SORTING AND SELECTION IN MULTI-CHANNEL
BROADCAST NETWORKS

John M. Marberg January 1985
Eli Gafni CSD-850002

Sorting and Selection in Multi-Channel Broadcast Networks+t

John M, Marberg
Eli Gafni

Computer Science Department
University of California
Los Angeles, CA 90024

Abstract

A muiti-channel broadcast network is a distributed computation model in which proces-
sors communicate by sending broadcast messages over a set of shared broadcast channels.
Computation proceeds in synchronous cycles, during each of which the processors first write
and read the chanunels, then perform some local computation. We discuss the complexity of
sorting and selection by rank in sets distributed among the processors of such a network.
Given a set of n elements and a network with p processors and k channels, we show a tight

bound of size ©(n) on the number of messages and e(max{-:-, Ngu)) on the number of cycles
required for sorting, where ny,. is the maximum number of elements in any processor. Simi-
larly, we show a tight bound of e(plog-k—:') messages and G(‘Elog-kf) cycles for selection. We

first discuss lower bounds, then describe efficient algorithms which achieve such bounds in a
wide range of cases.

1. Introduction

Local area network architectures which use muiltiple broadcast channels have recently
been proposed [Chou83, Mars82a, Mars82b] as an alternative to single-channel Ethernet-like
networks [Metc76]. In environments where messages are generated in real time, multiple chan-
nels reduce the channel contention among processors at the expense of longer transmission
time. It has been shown in [Mars83] that for high communication rates the reduced contention
dominates the increased transmission time, and the overall inessage delay is decreased. Thus,
multi-channel architectures seem to be viable, and it becomes of interest to investigate the
complexity of various algorithms in such architectures.

+ This research was supported by an IBM Faculty Development Award.
1

Algorithms which use broadcasting as the basic mode of communication have received
little attention in the literature. In this paper we describe a general computation model for the
design of such algorithms. The mode! consists of a collection of independent processors con-
nected by multiple shared broadcast channels. We call this model a Multi-Channel Broadcaat
{MCB) network.

Complexity in the MCB model is measured in terms of the number of cycles required by
the algorithm, where each cycle at each processor consists of reading and writing a pair of
channels, then performing some arbitrary local computation. We assume the existence of a glo-
bal mechanism that synchronizes the beginning of each cycle. The issue of collision resolution
is avoided in the design of algorithms in the MCB mode! by requiring that such algorithms be
collision-free, i.e., that no two processors attempt to write on the same channel in the same

cycle.

The main contribution of this paper is eflicient broadcast algorithms for sorting and
selection by rank in distributed sets. First, we give lower bounds on the pumber of cycles and
the number of messages required to perform sorting and selection in the MCB model. We then
_develop efficient algorithms which achieve the lower bounds in a wide range of cases, thus
proving that the bounds are tight. The following is 3 summary of our results. Assume an MCB
with p processors and k channels, k<p, and a set of n elements distributed among the proces-

sors. The complexity of sorting is ©(n) messages and e(max{%, Noac)) cycles, where np,, is

the maximum number of elements in any processor. The complexity of selecting the element of

rapk d, where -622515[%] for some constant 0<e¢<l, is G(plog%) messages and

6(%]05"—:) cycles. The tight bounds on messages and cycles are achieved simultaneously.

Earlier research in the area of broadcast algorithms includes the work of Dechter and
Kleinrock [Dech8l, Dech84] on the IPBAM model. This model differs from our model in two
aspects. First, it only provides a single channel, and second, it allows concurrent write access to
the channel and assumes the existence of a global collision resolution mechanism. The IPBAM
mode} was used in the design of algorithms for extrema finding, merging and sorting. In our
model, these problems are solved without the need for concurrent write access. Levitan
[Levig2] discusses a model called BPM, which has identical properties to the IPBAM.

Santoro and Sidney {Sant82, Sant83] discuss a broadeast model called Shout-Echo, in
which a basic communication activity consists of one processor broadcasting a message (shout)
and receiving a reply (echo) from all other processors. In the MCB model, on the other hand,
each message transmission is a separate communijcation activity, involving the sending proces-
sor and any number of receiving processors. Moreover, muitiple disjoint communication

activities may proceed simultaneously on separate channels. The Shout-Echo model was used
in the design of algorithms for selection.

The remainder of this paper is organized as follows. In Section 2 we define the computa-
tion model. Section 3 explains our notation. The lower bounds are shown in Section 4. Sec-
tions 5-7 present sorting algorithms, and Section 8 the selection algorithm. Concluding
remarks are given in Section 9.

2. The Multi-Channel Broadcast Model

The multi-channel broadcast (MCB) network model consists of a collection of indepen-
dent processors which communicate by sending broadcast messages over a set of shared broad-
cast channels. A given configuration of the network with p processors and % channels is
denoted MCB(p, k). It is always assumed that p>k, whereas in practical cases usually p>>k.
Each processor has a unique identifier, taken from a totally ordered set of p identifiers known
to all processors. Similarly, each channel kas a unique identifier known to all processors.

The computation proceeds in synchronous cycles. We assume the existence of a global
mechanism for cycle synchronization. During each cycle, a processor may access two channels -
one channel for the purpose of writing and the other for reading. A cycle consists of the fol-
lowing three steps at each processor.

1. Write one channel.
2. Read ope channel,
3. Perform arbitrary local computation.

The width of a slot on the channels is one cycle. Thus, a message written on a channel in a
given cycle is received only by the processors reading the channel in that cycle. Processors
reading a channel can detect that the channel is empty, i.e., that no processor has written on
the channel during that cycle. To avoid the issue of collision resolution in the design of our
algorithms, we require that the algorithms be collision-free. In other words, in terms of the
computation mode!, concurrent access to the same channel by more than one processor is
allowed only for reading. If more than one processor attempts to write on the same channel in
the same cycle, the computation fails.

The channel access rules of the MCB model resemble those of the Concurrent-Read
Exclusive-Write (CREW) model [Snir83]. However, in the CREW model, communication is
achieved by means of shared memory, and the input is usnally in the shared memory as well.
Broadcast channels, in contrast, are "memoryless”®, thus both the input and the computation
are fully distributed. Also, in the MCB model the number of channels does not exceed the

pumber of processors, whereas in the CREW model an arbitrary size shared memory may be
assumed.

Computational complexity in the MCB model is measured in terms of the total number
of cycles and the total number of broadcast messages required by the computation. A message
consists of at most O(logd) bits, where g is the value of the largest parameter or datum
involved in the computation.

Let p’>p and k' >k. It is easy to show that one cycle of an MCB(p’, k') can be simu-
r 2L ’
lated in O((%) ﬁk-) cycles on an MCB(p, k), using only O(-ep-) messages per each original mes-

sage. The idea is to simulate ['%-] processors on each processor and I'-%] channels on each

channel, and repeat each message [-%-] times. This can be used to make various assumptions

on p and k without loss of generality (w.l.g.). For example, we may assume that p is a power of
2, that k divides p, etc. (if not, an MCB with such properties can be simulated on the existing
MCB at no added complexity).

3. Notation and Definitions

The processors of an MCB(p, k) are denoted P,, P,, ..., P,. The channels are
denoted Cy, Cy, . .., Cp. W.lg. we assume k divides p.

Let N be a collection of elements distributed arbitranly among the processors. W.l.g.
we may assume that NV is a set, i.e,, that all elements in N are distinct. If not, we can replace
each element £ in P; with the triple {¢, i, j¢} where j¢ is a unique index within P;, and use lexi-
cographic order among the triples. The subset of clements at processor P; is denoted N;. The
sizes of the sets are |N|=n and |N;]==n; We assume n2p and n;>0, whereas in practical
cases usually n>>p.

The term n;” denotes the partial sum n, ¥+ - - - +n;. For convenience, we also define
ng =0. N,y a0d np,.; denote the largest and second largest, respectively, among the n;'s. If
n;=n; for all i¢j, we say that the distribution of N among the processors is cven. Otherwise,
the distribution is uneven.

We denote by N|j] the j’th largest element in N. Nj;, j2] where j; <j, denotes the set
{Nl7], Nlii¥1), .- -, Nljs]}. Alternatively, N{jj, so] can be interpreted as a segment of the
sorted list N from rank j; to fo. N[I'%]] is called the median of N. N;[j], Nilf1, /2], and the

median of N; are defined similarly. We will use the terms list and set interchangeably in refer-
ence to N and NNV,

Selection is defined as identifying N[d], the d'th largest element in N, for a given rank

d. Wlg. we may assume 1<d4< [-%'] (if mot, reverse the sorting order and select the element of

rank n-d+1).

Sorting is defined as rearranging the distribution of N among the processors so that
N;=N[n},+1, n;"]. In other words, after the sorting the number of elements in each processor
remains the same as before, however the elements in P; are now larger than the elements in
Pisy.

Throughout the paper we use log to denote logarithm of base 2. -

4. Lower Bounds

4.1. Lower Bounds on Selection
The following theorem is a generalization of a result by Frederickson [Fred83].

Theorem 1. The number of messages required to select the median of n elements distributed

[
among p processors is [}) log2n;-log2ny,.).

Proof. The discussion is limited to comparison-based algorithms. We devise an adversary
that, given the cardinalities n; and a selection algorithm, provides input sets N, such that the

.
algorithm requires (U Y log2n;-log2n,,,) messages when executed on that input.

]

The adversary is free to make each element arbitrary large or small, as long as the rela-
tive order in each N; is maintained consistently. Initially, none of the elements has a fixed
maguitude. The adversary follows the execution of the algorithm, fixing the magnitude of ele-
ments as the algorithm proceeds. Elements not yet fixed are candidates for the median. Fixed
elements are made either “"very small® or "very large”, in the sense that they are smaller or
larger than all the remaining candidates in the network. By keeping an equal aumber of very
small and very large elements at all times, such elements cannot be selected as the median.
Total order is maintained among the fixed elements of all processors by making each new very
small element (very large element, resp.) larger (smaller) than all the existing very small (very
large) elements.

W.l.g. assume n,; is even. Let iy My - o o0 M be a non-increasing order among the
a;'s. The processors are divided into disjoint pairs (P"x’ P;z), (P‘a' P,-‘), ..., with P,-’ excluded

from any pair if p is odd. Denote a iypical pair (P,, P;). The adversary initializes the smallest

ng-n ng-n
—'-2—5- elements in P, to be very small, and the largest —'E—b elements in P, to be very large.

n;
Thus, P, and P, have an equal number of candidates. Also, if p is odd, -5" elements in P,-’ are

made very small, and the remaining elements in P,-’ are made very large.

Whenever a message is sent which contains a candidate of P, that is smaller or equal
(larger, resp.) than the median of the candidates in P,, the adversary fixes that candidate and
all those smaller (larger) than it in P, to be very small (very large), and an equal number of
candidates in P; to be very large (very small). When the message contains a candidate of Py,
the same action with the roles of P, and P; reversed is taken. No action is taken by the adver-
sary if the message does not contain a candidate. Concurrent messages are serialized in some
arbitrary order.

Let 2m be the combined number of candidates in a given pair of processors immediately
prior to the sending of a message containing a candidate of that pair. It can be seen that at
most m+1 candidates, all of them in the given pair, are eliminated by the adversary as a result

TR
] »
of that message. Thus, at least Elog?n,-z} > %E log2n,-j = 0 Y log2n;-log2nn,,) messages
j=1 jm=2 =]

are needed to reduce the number of candidates in the network to one. ®

, Clearly, a lower bound on messages in the MCB model immediately implies a lower
bound, smaller by a factor of k, on cycles.

Corollary 1. The number of cycles required to select the median of n elements is
log2n may

12
Q(I 3 log2n;- p

1]

).

We now generalize the lower bounds for an arbitrary rank d.

Theorem 2. Let d be an integer, pﬁdS[%]. Let 4 be the number of processors for which
n,-z-z-. Let i Bigs v o s i be a non-increasing order among the n,'s. The number of mes-

3
sages required to select the d’th largest element is ﬂ((a—l)logl:"*') log2n,-}).
Ju—gtl

Proof. We use the same adversary argument as in Theorem 1. The only difference is in the
initial choice of candidates. Consider a typical pair of processors (P,, P;}. For b>s+1, all the
n, elements in in P, and an equal number of elements in P, are made candidates. In the
remaining pairs, candidates are chosen so that the total number of candidates in the network

will not exceed 2d, and each processor will have at least % candidates, with an equal number

of candidates in both processors of a pair. Let 2m denote the initial number of candidates.
Among the remaining n-2m elements, an arbitrary but consistent set of d-m elements are
made very large, and the others very small. Clearly, the median of the candidates is N{d]. Let
m; denote the initial number of candidates in P;, Similar to Theorem l, the number of mes-

1%l 1 24
sages required is at least J211052:'1'3.-2} > E log2m. - n((c—l)log » +l-g+l!og2n). m

Corollary 2. The number of cycles required to select the d'th largest element, p< dg[é'-], is

ﬂ(i-—-l—log d+-— N log?n) n

k Jmpt+1

4.2. Lower Bounds on Sorting
We begin by showing a lower bound on the number of messages.

Theorem 3. The number of messages required to sort n elements dlstnbuted among p proces-
sors is SN n-npu+ Npae)

Proof. As in selection, we consider only comparison-based algorithms. Given the input N and
the cardinalities n;, we will devise sets V; such that {}(n-n , +n,,.») messages are required.
Regardless of how the sorting is performed, each element must be directly compared with its
immediate predecessor and successor in the final order. The sets N; are constructed so that for
sufficiently many disjoint comparisons the two elements to be compared are in different proces-
sors, thus requiring at least one message per comparison.

Let q; denote the number of processors for which n,2>l. Consider the distribution where

Nilj]=N[i+ Z g]. In other words, the elements are distributed going circularly over all proces-

{2
sors that have not yet reached their element capacity, and placing one element at a time in the
sorted order in each processor. It can be easily seen that in this distribution wo two immediate

l”‘(“u_:_u‘"maﬂ)J —

neighbors in N[l, n—(np,;x~Nmayz)] are in the same processor. Thus, 5

Q(n-np+ np.c0) messages are required to complete the sorting. ®

- T Bnaxs

k

Corollary 3. The number of cycles required to sort n elements is {)(). m

We now show a different lower bound on the number of cycles.

Theorem 5. The number of cycles required to sort n elements distributed among p processors

is (Q(min{npax, B-Nmax})-

Proof. Let Py, denote a processor for which n;j=nq,. Assume first that nmg-;-'- (i.e.,

min{n .., P-Ngax}=fga). Consider a distribution where for all 1<j<ng,y, N27] is in Prax
whereas N{2j-1] is in some other processor. Using an argument similar to Theorem 3, at least
Ny, Dessages are required to compare the elements in N[1, 2ny,,]. However, since Pp,y is
involved in all these messages (either as sender or as receiver), the number of cycles required is

. n
also at least n.,.. A similar argument shows that when nm>?, at least n-n_,. cycles are

required, and the result follows. ®

5. Sorting Algorithms for Even Distributions

The sorting algorithms described here are based on Leighton’s Columnsort {Leig84],
which in turn is a generalization of the Odd-Even sorting algorithm [Knut73]. Columnsort is
aseful for our purposes because of the well-behaved fashion in which elements are moved
around, which helps overcome the "bottleneck” of only k channels. We begin by describing
Columnsort. We then give a simple implementation of the algorithm for the case where the
distribution is even and p==k, then show how to generalize it for p>k. In Section 6 we present
several improvements to the basic algorithm, ard in Section 7 we further generalize the algo-
rithm for uneven distributions.

5.1. Columnsort

Let n=m-k. We view the input N as a matrix of size mxk, or alternatively, as a set of
k columps of length m. The algorithm uses four transformations on the matrix, which are
described informally below (also see Figure 1 for examples). Assume k divides m.

Transpose Take the elements of the matrix column after column beginning with
column 1, and store them row after row beginning with row 1.

Un-Diagonalize Take the elements diagonal after diagonal, i.e., in the (column, row)
order (1,1), (2,1), (1,2), (3,1), (2,2), (1,3), ..., (k,m), and store them
column after column beginning with column 1.

Up-Shift Viewing the matrix as a linear list in lexicographical order by (column,

row), shift each element l%j positions in the ascending direction.

The last [%] elements are shifted circularly to the beginning of the
list.

Down-Shift This is similar to up-shift, except that the direction of shift is reversed.

At the end of the Columnsort algorithm, the elements are stored in descending order of
magpitude, column after column beginning with column 1. The algorithm consists of 8 phases.

Phase 1. Sort each column in descending order.
Phase 2. Transpose the matrix.

Phase 3. Sort each column.

Phase 4. Un-diagonalize the matrix.

Phase 5. Sort each column.

Phase 6. Up-shift the matrix.

Phase 7. Sort each column except column 1.
Phase 8. Down-shift the matrix. ‘

Proof of correctness of the algorithm is given in [Leig84]. The algorithm works only if
the dimensions of the matrix satisfy the inequality m>k(k-1), the reason being that otherwise
the transformations, which are the ¢rux of the algorithm, are not effective. In other words, in
order to use k columns, the number of input elements, n, must be at least k¥*(k-1). Also, the
transformations require that k& divide m.

5.2. Implementation of Columnsort in the MCB Model

We first describe a simple implementation for the case where pa=k and the distribution
is even. Column ¢ is implemented in processor P; with /V; as the initial column data. Each

column is thus of length m=-n,-==—:". Phases 1, 3, 5 and 7 are executed locally at each proces-

sor, using some efficient sequential sorting algorithm [Knut73]. The remaining phases consist
only of traffic over the channels. Since p==k, all processors may broadcast simultaneously, with
processor P; using channel C;. Thus, to move an element from column s to column j, processor
P; must read channel C; in the correct cycle. It remains to devise an efficient broadcast
schedule, so that a maximum number of elements could be moved simultaneously.

We give a schedule for phase 2. Similar schemes can be devised for phases 4, 8 and 8.
Let us number the cycles of phase 2 sequentially, beginning with cycle 0. During cycle j, pro-
cessor P; sends the element in position (s+j mod m)+1 in its column, and reads channel
[(s- (§ mod &)-2) mod K]+1. As can be easily verified, the schedule correctly implements the
transpose operation, and the transformation is completed in m cycles.

The actual order in which elements are kept in the target columns during phases 2, 4
and 6 is immaterial because the columns are sorted in the next phase anyway, with the excep-
tion of column 1 after phase 6. In the latter case, the effect of not sorting column 1 is that the
same elements which are shifted from column & into column 1 in phase 8 are shifted back into
column k in phase 8. Thus, P; need not keep these elements in any specific order. Alterna-
tively, these elements need not be shifted at all. To similarly avoid having to maintain order
during phase 8, an additional sorting phase at each processor, phase 9, is added.

During each cycle of phases 2, 4, 8, and 8, each processor broadcasts one element, and
no element needs to be broadcast twice. Thus, the number of messages in each of these phases

is O(mk)=O(n), and the number of cycles is O(m)=0(%). The sorting phases are imple-
mented locally, and thus have no communication cost. The total complexity of the algorithm
is therefore O(mk)=0(n) messages and O(m)—O(%) cycles. Since ny, ™=fp.9, by Theorem 3

and Corollary 3 the algorithm is optimal. Note that the lower bounds for messages and for
cycles are achieved simultaneously.

We now show how to extend the algorithm for the case p>k. A simple approach is to
augment the algorithm with a preprocessing phase and a postprocessing phase, numbered
phase 0 and phase 10, respectively. In phase 0, all elements are collected into k processors.
Phases 1-9 then proceed as before, except that only & of the processors are active. In phase 10,
the sorted elements are redistributed to all the processors. Notice that this implementation

requires an additional Q(%) memory in k of the processors. In Section 6 we give a different

implementation which avoids this extra memory.

Phase 0 is implemented as follows. W.lg. assume k divides p. The processors are

divided into k groups of equal size 'E Group j consists of all processors P; such that [il =j.
p

The highest-numbered processor in the group, P, is the group's "representative”. One pro-
k

cessor after another in ascending order of processors within the group, all elements of the group
are sent to the representative. All groups proceed in parallel, group j using channel C;. Phase
10 is the inverse of phase 0. The representatives broadcast, and each group member collects its
respective elements.

10

The number of elements in each group is m—-g'--%-%. Thus, phases 0 and 10 each

require O(—:') cycles and O(n) messages. Phases 1-9 have the same complexity as before. The

total complexity is therefore O{n) messages and O(%) cycles, and the algorithm remains

optimal for p >k.

The transformations require that the column length be a multiple of the number of

columns. In case % is not a multiple of ¥, all we need to do is pad each column at the end of

phase 0 with at most k-1 dummy elements to get an appropriate column length. Phases 1-9
then proceed as before. Due to the padding, the elements that go to a given processor after
the sorting might not all be in the same column at the end of phase 9. However, since the

length of a column is at least -2', the elements of each processor are guaranteed to be in at
k

most two consecutive columns. In phase 10, group representatives must therefore broadcast
each element twice, so that processors will be able to receive all their elements without missing
any messages. Clearly, the complexity of the algorithm does not change.

As indicated before, inputs of size n<k*(k-1) cannot be sorted using k columns. To
handle inputs of such size, we need to use fewer columns. Clearly, lnv Y columns will do. The

processors are divided into groups of equal size [—£—1], with the last group possibly padded
I»7*]

with dummy processors containing dummy elements. Each column is now of size Of(n U Y. The
complexity of the algorithm in this configuration is therefore O(n) messages and O(n / *} cycles.
In ot.her words, the number of messages remains optimal, whereas the number of cycles
becomes suboptimal. In section 8 we provide an improvement which reduces the range of input
sizes that exhibit suboptimal performance.

8. Improvements to the Sorting Algorithm

8.1. Sorting with Efficient Memory Utilization

The Q(L;'} auxiliary memory needed in each representative processor can be avoided

with a more efficient implementation. We consider each group of processors as a single virtual
processor with a single virtual column, thus avoiding altogether the need for phases 0 and 10.
In the sorting phases, virtual columns are sorted as if each group of processors were a separate

MCB(‘%, 1). Below, we describe a single-channel sorting algorithm called Rank-Sort, which

works in linear number of messages and cycles and requires only O(n;) additional storage in
each processor. Using this algorithm to sort each virtual column, the total complexity of each

sorting phase is O(%) cycles and O(n) messages. In the transformation phases, all the work of

11

a virtual processor during a given cycle is carried out by the processor containing the element
to be broadcast in that cycle. The element received during the cycle can be stored over the
one just sent, thus using only 0(1) additional storage in each processor. The total eycle and
message complexities of the Columnsort algorithm remain the same as before.

The Rank-Sort algorithm proceeds as follows. Each processor maintains a rank counter
for each of its elements. Initially, the value of all counters is 1. In the first phase, elements are
* broadcast in arbitrary order (e.g., column by column). After each broadcast, the counters of

those elements which are smaller than the one broadcast are incremented by 1. Thus, at the
~end of the first phase each processor knows the rank of each of its elements. Then, in the
second phase, the elements are broadcast in rank order and moved to the appropriate target
processor. It is easy to see that the algorithm uses a linear number of cycles and messages,
using only O(n;) auxiliary storage at each processor. Notice also that the algorithm works for
arbitrary (even or uneven) distributions.

We may further economize on storage during the sorting phases by replacing the Rank-
Sort algorithm with the Merge-Sort algorithm described below. Using this algorithm, the entire
Columnsort scheme requires only O(1) auxiliary storage at each processor. The Merge-Sort
algorithm, however, is more complicated than Rank-Sort. '

The Merge-Sort algorithm proceeds as follows. First, each processor sorts its input list.
Then, in repetitive phases, the next largest element in the network is chosen among the top
elements of the lists and moved to the appropriate target processor. In order to efficiently keep
track of the top elements, the processors maintain a distributed linked list of the top elements
sorted in descending order. Each processor knows its own top element and the next smaller
one. The latter plays the role of a "pointer” in the linked list. In addition, each processor
knows its rank in the distributed list.

Let P, be the processor at rank 1 in the current phase. P, sends its top element to the
appropriate target processor, and all the processors decrement their rank by 1, thus effectively
removing the head of the linked list. To insert the new top element of P, into the list, P,
broadeasts the element, and all processors compare it with their own top element. Let P, be
the unique processor, if any, which has both a top element that is larger than the new element
and a pointer that is smaller or null. The new element is inserted after that of Py. This is
effectively accomplished as follows. All processors with a smaller top element than that of P,
increment their rank by 1. P, broadcasts its rank incremented by 1 and its current pointer,
then changes its pointer to the new element. P, sets its rank and pointer to those sent by P;.
In case the new element is larger than all the other top elements (i.e., P, does not exist}, which
can be detected by silence on the channel when the rank and pointer are supposed to be
broadcast, P, sets its rank to 1. The linked list is initially constructed by broadcasting the top

12

elements of all processors in some order and inserting them into the list one after the other.

To achieve O(1) auxiliary memory utilization, whenever an element is moved to its tar-
get processor, the target processor sends its smallest remaining input element as replacement to
the processor at the head of the linked list, who then inserts this element in the proper position
in its own input list. With this scheme, no extra storage is needed for output lists, and each
processor uses ounly O(1) auxiliary memory. Clearly, the Merge-Sort algorithm runs in linear
number of cycles and messages.

8.2. A Recursive Implementation of Columnsort

As has been noted before, Columnsort works only if m, the length of each column, and
k, the number of columns, satisfy the inequality m>k(k-1). We have seen that this results in
suboptimal cycle performance when n<k*(k-1). The range of input sizes with suboptimal per-
formance can be effectively reduced by applying the basic algorithm recursively, as shown
below. The general approach is to perform the sorting phases of a given level of the recursion
by invoking the next level. The purpose of this scheme is to reduce the length of the columas
from level to level, so that at the deepest level it will be possible to sort each column in a small
number of cycles. :

In the following we describe the recursive algorithm. Let 4>1 be an integer such that
3s+6

k24‘ and n>k%*2, W.l.g. assume that n>4k, and that n, p and k are powers of 4* (i.e.,
1

3
n=4" p=4* and k=4 for some integers r>¢>I>1). Let F=(k:) 2 (since we orly need to

consider the case 1<k, clearly 7:22). We apply the recursion to a depth of s+1 levels. At any
level except the last, a recursive call uses k virtual columns. Thus, at level 1<;<3, each vir-

. n . - .
tual ¢column consists of -i’- elements, or, in other words, the lists of -PL processors (notice that

the elements of the column are not ¢ollected into one processor). At the last level, level s+1,
n

each call uses %#-:—) /1 columns, and hence each column is of length p

It can be easily verified using the assumptions on n, p and % given above that for

1<5<,, %2?. Thus, the requirement on the length of a column vs. the number of columns

is satisfied at each level of the recursion. Since E’Sk, there are sufficiently many channels for
all the recursive calls of the same phase at the same level to proceed in parallel. At level j,

each call is allocated a separate set of channels. During the transformation phases, each

Ti-1
R}

p elements each, and all segments are broadcast

. . . k
virtual column is broken into ‘il- segments of

13

simultaneously - each segment using a separate channel. The behavior of the processors
corresponding to each segment is similar to a virtual processor in the algorithm of Section 6.1.

Thus, the number of cycles used in each transformation phase at each level is O(%) At level
¢+1 each column is of length -E-, and thus the number of cycles for each sorting phase at that

level is also O(%) The total cycle complexity of the algorithm is therefore O(a-E-). The mes-

sage complexity is clearly O(sn}. The right choice of s will effectively reduce the range of
suboptimal input sizes, as shown in the following corollary.

4-2¢

Corollary 5. Given a constant ¢>0 such that n>k "¢ and k>4 > the complexity of sort-

ing n elements distributed evenly in an MCB(p, k) is ©(n) messages and 9(%) cycles.

Proof. The lower bounds follow from Theorem 3 and Corollary 3, since np,™ng,.o. For
¢>2, the upper bounds follow from the discussion in Section §, since ne=kite>k2(k-1). For
4-2¢
3e

¢ <2, the result follows from the discussion above, using s={]- Notice that the tight

bounds on messages and cycles are achieved simuitaneously. ®

7. Sorting Algorithms for Uneven Distributions

In this section we extend the sorting algorithm of Section 5 to the case of uneven distri-
butions. First, however, we digress to describe a simple algorithm to compute partial sums. We
will use this algorithm as a subroutine in the sorting algorithm, as well as in the selection algo~
rithm in Section 8.

7.1. A Partial-Sums Algorithm

Let @ denote a commautative and associative arithmetic operator, such as "+7, "max”,
ete. Let {a,, a5, ..., a,} be a set of values such that g; is in P;. We denote by ¢® the partial
sum 6,Ha,® - - * De;. The largest partial sum, a?, is called the total sum. In the following we
describe an algorithm to efficiently compute at each P; the partial sum a®. The algorithm is
based on Vishkin’s F&* tree machine [Vish84), which is used for similar purposes in a different
model. We first describe the tree machine, then the implementation in our model.

W.l.g. assume p==2" for some integer r. Copsider a synchronous network in the shape
of a full binary tree with p leaves. Each node of the tree is a processor, and communication is
point-to-point along the edges. Processors are uniquely labeled by the pair {/, j), where {20 is
the level of the processor in the tree and 21 is a runping index from left to right at each
level. The leaves are in the lowest level, level 0. Each processor knows which of its incident

14

links leads to the father, the left son, and the right son, respectively. g, is initially in leaf pro-
cessor (0, s}. The following computation produces the partial sums a2 at the leaves.

Assume the local variables L, R, and F at each processor contain the last value received
from the left son, right son, and father, respectively. The computation consists of a bottom-up
phase followed by a top-down phase. The bottom-up phase starts with the leaves sending g, to
their father. Upon receiving values from both sons, an internal processor sends LG R to its
father. When the computation reaches the root, the top-down phase is started with the root
sending w to its left son and L to its right son, where w denotes the identity value with respect
to . Each internal processor, upon receiving a value from the father, sends F to the left son
and FGL to the right son. When the computation returns to the leaves, each leaf sets
6@ =F@a; It is easy to show that the computation works correctly. Note that each leal also
knows the value a2,.

The implementation on an MCB(p, k) is straightforward. The tree computation is simu-
lated level by level, first bottom up, then top down. A father node is simulated by the same
processor that simulates its left son, thus only the messages between father and right son need
actually be sent. Let us number the cycles of the algorithm at each level sequentially, begin-
ping with cycle 1. The computation at level ! in the bottom-up phase proceeds as follows. The

processor simulating node {I, 25) writes on channel (s-1 mod k)+1 during cycle [-'I:-] The mes-
sage is read by the processor simulating node (I+1, 5). Thus, each level 0515103‘%—1 in the

72%; cycles. The remaining logk levels require one cycle

bottom-up phase can be executed in
each. A similar scheme can be devised for the top-down phase. The total number of cycles is

therefore O(-%-i-logk). The total number of messages is clearly O(p}.

With an additional p messages and ‘% cycles (i.e., at no added complexity) each proces-

sor P; can acquire 4%, from P;+;. We assume, therefore, that the Partial-Sums algorithm
yields at each P; the values a8,, a® and a2,. Notice that at the root of the simulated tree
LoR=a?. Thus, if only the total sum is of interest, the bottom-up phase followed by a single
broadcast message from P, (which simulates the root) suffices.

7.2. The Sorting Algorithm
The implementation of Columnsort in Section 5 relies heavily on the fact that each pro-

cessor has the same number of elements. In the following we discuss the problems that arise
from an uneven distribution of the input, and how they can be solved.

15

When the distribution is even, it is trivial to divide the processors into groups which
form columns of equal length. With an uneven distribution, we instead form groups so that the
columns are of “roughly equal” length. After the elements of each group are collected into one
processor, the columns are padded to make their lengths exactly equal.

Now consider the task of collecting the elements. In the even case, there is no need to
synchronize the write access to the single channel shared by each group - each processor P,

simply waits —;'(u'-l mod &) cycles for its turn. In the uneven case, on the other hand, the

number of cycles a processor has to wait before writing on the channel depends on the distribu-
tion, and thus needs to be explicitly calculated.

We distinguish two subphases in phase 0: group formation, and element collection.
Groups are formed so that the number of elements in each group j, denoted my, is in the range
n n
FSmsy
suffices to guarantee that the columns are long enough. The groups are formed one at a time
in the following fashion. Using the Partial-Sums algorithm, the processors compute A, and
n
k
P; be the highest-numbered processor in the group. Clearly, m, =n;". Processor P; becomes the
group representative and informs the rest of the network of its id and of the number of ele-
ments in the group {note that P; can easily identify itself as the representative by checking the

+nyae-1. Clearly, there are at most k groups, and thus requiring n>k*(k-1)

the partial sums n". Group 1 is then formed by processors P; for which n,t<—=+ny,.-1. Let

partial sum of the next higher processor). Processors which are not in group 1 subtract m;
from their partial sum. Group 2 is then formed in a similar fashion using the revised partial
sums. The scheme is repeated until all groups are formed. The costs incurred by the group
formation phase include two applications of Partial-Sums and the broadcasts from the group

representatives, for a total of O(-E-*-k) cycles and O(p) messages.

Element collection proceeds similar to the even case, except for the synchronization
among processors. The number of cycles each P; has to wait before writing on the channel is

+

given by n'-n;, where n is the revised partial sum of the processor upon joining a group.

After the elements have been collected, each column is padded with dummy elements up to
length max{m,-}. Additional padding may be needed to make the column length, m, a multiple
i

of the number of columns. Clearly, msO(-E'+n,“,]. The cost of the element collection phase

is O(n) messages and O(L,:"i- Bmax) cycles.

16

Notice that during element collection the groups proceed independently, each group at
its own pace. A synchronization point for the beginning of phase 1 can be set at m cycles after
the beginning of element collection. Phases 1-9 then proceed as in the even case, except that

there may be fewer thap k columns. The total complexity of phases 1-9 is O(m)-O(-i—+nm)

cycles and O(n) messages (the dummy elements need not be broadcast). In phase 10, due to
the padding of columns, group representatives broadcast each element twice, as discussed in

the even case. The complexity of phase 10 is also O(—:—+ no.e) cycles and O(n) messages.

Summing the costs of all phases, the total complexity of the sorting algorithm is
O(-E+ o) cycles and O(n) messages. The following corollary shows that -this is optimal in a

wide range of cases.

Corollary 8. Given a constant 0 <a <1 such that n,,,<an and n>k*(k-1), the complexity

of sorting n elements on an MCB(p, &) is ©(n) messages and G(max{-:', Npax}) cycles.

Proof. ng,.<an implies n-ny,, > (1-a)n 2 (1-a)ng,,. The result then follows from the
analysis above and from the lower bounds of Theorems 3 and 4 and Corollary 3. Note that the
tight bounds on messages and cycles are achieved simultaneousiy. ®

8. An Algorithm for Selection

A naive approach to selection is to sort all elements, then retrieve the desired element
directly by rank. This, however, is inefficient because the extra information provided by sort-
ing comes at a cost and is not really needed. A more promising approach is the following.
Reduce the number of candidates for selection by repetitively applying an efficient filtering
mechanism. When the number of remaining candidates gets below a specified threshold value,
sort the remaining candidates and retrieve the selected element by rank. In the sequel we
present a selection algorithm which follows this approach. The algorithm works for arbitrary
(even or uneven) distributions. We first describe the algorithm, then prove its correctness and
analyze its complexity.

8.1. Description of the Algorithm

Let us denote the set of remaining candidates for selection at each stage of the algo-
rithm by M, with cardinality | M|==m. The subset of candidates in each P; is denoted M;, with
cardinality |M;|=m;. Initially, M=N and M;=N;. The median of each M; is denoted med;.
The threshold value discussed above is denoted m*, and d is the rank of the element to be
selected. As indicated before, we may w.l.g. assume that all elements are distinct. The

17

algorithm consists of a repetitive filtering phase, followed by a termination phase.

A typical filtering phase proceeds as follows. Each P; computes med, using an efficient
sequential selection algorithm ([Blum73), for example). If there are no candidates left in P;,
med, is given a dummy value. Using the sorting algorithm of Section 5, the pairs (med;, m;} are
sorted in descending order of the first coordinate. We denote the pair located at processor P;
after the sorting as {med’;, m'}), to distinguish it from the original pair at that processor.

Using the Partial-Sums algorithm of Section 7, the processors compute m'F=m e Fmy

Let m’; be the smallest partial sum such that m';" 2[%] We denote the corresponding
median, med’;, as med./’. Intuitively, mcdv’ is chosen so that sufficiently many candidates are
larger than it, and sufficiently many are smaller. P; broadcasts med;h to the other processors.

Then, using the Partial-Sums algorithm, the processors calculate the total number of candi-
dates that are grater or equal to med,},’. Denote this number by My, There are three cases.

Case 1. m./.—d

The selected element is med./ J and the algorithm terminates.

Case 2. m./‘>d

All the candidates smaller or equal to med,/' are purged and m is set to m,[l-l. If
m>m*, the filtering phase is repeated, otherwise the termination phase is executed.

Case 3. m.f’<d

All the candidates greater or equal to mcd.h are purged, m is set to m-my,, and d is set
to d-m,f'. Then, similar to case 2, if m>m* the filtering phase is repeated, otherwise
the termination phase is executed.

The termination phase proceeds as follows. First, the processors compute the partial
sums m;" of the remaining candidates. Then, one processor after another, the processors send
all the remaining candidates to P;. Similar to the sorting algorithm, processors await their turn
to write by counting cycles. The number of cycles P; has to wait is given by the value m;" just
computed. When all candidates have been collected, P, sorts the candidates, then selects the
element of rank 4 and broadcasts it to the other processors.

18

8.2. Correctness and Complexity

We now show that the selection algorithm works correctly. Assume inductively that at
the beginning of the current phase the element to be selected has not been purged, and that 4
is the correct rank of this element among the remaining candidates. This is clearly true at the
beginning of the algorithm.

In case 1, the number of candidates grater or equal to med./, is found to be d. Since
w.l.g. we assume that all elements are distinct, the decision to select mcd,/. is correct. In case
2, since m,/’> d, the element we are looking for is greater than med./’, Thus, all candidates
smaller or equal to med,/- can be purged. In case 3 a similar argument applies, except that the
my, candidates being purged are greater than the selected element, so the rank d has to be
reduced by the same quantity.

Since at least a few candidates are purged in each of cases 2 and 3, the algorithm will
eventually either terminate in case 1 or reach the termination phase. The termination phase
clearly selects the correct element, as the remaining candidates are collected into one processor
and sorted.

In analyzing the complexity of the algorithm, we must calculate the costs of the filtering
and the termination phases, and determine the number filtering phases. The cost of a filtering
phase involves the following: {1} sorting the medians; (2) computing med,/ and (3) computing
my . Using the costs of Columnsort and Partial-Sums under the assumption p>#*, the com-

plexity of each filtering phase is O(-E-) cycles and O(p) messages. The cost of the termination

phase is clearly O(m*) messages and cycles.

The analysis of the number of filtering phases is illustrated by Figure 2, which captures
the situation at the beginning of a typical filtering phase. The lists of candidates M; are
ordered in descending order of the medians from left to right. The elements in each list are
sorted in descending order from top to bottom. Since the medians are ordered, it can be seen
that for any given list M;, half the candidates in M; and at least half the candidates in each list
to the right of M; are smaller or equal to med;. Similarly, half the list M; and at least half of
each list to the left of M; is greater or equal to med;. This is shown by the encircled areas in
Figure 2.

In particular, using the fact that my, is the smallest partial sum greater or equal to

[-'22], it can be seen that at least [?] candidates are smaller or equal to med./ o and at least

[-T—'I candidates are greater or equal to med./’. Consequently, in each of cases 2 and 3 of the

19

algorithm,- at least one fourth of the remaining candidates are purged. Thus, O(!og—nT) filter-
m

ing phases suffice in order to reduce the number of candidates below m*.
The total complexity of the selection algorithm is therefore O(m* +'%log—n;) cycles and
m
O(m*+ plog—nT) messages. If we choose m‘-'%, the complexity of the algorithm is
m

O(%logk—;') cycles and O(plog-kf) messages. The following corollary shows that this is optimal

for a wide range of cases.
pk- | ¢n n

Corollary 7. Let p>k*, and let 0<e<1 be a constant such that n>-=" and TS d< [-é-]
€

Also, let the distribution of the input be such that for at least £2E-+1 processors n;?_%. The

complexity of selecting the d’th largest element in an MCB(p, &) is e('%logk—:) cycles and

G(plog-kf') messages.

Proof. uz%k implies log-g;‘- > |og-€p£ > %logi:-. The result then follows from the analysis
€

above, and from the lower bounds of Theorem 2 and Corollary 2 using a—[-gz'] +1. Note that

the tight bounds on cycles and messages are achieved simultaneously. ®

g. Conclusions

In this paper we have presented a model for the design of distributed aigorithms using
broadcast communication. We have demonstrated the practicality of the model by devising
efficient algorithms for the problems of sorting and selection. The algorithms achieve tight per-
formance bounds, both on cycles and on messages simultaneously.

Our results can be applied in other models as well. In [Marb85] we have implemented
the selection algorithm in the Shout-Echo broadcast model, improving the previous best upper
bound in that model [Rote83] by a factor of O(logp). The Columnsort algorithm for even dis-
tributions can be used in the CREW model, resulting in the same time complexity as the sort-
ing algorithm in [Skil81], and reducing the auxiliary shared memory requirements to p memory
cells. In the IPBAM model, the single-channel Merge-Sort algorithm achieves the same com-
plexity as the sorting algorithm in [Dech84], but without the use of concurrent write.

20

The MCB modei can be extended in various ways. For example, by allowing processors
to access all channels during each cycle, or by allowing concurrent write access to the channels.

As we have seen, such extensions are not needed in order to achieve optimal broadcast algo-
rithms for sorting and selection. It is interesting to characterize the problems for which
increasing the power of the model would, or would not, result in more efficient algorithms.

Acknowledgements

The authors wish to thank Rina Dechter for reviewing the manuscript.

References

[Blum?3] Blum, M., R.W. Floyd, V. Pratt, R.L. Rivest, and R.E. Tarjan, “Time Bounds for
Selection,” JCSS 7, 4 (Aug. 1973), pp. 448-461.

[Chou83] Choudhury, G.L. and S.S. Rappaport, “Diversity ALOHA - A Random Access
Scheme for Satellite Communications,” [EEE Trans. on Communications COM-31,
3 (March 1983), pp. 450-457.

[Dech81] Dechter, R. and L. Kleinrock, “Parallel Algorithms for Multiprocessors Using Broad-
cast Channel,”” ATS Working Paper 81002, Computer Science Dept., Univ. of Cali-
fornia, Los Angeles, CA, Nov. 1981.

[Dech84] Dechter, R. and L. Kleinrock, “Broadcast Communications and Distributed Algo-
rithms,” Technical Report, Computer Science Dept., Univ. of California, Los
Angeles, CA, 1984. To appear in IEEE Trans. on Computers.

[Fred83] Frederickson, G.N, “Tradeoffs for Selection in Distributed Systems,” in Proceedings
2nd ACM Symp. on Principles of Distributed Computing, 1983, pp. 154-160.

[Knut73] Knuth, D.E., The Art of Computer Programming, Vol.8: Sorting and Searching,
Addison Wesley, Reading, MA, 1973.

[Leig84] ,Leighton, T., “Time Bounds on the Complexity of Parallel Sorting,” in Proceedings

[Levig82]

[Marb8s]

16th ACM Symp. on Theory of Computing, 1984, pp. 71-80.

Levitan, S., “Algorithms for a Broadcast Protocol Multiprocessor,” in Proceedings
3rd Int, Conf. on Distributed Computing Systems, 1982, pp. 866-671.

Marberg, J.M. and E. Gafni, “An Optimal Shout-Echo Algorithm for Selection in
Distributed Sets,” Technical Report, Computer Science Dept., Univ. of California,
Los Angeles, CA, March 1985.

21

[Mars82aj

[Mars82b]

[Mars83]

[Metc78]

[Rote83]

[Sant82]

[Sant83]

[Shil81]

[Snir83|

[Vish84]

Marsan, M.A., “Multichannel Local Area Networks,” in Proceedings IEEE Fall
COMPCON, 1982, pp. 493-502.

Marsan, M.A., D. Roffinella, and A. Murru, “ALOHA and CSMA Protocols for Mul-
tichannel Broadcast Networks,” in Proceedings Canadian Communications and
Energy Conference, 1982, pp. 375-378.

Marsan, M.A., P. Camarda, and D. Roffinella, “Throughput and Delay Characteris-
ties of Multichannel CSMA-CD Protocols,” in Proceedings IEEE GLOBECOM, 1983,
pp. 1147-1151.

Metcalfe, R.M. and D.R. Boggs, “Ethernet: Distributed Packet. Switching for Local
Computer Networks,” CACM 19,7 (July 1976), pp. 395-403.

Rotem, D., N. Santoro, and J.B. Sidney, “A Shout-Echo Algorithm for Finding the
Median of a Distributed Set,” in Proceedings 14th S.E. Conf. on Combinatorics,
Graph Theory and Computing, Boca Raton, FL, 1983, pp. 311-318.

Santoro, N. and J. Sidney, “Order Statistics on Distributed Sets,” in Proceedings
20th Allerton Conf. on Communication, Control and Computing, Univ. of [llinois at
Urbana Champaign, 1982, pp. 251-258.

Santoro, N. and J.B. Sidney, “Communication Bounds for Selection in Distributed
Sets,” Working Paper 83-39, Faculty of Administration, Univ. of Ottawa, Ottawa,
Canada, 1983.

Shiloach, Y. and U. Vishkin, “Finding the Maximum, Merging and Sorting in a
Parallel Computation Model,” J. of Algorithmas 2, 1 (March 1981), pp. 88-102.

Snir, M., “'On Parallel Searching,” Tech. Rep. 83-21, Dept. of Computer Science,
Hebrew Univ., Jerusalem, Israel, June 1983.

Vishkin, U., A Parallel-Design Distributed-Implementation (PDDI) General-Purpose
Computer,” TCS 33, 1 (July 1984), pp- 157-172.

22

—

1 7 13 16 4 10
2 8 14 Up-Shift 17 5 11
e '
3 9 15 18) 12
4 10.] 16 Down-3hift 1 7 13
5 11 17 2 8 14
6 12 18 3 g 15
J}ranspose
3 2 3 1 2 (A
4 5 6 3 5 7
7 8 9 6 8 10
10 11 |12) 9 11 13
13 14 |15 12 14 16
16 17 |18 15 17 18
Figure 1. Matrix Transformatioms
M
— ph I
4 .‘\ 0/ l ’ ’
ol \ -7 I
#
g 1" | 1 4 L 4
i \ P
1 \~ |
[L J
[]
| med - - ta
_ — -— -l p—_— ‘
l 4 L 1
I 'r\ AI
(/ }
| ' ’ \ 1
) 1
L
k\ pNed]

Figure 2. The Filtering Phase

