of C'J-_l and is distributed same as C}. Let
C = C;-C;_y. According to {10), we have
,\2
¥(s) = Ele*] = 22—

p)\2—32

Let

p; = P{C;+6 § [-D,D]|C;+6 § [-D,D), 1<i<j-1}

-D 00
= [ + [P{C;,+C+5 ¢ [-D,D]}C;+6 ¢ [-D.D), 1<i<5-1,0;_ +8=y}
-0 D

dP{C‘J-_l+6§y|C,-+6 ¢ {-D,D], 1<s<5-1}

Let

Then
-D o0
pi= [ + £P{C+y4 [-D,DI}M{y)dy
-D o0
={ + £P{Cq [-D-y,D-y]}(y)dy

But from (11), C has density l‘éze"“/;"'. It follows that

P{C+y 4 [-D,D]} > P{C § [-D,D}}

Hence

p; 2 F{C § [-D,D]}
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== C‘X‘/;D — e'ﬂ‘\/;
Therefore,
- : dypr\k
P{N(Cj+8) § [-D.DI} = [ p;2(e™?)
j-l J‘-l

Hence from (23),

Ek(d8)] > 1+ )

k]

2
= v (24)

k
Note that if d=0 then P{J](C;+6 § (-D,D])} = 1 and hence

j=l
EIK'(0,6)] =2 (25)
that agrees with the previous results.
At this point we look at the useful simulation time within a cycle. Note that

s{t,%)-s{t, %) 1s distributed as s{ Ty, 5). It follows from (21) that

Xo = min(8'y(Tyq ) +0,8°2( Tyrg9)) 620
= min(s' l( Tk‘{d's)),a,g( Tk.(‘,ﬂ)_ﬁ) 5<O

_ 8\ Tira.9) +8 o Tura,9) +161-| C(d,6)] (26)
2

where

C(d,8) = 8" ((Tyr4,9) -8 2 Tyra,9) +6
= Ck'(l,b‘j+6

We also have
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Ela'{Tyugll = Ll Leo)] (27)

2pA
It follows from (27) and (28) that

E1X,(8)] 2 E1X(9)]
_ B4, 16| EUC4d] |
T 2p\ * 2 2 (28)
Using 22,

k'(d5 .
a1v0) = FELAL 4 g1e,59)-4,%00)
Also |A,| is distributed as o' {£,°-£,) ¢=1,2. So

EllAL8)]] = £E1t,7(8),78)

and
BY,(8)] = M+ 2 Flla (o (29)

Now the wasted simulation time is given by

D + sq{t,%)-8,(t,7) if 1 causes rollback

D + s4(8,9)-95(t,7) if 2 causes rollback

That is , wasted simulation time is

SD+ |31(tug)—32(tng)|
with equality if d=0.

= D+{A, 1+ ((Tira9) -9 o Tir(a )l

Hence, the expected real time to perform the rollback operations satisfies the

following;:
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A0 O1< 2 (o+ a1 cta )

Therefore, the expected difference in simulation time of the two processors at

the end of the n-th cycle is given by

EN)A.(8)]) < D(1+r)+rE]| C(d,8)]] (30)
with equality when d = 0.

But

E|| C(4,8)|] = EIC(d,8)] | C(d,8) € [-D,D]|P{C(d,6) € [-D,D]}
+E(| C(d,6){[Cd,8) § [-D.DIIP{C(d,6) § [-D,D]}
<D + E[[C(0,9)]] (31)

With a similar approach to that of the case (r=d=0), we can show that

k'(0,6) has a geometric distribution with parameter % as does £ . Therefore,

)‘\/pTge—WEI‘I

C+(0,8) has the same distribution as Cj, i.e. it has density 5

Using the density, it is straight forward to show that

E[| C(0,8){] = E[[Cyr 9+ 4]

e e MP2|8]
= /o2 (32)
It follows from {28), (31) and (32) that
k'(d8) D eveRldl
X,(0)] > EIX,(6) > -— ———
mx(0) 2 B > AERAL 2 L
k'(d#) D 1
> - = —
0 2pA 2 2\/p/2 (33)
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It also follows from (30)-(32) that

AL < Da+en + rlfo +¢"“/_m]
E[lAL(8)]} < D(1+2r) r\II W
< D(1+2r) + rk[6|+ )n/lp72] (34)
Hence
E[|A,ll € D(1+2r)+rE(|A, 4l + W’;ﬁ (35)

We now assume that lim E[|A,|] = EJ|A|] exists and is finite. The proof is
n—00

similar to the previous case given in Appendix A. Then from (15)

D(1+2¢)+——
/2

Hla)) g ———vE

(36)

Also assuming that
lim Elk’ (d)] = E[k'(d)] exist

lim E[X,] = E[X] exists

n—00

and

lim ElY,] = £[Y] ezists

Then we have from (13)

k(] D 1
S BE(@ D _ 1
Bl 2 2pA 2 2A/p/2

From (29) and (36), it follows that
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g \ [ Paren+ wf/_2
gy < S, A ;
Hp

] 1-r

Assume (similar to the previous case),

min(s(¢),8:(¢))  E[X]

li = .
iceeo t ElY] e
Then p, the speedup factor is given by
y o X X
s EY]
r R
Ek’(d] AD 1
5 —
>0 2p 20/p/2
. AD(1+27)+ ——
Elk (d)] \/pl2
2p 1-r

Using the lower bound in {4}, it follows that

1 pud —
ool 2 2 Vo2
= 1 + ppd(l+2r}+r\/§ (37)
9 _g-HdVP 1-r

Note that the two parameters of the simulator u, the event processing rate
and d, the communication delay appear together in all the terms. pud is the
average number of events that can be simulated during the interval of
transmission of a message. Thus, to makeup for the loss in the speedup that
results from greater values of d, we need to reduce pu. i.e. reduce the speed of

processing.
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If d=0, then

T+ 22 (38)
1-r

that agrees with (20}.

Note that in the case, d=r=20 (equation (13)), the speedup is independent of
the event processing rate g and event generation rate, A\, as long as the two
processors are homogeneous. The only factor that is affecting the performance
is p, the interaction probability. In the above case, d>0, r>0, the speedup is
still independent of the simulation parameter, X\. In this case, the two
simulator parameters 4 and p affect the performance and the two always
appear together. Recall that the term ud is the average number of simulated
events during a message transmission interval. It may appear at first that by
increasing the processing power of the processors, i.e. g, the speedup will also
be increased. The equation {38) shows the contrary. Increasing s has the same
effect as increasing ¢, and this, as will be shown in the next section reduce the
speedup. Therefore, in order to increase the performance, the term pd has to
be reduced for fixed p.

The analysis in this section assumes that in the simulator a delay d exists
between the time to send and receive a message. As a result, the speedup is
reduced. The reduction is due to the fact that the receiving processor is still

simulating during the time d. Once it receives the message, on the average it
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has a higher simulation clock than it would have in the case where d=0. This
increase in simulation time, increases probability of rollback and therefore

reduces the speedup.

Now consider the case where there is a similar time difference between the
time to send and receive a message in the simulation model also. This time
difference can be the result of future scheduling of events or a communications
delay in the system that is being simulated. We denote this time difference by

d,. In this case, the final speedup result of equation (37) can be approximated
- by replacing d with (d—d,‘i), assuming this term is not negative. Note that
u

the effect of the simulator delay d, was the average amount of the simulation

time progress that can be made during this time. i.e., since the receiving
processor can on the average advance d*f- while the message is in-transit, the

probability of rollback and the amount of wasted simulation time increases
accordingly. Here, we have subtracted the equivalent delay of the simulation
model in real time from the delay in the simulator. Therefore, if in the
simulation model a similar delay in interaction between submodels exist, the

effect of the delay in the simulator is smaller.

4.3.3.2. Numerical and Simulation Results

In Figures 4-10 to 4-13 the effects of non-zero rollback processing time and

communication delay are shown by plotting p versus p from (37) for different
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values of r and d. The curves are lower bounds for the speedup. On the
same Figures, the results of the simulation of a similar model without the
small interaction probability assumption are also shown. Note that the lower
bound is tight and close to the simulation results for very smail values of p.
The analytic lower bound diverges from the simulation results as p—.1. This is
due to two factors (i) The independence assumption and (ii) the
approximations that were made during the derivation of (37). These
approximations are more reasonable when p is small. The values selected for d

are relative to the event processing rate g.

Figure 4-14 gives the simulation resuits for several values of d. The simulation
results are obtained under the same simulation parameters given in 4.3.2. It
can be seen that the increase in d, severly reduces the performance. As
mentioned before, the delay d will be less effective in the speedup if a similar

delay exists between submodels of the simulation model.
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Figure 4-10. Analytic Lower Bound and Simulation Results for the Speedup,

(d::y,r:dn.
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Figure 4-11. Analytic Lower Bound and Simulation Results for the Speedup,

(d=p,r=1).

142



Speedup

(+) Simulation

{(+) Analytic Lower Bourd

. | I I ! | ; | I

J 0.0v 0.02 0.03 0.04 0.35 0.06 0.07 0.08 0.09 Q.

[nteraction Probanility (p?

Figure 4-12. Analytic Lower Bound and Simulation Results for the Speedup,

(d=p,r=.2).
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Figure 4-13. Analytic Lower Bound and Simulation Results for the Speedup,

(d=2u,r=.1).
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Figure 4-14. Simulation Results for the Speedup (d>0,r=1).
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4.4. More than Two Processors

In this section the simulation results of the ﬁlodel of this chapter for more
than two processors are presented. The model assumes that the processors
and the submodels are statistically identical. Furthermore, every generated
event is an inter submodel event with probability p, and any submodel is

equally likely to receive an inter-submodel event.

Figure 4-15 shows the multi-processor speedup as a function of the interaction
probability when the rollback processing time and the communications delay is
zero. In Figure 4-16 the speedup is plotted in the case where the
communications delay is equal to the time to simulate an event and the
rollback processing multiplier, r is equal to 0.1. As it can be seen reasonable

speedup can be obtained when p is small.
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Figure 4-15. The Simulation Resulits for the Speedup with Multiple processors,

(d=r=0).

147



Speedup (solld)

!
0 0.1 02 03 046 05 0.6 27 0.8

0.9 1

[nteraction Probabitity
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CHAPTER §

Analysis of the Prediction Method

In this chapter, a model of the Link Time Algorithm for distributed
simulation is analyzed. The model is based on an extension of this method

with a prediction function [CHM 79).

Recall that with this method of simulation, every processor can safely simulate
up to the minimum link time of its incoming links which we call the safe
simulation period. The link time was defined to be the simulation time of the
earliest non-simulated event message transmitted on that link. Obviously, the
safe simulation period cannot be computed if one or more of the incoming
links do not contain a non-simulated event message. In that case, the
processor has to wait for an event message to arrive on the empty link(s). The

waiting can cause deadlock.

To prevent deadlock, processors send null messages to their neighbors giving a
lower bound on the simulation time of the next departing event from that
processor. This information can be used by the waiting processor to compute a
safe simulation time. In general, this approach is only workable if the
simulation time between two generated events on a processor is bounded

below by a non-zero value ¢. In Chapter 1, it was shown that when ¢ is small,
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the overhead can be very large.

The extension of the prediction facility to the model, enables a processor to
give information about a more distant future to its neighbors. This approach
uses the characteristics of the simulation model and assumes that certain
future steps of simulation are predictable by the processor. The predictions
can be used by the neighbors to compute a safe simulation period, possibly

farther ahead in simulation time.

Consider a simulation model in which the times of occurrence of some inter-
submodel events can be predicted in advance. If the events are not canceled
or modified then the predictions are called ezaet. The assumption is that each
processor can predict the time of occurrence of the next inter-submodel event.
Obviously, exact predictions are the most desirable. However, an acceptable
property of the prediction is that the predicted time if not exact, be a non-
zero lower bound on the time the event actually occurs. In the latter case, the
processor receiving the lower bound can safely simulate to that time. If the
event does not occur at the predicted time then nothing needs to be undone

and only a new prediction is required.

An example of a simulation model where some events can be predicted is the
queuing network model given in Figure 5-1. In this Figure, let queue ¢ be
simulated by processor P, 1<i<5. It is described below how predictions can

be done in different ways in this model.
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Figure 5-1. Example of a Simulation Model with Possibility of Predictions.

Given an arrival of a customer C to queue 1, P, can schedule or predict a
departure for C given its unfinished work and its queuing discipline. The
prediction is exact if the queuing discipline is FCFS. However, if a different
discipline such as LCFS preemptive exists, then the best prediction that can
be made is to give a lower bound on the service time of the customers.
Having P,'s prediction, P, can also make a prediction on the time of its next
departure to P,;. The correctness of this prediction depends on Pj's next
event. Therefore, these two processors need to exéhange predictions to agree
on the next inter-submodel event(s). Pj;'s neigl;bors can benefit from the fact
that it can send customers to more than one queue. Hence, whenever P, sends
an event or a prediction to a meighbor, it can also send a prediction to the
others informing that no departure events will be scheduled prior to the time

of that event.
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In general, making predictions may not be possible or practical. The goal of
this analysis is to determine the potential speedup that may be obtained in
the cases where making predictions is possible. With this analysis, a
theoretical upper bound on the performance of this method of simulation is
obtained. It will be seen that unless predictions are made for a time far in

advance, the speedup can be very low.
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5.1. The Performance Model

The assumption is that a processor s can predict s, the simulation time of its

next departing event assuming that there are no arrivals in the mean time.

This prediction is exact unless the processor receives an inter-submodel event

with a simulation time less thap s; after it has made the prediction. In this

case, processor { can make a new prediction only after it simulates the inter-

submodel event. Therefore, the processors operate as follows :

(a)

Make a prediction for the time of the next departing event.

(b) Broadcast the predictions to all the processors that can be affected by

(¢)

(d)

transmission of an event from that processor. With respect to the
communication graph of the model, all processors that lie on a directed
path originating from the processor sending the event can be affected.
Note that no particular broadcast mechanism is assumed. It is possible to
send the predictions to the immediate neighbors only. They will in turn

pass the revised prediction to their neighbors and so on.

When predictions from all the processors are received, compute s, the

time of the earliest predicted event.

Simulate to s;,. At that time the processors sending and receiving the
event can make new predictions. Broadcast the new predicted times and
goto (c). Note that in this case, we are assuming that the communication

graph is fully connected.
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Considering the above, we further make the following assumptions :

(1)

(2)

(3)

(4)

()

(7)
(8)

The simulation model is divided into submodels, each being simulated by

one processor.
The simulation time of each submodel is updated instantaneously at the
beginning of processing an event.

The real time for each processor to simulate an event is iid exponential

with mean "'1-.
I

The simulation time advances are iid exponential with mean % for each

submodel. Thus, X is the simuiation rate for each submodel in events per
unit simulation time.
The real time to transmit a message between two processors is a constant

d. This constant is initially assumed to be zero.

The real time to make a prediction is negligible. This assumption can be
relaxed in the case where d>0. In this .case, the time to make a

prediction can be included in the delay to transmit a message.

The message processing time is negligible.

Predictions are independent variables, based on the assumption that
every generated event at a processor will be an inter-submodel event with

probability p. Therefore, the predicted simulation time until next
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departure from a processor is iid exponential with mean ﬁ- .

5.2. The Performance Measure

Similar to the analysis of Chapter 4, the performance measure is the speedup
that is defined to be the ratio of the useful simulation time per unit real time
in a K-processor system over the same quantity in a uni-processor system
when all processors have the same speed p. Also let,

s{t) = simulation time of submodel 1 at time ¢, and

useful simulation time at real time ¢

e = lim
f e Te's] t

Note with this method of simulation, all the work is useful. Then

€pinet . B
nagie processor m
where
M\ = simulalion time per event of a submodel
and
min [s t ]
¢ = lim <=2 0
K-processor — b 00 ¢
Hence

€K -proceseor

p =
eu’uglc processor

E‘I‘l:i}’[} (a;( t)) -I-?—

= li

t-sc0 ¢

But, the numerator is equivalent to the real time used by all processors to
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simulate the useful simulation time. In this model, unlike the one in Chapter
5, all the simulation time advance is useful. Therefore, the useful real time of a

processor will be considered as the total time spent on simulation. Hence

K
3" Useful real time of k-th processor in t
§ o |

= lim
P t—c ¢

Ideally, this measure is K when the processors are perfectly synchronized and

do not need to wait for event arrivals.
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5.3. The Two-processor Analysis

In this section an analysis of the two-processor model is presented. Figure 5-2
gives the communication graph of the simulation model and a diagram
illustrating one possible scenario for the operation of the two processors

during the interval (0,t) in real time.

The solid arrows in the time diagram represent transmission of event
messages from one processor to the other (inter-submodel events). The

dashed arrows denote the transmission of a message carrying a prediction

PI'OC. - Tl T2 I T5
Wi f 7 \
L9 ) [} I \ 1
L1 i ! 1} 1)
] i ] ] \
" [} 1 3 1
AR ! ! v - 1}
Proc. I y 1 Y Y
0 4 ¢y Ty |t, T, |, t5=ft
type 2 type 3 type 1 type 4

Figure 5-2. The Time Diagram and Commuaication Graph of the Operation of Processors.
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generating an inter-submodel event, sends its predicted time for the next
departure along with the event message. Let, T; denote the real time at which
the ¢ -th inter-submodel event is generated. Note the assumption that a
processor transmitting an event message has the same simulation time as that

of the event at the time of transmission.

Referring to Figure 5-2, at real time zero, the processors exchange their
predictions which is the simulation time of their next inter-submode! event (or
departure), given no arrivals from outside. They start simulating after
computing the safe simulation period to be the time period until the earlier
prediction. At real time T, processor 2 that predicted an earlier departure,
generates and transmits the first inter-submodel event. Processor 2 also sends
its prediction for the simulation time of the next departure with the event
message. At t;, processor 1 that has already completed simulation of the
previous safe period, receives the event message and the new prediction.
Subsequently, it sends its own predicted time. Since processor 1 has both
predicted values at ¢, it can immediately start simulating to the time of the
next inter-submodel event. However, processor 2 can start simulating in the
new interval only after it has received its neighbor’s prediction. Then during

an intervai the following takes place :

(i) making predictions
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(ii) determining the simulation time of the next inter-submodel event

(departure)
(ili} simulating to the time of the next departure
(iv) transmitting the inter-submodel event

These steps are repeated until the simulation process terminates. Note that at

the end of each interval, the two processors have the same simulation time.

Another point to consider about the model is that once a processor makes a
prediction, it can improve on that prediction only after it has either sent or
simulated an inter-submodel event. This property can be seen in Figure 5-2.
Processor 1 cannot immediately respond to processor 2's prediction sent at T,.
First, it has to simulate the safe simulation period and the event and then

produce its prediction at £,.

Using the above model, the real time axis can be divided into four different
types of intervals shown in Figure 5-2. The intervals start and end at the
points of transmission of prediction messages b'y processors receiving the
inter-submodel events. The type of each interval depends on the source (s} of
two consecutive inter-submodel events. Without loss of generality, we define

the interval types as follows :

(1] Interval formed by two consecutive departures of simulation events from

processor 1.
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[2] Interval formed by two consecutive arrivals of simulation events to

processor 1.

(3] Interval formed by an arrival to and a following departure from processor

1.

[4] This interval is formed by a departure from, followed by an arrival to

processor 1.
Let

t; = real time at which the i-th interval ends (ty;=0)
Y; = length of the i-th period = t;~t; |, i>1
N(t) = number of completed intervals by time ¢, and
ri = useful real time of processor k within the i-th interval

The variables Y; are not independent since the length of each interval depends
on the sending processor of the inter-submodel event of the previous interval.
However, at ¢, the duration of the next interval can be specified
independently of the past. Therefore, {N(t) : >0}1s a markov renewal process
[ROS 70|. Let us define an embedded (possibly delayed) renewal process to be
{N(t) : t>0} = Number of completed intervals of some type (say 1) by time ¢
Furthermore, a cycle is defined to be the real time between two renewals. Also,

let

7' = Useful time of processor k in cycle
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Then The speedup can be written as

22: lgf)']"'*'fk(f)]

. kam] gaml
p = lim
t=—s00 4
r '.
\ 2T T oalt)
— 2 lim ram]
k-l t=—r00 t
where
€i(t) = useful time of k during (£c(1),1)
Hence

> B4

r
D (1)
" Ellength of a cycle]

Let I: be the length of an interval of type s then with homogeneous processors,

p

Ellength of a cycle] = iE[I,]

yam]
Note that because the processors are homogeneous, all the four types of

intervals are equally likely to occur within a cycle. .

We therefore need to compute the expected length of each interval and the

expected useful real time during each interval. Let

ry; = useful real time of processor k in an interval, given processor j generates

the nezxt inter-submodel event

Then
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I = ﬁu(2d+rl,,r2,)
I, = mazx(r9,2d+ry)
Iy = d+maa(ry,ry)
I, = d+max(r ;)
Due to the homogeneity of processors,

=T ="n

and

flpg =Tg1 = Iy

Therefore,

Il=[4 N Iz=.[3

Now
M+1
n= E Z;
1]

where M is the number of intra-submodel events of processor k¥ and has a

poisson distribution with parameter \(1-p) and z; is the real time to simulate

the i- th event during an interval by a processor and {z;::i>1} are iid

exponential with mean L . We also have

Ir

M
r2 = z Il‘

=]

In the latter case, the processor only simulates intra-submodel events during

the interval.
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Let hy(r) be the conditional density for the real time to simulate events by a
processor within one interval given that processor generated the inter-
submodel event at the end of that interval (density for r;). Since r, is the

sum of M+1 exponential variables, given M = m, we have

h(r)IM=m = -E(%S)—e""
But

A1-

™m
p el ;>0

Pr{M=m]|y=predicted simulation time } =
The event {M,=m during y predicted simulation time } is independent of

which processor will generate the next inter-submodel event (see [HES 82],page

80). Hence unconditioning on m, we have

A(1-p)y)™ (ur)™
m! m!

hl(r) — p C-X(I-P)' e_f‘r i
masl)

and

Hyr) = P"{fl..<_ r}

= 1< ¢ MI-Ply gur i (Ml—pl)y)"‘ f: (p:i‘ 3)
ma=( m: = ¥

Similarly, if we let ks(r) to be the density for r, then given M, = m,

m-1

r —ur
ho{r)fM=m = (n-1) e m>1
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Unconditioning on m,

= ¢1-p) A(l-p)y ,-ur S A(1-p)y}™ (pr)™!
ho(r) = eV P ug(r) + pe™ V7P o4 MZ-‘ 2 -

where uy is the unit impulse function. The above formuia shows that with

probability e1-?)7 the processor receiving the inter-submodel event, will not

be advancing during the interval. Defining H,(r) to be the distribution

function for ry, we have

Hyfr) = 1-eM1-p)y gur i (M1-p)y)™ "‘E" (pr) "

X 1
mowt s -0 P

But,
Elry | y] = (EIM] + 1)ELX])
_ 1+)\|l—g[g (5)

u
and similarly,

E["zly]:l“_;m. (6)

where y is the predicted simulation time within an interval and is

exponentially distributed with mean (2;” . Unconditioning on y,
_ 1¥p
ry =
E[ry p
1— -
Elry] = —P‘# . (7)
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5.3.1. Case of Negligible Communication Delay (d=0)
At this point let d, the communications delay be equal to zero. The case of
non-zero communication delay will be considered later. The equations in (2)
can thus be written as

[ =1 = max(r,ry) foralli (8)
In this case the renewals occur at the beginning of each interval. i.e the cycle
includes one interval. Let H_,.(r) = Pr{I<r}, then

Heyuelr) = Hi(r)Hyfr)

= e~ 1-Ply ouir i (MI—PI)Q)"' i (F_f)'.
1 mml) m: § ) t!

_eMl-ply c—pri (\(1-ply)" ”E_l (}"")j
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Therefore,

Ellly] = E[r]y]+ Elrgly]

e Zulr i gy
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o m sl iy i+ |
-L.2 22‘+“L[2 22"—”-* ‘ (9)

~ pp o m!n! Fo o ;!

The proof for convergence of the infinite sum appears in the Appendix B.

From (1)-(9) the speedup can be written as

_ Er ] + Elry]

- E(])

_ Elr)] + E[ro]
~ Elr + Elr] -A

L

_—up __1

RN (10)
np

where
A= _L’.. $ (mEa) 1_2 m'-‘(s+11 1
m!n! ﬂJ' ( ) (11)
m-On-l 1—01—0

The numerical results of (10) appear in the next section.

5.3.2. Numerical and Simulation Results

In Figure 5-3, the speedup p is plotted as a function of interaction probability
p, from equation (10). The results are obtained by numerically evaluating A.
The upper bound on the computation error is 10™°. The derivation for an

upper bound on the error appears in Appendix B.
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5.3.2. Numerical and Simulation Results

In Figure 5-3, the speedup p is plotted as a function of interaction probability
p, from equation {10). The results are obtained by mumericaily evaluating A.
The upper bound on the computation error is 10~°. The derivation for an

upper bound on the error appears in Appendix B.

To verify the analytic model, a simulation of a similar model is performed. The
results of the simulation in the form of 95% confidence intervals also appear in
Figure 5-3. The simulation results are obtained from 10 independent runs of
the simulation program for the duration of 7000 simulation events. It can be
seen that the two resuits agree and reasonable speedup (close to 1.5) can be

obtained for p <0.15.
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Figure 5-3. Analytic and Simulation Results for the Speedup (d=90).
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6.3.3. Case of non-zero Communication Delay (d >0)

In this case the assumption of homogeneous processors still holds. We can

obtain an upper bound on the performance as follows. From (2)

Il s [2 — max(2d+r1,f2)
L =1, =d+ maz(rry)

Hence

ElL) = E[I}d=0] + d
ElL} < E[I|d=0] + 2d (12)

With assumption of homogeneity, any interval is equally likely to occur, hence

o __Brl + B
p= L5d+ Er |+ Elro]-A (13)

1
T L5ppd+1-ppA

where A is given by (11).

Figures 5-4 and 5-5 show the numerical evaluation of (13) as a function of p,
the interaction probability for different values of 4. The upper bound on the
computation error is 10°. On the same Figures the simulation results appear.
The simulation results for the speedup for different values of d are shown on
Figure 5-6. Similar to the model of Chapter 4, the speedup degrades severely
as d grows. Furthermore, the bound obtained by analysis becomes loose as p

increases.
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5.4. More than Two Processors

In the case where more than two'processors are performing the simulation, a
processor k can be affected by an inter-submodel event if there is a directed
path of length 1 or more from the processor generating that event to k in the
communication graph. Hence, even if the event is not directly sent to k, it
could still be affected by it. In this section, we make the assumption that the
communication graph is strongly connected, so there is a directed path
between any two processors. With this assumption, processors have to
broadcast their predictions. Then each can safely simulate to the time of the
event that is predicted to occur earliest. At that time, the processors sending
and receiving the predictions wiil make new predictions and broadcast the
predicted values. A new simulation interval starts when processors compute
the time of the next inter-submodel event and start simulating to that time.
Figure 5-7 gives the time diagram of a possible scenario for the operation of

three processors.

It can be seen that similar intervals to those of the two-processor model can be
defined. Without loss of generality, we define the intervals to be of the
following types :

[1] Interval formed by two consecutive departures of simulation events from

processor 1.
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(4]

Interval formed by two consecutive departures of simulation events from
any processor(s} except 1.

Interval formed by a departure from any processor except 1 followed by a
departure from 1.

Interval formed by a departure from processor 1 followed by a departure

from any processor except 1.

Unlike the two-processor case, the frequency of occurrence of these intervals

are not equal. Also, {NV({) : £ >0}, is not a renewal process. Recall that N{t) is

the number of completed intervals by time t. Note that only two processors

are necessarily synchronized at the end of the interval. One or more of the

remaining processors may have not completed simulating the predicted time.
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Now, if we modify the model such that all processors have to complete the
predicted time in a cycle, before a new cycle starts, then {N(¢): ¢>0}, is a
renewal process. In this modified model when d=0, the speedup is

K
_E] EIR]
PK- rocuun(m"d'ﬁed) 2 —
P E‘é‘?g"x (&)

where

R; = useful real time for processor 1 in an interval
One of the variables R;,1<i<K is the useful real time of the processor that
generated the inter-submodel event at the end of that interval has a
distribution given by (3). The remaining R’s have a distribution given by (4).

So

Elry] + (K-1)E[ry]

B omax (o)

pK—proceuon( mo‘hﬁcd) =

where r,'s distribution is given by (3) and rz‘ is the i-th variable in the order
statistics {r,* : k=1,...,K-1} with a parent distribution given by (4).

Clearly, the speedup in the original model is greater than that in the modified
model. The processors are not forced to synchronized at the end of each
interval and therefore may not need to wait as much for the others to

complete. Hence,
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Elr)| + (K-1)E]ry]

K-processors — EI max x l(rl,r2,’)l

g

—_ By :
B max | (rs)

An explicit formula cannot be obtained for the denominator of the above
formula. However, the model has been simulated and the results appear in
Figure 5-8. The simulation results for the case where the d is non-zero appears

in Figure 5-9.
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5.5. Comparing the Two Models

The analysis of Chapters 4 and 5 of the two methods for distributed
simulation (Chapters 4 and 5), give us some insight into the effects of different
system parameters on the speedup. The models are statistically similar and
both are simplifications of reality. For example in the model for the Rollback
method, the storage requirement was not included and in the second model
(Chapter 5), making predictions was assumed to be possible and furthermore
they were exact. The idea is to see whether any speedup can be obtained
under these simplified conditions and if so, how would other parameters affect
the results. It was shown that considerable speedup can be achieved under
some conditions. Furthermore, in the absence of those conditions even the
simple model does not perform efficiently. The results of the Rollback method

will be confirmed with implementation results in the next chapter.

In comparison with each other, Figures 5-10 to 5-12 present the analytic and
simulation results of the 2-processor model of each method. Figure 5-10 gives
the speedup obtained by analysis of the two methods in region p<.08, which
is the range where the independence assumption of the Rollback model is
reasonable. The two curves are fairly close, with the curve for the Rollback

method slightly higher at all points.

Figure 5-11 shows the simulation resuits of the two methods for all values of P

when the communication delay is negligible. Finally, in Figure 5-12, the
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speedup is plotted as a function of interaction probability from simulation of
the case where d=pu. Here also the two curves are close with the curve for the

speedup of the Rollback model ahead of the one for the Prediction model.
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CHAPTER 6

Implementation Resuits

In this chapter the results of implementation of the Time Warp method are
presented. This method for distributed simulation was implemented at the
Rand Corporation and is running on a network of five Xerox 1100 machines
(Dolphin) and a Vax 750. The Dolphins run a version of Interlisp
programming environment and are used for simulation. The Vax is used to
gather statistics a.boﬁt the system. The code which is written in GLISP was

developed by Henry Sowizral and David Jefferson.

The user can request one or more processors to perform the simulation.
Depending on the availability, all or fewer processors are assigned to perform
the task. The processors are homogeneous in terms of software and almost
similar in terms of hardware. The available physical and virtual memory of all
processors except one is 2304 and 5855 pages of 512 bytes respectively. The
single rather larger processor in terms of storage has physical and virtual
memory of 3072 and 6707 pages. The processors are independent except at
some points at which one acts as an initiator. The processor on which the user
starts up the system initiates the operations on all others by loading the
simulation module. The processors interact with each other at the points of

transmission of events. Another operation which needs an initiator is the GVT
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computatién. At the beginning of each GVT computation phase, one processor
becomes the initiator and leads the computation. Nevertheless, as far as the
simulation process is concerned, all processors are similar and no global control
exists.

The termination criteria is a desired value for GVT. Once the GVT reaches
this value the simulation stops and the required statistics are trapsmitted to
the statistics gatherer. Also, throughout the simulation process, the

intermediate statistics are transmitted.

Several simulation application programs have been implemented. The
application that has been selected for the results that follow is the simulation
of a mathematical game, called the Game of Life [GAR 70]. The rules of this

game are briefly described below.

A checkerboard is used as the game board. Initially, some of the squares on

the board are marked. The basic idea is to change the squares of the board at

each generation depending on its neighboring squares. A square has eight

neighbors, horizontally, vertically and diagonally. A new gencration is created

with the following rules :

(1) Survivals - A marked square remains marked for the next generation if
two or three of its neighbors are marked.

(2) Deaths - A marked square with four or more marked neighbors dies (is

unmarked) from overpopulation. A marked square with ome or none
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marked neighbors dies from isolation.
(3) Births - A non-marked square with exactly three neighbors is marked.
The changes for all the squares for one generation occur simultaneously.

Using the above rules with modifications in some cases, the Game of Life for
different board sizes has been simulated. The simulation model consists of
objects, each being a square of the Life Board. These squares are assigned to
the processors with different object assignment strategies. The processors
simulate their objects and transmit messages between neighboring objects if
they do not reside on the same processor. The simulation time advances are
deterministic and are equal to the time between two consecutive generations

of the Life Board.

The simulation program was run on one to five processors for boards of sizes
12x12 and 16x16. Dividing the Life Board into 4x4 arrays, the initial state of
the board consists of marked squares in positions (2,1), (2,2) and (2,3) of each
array. The results are shown in the following ‘'sections. The first section
contains a version which is called the Slow Life and the second is the Fast
Life. The difference is in the way the system was run. For the slow version,
the Time Warp code was run in interpret mode and therefore the operation is
an order of magnitude slower than the fast version that was run in compiied
mode. This way, the effects of heavy loads on the system could be obsérved.

It should be noted that the sirnulation program was always run in interpret
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mode and only the message processing, rollback processing, GVT computation
and statistical routines were compiled or interpreted depending on the version.
Another difference between the two versions is that in the slow case one of the
processors is simulating the Life Board itself. It needs to get the state of all
the objects at each generation and transmit the whole picture to an output
device. This was creating a bottleneck and therefore slowing down all
processors. In the fast version the object Life Board was removed from the

simulation and all output was sent to the statistics gatherer.
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8.1. Slow Version

In Figure 6-1 , the GVT is plotted as a function of reai time for 1-5 processors.
This graph is the result of the simulation of a 12x12 Life Board. The
simulation here and most other cases were run for 30 generations. The lower
curve that is similar to a step function is the simulation time advance of a
single processor when all the overhead due to distributed processing is absent.
It can be seen that the highest performance is given by the four-processor
simulation. However, the speedup that is obtained from 2-4 processor
simulation is proportional to the number of processors. In other words
Py = 4/3p3 = 2p,

In the 5-processor simulation, the performance starts to degrade and even goes
below the 2-processor simulation (not shown in Figure 6-1). This behavior
occurs because (a) the interaction frequency is high and (b) one of the
processors falls behind at some point. Another processor that is farther ahead
is continuously feeding the slower processor with simulation messages. The
flow of messages further reduces the simulation rate of the siower processor.
This phenomena that occurred several time during different application runs,
indicated the necessity for a control mechanism that will control the flow of

messages at the simulation level.

Table 6-1, gives some statistics about this test case for 2-5 processors. As it

can be seen, approximately 30% of the elapsed computation time was spent on
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event proéessing. Furthermore, the Time Warp overhead such as GVT
processing, rollback processing and scavenging utilized less than 3% of the
total time. The remaining time was spent on scheduling, state saving, message
processing and generating statistics. Scavegging is the process of removing

obsolete entries from the queues, each time a new value for GVT is computed.

Figure 6-2 gives the processor’s simulation time of this test case in the 2-
processor simulation. The curve marked with a "*" is the curve for GVT. The
other two curves are the simulation time curves of the two processors. The
~occurrences of rollback can be seen at the poinis of sudden negative jumps in
the upper curve. The processor that rolls back, catches up with its previous
simulation time rather ciuickly. This is due to the fact that only a subset of
the objects are rolled back. After the rollback occurs, the processor may start

simulation of those objects that have not been affected by the rollback.

Table 6-1. Statistics of Slow Version of Life 12x12.

2 3 4 5
Interaction Frequency 0.14 | 0.13 0.3 0.34
Fraction of Time in Event Processing 035 | 0.36 | 0.32 0.30
Fraction of Time in Rollback Processing | 0.001 0 0.005 | 0.004
Fraction of Time in GVT Processing 001 | 0.0¢ | 0.004 | 0.003
Fraction of Time Scavenging 0.02 0.02 0.01 0.02

190



35

|

.

.

20 |
.

L

a 1000 2000 3000 460G 5000 6000

A ¢
™

GvT

Real Time

Figure 6-2. Processors’ Simulation Time Advance in 2-processor Simulation,
Life 12x12 (Slow).

181



In Figure 6-2, it can also be seen that the GVT curve closely follows the
simulation time of the slower processor. This shows the relative tight lower
bound on GVT that is obtained by the GVT algorithm (Chapter 2). At some
points, the GVT curve crosses the lower simulation time curve. This is due to
the infrequent reports of the local simulation times or infrequent savings of

states.

Figure 6-3 shows the simulation times of three processors in the 3-processor
simulation of the same test case. Once again the GVT curve marked with a
"*"  closely follows the simulation curve of the slower processor. The
occurrence of rollback can be seen in one of the processors farther ahead.

Another relatively fast processor does not have to rollback, since it does not

need to interact with the slower processor.

Finally, Figure 6-4 shows the simulation times of four processors in the 5-
processor simulation. For a more clear picture, the simulation time of one
processor 1s deleted from the Figure. As it was mentioned before, one of the
processors falls behind and its simulation rate also declines as time goes by.
Note that, although other processors are far ahead, the overall simulation time

cannot proceed.

The other board size that was tested is one with 16x16 squares. The resulits of
this simulation for 1-5 processors is shown in Figure 8-5. The Figure shows the

curves for GVT advance (simulation time in 1-processor case} as a function of
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elapsed rea‘ﬂ time. The speedup that can be obtained by 2-4 processors can be
seen. However, the relative speedup of 4-processor over 3-processor simulation
is negligible. 5-processor simulation once again starts to degrade. Its
performance becomes so low, that at the end of the run, it is hardly
advancing. It appears that the slowest processor is continuously processing

messages sent by faster ones.

Table 6-2 gives the statistics about this simulation run. Similar to the
previous case, approximately 30% of the time is spent on event processing.
The high interaction frequency of the 5-processor simulation results to some

extent to its degraded performance.

Another result that was desirable was the effect of object assignment on the
performance. Initially, the above simulation runs were obtained by assigning
squares (objects) to the processors in an arbitrary order. The performance for
2-processor simulation was similar to what appears in the two Figures 6-1 and
6-5. However, for more than two processors, the performance was much lower
than those in the Figures. Consequently, the objects were divided between the
processors, using algorithm H1 of Chapter 3. The resulting performance
increases considerably for 3 and 4 processors. Figure 6-6 gives the GVT curves
for 3-processor simulation of Life 16x16 with the two different object

assignment strategies.
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Table 8-2. Statistics of the Slow Version of Life 16.

2 3 4 5
Interaction Frequency 009 | 017 | 0.14 | 0.35
Fraction of Time in Event Processing 033 | 033 | 0.34 | 0.30
Fraction of Time in Rollback Processing | = 0.001 | =0 | 0.004
Fraction of Time in GVT Processing 002 § 001 | 0.01 | 0.01
Fraction of Time Scavenging 002 | 0.02 | 0.01 | 0.02
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8.2. Fast Version

As described before, the runs in this section involve the same applica.fion of
Game of Life, except that the code was run in the faster compiled mode and a
bottleneck was removed from the system by removing the Life Board object.
The difference is that the loads of the objects on the processors are
considerably less. In Figure 8-7, the results of simulation runs for a fast Game
of Life of size 12x12 is shown. The curves are the plots for GVT of 1 to 5
processor simulation. Unlike the slow version, the speedup grows with the
number of processors. The 5-processor simulation does not show the same
degradation that appeared in the previous case. Note that the bottleneck is
removed from the model and hence message overflow does not create a
problem. Nevertheless, the increase in performance is not at the rate of
increase of number of processors. In fact, the relative speedup of 3-processor
simulation is highest. It happens that with this particular board size, the

objects can be divided more efficiently (less interaction) between processors.

Another observation is the difference in the speedups of various multi-
processor simulations in the two slow and fast versions. The speedup in the
slow version is considerably higher than the speedup in the fast version for the
same number of processor. This is resulted from the heavy load of the
simulation on the processor in single processor simulation. In the slow version,

the one processor can hardly tolerate the load. Clearly, this results in a high
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speedup when several processors are utilized. In the fast version, the single
processor is capable to run the whole system. Nevertheless, in this case a

positive speedup can be obtained. Table 6-3 gives the statistics about this run.

The simulation time of the processors in the 3-processor simulation of the
above case (Life 12x12) is given in Figure 6-8. The operation of the processors
seem to be quite smooth witk no (possibly very few) rollbacks. The GVT
curve is relatively farther away from the minimum simulation time curve. This
is due to infrequent computation of GVT. Note that GVT computation
frequency is in the elapsed real time units. In this case, the simulation
progresses much faster than previous version and therefore, the GVT
computation is not run as frequently {in simulation time). The frequency of

GVT runps is increased for the next test case that also happens to be a fast

run.
Table 6-3. Statistics of the Fast Version of Life 12x12.
2 3 4 5
Interaction Frequency 0.1 0.05 0.19 0.27
Fraction of Time in Event Processing 0.46 0.44 0.37 0.39
Fraction of Time in Rollback Processing | 0.001 0 = 0.001
Fraction of Time in GVT Processing 0.01 0.02 | 0.003 { 0.001
Fraction of Time Scavenging . 0.002 | 0.006 | 0.003 | 0.001
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A model similar to the above with a Life Board of size 16x16 was also run, The
GVT curves appear in Figure 6-8 and the statistics are presented in Table 6-4.
The speedup is clearly increasing with number of processors. However, the
relative speedup of 4-processor simulation is superior in this case. The reason
is similar to the previous case. The Life Board of this size can be more
efficiently divided into four processors. In fact, the above two tests confirm the
result of the analytic model that the lower the interaction probability the
higher is the speedup.

In Figure 6-10, the simulation time advance of processors in the 3-processor
simulation of this case is plotted. Frequent occurrences of rollback can be
observed in this Figure. Comparing the two Figures 6-8 and 6-10, the
difference in the behavior of 3-processor simulation in two different cases can
be observed. This and the speedup results obtained indicate the usefulness of
an object assignment strategy that does not necessarily use the maximum

number of available processors.

Table 68-4. Statistics of the Fast Version of Life 16x16.

2 3 4 S
Interaction Frequency 0.03 0.1 0.05 0.17
Fraction of Time in Event Processing 036 | 0.43 0.47 0.45
Fraction of Time in Rollback Processing | =0 | 0.001 =0 0.001
Fraction of Time in GVT Processing 0.04 | 0.02 0.03 0.03
Fraction of Time Scavenging 0.01 0.01 0.006 | 0.002
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CHAPTER 7

7.1. Summary of Contributions

The content of this dissertation is an extension to the existing work in the
area of distributed simulation. The contributions are in the performance
analysis of two distributed simulation methods and presenting algorithms for
effective utilization of one of these methods. The general conclusion derived
from mathematical analysis, simulation and implementation is that distributed
simulation is workablt;. Furthermore, under certain conditions, it is superior to
the conventional single-processor simulation. The conditions are not
impossible or too restrictive. Apart from large simulation applications that can
hardly be handled by single processors, smaller models can still benefit from

distributed processing and produce results faster. The following is a summary

of results obtained from this work.

7.1.1. Performance Analysis

The two most effective factors in the performance measure were shown to be
the interaction probability and the communication delay in the simulator. The
results show that the simulation model must be decomposable into weakly

interacting submodels. High interaction rates increase the overhead and reduce
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7.2. Suggestions for Future Research

Distributed simulation is a new and growing area in distributed processing.

Some problems are common with other distributed systems and existing

solutions are workable. Nevertheless, due to some of its particular aspects,

more efficient solutions may be obtained by subject related research.

Following are some topics that is suggested for future research.

(i)

(ii)

(iif)

(iv)

Performance Analysis - In the area of performance analysis the models
need to be extended to remove some of its restrictions. Furthermore,
models to test the effects of checkpointing frequency on the performance

can produce a valuable lead in this subject.

Load Balancing - Dynamic load balancing techniques are required to

complement the static strategies.

Fault Tolerance - Although in simulation l'ault.tolerance may not be as
vital as some other applications, the existence of a fault tolerant
distributed simulation system can save considerable time and processing
power. Note that because of the inherent property of the Rollback
method, inclusion of fault tolerance may be simpler than other
applications.

Object Relocation - Portability of objects or submodels dynamically is a
prerequisite for the two previous suggested topics. Note that relocating an

object does not only affect the "to” and "from” processors but can have a
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the speedﬁp. Similarly, large values for the communication delay in the
simulator reduces the speedup unless it is matched with a similar delay in the
system to be simulated. A simulator with negligible communication delay
between the processors (shared memory) was shown to produce the highest
speedup.

The Rollback method was shown to be mathematically stable as long as the
rollback processing factor is less than 1. ie. the real time to perform rollback
over some simulation time period (wasted simulation time)}, is strictly smaller
than the real time used to simulate that simulation time period. As can be

noted, this requirement is reasonable and not restrictive.

It was also shown that the prediction method is workable when the
predictions correspond to distant future. A model that requires frequent

predictions corresponds to one with high interaction rates between submodels.

The two methods for distributed simulation studied in this work were shown
to produce a comparable speedup in the cases where the storage requirements
of the Rollback method were not considered and the predictions in the Link

Time method were assumed to be perfect.

7.1.2. Algorithms

A distributed algorithm was presented that correctly finds a lower bound on

the simulation time of the slowest processor. It was furthermore shown by

207






implementation that the algorithm requires little processing time and produces
fairly tight bounds. This algorithm can be generalized to any distributed

system to obtain global information about the system such as termination.

Load balancing was also shown to be an important part of a distributed
simulation method. The algorithms presented provide a reasonable static load
balancing strategy. The effectiveness of one of the algorithms was showa by

implementation results.

7.1.3. Implementation

The implementation results did in general agree with the previous analytic and
simulation results, although the models were different. The effects of high
interaction probability and communication delay were seen to be signtficant in
the speedup. Furthermore, some overhead of the Rollback method such as

rollback processing and GVT computation time were shown to be small.

These results provide us with some ideas for future research. Load balancing
and flow control were shown to be necessary for the distributed system to be
running efficiently. In addition, frequency of checkpointing that can directly

affect storage requirements need to be studied further.
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applications.

Object Relocation - Portability of objects or submodels dynamically is a
prerequisite for the two previous suggested topics. Note that relocating an

object does not only affect the "to" and "from" processors but can have a
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global effect.

Combination of the two - The two methods for distributed simulation
studied here have their own merits. Designing a system that combines
both ideas can be a viable alternative. For example, the idea of the Link
Time can be used to control the flow of messages from the faster to the

slower processor in the Rollback method.

Extension - Extending the Time Warp method to other distributed system
can produce an alternative in the way systems are designed. Some work is

already underway in the area of distributed databases.

210



[AHU 75

[ATN 78]

[BEG 80}

[BRY 77|

(BRY 79|

[CEG 82]

[CHL 80|

[CHM 78]

REFERENCES

Aho, AV., Hopcroft, JE. and Ullman, J.D., "The Design and
Analysis of Computer Algorithms”, Addison-Wesley, 1975.

Athreya, K.B. and Ney, P.,, "A New Approach to the Limit
Theory of Recurrent Markov Chains”, Trans. of the American
Mathematical Society, Vol. 245, Nov. 1978, pp. 493-501.

Bernstein, P.A. and Goodman, N., "Fundamental Algorithms for
Concurrency Control in Distributed Database Syatems”,
Computer Corp. of America, Tech. Report CCA-80-05, Feb.
1980.

Bryant, R.E., "Simulation of Packet Communication Architecture
Computer Systems”, MIT LCS Technical Report TR-188, Nov.
1977.

Bryant, R.E., "Simulation on Distributed system”, Proc. First
International Conference on Distributed Systems, Huntsville,
Alabama, Oct. 1979, pp. 544-552.

Christopher,T., Evans, M., Gargega, R.R. and Leonhardt, T,
"Structure of a Distributed Simulation System”, The 3rd.
International Conference on Distributed Computing Systems,
Miami, Oct. 1982, -

Chu, W.W., Holloway, L.J., Lan, M. and Efe, K. "Task Allocation
in Distributed Data Processing”, IEEE. Trans. on Computers,
Nov. 80, pp. 57-69.

Chandy, K.M. and Misra, J., "A Non-trivial Example of
Concurrent Processing : Distributed Simulation”, Dept. of
Computer Science, University of Texas at Austin, TR-82, Sept.
1978.

211



[CHM 79a|

(CHM 79b)]

[CHM 81]

[CML 83|
[co0 81]
[DAL 77]
[DAV 69}

[DIS 80|

[DIN 70

[DOO 53]

[EDK 72|

Chandy, K.M., Holmes, V. and Misra, J. "Distributed Simulation
of Networks”, Computer Networks, 3 (1979), pp. 105-113.

Chandy, K.M. and Misra, J., "Distributed Simulation : A Case
Study in Design and Verification of Distributed Programs”, IEEE
Tran. on Software Eng., Vol. SE-5, No. 5, Sept. 1979, pp. 440-
452,

Chandy, K.M. and Misra, J., “"Asynchronous Distributed
Simulation via a Sequence of Parallel Computations”, Comm. of
the ACM, Vol. 24, No. 11, April 1981, pp. 198-208.

Chandy, K.M. and Lamport, L., "Distributed Snapshots:
Determining Global States of Distributed Systems”,???.

Cooper, M.W., "A survey of Methods for Pure Nonlinear Integer
Programming”, Management Science, Vol. 27, No. 3, March 81.

Dalal, Y.K., "Broadcast Protocols in Packet switched Computer
Networks”, PhD. thesis, Stanford University, Aprii 1977.

David, H.A., "Order Statistics”, 2nd. Edition, Wiley and Sons,
1962.

Dijkstra,E.W. and Scholten, C.S., "Termination Detection for
Diffusing Computations”, Information Processing Letters, August
1980, pp. 1-4.

Dinic, E. A., "Algorithm for Solution of a Problem of Maximum
Flow in a Network with Power Estimation”, Soviet Math. Dokl.,
Vol 11, 1970, pp. 1277-1280.

Doob, J.L., "Stochastic Processes”, John Wiley and Sons, 1953.

Edmunds, J. and Karp, R. M., "Theoretical Improvements in
Arithmetic Efficiency for Network Flow Problems,” JJACM, Vol.
19, 1972, pp. 248-264.

212



[EVE 79)

[FOF 62

[FRA 80]

(GAT 79|

[GAR 70}

[GYE 76}

[GOR 69]

[HAN 79]

[HAR 52]

[HEM 82]

[JES 82|

Even, S., "Graph Algorithms”, Computer Science Press, 1979.

Ford, L.R., and Fulkerson, D.R., "Flows in Networks", Princeton
University Press, 1962,

Frances, N. "Distributed Termination”, ACM-TOPLAS 2,1,1980.

Garey, M.R. and Johsen, D.S., "Computers and Intractability”,
W.H. Freeman and Co., San Fransisco, 1979.

Gardner, M., "Mathematical Games”, Scientific American, Oct.
1970, pp. 120-123.

Gylys, V.B. and Edwards, J.A., "Optimal Partitioning of
Workload for Distributed Systems”, Digest of Papers,
COMPCON 76, Sept. 76, pp. 353-357.

Gordon, G., "System Simulation”, Prentice Hall, 1969.

Hansen, P., "Methods of Nonlinear 0-1 Programming”, Annals of
Dise. Math., 5,1979, pp. 53-70.

Harris, T.E., "The Existence of Stationary Measures for Certain
Markov Processes”,Proc. Third Berkeley Symposium on
Mathematical Statistics and Probability, 1954-1955, Vol II,
University of Calif Press, Berkeley and Los Angeles, pp. 113-124.

Heyman, D.P. and Matthew, J.S., "Stochastic Models in
Operations Research”, Vol. 1, Me Graw-Hill, 1982.

Jefferson, D. and Sowizral, H., "Fast Concurrent Simulation
Using the Time Warp Mechanism, Part I: Local Control”, Rand
Report, N-1906-AF, Dec 1982,

213



JEF 84]

[JES 83]

[KAM 76|

[KAK 82

[KLE 75]

IKRU 56|

[LMM 81]

IMIC 82

[MLT 82|

[ORE 71]

Jefferson, D. et al, “Implementation of Time Warp on the
Caltech Hypercube”, SCS Conference on Distributed Simulation,
Jan. 1985.

Jefferson, D. and Sowizral, H., "Fast Concurrent Simulation
Using the Time Warp Mechanism, Part II: Global Control®,
Rand Report, Aug 1983.

Kannan, R. and Monma, C., "On the Computational Complexity
of Integer Programming Problems”, Institute fur Operations
Research, Universitat Bonn.

Karmarker, N. and Karp, M., "The Differencing Method of Set
Partitioning”,Report No. UCB/CSD 82/113, Computer Science
Division (EECS), University of California, Berkeley, Dec. 1982.

Kleinrock, L., "Queueing Theory”, Vol. 1, Wiley and Sons, 1975.

Kruscal, J.B.,, "On the Shortest Spanning Subtree of a Graph
and the Traveling Salesman Problem”, Proc. Amer. Math. Soc.
7:1, 1856, pp. 48-50.

Lavenberg, S.S., McNair, EA.,, Mrkowitz, HM., Sauer, CH,
Shedler, G.S. and Welch, P.D., "Computer Performance Modeling
Handbook”, Academic Press, 1981.

Misra, J. and Chandy, K.M., "Termination Detection of Diffusing
Computations in Communicating Sequential Processes”, ACM
Tran. on Programming Languages and Systems, 4,1, Jan. 1982,
pp. 37-43.

Ma, P.R., Lee, E.Y and Tsuchiya, M., "A Task Allocation Model
for Distributed Computing Systems”, [EEE. Trans. on
Computers, Vol. C-31, No. 1, Jan. 82, pp. 41-47.

Orey, S., "Lecture Notes on Limit Theorems for Markov Chain
Transition Probabilities”, Van Nostrand, 1971.

214



[PEA 80}

[PIR 73a]

[PIR 73b]

[PIR 74]

[PWM 79a]

[PWM 79b]

[PWM 79¢]

(REV 75|

[RLT 78]

[ROS 70|

Peacock, J.K., "Distributed Simulation Using a Network of
Processors”, Dept. of Computer Science, University of Waterloo,
CCNG T-Report T-87, Jan. 1980.

Picard, J.C. and Ratliff, H.D., "Minimal Cost Cut Equivalent
Networks”, Management Science, Vol. 19, No. 9, May 1973, pp.
1087-1092.

Picard, J.C. and Ratliff, HD., "A Graph Theoretic Equivalence
for Integer Programs”, Operations Research, Vol. 21, No. 1, 1973,
pp- 261-269.

Picard, J.C. and Ratliff, HD., "Minimum Cuts and Related
Problems", Networks, 5, 1974, pp. 357-370.

Peacock, J.K., Wong, J.W. and Manning, E.G., "Distributed
Simulation Using a Network of Processors”, Computer Networks,
Vol. 3, No. 1, Feb. 1879, pp 44-56.

Peacock, K.J., Wong, J.W. and Manning, E., "Synchronization of
Distributed Simulation Using Broadcast Algorithms™, Proec.
Fourth Berkeley Conference on Distributed Data Management
and Computer Networks, San Fransisco, Aug. 1979.

Peacock, K.J., Wong, J.W. and Manning, E., "Distributed
Approach to Queuing Network Simulation”, Proc. Winter
Simulation Conference, San Diego, Dec. 79.

Revuz, D. "Markov Chains”, North Holland Publishing, 1975.
Randell, B., Lee, P.A. and Treleaven, P.C., "Reliability Issues in
Computing system Design”, Computing Surveys, Vol. 10, No. 2,
June 78.

Ross, S.M., "Applied Probability Models with Optimization
Applications”, Holden-Day, San Fransisco, 1970.

215



RSH 79|

[SEE 79]

[STO 77]

[TWE 74)

[WAL 80

Rao, G.S., Stone, H.S. and Hu, T.C., "Assignment of Tasks in a
Distributed Processor System with Limited Memory®, IEEE.
Tran. on Computers, Vol. C-28, No. 4, April 79.

Seethalakshmi, M., "Performance Analysis of Distributed
Simulation”, M.S. Report, 1979, Dept. of Computer Science,
University of Texas at Austin.

Stone, H.S.,"Multiprocessor Scheduling with the Aid of Network
Flow Algorithms”IEEE Trans. on Software Engineering, Vol.
SE-3, No. 1, Jan. 1977, pp. 85-63.

Tweedie, R.L., "Sufficient Conditions for Ergodicity and
Recurrence of Markov Chains on a General State Space”, Stoch.
Processes and Their Applications, 3, 1975, pp. 385-403.

Wall, D.W., "Mechanisms for Broadcast and Selective Broadcast”,
PhD. thesis, Stanford University, Tech. Report No. 190, June
1980.

216



APPENDIX A

Recall that in the analysis of chapter 4, a cycle of operation was defined as

the interval between the completion times of two consecutive rollback

operations.
That is
a =8 -
= the length of the n-th cycle (real time)
where

t,° = the real time at which the n-th rollback operation ends

We further defined the following variables

X,

. = useful simulation time advance during the n-th cycle

X(t) = useful simulation time at time ¢
|A,| = the difference in simulation time of the two processors at {,°

t.b = real time at which the n-th roilback begins

and the speedup was defined as

px lim}—((-t-)-

=00 t

where the constant of proportionality is the simulation rate, -';'T-

In what follows, a proof is presented that

. X(8) ElX
!111:!310 t  E|Y)]

when the two expected values exist and are finite.

(Al)
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Note that the above is not obvious, since {X,,n>1} are dependent random
variables. The same applies to {Y,,n>1}. Both variables depend on the
simulation time difference of the processors at f,_,*i.e. |A,_;|, which in turn
depends on Y,_,.

PROOF

The proof consists of two parts. First, we need to prove that the processes
{X,} and {Y,} are ergodic processes. Next, the ergodic theorem for stationary

processes is used to prove the equality (Al).

Part 1
According to chapter 4,

Yn = Yls + Y2a

where Y, is distributed exponentially with mean ;l;’- and Y,,, the real time

to perform rollback, is a function of |A,_;|. Hence, Y, is a function of |A,_,].
Similarly, X,, the useful simulation time during Y, is a function of |4, |
Therefore, the proof for ergodicity of processes X, and Y, reduces to the proof
for ergodicity of |4,].

{|A,],n>1} is a homogeneous markov process defined at points ¢,° and the
random variables A_ are in R* {R™). Note that we only consider the absolute
value of the time difference. Hence', the conditional value 4 is always non-

negative. Let
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p(é,A) = pl(G’A) = Pl’{lA,l GA“An—lI = 6}
be the transition probability of the process.

To show that |A,| is ergodic, we need to prove that

(i) {A&,| is @-irreducible [ATN 78}, [DOO 53|, [HAR 52|, [ORE 71),
[REV 75). i.e.there is a o-finite measure ¢ such that for any A
with ©(A4) >0,

p™(6,A) = Pr{|A,|€A]|Ag|=08} >0 foranyéinR*

(ii) |A,]| satisfies the following theorem by Tweedie [TWE 75].

Theorem Let {X,} be a ¢-irreducible Markov chain on a
topological space (X,F) If {p(x,.)} is strongly continuous, a
sufficient condition for X to be ergodic is the existence of a K €

X and a non-negative measurable function g on X such that
(a) [r(z.dy)e(y)<g(z)-1, znotmK
X
(6) folz,dy)gly)=M2)<B<o forz € K and fized B
X

A transition probability p(x,.) is strongly continuous if for every A € F, p(x,A)

is a continuous function in X.

(1) Irreducibility

The transition probability in this case is
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p(6,4) = PAS u € A}
1l

where u; is iid. exponential with rate X\ and n is the number of poisson arrivals

in an interval of length r\p|C; + 8| and C, has distribution )\\/172 e MVPRlY|
P

The irreducibility condition, therefore holds.

(i) Posilive recurrence

To prove the positive recurrence, we need to prove that the conditions of the
above theorem holds. The stropg continuity of the transition probability
-follows from its definition. We therefore need to prove that a set K and a

measurable function g{.) exists, such that the conditions are true.
Let g{y)=y, then

[ p(6,dy)y = EJ[A,] |A,.\|="¢]
R"‘

e VPZs
AVpl2 |
where the last equality follows from (16) of chapter 4.

=r{é6 +

<ré + -
A/pl2
Now, the condition (a) of the theorem holds if
ré+ ——<6-1

A2 =

i.e. if
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5> IIAVPZ o
A/pl2(1-r)

Taking K = {6:6< }, condition (a) of theorem holds.

S A
= Ap/2(1-r)

Also
1
AL + —=
BIAISAS + =)
1+)/p/2 Jorb € K

< bre
(1-r)\/p/2
Letting B to be the RHS of the above inequality, the condition of (b) also

holds. This completes the proof that the |A,|-process is ergodic and hence
|A,|—|A| in distribution as n—oco. Furthermore, the distribution is finite.

Consequently, the Y, and X, processes are also ergodic.

Part 2

Given that Y, and X, are ergodic, it is shown that

X EX
e =AY

We have
X(‘u(:))SX(t)SX“a(t)ﬂ)
where
n(t) = sup{n:t * <t}
then
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X“u(t)) tn(t) < X(¢t) < x“n(t)-'bl)

tn(t) tu(¢)+l- t = tn(t)
Letting £—oc0,

t—oo ¢ A—00 t-’
"
pIP.¢
yom]

Tl

Un3 X,
(Ll |

Uny Y,

(=]

Using the ergodic theorem for stationary processes,

i — Ex
lim RHS = 7

and the proof is complete.
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APPENDIX B

1. Convergence

This is a proof for the convergence of the infinite sum in chapter 5, equation

(13). We have

m+
x (m+n) | 1-p
ME—O n§l min! [2 ]
and
ElL)| = —

where I is the length of the interval. Let

[

Consider the two inner summations, and let

°° (m-l'n}
min!

The sum =
m—o s—l

"o & (i) 1
X )

_A

m l—l ' ‘I[I]H'j
1—01—0 '11' 2

=i+j

Then

"' " = '+ [ ] Wh_l i [ ] with equality if m=n=00

.-o ;-o ’=-° J"“(k"’)'ﬁ

=m+n
Therefore,
The sum < § f:“"*‘") (m*n) [l—p]m-“
= 2 = m!n! 2

Similarly, let
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=m+n,

then

\ k&
K 1-p
The sum < E E:k (k-n)'n'[ 2 |

bam] gom]

o [1- d | k! (1)’
= k§| [_22] -‘;;[..Z-:l(k'")!"! \l;] ]
=i _p] Merm ((l—p)"-I]

= (1) -T;é( 1-p)*

=) 5 dp ra

P2
The RHS is finite as long as p£0 , so "The sum"” is converging for non-zero

values of p, the interaction probability. Hence

A< {1-p}
= 2pp
and

1
I = —A
ETh] o
> (4=0)
pus
Asp-> 0, E[f}] — oo as is expected. Also E[/}| = i when p=1. i.e. [; is the

real time to simulate one event when p=1.
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2. Upper Bound on the Error

The following is the computation for an upper bound on the error resulted

from computing a finite sum for A .

Let M and N be the upper limits in the computation of & for the two infinite

sums. Then
o0 0 M N 00 N oo 00
Yy Y=Y ¥+ ¥ Y¥+yi ¥
Mend) 1=l Ml o] maeM+1l newl mel) nm=N+1

The error is the sum of the last two terms, ie.

o0 oQ

o) N
error = Y, Y X

mapf+] nemi me=l) namN+]
0 o 00

<y T+2 3

me=M+]l 4wl mmd peaN+1

Taking M and N to be equal, then

o0 o
error<2 Y Y
mamM+1 ned

Therefore, the error introduced in A is

© 2 (m+a) |1
S s P

B ona M1 u—ﬂ

s_p_ § 5‘5 (m+n)(m+n)! [l—p]

B mauif+] nal) min! 2

k
ok kM l—p]
<2

# k—%*-l n§0(k n)in! [ 2

_2|lpld ], D (it
—F‘[ 2 ]‘f?[2k-§:{+l(l p)]
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_p] dp[ 1 :(1-2]“"")]

-2 [‘-P]T‘,[”iﬂﬂl

= L (1p) (M1l 1-p)M+(1-p)M*!
H 4
Now, depending on p, we need to select an M such that the term on the RHS

is smaller than the accepted error.
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