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Abstract: A polling system is one which econtsins a number of quenes served in cyclic order. This is a
tutorial in which polling systems are analyzed to evaluate basic performaace measures such as the average
queue jength and average waiting time. Following a taxonomy of models with reference to previous work,
we consider (i) one-message buffer sustems, and (ii) inBinite buffer systems with exhaustive, gated and lim-
ited service disciplines. Some examples to which the analysis of polling systems is applied are drawn from

the feld of computer communication networks.
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1 Introduction

Polling is a way of multiple#ing the service requests by several users
in cyclic order with generally nonzero switch-over times. The polling scheme
has been employed in computer-terminal communication systems; it is imp le-
mented in standard data link protocols such as BSC, SDLC and HDLC. From a view-

point of queueing theory, it is a multiple queue, cyclic service system whose

congestion analysis has been the subject of many papers. TIts analysis is now
finding a new application in the local-area computer networks (e.g., token ring).
This monograph presents a reconstruction of the analysis for some types of poll-
ing system which has appeared by now in scattered publication. Our intent is to
derive the basic performance measures (such as the average message delay)
straightforward by skipping unnecessary (for our purpose) complicationms in

the past literature. We also compare and contrast the models we ccrsider

from a unified approach.

To unify the terminology, let us call a user requesting service a station,
and the time needed to switch service from one user to another a reply inter-
val. The entity for service may be a variable-~length message or a fixed-length
packet. (A message can be viewed as consisting of several packets.) When
all the statistical specifications on the message length, message arrival
process and reply interval are the same for all stations, we call the system

as the case of (statistically) identical stations; otherwise we have the case

of nonidentical stations. The time may be continuous or discrete: in the

latter case, we choose the packet service time as the {fixed-length) slot
size, and let it be the unit of time. Throughout the monograph, we denote by

N the number of stations. See Figure 1 for a schematic view of our model.
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Figure 1. Polling system.



We now delineate a group of polling system models with reference to
associated past work. (We do not aim at a complete list of references.) Our
first classification is with respect to the buffer capacity at each station.
We have (i) one-message buffer system, (ii) infinite buffer system, and (iii)

generally finite buffer system (which has not been studied very much).

In one-message buffer system, at most one outstanding message can be

stored at each station. We may think of this system as either such that
messages arriving at a station to find the buffer occupied are lost, or such
that new messages are generated at each station only after the service comple-
tion of the previous message. Analysis of the one-message buffer system can
be found in {Bhar60,Sec.9.4D], [Hash8la], [Raye72], (Mack57a), [Mack57b] and

[Scho78]. -

In the infinite buffer system, any number of messages or packets can be

stored without loss. Here, three types of service discipline have been con-
sidered: (a) exhaustive service, (b) gated service, and (c) limited service.

In the exhaustive service discipline, .the server serves each station until its

buffer is emptied. Messages or packets arriving at a station currently in
service are also served in the same service period. Such a discipline with

zero reply intervals has been called an alternating priority discipline in

the queueing theory. Early analysis for this case (zero reply interval) in-
volving two stations (N=2) is in [Avib65] and {Takacé8] (see also [Conw67,Sec.
9-2] and [Stid72]). The case of an arbitrary ﬁumber of statioms with zero
reply interval is analyzed in [Coop69], and (Coop70] (see also [Coop8l, Sec.
5.13)]). These all assume a continuous—time model with Poisson arrival of

messages. The exhaustive service with nonzero reply interval for the case N=2



ls studied in [Syke70] and [Eise7l). (Their assumptions on the behavior of

the server when both stations are empty are different; in [Syke70] the server

keeps switching, while in [Eise7l] it remains stationary.) The analysis of
exhaustive service systems with an arbitrary N and nonzero reply interval is
available in [Eise72}, [Hash72] and {Humb78,Sec.7D] (continuous-time, nonidentical
stations), in [Konh74) (discrete-time, identical stations), and in [Swar80], [DeMo81]
and [Rubi83] (discrete-time, nonidentical stations). Note that the case N=1 is a

queueing system with the server going on vacation [Coop8l,Prob.5.12].

In the gated service discipline, the server serves a station for only

those messages or packets which are in the station when it is polled. Those
messages or packets which arrive during the service time are set aside to be
served at the next polling. The gated service system of N identical stations
with zero reply intervals is considered in {Coop69}, [Coop70] and [Coop8l,
Sec.5.13]. An early approximate treatment for the case of nonzero reply
interval was in [Leib6l] and [Leib62]. Exact an#lyses of gated service

model with an arbitary number of nonidentical stations and nonzero reply
interval are given in [Hash70], [Hash72] and [Humb78,Sec.7C] (continuous-time),

and [DeMo8l) and [Rubi83] (discrete-time).

In the limited service system, a station is served until either 1) the

buffer is emptied, or 2) the first specified number of messages or packets are

scrved, whichever occurs first. Analysis of this system for the case where
N=! and at most one message is served from each station at a time with zero
reply interval is in [Eise79] (some steps in the solution remain to be proven),

where the term alternating service discipline is used; see also [Cohe83].




A‘similar system with nonzero reply interval is considered in [Iisaﬂlaj and
{Boxm84]. The mean message waiting time for an identical N station case with
nonzero reply interval where at most one message i3 served from each station
at a time is available in {Nomu78]. Approximate analysis for nonidentical N
station case is in [Kueh79] and (Kuro8l]. Another approximate treatment for
a system of N stations with zero reply interval where at most ki packets are
served from each station i is in [Konh76) where the term chaining is intro-
duced. Other papers [1isa80] and [Iisa8lb] also deal with a system of N non-
identical stations with nonzero reply interval where at most k messages are

served.

For a survey of a broader class of multiplexing systems including polling,
see [Chu72!, [Koba77] and [Konh80]). Polling systems are also referred to in

such survey articles on data communication systems as [Haye81] and [Reisc2].

The following chapters of this monograph are organized as follows.
Chapter 2 first presents analysis for a continuous-time, one-message buffer
system with general reply intervals (my own contribution), followed by a
separate analysis for the case of constant parameters (rehashment of work in
[Bhar60], [Kave 72], [Mack57al,[Scho78], and (Hash8lal). Chapters 3 through 5
provide a unified presentation of the analysis for infinite buffer systems
with exhaustive and gated service. 1In Chapter 3 we show a detailed procedure
of derivation for an exhaustive-service, discrete-time system (reconstruction
of ideas in [Hash72], (Konh74], [Swar80), {DeMo81], and [Rubi83]). Chapter 4
deals with the continuous-time version of the exhaustive service system, but
additionally introduces a recentc developmént in {Ferg84]). In Chapter 5, we

consider the gated service svstems in both discrete and continucus time



framework.

Chapter 6 considers limited service systems following the approach in
(Nomu78], [Iisa80) and [Iisa8lb] along with my contribution [Takag84]. In
Chapter 7, we mostly reproduce work in [Coop69], {Coop70] and [Coop8l] for
the systems with zero reply intervals. Capitalizing on the results in preced-
ing chapters, we have made some simplification, Chapter 8 provides several
examples to which the analysis of polling systems has been applied. It
includes (i) roll-call and hub polling schemes in data link networks [Schw77,
Chap.12], (ii) polling in packet radio system [Toba76], (iii) MSAP (Mini-Slotted
Alternating Priorities) channel access protocol [Scho80], (iv) UBS-RR (Uni-
directional Broadcast System~Round Robin) and Expressnet [Toba83a], and (v)
token passing in ring and bus networks (Bux81] and [Rubi83]. We conclude in
Chapter 9 by summarizing the state~cf-the-art and suggesting possible Zuture
research topics. Appendices A and B show the derivation and solution of a
set of linear equations for the exhaustive-service, discrete-time system
cousidered in Chapter 3. Similar presentations for other systems are found
in [Hash72], [DeMo81] and [Rubi83]. Appendix C derives some equations

in Chapter 4.



2 One-Message Buffer System

We consider a continuous-time polling system where each station can
have at most one outstanding message; i.e., those messages which arrive at
a station to find the buffer full are lost. Further, we assume an in-
dependent Poisson arrival at each station. Thus, our system can also be
thought of such that each station generates a new message with an
exponentially distributed time only after a previous message is completed
service. Yet another view is provided by comparing our system to a machine
repair system such that a repairman walks from machine to machine in an
ordered fashion fixing broken machines. Here, the message arrival and
its service correspond to the machine stoppage and its repair, respectively.
Note that our system would be an M/G/1//N queueing system (a finite input

source model, or a machine interference model; see, e.g., [Saatb6l, Sec.l4-61)

Lf services were given in an FCFS order with zero reply intervals.

This chapter provides an analysis for a one-message buffer polling
system consisting of ;tatistically identical stations where the reply inter-
vals and messagerservice times are generally distributed. Our major perform-
4nce medsure Ls the mean message response time (the average time that an
arbitrary message takes from its arrival to service completion). 1In the
sequel, we define our system parameters and resulting performance measures.
We point out some incorrectness involved in the previous work. Then we
present our new analysis for the steady-state probability at the polling
instant. It is shown that the mean message response time is expressed in

terms of the probability that a message is found at the polling.

~1



Let us define our system specifically. We consider a system of N
stations (indexed as i = 1, 2, ... , N} served by a single server. Each
station, with a single-message buffer, has an independent Poisson arrival
stream of messages witharate \ messages/second (identical for all statioms).
As said before, those messages which arrive to find the buffer full are
lost. A message is removed from the buéfer when its service is completed.
Let B(x) be the distribution function for the service time of each message
(again identical for all stations). Also, let B*(s) be the LST (Laplace-
Stieltjes transform) of B(x), and b be the mean message service time. The
server inspects the stations in the indexed order (station 1 is inspected
after station N) and administers service to queued messages if any. Let

'R(xj be the distribution function for the reply interval from one station
to another (once again, identical for all stations). Also, let R*(s) be
the LST of R(x), and r be the mean reply interval. These are the para-
meters given to our system. Note that all stations are statistically
identical; i.e., we have a symmetric system.

2.1 Performance Measures

We define a polling cvcle as the time interval beginning at the pol-

iing instant of station | and ending wicth the completion of the reply

interval from station N to station 1. However, if we consider the buffer
---<4Ci0on states at all stacionms as the system state, the start of each

>.ling cyele (i.e., the instant when station 1 is polled) is not a

-- uhccation point of the svystem state. Time peints when station ! is

vulied and all buffers are empty are regeneration peints. We call the



time interval between two such successive regeneration points a regenerative

cycle. See, e.g., [Heym82, Chap.6] for the discussion of regenerative

processes.

Let M be the number of polling cycles in a regenerative cycle, and
Chr»m =1, ..., M, be the duration of the m th polling cycle in a regenera-

tive cycle. The mean (polling) cycle time E[C] is defined by

¥
m;lcm ]

E{M]

Ef
E[C] =

(2.1a)

Similarly, the mean number of messages served in a polling cycle, E[Q],
is defined by
M
El _Z.Q. 1
n=1"m
E[Q] = ——n
E(M]
{(2.1b)
where Uy is the number of messages served in the m th pelling cvcle in a

regeneracive cycle. E[Q] can be related ro +, the probability that a message

i3 found at the polling as follows:

Elnumber of messases served in a regenerative cvcle]
E(number of staticns polled in a regenerative cycle]

| ‘
Bl L% | E[O

N E[M] N




We proceed to derive the relationship between E[C] and E[Q]. Note
that C; consists of the sum of the reply intervals in the m th pelling cycle
(Rm) and the sum of message service times in the same cycle (Bm). Thus
we have

M M M M
E[ £;Cm] = E[_L,(Rp + Bp)] = E[ Z;Rm] + E[_Z,Bnl (2.9

However, since M is clearlyv a stopping time for Ry, R2s ..., with E[(M] < =,

it follows from Wald's lemma (see [Heym82, Chap.6}) that

M
I.Rpl = E{M] E{R)] = ~r E[M] (2.4a)

By definition, we must- have

o

o !
syl B Bl
|
E(£,Q] ElQ] E[M] (2.4b)

Using (2.4a) and (2.4b) in (2.3), we have

!

El_zCnl = Nr EIM] + bE[Q] E[M] (2.5a)

‘hus, from (2.la) we get
Z[€] = Sr + BE[Q] = N(r + bw) (2.5b)

A perfcrmance measure for our system is the mean message response

time for the messages which are not lost upon arrival, which we denote bv

10



E{T]. We now express E[T] in terms of E[Q]. Note that the buffer state of
each station alternates between the 'empty' state of mean duration 1/} and
the 'full’ state of mean duration E[T]. Thus, the rate of the messages
served in the whole system, i.e., the throughput of the system (denoted

by v), is given by

N

Y I+ (2.6a)

On the other hand, the throughput must be equal to the mean number of messages
served per unit time:
M
E E
[,£%]  ElQ]

y = - (2.6b)
E(C]

M
;

E[m lcm}

Thus we have

_ Lo, N
E[T] = Nb - -+ ET0) (2.7

Another interesting performance measure may be the probability of
message loss, Py, when we assume that the messages arriving at nonempty
stations are lost. Due to the Poisson arrival, this loss probability is
equal to the long-run average fraction of time that the buffer of a station
is full:

E(T

PL S BT 4 17 (2.8)

Using Py, we have

11l



Y = AN(L - P) (2.6c)

which implies that the throughput ¥ is the fraction 1 - Pr of the total

message arrival rate AN,

From Little's result applied to those messages which are not lost upon
arrival, the mean number of messages in system at an arbitrary time,

E(¥], is given by
E(N] = YE(T] = ¥p, (2.9a)

or, more explicitly,

j N(1/Y) g
E{SI] =N - E[T]+l/‘ =N - :'t(!_'+bCl) (2-9b)

where the second terms on the central and right-hand sides of cthis equation
represent the mean number of emptyvy stations. The result Py = E[R]/N is

expected from the Poisson arrival. property at each station,

*
Note that, in the limit of zero reply intervals (i.e., R (s) = L,

717] should be identical to the mean response time for the corresponding
FCFS M/G/L//N queue (machine repairman model) given in [Saat6l, Sec.l4=5]

ilZed us L. Takdcs' solution):

. L 1
B .= Nb - =+
MG/ b -3 i N-l g g 0, -1 ]
M1+ I (%) T (B (3r)] T - 1}
L nal o0 Cjag (B )

(2.10)

12



This claim comes from the following reasoning. First, for both cyclic and
FCFS service systems, we have 'the same arrival process (namely, the pseudo-
Poisson arrival such that the state-dependent arrival rate is (N-1i)) when i
stations are nonempty). Although the service disciplines with which the
server selects a station to serve are different, the statistical character~
istic of the message service time does not depend on the selected station.
Thus, the behavior of unfinished work in both systems should be statistical-
ly identical. It follows from Little's principle that the mean message

response times are the same for both systems.

2.2 Survey of Previous Work
We now give a short survey of related previous work. Mack, Murphy
and Webb {Mack57a] considered a system (in the context of machine repair-
man model) of constant reply interval (ry for station i) and constant
message service time (b). They obtained an expression for the mean number
of messages served in a cvcle of polling as (when r;=r for all i)
¥-1 w1 2 ro ! (NTHib) _

NI ()
n=0 " =0

L]

TElQ) e

N n-1 . (Nr+jb) 5
L+ 2 (YY) e - 1] (2.11)

a=l " j;O
They also showed the relation in (2.3b). Later, Scholl and Potier [Scho78]
used (2.7) to obtain the mean message response time. Note that, in the
limic of zero reply intervals (i.e., r - 0), (2.7) with (2.11) reduces
to (2.10) with B*(s) = e-Sb. For the same model, Kave [Kaye72] found the
distribution for the message waiting time. (His expression for the mean
waiting time can be .-‘.ho:m.:-- Se equal to (2.7) with (2.11) minus b.)

See Section 2.3 {for detaiis.
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Mack {Mack57b] considered a case where the reply interval 1s constant
and the message service times are variable. He derived a system of ZN-l
linear equations to find E[C]. However, he did not derive the mean response time.

Bharucha-Reid [Bhar60,Sec.9.4D] also dealt with the case of constant reply interval

(r) and generally distributed message service time, and showed

N-1 n- o AN
P I A R
E(Q] = : -
N (0=l ANe, * ]
SREUT LG (B (M)]°-1 (2.12)
®” wa
(This reduces to {(2.1l) when B (s) = e Sb.) Hashida and Kawashima [Hash8la]

derived a similar expression for the mean number of messages served in an
intervisit time (defined as the time interval beginning with the start of
the reply interval from station 1 to station 2 and ending with completion

of the reply interval from station N to station 1).

We should note, however, that if we calculate the mean message
response time with (2.7) and (2.12) and take the limit of zero reply inter-
val (i.e., t = 0), we do not get the limiting from in (2.10). Thus, the
analyses in [Bhar60, Sec.9.4D] and {Hash8la] seemto be wrong. The incer-
rectrness seems to come from their using B*(\) as the probability of nc
irrivals during each message service time in evaluating the probability of
buffer occupancy which the last N inspections have encountered. However,
tor example, if we find a message at station N - 1 and no message at
étation N, the service time at station N = 1 must have been ''smaller'" than
wnat B*(s) would imply. Thus we cannot use B*(A) uniformly. This error

is pointed out more formally in [Coff84].

la



Our conclusion in this brief survey of previcus work is that the
mean message response time in the case of general R*(s) and B*(s) is not
available. In the next section, we present a new analysis (taking into
account the conditional distribution of the message length and reply
interval) to give o, from which all performance measures can be calculated

as shown in Sectiom 2.1.

2.3 State Probability at Polling Instants
We begin our analysis by defining the state of station i, denoted

by v as

il

j 0 buffer of station i is full
Vi ¥
[ 1 buffer of station I is empty

i=1,2, ..., N (2.13)

Ubviously the system state (vis Vo, oo, vN) at each polling instant

forms a Markov chain. Let pi(vl, Vos cees VV) be the bprobability that

the state of statiom j is Vi (j =1, 2, ..., N) at the instant when
station 1 is polied. We are going to express Pi+l(vl’ Vs veey VV) in
terms of pi(vl, Yy eeny VV) and the possible events happening between

the polling instants for stations i and i + 1, Since all the stations are

statistically identical, let us focus on station i = 1 below.

Since the duratieon of the interval between the polling instants for
station L and 2 is equal to a reply interval when vy = 1 (no message found),
and equal to a reply interval slus a message service time when vy = 0 (a
message found), we have tic I.llowing steady-state probabpility transition

egquation:



N
- v
z L., %sz(vl, Vos saey VN) jgl(zj) 3

= 23... ‘Z’Npl(l, Vs ssey VN)

AX -Ax Ax

N .
- - -Ax, Vj
< {(l-e +zle ) jL[z(l e THzge } © dR(x)

+ L éj aae éVpl(O, Vs eeey vN)

2[1-'-&".,‘.(x+y)+zje-.\(x+y) ]vj dR(X)dB(y)

(2.14)
Hereafter, the summation with respect to vy covers vy = 0 and 1 for ail j.

The range of integrals is always from 0 to ». We define the joint generat-

ing function for p,(v,, v,, ..., v,) by
171 2 N

‘ N vs
, 53 \Zerl(vl’ Var wres V) ly(z) ]

I
<

A
Flvy; 29y 23y eeey zZy) =

v, = 0, 1 (2o15)

!

Then the right-hand side of (2,14) can be written as

JF(Ly 1-e ' 4 zze-Ax, «ve) dR(x)

~Ax + zze“Ax,...) dR(x)

+ (z; - 1) fe-AxF(l; l-e
- =i (x+y) =A{x+y)

+ [{F(0;1-e + z5e s +++) dR(x)dB(y)

+ (Zl - l)ffe-AxF(O;l—e—A(x+y) + zze—k(x+y)’ «..) dR(x)dB(y)

(2.16a)

In order to express the lefr-hand side of (2:}4) in terms of F, we note

from the symmetry among stations that

16



pz(vl, VZ’ s ruy VN) = pl(Vz, sy VN’ Vl)

for all values of (Vl, Voy esey VN). Thus the left-hand side of (2.14) may

be expressed as
F(Q; 23, «us, zy, 21) + zF(1; Z3s eey 2y, 27) (2.16b)

We further introduce f(vl, Vys eens vN) by

N v
. - _ j
F(vl, Zgy e, zN) 52 ves ng(vl, Vay sees vN)jgz(zj 1

(2.17)

Substituting this expression into (2.16a) and (2.16b), and equating the
coefficients of H(zjul)vj, we obtain a system of linear equations for

E(vl, Vos eees VN):

x N
E(L, O, va, wuuy vy) R [A(.Z.vi)]
3 N j=3 y

-
=

-

+ £(0, O oy R E *ine X
¥ X V3’ ey N) (J£3VJ)] B [ (_].53\’:;)]
= (0, Vs - Vi 0) + £(1, Vi ©s Yy Qy, (2.18a)
_ £ N
FL, 0, vy ey vy ROIML+ Do)
+ £(0, 0 R* A ¥ * A 3
£, 0, vy, vy vIR [A(L + jQBVj)] B[ (ngVj)]
= £(0, Vas seey vy, L) 4+ E(L, Vs eeey vy, L), (2.18b)
* 3
E(L, 1, T3s o sees V) RO[A(L 4+ j§3vj)]
% N * N
+ £(0, 1, Vi, eess vy) R O[A(1 + % vj)] B [+{1 + .E vj)]
i=3 j=3
= f(1, Vis eeey Yy, B, (2.18c)

17



,, N
£(1, 1, Vs eees vN) R {A(2 + j§3Vj)]

* N x N
* O, L, vy, e ) RO+ Twp] 8"+ Fe)]
= £(1, Vs sees Vi 1)
V3s Vg eeey vy = 0,1 (2.184d)

One of the equations in (2.18a-d) is redundant (namely, the case of vy = ...

= vy = 0 in (2.18a)). From the normalization condition

F(o; 1, ..., 1) + F(l; 1, ..., 1) = 1, (2.19a)
we have
£€0, 0, ..., O) + £CL, O, vv., 0) =1 (2.19b)

The probability that a message is found at polling is given by

@ = £(0, 0, ..., 0) = F(O; 1, ..., 1) = 52...5Npl(o, Vo ees V)

(2.20)

We have so far been unable to find an analytical solution to the abeve
system of equations for a general value of N. So the solution can be
obtained only numerically. For the cases of N = 2 and 3, however, we have

analytical solutions which give

r.r.b
17271
£(0,0) = I:?;:?;EI {2.21a)

2 . 2
l-r3+byrs=[r,(1-b )+r, by J{b,r; +bl[rl(1-r3)+b2(rlr3-r22)]}

£(0,0,0)= - 3 2
l—r3+b2r3-r2(l—bl)ib2r2 +bl[rl(l~r3)+b2(rlr3*r2 11}

(2.21b)

18



where

ey = R*(j_A)- and by = B'(§A) for § =1, 2, 3

(2.22)

* -
If we let R (5) = & st (constant reply interval) and take the limit r - O

in (2.21a,b), and use them in (2.7) with (2.2), then we recover (2.10).

In Figure 2, we plot E[T] in some cases where we see that our mean
response time approaches to that for the corresponding FCFS M/G/1//N model

given by (2.10).

2,4 Case of Constant Parameters

In this section, we assume that all messages are of the same length
b and the reply interval between station i and station i+l is also a
constant fi (i=1, 2, vv.y N). Let

74

cLa T
1

L Fi (2.23)

-1

Let us first derive the probability distribution for Q, the number
of messages served in a polling cvcle. Contrary to (2.13), we define the
state of each station uj as 1 and 0 depending on whether it has a message
or not. Let Tj(m)} be the polling instant for station i in the m th polling

cycle, and ?i(m) be the instant at which the reply interval between station

1 and sctation i+l starts. Ue denote by ui(m) the state of station i at
time t = T;(m) (i=l, 2, ..., N). Using the convention
(m) (m) (m) (m) (m=-1) (m=-1) (m-l))
Ul = (ul ' U.2 y ey ui ’ ui+1 ’ i+2 s meey UN y

19
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r=1.0

Figure 2. Mean message response time (comstant reply interval

and exponentially distributed message service time).
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we define Pi(m)(Ui(m)) as the probability that the server observes the

(m)

sequence U; for the states of N stations at their polled instants

(m)

prior to t = T,(m). Note that U1+l(m) only depends on Uy and what
happens between t = ?i(m) and t = Ti+l(m)' Therefore, a process {Ui(m)}

is a Markov chain with 2N distinct states in [O,l]N.

The state transition probabilities of this Markov chain are now
considered. Note that ui(m) is 0 (no message found) if and only if there

are no arrivals at station i after t = ?i(m-l). The probability of this

event is given by

exp{-\ﬁ-Ab(ui+l(""l)+ui+2(m’l)+ +uN("‘”1)+ul(“’)+u2(m)+ +ui_1(‘“))1 (2.24)
Since ui(m-l)_does not affect ui(m), we have the relation
(m) ,  (m) (m) (m=1) (m-1)
P (u1 s ey Mg , 1, Uiy yoeees Uy )
= leexp [~ R-ib(uggy T o r T @ wu ™1
1
- (m) (m) (m) (m-1) (m-1) (m=-1)
- Pi—l (ul vrees UL s 4y » Ui prees Uy ) (2.25a)
(m"l)_o
Ul =
(m),  (m) (m) {(m-1) (m-1)
P, (u1 »owees Uiy , @, Uit s seay U )
= expl=aBeintuy, TPe L e @ e ™)
i
- (m) ,  (m) {(m) {m=1) {m-1) (m-1)
z Pi-l (ul e ULy y Yy » Ui . y Uy Yy (2.25b)
,(m-l)_—.o



Consider now the limiting probability

Piluy, +ovy uy) # Limp, g W) (2.26)

m -~ =

1f we take the limit m - =, (2.25a) and (2.25b) become

- N
Pi(ul, cees Uy 1, Uspps coos uN)-{l-exp[-AR-kb(jgluj)];

(j#1)
1
'kéopi-l(ul’ ceen Ui_gs Ky Uipgs ==os uN) (2.27a)
- . ¥
Pi(ul! LELEL ] ui.‘-]., O’ ui+l’ ey UN)sexp[-)\R"b(j';luj)]
(3#1)
-1
-kgoPi_l(Ul, vy ui"l' k, ui"‘l’ sy UN) (2.27b)

[t can be confirmed by direct substitution that (2.27a) and (2.27b) are
satisfied by
Mz u1=...=un=0

Pi(ul, ceny uN) = {

[ I 14

-1
Pk luk _ N
f I01 3 -1} "
K 129 lexp [A(R+jb} ]-1; kEluk>0

(2.28a)

where K is a constant to be determined by the normalization condition

z y Pi(ul’ ceey ) =1

(U, «evy ug)€[0,1]° (2.28b)

Note that P;(uy, ..., uy) in (2.28a) is independent of i due to

symmetry in the system. Since Pi(up, +.., uy) is now expressed only in

N
terms of Q=k§luk, the number of messages served in a cycle, we have



—_
~
=]
]
o

P(a) ¢ P{Qen} =

k(D ;ﬁ;(e“i -1 a2l
(2.29a)
where
k1= 1+ n§1< ) ?j;(elti - 1) (2.29b)
Here we have introduced the notation
Ty =R + jb j=0, 1, 2, ... (2.30)

The average member of messages served in a cycle is given by

N N N o.n=l  xry
E[Ql= g P (=K LiaC ) To(e S -1 (2.31a) -

N N=-
By using n¢( n ) = N(:_i), this may be written as

N-1

E[QI=KN L,

N=1, % oty
D N ORI (2.31b)

Thus we get (2.11) if rj=r is assumed for all i. The probability that a

message is found at the polling, «, is given by (2.2), i.e.,

N-1 f n .
- BBl kg Th et - (2.32)

We proceed to find the distribution of the cycle length C in the

*
form of LST, C (s), of its distribution function. Since

_ XN
C=R+

L2 uib (2.33)

23



it follows that
* - =8C = N N -8Tp
¢ (s)=Efe | ]=E[exp{-s(R+i§1uib)}] ngoe P(n)

Using (2.29a) for P(n) in (2.34a), we have

R A - n=1
sR+ ( N Ye 8Tn "7

* -
C (s)=K[e n=l" n j=1

RS Y

[ [eg 374

from which the mean cycle time is computed as

E[C]=R + Kbngln( a ) j.__:O(e -1
- N=l y.i n AT
= hy ' o 3 -
R+ ¥kb 2 5 J.=0(e 1)

By (2.32), we have

E{C] = R + Nbu

which gives (2.3b) when tr{ = r for all i.

2.4,1 Waiting Time

(2.34a)

(2.34b)

(2.33a)

(2.35b)

We derive the distribution of message waiting time W (the period from

the time of arrival to the service start). Consider a tagged message

whose service is just being started in station, say, 1.

Suppose that n

messages (including the tagged message) are served in a cycle ending with

this service. The (arbitrarily chosen) tagged message falls in such a

cycle with probability

7(n) = —— P(n)

E{Q]

24
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(This comes from the reasoning that an arbitrary message falls in a longer
cycle with greatgr probability; seé, e.g., [Coop8l, Sec.2.1]). Conditioned
on the fact that our tagged message is the n th message served in the
cycle, it must have arrived sometime during the interval of length 1,4

before the service starts.

Let t be the arrival time of the message in the preceding cycle,

Then the conditional distribution of W is given by

[ Ple < thop - wl

_
I

Pi{W > win} = { Plt € 1qm

i

Lo w2 To] (2.37)

Since t is distributed exponentially with mean 1/%, we have
f _ -B\(Tn_l"'W)
L = — 0 <w« Ta-1
. 1 - «*Tn-1 - =

PiW > win; =

Lo w > To g (2.38a)

f e\ = 1 0« w< Ta-1
e A=l -7
PW_wn =1-PW W I =4
L1 w2 -l
(2.38b)
We now uncondition (2.38b) on n by using (2.36). Defining
n(w) ¥ (1 + (v - R )/b] (2.39)

o
w



we have

. n(w) n N ekw 1
P < = T . + b - . _n
{W W} nél L E[Q] P(n) n-n(W)+l e)\l—n..l -1 E[Q] P(n)
(2.40)
Using a recursive relation {(which comes from (2.29a))
P(n) - N=n+1 X.Tn_]_
P(n-1) " ( m ) (e 1) 1 <nmn<N (2.41)

we obtain the distribution function for W:

P{W < w) 1 W) Aw N .
& / T EQ] : - ) - -
ST ER asM P T e D e (DR (D)

(2.42)

The mean of W can be calculated from its conditional distribution in

(2.38a). The conditional mean is given by

T
Lo L (2.43a)

E{Win] = ng‘l PiW>w|nidw = v

1-e

(nconditioning this expression on n by using (2.36)y, and making use of ————— -

(2.41), we get

E(W] = £ N;l T eXT“(N-n)P(n) -1
E[{Q] n=0 'O A {2.43b)
However, this expression is shown to be identical to
L, SR
E[W] = (N = )b = = + = (2.443)
[¥] = (¥ = )b = =+ g7

26



To prove (2.44a), let us substitute (2.29a) into (2.43b) to have

N-1
[Re Py + L TneATn(N-n)K(

E(W]= E%Q] jHO(e I o1y --%
Y N-1 n-1
— AR - ATp N=1 AT 1
= [ ][Re + L R+ able" " i) jLIO(e 3oy -3
= W% N-l 5
L NR AR, i (N -1y ATy @ F (e i 1y

E(Q]

N-1 - n-1
NKb N-1, Atq "3 ATy 1
+ ETGT ngln( n Ye jso(e 1) =

However, we can show that

1 g 1 v T
-1 _ A v N-1 Tn Tj _
KZ=em+ o (0 ") e J_O( 1)
and
N-l \ -
- N=1 \Tn - j _ - ~
Knéln( 0 Je ( 1) (N Da

Substituting (2.453a} and (2.43b) into (2.44b), we get (2.44a).

(2.45a), we write the r.h.s. as

ry N=1 oy n . N=1 n. n-1
R+;(Nl)_(evj_l)+z('\ll
= n=l"' n

L%

N N=-1 . AT 3
= T * - -] J .
L+ qk1Ga-1? je0le L+ n==l( a3l IoCe b
N . . n-1
N=-1 N=1 - AT
= - J -
1+ nii[(n—l) + o 3 (e L)
N n-1
_ 2 N _ : R |
=L nEL( a ) J'='O(L ’ by =X

{2.44Db)

(2.43a)

(2.45b)

To prove



due to (2.29b). We can shown (2.45b) as

N=-1 n-1
N=-1. ATn )\TJ
REnC, ) e J.;fo(e 9]

n=] ‘n-1

N=1 N-2. a1n Ozl agy
= - n - J -
(N l)ngl(n_l) e jéo(e 1
N=l N-2. 0 gy N=1 N-2.0=1 )1
= - I J - I B .
=D T 1 e Do+ I G gt ]

j=0

N-1 N=2 N=2 ] AT
N- T L N T - \LJ -
WN=1) Eo( 1) + ( Q) j.=.O(e L)

N=1 N=1 0

W= Th S @y s (e
n=0 " n =0 . K

due to (2.32).

From (2.44a), we have the mean response time

i . Ll W

which yields (2.7) when ry = r for all i.

As a digression, let us compare our average response time given in
(2.46) in the limit R ~ 0 to the average response time in the M/D/L1//N
queue (or the machine interference model), Note that in the M/D/1//N
queue, the service is given to messages in the order of arrival, while in
the polling system the service is administered according to the cyclic

scan of stations,

We first consider the limit R + 0 in (2.46)., VNote that the expres-

sion for K-l in (2.29b) can be written as

28



-1 AR NN, Bl
KI=l+(em =D+ L) e - (2.47)

Thus, we have K -+ 1 as R +~ 0. Similarly, since the expression for E[Q] in

(2.31b) can be written as

AR Neln-1, Rar,
E[Q) = NK(e™™ - 1)[1 + £ (%) jIpte 1 - 1)

we have

N=1 _ n :
TR L G e WU AT ORS LISIPE (2.48)
o0 i3 n=l"n j=1
Using this limit in (2.46), we get -
r 1 !
E[T pOlllﬂg[E"O = b - T *+ N-=1 n -
ML+ s T on et L gy
n .
n=l i=1
(2.49)

* -
[t is clear that E[T]W/G/L//V in (2.10) with B (s) = e sb is identical to

2.4.2 Intervisit Time

The intervisit time for station i is defined as the time interval

between t = ?}(m) and t = “;(m+1). The probability that the server
observes a sequence of states (ui+l’ reey Uy, Uy, oeea, ui—l) during the

intervisit time is given bv the marginal distribution



1

-

I

1
{ KeAR
=
! _ N
(k#i)

from (2.28a).
N

Therefore, the distributicn of the number

Gaps e )

u,= ...=ui_l=ui+l=...=uN= 0
§
PO -l
ka1 K .
(k#i)rT AT t
AU R R
(k#1)

(2.50)

of messages served

in an intervisit cime, Q' = k;l ug , is given by
(k#1)
! KeAR n=290
P'(n) = P{Q'=n’ = { L
— 0= AT
Ck(ThHeY T M Ly 1 ca < onel
L n j=0 - -

The normalization for (2.31) is provided by (2.45a).

*
The LST I (s) for the duration of an intervisit time

I is obtained

from (2.31). Since
R+ ? (2.5
I R + kél ukb ' 032)
(k#1i)
we have
* -sl = 3 -1 gt c
I (s)=Efe 1=E[=exp -s(R+ kglukb)}]=n§0e 0p*(n) (2.53a)

(k#i)

Using (2.31) we get

30



@\ - 1] (2.53b)

®  N-l g - n=1
I*(s)=K[e()\—s)R N l) e(} s)T

n
+ ngl( n jEO

from which the mean intervisit time is given by

- N-1 - n-1 :
e1) =R+ I nh Ml (AT oy (2.54a)

By use of (2.45b), however, this reduces to
E[L}] = R + (N-1)bo (2.54b)
From (2.32) and (2.53b), it can be shown that
*°
@l (2.553)

wnich implies the fact that a message is found at the polling when there
is an arrival during the intervisit time. As a matter of fact, (2.55a)

means

——

N=1 n P
;. \‘-l - (e \J - ]_)

K &g 40 520
. Nzloy-1, n=l -, 5 55
= 1 - K[l + nEl( a } J,,__,O(e 1 - 11 (2.55b)

The l.n.s. is equal to (by replacing n by n-1)

N-1, n=l -y
i
1 (aet? juo (© b

Hr-1%%

K
n

Using (x;1) * (7)) = () and (2.29b), it is clear chat (2.35b) holds.

%
Lastly we express the LST W (s) of the waiting time distribution

*
function in terms of [ {(s). Let w(y) be the pdf for the waiting time.

il



The waiting time is y when there is an arrival at time t-y after the

start of the intervisit time whose durationm is t. Thus,

2xe 2 ) 41 (o)
¥
[s =]

wiy) = - =
[ (-e ') dI(e) (2.56a)

where I(t) is the distribution function of the intervisit time.

The denominator of (2.56a) is the probability of arrival in the intervisit
time, and equal to l—I*(\)=a. The Laplace transform of the numerator of
(2.36a) is

=

foe-sdef 2e M) v ey - gwe"StdI(t)gtAe'(A'S)(t'Y)dy
y

* *
AL (s) = I (M)

- A Pemst =it .
= h—g ¢ (e e 3dI(e) N
Thus we have
* () - 1]
Wis) = 2itel = LG |
(=s)[L - 1 (%)] (2.56b)

From (2.56b), the mean waiting time is given by

E[I]

A

E[W] =

4
D (2.57)

From (2.54b) and (2.37), we recover (2.44a).
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3 Exhaustive-Service, Discrete-Time System

We consider a discrete-time, exhaustive-service polling system where
each station has an infinite buffer capacity to store outstanding packets.
The time is slotted with slot size equal to the service time of a fixed-
length packet, and is measured by slots. We call the time interval [t, t+1]

the t th slot.

The packet arrival process at each station is assumed to be independent

of those at other stations. Let
Xi(t) 4 number of packets arriving at station i in the t th slot

For each i, {xi(t); t =0, 1,2, ...} is assumed to be an independent and
identically distributed sequence of random variables. The GF, mean and vari-

ance of Xi(t) are given by

zxi(t)]

P.(z) & Ef
i

o=

: - p (1)
44 E[Xi(t)] B.O0(D)

L2 (2)

L varix (01 = e, Py o pi(') (1192

(1) - [P. (3.1)
1

We assume that N stations are polled in the order of their indices

L=1,2, ..., N. A polling cycle is defined as the time interval beginning

at the polling instant of station 1 and ending with the completion of reply
interval from station N to station 1. Let us denote by v;(m) the polling
instant of station i in the o th cyele, and by ?i(m) the instant when the
reply interval between station i and station i + 1 starrs. 1In other words,

1f there is any outstanding scrvice request at station i at time ¢t = ri(m),

the difference ?i(m) - Ti(m) represents the time to serve station i. If
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there is no cutstanding request, then ;i(m) = ri(m).

Using these notations, we have ri+l(m) - ?i(m) = length of reply inter-.
val between station i and station i + 1 in the m th eycle. For each i, it is
assumed that {ti+l{m)-¥i(m) ; m=1, 2, ...} is a sequence of independent
and identically distributed random variables. The GF, mean and variance of

Ti+l(m) - ri(m) are given by

T, (@- T (m)
. i+l i . _ = _ (1)
Ri(z) s Efz ] ri o E[ri+l(m) ri(m)] = Ri {1
2 - (2) (1) (1)
haverls - T @) - e P e v V) - kgt g

3.1 Bulk Arrival Process

In the above, the arrival process at each station is defined in terms of
the number of (fixed-size) packets. However, one mav think of the-case where
each station gets arrivals of variable-length messages such that each message

consists of several packets. To consider such a case, let
Ii(t) = number of messages arrivimg at station i in the t th slor
o o number of packets included in a message at station 1

{xi(t)} and {Si} are assumed to be mutually independent. Define the GF and

the moments of these random variables as

x, (e) (1)
A.(z) 3 E[z ¢ Elx. (e} =a." (D)
1 = 1 1

]

e -

3]

fle==

var[a, (£)] = .1..(2)(1) + A.(T)(1) - faA (
1 L L

P (3.3)



and

8 (1)
B.(z) A E[z 7] b. A E[B.] =B, (1)
1N . 1L i 1

(2) 2 (2) (1)
bs gE[{Bi} } = B, (1) + B () (3.4)

Note that Bi(O) = 0 by definition.

The distribution for the number of packets arriving at station i in a

slot is then given by the compound distribution

P.(z) = A.[B,(2)] (3.5a)
i it7i

from which we get the relationship

2 (3.5b)

.y and 0.2.
i

In the following, all analysis is carried out in terms of Pi(z), My

dowever, by use of (3.5a) and (3.5b), one can readily convert the results
into the form expressed in terms of message-related notation. On the other

hand, one has only to let BL(Z) = z (which implies that bi = bi(Z) =1,

)

A, (z) =P, (2), *. =_, and ..~ = 5.2) when he wants to change the message-
i i i i i i

related notation to the packet-related notation.

Let us now call all the packets arriving at each station in a slot a
supermessage. In any slot, a supermessage does not arrive at station i with

probability PL(O)’ and arrives with probability 1 - Pi(O) (Bernoulli arrival

- .
process). We are interested in the position of an arbitrarily chosen packet

(called the tagged packet) within a supermessage. Note that this is the



delay from the instant when the first packet in the supermessage is started

service to the instant when the service for our tagged packet is started.

For each i, let Mi be the number of packets included in a supermessage,
and Yi be the number of packets before the tagged packet within the super-

message. See Figure 3. Since the distribution for Mi is given by

.

P{Xi(t) = k-
PiM, = k; = ——————— k=1,2, ... (3.6a)
L t - P.(0)

we have the GF for Hi, Mi(z), as

p.(z) - P.(C)
M, (z) = = L (3.6b)
t 1 - Pi(O)

Note that Yi is the backward recurrence time in the (discrete-time) renewal

process where the interevent time distribution is given by (3.6a). Thus, the

distribution for Yi is given by

PiM, > k}
ply, = kb = —2 k=0, 1,2, ... (3.7)
E[Mi]

The GF far Yi, Yi(z), is now found as

i 1

@2 k 2 k @
Y.(z) = S PM, > klzh = a2, P{M., = j}
i E[M.] k=0 i EIM. ] k=0 J=ﬁ+1 i

1 1
: ]

1 = 1-1 1 1 -z

- Doei = jh 22t - £ PM, = j)
Elv] j=1  * . Ela,] 3701 -2 t
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or

1= M. (2) 1 - P.(z2)
Y, (2) = L - L (3.8a)
N ELM, 1 (1-2) 4, (1=2)

From (3.6b) and (3.8a), we get

Mi(Z)(l) Pi(Z)(l) PRI TREp

oy gD
1 1

E[Yi] = (3.8b)

(1) 2u,
i

This is the average packet delay within a supermessage.

We next concider the position of an arbitrarily chosen message {called
the tagged message)} within a supermessdge. We are interested in the number
of packets included in the messages before the tagged message within a super-
message, which we denote by Di' Note that Di is the delay in service from
the instant when the first packet in the supermessage 1s started service to
the instant when the service for Ehe tagged méssage ls started. See Figure

3.

To find the distribution of Di’ let Zi be the number of messages before
the tagged message within a supermessage. Recalling that xi(t) is the number

of messages in the supermessage, we have the distribution of Zi as

P{Z, = k} = —% =— pPla >k} w=0,1,2, .. (3.9
t Elx, (£)]
i i
Under the condition that Z. = k%, the GF for Di is given by {Bi(z)]k. Thus,

by unconditioning we have the GF for Di’ Di(Z)' as



- k
Di(Z) = kgo [Bi(Z)] P{Zi =k} (3.10a)

Substituting (3.9) and manipulating the expression in the same way as that
leads to (3.8a)}, we get
1 - Ai[Bi(z)]

D.(z) = (3.10p)
L A1 - B.(2)]
1 1

From (3.10b), the average delay for the tagged message within the supermessage

is given by

5(D,] = — i1 i (3.10¢)

[n Sectiom 3.6, we first find the mean waiting time for the supermes-
sage (denoted by E[Vi])' Then we have the mean packet waiting time (E[Ui])
and mean message waiting time (E[Wi]) by adding E[Yi] and E[Di]’ respectively,

to E(V.].
i

-

3.2 GCambler's Ruin Problem

[n this section, we study the gambler's ruin problem which is essen-

tially the busy period analysis for a discrete-time queueing system. Let us

consider a gambler who starts with an initial capital L. (> 0) and plays a

Q

sequence of independent and identical games. The gain on the n th game is

% from which is subtracted 1 playing fee of 1 unit. Define

n

Ly he : )
F(z) 2 E[2 Y], p(z) =Z(z™), .. Elx 1 <1, 74 Var[x 1 (3.11)
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If Ln denotes the remaining capital after the n th game, then

Ly =Lyt X +X, ...+ kK -n n o> (3.12)
The gambler's ruin occurs after the T th game where
T = min{n: L, = 0} (3.13)
= 0. See Figure 4 for a sample path of Ln Note that,

Note that T = 0 if LO
in the context of busy period analysis, T is the length of busy period begin-

aing with LO packets with arrival process given by P(z).

Let gk be the probability of the event {no ruin before the n th game,

and a capital equal to k after the n th game}. That is,

(3.14)

Bk " E{Lj >0 (0 <j<n), L =k}

This event can occur in any of the k + 1 (mutually exclusive) ways: {no ruin
before the (a - 1)st game, and a capital equal to j after the (n - 1)st game}

followed by fa gain of k = 7 + 1 on the n th game} (1 <) <k + 1), Thus,

k+1
= B i = -] = . =
gnsk’ _];1 gn-1,jp‘xn k 1+ I} n 1, 2, ik o, t, 2,
(3.15a)
and
8o, = Plly = K} (3.15b)
We introduce the GF's
G (z) ;,f g zk n=0,1,2, ...; G(z,w) A e (z)w" (3.16a)
= = n,k nzo n



*Uqy 3o yjed o1dues y

*h aandtyg
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Note that

g =G (@) =P{L, >0 (0 < j<n), L =0}=°PT=n!
n 1 - n
and so
= 3_0 ' o = = = S n = T
G(0,w) = oy G (0w = 0 P(T =aj = E[L] (3.16b)

is the GF for the ruin time T.

Let us express G(z,.) in terms of F(z), P(z) and G¢(0,.). To do.so,

first muleciply (3.15a) and (3.15b) by zk, and sum over k to obtain

k+1 . .
r k- [w Lo R -1 = ; i1 k=gl
= z RN =k= =.. : < PiX =k-j+l:
Gn(Z) LEOZ J=lgn-1,jp \n k=j+ts j=lgn-1,Jz k=J-1P Xn 3 z
[ . .
=5 G _, (2 G -1 (0VIP(2) n=1, 2,
and
E= I3 » -k
~ = = i = . =
uo(z) w20 80 k7 wzg Pily = kiz F(z)
Therefore

=0

Glz,) = Golz) + 2. G (20" = F(2) + 2 () 2 [G (z) - G (0)]u°
= n z n=0 o} n

n

= F(z) + ? P(z){G(z,.) - G(0,.)]

S
Solving the last equaticn for G(z,.), we get



zF(z) = wP(z)G(0,w)

Glz,w) = ' (3.17)
z - wp(z)

In (3.17), G(0,w) is unknown. We determine G(z,w) from (3.17) by an
appeal to the analytic property of G(z,w) within a unit circle |z] = 1 on
the z-plane. Let us use Rouche's theorem to show that there is a unique zero
for the function in the denominator of (3.17). Since P(z) is a GF, [P(2)| <1
for ;z, < 1. So, for each w, ,w, < 1, we have :wP(z); < 'z| on 2] =9,
Hence, by Rouche's theorem, the functions z and z - wP(z) have the same num-
ber of zeros within jz| = 1. Thus, there exists a unique root, z = Q(w), of

the equation z - wP(z) = 0 within ,z| = 1. That is,

ICe) = wP[2WY] =0 L)< (3.18a)
Note that 2(.) is the GF for the ruin time when LO = 1. From (3.18a), we
may find

, ' | P _
T O R e A eh 7+ ———
- (-1 (-
(3.18b)
From the analvticity of G{(z,.) within z = 1, the numerator of (3.17)

must also be zerc at z = I(.). So, by use of (3.18a),

0= S(DF[(] = P[]G0,
= S(OFIZD] = 10000, = 2(DIF(E()] - G(0,.) )
Since . < 1, (3.18a) implies .(.) = 0. (If 2(.) = 0, then P(0) = O which implies

-~ ~ 1.) Thus we have

[}
(9]
—
o
t
—

L}
1y

—
f
—_
~—

{3.19a)
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From (3.18b) and (3.19a), the mean and variance of the ruin time T are found
as
E{L.] Var(L,] GZEIL ]
0 0 0

E[T] = , Vvar(T] = 7 * 3 {3.19b)
t=u (1=-w) (1=-1)

Later we need the following formula:

«T=1 L _
E 2" = H2 -] (3.20a)
! z - P(z)
n=0
Proof. WNoting that T and Ln are random variables (and that Ln 2 1 for
n<T= 1), we have

(T=1 L i=1
E, 2 z" =

However, for k > 1,

< PiT=j, L =k} = P{T> =k} =
1 Ln PiT>n, Ln k g

j=n+1 n,k

Therefore,

TUL L . o "
E Zz = L Iz g, = ° G (z) - Gn(O)] = G(z,1l) - G(0,1)
“n=0 n=0 k=1 ** =0 °

From (3.19a), G(0,1) = F[2(1)] = F(1) = 1. Using (3.17) for G(z,1), we get

E(I:]ZLn\ - zE(2) - P(2) ., _  E(z) -1
[n:O ! z - Plz) z -~ P(z) 4

.e.d.
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Similarly, we also have

)
;) SR T (3.20b)

3.3 Number of Packets at Polling Instants

Our first analysis is for the number of packets found in each station

at the time when some station is polled. Let
Li(t) 4 number of packets at station i at time t

(this dees not include the arrivals in [t, t + 1]) and define the joint GF
for {L](t), L2(t)‘ v LV{t)] at time t = 'i(m), i.e., at the instant when

the server becomes availablie to station i by

Er g Lj(Ti(m))\

z,) | z. J
= A J

T W (3.21a)

Similarly, we define the marginal GF for Li(t) at time t = ri(m) by

Li('i(m))
£.lz) ; Elz | = F O ey 1z, 1, i, ) (3.21b)
where z is the 1 th argument in Fi(l, vy 1,z 1, Lo, D). We will express
Fi+1(z1, Zys e ZX) in terms of Fi(z], Zys tees ZN)’

First, consider the service time for station i: [fi(m), ?i(m)]. During

this period, the number of packets at station i changes just as the capital
1o the gambler's ruin problem (Section 3.2) where the initial capital corre-

sponds to Li(’i(m)). the numcer of packets found at the polling instants.



In this analogy, the service time ri(m) - Ti(m) corresponds to the gambler's

ruin time. Thus, according to {(3.19a), we have the GF for the service time:

T.(m)-T.{m)
i i

Si(Z) Elz ] = Fi[Oi(z)] (3.22)

where Fi(Z) is given by (3.21b), and Oi(w) satisfies (see (3.,18a))

Oi(z) - ZPi[@i(Z)] = 0 (3.23a)

from which we have (see (3.18b))

.2
R ' (1) 1 L “i i
s =1, 2. e ——, 3. - *
L 1 1=ty 1 (l—ui)2 (1~ui)3

(3.23)

We now consider the joint GF for [Ll(t)’ Lz(t), eeey LN(t)} at time
t = ?i(m), i.e., at the time when the service at station i is campleted.
Since L, (T, (m)) = 0,
11
ro L.(T.(m)) ;N L.(T.{(m))y
joL - R -

N
E. i Z. —— E . Z. |
'.j=] 3 J : ] N

- - = & s . PR
PIL, (x (@) =k (15578, 541) )

(N LT (m) \

L g, 1 0? L. (. (m))=k . (1<j<N, j=i)
j=1 S 31 1= J
{i#1)

However, for station ] (#i), the number of packets at t = ?i(m) is the number

of packets at t = ri(m) plus the number of arrivals during [Ti(m), ?i(m)]:



L.(1.(m)}) = L (1.(m)) + number of arrivals in [T.(m),T.(m)] MR
i iti i i

Also, by the notion of compound distribution, the joint GF for the number of
packets arriving at stations 1, 2, ..., i-1, i+1, ..., N during [Ti(m),?i(m)],

given that Lj(Ti(m)) = kj(1 < ] <N, # 1), is given by

(3 T (m)-t,(m) )

E{ T P.(z)} 1 UL AT m) =k, (1< j <N, §# i)
RUPRRS R il == J
(j#1)

It follows that

¢ N L.(?.(m)); ]
E T =z, * Lo (m) = k(1 < <N, j#1i)
k‘]=} } | J 1 .] - - j
(G#i)
(N k., ?.(m)-ri(m)J )
=8 7 z, Jp (zH:? L. (T.(m)) =k.(1 <N, # i)J
=1 it 73 ito- -
(j#1)
N kK. . N ?.(m)-t.(m); \
= T oz, deg T op(zrt Pl (T m)) =k (1 v j N, § oA
j=1 J ‘ j= 3 1 [ L 3 = - B
(i#1) (3#1)
N < N S o(my-7., (m),
= 1 2. 1 P.{z.): - '
j= 1 j= ] J
(J#1) (j#1)
N k 4 Wt L.(Z.(m))\
= T z, g T ez Pt
o AR
(G#i) s



where (3.21b) and (3.22) have been used to get the last expression. Thus,

by unconditioning, we obtain

PN LT (), ¢ N L.(t.(m)) T.(m)-T1, (m)
E, Tz 3 * | = E, T z,J * Pz} ! )
Liat G i j
(j#1i)
(N L.(7.(m)) N L,(T.(m))
=ELD 2.3 b he 0T Pt
'j= 3 j=1 ] ] }
(3#1) (j#1)
N
= Fi(Z%’ZZ’ "zi-i’ Gi[.z‘ P.(zj)], zi+1""’ZN)
(j#1)
- (3.24)

Next, consider the reply interval between station i and statiom i + 1 :
[?i(m), Ti+](m)]. During this period, only the packet arrivals change
| [L;(t), Lz(t), ciey LN(t)]. The joint GF for the number of packets arriving
at all stations during the reply interval [?i(m). fi+](m)] whose distribution

is specified by Ri(Z) is given as a compound distribution:
R.[ T P.(z.)] (3.25)
L 1 1]

Since the event in [Ti(m), ?i(m)] and the event in [?i(m), fi+1(m)} are inde-

pendent, the joint GF for [L1(t), Lz(t), cey Lq(t)] at time t = ri+1(m),

i.e., at the time of polling to station 1 + 1 is given by the product of

(3.24) and (3,23):

N b

. =R, [ ~p.{z.)]-F, 2Z.yesrZ. L. - Plz)],z.
’ZN) RL[j=1PJ(zJ)] FL(ZI z2 ZL—I 1[;_1 J(Z])] ZL+1

(j#i)

F. (z ,z seiey2Z,)

R T R R

(3.26)

a8



3.3.1 Mean and Variance

We do aot solve the equation (3.26). (See [Konh74] and [Swar80] for the
solution.) Instead, we use (3.26) to find the means and covariances for the
number of packets at each station when some station is polled. To write down

the recursive relations among them, let

aF.(2,,2,,..0.,2,.) |
E.(j) 4 —* 1772 N™
1 = 3z, fz1=22-. =z =]
]
2
3°F.(z2,,2,5.00.,2.)
£, (k) g ——T1 2 o ,
32_3zk 'z =2y =gy ml
i, j, k=1,2, ..., N (3.27)
Note that
0 = e, F P = e | (3.282)
L i i . i ;
*

Note alse that, Lf Li denotes the number of packets at station i when it is

polied, then

* ® 9
E.(L,1) + E(L, } - -2(L, ]:"
L 1 L

™
[
il
Ft.
-
—
[
p—
<3
[V
a1
—
o
1]

(3.28b)

2
In Appendix A, a set of N7 equations for {fi(j);i,j=1,2,...,N; are

shown to be

£, (1) = ¢ .. (3.29a)

N O D I S e i#Ed (3.295)

-9



[t is also shown there that the solution to the equations (3.29a) and (3.29b)

iz given by

N
. ui(t - ui)k:Trk
E[L.1 | = fi(l) = S (3.30a)
1 - 2 u
k=1 K
{ i" N b
i-1 ['-:+1;k][k:1rk];
ELG) =u ) Do o+ il 5 : j#i (3.30b)
1 ‘k=_] | - b '
k=1 &

In Appendix B, a sat of N3 equations for {fi(j,k);i,j,k = 1,2,...,5C

are derived to be

2 2 2ry 1 i)
ti+T(J,k)=uij(:i tr, )+ri;kfi(1)+riujfi(k)+fi(1);.;k - + Y + . )3}
- : L
Ei(i,j)uk+f.(i,k)p. E.(i,i)u.;k
+ L L+ £ (j,k) + i#j, i#k, j#k
. 1 2
1 - .. (T - U.)
L 1
(3.31a)
2 (1,30 £.(4i,1). 2
. 2,2 2 _2 \ e pe aa Thptbedls gl
ri+](J,J}"~ ( ]. +ri )+ri(-j "Hj)"'zri,—jfi(_])*ti(_],j)* 1 i + (1 . )2
i i
[ l
':.z-p; 5 _2r1 1 :12 Y,
- (l)ldl—_di vy * 7" 7 [ 1#]
- S RO € EE (1 =_..7
\ 1 L 1 1
(3.31b)



svi )
fi(l)uk

1‘“1

. 2 2 .
fi+1(1,k) = uiuk(éi *ry ) T WL fi(k) + ifk (3.31c)

. 2 2 2 2
fi+1(l’1) Wy (6i * T ) + ri(Ui - ui) (3.31d)

No closed-form solution to the equations (3.31a-d) seems available.
They may be solved numerically as a system of N3 linear equations. In Appen-
dix B, fi(i,i) in the special case of identical stations is derived. In such

a case, dropping the subscripts from the parameters, we evaluate (3.28b) as

N Neu(1 - )
E[L ] = ——vu (3.32a)
1 - Nu '
2
v * SzuzN(l-u) . :“rN[l—(N+1)u+(2N*1)u2]
ar(L ] 2 (3.32b)
1 - Nu (1 - Nu)

3.4 Service Time, Intervisit Time and Cycle Time
Let us define the cycle time for station i, Ci’ as the period begining

at the time of its polling in a cycle and ending at the time of its polling

in the next cycle; its duration is given by Ti(m+1) - ri(m). Note that rhe
cycle time may also be defined as Ti(m+l) - ;i(m) since we are assuming the

steady state. The intervisit time for statiom i, Ii’ ls defined as the

period beginning at the time of its service completion in a cycle and ending
at the time when it is polled in the next cycle; its duration is given by

Ti(m+1) - ?i(m). Note that the service time duration for station i is given
by ?i(m) - Ti(m). In this section, we derive the means and variances for the

service time, cycle time and Intervisit time.



First, recall that the distribution for the service time at station i

ls given by (3.22), which is similar to (3.19a),

Thus, the mean and the

variance for the service time at station i are given by (see (3.19b))

N
., - T
E[5.] = = {3.33a)
1 N
- ul 1= 2 u
k=1 k
( 2 ¥
* * LT z
Var(L, ] ’iZE[Li ] o . il |
var(s;] = 5+ 3= 7 Varll, 1+ N f
. (1=..) (1=u) (1=1,) 7 -
i i 1 - = uk !
. k=t S
(3.33b)

*
where we have used (3.30a) for E[Li ].

In the case of identical stations,

by using (3.32a) and (3.32b) in (3.33a) and (3.33b}, we have

:72rN(I+u—NUT'""“’

[ Nru
E[S] =
] 1-Nup
fzuzN
Var[§] =
{1~u)(1=Nu)

+ 3
(1-u) (1-NL)©

(3.34a)

(3.34b)

Now, we relate the intervisit time duration ri(m+l) - ?i(m) to the

number of packets at the polling instant t = Ti(m+1). Noting that the number

of packets found at station i at time t = Ti(m+1) is equal to the number of

arrivals during the preceding intervisit time [?i(m), Ti(m+1)], we have

L.(7.(m+1})
1 1

Elz ] =

To(me ) =T (m)
27 (2)} . N

] (3.35a)



Thus, if we introduce the GF for the intervisit time for station i by

ri(m+1)—?.(m)
I (2) 4 Elz Yoo (3.35b)

then (3.35a) is equivalent to

F.(2) = I.[P.(2)] (3.36a)

from which we easily get

[}

* * 2 2
1 =
1-:[1.i ] “iE[Ii]’ Var[Li ] by Var[Ii] + o, E[Ii] (3.36b)

Solving these equations for EEIi] and Var[Ii], and using (3.30a), we have

the mean and variance of the intervisit time for station i as

N ) N
-y - * - -
¢ “i)k;lrk vart " i (1 “i)kilrk
= ! I = - .
E[Ii] 5 R Var( il ) 3 A N (3.37a)
1- -4 i b, (L= 2 u)
k=1 K t k=l €

The meaning of (3.36a) is that the number of packets found at the polling
lnstant (s equal to the number of arrivals during the intervisit time.

In the case of identical stations, these reduce to

Nr(1-2) T S TTS ST
E[1] = ——— Var{l] = + 5 (3.37b)
1 - Nu 1~ Nu {1 - N©°

We next find the relarion between the cycle time and the intervisit
time. By conditioning on the length of the intervisit tinme Ti(m+1) - 'i(m),

the distribution for the lun:tia of the cycle time 'i(m+l} - 'i(m) is given as



T, (m+1)~7, (m) T. (1) =T, (m*1) T, (m+1)=T, (m)
1 1 1 1 1

Elz ] = Elz z ]

- ?i(m+1)-T.(m+1) o _ _
= - E[z z fri(m+1)-Ti(m)=n]P{?i(m+1)—fi(m)sn}

However, by (3.22), (3.35a) and (3.23a), we see that

T (e =T (1) )
Elz * t z ‘fi(m+1)-7i(m)=n]

L.(=. (m+1))
E{{?i(z)} Lot

[}

2% v (m+1)-T, (m)=n)
1 1

Ti(m+1)-?.(m) n _ n a
E[{Pi[?i(z)}} g ‘Ti(m+l)‘Ti(m)sn]={ZPi[ei(Z)]} =[Ei(z)]

Thus we have

T.(m+1)-T. (m) T, (m+1)=T. (m)
1 1 1

Elz I= 2 12, @ "1, (e 1) =T (m)=n =€ (2, (2)} * ]
q=0 L i i i
(3.38)
If we introduce the GF for the cycle time for station i by
?i(m+1)—?i(m)
C.(z) 2 E[z ] (3.39a)
then (3.38) is equivalent to
c.(z) = 1.{2.(2)] (3.39b)
i 1'71

(W 1]
-~



From (3.39b) and (3.37a) the mean and variance of the cycle time for station

1 can be found as

N
kEl K
E[Ci] = N (3.40a)
1= 2 u
k=1 K
(
N )
1 | o 20 tou -1y 3 T
{ % 1 1 1 k=1 (
Var{c.] = 5 2.Var[Li ] + 5
VRN @ EETI Tl r
L I - kEI Me o) (3.40b)

Note that E[Ci] in (3.40a) is independent of 1i. In the case of identical

stations, these become

) 9
Nr :ZN G“rNZ

Elc] = , Var(C] = + 5 (3.41)
1-Nu (1= (1=-8u) {1=~u) (1-NL)

3.4.1 Mean Cycle Time and Stability
An lntuitive argument to derive the expression for the mean cycle

time in (3.40a) is as follows. Assuming staticnarity, we conjecture that

the mean cycle time consists of the mean total reply intervals and the mean

time to serve the packets arriving during the cycle time:

E[C.] =

. L) E] (3.42)

which certainly leads to (3..51). However, we must make clear the meaning of

stationaricy.

W
u



In order to consider the stationarity, let us identify a series of

regeneration points in the process [Ll(t)’ Lz(t), ey LN(t)]. Note that the
polling instant of scation i is not a regeneration point. Time points when
station i is polled anmd all Lj(Ti(m))’ 1<j<N, are zero are regeneration
points. We call the interval between two such successive regeneration points

a regenerative cycle. See, for example, [Heym82, Chap.6] for discussion of

regenerative processes.

Let Mi be the number of polling cycles in a regenerative cycle, and
C, ,m= 1,2, ..., Mi be the duration of the m th polling cycle in a re-

generative cycle. The mean polling cycle time E[Ci] is defined by

M,
gf 1, (™)
1

E[M.]
1

As shown in [Stid72] and (Heym82, Chap.10], a sufficient condition for

the stationary version of this regenerative process to be a stationary

process is that the mean regenerative cycle time is finite:

C. ] <= (3.44a)

This is satisfied if

E[Ci] < = (3.44b)

Note that (3.44a) and (3.44b) implies that E{Mi] < =, since E[Ci] > 0.

Thus, from (3.40a) and (3.%44b), a sufficient condition for the existence of



the regenerative process is given by
o<1 (3.45)

Since there is only one server, stationarity means stability. Thus we may
claim that (3.45) is the condition for stability. This condition is seen to
be independent of the reply intervals, which is to be expected since at
near-saturation load the proportion of the server's time spent on reply inter-

vals becomes negligibly small.

‘We note that [Konh74] also discusses the existence of stationary solu-

tion in a different way.

3.5 Number of Packets at Arbitrary Times

We proceed to find the (marginal) distribution for the number of pack-

—

ets at station i at arbitrary times which we denote by Li' The GF for Li’
Li(t)
Jdencted by Qi(Z)’ 1s given by the time average of z over the regenera-

tive cycle defined in Section 3.4.1:

M 7 {mr1) =1
L i
E’ - z z
L.¢ n=1 t=7, (m)
Q) JElz " ] = v = (3.46)
B i 3
E 2 (met)=T. (m)},
i i
m=1 }

L.{(c)!
L (

Note here that M. ls a stopping time in the regenerative process with

E[M.] < = It foliows from “ald's lemma (see {Heym82, Chap.5]) that

i
hat}



i :‘dfiTi(m.”-1 Li(t)1 rTi(m+I)-l L.(t)]
E, L ) z | =EDIE T z " (3.47a)
‘m=1 t=T, {m) t c=7,{m) /
. 1. 1
ﬁi
E[m§1 {ri(mﬂ)-fi(m)}] = E{Mi] E{ri(mﬂ)-ri(m)] (3.47b)
Thus we have
D=ty
E} D z * '
t=7, (m)
Qi(z) = L (3.48)

EfT.(m+1) = 1. (m)]
1 1

Note that the denominator in (3.48) is simply the mean cycle time duration

given by (3.40a).

To evaluate the numerator in (3.48), let us divide the cycle time into
the service time and the intervisit time for station i:

T.(me1)=1  T.(m)=1 . (m+1)—~1
1 1 1

- = - + : (3.&9)
t=7.(m) t=".(m) t=1
L 1

vote that during the service time for stationm i, Li(t) behaves like the capi~
tal in the gambler's ruin problem where the initial capital corresponds to
the number of packets found at the polling instant. Thus, the sum over the

service time can be evaluated by applying (3.20a) with substitution

n>e=t.(m, T-- " (m-t.(m), L ~L.(t)
i { i n i



L L.(t,(m))
iti

F(z) = Elz O] + F (2) = £lz 1
We get
fTi(m)-l L.(t) F.(z) - 1
E z Zz L = 7z —'!-'.____ (3.503)
‘t=ri(m) z - Pi(Z)

During the intervisit time for statiom i, Li(t) only increases in such
a way that the increase per slot is given by the GF Pi(z). Thus, the sum

over the intervisit time may be evaluated as

(T lm =T e (7 (me =1 t-T. (m))
El L z* | =gl I P.(z)} * |
=T (m) : Ct=T. (m) t J
1 L
Ti(m+1)—?.(m)
1 - E[fp.(2)} Ll - R ()]
= 1 = L 1 .
1 -p,(z2) 1 - P.(2)
1 1
By (3.36a), we get
R S R
£ T — (3.50b)
t=:, (m) ; 1 - P.(2)
1 L

Cembining (3.40a), (3.30a) and (3.30b), we obtain the GF for Li’ the

number of packets at station L at arbitrary instants:
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1

[ g I~
r

kK 1 =-F. (z) (1=z)P, (2)
i . i

Q; (2) = s (3.51)
' - P.(z) -z t - P, (2)
I k 1 L
k=1
It is straightforward to calculate E[Lil = Qi(1)(1) from (3.51). We get
*.2-
EL{L, 3] *.2: 1 Ty
E[L,] = A = - — (3.32a)
2E(L, 1 200 - o)
i i i

In the case of identical stations, by using (3.32a) and (3.32b), we get

’zu 52 Nrp(1=-2)

E(L] = — + - (3.52b)
2r 201-N) 201-Nu)

3.6 Packet Waicing Time

Finally, we derive the GF, Vi(Z)’ for the waiting time (eXcluding the
service time) for the first packet in an arbitrary arrival group (i.e., a
supermessage) at station i, which we denote by Vi. See Figure 3. Since the
walting time for the first packet in a group of packets which arrive in the
same slot (s independent of the number of packets before an arbitrarily
chosen packet within the group (whose GF, Yi(Z)’ is given in (3.8a)), the GF
for the waiting time for an arbitrary packet arriving at statiom i, Ui’ is

given by

U.{zy = v.{(2)y.(2) (3.53a)
i i i

The mean packet waiting time at statiom i is then given by
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E[Ui] = E[Vi] + E[Yi] (3.53b)

We note that Vi-is-called the virtual waiting time in (Rubi83].

Let us denote by Vi(t) the waiting time for the first packet in a
supermessage arriving at station i in slot [t, t+1]; we count the waiting
time after time t+1 (see Figure 3). Then, Vi(z) is given by the time average

' :
of z i(t) over the regenerative cycle as before:

M, T.(m+1)=1

(i i v, (t)
E'tE £ z ! ]
v (t) m=1 t=T,{m)
3.5
Vi(z) _é. E[z 1 ] - rMi L \ ( a)
EZ [r; @)=t @]
‘m=1

By an argument similar to (3.47a) and (3.47b), we may express Vi(z) as the

time average of zvi(t) over a polling cycle as before.

r’.i(m+1)-1 7. (e
E. B z t
t=1. (m) J (3.5
V.(2) = i . 54b)
: E[-.(m*1) - -. (m)}
1 L

The numerator in (3.34b) may be evaluated by dividing the summation domain

into the service time and the intervisit time for station i as (3.49),

For an arrival during the service time for station i, the waiting time

is only a delaydue to the packets already in the station:

vo(e) =L, (t) - 1 S oz es T - L (3.35a)
L 1 1

al



Thus, by (3.502), we immediately have

(BT oy R -
E. Z z . (3.55b)
t=7, (m) oz = p.(z)
i i

For an arrival in the intervisit time, the waiting time consists of the
delay due to the packets already in the station, and the delay uncil the

start of the next polling instant for statiom i:

V.(e) =L, (e) # T.(mr1) -t -1 T (m) £¢ £ t.(mtl) -1 (3.56a)
1 1 1 1 L

Note that Li(t) is the number of packets which have arrived during [?i(m),t]

at station i. Therefore,

L.(t) t-7 . (m)
Efz ¥ ] = {Pi(z)} L

Thus, we get

SO o, Jilmen= L. (£)+7, (m+1)=g=1y

EZ 2t =E = z b t

t=7.(m) ‘ £=7, (m)

1 1

Gylmen=t e=T. (m) <. (me1)-t-1,
=E, C e.(z)} b+ 2?

et (@ b )

1
¢ Ti(m+l)-?.(:) T-(m+1)-?i(m)j
2 - LPi(Z)} |

iN

- P.(z) ;
; J
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7. (m+1)=T. (m) T.(m+l)-?.(m)
i L

Elz o) - E[{p,(2)} * ]

z - P.(z)
i

Using (3.35a) and (3.36a), we get

AT v o) L@ - @
E z z = (3.56b)
[ t=Ti(m) ) z - Pi(Z)

Combining (3.40a), (3.55b) and (3.56b) for (3.54b), we obtain the GF
for Vi’ the waiting time for the first packet in an arbitrary arrival at sta-

tion i:

"% I.(z) -1 )
V. (z) = .= (3.57a,
z - Pi(Z)

which may also be written as (see {(3.37a))

[ {(z) -1 o=,
V. (2) = L ) L (3.57b)

01,1 z - P.(z)
i i

(1

From (3.37b), the mean virtuzl wait E[Vi] = Vi (1) is calculated as

E{v.] = —_ - t (3.58a)
2E[Ii] 201 = “i) 2

X
7

or, in terms of Li ,
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*
E[{Li 12 312 (o Ty ek
E[Vi] = + { -—] - —_— (3.58b)
2u.E[L. ] 2w, Y-y, 4L 2
-1 1 1 1 1

The GF and mean for the waiting time of an arbitrary packet are respec-

tively given by

N
T 1-R@ L) -
U.(z) = = . = . (3.5%a)
b N
= z - ?,(z) 1 =z
M., - T 1
i k
k=1
and
_ 9 7
E[*_Li*;"} 'L*r 1 1
BU) e s = - oy (3.59b)
2_4 E[L, J 7..- ]"'... ) /
i i i i
Comparing (3.52a) and (3.59b), we see the relation
E(L.] = L.E[U,]} + .. (3.60)
L 1 1 L
which confirms Little's formula [Littél].
In the case of identical stations, we have
-2 2
: N T+ 0 Ne(1 - W)
E[V] = — + - + (3.61a)
2r  2(1 = x.) 2 201 = N
and
.2 2
: : Nr{1l - L)
E[(LC] = — + + -1 (3.61b)
2r 201 = N 201 = NL)
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We note that our Vi is always less than the "queueing delay" in [Konh74]

and [Swar80] by 1 since they count the waiting time from the slot in which a

packet arrives while we begin counting them from the next slot.

3.6.1 ean Message Waiting Time
We denote by wi the waiting time for an arbitrary message at station i.
wi consists of the waiting time for a supermessage, Vi, and the delay within

the supermessage Di' See Figure 3. Thus we have

E[Wi] = E[Vil + E[Di] (3.62)

where E[Di] is given by (3.10¢).

We want E[Wi] to be expressed in terms of message-related parameters.
[Rubi83] shows the procedure to calculate E[Vi] by analyzing the number of
supermessages at polling instants. We here consider only the case of identi-
cal stations for which we have (3.61a). Using the conversion (3.5b), we can

write (3.61a) as

2N n%e s e Ne(1-vb)
E[v] = — + - + (3.63a)
2r 2(1-N"b) 2 2(1=-N'h)

Thus, by adding (3.10c¢} and (3.63a), we have the mean message waiting time

in the case of identical stations:

i~

. ,

NEs el by ] ¢F=bp

E(W] = — + + - - — (3.63b)
2r 200=1 ) 2°{1-N'b) 2




If we let b = b(z) = 1 (single-packet messages) and replace ) and Y2 by u

and 02, respectively, in (3.63b), we recover (3.6lb).

We may use (3.63b) to derive the mean message waiting time at station
1, E[Wl}, when all traffic is generated only at stafon 1 (the GF for the
number of message arrivals at station 1 is given by {A(z)]N). This is obtain-
ed by simply letting ¥ = 1 and then replacing r, 62, i and 72 by Nr, Ndz,

2
NA and Ny~, respectively, in (3.63b). We thus have

2 N Nip (2 (Yz-k)b 1
E[wl] = —— e — + - - (3.64a)
2r 2 2(1=-N\b) 2:(1~-NAb) 2

(3.64a) can also be obtained by letting I(z) = [R(z)]N in (3.58a), adding
E[Y;] in (3.8b), and using the conversion in (3.3b). We note that [RubiB83]
obtains E[Wl] in the case of Poisson distribution for the number of message

arrivals (72=R). From (3.63b) and (3.6%4a), we have

N(N-1)Arh
E(W] - E[W.] =
1 2¢1-8ib)

Z20 (3.64b)

This means that, for the same total traffic, the mean waiting time at station
l in the case where all traffic is concentrated there is smaller than that
in the case of balanced traffic. Note that we have the reverse relationship

in the gated service system as we see in Section 5.1.
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4 Exhaustive-Service, Continuous-Time System
We discuss the continuous-time version of the exhaustive service systen.
We consider the case of Poisson message arrival, and omnly in Section 4.4 we

refer to the mean message waiting time in a Poisson bulk arrival system.

OQur model is as follows.
(i) An entity for service is a variable-length message. The length of each
message at station i is assumed to be distributed according to a general
distribution function whose LST is denoted by Bi*(s). Let bi and bi(z)be
the mean and the second moment, respectively, for the message length at station
i:

b, = -3 Loy, g (2) .5 ")

4.

1 1 L 1 (0) ( l)

(ii1) The message arrival process at station i is assumed to be Poisson
arrival with rate Ri'

(iii) The reply interval between station i and station i+l is assumed to be
discributed according to a general distribution function whose LST is denoted
. . 2 : )

o¥ Ri (s). Denote by ri and :i the mean and variance, respectively, for the

replv interval between station i and station i+l:

- -z L 2 (D) 2 ,
r,o= -R, (0, po= RO - et (4.2)

In this chapter we consider the case of exhaustive sarvice. Note that
the gambler's ruin problem in the case of discrete-time svstem (in Section
3.2) corresponds to the busv period analysis in an M/G/1 quete with arrival

. . ) 3 * = - "‘-
rate ‘i and service time distribution Bi (s). Define B {s) as the LST of the

distribution function for tre busv period in such an M/G/1 queue. As shown in

(Klei75,5¢c¢.53.8] and [Cocpdl,sec.5.8], it satisfies
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* * *
91 (s) = Bi [s + », - kiei (s)] (4.3a)

i
(2)

from which we have the first and second moments, 9. and 3. , for the busy
X i i

period as

x(1) 5 (2) x(2) b,
. I S . e SN
P R T N (4.3b)
i (i-2.)
1
where
o, 3y b, (4.4)
1 = 11

Also, define T;(z) as the GF for the number of messages served in a busy

period in the same M/G/1 queue. From [Klei753,S5ec.5.9], we have

Tilz) = zBi*[A =T ()] (4.5a)

from which

s, (l-0.) + A.zb.(z)
i i i

- . i =
i i Var ['i] = —3 (4.5b)
i (1-20)

/

4.1 Number of Messages at Polling Instants
T

et

L. (e) - number of messages at station i at time t

and define the juint and marginal GF's for [Ll(t),Lq(t),...,LV(t)] at time
t=ri(m), i.e., at the time when station i is polled as in (3.2la) and (3.21b),

respectively.

. . ey Zo, first note
In order to relate Fi(zl’ZZ' , ZN) to F1+l(zl'22’ ) b‘).

that the service time for station i, :i(m) - Ti(m), is distributed as the sum
of Li(fi(m)) busy periods where each busy period is distribured as given in

(4.3a). Thus we have
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E[e_s£Ti(m)-Ti(m)}] = [@i*(s)]Li(Ti(m)) (4.6a)

Therefore the joint.GF (except for station i) for the number of arrivals during
the service time for station i is given by

* I}Li(ri(m)J
{0, A.=AzZ, 4,

i (J j J)J (4.6b)
Similarly, the joint GF for the number of message arrivals during the reply
interval between station i and station i+l is given by

*( N I
R, £ (A, - Ajzj) (4.7)

|
J

Hence, by an argument similar to Section 3.3, we get

o0 N
Fi+l(zl’22""’zN}=Ri !.Z (Aj-*jzj)]
‘=t
¢ N 3
O T j:L (A,-Ajzj)J[, 2 pheeezy) (4.8)
“(3#1)

“ww, define the moments for [Ll(t),L,(t),...,LV(t)] at c=ri(m) as in (3.27),

(3.23a) and (3.285). From (%.8), a set of N% squations for ffi(j); i,j =

Ly, 0 N are given bv
fi+l{i) =Ly {4.9a)
E,(i))\,bi
- A = R : e . : 4
ti+l(3) ri'j + _i(J) i j#i (4.9b)

i
(Note that (5.9a) and (4.9%) have the same form as (3.29a) and (3.29b).)

The solutien co (%.9a) and (-.9b) is given by
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AMA{l=-p.) r
* . k=1 K
E[Li I = fi(lJ = 5 (4.10a)
1- I ¢
k=l k
i i-1 N
. — k=.+l = !
HOE RN m k=l %1 (4.10b)
k=] [ J
! = Yk ;
_ k=1 ;

3 , e . .
A set of N7 equaticns for :i(J,k); i,j,k = 1,2,...,N} are given bv

2X.b, b.(z) T
11 1 |

+

oy L 22 L : .
Frap ok = Gy D) ke £ G) e E )+ B (DA T )3]
. i VTR

j ik

b, E.(i,i)k,\kb.z o
+ [fi(i,j}1“+fi(i,k)1j]+fi(j,k)+ J T i#j, jEk
1-z ~ 82
i (1=2) (4.11a)
. - £ (L)Y b~
. = s - = | 4
£ (110 RO Hr lL:i(k) + = i#k (4.11h)
L
. 2,.2
FER I SR rLZ) (4.11c)
[n the case of ildentical stations, we have
* Ty -
gL - dealize) (4.12a)
212001 30(2) 22,2, 2
£ (1,0 = i)  NQED) TR 7 T E ) (o) (4.12b)

(l—No)2 (]_-No)2

~—

4.2 Service Time, Intervisit Time and Cvecle Time

The LS5T of the distribution functiecn for the service time at statien i,



Si’ is given by (4.6a); i.e.,

* *
s, (s) = Fi[Oi (s)]

(4.13)
from which we have
N
p, £ r
1 = E[L."]0 o k=t F «
ELS, Ly 18, = —% (4.14a)
1- L »p
k=1
2 * (2) 2 *
[ = _
VarLSi] 8, Var[Li ] + (Si e, ) E{Li ]
N
(2) 2
[ A (b, Y ab, “(1-0.)], L Tk
* - )
= _"_l_—[ b 2 Var[L. ] + L L L v 1 k=1 (4-l4b)
(l-‘:i)z i L - Z Dk
L k=1 i

where we have used (4.3b) and (4.103). In the case of identical stations,

bv using (4.12b) we have

ElS] = T2 (4.15a)
2.2 o (2)
var[s] = iz + Nlrb (l+e-§o) : (4.15b)
(L=-2)(1-No) (1=p) (L-Ng)

Note that (%.13a) and (4.13b) correspond to (3.3%a) and (3.34b), respectively,

in the discrete-time svscem.

We next give the GF rur the number of messages served in a service
time for stativn i, denvtec 5% Ti(2)° Since these messages are those served
in a busy period imitiated o Li(fi(m)) messages, it follows that

Ti(z) = Fi[Ii(2); (4.1%)
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where Fi(z) is given by (4.3a). Using (4.5b) and (4.10a), we have

N
A\, I r
r i % lk=l k
l- z Qk
k=]
* 2 3
Var{T (m}] = var(L. J(E[r.1)° + E{L. | var [T.]
1 1 1 1 i
,f .
. 2 2 z !
L ey e ey bi( ') 1 &
= 3 iVar(L, | + - - | (4.17b)
. L\ i
(l—O ) i 1 - A i
» Ttk i
“ k=1 J
In the case of identical stations, by using (4.12b), we get
- N'\r £ :
EfT(m)] = T-No 7 (4.18a)
2,2 2_.3,(2) \
Var[T(m)] = ——0 s —Nrib . Wir(l+o) (4.18b)

2
(L=-)(L=N2) (1-2) (1-N0) (1-2) (1-N2)
#
We proceed to consider Ii‘(s), the LST for distribution function of
the intervisit time for station i. Since the number of message arrivals
during the intervisit time is tle number of messages found at the polling

instant, we have the relation

%
X - = .
Ii (.i Aiz) Fi(z) (4.19)
or, by 5=Ki- \iz,
. F.(L-s/%) (4.20a)
i (s) = i( - s li .20a

Zrom which we have



£, (1) (I'Di)kilrk , £,
E[L;] = = = N » E({I;}7] = —
1 A
-z Dk 1
k=1

In the case of identical statiens, by using (4.12b), we

2 (2)
o Nr(l-p) . S N(l=o) . N(N-1)Arb
E(I] Teng o Varll] = T-No TENY:

which correspond to (3.37b) in the discrete-time system.

have

(4.20b)

(4.21)

The LST of the distribution function for the cycle time for station i,

Ci’ may be cbtained in the same way as that has led to (3.39b).

hy Ii(t) the distributien function for Ii, then

. () -

. E£e—s{?i(m+l) - ?i(m)}}

E[e-s{:.i(m-f-l)-ri(m+l) boms T (@) =Ty (m)

]

-‘JT- It -4 P - I T
s. 7 (m+l) 'l(m+l)‘e St!Ti(m+l) -7

le 4

However, bv applving (5.13) and (4.19), we have

. -stti(mvl)-’i(m+l)} -

{m)=t]dI(ct)

Zi= . ri(m+l)-fi(m)=c]
- E£.‘1:( ):'i(m+l) 'i(m+l)-?i(m)=t]
- -'[e-"‘-' i.-.i'i (5)_‘,‘i(m+l)-ri(m)}\ Ti(m+].)-.:i(m)=t]
= E{g- i~ i—; (j)’[l
[t Zollows that
Co(s) =1 (s = .- . T
i L L o1

which corresponds to (J.39:) in the discrete Cime svsten

If we denote

4

(]

(g%
St

From (%.22),



we have

|
kElrk
= 2 = —
E[Ci] (1+Ai-i)E[Ii] S (4.23a)
-z ©
k
k=1
= B3 2 i (2)
Var {Ci] = (l+AiJi) Var [I.] + «iei E[Ii}
r _\J ]
! i n
= 5 > (Var(L. | + ‘ E (&.238)
A (1) ' N i
i 1 o l_ E Dk J
k=1
where we have used (4.3b) and (4.20b). In the case of identical stations, by
using (4.12b), we obtain
. —223 w8y (4
E[C] = —F—, vVar(¢]= + - (4.24)
1-No (1-0) (1-Np) (l-z)(1-80)~

wiiich corresponds to (3.41) in the discrete time svstem,

staoility condition is given bv

4.3 Number of Messages at Departure Instants

o, ()

Let us define a s=quence of times

(o)

{(m);n=1,2,...

From (4.23a), the

2
wn
—

,T.(m)}, where
i

@ thcvcle at station 1.

(m} L3 the service completion instant for the n th message served in the

Ti(m) is the number of messages served in the m th

~d
i~



cycle at station 1. We now consider the GF, Qi(z), for the number of messages
just after the moment of message service completion at station i, which is
denoted by Li' It is given by the average of zLi(Ti(n)<m)) over the average
number of messages served in them th cycle, where the averages are taken over
the regenerative cycle {Ci(m), m-l,Z,...,Mi}. The regeneration points are

those when station i is polled and all Lj(Ti(m)),lgjgN'are zero (see Section

3.4.1 for a similar discussion in the discrete-time system). Thus we have

fMi T;(m) L_(T_(“)(m))]
L E} t 0z %t 1 JI
A i, _ _im=l n=l .
Q;(2) 2 E{z 7] = = (4.26)
Ej I T, (m) ]
| m=1

However, since M; is a stopping time for the regenerative process with

E{Mj] < =, it follows from Wald's lemma that

. T, (m) (n)
Tl o My i L (™ @)

E I I =z - = EM]E [ Lz (4.27a)
wm=l n=1 J n=1
{Hi \

E‘ T (@, =M, ] E[T (m) (4.27b)
=] ; i i

‘Ti(m) (n)

)
) - zLi(rl (m))l
: E{ztl) - —02t - 428
Q(2) & Elz1] T ] (4.28)
The denominator in (4.28) is ziven in (4.17a).
To evaluate cue sum n tie numerator of (4.28), we apply the formula

(3.20b) with supstcitution



(n)

T-T@, Lo-L @), @ -8 0 -2

1

Li(ri(m))
F(z) = E[zLp] ~ Fi(z) = E{z ]

Then we get

Y * =3
@nl | B G4h2)

*
n=] J z-B. (3 =\
i ( i iz)

E(TiT(m)ZLi(Ti(n)

&

(F, (z)-1)

Substituting this expression and {4.17a) into (4.28), we have

e
¥
LI

=

[
=

Bi*(Ai-Aiz)
Q(2) = - . — (F;(z)-1] {(4.29)

Z_Bi («i-«iz)

P

25 I Pod

ks

=
[
—_
~
~

From (4.29) we 2asilv get the average number of messages at station i

left behind the service completion at stacion i:

N
{izbi<2> [1—kilak1ficl.l> .
= + .
E[Li} i 2(1”5_) + 3 (4.30a)
2‘1(1-31) z rk

k=1

ln the case of identical staticns, we have
22 2 (2)

T+ (N=L)Ysr . N2"h

E{L] =. + {4.30p)

2 T 20Ns) t 2(1-Noy

Although (4.29), (4.30a) and (4.30b) have been obtained for the number
of messages left by departing messages, we here claim that thev hold for the
aumber O mMESSAges at an arbitrarv instant, This claim ccmes from the assump-
tion of Poisson arrival and the fact that the state changes by unit step

values (one by one) onlv. In such a case, as shown in [Klei?5,5ec.5.3 and



Prob.5.6], the arrival-time, arbitrary-time and departure-time probabilities

have the same limiting distribution.

4.4 Waiting Time

Finally we may derive Wi*(s), the LST of the distribution function for
the waiting time wi (excluding the service time) of each message at station
i. Note that the number of message arrivals at station i during the period
in which a message stays at station i (the LST of the distribution function
for this period is given by wi*(s)Bi*(s)) is equal to the number of messages

lefr behind at the service completion time for that message. Hence, we have

* * = (2) 4
W, (Ai - xiz)si (A, = 22) = Q ) (4.31)

Letting s=Ai - kiz, we get

N
. Q-5 ) 1T D % 1R (si)
W, (s) = —— - —= . (6.32)
B, (s) t $=A;+A,B. (s)
k=]
from (4.32) we have
N
‘ib‘(Z) [l“kil:k]fi(l,L)
J.l = = — 4,
B rasy N (4.33a)
* 22,71~ ) T r
i o k
Comparing (4.30a) and (4.33a), we may confirm Little's relation
E(L,] =, EW,] + o (%.34)
1 L L L

We note that Lictle's relation applies to the mean number of messages at an

arbitrary time.

|
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In the case of identical stations, we have

(2)
=, Ne(l-o)  Nib )
It T 2019 T 20 (4.33b)

Elw] =

Note that this has the same form as (3. 63b) when Poisson arrival is assumed

(r =3} and "a half slot" is made shrink to zero.

* *
[t may also be interesting to relate wi {s) to Ii (s). Using (4.20a)

and (4.20b) in (4.32), we have

*
w ¥ (s) = Fry ) . i (4.35a)
* E[Ii] s-1 +\,B.*(S)
1 1
from which we get
51,8 @
E(w,] = ZE?IiJ T 3 (4.35b)

Note the analogy of this expression to that for the mean waiting time in the
M/G/1 queue with the sarver going on vacation [Coop8l,Prob. 5.12(d)]. [Bux83a]
dttempts to approximate E[{Ii}z] to get around the numerical cemplexity in

: 3. .
solving N7 linear equations.

3
In [Eise’2], the explicit expression fur E{:Ii: I in the case of w=2

aonidentical stations is given. In our neotacion, it is

2 [par. +(1l-0 )r ] +( +r ){ 2b (2)+\ (l-o )2b (2)
fp iy s 2 2 P1721PpT t 172 21 2 17 %2 ]
E{\I J ] = + r +
1 1 1 ) ) 20
(1-2)-c f17Fateea,
2 2 .2 2
. (1 )-q+~, (i +r, )+(l-cl) (:2 +r,0)
- - _ - DA s
(L "1 ”2)('l ST R Ry)
Zrl[ l+(l‘ ‘.)r:}
+ (4.36a)
1=-2 —»32
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Let ug use (4.36a) to have the mean waiting time in the case of zero reply

intervals. For this purpose, we let 612 = 622 = 0 and Iy =Ty =T and then

take the limit of r - Q0 in the ratio E[{Ii}zl/E[Ii]. Thus we easily have

2. (2) 2 (2)
SLPALN +hy(1=p ;) b, Ay by (2)

Bl ] = Z(l-ol)(l-ol-pz)(l-ol—oz+20192) + 20 (4.36b)

which is in agreement with old results in [Avi65], [Conw67,Sec.9-2] and
(Takac68]. This is alse given in [Coop70] as a special case of N=2. From
(4.36b) and an expression for E[w2] (obtained by exchanging indices 1 and 2

in (4.36b)), we can confirm a relation

2 oW

P EIW,] = 1o (4.37a)
i=]1 "0

where
2 2
= ioos = i l (2)
09 = I3 WgT z zAibi (4.37b)
i=] i=}

Nete that (4.37a) and (4.37b) provide an instance of M/G/l conservation law

tor non-preemptive work-conserving service systems [Klei76,5ec.3.4].

we mav plav with (4,33b) as in Section 3.6.1. First, the mean waiting
time at scation 1L, E{wl], when all traffic is concentrated on station 1 is
. . , , ;2 2
obtained by letting N=1 and then replacing r, 3" and A bv Nr, N&° and A,

respectively, in (4.33b). Thus we have (not using o)

I
[ %]

op (2
1-X%b)

P

!o

+

Nl s
"

+ (4.38)

—
[ ]

r 2

—~—

From (4.33b) and (4.38), we zet the relationship in the same form as (3.64b).

Next, let us derive ¢ mean message walting time in a Poisson bulk



arrival system where the bulk arrival rate is A and GF for the number of messages
in a bulk is given by G(z) (we assume the case of identical stations), If

B*(s) is the LSTrof the distribution function for each message length, we have
equivalently a system of Poisson supermessage arrivals of rate ) and super-
message length distribution given by G[B*(s)l (see [Klei75,Prob.5.12]). Note
that the mean and second moment of the supermessage length are given by gh and
(3(2)-g)b2+gb(2), respectively, where g and g(z) are the mean and second moment

of the bulk size, respectively. Thus, by the analogv with (4.33b), we have

the mean suypermessage waiting time

52 (2 2 (@)
E[W,] = 5= + Ne(l-igb) ~ NA[(g" " -g)b +gb

2r 2(1=N"gb) 2(1l-Nighb)

]

(4.39a)

However, according to (3.10c), the average length before an arbitrary message
within a supermessage is given by

(2)
E[Dg] = {820 (4.39b)

2

U

Thus the mean message waiting time in a Poisson bulk arrival system is given

by

EfwW]

1]

E(Wg] + E[Dg]

L Nr(i-igh) ngb(z) Lgfz)—g)b

T(1-N-gb) | 2(1-Nigb) = 2g(i-N.gb)

o

L}

I}
2]

4.3 Correlation of Station Times

Recently, [Ferg84] (based on [Amin75] and [Humb78,Chap.7]) has shown that

7 2
E{:I{;'] can be computed 5v solving N linear equaticns. To present this resulc,

let us introduce the station time (called terminal service time in [Ferg84])

ik at the k th visit (v the server) to a station, defined as the reply interval

80



from the last station plus the service time for the current station.

Thus,

if the k th visit is to station i, then we have

e = T, (@) - T @

See Figure 5.

every visit to all stations.

The intervisit time before the k th visit, [

(4.41)

Note that the visit number k is sequentially incremented at

k,
may be expressed as
N-1
Ik = 'El xk-j + ik-l (4.42)
J-—
where fk—l ig the reply interval before cthe k th visit.
The N successive station times are expressed in a vector Ek = [xk—(N-l)’
o R _po xk] whose probabilicy density function Pk(xk-(N—l)""’ xk-l, xk)
and its Laplace transform Xk‘(sl, 52""’SV) are defined by
* ‘ N
Xk (51’52"7" SN) 2 E[exp(-—jil ijk-N+j)]
.oc "n o N N-
= i ! - 3 )] -
. SPl= B Sy ey By 50T AR gy
j=1 j=1
(6.53)
Let us dencte by 5k"(m)(c) the m foid convelution of % (t), the pro-

-
n

bability densicy function for the busy period at the k th visited station.

Considering the events happening during Ik’ we can express Pk(Ek) in terms of

Pr-1( )
P Bmmny e e ) T :f L G R PR
L dR,_, (o) F o ST Loy g (et )17 expl- (o2 n )]
S SR TR S ol PSS
(6.44)
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where Rk_l(c) is the distribution funetion of Ek-l and Ak is the Poisson
arrival rate at the k th visited station. Note that the first integral

represents the fact that ik-N can take any value. The factor

N-1 N-1
1 m
ET[Ak(c+jEl xk_j)] exp[~Ak(t+jEl xk-j)] is the probability of m arrivals during
N * ()
the intervisit time of duration t+ I x e Bk a (xk - t) is the probability
j=1

density that the busy period initiated by the m messages has a length of

X, ~ t.
N
~ We now take the Laplace transformof (4.44) by multiplying exp(- I ijk-N+j)
j=1
on both sides and then integrating them over [xk-N+l' ey xk—l’ xk]. By

*
definition, the left-hand side vields Xk (sl, Sys vees SN)' As for the right-

hand side, let us first multiply exp(—squ) and integrate over xk to have

(let £(t) be a function of t)

b Xt

. . *
o exp(—sxxk)dxk ) f(t)%k (m)

(xk—t)dt

t(t)exp(-s_t)de ;” B *(m)(x -tl)exp[~s_(x, -t)]dx
SREIEXPATS, vk k Pimsyixy x

I

“

(%.45a)

. # m
t(t)exp(-sxt)dt.[ik (sN)]

where ’k“(S) is the Laplace transform of 3k(t). Next, replacing f{t) by an

appropriate function, taxe the summation over m to have
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® = ; N-1 N-1
1 m * m
T — - -
. f dRR—l(t)mi[Ak (t+.Z xk-j)] exp [ Ak(t+.2 xk_j)] exp( sNt)[Ok (SN)i
m=0 4 j=1 j=1
hd * N-1
= b, {— - -] : . t
i, expl-sye Ak[l N (SN)](t+i=1 xk_J)}de_l( )
R, (s +) * * o
=R, (SN+ k[l--@k (sN)]).exp{—kk[l-Ok (SN)]‘Zl xk-j; (4.45b)
j=
N-1 N-1
inally, th ltiplicati > -z . ) = -z
Finally, the multiplication of exp ( i ijk-N+3) exp ( L sN-j xk-j)
3
and integration gives
’uo rm rm ( N~-1 « v N
J L caey : - L i .+ -3 .
/, i Pk-l(xk—N, » Xp xk_l)expL j:l s SN-J+\k[l K (SN)] o

% % % ok
= Xk—l(o’ sl+kk[l--3k (sy) 1, 52+Ak{l—9k (s )1,y s, +3 [1_9k (s.)])

-1 "k N

{4.45¢)

Thus we get the Laplace transform of (4.44) as

* ‘ ok
l(s +3 [l-;k (s ) 1)

%
N (85 890 vvny sy) =R v

k-

* ] #x x
Neo100s sy 0 [1-2 (s )], sy+h [1-3, (sN)],...,sN_l+.~kk[1—-;-k (s) 1)

(4.46)

From (4.46), we first calculate the mean station time, Differentiating

(4.46) with respect to s and then setting Sp T ... Tosc = 0, we have
-1
X = ; B % i 447
E(%, ] (l+).k 3k) rk-—l + \k Sk J;l E[xk_jj (4.47a)
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where E[fk_l], and 9 = —@k*(l)(O) is the mean busy period at the k th
visited station. From (4.3b), we already have 8 = bk/(l—pk), where P = Aybg-
It follows from (4.47a) that
N-1
E[xk] =T te - jfo E{Rk_j] (4.47b)

However, clearly the summation on the right-hand side is the mean cycle time

for the k th visited station. Thus the mean station time for station i is
given by
E[ii] =T + Py E{CiI {(4.48a)

where E[Ci} is given by (4.23a). From (4.42) we also have

E(1,] = E[C,] - E{®] + ¢ _

i-1 (4.48hb)

Using (4.48a) and (4.23a), we get E[Ii] in (4.20b).

We next calculate the covariance of ik and ik—j’ E[(ik—ﬁk)(ik_j-ik_j)],

where Ek %'E[ik].' In Appendix C, we derive from (4.46) that
_ 2 l+o, 2 Xkbk(z) Skz
Ef(x, ~x,.)"]= S S == E([ ] + ——— vVar[I, ] (4.49a)
k l-s k=1 (1~ )3 k (1-o )2 k
"k °k °k
_ _ = N-1 _ _
I Y 7 - B — : : - 7 - /-n’
Elx, hk)(xk-j xk_j)l T ELCR xk—m)(xk-j xk-j)] (4.49b)
k m=1
where (from (4.42))
5 N-l ¥-1 _ _
. = 3 - - = - = - 2
kar[Ik] k-1 + 1;1 q;l E[(xk-n xk-n)(xk—m xk_m)] (4.49¢)

We now write (5.49a-¢) in terms of the covariances of the station times for

stations L and j. Since thev depend on which station is visited firstc, we

define Tj; as the covariance of Ri and kj when station j is visited before



station i. Thus

CE[(Rg-xg) (Ry=%;) ] ,
AN B St s R J <1
rlJ = {E[(ii+N—xi+N)(ij-xj)] jo> i (4.50)

In (4.49b), the covariance of ii and ij is expressed in terms of the covariances
of each of %, X

i-(N-1)" ®i-(n-2)° "> ii-l and ij- Suppose that the k th visit

is to station i. Then (4.49a-c) are converted to

1+p ? i].bi(-) 0_2
= — s =
Tt T Syt 7 E[T,] + 5 Var[I ]  (4.51a)
1 (l-p,) (l-0.)
i i
o, N j-1 i-1
r..= — ( z r, + L r, + I r ) j o< 4 (4.51b)
ol i m=itl " g=1 JU m=j nJ
°y i-1 N i-1
r..s—=—( I r, + I r .+ I r ) j> i (4.31e)
ol i m=i+1 7 m=j 1 n=1 ™)
where
i-1 N n-1 i-1
2 - b ind il
Var(I, ] = Sl + I (I r Lo+ Iox
n=l m=i+l "™® m=1 m=n 0
N n-1 N i-l
+ I ( = ro Tt 2 r + = rnn) (4.314)
n=i+l p=i+l '° m=n 0 g=1 T

However, using (4.51b) and (4.51lc), we may write (4.51d) in a simpler form

2 l-oi N
= A T

Var[Ii] Sy * - z rij (4.52a)

i j=1

(j#i)

Substituting (4.52a) inte (4%.31la), we have
1 ] :ibi(z) s, N
p,, =— i T+ =t F[1.]+ I or., (4.52b)
ii (l-oi)2 i-1 (l-si)3 i l— . =1 ij

Yo(i#1)

26



Note that (4.51b), (4.51lc) and (4.52b) constitute a system of N° linear

equations for {rij; i,j=1, 2, ..., N}. Once they have been solved, we may
use them in (4.52a) to compute Var[Ii], which is then used in (4.35b) to

evaluate E[W;].

In the case of identical stations [Humb78,Sec.7.D] we have

2 (2)
r, . pl$ (l-NoJ-ng\rb ] 14 (4.53a)
3 (1-Np) " (1l-g)
) (2)
o = {lto-Ne) (8 (;-Nc}ﬂﬂrb ] (4.53b)
L1 (1-Np) " (1-p)

which leads to (4.21).
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Gated Service Systems

i

-1 Discrete-Time System

We emplby the same assumptions and parameters for the packet arrival
process and reply interval as in Chapter 3 (they are given by (3.1)
through (3.10¢)). In the case of gated service, there is no need for
the gambler's ruin problem. Thus, we start with the distribution for
[Ll(t), Lo(e), ..., Ly(e)] at time t=Ti(m), i.e. the polling instant for
station i, where Lj(t) is the number of packets at station j at time ¢t.

Define the joint and marginal GF's as in (3.21a) and (3.21b), respectively,

For the gated service system, the service time duration for station

i, 7y{m) - 7;(m), is simply equal to Li{t;(m)), the number of packets

found at the polling instant:
Ti(m) - r:[_(ﬂ'l) = Li(_i(m)) (5.1}

Thus the joint GF for the number oE‘Eéckets arriving during the service

time is given by

N

o Sy, Y Lo(7, (m)
Eligy Pylzg 1 L ElioPylzpyminid ]
Therefore, (instead of (3.28)), we get
N
Fl+l(Zl, 22, ey Z.\:) = Ri(j"—:le(zj)).
A (5.2)
- 5.
Fi(zl' 22’ e ey zi"l_, .. PJ(Zj), Zj_+l’ “aay ZN)

j=1
[f we dencte by Li" the number cf packets at station i when it is

x
oolled, we can define the moments for Li as in (3.27), (3,28a) and (3.28b).
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A set of N% equations for {fi(j); i, i =1, 2, ., N}
fi+l(i) = riui + uifi(i)
£.40) = riuj + iji(i) + fi(j) hE )

The solution to the equations (5.3a) and (5.3b) is

N
Mi, L,T
kS17k
E[(L., ]=£f:(i) = T
L8
( i-1 N
1=l CeEide YL )
Y u - i k=1 .
fi(J) My ? kgjfk + p jEi
I - 1

A set of N° equations for {fi(j,k); i, 3, k=1, 2,

given by

are now given by

(5.3a)

(5.3b)

(5.4a)

(5.4b)

., N} are

i .2 2 . . .
Ei+1(J,k)=ujuk(oi +r; )+ripkti(3)+riujfi(k)+fi(1)ujuk(2ri+l)+fi(3,k)

+us £y

i l(i,k)"'bkfi(i,j)+L'jl.lkfi(i.,i)

]

J) N
tL+L(J’J)=“j (4

+fi(j,j)+2;jfi(i,j)+uj2fi(i,i) i#]

T
Eian (Lok)=e g (B e oo By

ol £ (D, ) 14k

3 L 2.2 2
ti+l\1,1)=_i (I.7+r. T+, (",

L L L 1 L
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+ri )+r1.(”3 -“J)+2rlb‘]fl(‘])+rl(l)[u] =

i#j, ifk, j#k

{5.5a)

(5.5b)

2 Sl 2 2., ...
‘°i)+ti(l)[‘i pETRI (_ri+l)]+;i ti(l )

(53.35d)

2
jruy (2rg+l)]



In the case of identical stations, we have

ZuzN cer[l—(N-l)u]

Var{L*] = + >
(1+u) (I-NW) (14u) (1=Nu)

Cin

* Nru
E{lL] = 1-Nu

(5.86)

We next consider the cycle time T;(m+l)-Tj(m) for statiom i (its GF
is denoted by C;(z)). Since the number of packets found at station i at
time t=Ti(m+l) s equal te the number of packets arriving at statien i

during [v;{m), 7;(m+l)], it immediately follows that
Fi(z) = Ci[P;(2)] (5.7)

From (5.7), the mean and variance for the cycle time are calculated as -

N
: r
k= k
E(C;] = E[7 (m+1) - T, (m)] = __1TL____
1I- % u
=1 'k {5.8a)
¢ 2 X
Var[L, ] I1T g Tk
r 1 =
\ar{Cii 5 - N
-1 uizfl— Lo (5.8b)
k=1

Comparing (3.40a) and (3.8a), we see that the mean cvcle times in the
exhaustive service and gated service systems are the same. We may define
the same regenerative process as in Section 3.4.1. Thus the stability
condition in the gated service system is also given by (3.45). In the case

of identical stations, (3.8a) and (5.8b) become

Nr 22y L en?
= > Var[Cl=o——m—— + —
L-NU () (=N ) (1w

E{C]=
(5.9)
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This may be compared to (3.41).

Note that the service time ?l(m)-ri(m) is the number of packets found

at the polling as in (5.1). Thus, its GF, Si(z), is given by
§i(z) = F;(2) : (5.10)
As for the intervisit time, we only know its mean:

N
(l-ug) &) Tk
E[I;] = E[Cy) - E[84] = N = (1-u)E(C, ] {5.11)

l-kgl ke

By comparing (3.33a) with (5.4a), we see that the mean service times in
the exhaustive and gated service systems are identical. So is the mean

intervisit time from (3.37a) and (5.11).

We now proceed to find the GF, Qi(z), for the number of packets at
station i at an arbitrarv time. By the same regenerative arguments as
in Section 3.3, Q;(2) is given by (3.48). The summation domain in the
numerator of (3.48) is divided into the service time [ti(m),'?i(m)] and

tie litarvisit time [Ti(m), Ti(m+l)] as in (3.49). To evaluate the sum

over the service time, recall (5.1) to see that

Li(t)=_i(m)— t + number of arrivals in [Ti(m),t] ri(m)iqi?i(m)-l
(3.12a)
Thus we have

Sl R Z (m)-t t~ (m)]
. - L . - - . i
E, ” z B C z :Pi\Z}: i
< g=7 . (m) i o= (@)
1 L -
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Z{Fi(Z) - Fi[Pi(z)]}

z;}(m)-Ti(m) _ {Pi(z)}?i(m)_ri(m)}

|
|
L | z - P (2) J z - P, (2)

(3.12b)

For the sum over the intervisit time, note that

Li(t) = number of arrivals in [Ti(m), t] ?}(m)ip::i(m+l)~l

(5.13a)
Thus we have
E' Ti(mfl)'l Lile) Ti(mfl)-l {Pi(z)}t-fi(m)
L =T, (m) J t=7_ (m)
1 - Pi(Z)
FilPs (2] - SRy 7P (2)] - Fy(2)
Lo B(@ 1 -25(2) (5.13b)

where we have used (5.7). Using (5.8a), (53.12b) and (5.13b) in (3.18),
we get

N
-z sk FiPy@a ) - Fi(z) (L - 2)P, (2)

ot

Q. (z) =
t ry Pi(2) - = L -Pi(2)
1

([

k
(5.14)

From {3.14) we have the aunmber of packets at station i at an arbitrary

time as



(1 +uEl(L ] g,

E[L,I = -
t 28(L,”] 2u; (5.15a)

In the case of identical stations, we get

2 2
E[L] = 37U g + Nru(l + u)

ir T Ta = v T2 - W (5.15b)

Lastly we derive the GF, Vi(z), for the waiting time for the first
packet in an arbitrary arrival at station i. As before, the waiting time
for an arbitrary packet arriving at station i is given by V;(z)Y;(z) with
Yi(z) in (3.8a). See (3.53a) and (3.33b). Vi(z) is expressed as in (3.54b)
where its denominator is the mean cycle time given by (5.8a). The summa-
tion domain in the numerator of (3.54b) is divided into the service time

[Ti(m), ?i(m)] and the intervisit time {?i(m), T;(m+1)] as in (3.49). We

have
TLie) + (kD) - Tim) - 1Ty ()T (m)-1
Wi (€) = o -
Ly A rp(el) -t -1 Ti(m)<e<Tg (m+l)~1
(5.16)
Since Li(c), té[fi(m),?i(m)], is given by (5,12a), we have
tim=l Nie) i{m-t Ti{mrl)~t-1 . L t=T1 (m) |
Ei __= z = . o z P (2) ) ‘
Coe=%(m) ) _ =T (m) i 4

LT () =T (m) Zti(m+l)-?i(m)_:Pi(z)}?i(m)—ti(m) 5

- Z - PI(Z) -

(3.17a)
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Since L;(t), te{?i(m),ri(m+l)], is given by (5.13a), we have

- Ti(g+l)—l Wi(t)1 FTi(ml)-1
E! -1 ] = Er
L

: ; =T (m) 1y (m+l)-e-1 ]
Loe=t, () Pilz)m itz

-z
t=1  (m
l( )

-

,T1(m1)=T; (m) {Pi(z)i¥i(m)-ri(m)_ {Pi(z)}Ti(m+l)-Ti(m) *

-
|

z - Pi(z) |

|
. 4

(5.17b)
Using (5.8a), (5.17a) and (5.17b) in (3.5&b§, we get
;- zTi(nH-l)-T]-_(m) - ip (z)}l’i(m-l.-l)—‘ri(m)
1 ! i
vilz) = E
E[CiI ! z - Pi(z) f
(5.17¢)
By use of (3.7), we obtain
) 1 Ci(z} ~ Fi(2)
Vi) = E(C;] z - P;(2) (5.18)

From (5.18) we have the mean waiting time for the first packet in an
arbicrarvy arrival at station i as
(l+-JEw.ﬁ 1+u;
-1 i i

E[v,] = Y - = (5.19a)

*
or, in terms of Li ,

% 2 2
D L B N N T
E[v;] = - - .
2.8l L 2 (5.19b)
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Using (3.53a) and (3.53b) together with (3.8a) and (3.8b), the GF

and mean for the waiting time of an arbitrary packet are respectively

given by
1 1-py(z)  C;(2) - Fy(z)

U (2) = TECT TPl T T (5.20a)

and
*
(1+s JE[{L, }21 :.2
E[Ui] = L i - lz -1
2uiE (L, ] 2uy (5.20b)

Comparing (5.15a) and (5.20b), we again confirm Little's relation as in

(3.60).

In the case of identical stations, we have

7
o N T U T Yo T
2 T Ise -2 Yo (5.21a)
and
2
Frer - Ne(isn)
S e A e R M s il (5.21b)

From (3.61b) and (5.21h) we see that

E['} ) Nru

7] s LU
ELu] f exhaustive  1-Nu

gated " = LE{C] (5.22)

Thus, for identical stations, the mean wait for the gated service svstem

is alwavs greater than Chat {or the exhaustive service svstem.



As in Section 3.6.1, we may use (5.21a) to get the mean message wait-

ing time
) = 5o o 800D v ramey) L cPane 1
2r 2{(1 - Nib) 2X(1-NAb) 2 {5.23)
From (3.63b) and (5.23) we again see that
| | Nrib
E[W]E gated E(W] ; exhaustive L-Nib ABE[C] (5.24)

From (5.23), we can get the mean message waiting time at station 1, E[Wl],

when all traffic is generated at station ! (see Section 3.6.1 for deriva-

tion):
S L UM TeEr IV RO R .
1 2r 2¢(1 - NADb) 2x(1-NAb) 2 (5.25a)
which leads to
N{N - 1)Arb
f - | B e————
ELwl] EfW] (L = Nb) = 0 (5.25b)

Note that the relationship between E[W] and E[W;] here is exactly opposite
to the case of exhaustive service system as shown in (3.64b). Also, from

(3.64b), (5.24) and (5.25b), we have the inequalities {RubiBi]:

E(w] |

< <
exhaustive — i gated —

< E{W]

E[hll exhaustive —

E(Wy] gated

(5.26)
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5.2 Continuous-Time System
This section deals with the continucus-time system; the assumptions
and notation for the message length, message arrival process and reply

interval are carried over from Chapter 4.

We first find the relation between Fy(zq, 29y seey zN) and Fi+l(zl'
Z9, aany ZN)‘ In the case of gated service system, the number of messages
served in the service time for station i, ?i(m) - ri(m), is simply
Li(ri(m)), and each message service takes a time given by Bi*(s), Thus,

we have

E'[e-s{?i(m)-‘ti(m) }} T [Bi*(s) ]Li(Ti(m)) (5.27a)

Hence the joint GF for the number of message arrivals during the service

period for station i is given by

\ L1 (Ti(m))
P Gy -y I

fw-]
—~
1] e A

(5.27b)

Tne joint GF for the number of message arrivals during the reply interval

between station i and statien i+l is given by

N
R, ( $51 («3 ‘jzj) i (5.28)
Hence, we nave
N
Fiel(z1aza, e iz) =Ry (L2 Cymhgzp )
w3 (5.29)
.F AN T T e .
i(zl z, - B1 [ (X, Rjzj)], Zipr gy

j=1

Now, define the moments Jor [Ll(t), Lr(z), ..., LN(t)] at time c=ri(m)

7 .
as in (3.27), (3.28a) and 7:!.13b), A set of N” equations for L6 (305 1, 1=
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1,2,...,N} are given by

Eiv1 () = rydy + cif5 (D)

fi+l(j) = rilj + Ajbifi(i) + Ei(j) j*i
The solution to (5.30a) and (5.30b) is
N
* ] ‘i Tk
E[{L, ] = fi(l) = N
L= &) %
{ i-1 N 1
| i1 kS PO E T )
£.(j) = v, = + d ;
l(J) Jf k=j rk § } J#i
3 L= id % !

A set of N3 equations for - f;(j,k);i,j,k=1,2,...,N!

are given by

(5.30a)

(5.30b)

(5.31a)

(5.31b)

- > & .2 2 e . - 2 .
ti+l(J’k)=AjAk(¢i +ri )+ri‘kri(J)+ri\jfi(k)+fi(l)'j k{zribi+bi( ))+Ei(J,k)

. . . . 2, . ..
+bi.'\kfi(i,_])+bi,‘\jfi(1,k)+bi '\j"‘kfi(l’l)

PRES LT

B

2
A = i i
+ i\kbi Ei(l,L)

(2)

, 2,.2 , iy 2,
fi+l(i,l)’\i (:i +fl )Tfi(l)xi (2fibi+bi )+(\ibi)

In the case of identical stations, we have
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“('i +ri )+ri-iti(k)+ti(1) [ k(zribi+oi

i#j, i#k

<2))+?. f
1 1 1

igk

2 .,
fi(l,l)

{(5.32a)

o f.(i,x)

(5.32B)

(5.32¢)

(3.33a)



o 5232y N3 (2 222
(1-Np) (1+p) (1-Np)" (1+p) (1-Np) (5.33b)

Let us now consider the service time, intervisit time, cycle time,
and number of messages served in a cycle. First, the LST of the distribu-

tion function for the service time for station i is given by (5.27a), i.e.,
s * *
i (s) = Fi[Bi (s)] {5.34)

from which we have

|
* 01 &%k
E(Sg] = b.E[L "] « — KL -
l1- 7 »p (5.35a)
k=1 k
- * 2 *
Var{s;] = biZVar[Li ] + (bi(z) - bi")E[Li ] (5.35b)

In the case of identical stations, by using (5.33b), we have

il
NEo i“N:z Nkrb(z)(1+o—x;)

= , Var([S]s———= o
[-N. (L) (=8 7 Ly (1ome)? (5.36)

E[S] =

wiich corresponds to (3.5} In the discrete-time svstem.

Tie number of messages served in a cvele is exactly the number of

messages [ound at tne polling instant:
Ti(m) = Li(Ti(m)) (53.37a)
and so, bv (3.3lz), we have

E(Ti(m)] = E{L (i) = 2(L, | = (5.37b)

>
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The LST of the distribution function for the cycle time for station i

is givenrthrough a relationship similar to (5.7):
* -
Fi(z) = Ci (A; - Ay2) (5.38)
or
*
C, (s) = Fy(l = s/3y) (5.3%a}

from which we have

LT It

*
E{L, ] -, Tk
E[Ci]= Al - k

i

1
V ?
_Jk
k=1

. L (5.39b)

In the case of identical stations, by use of (5.33b), we have

,
Nx Var [C] = - 52N + NZkrb(“)
I-No _ =80+ 7 o) 2 (140) (5.40)

E[C]=

which corresponds to (5.9) in the discrete-time system, and to (4.24) in
the exhaustive service system. From (53.39b), the stabilitv condition is

given by (4.23),

As for the intervisit time, we only know its mean:

N
(1-05) I, 7k
E{1;] = E[C;] - E[S,] = = (- pE(C)

1 -

124

L2 5.41
k=1 Tk (5.4L)

Compare (4.14a) and (5.35a): (4.20b) and {3.41); (4.23a) and (5.39b);

(4.17a) and (5.37b). We see that they are respectivelv identical.
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We next derive the GF, Qi(z), for the number of messages left at
station i after the message service completion at station 1. By the
same regenerative érguments as in Section 4.3, Qi(z) is given by (4.28).
Note that the denominator is given by (5.37b}. To evaluate the sum in

the numerator of (4.28), note that

Li(ti(n)(m)) = Ti(m) = n + number of arrivals during n service times

(5.42a)

Thus we have

Ti@ () oy | Ty (m) *
E ( z le(“l (m)) | E z zTi(m)-n {B, (Ai-liz)}n
L n=1 | n=1 i
Jd -
By (hi-hj2) T Tym) T, (m) ]
= e E - - ‘.Bi (p\i‘)\iz)} i
z=B, (*.-%.2) :
] i i - -
B, * (b =r,2)
i i7" * ,
= o . . FL(Z) - F]-[Bl (‘\1-\12)]; (B.AZb)
z-B. (%.-%.z)
i i i .
Using (3.37b) and (3.3%2b) in (3.28), we get
N *
1 - ¢ © B, ™(\; = A:z2)
k=]1"k i i i . * 1
Qi(z) = . F.(2)-F,[B, (A, = A, 2)];
N .- Bi*(k- - .z) i i1 i i
e o Ay 5
oark
(5.43)
From (5.43) we obtain
\i
(1= 2. (L + o508 (L,1)
: k=l X 7
E[Ll] = -1 + & . }
=L By (5.44a)
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In the case of identical stations, by using (5.33b) we have

f(L] = o+ 0k Nre) | 05D
e Y IV T 2(1-N) (5.44b)

We have derived (5.43), (5.44a) and (5.44b) for the number of
messages at message departure instants, However, for the same reason

mentioned after (4.30b), we may think that they hold at any instant.

- . ' . *
By an argument similar to Sectionm 4.4, we may find Wy {(s), che LST
of the distribution function for the message waiting time at station i.

Using (5.43), we have

N
~ 1- z Ck * _
. Qi(l~s/Ki) k=l . Fi[Bi (s)]-Fi(l s/li)
Wyt(s) = * B N *
Bl (s) Z T S-)‘i+’\iBi (s}
k=1
(3.453)
From (5.45), we get
N
(L - kgl S (L + o) (1, 1)
E[W.] =
W, ] —
24 T r (5.46a)
1 kIl k

From (3.%4a) and (3.46a) we may again confirm Little's relation (4.34).

In the case of identical stations, by using (5.33b) we have

22 ) . ., (2)
E(W] = f? + Ne(l + 2) Nib

701 - No) T = WO (5.46b)

Again, note that (35.46b) “as the same form as (5.23) when Poisson arrival

is assumed ({2=l) and "a nalf slot'" is made shrink te zero in (5.23).
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We may express Wi*(s) in terms of Ci*(s). Namely, by use of (5.3%a)

and (5.39b) in (5.45), we get

L Ci*[Ay=AB ™(8)] - C *(s)

* - .
Wy (s) E(C,] S=A A B % (3) (5.47a)

from which it follows (also from (5.39b) and (5.46a)) that

’ ‘.‘2
(1 + Qi)E[nCiJ ]

e L T (5.47b)

We now present an algorithm to compute E[{Ci}zj by solving N2 linear
equations using an idea similar to that in Sectiomn 4.5. (Qur treatment is
based on [Ferg84]. A similar analysis is in {Cars77].) For the gated.
service system, we define the station time ik at the k th visit as.the
service time for the current station plus the reply interval to the next‘

station. See Figure 6, Thus, if the k th visit is to station i, we have

~

Xy = Ti+l(m) - Ti(m) (5.48)

The cvcle time before the k th visit, Cy, may be expressed as

N N-1

Cko= 2, Ry -

i 220 Xg-N+m (5.49)
The probability density function Pk(xk-(N-l)""’xk—l’xk) and its Laplace
transform Xk*(sl,sz,...,sx) for the N successive station times X =
[ik-(N-l)""’ik—l’xk] are vrelated by (4.43). B3y an argument similar to

one leading to (4,344}, we nave
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: = rw
DA PR W R R Pk-r;(xk-N'xk-Nﬂ"" 2 X1 9%y
x 2 . *(m) 1 N o N
.{ de(t)m;O b (x=t) =% (Akjél Kiwi) exp[-(kkjglxk_j)]
(5.50)
where bk*(m)(t) denctes the m fold convolution of b (), the probability

density function for the service time at the k th visited station. The

Laplace transform of (5.50) is now given by

xk*(sl’ 52, neey SN) = Rk*(sN)

Kiea "OR[L-By* (sy) 1, s1h (L-B ¥ (801, veey sy 1+ [1-B ¥ (s) 1)

(5.51)
From {(5.51) we mavy derive the mean of ik:
X T EMR] = 1+ 3E(C] (5.52)
and the covariance of ik and Ek-;i
Bl -k 2] = ool PElC] + 22 varicy] (5.53a)

- . = B U U — -
E[(xk—xk)(xk_j—xk_j)j = :km:l E[(xk_m—xk_m)(xk_j-xk_j)] (3.53b)

where (from (3.39))

NN _ - _ )
\ar[Ck] = mgl ngl E[(xk_n - xk_n)(xk_m - xk_m)] (5.33¢)
If we define ryj as in (%.,30), equations (5.53a-c) are converted to
2 (2 - 2 /
ri; = ;i * -ib; fC.] + oy" var{Cy) (5.34%a)
¢ 3 L ot i=l . (5.54b)
o= . . ; < 3, 5!
T i O, Cim . Cim + m:j m3 ) i 4b



j=1 N 1-1
rij = fy ( mEi Tip * mEj Epy + mEl Thj ) j>1i (5.54¢)

where

( Z r + I r + I r )] (5.54d)

N
rjs + I ra (5.55a)

Substituting (5.53a) back into (5.54a), we have

c 2, (@ 3 2 N .
rig = 8,7 + Ab TUE[C ] 4+ o) jzl tij + oy 551 Tid (5.53b)
(j#1)

Now we see that equations (5,54b), (5.54c¢) and (5.55b) constitute a system

2, ) - o : . .
cf N~ linear equations for {rij; i,j=1,2,...,N;. Using the solution in

(5.55a), we can compute Var[Ci] which is used in (3.47b) to calculate

E(W,].

As an example, consider the case N=2. By solving the above
equations, we have

2 (2) 3 2
(5]_ +’\1b1 E{Cll)(l+202-202 -oloz-zcloz )

2 (Z)E[

Var(C;] =
(l';1~2)(l'cl*cz)(l+°1+92+23192) (5.36ha)
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As before this can be used to obtain the mean waiting time in the system

of zero reply intervals. In this case, from (5.47b) and (5.56a), we have

2 3
Y 0512 (1420,-20,%-9 10,20 18,140 0, D (14010
E(Wp] =

2(1=p1p2) (1-p1=03) (l+p1+02+2p103)

(5.56b)
We can again confirm the conservation law in (4.37a) and (4.37b).

In the case of identical stations, we have

2, (2)
ryy = 22 UsNo)HUeb ] 145 (5.57a)

(1=N2) " (1+0)

2 . L (2)

c=Ne) [ =NO )N

L.ii (l1+c=Ne) [ (1l J+NArh ] (5.575)

2
(L=Nc) 7 (1+0)

which leads to (53.40).

Lastlv, let us play with (53.46b), the mean message waiting time

tormula in the case of identical stations. From (4.33b) and (5.46b), we

have

i : a DE L =
EL4) gated E[wl‘exhaustive 1=Nc cEfC] (5.58)

As before, the mean message waiting time at stationm 1, s[wl], when all

traffic is generated at station 1l is given by

R 5
- T (leN 5:-5(')
2(l-4 o 1{l=N3b) {3.59)
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From (5.46b) and (5.59) we have the same relationship as (5.25h).
Thus, we alsc have a relationship (5.26) in the continuous-time system,
The mean message waiting time in a Poisson bulk arrival system (defined in

Section 4.4) is given by

E[(W] = & + Nr(l+igh) Nags (¥ L @y,
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6 Limited Service Systems
6.1 Symmetric, Continuous-Time System
6.1.1 Problem Statement and Formulation

We consider a system of N identical stations served by a single server.
Each station, with infinite capacity, has an independent Poisson message arrival
stream with a rate :. Let B*(s), b and b(z) be the LST of the distribution
function, mean and second moment, respectively, for the message length (measure-

B*(l)(O) and b(z) = B*(Z)

ed in service time): b = - (Q3). The server administers
service to one message at a time, if any, from station i, and with a finite
reply interval it goes to inspect station i+l. Let R*(s), r and 62 be the
LST ;f the distribution function, mean and variance, respectively, for the

- *(1) .2 *(2) 2
reply interval: r = -R (0) and é7 = R (0) - r, We note that all these
glven parameters are the same for all stations, i.e., we have a symmetric

svstem.

Let
Li(t) z number of messages at station i at time t
and define the joint GF for [L)(t), L,(t),..., LN(E)] at time t = t;(m), i.e.,
st the time when station L is polled as in (3.2la):
N Lj(ri(m))‘!

.l
2,..., N = '.__ Zz ‘ (6.1)
S

Fi(zl, z
j=l a

Similarly, define the GF for Li(t) at the time when a service at station i

is finished:

- Ly{service ¢ letion ti
Q(z) = £lz 4iservice complet t me)] (6.2)
— .
(Here subscritp i i3 dropeed ‘rem Q(z) because it is the same for all i.)
Note that this "'service cozpiztion time'" is different from 5ri(m): since
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{?i(ﬁ)} refer not only to the instants when the service 1s actually given and
finished (service completion times) but also to the instants when there are

nc messages foun& at the polling and the server goes to check the next statiam.
Hereafter, we choose station 1 as a representative. Now, the relationship
between Fl(z, l,..., 1) and Q(z) is provided by

Fl(z, 1,..., 1) - Fl(O, 1,..., 1)
2(1-F, (0, 1,..., D]

*
B (A=-hz) (6.3)

where Fl(O, 1, ..., 1} is the (marginal)} probability that there are no messages
at station 1 when station 1 is polled. From (6.3), we have

dFl(z’ l,---, l)

(1) _ dz z=1
Q) = 1—?1(0, 1,..., 1)

- 14+4b {(6.4)

Our aim is to find the mean message waiting time E[W] which is evaluat-
*
ed from W (s), the LST of the distribution functicn for the message waiting

*
=W (l)(O). Since the messages left at station 1 when a message

time via E[W] =
at station 1 has completed service are those which arrive while that message

is in the svstem, it follows that

WO - 2)B (- a2) = Qa) (6.5)
Hence we have
WEMN] + ib = @Y () (6.6)
which is the mean number of messages in each station at the time of message
departure from that station. Thus, by use of (6.4) and (6.6) we may compute

E{W] once we have avaluated Fl(O, L, ..., 1) and [dFl(z, 1, «-y l)/dz]z=l’

This we do in the next section.
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6.1.2 Mean Message Waiting Time

Let us derive the relation becween F (zl, Zyy 1oy Z ) and Fi+1(z 1259

.;2.). To express F, +l(zl’ Zorenes 2 ) in terms of F (zl, Zyseeny zN),

N
note that [Ll(t), Lz(t), fees LN(t)] at t = ri+l(m) is [Ll(t), Lz(t)""'

Ly(t)] at ¢ = 7,(m) plus the number of arrivals during a message service time
(if Li(Ti(m)) > 0; in this case also minus one from Li(t)) and a reply interval.

Thus we get

N
*
Fir1(21s 220000, 29) = R [z (A-Azj)]
j=1
N
{B [ £ (A= AzJ)] {F (zl,zz,---,ZN)-Fi(zl....,zi_l,O,zi+l,...,zN)]
j=1 i
+ Fi (zl,--.,zi_l,0|zi+l,---,ZN)} i = 1, 2,...’ N (6.7)

This is the governing equation .of our system.

Now, setting z, =z and zy = .= zk—l = zk+l ... =z = 1l 1in (6.7)

yields

+ Fi(l,...,l,O,l,...l)} k = 1 (6.8)
and

*
Fiop(lieenaliz, 1o, 1) = R (A-d2)
%*
.{B (=22} (F (1,00, 1,2, 1,000, D =F (1,..0,1,2,1,...,1,0,1,...1)]
o0 PEC TP I35 PODUIS SIS SISO k #i (6.9)

where z and O appear in the x th and i th positions, respectively, of Fi+l



and F.o Differentiating each of equations (6.8) and (6.9) with respect to

z, lerting z = 1 and adding them up, we have

1=-NX (r+b)

F L0, 1, vony 1) = S50

(6.10)
where we have used symmetry condition.
Next, we obtain the equations which express Fk(z, 1, ..., 1) in terms

of Fl(O, 1, ..., 1) and Fj(z, 1, ..., 1,0, 1, ..., 1) (where 0 is the i th

argument} (j = 2, 3, ..., N) for each k. They are derived by repeatedly

using (6.7). Introducing notational convention
* *
R 2R (A-2z) ; B 2 B (A=rz) (6.11)
we have
N-1 b N~j
(RB)""R(z-B)F (0,1,...,1)+ 1 (RB) JR(l-B)sz(z,l,...,l,O,l,. ,1)
Fl(z!l!"'sl) = - N
z=(RB)’
(6.12)
and
k=2 k-l kel
(RB)™"“R(z-B)F, (0,1,...1)+ I (RB)" 1 "R(1-B)zF (z,1,...,1,0,1,...1)
i=2 ’
\ /
/ N Neitke-1 \
! + ¢ (RBY R(1-B)Fj(z,L1,...,1,0,1,...1)
F (2, L,on,1) = izk .
z~(RB)"
k=2,3, ..., N {6.13)
Thirdly, by setting 2,=z,=...=2.=2 in {(6.7) and noting svmmetry, we obtain

R (NC - 2) 1 2-B (NO=32) 11, (0,2, 2)
Fl(z,...,z) = < = (6.14)
z-R [N(x=xz)]B [N(A=-%2)]

112



To find [dFl(Z, 1, ..., l)/dz]zsl, we use a relation

(dF ) (2,000 ,2) N [dF, (z,1,...,1)
= T «
{ dz zul w1 dz aml (6.15)

which represents the sum of message numbers in all stations when station 1 is

polled (due to symmetry). In evaluating each term of (6.15) from (6.12),
(6.13) and (6.14), it turns out that each term of (6.15) can be expressed

with a single unknown constant

-

dFl(O,z,...,z)-

J {dF,(2,1,...,1,0,1,...,1
| Jj ’ )
L dz J

dz

(6.16)

I ez

2 z=]

which represents the sum of message numbers in stations 2 through N when
station 1 is polled and found empty (due to symmetry). Thus we may solve

(6.13) for [dFl(O,z,...,z)/dz]z=l te obtain

"dF, (0,2,...,2)]
I . . N(N-D)ir
i dz ;z=l 2[1-N) (z+b)] F (0,1,...,1) (6.17)

The mean number of messages at station 1 when station 1 is polled is then

given bv

'dFL(z,l,...,l)]
dz

= Fl(O,l,...,l)
z=1

2 .2 ‘ . . 2
N\z(r +:T)+2N N‘r{ZNkzrb—(N+l)Ar+Nk b(Z)

]
N T (I-NAb) [1-NA (c40)] (6.18)

Finally, substituting (6.10) and (6.18) into (6.4) and (6.6}, we get

2 V[‘b(2)+ ‘- _)+,.2]

. DR ril+n)+
EW] =.Z_+ 2[1=Nir+n)] (6.19)
Comparing (6.19) tv t-.33b) and (5.46b), we have the inequalities in
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the symmetric, continuous-time systems:

E[W]]exhapstiveﬁli[W]I gated S E[W] | 1imired (6.20)
This disadvantage of the limited service system, however, is compensated for

by the fairness among stations.

6.1.3 Decrementing Service System

A similar analysis can be carried out for the "decrementing" service
system {(Takag84] which is defined as follows: when there is at least one
message found at the time of a polling for a station, the service for that
station continues until the number of queued messages decreases to one less than
that found at the polling instant. Although there seem no such service
schemes applied in a real-world system at the present, this scheme comple-
ments the drawbacks in the exhaustive and limited service systems in the
following sense. As we show below, this scheme gives the mean message waiting

time smaller than that for the limited service (K = 1) system (though it is

-t

greater than that for the exhaustive service system). Yet our scheme is
expected to prevent, to some extent, though not completely, a heavily loaded
station from monopolizing the server. Thus, we claim that our shceme falls
in between the exhaustive and limited service systems in terms of the mean

message waiting time and fairness among stations,

The parameters given to our system are the same as described at the
beginning of Section 6.1.1. We also define Fi(zl’ Zysenes ZV) and Q(z) as

in (6.1) and (6.2).

We now note that the number of messages left behind at station 1 when

message service at station 1l is finished consists of two independent compo-



nents. One is the number of messages at the pelling instant minus one whose
GF is denoted by Ql(z). The other is the number of messages which arrive and
are served during the contiguous service period for station 1 which is generat-
ed by a single message service time; we denote by Qz(z) the GF for the latter.
(Here we have assumed the change in order of service for messages; this is
allowable since we are only discussing the number of queued messages.) Since
the two numbers are independent, we have |

Q(z) = QI(Z)QZ(Z) (6.21)
By definition, Ql(z) is given by

Fl(z,l,...,l) - Fl(O,l,...,l)
Ql(z) = z[l-Fl(O,l,...,l)] (6.22a)

from which we have

{dFl(Z,l,...,l)

(1) ol dz z=]
QT = IF,(0,1,.. D)

-1 (6.22b)

Next we see that Qz(z) is the same as the z-transform for the distribu-
tion of the number of customers left behind by a departing customer in a single

M/G/1 queueing system; see for example [Klei75,Sec.5.6). Thus, we have

* . .
Qz(z) = (L--bi(z-l)B (-'2) (6.23a)

z=B (i-yvz)

and
+ b (6.23b)

The message waiting time can be found by (6.53) and

(1)

. (1) (6.24)

Dy 2,

Note that the service time :.r each station has the same distribution as that



for a busy period in a single M/G/1 queue. Namely, it is given by (4.3a) and

(4.3b) where the subscript i is dropped.

Qur analysis to find F,(0,1,...,1) and [dFl(z,l,...,l)/dz]z’l goes

quite parallel to Section 6.1.2. First, Fi+1(zl,zz,...zN) is expressed as

« N
F]'_+]_(zl,22’l QZN) = R [‘:. (\—:\Zj)}
j=1
0T ) 1
A0 j;l {A-iz.)] zi[Fi(zl,zz,...,zN)-Fi(zl,...,zi_l,O,zi+l,...,zN)]
(i#1)
+ Fi(zl,...,zi_l,O,zi+l,...,zN)} i=1,2,...:N (6.253)
from which we have
_ l-Nirp-(N=1) A8

Fl(O’ll---,l) - l-(N-l)/\e (6.26)

Relations (6.15) and (6.16) hold also in the decrementing service system.

They lead to

Gz a v ® P g
‘ dz ! B

. sz=1 2[L-Nar=(N=1)Ar9](Ll+\2)

(0,1,...,1)

1

(6.27)
The mean number of messages at station ! when it is polled is then given by

‘dFl(z,l,...,lf
dz

[1-(N-1)X8]N A2(62+r2)+2N1r(l-NAr)
2

L

iz=1 2{1-Nar=(N=1)23]

2.(2) .., 2
+ N(N=1) r{:y" g +2 e \GRAL (A 9) T+AT=-226(1+19) ]

2[1—N3:—(N-L)F%]2 (1+r8)

Fl(O,l,...,l) (6.28)

Substituting (6.26) and (».28) into (6.22b), we get

116



(1-(N-1)28]A (6 %+22) , =008 Pirarie?]
2[1-Nir-(N=-1)A8]r 2[1-Nir~-(N-1)A8](1+r8)

Q(i)(l) = (6.29)

Thus, from (6.23b), (6.24) and (6.29), we have the mean message waiting time

as

[1-(N-1)A8]6&2+Nc2 (8~1)r8 "2 ap (2

Bl = S lmr-(N-Drelz © ZiMe-(-DieTmey * Taoey  (6+30)
Comparing (6.30) with (4.33b) and (6.19), we get
BT o xhaust ive E-E{w]!decrementing i-E[w]!limited (6.31)

for the symmetric, continuous-time systems.- In Table I, we show a numerical
example for the mean message waiting times E[W] in various continuous time
systems. In this example, E[W] (decrementing) < E[W}(gated) for small values
of the total léﬁd AN, while E[(W] (gated) < E[W] (decrementing) for large

values of M.

A note for the mean cycle time. Since messages are found by polling
with probabiliecy 1 - Fl(O,l,...,l), and the mean duratioﬁ of the service
time for a station is given by 3, we have

E[C] = Nr + Nﬁ[l-Fl(O,l,...,l)] (6.32a)

Using (©8.29), we zet

Nr -
- 3
TN b (6.32b)

[nh]

~—

)
13

which is again identical to those for other service systems.



Table I. Comparison of the Mean Message Waiting Times in the
Exhaustive, Gated, Limited (K=1) and Decrementing

Service Systems.

2

(Parameters: N=10, r=0.1, 5“=0.01, b=l, and b(2)=l)

; AN exhaustive ( gated i limited decrementing !
% 00 L3500 5500 | .s500 | .5500
Co.os .6000 6053 .6085 .6031
.0 .6536 L6667 6742 6628
.15 L7176 ©.7353 | L7483 .7302
| .20 .7857 L8125 .8333 | .8670
T I .8667 9000 % L9310 .8953
o0 .9571 ~Looo o 1.045 .9980
L35 1.062 -~ 1,115 0 1.179 1.119
LL40 1.183 1.250 1.339 1.263
.43 1.327 1.409 1.535 1.438
50 1.500 1,600 1.778 1.655
.55 1.711 o 1.833 . 2.089 1.931
60 1.975 2.125  2.500 2.294
.65 2.314 2300 3.070 2.793
70 2,767 3,000 - 3.913 3.523
.75 3,400 S 3.700 5.286 \ 4,690
.80 4.330 4,750 7.917 6.858
.85 5.933 6.500 15.00 12.27
.90 9.100 ~10.00 100.0 50.00

.95 ! 18.60 l 20.30 - -

6.2 General, Continuous-Time System
We now proceed to consider a limited service, continucus-time service
system such that at most X, messages are served continuouslv at station 1 out

of those found at the puiling (i=1,2,...,N). All messages which arrive once
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the service has started are reserved for the next round. We employ the same
assumptions and parameters for the message arrival process and reply intervals
as Chapter 4 and Section 5.2. Thus, the special case of K, = = for all i reduces

to the gated service, continuous-time system considered in Section 5.2.

For the limited service, coatinuous-time system, we have an explicit
solution to the mean message waiting time only in a special case of statistically
identical stations and Kisl Eor all 1. This special case has been considered
in Section 6.l1. In a general case considered in this section, however, we
can only find explicitly the mean number of messages served in a cycle, and
the mean cycle, intervisit and service times. They are all shown to be
independent of {Kj; 1l<j<N! and even equal to those for the exhaustive service

system, respectively,

We may refer to [Hash8lb,Sec.5.3} for the analysis for mean waiting
time in the case of N=1 (a single queue-where at mogt K>1 messages are served
at a time followed b? a forced ldle period). It gives the mean waiting time
in terms of the K-1 roots {within a unit circle) of the equation

o
N

2N 2R -2y (B etz

= 0 (6.33)
n.l.1l  Number of Messages at Polling Instants

Due to the limited service discipline stated above, if there are k<Ki
messages are found at the pelliang of station i, then k messages are served:
if Ky or more messages are ‘ound, then Ki messages are served., This scheme
manifests Ltself in the vl wing eugations for the joint GF for the number

of messages found at che ;.o ...nz (nstants;:



1+l(zl’22’ ,z\l) = Ri [.E {3 —.\jz )]
j=1
K;=1 N k
1 * - IF (Z 124y x4
N A N A LT e S A
k=0 j=1 11 k! K
3z, z =0
i
L 3
+{=B [ Z (A,-h,2.)]] F.(2,,2,,00.,2.)
z; j=1 4 1] 2 !
K. -1 LK
i i ] k{ 1 3 Fi(zl’ZZ"' ,z\‘T)j 6.3
kg L K 5z & z.=0 ‘
i i
Using Taylor expansions
k
Klz-l , k(_L 3 F.(zl, ,ZN)} . (z . )
2 1 T ¥ )
k=0 i’ ke Z-K 2 =0 i1 N
i i
k
= a F.(z » )zv)
TR, e — (6.35a)
=K ) jz, z =0
i i i
and
K:=1 N k 55F ( z,.)
L . k] - fl v ¢ zl) Y4y j o o
- 'Bl [ - (‘ - .z.)]‘l IEI_ k
k=0 j=1 1] ‘ 'z, z,=0
Yt N
= Fi(zi,'..’-L"l' Bl [_- (‘ '\jzj)]; z +1° ,Z‘,)
j=1
k
N 3F,(z z,.)
* ~ l 1 » N
-5 (BT L Oz R — ) (6.35b)
k=Ki j=1 azi z2.=0
we may rewrite (6.34) as
) * \ \
Fi+l(zl’22""'z.\” = Ri [._ { J-.«.jzj)]
j=1
- }
Fl(zl’ v*’-l ].’BL LJ;l(‘J""jZJ)], zi+l»‘°'! Z-\:



8

x Y k 1 akFi(zl,zz,...,zN)
(8; [ Z G-z} (4 -

i
K. j=1 -
i J 321 2, 0

]
il

k

o i
N K, = 3F, (2.,2,,.00.,2.)
* * ] ,
ol T S Y I P e b L Lsihle i S
i j=l 1] k=K, ' 2z, z,=0

(6.36)
We now define

k
. )k-Ki(_J; 3 Fi(zl’ZZ""’zN)
i k! k d

K. 3z. =
i z; z, 0

F A
Fi(zl’ZZ""’zN) 2

K a2 8

k

K. N L.{(x,;(m)) .
1 ]t . N
FLi(ti(m)) -Ki_ (6.37)

5T TR (6.38)

It zan be seen that (h,38) reduces te (5.29) when Ki = » (in this case,

Fi(zl,...,zN)£0).

Let us use £ (j) and £ (j,k) defined by (3.27), and £, and Eij defined by

SF (z,.2,,....2..)
L I -

L -

i = Z]'_ z =Z.'2 —.zx=l
) :F.(z vZ 5, L2,
B ey ay (6.39)
] 2% 1 72777 %y



Taking the first derivatives of (6.38), we get

fi+l(i) = ?i trA +oey [fi(i) - fi] (6.40a)

Epp () = mghy +00b; [E,(D) = £]1 + £.(5) 344 (6.40b)

We may solve (6.40a) and (6.40b) for {fi(jJ - Ei} to obtain

N
AL Tk
* s Y=l
E[L; ] = £, (1) = fy + —x — (6.41a)
1- 2 ¢
kel ©
[ i-1 N
e LR R
R R T | j# (6.41b)
| k=] - = . |
Ty
- k=1 -

A set of equations for the second derivatives are given by

. o4 gc 22 . .
fi+l(J’k) A k(oi +ry ) o+ rilkfi(J) +‘rikjri(k)
# s (8 (D-F 12 b +b. %) + £ (5,K)
kL i i"i i i’

+ bi\k{fi(i,j)-fijl + bi\j[fi(i,k)-fik]

20 e e i e s T -
+ bi ‘j\k[ti(l,l) fii hKifi] i#j, ik (6.42a)

, ] 2 2 . - (2)
Y o= ) ) Y] -
fi+l(1,k, \iak(ﬁi +ri )+ri\ifi(k)+\i\k[fi(1) fi](2r1b1+bi )

Lo p 2 .oy - -
+ bili[ri(l,k)-fik}+bi xixk[fi(l,l)-fii-zxifi]

k#i (6.42b)

o
ta

(2)

s . 2 2 Sy .
(i,1) = \i (:, Ty )+,\.i [fi(l)--fi}(Zribi.bi )

(£ (1,1)-F, -2K f, ]+f, +2K, 3 b f .
+(\ibi) Lhi(l,l) £y ZKifi]+fii+ Ki ibifi (6.42¢)
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Although these equations have forms similar ta (5.32a-c), we have so far

been unable to find any scolution even in the case of identical stations.

6.2.2 Number of Messages Served in a Cycle

We define F (z) by (3.21b) and Fy (z) by

Fi(l,...,l,z,l,...,l) (6.43)

ne=

?1(2)

where z is the i th argument in éi(l,...,l,z,l,...,l). Since the number of
messages served in the m th cycle at statiom i, T;(m), is equal to Li(ry(m))
. . 1 >

if Li(ri(m)) < ki 1, and equal to Ki if Li(fi(m) e Ki’ it follows that the

GF fcr T;(m) is given by

-k
E(z I = - Pyl DA
k=0 - dz~ | 2=0
K, Ki-1:) dkF.(z)
+ 2 I- - !ET ] (6.44a)
k=0 7" 4z z=() . )
Using fi(z), this can be written as
ez 2 F o) ¢ 2N (R ) - )] (6.44b)

The mean number of messages served for station i in a cvcle is thus

given bov

N
B i z T
- .. o k=1 ,
E[Ti(m)] = (1) - i, = q (6.45)
1- :k
K=l
We note tnat this is indepon.oant of -Kj; l_j<¥; and even equal to thar for

the exhaustive service svsc=7; see (4.17a) and (3.37b).



6.2.3 Mean Intervisit and Cycle Times
In order to find the mean intervisit time Elt; (m+1)-T;(m)], let us use
a relationship

Li(ri(m+l))=Li(;i(m))-+numberof’arrivalsin[?i(m), ri(m+l)] (6.46a)

where we must note that the two quantities on the right-hand side are dependent.
However, we can still argue about their means; thus, from (6.46a) we have

E{Li*] = E[L (T, @)] ++ E[1,] (6.46b)

The GF for Li(;i(m)), i.e., the number of messages at station i when the
service at station i has finished is given by the second factor of (6.38)

with 2, =z and zj = 1 (j#1i):

= Fi[Bi*(Ai—\iz)l

+ B *(A - Z)JKi  Fy F (B *(A =i z)]: (6.47a)
i i ,\i ;;1(2)—Fi °i Ikt ; .4/7a
from which we have
- # =
E[Li(ri(m))] = DiEiLi ] + (1 - Di) £, (6.47h)

Substituting (6.47b) into (6.46b) and using (6.4la), we have the mean inter-

visit time

(6.48)

Again, this is independent of in; 12j5N}, and is identical to (4.20b)

(exhaustive case) and (3.+1) (gated case).

Since the mean service time for station i in a cvcle is given by



biE[Ti(m)], we have the mean cycle time

N
Ir
k=] k
N

1- Z Ok
k=l

E(c;] = E{L,] + bistri(m)J - (6.49)

which is once again equal to that for the exhaustive service system in (4.23a).

6.2.4, Queue Length and Waiting Time

Here we derive formal expressicns for the mean queue length and mean
waiting time. The GF for the number of messages left at station i after the
completion of each message service, Qi(z), can be expressed in the same way

as in Section 5.2. From the second line of (5.42b), we have

B, * (-1 2)
Q; (2) = —* S ——— . &2
E{Ti(m)] Z-Bi (li—KiZ)

] T.
-iBi*(li-Xiz)} i

(6.50)
where the GF of T,;(m) is now given by (6.44b). As before, we may think that

(56.50) holds net only at message departure instants but also all other times.

From (6.30), the mean gqueue length at staticn i is given by

(1~

. . i iN_ e+ _9w F
0 ) uk)(1+-i)[fi(1,xf £.. "KiEiJ
i

1 Ll

H ot W

e

2)1

T
K k

1 (6.31la)

il e

Applying Little's result in the form of (4.34), we have the mean message

walting time

Elw.] = ——=x=i (5.515)




6.3 Symmetric, Discrete-Time System

This section presents the discrete-time version of a model in Section

Let us define our system specifically. We consider a system of ¥ iden-
tical stations (indexed as i = 1, 2, ,.., N) served by a single server. Each
station has an infinite capacity buffer. The reference time is slotted with
slot size equal to unity. The number of messages arriving at each station is
assumed to be independent and identically distributed with a(z), i, and YZ

(1) At

2 2
the GF, mean and variance, respectively; A = A (1) and vy = (L) + % = \7,

We assume that message service times are integral multiples of the slot size.

(2)

Let B(z), b, and b be the GF, mean and second moment, respectively, for

-8 (1) ang b® 2 @

the message service time; b (1) + b, The server
inspects the stations in cyclic order of indices, and administers service to
cne message, if any, for a station. - After serving at most one message for
station i, it goes to inspect station i + 1 mod N with a generallyv distributed
reply interval (also an integral multiple of the slot size). Let R(z), r, and
52 be the GF, mean and variance, respectively, for the time needed bv the

NS 2 (@)

server to switch from one station to another; r (1) and (1) +

2
r-r

We define Fi(zl’ Zys e zq) and Q(z) as in (6.1} and (6.2).

It is clear that the number of messages left behind at station 1 when
message service at station 1 is finished consists of two independent compo-
nents. One is the number oY messages at the polling instant minus one assuming
that more than one messagzes are found at the polling. The other is the number

of arrivals during the message service time whose GF is given by the compound

126



distribution B[A(z)]. Since the two numbers are independent, we have

F,(z,1,...,1) - F (0,1,...,1)
z[1l - F (0,1,...,1)]

Q(z) = Bl[A(z)] (6.52)

from which we have (6.4).

Let W(z) be the GF for the waiting time W of an arbitrarily chosen
message (called a tagged message); E[W] = W(l)(l). We assume that the wait-
ing time is counted from the slot following the arrival instant to the slot
preceding the start of service. Note that the messages left behind at station
L when the service of a tagged message at station 1 has been completed are
those which arrive while the tagged message is in the system (waiting time plus
service time), and those which arrived in the same slot as the tagged message
but were placed behind the tagged message. The GF for thé first number is
given by

Q,(z) = wla(z)[Bla(z)] (6.53a)

while that for the second number (which is the backward recurrence time in

the renewal process where the interevent time distribution is given by A(z))

is ziven by (see (3.8a))

3, (z) = LoA2) (6.53b)

(1-z)
It is important to note that these two numbers are not independent since,

e.g., a large group of arrivals in a slot implies both a long waiting time

=l

for an arbitrary message in the group and a large number of messages placed
behind it. However we can sci!l argue about the mean numbers, i.e.,

2y - o, - ,:'*)(1) (6.54a)



Ql(l)(l) = A(E[W] + b) (6.54b)

and

2.2

A=y
o, Py = Lt =2 (6.564¢)

From (6.4) and (6.54a-c), we have

(drl(z,l,...,l)l
L dz Sk ARG

E{w; = T -
M1 - F(0,1,...,1)] 232

(6.33)

)/h—
i

We proceed to find FI(O, Ly ..., 1) and [dFl(z, L, ..., l)/dz]z=l

in the same way as in Section 6.1.2. First, we have

N
{ = N
Fi+l‘zl’ 2y, e, ZN) R['“ A(zj)].
j=1
N 1
~B[-” A(Zj)];T[Ei(Zl’ZZ""’ZN)-Fi(zl""'zi-lﬂo’zi+l""’zN)]
j=1 i
+ Fi(zl,...,zi_l,O,zi+l,...,zN)} i=1,2,...,5 (6.36)
from which we again have (6.10). By using convention
R = R[A(2)] :+ B = B[a(2)] (6.37)

we nave exactly the same equations as (6.12), (6.12) and (K.14). We also

nave the relationships in (6.15) and (6.16). Thus we have

idfl(oizl"'-z)i N(N'l)rYzFl(O,l,...,l)
| dz Ce=l 2TI-NA (z4b) ] (6.38)
L -
and then
TdF (2,0, 0,0 NF,(0,1,...,1)
- L . .
| dz voz=] ) Kl Ar(1-No(r+b) | +
b i : J[1-NM(r+b) ]
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+ (1) 26 e (1= (-1 ab Ty 2= xrab + N2 (beZern (D)) (6.59)
Substituting (6.10) and (6.59) into (6.55), we get the mean message waiting
time

2 (2)

§7  NDb +r(1AAb)#A6 2] | (bHE) (v2-A)
2r 2[1-NA (z+b) ] 2X [L-NX (z+b}]

E[W] = % (6.60)

which corresponds to (3.63b) in the exhaustive service ssytem, and to (5.23)
in the gated service system. Thus, if YZ > d (e.g. y2= A fer Poisson
arrival), we have inequalities

E[W]] I E[W]|

lexhaustive (6.61)

<
- [w]§limited

gated

As before, the mean message waiting time at station 1, E[Wl], when all
traffic is generated at station 1 is easily obtained from (6.60) (see Section
3.6.1):

2 (2)

_3c N N[\b +r(1+NAb)+Nk62] (b+Nr)(¥2-‘)

=33 TT1=%s (Ne+b3 ] 23 [1-NA (N£*b)]

£ (W - % (6.62)

which corresponds to (3.64b) in the exhaustive service system, and to (5.25a)
in the gated service system. I[f we assume that the distribution for the

. A , 2
number of message arrival in Poisson (v~ = i), we have

fr . .ot . <pil
EN iniree = BV inicedd B gared SEYD (inireq (6063
N , N : .
in addition to (&.61). It seems that E[dlllgated an be greater or smaller
chan E(W] |} /e’

In crder to have the nean packet waiting time for a system of single-
(2)

o . 2
packet messages only, we >nl: hwave to let b = b = 1 and replace > and <

) L . . . .
bv . and -, respectively, in 15.60}. This conversion leads to
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52 (l+Nr)02 + Nuzéz

E(U] = o I T1-NG(1+D) ] -1 (6.64)

which corresponds to (3.61b) in the exhaustive service system, and to (5.,21h)

in the gated service system.

The correspondence between (6.19) and (6.60) should be clear; we get

2
(6.19) if Poisson arrival is assumed (v = 1) and a half slot shrinks to zero

in (6.60).

We finally note that the mean cycle time in the discrete-time system is

also given by (6.32b),

130



7 Systems with Zerc Reply Intervals

In this chapter we consider cﬁntinuous-time systems of N nonidentical
stations with zeroAreply intervals. The mean message waiting times in the
case N=2 in the exhaustive and gated service systems have already been obtain=-
ed in Sections 4.4 and 5.2, respectively, by taking the limit in the solutions
for systems with general reply intervals. Note also that the mean waiting
time in the case of identical stations should be identical to that in a single
M/G/1 queueing system. Our presentation here follows the approach in [Coop69],
(Coop70] and [Coop8l,Sec.5.13] with simplification made possible by borrowing

z

ideas from Chapters 4 and 5.

In polling systems with zero reply intervals, the server becomes idle
when the whole system empties. As soon as a message arrives at some station,
the server goes there to begin service immediately. The cycle times (in _he
sense in Chapters 4 and 5) during the system idle period are zero infinitely
many times; thus the mean cycle tiﬁe is'zern, and so our previous approach

(based on averaging over the cycle time) becomes unapplicable. This is why we

need separate analysis for systems with zero reply intervals.

7.l Exhaustive Service System
For system parameters, we use the same notations as given in the beginn-

ing of Chapter 4. Following [Coop69], let us introduce a set of switch points.

Suppose that the system is idle and a message arrives at some station, say,
station 1, at ctime T;. The server immediately commences service at station i,

and continues tc serve messages at station i until the first time T at which

station i becomes empty. [ the svstem is not empty at 7], the server advances
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to station i+l. The server immediately starts work ar station i+l until the

instant 1 at which station i+l becomes empty (where T2*1; if the server finds
station i+l eﬁpcy). and continues on in this manner until for the first time,
Tn say, the server finishes serving a station and there are no messages wait-
ing anywhere in the system. The process terminates at Tn and is reinitiated

bv the next arrival. We call the points Tly -, Tpn switch points.

Note that tg is not a switch point, whereas v, is a switch peint.
Successive switch points may occur simultaneously in time but are nevertheless
considered distinct. We associate with each switch peint a station at which

the server has just completed its visit.

7.1.1 Number of Messages at Switch Points

Define Pi (ql, Ayreces qi-l"o’ q . qN) as the joint probability -

i+#1*7°
that at an arbitrary switéh point, the server has just completed a visit to
station i, and qj messages are waliting in stationm j (j=l, 2, ..., i=l, i+l,

++.y N). This state (i: Qi ooes 4 1> 0, q f ey qw) can occur through

i+’

- the followingexhaustive-aad mutually exclusive events:

(i) The server leaves station i-1 and finds k;zl messages waiting for service
in staticn i where it spends a length of time equal to ki busy periads.

(ii) The server leaves station i~l and finds kiao messages waiting for
service in station i, but at least one message waiting for service somewhere
else in the system, so that the server then pass through station i in zerc
time.

(1iii) The server leaves scme station and finds no messages waiting anywhere

in the system. With probability Aj/Ap, the next arrival (which reinitiates

the process) occurs at station i, where the server then spends a single busy
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period. Here we have used

A {7.1a)

These considerations lead to the following embedded (at the switch

points) Markov chain probability state equations:

Pi@ys vves @y 05 0y g 0s ven Gy
9 92 = 94 Uy
= I ) ) B I p (k,,...,k k. ,k k)
- _ — _ - i"l l » i_2! » i’ i+1)"’! N
k,=0 k;_5=0 k=l k, =0k =0
q,-k, ; q,
w N o)y vy (i, .t)li-1
. =-A.t -1 -A t * (k.
© j=1 i -1
(j#i-1,1)
N
P 1@ a; . 0,0, Qyppreses Q) (1-8¢ jzl qj)) S(a;_ ;)
(j#i_lsi)
Y ® N ()\jt)qj -t (7.2)
+ - P(0) [ g T © 8;(t)de
0] j=1 i
(3#1)
where
N
P(0) = I Pi(O, vee, O (7.1b)
i=1
and
. -1 if x=0
: A
2y yF x40 7.3

We have also used Bi(t) as the pdf for the busy period at station i and

*
ﬁi (k)(t) as its k fold convelution. The normalization condition is given

by
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N [=4] X N 20
z o z z z P.(q,, s 9. -5 0, q..., y Gy) = 1
. . - _ - 171 i-1 i+l N
1=l =0 q; 40 q;,,=0 Gy
(7.4a)
We next define the GF
Hi(zl’ sy Zi_l: ’ zi‘f‘l’ » ZN)
a3 - 4 ; P.(q., ..., q 0, q ceey Q)
= 4_4= PR z_= ..= . . " i lb > i_l:l b i+l’ * N
q;=0 4.179 45470 =0
N
nozg) (7.5)
j=1 '
(1#1)

Note then that Hi(l’ --+» 1, 0,1, ..., 1) is the probability that an arbitrary
switch point is associated with station i, and the normalization condition is

given by

L, ..., 1)y =1 (7.4b)

=
=y
e
~~
—
-
—
]
-

Let us substitute (7.2) into (7.3) to have

Hi(zl’ cens zi-l’ Q, zi+1, ey zN)

x o o
= kELO e F'—o k;;l ) I o z=0 Pi_l(kl,...,ki_z,O,ki,ki+l,...,kN)
1 i-2" i i+1 kn
o N ~Ar.{l-z))t (ki) N kj
Jom e 3T el a1 (z )
0 . i .
j=1 i=1
(i#1i) (j#i,i-1)
w -] o o
oL z by st L P (Q,) «+ves q 0, 0, q ey Qy)
- = = = i-1 “q1° * -2 T e 94490 * AN
q,=0 4270 9,440 =0
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N N qj Ri © N —Aj(l-zj)t
A= ¢ I ) T (2) " +—=P(0) [ I e 8, (£)dt (7.6a)
j=1 j=1 7 Ao ° y=1
(3#i-1,1)  (j$i-1,1) (344)
The first term on the r.h.s. of (7.6a) is
« N
Hi_l(zl. sees 2o 0, @i { jEl(Aj—Ajzj)], Z e zN)
(j#i)
- T ... T T e P, . (ky, ..., k 0, 0, K..\y vvvy ko)
- ~ . - Py i-20 e U R e Ky
k =0 ky =0 kg =0 k=0
N k,
I (z,) ! (7.6b)
j=1 . _

-

where :i*(s) is the Laplace transform of Si(t), and satisfies (4.3a). The
second term on the r.h.s. of (7.6a) and the second term of (7.6b) cancel when
any one of Ays ooes Gy _ps Dipps oo Iy is positive. When all of them are
zero, the former is zero and the latter remains to give ~Pi(0, «v., 0). Thus

we obtain

Hi(zl, ‘e Zi—l' Q, i+1° ’ ZN)
N N
= z A, -
Hi—l(zl’ ’ 21_2’ OJ i [ _j=l ( _] \-Zj)]) Z-_'_]-! L] ZN-)
(j#1)
N
P (0 0)+'\ip(o-*[>‘ A -\ (7.7)
= i_l ] LRI ] v)' ) li j=l (J-- jZJ)] .
(j#1)

We proceed to derive from (7.7) the equations for the moments defined

by




2
) = Ao(l*oo) 3 Hi(zl’ cees 20 0, 2y e ZN)
(3> B0 7.3 = ... o=z=
i (Q) zJ,zk 2 2, 1
1, j,k=1,2, ..., N (7.8)
where
N
eg = L. 0y (7.1c)
i=1

By differentiating (7.7) with respect to zj(j#i) and then setting 2% .. =2

=1, we have a set of equations for [hi(j); i,j =1, 2, ..., ¥}:
Ai )
hi(i-l) = hi;l(l) Aoy 81 + KE P(0O) Ai-l ei (7.9a)
A
hi(J) = hi_l(J) + hi_l(l) Ajei + TE P{0) Ajei j#i, i-1 {7.9b)

where ei and Bi(z) (which appears later) are defined in (4.3b). To solve

(7.9a) and (7.9b), add up their both sides over i=j+l, j+2, ..., j-1 to have

j-1 i-1 j-1 Y j-1
Loy = L o ()AL T oh (s, +—=2p0) T e,
i=j+l * j=jez 71 i=j+1 7LD Ay i=j+#1 ©F
or
j-1 lj j:l
i) o= Loh, (1) 9, +=—= pq) . £ 1,9, (7.10a)
hia1 G =4y iy Ml 17, PO e it

Adding Ajhj_l(j)ej to both sides of (7.10a), and then dividing them by Aj,

we have after rearrangement

l+,‘*.-‘3. 0 j-l . j-l
—h @ - HE RS PR CORE (7.10b)
54 0 i=j+l 1=]

The sum on the r.h.s. of (7.10b) is independent of j. Hence we have N=-1
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equations for {hj_l(j); j=1, 2, ..., N}. They and (7.10a) are satisfied by

A Po T Py
hi_l(L) -'TE'P(O) -—I:SE- (7.11)

By differentiating (7.7) with respect to zjand z, and then setting

2= ... = zg ® 1 we have a set of equations for {hi(j,k); i, j, k=1, 2, ...

¥

n, (J,k) = h,_ (3,k) + a3, + hi_l(i,k)kjei

o 2 (2)
A -
+ hi_l(l,l) Aj‘kei + Ajkkli(l LN

i, i-1; k#L, i-1 (7.122)

h, (i-1,k) = h (i,k) 3.+ h (i,1) A A, 8 2

i ? i=177 i-171 i-17? i-1 k"1
o (1en s D ki, i-1 (7.12b)

i-1 ki~ 1'% '
. . T . ' 2 2 (2)

hi(l-l,l-l) = hi_l(l,l)(ﬁi_lsi) + Ai-l Ai(l-oi)ei (7.12¢)

where (7.11) has been used. We assume that {(7.12a=c) are generally sclved

numerically. In the case N=2, only (7.12¢) for i=l and 2 mav be solved to

24 (153,

L@,
L "2 2772

20 . .
)

n,{(l,1) =
2 ’ -0 ) 2
By rgey8y)
L. 2 (D) 2, (2)
I B S A A Y (7.13)
A - . - - 7,-, N
Loy me )l mepw2ey2y)
7.1.2 Message Walting Tine

Let us define as a suycr Zvcle the elapsed time between the arrival
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instant of a message at any station when the system is empty, and the first
instant at which the system againlbecomes empty. Then messages that arrive

at station i can be classified into the following two exclusive and exhaustive
tvpes:

(1) arrivals at station i that either initiate a super cycle or occur during
the first busy period at station i generated by an arrival at station i

which initiated a super cycle; or

(2) all other arrivals at station i (i.e., all arrivals that occur after {and

ineluding) the second busv period at station i in a super cycle).

Consider now waiting times of messages that arrive at station i. Those
messages of type (1) are served during a busy period originated by a single
message. Therefore, the LST Wi*(sf type 1) of the waiting time distributicon
function for messages at station i of type (1) is given by the Pollaczek-

Khinchin formula

s(l-oi)

3~4 . +1 . g *
SThyTh B T ()

wi*(sf tvpe 1) = (7.14)

Ylessages of tvpe (2) are served during a busy period originated by those
messdges waiting in station I when the server leaves station i~l. This means
that at the end of intervisit time for station I, the server finds a number

of messages whose GF is given by

(7.15)

B, (L ooy 1, 0,2, 1, oun, 1)
I.*(X,-i.z) "
i i i Hi_l(l, ceey 1, 0, 1,1, ..., 1)

where 0 and z are the i-l st and i th arguments, respectivelv, of Hi-l'
Using (7.13) in (4.35a), the LST wi*(s; type 2) of the waiting time distri-

bution functien for messages of type (2) is given by
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Wi*(sf type 2) =

V-0 H 2y e 1, 0, L, e, DB (L, ..., L, 0, 1-s/A, 1, ..., )]
—%
hi_l(i)[s-J\iH\iBi (s)]

(7.16)

We next find the probability Pi(type 1) that an arbitrary arrival at
station i is of type (l)}). The mean number of messages that arrive at station
i during an interval of length t is Ait. The probability that an arbitrary
arrival at station i finds the system empty is 1-pg, so that Ait(l-po) is the
mean number of arrivals at station i that initiate a super cycle during any
elapsed time t. The mean number of messages served in a busy period generated
by each such arrival is l/(l-pi) (see (4.5b)), and hence the mean number of
messages of type (l) served at station i during time t is Ait(l—po)/(l—pi).
Thus we have

Tl )/ (1ep ) L~

Pi(type 1} = ?it . = l-oi | (7.17a)

and the probabilicy Pi(type 2) that an arbitrary arrival at station i is of

tvpe (2)

Pi(type 2) = LvPi(type Ly = (7.17b)

The LST wi*(s) of the waiting time distribution function is the weighted
sum of the LSTs for both types:

r K T *

W, (s) = P,(tvpe 1) W "(s tvpe 1) + P,(tvpe 2) W, (s type 2)

s(l-;o)




. ki(oo‘oi){ﬂi_l(l’--'rlsojl,o--,l)-Hi_l(l,.-.,l.o,l-S/Ai,l|.-.,l)]

By 1 Wls=A +3.8 *(s)]

(7.18)
From (7.18), we have the mean waiting time
SUTALUNE VTS
= e ————— 7.19
E{w, 2010 * 24,2 (1-5)) (719

where h, ,(1,1) is to be determined by solving (7.12a-c¢). In the case N=2,

by using (7.13) in (7.19) we recover (4.36b),

7.2 Gated Service Svstem

In a gated service system with zero repl? intervals, only those messages
thac find the system empty upon arrival are classified into type {1, and
their waiting time is zero. We thus immeidately have

Piltype 1) = 1-cq 5 W (s type 1) = 1 (7.20)

To find wi*(s; type 2), we begin as before by considering the number of

messages at switch points.

Define Pi(qi’ oy eeny qV) as the joint probabilitv rthat at an arbitraryv
switch point, the server has just left starion i, and qj messages are waiting
in statien j (j=1, 2, ..., ¥). Denote by bi(t) as the pdf for the service

*
time at station i and b, (k)(t) as its k fold convolution. Then, for a

gated service svstam, we have

Pi(ql- LRI Y qi_l; Q;. qi+l, v ey qﬁ)
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= v E L L . E P_(k ,o--'k_,k ’k , LY )
k. =0 K =0 k.=1 k kN'O i-1"71 1-17"1" i+ kN
1 i-1 i i+1=0
q,-k ;¢
i i
@ N (A;t) =k, (A, t) At
o -—(J—_k—)-,--e 3 qi. e ! b, (erae
j=1 937y L
(i#1)
N
+ P W@ s a0 0, Qipqr oo Q) (L=6( jil qj)) (g )
(j#1)
9
AL = N (A.t) O
F=R0) [ o ——e b, (£)de (7.21)
o) 0 j=1 94°
We define the GF
= N qj
Hi(zi’ ey ZN) = ;= z.=0 Pi(ql’ e, qN)El (zj) (7.22)
ql qN 1
and obtain the equation
. * N
Hi (2, 2 =8, (2 vovh oz, 00 By {j:l(\J- J.zj)], Zip1 N
L " N 7
-2.(0, ..., )+ == PO B[ Z (\,-%.z)] (7.23)
+ ‘n 1 j=1 J 11
The mDwments are defined by
- B (2, .nns 2y
h,{j) = -
i 1z, - . -1
1 21 N
. 2,
o G - pl=ig) A0z, » 2y) |
it - P(0} -z-i iz ;zl= cee =z o 1
i,i,k =1, 2, e N (7.24)
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From the first derivatives of (7.23), we have equations for {hi(j); i,j =1,

2, ..., N}
M
hi(l) = hi_l(l)kibi + TE P(0) Xibi {7.25a)
Ai
h,(j) =h, _ () + hi_l(l)kjbi + g P(0) Ajbi j#i (7.25b)
from which we get
A, o
h, (i) = = P(0) 1_9 (7.26)
'0 <0

From the second derivatives of (7.23), using (7.26) we have equations for

hy(i,k); i,3,k = 1, 2,..., N}

hiGak) =8y Guk) + by (1.9) aby + R (LK) L

k

] 1
$h_ (1,0 Vb Py D i#1, k#i (7.27a)
=177 ik k%1 I xL U cia
e Sy . L 2.2 (D)
Bl = by () by o+ by G st e Ty
k#i (7.27b)

b (D) =8 DG )% ey Ty (D) (7.27¢)

Although (7.27a-c) must be solved numerically, we have an explicit solution in
the case N=2,

2, y. _ _ 2, 3, (2)
AT (e, G198, Zolcz 20, )bl +1,(1+c

(lqkl:z)(l_cl_CZ)(l+o

1 17200,

2
hz(l.l) = 3

+02+2313}

1
(7.28)

. . * ... .
We now turn cur_attention to wi (8, tvpe 2). Since the number of
messages found by the server at station i is the number of arrivals during

the cycle time, we have
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(1, -..., 1, 2z, 1, ..., )
d, ..., 1, 1,1, ..., D

H
* i-1
Ci (Ai XiZ) - T
i-1

(7.29)

where 2 appearé in the i th position of Hi- Using (7.29) in (5.47a), we

1°
get
A,
—r
hi-l(i)

*
W, (s| type 2) =

%*
Hi_l(l"--, l; Bi (S)’ l;---s l) - Hi (l...., 1, l*slli’ l,..-. l)

-1
A #h.B
S=A *A;B; (s

(7.30)
From (7.20) and (7.30), by unconditioning we get
* E
Wi (s) = 1 - o +
\ 1 * .
. lpO[Hi_l(l,..., , Bi (s)y 1ly.ue, 1) = Hi-l(l""’ 1, l-s/li, .....
] *
hi_l(l)[s-ki+ki8i (s)]
(7.31)

This form is given in [Coop8l,Prob.3.31]. The mean message waiting time is
given bv

(1+z):
. 0 P(0} .
EIW, | = sp——r . ——==— h,_ (i,i) (7.32a)
S Y G B O3

Using {7.26), we get

(I+:)h, [ (i,1)
E(W,] = —2-31 (7.32b)
2 °
L

We note that, in the case =2, (7.28) and (7.32Zb) recover (5.36b).

[
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8 Applications ‘

In this chapter, we look at some examples (in computer communication
networks) to théh the above analysis results for the polling system are
applied. Other work referring to or related to the poclling system analysis
includes (i) polling system with ARQ (automatic répeat request) retransmission
policy [Kueh81] (the case where service may be unsuccessful), (ii) SCAN disk
access policy[Coff82]and[Swar82](anexamplewherestationsarepolledin non-
cyclic order)}, (iii) polling with priorities [Manf83], (iv) polling systemwith
muitiple servers [Morr84], (v) finite capacity polling system (Tran84], (vi)
continuous polling system [Coff84], (vii) single and multiple Newhall loops
[Cars77] and [Cars78j), (viii) Prioritized-Round~Robin (PRR) and Fair-Round-Robin
(FRR) channel access protocols for cable or radio networks [Gold83], and (ix)

Fasnet [Heym83], Expressnet and Fasnet are also modeled in [Toba83b]..

8.1 Polling in Wide-area Neﬁworks

According to bookg such as [MarﬁGY,Chap.ZO] and [Schw77,Chap.12], there
are two Cypes 0f polling discipline that have been most commonly adopted in
practice. In the roll-call pelling system, each station is in turn interrogat-
ed by the central processor. On the arrival of a polling message the statiocn
transmits all messages waiting to the central processor. Upoen completion of
message transmission, polling of the next station is initiated. In multi-
drop network configuration, the roll-call polling is used. Another type,
hub polling, is easier to implement in the loop configuration such that all
the stations are seriall. connected to the central processor. The central

processor initiates polling by interrogating the station at the end of the



loop. This station transmits its waiting messages if any to which it appends
a polling message for the next upﬁcream station. The latter station similarly
adds its messages followed by a polling message. In this way, at the comple-
tion of the polling cycle, with all stations interrogated, the central pro-

cessor regains control.

In [Schw77,Chap.12], the reply intervals in both types of polling are
assessed as follows. Let R be the sum of reply intervals (assumed to be
constant) for all stationms. In other words, R is the time needed for the
polling message to circulate through all stations. In the hub polling, a
delay is needed at each station to read, recognize, and add the polling
message. If time C is needed at each station, and Y is needed for the round-
trip propagation delav for the loop, we have

Rihub =NC + Y (8.1)

In the roll-call polling, the central processor polls each station one by
one. Let P be the time needed to transmit a polling message. Then we have

a = \g=] L3l '
R’roll-call NP+ NC+ Y | (§.2) e

where Y' is the tutal propagation delav incurred, which depends on the network

configuration. [t 1s generally greater than Y, the loop propagation delav.

From (8.1) and (8.2), it is the presence of the additional polling
message delay NP plus the greater propagation delav that accounts for the

increased time delav of rcll-call polling system.

-
-
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8.2 Polling in Packet Radic System

[(Toba76} considers the performance of (roll-call) polling technique
in the data flow.from‘a population of packet radio terminals to the central
station., After the completion of data message transmissions from a terminal,
the central station sends a short polling message to the next terminal in
sequence. The polling message transmission time is assumed to be a constant
Tp seconds, and the one-way (electromagnetic) wave propagation delay is given
by v (also a constant) seconds. Let the time slot size be tr. Then the reply

interval is given by
r = (21 + T/t 2+ Tp/T, =0 o (8.3)

(Acknowledgment transmissicn time is neglected.) Data messages, of constant
length Tm seconds (so, l message = (Tm/r)packets), are assumed to have Poisson
arrival with * messages per second {so 1 messages per slot). Thus, the
packet arrival parameters are given by

T R R R E (8.4)

We measure the propagation delav by Tht

a s /T, (8.5)
and define the total thnrougnput (time fraction spent for message transmission)
Sy

S = uN (8.6)

(Toba76] uses (3.651a) to evaluate the average data message delay (includ-
ing the transmission tizc) in seconds

- - 2 -

- TN 1-u + Nr(l—_){

- s s | 8.7
Poolitng = Tm T 21w 2 T IGN0) (8.72)




Substituting (8.3) through (8.6) into (8.7a), it gets

- ) a s Nr
Dpolling/Im L+ 2(1-8) * 2 (l - N) (l + 1_5) (8.7b)

However, as we have shown in Section 3.6.1, we must use (3.63b) to compute
the mean waiting time for an arbitrary message. Using At in palce of i,

2
¥ =i (Poisson arrival), b = Tg/t, b(2)= (ijr)z in (3.63b), we have

i N[ATmZ/T + r(1-AT )] 1
. = + - = .
Dpolllng Tn R 2(1 - WT ) 3 } (8.8a)
In terms of a and S defined above, this is written as
= S ar _E Nr\_g
Dpolling/Tm h l'+2(1_5)+ gtl N](l—s) 2 (8.8b)

where r is given by (8.3).

[f we adopt a2 continuous-time model, we can use (4.33b) to have

=]+ o2, S, Nr_
Dpoll;ng/Tm =1+ 7(1-3) T 7! N)[l-S} (8.8¢c)

_S.3ﬁ7HSABV(Mini—Slocted Alternating Priorities)
[K1ei80] proposes MSAP scheme for channel multi-access in a poepulation
vl packet radiv terminals. This scheme takes advantage of the broadcasting
nature of the messages. Specifically, each terminal can know its turn to
transmit after the channel idle time of 1 slot allotted to the preceding
terminal. Thus we have the reply interval
2
r =1 T =0 (8.9)

Hence, in [Klei30] the avera:zs delav for MSAP is given by (using(8.9) in

(8.7b))

—
RS
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- S _ ,&n_ 5 N
Dycap’Ta = 1 * 3oy * 3§ + %) (8.10a)

which is smaller .than (8.7b). However, for the same reason as before, this

must be replaced by

- -3 .2 _ Sy N . a
Dysap/Tm = 1 + 2(1-5) T 2 (1 NJ[l_SJ -3 (8.10b)

which is smaller than (8.8b).

MSAP can also be modeled in the framework of the one-message buffer
system treated in Chapter 2. Using the constant message length Tm and propaga-

tion delay -, we only have to replace

Ty o= R+ jb - Nt + iTy (8.11)

/

in expressions in Section 2.4. The capacity (maximum throughput) of MSAP in

the one-message buffer model in given by

: NTq 1
CN,a) = NT + NTj "1+a

{8.12)}

3.4 UBS-RR and Expressnet

CBS-RR (Unidirectiocnal Broadcast System - Round Robin) achieves broad-
cdst communication by folding the unidirectional transmission cable to provide
inbound ind vutbhound channels for each station [Toba8la]. See Figure 7a.
Let ° De the propagation delay between two extreme stations 1 and N, and Ty
ve the constant message transmission time. After the ongeing transmission
Qériod, 2ach station is ailotred a slot of length 27/N to send the reserva-
ticn burst sequentially (in round-robin order). After hearing its own burst
in the inbound channel, 1: :in start transmission. Thus, for the one-message

duifer model of Chapter 2, we have substitution
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Ty = 27 + J(Tm + 271) (8.13)
The capacity of UBS-RR is thus given by

_ NTnm 1
T2t 4+ N(Tgt2t) T T ¥ Za ¥ 2a/N

C(N,a) (8.14)

Expressnet is an improved version of UBS~RR, now configured as in
Figure 7b [Toba83a]. The data message, of constant length T,, has a preamble,
of coastant length Ly for svnchronization and collisicn detection. Let 7 be
the end-to=-end propagation delay on the inbound or cutbound channel. The
propagation delay along the conneccing cable is denoted by T+ Assume that
each station can have at most one outstanding message. From nonempty stations,
data messages are transmitted into the inbound channel interleaved with preambles
(this succession is called a train.). After the propagation delay of length
T + 1, {during this period data messages are received through the outbound
channel) plus the final £y {(to ensure the end of train), the transmission of
the next train becomes possible. Thus, application of our one-message buffer

model in Chapter 2 can be attained bv substitution

Ty o= R+ jb - - + o ztd + 0T+ ty) (8.13)
The capacity of Expressnet is given bv
NTm
(N = . 8.16a
CN,a) TR T+ 2ty + N(Tp +ooyg) ( )
deglecting td in compariscn te Ty and 7, and taking r. = 7, (8.l6a) is
cewritten in terms cf a = T, as
CiN,a) = _"—:-',—- (8.16b)

I +

Comparing (8.12), (8.14; in: (8.18b), we see rhat the capacity of Expressnet



is greater than those of MSAP and UBS-RR.

8.5 Token Ring and Token Bus
In the performance comparison of channel access schemes in local-~area
networks, {Bux8l] applies (4.33b) to the token ring scheme where a control

token for transmission right is circulated ig a loop of stations. In Bux's

notation
S = number of stations A = total message arrival rate
’I‘p = message fransmission time p = AE[Tp] channel utilization

T = ring round-trip delay
Note that 1 is given by

T(sec) = P(sec/km) x 2(km) + N x L(bits) x C-l(sec/bit) (8.17)
where P = signal propagation delay (e.g., 5 x 10-6 sec/km), 2 = length of

the ring, Lg = bit latency at each station, and C (bits/sec) = ring speed.
g LR

Thus, by substicution o
N-s,r-g it -0, -5 e - 1%, o - S ElT] =%
{8.18)
in (4.33b), we get
“(1=c/8) ._E{szl
Eiw] = (8.19)

; + "

2(1=-2) 2(L—;)E[TPJ
Adding (8.19) by the mean message length E[Tp} and the mean propagation delay
to the destination (assumecd to be uniformly distributed over the loop) t/2,

we have the mean message transfer time Ly as

—_f ey IAA=S) s (8.20a)
2O-E(T,] 5 T I(l-2) 2

Note that (8.202) assumes tne exhaustive service; for other tvpes of services
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we have (from (5.46b) and (6.19))

2
SELT, T(1+p/8)
‘ =-__L._._ l
tf!gated '2(1-0)E[Tp} + E[Tp] + 2(1-p) *3 (8.20b)
2
pE[T_ "]
: LUta/S) + (8.29¢)

: T
tf!limited 2(l—c~ht)E[Tp] + E[TpI + (1-g—-it) 2

The results in (8.20a) and (8.20b) are also given in [DeMo84] with different

noetacion.

. In the token bus system analyzed in [DeMo84], stations connected via
bidirectional medium consistute a logical ring such that station i + 1 is not
necessarilv next to station i. Due to broadcast transmission, T for the
token bus is given by

t{sec) = N x P(sec/km) x i(km) + N x Lg(bits) x C-l(sec/bit)
(8.21)
The mean message transfer times have expressions similar to (8.20a-c) with

the last term t/2 replaced by Pi/2,
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we have (from {(5.46b) and (6.19))

(T, (1+o/5)
_ T(l+0/8
i = — P I
“flgated T Z(-oE(t,] T BTl F w3 (8.20b)
2
cE[T_"1
| - 2 t(l+e/S) | 1
“fllimited 2(T-s-a0ElT,] * BT, + 55 * 3 (8.20¢)

The results in (8.20a) and (8.20b) are also given in [DeMo84] with different

notation.

In the token bus system analyzed in [DeMo84], stations comnected via
bidirectional medium consistute a logical ring such that station i + ! is not
necessarily next to station i. Due to broadcast transmission, T for the
token bus is given by

T(sec) = N x P(sec/xm) x i{xm)} + N x Lg(bits) x C-l(sec/bit)

(8.21)
The mean message transfer times have expressions similar to (8.20a-¢) with

the last term 1/2 replaced bv Pi/2.



9 Future Research Topics

Let us make clear what has been solved and what haﬁ not in the pre-
sentation of Chapters 2 through 7. (By "solved" we mean that a set of linear
simultaneous equations are explicitly derived in terms of given system para-
meters to find the mean message or packet waitng time which we think is the

single most important performance measure [Klei76, p.161].)

For the one-message buffer system (Chapter 2), the case of constant
message service time and constant reply intervals is explicitly solved by
(2.29b), (2.31b) and (2.44a). Even the distribution of the waiting time
is explicitly given in (2.42). However, when the message service time and/or
reply interval are generally distributed (even if the distribution functions
are identical for all stations), we_have to solve O (ZN) equations. We note

that a model in [Coff84] (continuous polling system) has the same problem.

For the infinite buffer systems with exhaustive and gated service
(Chapters 3 through 3), we have derived O (N%) equations in continuous-time
svstems ((4.5la-d) and (5.34a-d)), and O (N’) equations in discrete-time systems
((3.3la-d) and (5.3a-d)). Thus we think that these are basically solved.

To find a set of O (N ) equations for discrete-time svstems will be a good
exercise. We have been urable to obtain the distribution for the intervisit
time in gated service svstems although the mean intervisit times are given

in (53.11) and (5.41).

For the infinite bufizr svsrem with limited service (Chapter 6}, the

only case for which we can - er calculate the mean walting time is the case

of identical starions wich . .uicad-to-one" service. We do not have an ex-
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Let us make cleér what has been solved and what has not in the pre-
sentation of Chapters 2 through 7. (By "solved" we mean that a set of linear
simultaneous equations are explicitly derived in terms of given system para-
meters to find the mean message or packet waitng time which we think is the

single most important performance measure [Klei76, p.161].)

For the one-message buffer system (Chapter 2), the case of constant
message service time and constant reply intervals is explicitly solved by
(2.29b), (2.31b) and (2.44a). Even the distribution of the waiting time
is explicitly given in (2.42). However, when the message service time and/or
reply interval are generally distributed (even if the distribution functions
are ildentical for all stations), we have to solve 0O (ZN) equations. We note

that a model in [Coff84] (continuous pelling system) has the same problem.

For the infinite buffer systems with exhaustive and gated sérvice
(Chapters 3 through 5), we have derived O (N°) equations in continuous-time
systems ((4.5la-d) and (5.54a-d)), and O (N’) equations in discrece-time systems
((3.3la-d) and {(5.3a~d)). Thus we think that these are basically solved.

To find a set of QO (N') equations for discrete-time systems will be a gocd
exercise. We have been unable to obtain the distribution for the intervisit
time in gared service systems although the mean intervisit times are given

in (5.11) and (5.41).

For the infinite bufiar svstem with limited service (Chapter 6), the

only case for which we can cver calculate -the mean waiting time is the case

~—

of ldentical stations with "Linited-to-one'" service. We do not have an ex-

[
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plicit solution to any asymmetric system, even the case of N = 2 stations
considered in [Eise79], [Iisa8la] and [Boxm84]. We feel the need of some

breakthrough if we try to solve this case exactly,

For the svstems with zero reply intervals (Chapter 7), we have shown
O (¥%) equations in (7.12a-c) and (7.27a-c) for exhaustive and gated services,
respectively. [Coop70] shows it possible to have 0 (N) equations for the
exhaustive service system. No attempt has been made to consider the limited

service system with zero intervals exactly for N>2.

In this monograph, we have dealt with only exact approach. However,
there are many practical problems which need approximate treatment. Let us
indicate some of them in the area of computer communication networks. First,
any communication buffer is finite; so a work such as (Tran84) seems -.:aful.
As another example, to integrate the data and real-time voice comnunication
on the token ring, a priority mechanism has been purposed [Bux83bj. To con-
sider the performance of prioritized token ring, we may need analysis of poll-
ing svstem with priority such as {Manf83}. Also, the token ring draft stan-
iards {e.z., {IEEZ83]) recommend to set the maximum message length that each
STaticn can transmit at one time., This problem is formulaced as a limited
service polling svstem where at most K packets can be served in each cycle,
When the maximum transmission time from each station is limited, a data file
must be blocked for cransfer (a block is the unit of transmission). Although
we can faraulate this case as a "limited-to-one" service pelling svstem
\wiswing a block as a fixed-size message) of Section 6.1, a user is interest—

. -
ed not in the mean block transfer time but in the mean file transfer time.

Nste that a file transfer is interleaved with transmissions from other stations.

r—
wi
£



We have no analysis for such systems so far.

The mean waiting time has been our major performance criterion. The
mean cycle time has shown to be identical for all service systems considered
in this report. We finally propose to take the fairness among stations as
another performance measure. Although the limited service system is said
to be fair (as compaired to the exhaustive and gated service systems) in the
sense that it prevents heavily loaded stations from monopolyzing the service,

ne attempts seem to have appeared to quantify this claim.

The analysis of pelling systems is an intriguing application of proba-
bilistic thinking with elegant mathematical manipulation. We hope that this
writing has presented an organized view of the state-of-the-art and stimulat-

ed further research.

——
(¥}
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Appendix
A: Derivation of (3.29a), (3.29%), (3.30a) and (3.130b)

In the case of exhaustive, discrete-time system, we derive from (3.26)

a set of equations for {f;(j)} and {fi(j,k)} (1,j,k = 1,2,..

«» N) defined
by (3.27), and solve them.

The equations (3.26) is reproduced here with index
change j =+ n:

N
- -~ i~ - Z ’z
Fi+l(zl""’zN) = Ri[ " Pn(zn)}.Fi(zl,...,zi_l, ui[ - Pn( n)], 210 V)
n=1 n=1
(n#i)
{(a.1)
Throughout the appendix, z=l stands for z_=z =...=z=l.

We first derive the equations (3.2%9a) and (3.29b) for {fi(j)}. Take

the derivative of (A.l) with respect to z; and then let z=!:

- N -
=R Pn(zn)ll = Ri(l)(l)p_(l)(l) =t .. lgjeN
%5 bas=l _z=L j i3
“ N
- - » 2.} =0
z . E‘J'.(Z].' Eia1 - Pn(zn”' Z1+l’ ZN)
i o=l
(n#1i)
- N -
—_ = DIP (2], z,  seerZyh
r z LL(zl’ ’ZL—l’ '~r=1 n( n ] +1 N z=1
’ {n#i)
C‘!F.T ':F.' (l) (l)
= [_ S + et TP, T
= ieeel F ’
=£, () + 1) 7= $$1
-y |
where Fi stands for Fi(::,...,zV) and we have used (3.23b) for fi(l)(l).

Thus we have (3.29a) and (3.29b).
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We now solve (3.29a) and (3.29b) for {fi(j)}. From (3.29b),

o £y (k)
g (3) - £, (1) = “i[;k+ l"UkJ

Take the sum of this equation over ksj,j+l,++s,i-1 to get

-l i-1 £ ()
£.(1) - £.(1) = u,[ L r + L ]
' . Himg & kmy 78

Put j=i+l in (3.2%a) and (A.2) to obtain

N N fk(k)]
£.(1) = p.[ Zr,+ L
t Flcal ¢ emp D
(k#1)

which solves to give (3.30a).

To find fi(j), j#1i, use (3.30a) and {A.2) to get

-j-1 j-lfk(k) 1
£ () = £.(§) ~u) Lo+ I ——
i ] Lot & ms Ty
S U A TRV L
S B S L S
3| N E;i k N
L - uk L - '.:k
L k=1 k=l
K Iy o ]
DR | NI I IS R
o k=i U k=1 ©0 00
3 N k=i ©
. 1 - e
L k=1 °

However,

(A.2)



j N i-1
L- Ty =l-Zu + I 4
k=1 k=l k=j+1

Hence, we get {3.30b).

B:

Derivation of (3.3la-d) and (3.32bh)

Let us derive a set of equations for {f;(j,k)}.

with respect to zj and z,, we have

A \:
fi+l 3z, 1 ldz
i k n=i

N - N
1 L= F, veasZ, .5 3,0 TP _(2)),z, eaey Z0 0
* Ri(n;l Pn(zn)) L}zk L(zl’ Pi-1 it o n *Ti4l? TOONT
(n$i)
roa2 N 3 -
szjdzk CRSRL R z=1 i_?’zk i
= N
e FL(ZL‘ ce.z -l’:i( TP (2,2
=l n=1
(n#i)

3 N
+[§.—Z~_Rl( WL Pn(zn)):‘
j n=1

(J,k)_ J‘l‘ Ri( (X3 Pn(zn)):l[ Fi(zly !zi_l’oi(

Differentiating (A.l)

N
nEan(zn))’zi+l""

(n#i)

A

J

z=1



N
3
--[-a—z-Fi(zl,‘ i lie ( E P (z M, z.‘['l-l’...'zN)]

k z=1
) (n¥1i)

2 N |
3
+[3z 32, 11 (%1072 08y nr-Ian(zn))’21+1’""2N)]z-1 (4.3)

i "k
(n¥i)

Now, evaluating the first term, we have

2.2
u uk(ﬁi +r, ) J#k

[ 32 N ]
R T2 G2 ))] -

az Bz 2 2 2 2

n= 2=l ¥ CH +ri)+ri(°j -uj) j=k

The second and third terms of (A.3) have been evaluated in Appendix A. The

last term is evaluated as

2 N

3
[WFJL(ZI’. 200G 0 TR (z)zy g, ’ZN)J
n=] z-i

(n#i) B

Do 0 e (11D (1 (5 (1L e (410U ]

#5010 198 (1100 1#1, 17k, j5k

| e 2 L () .
£, (02 wu B Ve, Payans, Vo aan

CHE (L1 (4, 1)[9(1)(1)]2uj2 i#j=k

L0 ' i=j or i=k
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Using these evaluations in (A.3), we obtain (3.3la~-d).

Now, assuming the case of identical stations, we find E(z)éfi(i,i).

By dropping the subscripts from the parameters, the equations (3.3la-d)

become

£ip1 (k) =abb (£ ()+E, (k) ]+cf(l)+d[fi(i,j)+fi(i,k) I+£, (3, k0+a2 (2

i#7, 1%k, j#k {A.4a)
2 e (D 2.2
fi+l(J,J)-a+r(d "J)+2bfi(3)+(l-1;+C)f +fi(J,})+2dfi(l,J)+d £
1#] (A.4b)
£ (1,k) = a#b[f (k)+df‘F)) 15k (A, 4¢)
i+ i i
£ (i,i) = a+r(02-u ) (A.4d)
i+t .
where
2,2, 2 27 2r ! ;-
a g o (3T+ET), b & ru, cduv T + = + T
I O S0 Il ¢ T S
- (1) . Nep (1-1) -
A A 2
deToe P S H W - Ty (4.5)

First, consider the ca§e j#k. Sum (A.4a) and (A.4c) over all i to have

Fo : -(1)
. = N : : 1 N— 2
fi+1(3,k) Na+b{ ~i(J)-i- T fi(k),+[(\ 2)c+2bd]t

i=1l i=1 i
(L#i) (i

] =
Do
I

]

1
k)
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N N

td I (E (L34, (1,0 + (8- na¥ePy £, (5,1
=1 jul
(i#f,k)} (i#j,k)
Noting Zl 1 i+1(J,k) Ei 1 fi(j,k), we have

v (1)

fj(J,k)+Ek(J,k) = Na+b[i§l{fi(3)+fi(k)] - 277}

N (2

+d{ ¢ (£, (1,3)+E,(1,k)] - -f (3,k)=£ (k,§)}
i=1

(1) 2.(2)

+ [(W-2)c+2bd]E 7 + (N-2)d°€ jrk (A.6a)

Next, consider the case j=k. Sum {(A.4b} and (A.4d)} over all i to have

N

fj(j,j) = .\I[a+r(o’2—u)1+2b{ z fi(j)-f(l)

(1)

2
B (N-1) (=4 o)
bl

i {(A.6B)

Note that {3.30b) for identical stations takes form

- (1—]-1)\'ru .
: H (1 Yr + NG ; i-j+l
EL(J) = < )
(N=-j+i=L}Nru

L - u

L (-i-l)r +

i<j-1
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It follows that

N
R (1)  NON-1)ru(l-2u)
A - =
ed I fi(J) £ TEETN) {A.7a)
i=}
Also let
N| N
g2 B (L, = T f.(,10) (a.7b)
i=1 i=1

By symmetry among stations, e and g are independent of j. Thus, (A.6a) and
(A.6b) can be rewritten, respectively, as
fj(j,k)+fk(j,k) = Na + Zhe + d[Zg-fi(j,k)-fk(k,j)]

2)

8- cr2bd] £+ [(ne2)d®-24)¢ ¢ jhk (3. 3a)

[

2 .
f(z)aN{a+r(oz-u)]+2be+(n-1)(%i§2~+c)f(l’+[(N-l)dz-zd]f(2)+2dg (A.8b)

Finally, sum (A.82) and (A.8b) over all k to get

2
2[1-(N-1)d]g = Nza + Nr(S7=u) + 2%be

.2 ;

+ (N-1) 1

I -y (1) 2_(2)
T u+(N-l)c+2der (A.9)

+ [1-(N-1)d]7f

2
Solve the equations (A.8b) and (A.9) for two unknowns g and f<*) Substi-

(2)

tuting (A.53) and (A.7a) in the expression for f gives
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(2 | 8250w | PeN (1 (el N-1)u)

£

1 - N
W (1 - mn?
Nru(l-p) Nzrzuz(l-u)2
"I oW + 3 (A.10)
(1 - Nu)
This leads to {3.32b).
C: Derivation of (4.49a) and (4,49b)
We derive (4.49a) and (4.49b) from (4.46). [f
- * )
t 4 s, + Ak[l—uk (sN ] m=1,2, N (A.1D)

then the first derivative of the right-hand side of (4.46) with respect to

Sy is given by

. * %, )
35V[Rk-1 (e X (O,e,tq,00e 0y )]

*
de.. dR (c.)
k-1 *
S de,, Reap (008085, -1’
*
% N-lde_ X, (0,0,,0,,. ’CV-lJ
+ : [ - ‘\J. — . ..
Rk-l (EN) ds at (a.12)
m=1 m

Differentiating (a.12) with respect to s, once more vields

N
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.2 2
2 &%) I Ceyar ( dty )2 d°R ] )
35N2 L dSNz dtN dSN dth J
dty dR  N-l de_ 3K N-1 dPep 3%
+R I o

2 —— c— i —
dSN dCN m=] dSN atm m=1 ds\z2 3tm

N-1 N-1 dt dt .2
n 5
R T - m » X

L T =
n=l m=1 dSN dSN Jtnltm (A- 13)

where, for simplicity, we have set

Kk_l*(o,tl,tz,...,tN_l)

_ *
R = Rk-l (tN) X

If s = 0 stands for $1= ... =s5y=0, then

2
dr _ d°R .
( dty Ygap = TTk-1 0 € 3 )ga0 T kel ¥ Fied
2
( EEE ) =1+ ‘.0 ( o o ) = o3 P
dsy “s=0 Kow s 2 "s=0 k 'k
Noo= = dsy
2
dtg dty )
( E;G-)S=O = kTR s { ) =0 =TTy m=l,2,...,58-1
A 2 X dSN =
i
-X - R e~ -
— = - | d = 7 , X, s
( “tm )§=Q E[xk—N+m‘ v th -ty )§=Q [ K=N+n w(tc-.\+4:!'l]
m,n=1,2,,..,N-1 (a.14)
where Z; and %k(Z) are given in (4.3b). Using (A.l4) to evaluate (A.13) at

s=0, we have

L2 (2) ‘ 2. 2. 2 . Nl |
E[xk ] = ‘kTk rk_i+(;*'kfk) (‘R—l Fr-1 )+2(l+*k_k}rk_1 m;lﬂk‘k“[xk-x+m
s=lo 2y NoLoNel 2 ~ .
+ ;l:kﬁk Eixyanem] + n;L m;L(-k:k) El¥aN+n Xi-N+m! (a.13a)
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From (4.47a), we have

N-1

(E[;ﬁk_})z = (]_+)\k8k)2 rk_12+ 2(l+)\kek) rp-1 AxBk L E{ik-m]
. m=1
N-1 N N=-1 .
+ (Aksk)z{ b E[xk'ﬂ]JL z E[xk-m]] (A.15b)
n=1 n=]1
Thus, we get
N-1
.- 2 2. 2 ) f _—_—
E[(xk-xk) ] = (l+Ak8k) Sk-l + Akek er_l + mEl E[xk-m]J
5 N-1 ¥-1 i _ N .
*OS)T B L OER o ) g T Ky
n=1l m=1

(A.16)

[f we use (4.3b), (4.42) and (4.49c) in (A.16), we obtain (4.49a).

Differentiating (&.12) with respect to SN-j' J <« N, vields

'_-2 (RX) de dR 53X de,, . N-1 dt 82)( de,, .
- N N-j +R T o N-j (4.17)
SySyo dsN ch ?tx—j dsN-j m=l dsN 3tm3tn—j dsS»j

Using (A.l4) and d(tv-j)/dsV—j =1 to evaluate (A.l7), we have

N-1

E[xkxa_j] = (I ki) o1 Elxg-j5] + mEL 2P Elxy _v4m Xg-3)  (a.l18a)

Froem (e n) . We ave
N-1

r X = . 2 + 4,2, Z X N .

ELK\]E[xm_j] E[x&_}.].(l-ﬂk k)rk-l i - E{xk_m]J (A.18b)
Thus we get

-1 _ _
Ef(x -% )(ku_j-ﬁ . = Ty o E[{‘k-m'“a-m)(Kk-J“k-j)] {(a.19)

wnichi i3 (-.+90).
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