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1. Introduction

This technical report covers research carried out by the Secure Distributed Processing Systems
group at UCLA under ARPA sponsorship during the approximately five year period 1977-1982.

The research conducted during that period focussed on two broad areas: computer security and
distributed computer systems. The security work primarily made advances in networks, operating sys-
tems, and data mapagement. The distributed systems research was oriented toward systems and software
stryctures suitable for computers connected by local area networks. That work both developed the essen-
tial principle of network transparency, which largely eliminates machine boundaries from concern to pro-
grams and people, and produced an early prototype of a distributed operating system to demonstrate the
feasibility of this principle and other architectural approaches.

In the pnext section, the work done in each of these areas is summarized. Then two sections of
substantive technical discussions lollow, in the form of technical reports in the primary research areas of
security and distributed systems.

2. Computer Securily
This work focussed on networks, operating systems, and data management.

2.1. Network Secursly

In the area of networks, several contributions were made. First, UCLA participated in the larger
ARPA sponsored network security experiment empioying BCR units to demonstrate that end to end en-
cryption of individual connections on the ARPANET is feasible. UCLA’s initial role as a server host in
the BCR experiment, and subsequently potentiaily as a key distribution center, was coordinated with
other ARPA contractors. :

A major portion of the effort in network security was devoted to the integration of encryption
techniques into the protocols of networks and the architecture of the operating systems which are connect-
ed. It was found feasible to extend the end of encrypted channels right to the process boundary in host
systemns, making network control software, as weill as all other system software, irrelevant to system secu-
rity, so long as an appropriate operating system kernel was installed in participating hosts. This develop-
ment dramatically simplifies the structure of the network security mechanisms, obviating the oeed for
BCR units at secure hosts, as well as any requirement for trusted network management software. A pro-
totype of this integrated end to end network security architecture was developed for the UCLA Secure
Operating System Prototype.

The importance of this work is severalfold. First, it demonstrates that end tn end security to the
process level is very cheap to implement and operate, given the existence of secure operating svstems.
Second, the approach is directly applicable to existing networks such as the ARPANET.




Next, we performed a general study of encryption and computer networks [POPE79b]. A detailed
comparison and evaluation of public key and conventional encryption algorithms was performed from the
viewpoint of integration into software systems. Despite the fact that public key systems have additional
features beyond those exhibited by conventional emcryption, it was found that those features, at least for
the functions currently desired in a secure network, are not of significant practical use once the mechan-
ism is integrated into the systems within which it must operate. Those results were reported in the pro-
fessional literature, as well as in a doctoral dissertation.

The most significant expected advantage of public key encryption over conventional systems con-
cerned digital signatures. Public key systems seemed superior. We have shown that this advantage is
largely illusory, because of a defect in all previous signature proposals that permit authors to disclaim au-
thorship at any time. Ia particular, the problem occurs if the author has access to the information on
which the validity of signatures is based. By releasing this information, the author effectively can claim
that anyone could forge signatures, including those previocusly signed.

Once this problem is realized, it becomes immediately clear that some trusted mechanism is
necessaty to protect the information on which the validity of signatures is based. We call that trusted
mechanism the network signature registry. Various designs are possible, especially when such considera-
tions as network, host, and regisiry failures are considered.

During the current contract period, we have examined these issues in detail, and explored several
registry models and digital signature protocols, ranging from fully centralized to fully distributed opera-
tion. Both public-key based and conventional based encryption methods have been considered in the solu-~
tions. Not surprisingly, here again the particular encryption method seems to make little difference in the
final solution.

We developed what appears to be a superior digital signature system. It is based on conventional
encryption and a small amount of trusted hardware and software, a signature kernel. During the current
contract period, a prototype implementation of the digital signature protocol was implemented under
Unix. Several minor errors in the protocol were uncovered in this process, and the result is a rather cos-
vincing demonstration of the viability of digital signatures.

2.2. Operating Systems Security

[n the area of operating system security, a great deal of progress was made, centering on the
UCLA Data Secure Unix prototype kernel. That system’s development was completed, full functionality
was demonstrated, and results were reported.

Fine grained protection on an individual file basis was implemented, and virtually all standard
Unix programs operated without change or recompilation. This system was the first existing and function-
ing kernel based operating system. [t demonstrated the [easibility of this approach.

The UCLA kernel also served as the focus for considerable program verification activity. Com-
plete concrete specifications for the entire kernel, suitable as input to an interactive verification system,
were completed. Complete abstract specifications were completed early in 1978, and the abstract to con-
crete correspondence was also done. The programs being verified composed the largest practical
verificatiou effort in the country, and uncovered a great deal about how verification of large systems must
be done, as well as the nature of the tools which are required. This research progressed via a cooperative
arrangement with USC/Information Science Institute, since their XIVUS interactive verification system
was employed in the proofs. The general approach to the verification of large systems is described in
[Kemmerer]




2.3. Data Management Security

Data Management Security represented the third focus of the security research effort. Data
management systems typically employ considerably more software mechanism in the representation and
management of the data they contain than do operating systems. As a result, the task of developing reli-
able enforcement controls potentially is significantly more difficult. Many have thought as a result that a
kernel architecture approach to data management security was not feasible. If so, that would be quite un-
fortunate, since kernels limit the amount of software which must operate securely. At UCLA, we succeed-
ed in developing a general kernel based dbms architecutre, meaning that it is potentially feasible to pro-
vide highly reliable security enforcement in data management systems through the correct installation of a
very small amount of software. This result is very importaut, since without it, much of the code in a data
management system would have to operate securely, and the cost of providing secure data management
would then often be prohibitive. The design was published late in 1977 and in order to demonstrate its
operational feasibility, the INGRES data management system was altered to include the proposed kernel
structures, An important result of this test implementation, besides demonstrating feasibility, is that the
approach is retrofittable to existing systems. The savings in existing software can be enormous.

2.4. Security Research Comments

This discussion merely summarizes in a briel manner an enormous amount of computer security
research conducted during the contract's lifetime. Those interested in a deeper view are referred, first to
the technical discussions portion of this final technical report, and subsequently to the appropriate refer-
ences given at the end of this document.

3. Distributed Computer Systems

The research in distributed computer systems included major efforts to formulate necessary design
principles, and then to test and refine those principles via a major implementation of a large scale distri-
buted computing system at UCLA, called LOCUS. The major issues faced in this overall eflort, namely
transparency, reliability and recovery, and performance, are briefly outlined below, as well as their appli-
cation to the LOCUS prototype.

The LOCUS system prototype was initially developed as extensive modifications to the Unix
operating system on DEC PDP-11s. Subsequently, the same wotk was done for DEC VAXes. By the end
of this contract, development work had progressed lar enough that the validity of relevant design princi-
ples had been clearly and forcefully demonstrated. However, a great deai remained to be done before a
system of value to a substantial user commuaity would result.

3.1. Network Transparency

As real distributed systems come into existence, an unpleasant truth has been learned; the
development of software for distributed systems, and for true distributed applications, is often far harder
to design, implement, debug, and maintain than the analogous software written for a centralized system.
The reasons include a much richer set of etror and failure modes to deal with, as well as the lack of a con-
sistent interface across machines by which both local and remote resources can be accessed. An example
of a richer error mode is the reality of partial failures; portions of a distributed computation may fail
while the others continue unaware. In a centralized system, one typically assumes that the entire compu-
tation stops.




Further, local storage may be limited, necessitation that the user explicitly move copies of files
around the network, archiving and garbage coilecting kis own storage. Redundant copies for the sake of
reliability is the user’s concern. Keeping track of different versions of what is intended to be the same file
requires user attention, especially when the copies have resulted from network partitions (leading to paral-
lel changes). As a result, the application program and user must explicitly deal with each of these facts,
at considerable cost in additional software. On a centralized machine, with a single integrated file system,
many of these problems do not exist, or are more gracefully handled.

An appealing solution to this increasingly serious problem is to develop a network operating sys-
tem that supports a high degree of network transparency ; all resources are accessed in the same manner
independent of their location. If apen [file-name) is used to access local files, it also is used to access re-
mote files. That is,the network virtually become "invisible”, in a similar maoner to the way that virtual
memory hides secondary store. Of course, one still needs some way to control resource location for optim-
ization purposes, but that control should be separated from the syntax and semantics of the system calls
used to access the resources. Ideally then, one would like the graceful behavior of an integrated storage
system for the entire network while still retaining the many advantages of the distributed system archi-
tecture. The existence of the network should not concern the user or applicatinn programs in the way
that resources are accessed.

There are also some system aspects that militate against full transparency. If the hardware bases
of each site aren’t the same, then it may be necessary to have different load modules correspond to a
given name, so that when a user (or another program) issues a standard name, the appropriate file gets in-
voked as a function of the machine on which the operation is to be performed. There are other examples
as well; they all have the characteristic that a standard name is desired for a function or object that is re-
plicated at some or all sites; and a reference to that name needs to be mapped to the local, or nearest in-
stance in normal circumstances.

Nevertheless, in other circumstances, a globally unique name for each instance is also necessary,
to install software, do system maintenance functions, etc. A solution that preserves network transparency
and provides globally unique names within the normal name space while still supporting site dependent
mapping for these special cases is needed. A general hidden directory solution was designed to solve these
classes of problems.

In summary, Locus contains a general yet high performance solution for transparency in a distri-
buted environment.

3.2. Reliabslity

Reliability and availability represent a whole other aspect of distributed systems which has had
considerable impact on LOCUS. Four major classes of steps have been taken to achieve the potential for
very high reliability and availability present in distributed systems with redundancy.

First, an important aspect of reliable operation is the ability to substitute alternate versions of
the resources when the original is found to be lawed. In order to make the act of substitution as straight-
forward as possible, it is desirable for the interfaces to the resource versions to look identical to the user
of those resources. While this observation may seem obvious, especially at the hardware level, it also ap-
plies at various levels in software, and is another powerful justification for network transparency. In
LOCUS, copies of a file can be substituted for one another with no visibility to application code.




From another point of view, once 3 significant degree of network transparency is present, one has
the opportunity to enhance system reliability by substituting software as well as hardware resources when
errors are detected. In LOCUS, considerable advantage is taken of this approach. Since the file system
supports automatic replication of files transparently to applicatioa code, it is possible for graceful opera-
tion in the face of network partition to take place. If the resources for an operation are available in a
given partition, then the operation may proceed, even il some of those are data resources replicated in
other partitions. A partition merge procedure detects any inconsistencies which may resuit from this phi-
losophy, and for those objects whose semantics the system understands (like file directories, mailboxes,
and the like), automatic reconciliation is done.

Second, the concept of asiomicity is supported in LOCUS. For a given file, one can be assured that
either all the updates are done, or none of them are done. Such a commit normally occurs automatically
when a file is closed if the file had been open for write, but application software may request commits at
any time during the period when a file is open,

Third, even though a high level of netwotk transparency is present in the syntax and semantics of
the system interface, each site is still largely autonomous. For example, when 3 site is disconrected from
the network, it can still go forward with work local to it.

Fourth, the interaction among machines is strongly stylized to promote "arms length™ coopera-
tion. The nature of the low level interfaces and protocols among the machines permits each machine to
perfbrm a fair amount of defensive consistency checking of system information. As much as feasible,
maintenance of internal consistency at any given site does not depend onm the correct behavior of other
sites. (There are, of course, limits to how well this goal can be achieved.) Each site is master of its own
tesources, so it can prevent looding from the network.

3.3. Recovery

Given that a data resource can be replicated, a policy issue arises. When the netwerk is parti-
tioned and a copy of that resource is found in more than one partition, can the resource be modified in
the various partitions? It was felt important for the sake of availability that such updates be permitted.
Of course, this freedom can easily lead to consistency conflicts when the partitions are merged. However,
our view is that such conflicts are likely to be rare. since actual sharing in computer utilities is known to
be relatively low.

Further, we developed a simple, elegant aigorithm to detect conflicts if they have occurred
[PARKS1]. The core of the method is to keep a version vector with each copy of the data object. There
are as many elements in the vector as there are sites storing the object. Whenever an update 1s made to a
copy of the object at a given site, that site's element of the version vector associated with the updated
copy is incremented. The coaflict detection criterion is then very simple. When merging two copies of an
object, compare thetr version vectors. If one dominates the other {i.e. each element is pairwise greater
than or equal to its corresponding element), then there is no conflict; the copy associated with the dom-
inating vector should propagate. Otherwise a conflict exists.

Most significant, for those data items whose update and use semantics are simple and well under-
stood, it may be quite possible to reconcile the contlicting versions automatically. in 2 marner that does
not have a "domino effect”™: i.e. such a reconciliation does not require any actions to data items that were
updated during partitioned operation as a function of the item(s) being reconciled [F AIS81].




Good examples of data types whose operations permit automatic reconciliation are file directories
and user mailboxes. The operations which apply to these data types are basically simple: add and remove.
The reconciled version is the union of the several versions, less those items which have been removed.
There are of course situations where the system does not understand the semantics of the object in
conflict. The LOCUS philosophy is to report the conflict to the next level of software, in case resolution
can be done there. An example of this case might be data management software. Eventually, the confilict
is reported to the user.

3.4. Performance and its Impact on Software Architecture

"In software, virtually anything is possible; however, few things are feasible.” {[Cheatham| While
the goals outlined in the preceding sections may be attainable in principle, the more difficult goal is to
meet all of the above while still maintaining good performance within the framwork of a well structures
system without a great deal of code. A considerable amojunt of the LOCUS design was tempered by the
desire to maintain high performance. Perhaps the most significant design decisions in this respect are:

1. specialized "problem oriented protocols”,
2. integrated rather than partitioned function, and
3. special handling for local operation.

Below we discuss each of these in turn.
3.4.1. Problem Oriented Protocols

It is often argued that network software should be structured into a number of layers, each one
implementing a protocol or function using the characteristics of the lower layer. Im this way the
difficuities of building complex network software are eased; each layer hides more and more of the net-
work complexities and provides additional function. Thus layers of "abstract networks” are constructed.
Mote recently, however, it has been observed that layers of protocol generally lead to layers of perfor-
mance cost. [n the case of up to 5,000 instructions being executed to move a small collection of data from
one user program out to the network.

In a2 local network, we argue that the approach of layered protocols is frequently wrong, at least
as it has been applied in long haul nets. Functionally, the various layers were typically dealing with is-
sued such as error handling, congestion, flow control, name management, etc. In our case, these functions
are not very useful, especially given that they have significant cost. By careful design, one can build spe-
cial case solutions which integrate these issues with the higher level functions they support.

These observations lead us to develop specialized preblem ortented protocols for the problem at
hand. Ia LOCUS. for example, when 3 user wishes to read a page of a file, the only message that is sent
from the using site to the storage site is a read message request. A read is one of the primitive, lowest
level message types. There is no connection management, no acknowledgement overheard, etc. The only
software ack in this case is the delivery of the requested page.

Our experience with these lean, problem oriented protocols has been excellent. The effect on sys-
tem performance has been dramatic, as pointed out below.

3.4.2. Functional Partitioning




It has become common in some local network developments to rely heavily on the idea of
"servers”, where a particular machine is given a single role, such as file storage, name lookup, authentica-
tion or computation. We call this approach the server model of distributed systems. Thus one speaks of
"file servers”, "authentication servers”, etc. However, to follow this approach purely is inadvisable, for
several reasons. First, it means that the reliability /availability of an operation which depends on multiple
servers is the product of the reliability of all the machines and network links invelved. The server
design insures that,for many operations of interest, there will be a number of machines whose involvement
is essential.

Second, because certain operations involve multiple servers, it is necessary for multiple machine
boundaries to be crossed in the midst of performing the operation. Even though the cost of network use
has been minimized in LOCUS as discussed abave, it is still far from (ree; the cost of a remote procedure
call or message is still far greater than a local procedure call. One wants a design where there is freedom
to configure functions; to avoid serious performance costs, a local cache of information otherwise supplied
by a server is usually provided for at least some server functions. The common example is file storage.
Even though there may be several file servers on the network, each machine typically has its own local file
system. [t would be desirable to avoid these additional implementations if possible.

An alternative to the server model is to design each machine’s software as a complete facility,
with a general file system, name interpretation mechanism, etc. Each machioe in the local network would
run the same software, so system would be highly configurable, so that adaptation to the nature of the
supporting hardware as well as the characteristics of use could be made. We call this view the integrated
modei of distributed systems. LOCUS takes this approach.

3.4.3. Local Operation

The site at which the file access is made, (the Using Site, US), may or may not be the same as the
site where the file is stored (the Storage Site, SS5) or where file synchronization is performed (the Current
Synchronization Site, CSS). In fact, any combination of these roles are possible or all may be played by
different sites. When muitiple roles are being played by a single site, it is important to avoid much of the
mechanism needed to support full, distributed operation. That is, when operating essentially locally, per-
formance costs should not increase because of the mechanisms for the general case.

These optimizations are supported in LOCUS. For example, if CSS = 55 = US for a given file
open, then this fact is detected immediately and virtually all the network support overhead is avoided.
The cost of this approach is some additional complexity in protocois and svstem nucleus code:

The system design is intended to support machines of heterogenenus power interacting in an
efficient way: large mainframes and small personal computers sharing a replicated file svstem. for example.
Therefore, when a file 1s updated, it is not desirable for the requesting site to wait until copies of the up-
date have been propagated to all sites storing copies of the file, even if a commit operation is desired.
The design choice made in LOCUS is for updated pages to be posted. as they are produced, at the storage
site providing the service. When the file is closed, the disk image at the storage site is updated and the
using site program now continues. Copies of the file are propagated to all other storage sites for that file
in parallel.

4. General Summary

Substantial progress was made by this contract in understanding solutions to fundamental prob-
lems in computer security, as weil as in distributed computing.



The computer security contributions were as follows. The kernel based approach to operating
systems and data management was developed as a concept and implemented to demonstrate feasibility.
Advanced program proof techniques were developed and successfully applied to the operating system ker-
pel. Network security problems were addressed by several advances. The ability to add end to end secu-
rity protocols in a kernel based manner to existing systems was demonstrated. A family of protocols for
digital signatures was developed which showed essential functional relationships between conventional and
public key encryption.

The distributed system research centered arcund system design principles and their possible im-
plementation in LOCUS, a distributed version of the Unix operating system. The concept of transparency
was developed and demonstrated. [ts value was shown to be very high. Methods to support reliability
and availability, including version vectors, support for consistent, replicated storage, and a design that
permits independent operation in the face of [ailures, was developed. Methods to reconcile changes made
during partitioned operation were also developed. Much of these concepts were demonstrated in one form
or another in the LOCUS system prototype,

It is believed that these contributions to computer research represent important and fundamental
progress.




5. Technical Discussion: Computer Security

Three reports are included in this section. The first discusses proof of security of an operating
system; the second describes the use of software architectural methods to construct a secure database sys-
temn, and the third analyzes the use of encryption in computer networks.
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i. Introduction

Early attempts to make operating systems secure mere-
ly found and fixed flaws in existing sysiems. As these
efforts failed. it became clear that piecemen] alterations
were unlikely ever to succeed [20]. A more sysiematic
method was required. presumably one that controlled the
system's design and implementation. Then secure opera-
tion could be demonstrated in a stronger sense than an in-
genuous claim that the last bug had been eliminated, par-
ticularly since production systems are rarely static, and er-
rors easiiy iniroduced.

Our research seeks to develop means by which an
operating system can be shown data secure. meaning that
direct access ‘o data must be possible only if the recorded
protection policy permits it. The two major components
of this task are: (1) developing svsiem architectures that
minimize the amount and compiexity of software involved
in both protection decisions and enforcement. by isolating
them into kerne!/ modules; and (1) applying extensive
verification methods to that kernel software in order to
prove that our of dara securiry criterion is met. This paper
reports on the latter part, the verification experience.
Those interested in architectural issues should see [23]
Related work inciudes the PSQOS operating system project
at SRI [25]) which uses the hierarchical design methodolo-
gy described by Robinson and Levitt in [26]. and efforts
1o prove communications software at the University of
Texas [31].

Every verification step. from the development of top-
level specifications to machine-aided proof of the Pascal
code, was carried out. Although these steps were not
compieted for all portions of the kernel. most of the job
was done for much of the kernel. The remainder is clear-
lv more of the same. We therefore consiger the project
essentially compiete. In this paper. as each verification
step is discussed. an estimate of the completed portion of
thal step is given. together with an indication of the
amount of work required for completion. One shouid

realize that it is essential to carry the erification process
through the sieps of actual code-lesel proofs because most
security flaws in real systems are found at this level [20]
Security lawe were found in our sysiem dufing
verification. despite the fact that the implementauon was
written carefutly and tesied extensiveiv. An example of
one detected loophole is 2xpiained in §2.5.

This work is aimed a! several azudiences. the software
engineering and program verification communites, since
this case study comprises one of the largest realistic pro-
gram proving efforts to date; the operating svstems com-
munity because the 2ffort has involved new operating svs-
tem architectures: and the security community beczuse
the research is directed at the proof of secure operation.
We assume the reader 1s acquaintad with common operat-
ing system concepts. with general program senfcaton
methods. and with commoen notions of absiract tvpes and
structured software.  Understanding of Alphard proof
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methods (33]. upon which this work is based. is not
necessary since relevant aspects are summarized here.

1.1 Svstem Architecture

The Data Secure Unix (DSU) architecture supports a
full function multiprogramming, uni-processor operating
system running on a DEC PDP-11/45 computer, with ap-
plication code interface essentially identical to standard
Unix [24]. In our system the software reievant to protec-
tion is isolated into a few components. This paper is con-
cerned with the kernel, a component which depends only
on the semantics of the hardware, thereby providing the
base for the entire system. The kernel supports
processes. capabilities, pages and devices via kerne! calls.
Exampies of kernel calls to manipulate these objscts are:
initiaiize-process, invoke-process. grant-capability, swap-
in-page. swap-Qut-page, mMemory-management-interrupt,
send-interrupt.  set-interrupt, hardware-interrupt. and
swarti-io. Part of supporting these objects invoives enforc-
ing an access policy. thereby protecting the objects. The
kernel does not determine the protection policy it en-
forces, however; that task is performed by a second level
kernel called the poficy manager'. The policy manager.
which runs as a procass. informs the kernel of the securi-
ty policy. i.e. the rules which state what any user is ent-
tled 10 access, by issuing the grant-capability kernel call.

The two-level kernel design splits the task of proving

that the system is secure intwo two subtasks: a) verifying

that the kernei enforces the security controls set by the
policy manager and maintains the integrity of the object
tvpes it supports, and b) verifving that the poiicy manager
sets the kernel controls to implement the desired poiicy
properly. There are several advantages to splitting the
security-relevant code in this fashion. First, splitting a
verification task in general decreases the total effort in-
volved. Second. different policies can easily be imple-
mented. Third, verifying that the implemented poiicy
reflects a given abstract policy is not encumberaed dy the
relatvely complex task of enforcing that policy. Most im-
perantly, however. the abstract specifications for the en-
{orcement portion can be expressed straightforwardly and
subsequently proven. independent of policy issues [11].
This simplification 15 significant since many of the success-
ful security penetrations of systems have occurred because
of errors in the enforcement rather than in the policy part
of the sysiem.

Both the kernel and the policy manager are imple-
mented as seguenuai sofiware, although in different ways.
Thus the specification and verification tasks can avoid the
difficuities of parailelism, Each call 1o the kernel runs
physicaily uninterrupted. and thus cannot wait for an
input/outpul compieuon since this would result in an in-
tolerable delay. Of course. a calf can swarr an [/O opera-
uon for a process. In addition. since [/O s the oniy

" References 10 rne kernel in this paper rafer 1o the base or
first-levet kernel. The second-level karnel is always referred i as
the peiicy manager.
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source of parallelism once interrupts are disabied. it is
necessary to insure that no /O affects any internal kernel
data or Kernel-call parameters. This is accomplished by
copying kernel-call parameters into kernet data space be-
fore kernel-call processing and by coding the kernei 1/O
routines to avoid [/O to or from the kernel address space.
The policy manager process does not run physically unin-
terrupted but is nevertheless logically sequential. [nter-
rupts and messages are queued for the process to inspect;
the process contains no asynchronous jumps.

The other important parts of the DSU system are the
dialoger. scheduler and application processes. The dia-
loger handles user authentication and protection policy
modifications. This process is trusted and therefore must
be verified. On the other hand. the scheduler, which han-
dles memory and cpu allocation, is not security relevant
because while it makes decisions about what process o
execule and what pages to locate in core, all the actual
sensilive operations are done via kernej cails. Application
processes run with two linear address spacss. One address
space typically contains Kernel-interface software and
thereby provides a standard Unix environment for the ap-
plication code. which runs in the second address space.
The correctness of the interface package is not relevant to
data security, since a separate logical copy of the package
15 encapsulated within each process. More detail 1s given
in (21, 23).

1.2 Proof of the Security of the Kernel

The proof that the kernel is secure has two parts: a)
developing four levels of specifications. ranging from Pas-
cal code to the top-level security critarion. and b) verify-
ing that the specifications at these different levels of
abstraction are consistent with one another. Figure | out-
lines the four leveis of specification and the three con-
sistency proofs, giving section numbers where more derail
is provided. The top-level formalizes our intuitive notion
of dawa security for the kernel. The abstract level contains
operalions corresponding 10 uninterrutible kernet calls and
more specific objects like pages. processes, and devices.
The low-leve! specifications. which use dala structures
from the impiementation. are sull at a higher level than
the code because detaii is omitted and some abstracung of
data structures is empioved.

The four levels of specification are described in §2
whiie the consistency proofs and mappings are considered
in §3.

This proof work assumes thal the Pascal compiier. in-
teracuve verification 1o0is, and hardware operate correctly.
We leave these 155ues 10 others.

2. Specification
One approach to developing a secure implementation

1S 0 work top dowm that s, deveiop the top-level.
abstract-ievel, low-level and code. in  that order
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Fig !- Specification levels and consisiency proofs.

P ——————k ey

Top-Level
Specifications
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Formal Mapping and
Consistency Proof (§3.1)

| Abstract-Level
| Specifications
(§2.2) .

Formal Mapping and
Consistency Proof (§3.2)

Specifications

i (§2.3)

i Low-Level
I

Standard Hoare-Stvle
Code Verification (§3.3)

[——

Pascal Code
(§2.4)
!
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Although this is a fine approach in principle, it is often
not practical. On several occasions we altered the func-
uonality of the system as we better understood the en-
vitonment and the verification constraints. For example.
only aftwer a first design and implementation did we under-
stand detailed 1/O issues well enough to develop the im-
" proved. verifiabie 1/Q design described in §2.3.2. The
design also eveived as a result of demanding efficiency
constraints. Thus. even though much effort was spent
building veriflable sofiware. an informal design process
and most of the coding preceded the major work on for-
mal specificauons. We suspect that this experience will
not be uncommon-.
In generating each set of specifications, there were
several key considerations:

the specification language (o be used.

- the intent of the specifications and thus the:r content.
and

- the orgamizauon of the specificaticns.

The following subsections consider each set of
specifications with these considerations in mind.

“ & similar conclusion was drawn by Gerhart n her

verification effort 2, 3]
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2.1 Top-Level Specifications

Clarity and precision are essential in the top-tevel
specifications.  Ultimately, people must decide whether
the properiies specified are the ones that they desire.
Consistency of lower levels in principle may be checked
by machine.

Our 1op-ievel specification is a security criterion. a
specification of the protection enforcement 10 be provided
by the kernel. This criterion must be expressed in a for-
mali but easily undersiood and well defined language. We
chose a finite state machine model,

M= <5 5, T>

where S is the set of states in which the machine may ex-

1st, S is the initial state and T is the transition function.

The transttion lunction expresses the effect of a single

operation which in turn corresponds t© a number of

operations at the abstract level. A state of the machine

consists of the following uniquely named. ncn-overlapping

components:’

a) process objects, which at this level of detail have un-
structured values.

b) protection-data objects {one per process). with vaiues
being sats of capabilities.

¢} general objects, again with unstructured vatues {pages
and devices are considered general objects at this level
of specification), and

d) a current-process-name object, whose value is the
name of the process currently running.

The top-level security criterion is as follows: A com-
ponent of the state is actually modified or referenced only
if 1the protection-data for the process named in the
current-process-name object allows such accass 10 the
component. Thus. at the top levei of specification, we
merely.care that if 2 component is modified or referenced
then that access is allowed: we do not care how a new
value for a component is derived. The formal version of
this criterion. which is given sisewhere [29]. is largely
based on the work reported in [22, 1]

This security criterion (s meant 1o capture the common
nction of dawa securv. and is free of anyv particular poiics
As pointed out in §1.1. the kernel s responsible aniy for
enforcemenr of whatever poiicy is implemented in the pol:-
¢y manager.

2.2 Abstract-Level Specifications

Like the top-level model, the abstract-levei modei is a
finite sa.e machine. The transiuon function at this levei
expresses the effect of each kernel operation. The
abstraci-leve! state consists of sets of objects. exampies of
which are  Process. Device.  Device-starus.  Page.
Protecrion -date and Kernei-data. Most of these objects
map easily to objects at the top leve!l. Unlike the unstruc-

* The convention i thus paper 15 for top-level components 1o
appear in lower case bold roman. abstract-level componsnts to
start with an upper case .alic letter followed by lower case italics.
and low-ienel components to 3¢ completaly lower cuse itahcs.
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tured value component ot objects in the top-level state,
however, the value components of the abstract-level ob-
jects are declared in some detail. The Kernel-daia object.
for example, has a value component made up of strug-
tures necessary o support the top-ievel and abstract-level
object abstractions. [ncore-page-iabie, which is involved
in the Page abstraction. is one such structure. Using the
data declaration faciiities of Pascal [9, 32]. it is:

Incore -page -table: arvay {0 .. Num-pages — 1| of
record

Pgibi: Id, The name (identifier or id)} of the page
resident in this page-frame;

{/o-car integer: A counter of the number of
ongoing i/0’s involving this page-frame.

Clean: boolean; A flag indicating if the contents of
the page in this page-frame differ from the
contents of the secondary storage copy of the
page.

Swapping boolean. A flag set while the [/0O 1o
bring the page into core is in progress.

end;

Appendix C uses this data structure in the low-ievel to
abstract-level mapping.

Unlike the top-level abstraction. the abstract-leve] has
considerable detail. needed primarilv for the security
prools of trusted processes *, in our case the poiicy
manager. Verification of trusted processes. like all
verification. requires the compiete semantics of ail the
primitive operations. in this case kernel calls, which are
executed.

The abstract model is complete. in that every aspect of
the kernel which can be sensed from non-kernel code is
included. even details which are used only by the policy
manager and scheduler. and are not wisible to user
software®  Since a generai user need not be aware of all
of the kernel structures and operations. two views of the
abstract mode! can be given: the user view and :he special
process view., Most of the abstract model’s detaiis are
relevant 10 only the policy-manager and the scheduler
processes. so the wsar's view ol the abstract model is
gquite simple,

A detailed set of apstract-level kernel specifications
also provides a framework for analysis of interprocess
confinement  channels  {13], Without  complete
specifications. one could design a kernel that mests our
top-level security criterion. vet contains kernel cails which
permit one process to store information :n a kernel table
and another process 1o sense the vaiues in that table.
While we do not formally consider confinement control,

* We bajieve tha: any kernel-based system wiil contain trust-
ed processes. See §4

* In ihe 'mplementation of the kerne! the capabilites neces-
sary 1o successiully 2xecute some of the operauons '¢g. Irant-
capabiiiy and invoke-process! are given onlv o the policy-
manager or the scheduler Therefore. these operalions Jannoi be
successfuliy =xecuted by application procasses
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our detaifed abstraci-level specifications do provide a
foundation for bandwidth analysis.

While the abstract-level specifications contain more de-
il than one might have expected, there is still consider-
ably less detaii than at the low level. Redundant data
structures at the code level, introduced 10 maintain ac-
ceptable performance. are not part of the abstract-level
state. For example, neither the process-index field of 2
process’'s argument-biock. which allows the karnel to
determine the owner of the argument-block without ax-
tensive searching. nor the page-frame-index field associat-
ed with each relocation register, which indicates the page-
frame 1o which the relocation register is mapped (also
available by analysis of the memory addrass part of the re-
location register) is reflected in the abstract model. The
abstract level also often presents a single data structure
where the implementation uses several (see the mapping
function in appendix C). Therefore, while the formal
abstract description is more dewiled than one might ex-
pect or prefer. it is still considerably easier 10 understand
than the low-level sysiem it represents.

2.3 Low-Leve! Specifications

The low-levei specification effort uses a finite state
machine model, just as the top and absiraci-levels did.
Each kernei call represents a transition. or more precisely.
an equivaience class of state transitions. each member of
which is the call with some set of parametars. The low-
level state consists of those global kernel variables that re-
tain vaiues from cail to call. Some additional abstract
structures are nesded. however. Section 2.3.2 describes.
for example, how the low-level state can contain a table
which resides on disk.

Deciding what (o specify about the states ang the tran-
sitions was straightforward: all modifications of the state
components have to be accounted for in the specifications.
The specification language was determined by the XIVLS
system [4. 34| under develooment at Information Sci-
ences Insutute {1SI). The spec:fication !anguage required
by XIVLUS 15 a superser of Arst order predicate calculus.
with additional convenience coming principaliv from con-
structs for expressing updated vaiues of arravs ang
records.

The task of arganizing the low-leve! specifications re-
cetved a great deal of attenuon. and resulted in an organi-
zation technique referred 0 here as
data -defined spec:ficanons. The next secuion describes
this technigue while the following section describes specidl
15$ues in the specificanon of hardware semantics.

2.3.1 A Darta-Defined Specification Technigue. In
farge soltware syvstems. the size of the set of {ormai
specifications s quite large. These specifications must in-
terfage with both apsiraci-izvel specifications and code.
Consequently. the organizauon  of  thz  jow-evel
specifications 15 crnitcal The dawa-defined spec:iranion
techmique draws from 9S0th ke rechnigues of absirac: dz2:a
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tvpes {15, 16, 27, 33] and functional specifications [19.
26].

A finite state machine can be considered as one large
abstract data type, with the machine state and transitions
being the data type components and operations. Although
this organization is theoretically sufficient, it does not con-
strain the form of the specifications for each operation.
As explained below, the nature of low-level properties and
kernel cail operations makes this gross level of organiza-
tion unsatisfactory.

Several characteristics of the low-level siate and associ-
ated operations significantly affected the organization of
the specifications. First, many properties must be true
both before and after each kernel cail. These properties.
which characierize each low-level state, are called invari-
ants [7. 33]. A simple example of an invariant is a range
constraint on an arrav index stored as part of the low-level
state. Second, many invariants cross data-structure boun-
daries. Appendix A describes one such invariant which
involves two relocation register structures. the page-table,
the capability lists, the running process index and part of
the process table. Finally, much of the kernei-call code 15
directed at maintaining the invariants.

Since code involved in maintaining each invariant will
in general be executed in several kernet calls, a purely
functional set of specifications. that only specifies the ac-
tions of each kernel call and does not use invariants,
woutd contain considerable redundancy. This redundancy
presents two problems. First. it complicates the complete
set ‘of kernel-call specificaiions. increasing the chance of
specification inconsistency or omission and possibly
confusing a nhuman reader. Second. the proof which
shows that the low-level specifications imply the abstract-
level specifications is expanded unnecessarily. The invari-
ant property would be expressed in a functional form n
several kKernel calls and thus wouid be involved in several
kernei-cail proofs instead of in 2 single one. Proofs of in-
variants and individual kernel calls are discussed in §3.

AR abstract data tvpe approach that invelves more
than one large data tvpe might solve the redundancy prob-
iems. However, incorporating specifications that cross
data-iype boundaries 1s contrary both to the spirtt and
mechanism of current abstract-data-type frameworks.
Structures involved in each invariant would have to be
part of the same data tvpe, and looking at the complete
set of low-level invariants. one observes that almost all
the data structures would have 10 be combined into one
or two ivpes. therebyv defeating the aavantzges of abstract
data types®

Though it is neither a strict abstract-data-tvpe tech-
nique nor a strict call-by-call technique. the data-defined
specification  technique draws  from both Although
specifications refer only to the values of variabies befare
of afier kernel calls. the specifications were organized not
on & cail-bv-cail basis but on a data-siruciure basis In

® Although abstrac: data tvpes did not seem pracucal in gen-
erai. there were several places where thev were used. In particu-
iaf. 32.3.2 describes how adsirachon was used for davice registers
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particular, the presentation of the formal set of kernel
specilications discusses each data structure in lurn. reter-
ring to specific kernel calls as little as possible. Unlike an
abstract-data-type organization. specifications (eg. invari-
ants) crossing data-structure boundaries are permitied.
Each of these spacifications is presented inside one of the
relevant data-structure’s set of specifications and refer-
enced in the other data-structures’ sets of specifications.

The discussion so far has mentioned invariants as the
only form of specification. Invariants. however, can onlv
be used to specify the properties of a state; they cannat be
used to specify the effect of a siate transition. If it were
possible 10 define a secure sware. the invariant form of
specification would be sufficient. Unfortunately. it is
often the case that the conditions under which a state
change can occur must be specified. For exampie. data
security requires that the protection data (i.e, the data
representing the policy impiemented by the policy
manager and enforced by the kernel via capability lists for
each process) be modified only by the policy manager in
either the grant-capability or initialize-process kernel calis,
Other examples of relevant stale changes include cases
where the modification of one data structure is condi-
tioned on the modification of another data structure. in-
dependent of what kernel call made the modification.
Each of these forms of specificauon requires the ability 10
refer simultaneously (o0 the values of the state both before
and after the kernel call. Invariants do not provide this
ability, so a different form. called 2 condirional. was intro-
duced. The format of conditionals is suggestve of their
name. it is "conditionl imphes condion?”. Typically. con-
dison | either hists a particuiar kernel call {eg. call=grant-
capability), or it indicates that some variableis) changed
value. {eg. var = var)’. An example of the latter form
of conditional is given in Appendix B.

While the data-defined specification technique atlows
one to present cleanly a complele set of Kernel
specifications. they are not in the proper form for stan-

dard Hoare-style. code-level ver:fication [3] Entry/exut
assertions are needed ior 2ach xernel call®*  Since the
data-defined-specificauion techinigque organizes the

specificancns  on 1 data  siructure  basis  and  the
specifications consist of 2 set of invamants and condition-
als. the exit assertion for each cal' :s the conunction of ali
the invanants and condinonals  The ent assertion is the
comjuncnion of all the invarianis. Whiie these antry/exut
a§sertions are easy 10 2ensrate. thes are overly lengthy
The number of comuncts n both the antry and exit
asseriions can be substanuady reduced by the automatable
appiication of some simple jozic. To de so. it 1s necessar
0 parameterize  both  the wernel calls and  the
specificauons.  Aithough the Pascal language forces the
coder 10 declare parameters for procedures s either by-

The value of varisbies sefore » wernel cail arz denoted b
the name of the varable suffixed with a prime 1)

P Nenfviag a piees of code with respest 1o an entrv/exy
25Seron pair means thatf the 2ntry 1sseruon 1s true before exe-
cuting the zode and the code ‘ermingies. tha exit assaruon will e
tru2 4l termunzhon
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reference or oy-vaiue, global variables cannot be similarly
declared. Since the low-level state is made up entirely of
global variabies. we implemented import lists. a language
construct borrowed from Euclid {14]. For each procadure
and function. an import list specifies which global vari-
ables are used by-value and by-reference in that routine
and all routines cailed by it. In particular, each kernel cail
has an import list and is consequently parametarized. [n-
variants and conditionals are also parameterized. the
parameter list being the free variables in the specification.

To shorten a kernel call exit assertion, a comparison of
the kernel cail's by-reference import list and each
invariant’s parameter list is made. [f the lists are disjoint,
the invariant trivially holds across the kernel cail. Some
conditionals can be handled in an analogous way: those
conditioned either on the medification of some data struc-
tyre or the execution of a certain kernel call. [n the form-
er case, the conditional is trivially sausfied if the given
data structure is not imported by-reference. [n the latter
case, only the conditional relevant to the kernel call under
consideration need be proven explicitly. All other condi-
tionals will have f{false conditions. impiying a true
specification. By the use of import lists in this way, a
manageable kernei call entry/exit specification ¢an be gen-
erated mechanically from the invariants and conditionals.
Additionai heuristics can be applied for further reductions
[28].

An important advantage which results from the data-
defined organization of the low-level specifications is that
it presents an aiternate view of the kernel. That is. for
the programmer, the code is a procadurally oriented
description of the system. while the data-defined
specifications form a somewhat orthogonal view that cuts
across ali calls.

2.3.1 Hardware Semantics. The semantics of high-
leve!-language programs can typicaily be defined by the
definition of the high-level language in which the pro-
grams are written, Unfortunately. that statement is not
cerrect for an operating svstem nucleus.  Hardware
characteristics show through. thereby making a language
definition such as the axiomatic specification of Pascal (8]
Imcomptete (n critical wavs

First. kernel software is responsible for maintaining
important aspects of the anvironment in which that kernel
software tself runs. For example. on a PDP-1L
privileged kernei mode. in which the kernel runs, operates
in a2 virtual address space. The page registers controlling
that space and mantaiming the linearnty assumed by the
compiier are themselves contrelled by the kernel code
whose vahidity depends on their carrect controi.

Second. the finiteness of hardware is often maskad in-
correctly by the programming language compiier. For 2x-
ample, the availabte compiier transiates Pascal arithmetic
siraightforwardly into machine cods. However, arithmeuc
on a PDP-11 has 16 oits of precision, despite the fact that
aggressas are 18 bus, and sretecuion-crincal validity calcu-
lations using those addresses must e made.
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A more serious probiem results from the finite capaci-
ty of main storage. There is a capability list for each pro-
cess, and it is not possible for them all 10 reside in main
memory. Each capability list is on a page that can be
moved in and out of main memory by swap-in-page and
swap-out-page cails issued by the scheduler process.
Nevertheless. kernel code references and updates each
list. The semantics of the kernel Pascal code has 1o reflect
a complete static data structure containing all the capabili-
1y lists in kernel storage. The probiem is handled by de-
claring, in kernef code. a single capability list structure, In
an isolated routine, kernel page relocation registers are
manipulated so that a single capabilitv-list page is included
in the kernef address space. at exactly the virtual location
expected by the declaration. The semantics for this rou-
tine requires an abstract array of capability lists. so that
the page register change has the effect of reassigning all
the values previously contained in the real capability-list
data structure?.

Last, the /O interface on the PDP-11 is surprisingly
compiex. For each physical device, there are up 1o 24 re-
gisters with quite complicated semantics, and the meaning
of cach fieid in a register differs substantially among dev-
ices. /O is done by icading values into the regisiers
through normal Pascal assignment. It is quite typical, as a
result. 1o have a substantial amount of device speacific
software in the nucleus of software sysiems controlling
many such devices. Therefore. in the DSU kernel, a con-
siderable effort was spent to make as much of the code as
possible device :ndependent [28]. This effort resuited in
substaniially reducing the overall length of the code. and
left only small device dependent routines. called device
drivers. each of which only loads and/or checks the device
registers for the different devices. Device independen:
entry/exit assertions (i.e. semantics) were written for
these device drivers to allow the verification of the
remaining device independent kernel software. Bit level
device regisier manipulation is hidden. in the normai
manner of abstract data tvpes.

The mapoing from the the device independent driver
semanucs o the actual register manipulation involves 4
clear definmon of 70w the device opsrates. but is quite
straightforwara, By successfuilv making almost all ihe
code devics :ndependent. that specification efort is greatly
reduced. [n addition. adding new devices is not only easy
w code but inveives little or no additional specification
and httle aggitonal .enficauon. The :mportance of this
1/Q abstraction is hard 10 oversstimate, since approxi-
mateiv half of the Xernet :s concerned with 1/Q. sven
after the simpiifications.

The general approach emploved 1o deal with hardware
issues :solates them as much as possiole. so that most
kerne! code 2xecutes in a siandard Pascal environment
Convenuonal nouons of dawa absiraction are used in (his
part of ihe software archuecture. Code fragments which

ToAppendix A usIfatEs in cnvanant which uses the sasiract
zapaoility st
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reference of modify hardware registers and which there-
fore do not have standard Pascal semantics were put in
separate procedures and functions. As a result the exit
assertions of these procedures and functions can reflect
the unusual semantics in 2 way that can be used eise-
where in the specifications and proofs. hiding the manner
in which the semantics were realized.

2.4 The Pascal Code

Like the other levels of specification, the Pascal code
must interface with its surrounding levels, in this case the
hardware and the low-level specifications. This section
outlines how these interface requirements affect the code.

Pascal was chosen as the programming language pri-
marily because its semantics had been formally defined
18] and XIVUS uses Pascai {34]. We did make some
small changes to the language. One change, mentuoned
earlier (§2.3.1). is the addition of import lists 0 aid
verification. Another addition is the ability to declare
variables to be located at specific memery locations. This
ability allows hardware register manipulation to be done
without assembly language routines. Adding the hardware
register manipulation directly into Pascal is not problem
free. as we have pointed oul, because the semantics of as-
signment 1o some registers is not consistent with standard
Pascal assignment semantics. Consequently we separate
such assignments into individual procedures.

Heavy use of procedures is probably the most distinc-
tive aspect of the flow of control in the kernel. In addi-
tion 1o facilitating human understanding. this practice can
reduce the number of proofs required. When code com-
mon to several kernel calls is separated into a procedure,
it need be verified only once. Also the number of proofs
which result from a fragment of code is equal 1o the
number of paths in the code {rom assertion to assertion,
and the number of paths can often be reduced either by
introducing intermediate assertions or by breaking the
code into procedures. Figure 2 illustrates this point.

Keeping the code of the kernet short and simple is
oftzn not compauble with efficiency. For example. in
several places arrayv-index guesses are kept 10 help reduce
search costs. The total code is of course larger since both
the long searches and the searches via the guesses must
be included. Consequently the addition of the guesses
resuits in a slightly more complicated venification task.
The data structures in general, however, are very simple.
For several reasons. neither dynamic storage allocation
nor pointers are used. First, neither the compiler imple-
mented at UCLA [30] nor the XIVUS verification svstem
handle these constructs. Second. at the ume coding first
began. it was nol known how difficult verificauon involv-
ing these structures would be'? Finallyv. many of the data

0 Work subsequently done both at Stanford [17] and UCL A
1! has shown thai code employing these structures need be no
more d:ficult 1o verify than arrays.
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Fig. 2. Using intermediate assertions or subprocedures o reducs the
number of proofs.

begin begin l begin
entry al; entry al: 1 entry al;
if ¢! then 4 ifcl then A [ i cl then 4 eise B,
else 8; else B: if 2 then C else D,
if ¢2 then C if c2then C call SUB.
else D, else O exit al;
if c3 then £ assert al. end.
else F; if ¢3 then £ proc SU/B begin
exit a2; else F, entry ad.
end. exit a2, if ¢3 then £ else F,
end. exit aj,
end.
There are 8 | There are 4 paths | There are 4 paths in the
paths and thus & | 1o the  assert mainline and 2 in the
proofs. statement and 2 | subprocedure. only 6
paths from it | preofs.

anly 6 proofs.

structuras are not dynamic so neither dynamic storage nor
pointer usage seemed 10 have any advantage over arrays.
Arrays, records, and most commonly. arrays of records
are the only data structures. Although UCLA Pascal has
no operations involving entire records, data ttems were
organized into records for two reasens. First. the code
and documentation was clearer. Second. import lists were
simplified, because entire records could be imported
without having to list each element.

Being able to import records only in thew entirety
iurned out 10 be a mixed blessing. lmporting an entire
record by-reference when only one or two fields were be-
ing modified shortens the import list but it complicates
the entry/exit assertions. At the kernei-call level, if a
data item is imported by-reference, all the assernons in-
volving that data itlem must in seme wav be proven. To
avoid having to list and prove assertions about data items
which are not modifiad. assertions to that effect are in-
cluded. These asseruons. which might have io be restated
in several subprocadures. can be avoided if the
unmodified data items are not part of a recorg containng
data items which are modified. There are in general two
wavs 1o reduce the significance of the above problem.
One is ¢ change the import list mechanism [0 permit
subrecords to be imported. The more 2asily impiemented
solution is to split the records whose fzlds have different
modification characteristics nto separate record . As a
matier of expediency the latter solution was adopted.

2.5 Reflections on the Specification Effort

Cver ninety percent of the UCLA Kkernel was success-
fully specified in the manner outlined in the previous sac-
tions. This success is generally encouraging. but the
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effort reguired is also sobering. The task is still 100
difficult and expensive for general use.

Nevertheless. our specification work was very valu-
able. not only as a research effort, but because significant
security errors were uncovered. For example, although
the code had already been tested and executed properiy
for the normai case. a boundary condition of the kernel
call which maps a page into the user’s address space had
aot besn handled property. The result allowed a
mischievous process to read or modify memory pages ad-
jacent to its own. Since protection-data pages are allocat-
ed to arbitrary page-frames. this mischievous process
could. if patignt. modify its protection-data to give itself
access 10 any obiect [28]. The discovary of flaws of this
nature clearly justifies the need for formal specification. if
not complete verification. for security relavant and other
sensiuve applications.

During the specification effort. we were also surprised
by the number of apparently intrinsic refationships among
the kernel data stryctures. This patiern s in part because
many of the separabie functions had already been re-
moved from the kernei, However we believe that, as
verification techniques are more widely applied. such rela-
tionships will be encountered more frequerntly.

In general, we must conclude that more aid is needed.
and research justified. 10 ease the specification task. Use-
ful areas to pursue include: a) programming language
design to help capture and enforce some of the properties
for which we were forced 10 use general verification
methods 10 assure. b) specification language design and c)
techniques for determining completeness and consistency
of the specifications. particularly with respect to hardware.

3. Proofs

All of the specifications at all of the levels, with the
exception of the code, are written in pradicate calculus.
However, since the data structures are different at
different abstracuion leveis. a mapping function from each
specification lavel 1o the next higher level i1s used (o con-
siruct tugher-lesel data struciures out of lower-ievel ones.
Such a mapping can be usad to show that two levels of
specification have the same meaning. We have used
several levels of specification and mapping to verily that
the top-tevel specifications are consistently impiemented
by the Pascal code for 2ach kernme! c¢all. Figure 3 ilius-
traies the states at the various levels. together wih ap-
propriate mapping functions. Appendix C contains an ex-
ample of one of the mapping functions. rep,.

The verification techniques of Alphard have been
adapted as 2 basis for dotng (he mappings and consisigncy
proofs. The Alphard methodology provides a formal
framewcrk- o prove that abstract speaifications of an
abstract data type dre consistent with the code that impie-
ments that wpe [33]. The parts of the proof. which mus:
be done for ali values of x. the value of the ww-ieved

125

Fig. ). States and the associated mapping functions.

Top-Level State

TMapping Function rep,

Abstract-Leve! State

T Mapping Function rep,

Low-L=vei State

TTrivial mapping; Some data items omitted

Pascal Variables

state, are described below, both informally and formaily!!

(1) Establish the vaiidity of the low-level representation
— any combination of low-levet variables that satis-
fy the low-ievel invariant corresponds to an abstract
object that satisfies the abstract invariant.

Linvix) «» Ainvirep,(x))

(2} Esuablish the low-level invariant and certain initial
properties of the abstract staie after executing the
initialization code.

true {OP,) {(Linv(x) A 4imi{rep,(x)))

{3)  For each operation j. prove the code to be consisient
with the low-ievel entrv/exit or pre/post assertions.
including the low-level invariant,

v, HLpre ()N Limv (x MOP,} { Lpost, (x) A Linv(x)))

t4a} For sach operation j. show :that if the abstract cpera-
tion could legally be zpphed fi.e. dpre. 15 true! and
the low-level 1nvariant 1s true. then the iow-levet
entry asserton 1s frue.  As a2xplained »elow. this
part of the proof s trivially done for the UCLA ap-
plicauon.

T Hdpretrep, xi) T Linvex ) e Lgre lx i)

14b) Prove thal if the !ow-ieve| nperatton is properiy in-
voked. then the post conditon of ihe low-ieval
operation 1s sufficiant ‘o impty the post conditon at

© The formuausm usas simple Grsi order araQicale caicuids
ind standarad veriicatuon notaueon. The Arst order oredicat cii-
cuius Notanon s Imphcalion - o= Jomunchon YT rand umsersa,
Juanuficauon :vt The sernfcauon nowuon s g proe. A
wnere 215 the 2oty or pre sonciuan and 3§ Mg 2xL or pOSL con-
Jimon and g prood means that o 3 5 e Refore axecuting nrog.
shen 25 rue afierward, £1vEN INdL 20w @tmindtes ) )
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the abstract level. Here x means the value of x be-
fore invoking the low-level operation.

¥j.x. ((Apre,(rep, (x VDA Linvix' YA Lpost, {x})
= Apost;(rep, (x 1))

Qur application fits fairly well within the Alphard
framework. The operations are just kernel calls. The tni-
tialization code is the kernel initialization. The kernel was
designed to allow any sequence of kernel calls; calils fail if
they are improperly invoked but they can always be exe-
cuted. Thus, there are no preconditions on the opera-
uons. Consequently part 4a of the above proof is trivially
rrue. Also parts 3 and 4b can exclude references to Lpre,
and Apre,.

Additional work, however, results from the addition of
a top level above the abstract level. To do the proof
between the abstract and top levels requires repealing
parts | and 4b of the Alphard proof compenents. The ad-
ditionai part | becomes:

(1) Adivirgp,(x)) = Trinvirep, (rep,(xh))
The additional part 4b is:
4b') wix. (Ainvirep, (x V)N Apost, ., == Tpast (rep,irep, (x)})

Lastly. part 2 is modified to combine initialization require-
ments at each level of abstraction:

12V true [OP, 0 (Linvix)AAmitrep,(x )37 Tt Lrep, trep, (x )1 1)

Section 3.1 discusses the abstract to 1op level proof (parts

1" and 4b'Y; section 3.2 discusses the low-level o abstract

" we simpiy outline them here.

A LE D

proof {parts | and 4b). and finaily. section 3.3 considers
verification of the actual code with respect to the low-level
specifications {parts 2 and 3}

3.1 Top-Level and Abstract-Level Correspondence

These proofs are in most respects straightforward. so
Since the unique lop-ievel
operaucn is impiemenied Dy many operations at the
abstract level, it is necessary to show that 2ach of these
operations consistently implements the top-ievel opera-
ton. To prove that the abstract level is a consisient 1m-
plementation of the top-level specification it is necessary
10 show that if the abstract invariant holds for the abstract
level componen:s. then the top-ievel invariant holds for
the top-ievel components. That is.

(19 Ainvirep,(x)) = Tinvirep.irep,ixi)).
The top-level invarianis require the components be dis-
joint and have unigue names. [hese proofs are straight-
forward since the name-mapping {uncuon is an idenuty
function and the top-level components are constructed
dirzctly from unique components at the abstract level

In addition to showing that the top-level nvariant
holds whenever the abstract-level invanant does. the fol-
lowing condition must be shown for each of the abstrac:
operations: [[ both the exit assertion Tor an operation and
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the abstract-level invariant hold. then the exit assertion
for the top-level operation is satisfied {part 4b’ of the
proof). Ta prove each of these theorems., we first consid-
er the modification operation, then the more difficult case
of reference. Assume that a top-level component (O,) is
modified'2. [f the exit assertion for the abstract-level
operation specifies that the abstract-level component (0,)
which represents the top-level component is unchanged,
we have a contradiction. That is, since O, = rep, (O,), if
0, = O, this implies that rep, (O,)=rep, (0,'}, and thus
0,=0Q,". Therefore, we can conclude that our assumption
(i.e.. that O, is modified) is false and the proof is com-
plete for this particuiar component. However, if it is not
specified that O,=0,’ in the abstract-level specification,
then the proof can be only completed il the abstract-level
exit assertion specifies that some type of modify access
(init. grant, write) for O, be contained in the calling
process’s Protection-data object. Since the calling
process's Protecnon-data object at the abstract level is
mapped 1o the calling process’s protection-data object at
the top level and modifv access at the abstract level is
mapped 10 modify access at the top level. the proof is
complete for this top-ievel component. Similar proofs
must be completed for each of the top-level components,

The proofs for the case of reference are performed
simiiarly, except that a reference ait the top leve!l can be
represented in many ways at the absitract level. There-
fore. determining whether an abstract level object is refer-
enced s much more difficuit than determining whether or
not one is modified. This problem is discussed in [i1].
Once it is astablished whether or not O, s referenced the
proof proceeds in the same manner as for the modify
case. That is. if O, is not referenced we have a contradic-
uon. and if O, is referenced it is necessary to prove that
the abstract-levzl Prorection -data object for the calling pro-
cess contains an element that allows raferance type access
(eg.. read) to O,.

This portion of the verification task is essentially com-
plete. Detaiis may be found in [29].

3.2 Low-Level and Abstract-Level Correspondence

This secuon discusses theorems ‘hat relate the
low-ievel and abstract-level invarianis. and the low-leve!
and abstraci-level exit assertions. Because these theorems
are much more complex than the abstract 1o iop-level
theaorems. a proof framework was selecled that permuis a
reader 10 fook at any step of a proof and. based on the an-
notauon. determine how one arrives at the statement
given for that siep. The proois were done by hand. using
a derivation approach presented by Kalish and Montague
[10]. znd then the AFFIRM verificauon svsiem [18] at
151 was emploved as a proof checker to erify the

tha
vl

I For gur discussion n thus paper we assume that if Q. s
modified, :nep Q. = 0. Some definiians of medify teg. 45
stznment of a value! allow the value of @ modifed component 10
be the same as the wawe 11 haa pefore the modification 00
place
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proofs'?. We do not suggest that this method is feasible
for all large scale verification efforis, but only demonstrate
that it is possible. The method was chosen because when
the theorem prover is used in an unguided way to prove a
theorem. the resuiting proofs are often difficult w0 foilow
or decipher. The prover sometimes arrives at a result
through manipulations that are not obvious.

The theorem relating the low-level and abstract-level
invariants states that if the low-level invariant holds at the
low levei. then the abstract invariant hoids at the abstract
level (ie.. part 1 Limv(x) =» Adinvirep,(x)}). Since
poth Linv and Ainv are composed of the conjunction of a
number of assertions. the theorem can be expressed as:

Chry & 1 & ﬁgu.) - (Ci & [ ] & C)...)

where the A,'s are the hypotheses and the ¢,’s are the
conciusions. Simplification of the proof task is accom-
plished by subgoaling. which is the splining of the
theorem into a set of theorems,

ez. v p, h & h:& Ay ...) - Cpe

An exampie of one of these theorems and its proofl ap-
pears in Appendix D.

The theorems generated by the proof methodology in
part 4b, which relates the low-level and absiract-level exit
assertions. also have the form thai the conjuncuion of a
number of law-level assertions impties the conjunction of
a number of abstract-level assertions. Therefore. these
proofs also use the subgoaling technique to arrive at
theorems that are easier to handle.

Most of the theorems that result from applying the
subgoaling technique are of the form:

Premise. (g == &)
Conclusion: (€ == D}

where the premise is an impiication dealing with low-level
variables and the conclusion is an implicauon deajing with
abstract variables. The proofs are generally obtained as
follows. First. assumpuons are made about the values of
the abstract variables (i.2.. assume ()
function (rep;) is then used to draw some conclusions
about the values of the low-level vanapies. These conclu-
sions are usuallv strong enough to impiy the hvpothesis of
the low-level tevel implicauon f{i1e.. al Next, since the
premise states that g implies 6 and we know that @ is true,
the conclusion of the low-level impiication (4} holds Fi-
nallv. the mformaucn about the value of the tcw-ievel
variables that is siated in & is used to construct the
abstract lzvel values 'using rep,! that ire needed for the
conciusion of the abstragt-teve! implicaucn (D}

Essentiallv all of the mapping funcuon work has besn
completed. Qnly a smail part of the invanant proof fpart
11 nas be=n completed fabout ten percent). and thiry (o
ferty percent of part 4b. the exit specificanion imelicaten.
has been completed. These proofs are Juite t2dious bHut
complete!s straightforward: automated tcois wouid be a
substanuai help.

4 The AFFIRM svstem s the <ucgassor 1o nz UVLS svse
am refarred o 33
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3.3 Code-Level Verification

Parts 2 and J of the proof methodology described at
the beginning of this section invoive conventional induc-
tive verification of procedural code with non-procedural
specifications. Part 2, which deals with kernel initializa-
tion. is essentially just a special case of each of the proofs
of the kernel calls (as described in part 3} and therefore is
not discussed separately here. Little verification of part 2
was actually carned out.

Currently. verifving that code meets its specifications
is costly, both in labor and computing power, even when
state of the art automated verification tools are employed.
Our experience in verifying portions of the kernel sug-
gests where the major costs lie. and how they can be
minimized. Those areas which significantly affected the
task were program structure, verification sysiem flexibility
and user proof strategies.

The XIVUS semi-automated verification system (4,
34] used in the UCLA project was an ongoing research
effort whiie the specifications were being developed. Us-
ing the XIVUS svstem. some venfication of the consisten-
¢v of those specifications with the kernel implementation
was done. and many comments concerning areas where
code-level verification costs could be reduced reflect (hose
experiences.

Most of the overhead in the code-level verification
process resulted from the cost of the theorem prover and
the unforiunale necessity to repeat proof sieps. Improve-
ments in the theorem prover’'s power and user interface
would of course pe valuablie. However, mechanisms are
also needed 10 muntmize unnecessary theorem prover in-
vgeations, which result either from redundant proofs or
reverification.

Redundant proofs occur largely because common
proofs are not identified and proven only once. As noted
in §2.4. the venficauon of a given routne consists of
several proofs. or verification conditions (VCs). one for
2ach path :hrough the code. Qur 2xperience indicates that
often some of the VCs for 1 given roulineg are quite simi-
lar to one another. Somaumes they differ oniv in detai
not relevant 1o "k proof For 2xample. two VCs couic
he generated pecause of an if then consiruct that was not
relevant o the assertions. The two Vs would have 1o ne
proven but one proof wouid oe redundant. Mechanisms
are needed 10 idenulv thase situauons. regucs the twoe
VCs 10 2 common ‘orm. and ailow the proot o be done a
singie nme.

A more subtie ind vet much more common {orm of
requndant 2rool 22n De seen 2y looking mside the various
VCs for a given subdstructura. Often two entire VCs ars
not simuiar gnough e ibow a single proof out many af
their subgcals 'described in $3.2) are wvery simuiar ind
onsiderapie savings couid 22 rzaiized of auvtomaisg aigs
souid ke advaniugs of this

Revenfication is aiso ineviabie s changas 'n cod2 of
specifications are made. MWhat s needed 15 4 means 0
mummize the resalon: cosi. Economies can 22 reziized
several wavs. For axamrpiz. a syvsiem couid he
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aniry/exit specifications of a called routine change. Also,
reverification of a modified routine would be cheaper if
some of the original proofs could be shown to be still
valid [31. Savings within the reverification of individual
routines are particularly significant. since small typograph-
ical errors in the specifications may be discovered only
after several hours of computer time have been spent on
the proofs. [n general, then. 2 combination of administra-
rive and technical tools is needed to localize the needs for
reverification.

Less than twenty percent of the code-level proofs were
completed.  Because of the evolving state of the
verification system while this work was in progress. ac-
complishing even this much was quite painful. Further,
the remaining proofs require only additional tedious but
straightforward effort. waiting for more effective machine
aids seemed advisable once feasibility had been demon-
siraied. Assuming reasonaple improvements, we estimate
a {ew more months of effort would be required o com-
piete the task.

i e

4. Conclusions

The experience of addressing all aspects of
specification and verification in 2 significant software pro-
ject has led us 10 a number of conclusions.

First. it is possible to verify a realistic software system
which had been designed 10 accomplish reasonably com-
plex tasks reliably and with adequate performance; howev-
er. highly skilled researchers were needed in the system
development, specification. and verification. A master’s
and Ph.D. thesis were produced [28. 11}, and four 10 five
man vears were spent in the verification project reported
nere and in [22]. The effort involved in specificauon and
verification overwheims that invoived n coding. aithough
it is less than the total amount spent in design. implemen-
tation. and debugging.

Fortunatelv. much improvement is possible in both
the skill reqguired and the iabor intensiveness of the pro-
jeci.  Reengineenng of the verification syvstem would
make the prool task considerably easier Enhanced pro-
gramming ldanguage scoping <ontrols hike import lists
would heip too.

Specification methods should exhibit considerable (lex-
ibility. For example. we found that our ntrinsically inter-
related data structures are not compauble with the concept
of abstract daia (ypes. Organizing the low-level
specifications by dala Structure 1s far preferable for people.
and permits mechanical transformation into the more cen-
ventional call-by-call organization needed by wernfication
systems.  More development in specification frameworks
is clearly desirable.

The recommended approach 1o program verificahon —
developing the proof before or duning software design and
gevelopment — is oftem not practical. It 15 of course
necessary 1o develop the system with verification goals
clearly and continually in mind. The design and impie-
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proceeds. and it woulld be very costly to redevelop formal
specifications and code verification each time. Further,
there would be little gained, since nearly all the impact on
software structure that would result from performing all
the verification steps can easily be obtained without doing
so. One can independently follow development practices
which provide suitablie structuring and clarnity of code.

Verification of security properties differs from other
verification problems. First, top-ievel specifications of the
security properties are easier 10 develop because they are
far simpler than a complete specification. We can ignore
issues of scheduling and resource allocation. for example.
If one were (0 compare Our Security criterion with the
complete specification of the proper behavior of even a
simple text editor, the ease of security specificauon would
be even more apparent.

However. one should noi conclude, as we initially ex-
pected. that it is possible 10 prove just those properues
about the kernel needed to meet the security criterion.
The policy manager depends on many properties of its
process enviroament for iis operation. If the kernel were
10 swap in 3 page of the policy manager. reversing the bits
on the way. ot incorrectly load the process’ accumulators
upon process invocation. then proofs of policy manager
security would not be valid. This observation 15 not limit-
ed to our design as any realistic secure sysiem contains
rusted processes upon whose COrrect Operalion security
depends. Therefore. while system specification is easier
than many verification problems. 1l 1s not as simple as one
might have expected.

Performance of the completed sysiem is poor, an order
of magnitude slower than standard Lnix in some cases.
However. the causes are either not related o the
verification goal. or could be easily remedied through
modest changes in the hardware base. There were (w0
principal problems. language difficulties and
hardware/software mismaichas. As an example of the
programming language problem. our Pascal compiler does
not automatically generate machine code for arrav sub-
script bound checks. so that many nefficient source-code
checks were 1nstead coded 1n as procedure zalls,  Also.
in-line orocedure and f{uncuion c2lls are not supported.
which causes the maonny of svslem 2xeculion Ume o be
gpent in procedure linkage overhead. Second. ind more
serious. is the domain switch overhead. A kernel-based
archiecture achigves 1S minirmizaton of securuy-rejzted
code al the cost of frequent domain changes. In Data
Secure Lnix. domains are provided by the process
mechanism. We were unable 1o reduce the process swilch
cost to a tolerable level. in part because of :nadequate
hardware supporl. Both of these problems can be sub-
stanually reduced by reasonable enginesning of the pro-
gramiming language. 1S SUPROIUNE compiier. and the
hardware base.

In sum. there appears 10 be no rechnical reason. other
than the necessily ior =ngin2snng i su:table verihcauon
system. and exeraising Qare in the hardwarz. software ar-
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chitecture match. that program proving methods could not
be emploved for the development of software where
correct aperation is critical. Secure opergting systems ap-
pear to be an excelient case in point. Current techniques,
however. are still not suitable for general use.

Appendix A: A Sample Code-Level Invariant

The specification below involves several different data struc-
tures, providing an exampie of the highly interrefated nature of
the kernel data structures. The data structures are:

reloc_regs: A structure containing the hardware refocation register
- pairs for user and supervisor mode.
var reloc_regs arvay [0 .. 1| of refoc_reg_enoy,
type reioc_reg_entry = record
pdr: integer; Deascriptive register with access and length
fiefds. 1f the relocation regisier pair is not loaded.
this register has a vaiue of 0.
par: integer. Address regisier.
end.

reloc_index: A structure of indices reisting the refocation registers
to other structures.
var reioc_index array [0 . 311 of reioc_emry,
type refoc_entry = record
petbi- integer: I the relocation register 1s not loaded.
this field has a value of -i. If the register is load-
ed. this index indicales which page-(rame is being
accassed, Note that tms fieid is redundant with
par.
cap: integer. (f the relocauon register ts loaded. this in-
dex indicaies which capabtlity the running process
. presented to gain access (o the indicated page.
end.
page: A struciture with one entry per page-frame.
var page array (0 .. num_pages —i] of page_enmry.
type page_eniry = record
d: obreer_id Object d of the page in this slot.
swapping . boolean: A boolean indicating il the page has
completed swapping into memory.
lock: integer. A countar of the number of ongoing
1/0s invalving this page-frame.
end.

rpi. The index imo the process tabie for the currently running

proc¢ess.

absir_ciist A doubly dimensioned array of capabilities, one di-
mension {or 2ach process and one dimension for the

capabilities.
var absir_chisr array [0 . num_procs — 1} of chsi_entrv:
type clist_entry array (0 .. num_cap_entries — 1| of record

wd: obiecr_«d 13 of the object.
acc: access_npe. Type of access ailowed (o the object.
guess: integer. Non-securnity reievant eficieney feld.
mnfo integer. rield used Dv the poiicy manager.

end. ’

proc_:bi_num_ctiks. An array indicaung the number of 512 bvie
Biocks in the chst of 2ach process. There are oniy wo

vaives, one for chsis on small pages ana one for ciisis
on large pages.

var proc_:bi_num_cbiks array (O . sum_procs =1 of integer:
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Using mbounds and subser as predicates and bwid_pdr and
mem_bik_addr as function abstractions. the parameterized invari-
ant is:

warr ) (refoc_index, reloc_regs. page. absir_chst. rpr, proc_tbl_num_chiks)=
v reg. ((  inbounds(reg, 32)
A {reloc_index [reg) opitt = = 1))
= (inbounds { reioc_index (reg §.pgrdi, num_pages)
A inbounds (refoc_imdex (reg |.cag, proc_ibi_num_cbiks lrpr] ‘ci_per_smpg)
A Ureioc_regs.parreg| = mem_bik_addr (refoc_index reg).onith))
A (net page [reloc_mdcx'lrnl.pgrbl].mpprn ]
A tadsir_chst{rp ] [reloc_index (reg |.cap . d=poge (reloc_index (reg |, ogtbi ). d )
A (3 ace ({reloc_regs.pdr [reg | = build_pdr{acc. refoc_index ireg . ogrbl. page 1}
A (subsertacc.absir_cirsi Lrpt || refoc_index (reg|.capl.acc 1111

Informally, for all relocation registers in use. the following condi-
tions must hoid:

|. The page-frame index must be valid.

2. The capability index must be valid.

3. The address registers of the relocalion regisier pair maust
have a value equal to the address of the start of the indicated
page-frame.

4. The page in the page-frame must not be in the process of

SW2pping iNtg Mermnory.

The id of the page in the siot must correspond to the id of

lhe appropriale capability slot of the runmng procass.

6. The descripuve register of the relocauon register pair must:

a. indicale a page length consistent with the pagc-frame size:
b. indicate an access which is a subset of the access allowed.

i

Appendix B: A Sample Conditional Assertion

The conditional given 1n this appendix s part of a more gan-
eral specification that ensures that pages in incore page-frames are
refllected back to disk before the page-frame s raused. if the page
has been modifieqd. As an =fficiency decision. pages not modified
(referred to as clean pages) are not reflected. Pages can be
modified either through /0 or via hardware instruchions thal &x-
ecute through the reiocation registers (defined in Appendix A).
One of the bits 1n the pdr reiocation regisier ‘nameiy the bit in
position pg_mod_bu) indicates :f the page has neen modifizd while
the relocalion register Ras peen poinung at it The informauon in
this bit must e saved before aither stement of the relocauon re.
2ister pair pointing al the page are modifiad sinez at thus point the
cleansdirty bt s automancaily cleared. The mformaucn in this
mit, toeether with 1/Q information aoout the page-frame. s stored
in the page _clean arrasv. wmgch s deciared dejow:

page_clean An array of dooleans storng information concerming
whether the associated nage-frame 18 Ziean 12 pas .he

same value 1515 10 5 secondary storage copy!

var page_ciean array 0 .. num_sages — 1| of boolean;

The actuai condiuional expresses w2t conditon must =xist if the
rziocauon register has been modified during amy given xerne! cail,
Namely

If. during ans xernei cail. the r=igcanon regisier tawr 5 mod: B2,
then.

1) the r21Qcalion regisier was 1ol ores lousiv In use.
30 36 page-rame has Deen of was sir2ady marked s Jirn .

ar ovothe clzansdirty Diran the associatagd d2sonnlor cagisian ad-

<at=g ne page-frame was Jlgan 2efore the <ernai ool
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More formatly:

crr2{reloc_regs. reloc_regs. reloc_index’, page_clean) =
w reg. (( inbounds(reg, J2)
A treloc_regs.pdr [reg| = reloc_regs pdrlreg]))
- { (refoc_index'{regl.pgitl = —1)
V (not page_clean | reioc_index’{reg).pgedf})
V (wrd_and{refoc_regs.pdr’lreg], pg_mod_bit) = 01}}

Appendix C: A Sample Mapping Function from
Low-Level to Abstract

The Incore-page -table presented in §2.2 is constructed from
four different arrays at the low level. The arrays are refoc_regs,
page. page_clean and reloc_index and they are described in Appen-
dices A and B.

The mapping function used to construct Lhe [ncore -page -wble
from the four arravs is Rep-ict which is defined as follows.

function Rep -ctlarrarray[0 .. 311 of refoc_reg_entry.
pg .arrayl0 .. num_pages —1] of page_emry,
pgct:array(0 . num_pages —1] of boolean.
rscarray(Q . 31 of reloc_enmy):
arrayl0 . Num-pages - 1| of
record
Peibl [d,
!/ -cnt: integer,
Clean: boolean;
Swapping . boolean
end.
entry. irue.

-exit: (v, 0K < Num-pages

{Rep-ictir) Pgtbi = Rep-dipgli|. g &
{Rep-ctit].iro-cnt = pgli)lock) A
i Rep-ict|r] Swapping = pgli] swapping) A
(Rep-ictli].Clean = tpgetli] Aty 0€,<32)
((rsily]. pgebi® 1) v (wed_and (arr.pde j1.pg_mod_bit}=0))1)

Thus.
{ncore -page -table= Rep -t \reloc_regs, page. page_clean, reloc_index).

Appendix D: A Sampte Proof Relating Low-Level and
Abstract Level Assertions

The following 1§ an 2xampie of one of the thecrems that 1S
oroved to satusfy step | of the proof methodology

A1 the abstract level there 1s an invanant specifying that every
non-ires entry in the /ncore -page -iacle 1s umique.  (Notle that in
the proof beiow. the name [ncore -page -1abie 15 abbreviated 1o fer!
The low-levei invariant that corresponds 10 this abstract invanant
states that all non-null eniries in (ne page arrav nave unique d
fields. The following theorem s used 1o venfy that if this low-
level invariant holds then the abstract iavariant helds The
definiticn of the abbrevizuons. mapping funcuons and lemmas
used in this proof are given in detailn [11]

Thm:
Premise.
ter. nbounds tr, num_pages 1)V U=re inbounds Lrr. num _pages ')
Vioos_opetpage [risd) = nuli)
— lrr2r s pagelrrl d=pagelrl a1
130

Conclusion:
(wrl, 0K rl< Num-pages)(¥r2, 0K r2< Num-pages)
({In-uselrl) A ler(r)]. Pgtbtmict{r2) Pgrbl) =» rl=mrl)

proof:

1.0 € rl < Num-pages N\ 1. Assumption
0 £ r2 < Num-pages A
fnause{rlt A
Teelr1).Poibl = fetlr2). Peebi

2. fer(r1].Ppthl = Nullobj-id A 2. Abbr 10,

fet(ri] Patbl = fct(r2].Pgbi 1 Subst,
Stmp

1. Rep-idipage!rl].id} & Nuilobj-id A 3.1 Constr let,
Rep-id(pagelril.id) = Rep-id(pagelr2].d} 2 Subst

4. obs_tvpeipage(r1].id}t = nudl \ 4.3 def Rep-d.
Rep-idipage(r1].id}=Rep-id(page r2]..d} Logic, Simp

5. obj_typelpagelrll.d) = nuil N 3. 4 def Rep-d.
pagelr1].id = page(rd).«d Logic

6. nbounds{rl. Num-pages) N\ 6. Def inbounds.
inbounds (r2, Num-pages) ! Subst, Simp

T inbounds(rl, num_pages) A 7. Lemma §.
mbounds (rl, num_pages) /\ 6 Subst,
obj_npeipagelrlid) = auil A 5 Ad)
pagelri).d = pagelr2).ud

8 rl=rl §. 7 Premise. MT

9 twrl. 0€rl < Num-pages) 3 1.8 UG

(¥r2, 0K r2< Num-pages}
(In-usetr1} A fetiri) Potbimicilr2] . Pethi = rlmr}

QED

tn siep 1. the hypothesis of the conclusion is assumed. [n step 2
Abbr 10 which defines /n-use is substituted into siep ! and the
result is simplified. Step 3 uses the definition of the construction
of the [ncore-page-wable and the fact that rl and r2 are in the
range O t0 Num-pages ~1 10 replace the values of ferin step 2
with the mapping of the low-level values used 1o construct them.
The conclusion of step 4 1s derived from the fact that the con-
structed value s not the Nuflodi-d and the definiien of the
Rep-d funcuon. Step 5 uses the fact hat  since
obs_tvpelpagelr 1} @)= nuil the part of the Rep-.d funcuon used
behaves nke a |- funcuon. Therefore. Rep-d can be removed
from both sides of the eguality. From the definiton of noounds
and knowing the range himnations specified in step |, the conclu-
sion of step o can we drawn. Step 7 uses Lemma 3 which stales
that Num-pages=num_pages and 1the subsutution rule to get the
first two comuncts of 1ts conclusion. [t then uses the adjuncuon
rule und the result of siep 3 to get its result. Using the results of
step - and the premise, one <an conclude that

risrl - pogelrl] d=pogeletd

However. [rom the last comjunct of step 7 one knows that the
conciusion of this :mphecanen s faise. Therefore. by the modus
wollens rule ri=r2  Finally. since 1 step | the ranges for »1 and
rY were assumed and no other specificauons were placed on tna

range of (hese varables. by umiversat generalization the Jdesired
conclusion is derived
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DATA BASE MANAGEMENT SYSTEMS SECURITY AND INGRES*®

Deborah Downs+ and Gerald J. Popek '

University of California at Los Angeles

‘Abstract -

The problem of providing a secure implementation of a2 data
 base management system is examined. and 4 kernel bascd
archilectural approach is developed. The design is then
successfullh applied 10 the existing dawa management system
Ingres. It is concluded that cry highly sccure data base
management sysiems are  feasible,

Introduction

The need for reliably implememed prowcetion of zccess to
data siored in integrated databases has been driven by a
number of considerations:

a) Datz handling accounts for the ast majority of
computer activity. an esimated 85% [SenM69), with the
contnued existence of some orgamzaiions depending on
their dala management sysiems:

b} Some of he stored data is sensitive, and unauthorized
access or modification would have serious conscquences.
The amount of such dua will increase as compuling is
intrnduced 10 offices and organizations increasingly integrate
thetr  data:

¢)  lixpenences in related areas. such as operating sysiems.
suggest that wailing 0 solve the problem until the need s
stronger may make cost effeciive solurions unavailable.

A \cry  promising  approac. g secure  sistems  design
emplovs kernel archilecwres. which Limit the amount of
software upon which secure operation depends lo a ven
small part of the overall system.  Kemel architectures have
been successfully applied to operating systems, bul there are
questions  whether  data  management  <ysiems  can be
approached in a similar fashion.  IL has not been clear

*This research has been supporied oy the  Advanced
Rescarch Projects Ageney of the Department of Defense
under Contract NSS MDASG-T7-C-0211

+ \uihwor's  current address: Unhersitn of  Arizona
Bepartiment  of Informaton Managemeni  Science.

whether a2 kerncl design for secure data management can
developed which simulianeously dramatically minimizes the
amount of code imvolved in proiection, but sll penmits alt
necesary  functionality. including suppon  of data
independence. lexible reorganization, good performance, and
sophisticated query languages

In this paper we will present a general design for 2 secure
DBMS. together with a case study implementation.  The
desizn- suppons data sccurity through the use of a kemel
architecture which minimizes and encapsulates the software
upon which correes protection caforcement depends. The
design approach was applied to Ingres an cxisting relational
DAMS  devcloped at C.C. Berkeley [HelG75). An
implementation, successfully carmied out at UCLA, produced
a modified version of the svsiem. which is cerufiably secure
The resuits of this effon lead us w conckude that secure
dala management 15 quite  feasible.

20 Data Security and Kermel Architectumes

To undersuand this project. it will be useful first 10 outline
exactly what level of sccurity is being supported.  The
solution presented here is not concerned  with physical
sccurity bul rather 18 a technological solution 1o security
internal 10 the compuier envimonment. The kernel design is
used 10 Ssupport 2 dawa sccure DBMS. as defined by Popek
{PopG78bj.

Bricfly. the dalabase is thought of as a collection of distinet,
named obyecrs. The DBMS supplies a collection of
aperations which users mayv apply 1o the obtecs.  Prorection
data. recorded in the T)clcm. states which users are
permated (o access cach object. and which operations they
mav employ. Tormally siated assertions define data security
maore  precisely.

It should be noted that the protection decision i this
delinition depends on the namie of the data. ool s value:
thersrore value  dependeni secumty  doetisions  are ot

supperted. Protected abjects must also 2lready oxist in the
data base as named enntes. <0 satistical secunn will not be




supported  These more saphisticated definitions of security
make Lhe task of devcloping an implementation that reliably
enforees  protection conirols  considerably more  difficult.
indeed it is not even clear how feasible the poal of a
certifiable implementation would be. Fortunately. the more
straightforward goal of rcliable data security enforcement
appears 1o provide much of the functionality scriously
needed for sccure applications. The issues in reliably
supporting value dependent and  stausical security are
discussed cisewhere [DowD79)

The design for a securc DBMS presented here is based on a
kernel architecture. Security kerncls can be thought of as a
structuring miechanism  for -any sysiem concerned  with
secunity,  All functions pertinent to security are included in
the kernet while al! functions not periinent are excluded
Kernels were first used in operating sysiems and are
reported  in [WulW75], [PopGT4).  [PopG78a). [JanP76].
[MilJ75). {SchM75).  This type of architesture is cmploved
in the UCLA secure Unix  design.

Tne main impetus for using a kerncl based architecture is
the difficuity of certifving the correctness of any large picce
of code. Program wverification. the method of certification
with highest assurgnce, has only been compleled uccessfuily
on a’ few thousand lines of code {[Ragl73] [GerS79).
Therefore it is very imponanl to minimize the amount of
rode that must be cerufied.  Another principie. “least
common mechanism”™, zlso suppors the use of a kernel
archiecture [Pop74b). A common mechanism operales on
biehall of many users, and may resull in & securin Maw f it
operates incorrectty  in current DBMSs which 10 to offer
some tpe of security. most funcuons of the DBRMS are
common mechanisms.  Since little atlempt was 10 be made
1o scgregate the sccunity maechanism in these DBMSs, correct
nperation of that securiis mechanism depended on the
correet operation of the ontire DBAMS.  In a kernel based
secure DBMS the secunty kernel becomes the leass common
mechanism and is cenified to suppon data securiiy and (hus
present illegal medificanon or reference.

Support from a sccure operating Sysiem is by necessiy a
prerequisiie for a secure DBMS unless the DOMS akes
over many of Lhe funcuons of an operating svstem, The
operating system supporicd emvironmient required by our
design of a secure DBMS  includes:

1. a process enviroament that operates correctlv  and
includes no rtrusted operating system code running in
the process  space,

14

correct identification  of the user. and

3 daia security enforcoment mnong processes and dala
qored in files. oncluding control  0ver  nICTProcess
communciation,  ele.

ltems two and three above presumably are clear, but the
first may bear some cxplznalion. Data secure operating
syslems Lypically contdin a small system nucleus (the kerncl)
responsible for security enforcement.  The remainder of the
operating system software rums encapsulaled within each user
process. No assurance regarding the corect operation of

_ihe cncapsulaied code I necessary to assure secure operation

of the operating system, nor is it typically provided. As 3
result. a.data secure operatimg sysicm aione is not sufficient
10 support processes wishing 1o reliably enforce their own
level of security. Neot omly must the operating system
refiably procect the DBMS's data, it must also retum
correctly, exactly the data requested by 3 DBMS /0 cailt
Otherwise the NDBMS cannor correctly enforce its own level
of security since it cannot be sure what it has read or
written.  Funher, any portions of the operating system's
funclions that cxccule in e process's environment must be
centified for correctness sinces such code, if run in the same
emvironment as the DBMS kernel. would have the DBMS
security kernel's privileges. Fortions of the operating system
that may need to operate in e process environment
include process inttializaticn and  resource  management
functions.

The sccure Unix operating  system  developed at UCLA
{KamM77]. [KemR78]. [PoplG78¢). [WalR77). [WalE76] is
being used as an example  sccure operating System for the
developement of the secure DBMS. At this time the
operaung system supparts dats security as well as the correct
retnesal of daw Work i ~iill nceded on cerufving the
poriions of Unix that resiéo in the process environment

30 Seccure DBMS Desion

The flollowing design. which sas developed at UCLA on a
secure Unix tesibed, supporis anous grains of dara security
protecion down to the size < domains in relations, In this
naper alf references 1o logiced objects will dbe in terms of the
relational model.  EHowever. ihe dosign is not restricted to
anyv particular data model iand other models would be
¢qually appropriate.

Let us first look at a high ‘enel view of the sistem. Aside
from the uscr software there are four main modules in the
secure sysiem architecturez the Kernel Input Controller
{K1C). the base kernel the ijomat software and the Data
Management Module (DMY The DMM need not be
certified but must run isolated in s own  execution
environment with no abilitv (o relurn information to the
user of the data base  Thae DMM contains all the non-
secunis  relaled  pontiens o the data base management
sosicin and prasumabh wik only 3 rew changes  could run
alone as @ nen-secure DRME Included in the DAIN would
e such functions as pareong and  decomposing queries:




choosing  scarch  strategies:  creating and  searching
dictionaries, catalogues, and indexes; performing necessary
joins or projections; compressing, encoding, or reformatting
the data; etc. The KIC and the base kernel are the two
functional modules of the DDMS security kernel and
therefore must be certified The KIC is the sccure interface
between the user and the DMM and the base kemnel is the
secure interface between the DMM and the data base
Format software, essentially run for each user with his
privileges, performs some user specific data base actons,
such as reformatting of datz prior to its actual delivery to
the user. A high level description of the functions of such
a DBMS security kxemel includes:

1  The kemel-must assure at all levels of the DBMS a
secure  association between the data and its
identification.  If this association is not maintained
there is no way to reliably determine access rights
the data

2. Since the protection data is stated at the logical level
and the actual access is taking place at the physical
level, some sccure translation process is necessary in
order to compare the physical object to be accessed to
the legical objeet specified in the protection data and
in the original user request

"3, The DBMS kemel must enforce the sccurity policy on
each access, limiting the duta being returned to the
user to those specified in the protection daw

3.1 Retrieval

In order to see how the kecrnel design performs these

functions, a sketch of both retrieval and update are
presented.  Figure 1 shows a retrieval operation.

USER

KIC formatter

DMM base
kernel

data base

4 Figure 1 i

In this figure tre four main elements of the design can be
seen. Edges in the diagram indicate data flow. As already
outlined, in order for the protection mechanism to be able
to check a user's authorization for acecess, it is important
that the identification of the data be comect It is the
KIC's function to supply this correct identification to the
base kemel . :

A user makes a request for retrieval of a certain piece of
data and the KIC parscs the request and retaing the request
type, in this case retrieval, and the logical names of cach
object to be retrieved The following retrieval request in
the language Que!l used in Ingres [StoM76] will be an
example quefy:

range of e is employee
retricve (e.name, e.zddress)
where ¢.salary > 10000

The request asks that the names and addresses of emplayees
who make more than $10000 be reticved from the
employee relation. To begin execution the KIC would
parse the above request encuogh to retain “retrieve,
employce.name, employee.address™. {ln the relational model
both the relction name and the domdin make up the logical
entty name of an object) But the logical name specified in
the query may not be the sysiem wide logical name but
merely a name used in one user's schema or “view". To
reduce a multplicity of logical entity ncmes used to identify
the same dula with g single system wide logical name, the
KIC must 2!so parse the dawa dcfinition language and build
the tbles necessuty to transiale d user schema name or view
to a system wide logical entity name. The KIC would also
parse the qualification clause, the “where” clause, and check
the protection data to detcrmine whether the user held legal
read access to  employeesalary, employee.name and
employce.address.  flicgal queries would be aborted before
any funher processing Note that the KJC checks the
qualification clausc to restrict the user from retrieving illegal
information by qualifying retricval of legal dala objects by
the value of illegal data objects. 1f the request is legal, the
KIC then passes to the base kermel the type of command,
the systam wide logical enuiy names, and the user
idenufication supplied by the secure operating system. In
the Ingres retrieve request above there iS no user schema or
view so the logical names presemt im the query are the
system wide logicat names (employec.name,
employee address).

Meanwhile the request is alse being processed by the
DMM. The DMM performs all the nomal functions of a
data base management system: it makes the translations
from one level 10 the next, follows access paths. chooses the
access mcethods. records performance and usige  stauistics,
does any necessary locking. cte. Eventwally the DMA needs

e i T ST e <




10 access the data base itselfl

It i5s not really necessan that the DBMS kernel check cvery
read secess made 10 the daw base by the DMM. Only data
actually returncd to the user must be checked.  In the
Ingres retrieval cxample above all tuples in the "employee”
relation will be read. but only four will be returned to the
user. In more complicated queries where “joins” are
necessary, a very small percenlage of the read accesses may
rewurn data 10 the user. Iiaving the DBMS kernel involved
in every read access could degrade performance
considerably. Dawm security enforcement is not weakened if
the DMM has untimited read access 1o the data base so
long as the DM is properly.encapsulated by the operating
svstem.  The secure operating system would enforce the
read only access restriction for the DMMM along with
Slocking the DMM from rewurning any data directly 10 Lhe
user.

Whan tuples are selecled which answer the request and are
10 we returned 10 the user. the DMM prepares an operating
miefm read cummand speciiVing the physical tocation that s
0 be accessed and thai command is passed to the DBMS
wasa kernel. Al data 10 be reiurned to the user is retrieved
=y the DBMS Kernell IF the DMM should not imvoke the
DBAMS kernel when cata should be returned to the user. the
anl result 1 that the user does not receive the data. which
doas ot violzsle dala sccunty In the [Engres retreve
aample there would be one rcad command from the DMM
‘or ezch tuple in the “cmplovee” refation that matched he
Juatification.

Before retricving information in the daia base the [DBMS
ase kernel must check to see if the user is allowed t0
accoss the dawa in the jocalion specified by the DMM. The
reguest from the DMM can include both the physical
‘oezuen and the lowmeal enuty  name Of course the
sormtiziion of lese paramaters cannot be lrusied so far as
security  enforcement is concerned. since 0 do $0 would
cmply that the DMM 35 trustworthy.  Recall thal o suppon
dawz independence Lhe prolection data  mainwined by the
DBMS base kernel identifies the objects by their sistem
wide logical entity name. Thercfore some form of reliable
mapping is sl necessary between the DMM's phasical
location speailication and the protection  daia’s  logical
identification.

In this general design & physical 10 logical mapping is used
which takes the form of a lag on cach picce of separatehy
proicciable daw in the dma base [Fril70].  This wg is
mainsined completeh by the base kernel and the DMM
sas ne knowledge of ¢ The we ik an encoded form of the
0pLel enty rame of the dila 2nd Us sive depends on the
oroof dinct desical entines to be provected. The
«nomration rergived frm the KIC:  logical enuiy name,

command type, and the user identification (which must be
obtained from the sccure operating system), is used by the
base kernel to check if the specified user is allowed aocess
1o the logical entity. [In the retricve example the user's
access (o the “employee” relation and the “name™ and
"address” domains must be checked. When the mead
command is received from the DMM, the base kemnel reads

‘the data along with its tag from the daa base in the

location specified by the DMM and then. using that tag,
checks 10 see if the logical enty is the same as was
specified by the KIC. In our example request the logical
cntities are "emploves.namc” and “emnployet.address”. I
the tag retrieved from the data base matches the information
supplied by the KIC, the base kermel reurns the results
directly 1o the user without allowing the DMM to
manipulate the data

The data to be relurned 10 the user miy have 0 be
translated from the form used for storage in the daw base
to the user schema's format: glso the requesled domains
must be separated from any other domains in the tuple.
Choosing the correet domains is securitt relevant  since Lhe
user may not have tegal access 1o other domains in the
wple. and must be done by the kermel However, the
correctness of any necesssry manspulation of the chosen
domains. such &s decoding or formatting. is not relevant for
data security pumposes and can be dane by untrusted code,
so long as no other users daw influence the operation of
\his function.  Therefore. a formatter module is supplied.
thal runs in its own cxcculion casironment  protecled by
the operating svsiem. with 2 new copy used on cach
imocation o that datz {rom prior runs is nok rewzined The
formatter module s the site where all postprocessing of
retricved data wouid be done. including joins of relrieved
wples. for example.  Note that the operztion that parses the
daia definition language, where the uscr specifies user
schema formats for relanons and domains. and prepares the
wbles which the data formater uses. must also be run
under the same confinemen: constraints in order that those
tables alsc be free from rewined user data. After the data is
formatied in werms of the user's schema, it is delivered 10
the user workspace. In the Ingres retrieval example the
results might look like:

name address
John Williams 7746 liniburg, LA., Ca
Hope Bous R#2, Conte. Ohio
Elmer Crep il ave. NY New York
Jamie Cann 3837 E 1liith, Hoare. Virginia




32 Update

Now let us look at an updaie operation, referring again 1o
Figure- 1. An cxample request for update. again using the
Ingres formaL might be: '

range of ¢ is employee

replace e (salary = esalary® L.1)

where esalary < 10000

This request asks that all emplovees in the emplovese
relation who make less than $10.000 get 2 10% raise. When
the request comes from the user the KIC parses it, looking
at this stage Tfor any requests which would change the
contents of the data base. such as crcates, updates or
deletes. Whenever the KIC recognizes such 2 request it
copies the logical name, the dawa. and the command type,

again checking read access to any qualification clause daa -

objects  and write access io the target dala objects.  Any
illcgal aecoss will cause the request o be aboried.  In the
replace example  the  KIC  would  retain “replace,
cmplovee.salan™ so that the logical name can be translaied
o the system wide logical name.  This translaticn must be
done correctly for sccuriy w0 be maniained. This example
also  illustrates the fact that or many query languages the
KIC parse task is considerably simpler wtan the full scale
parse which the DMM must perform.

The data often may have 1o be translated [rom the user
schema format 1o the form mainuined in the Jata base.
Packing 1€ just one cxample of possible dala consersions
used. This siep is done by the untrusied but isolated data
formatler in a manner similar 1o that desernibed abose in
retfieval. bul in reverse. Thus the KIC. after invoking the
daiz formatwer. directh passos 10 the base kernel the sysicm
wide logical entity pame. the translated data, the command
nwpe. and finally the user identfieation as supplicd by the
operating svstem. in our cwampie the data 1o be stored in
the data base 5 a compuizuon on the data alrezdy in the
data basc. Therefore. aller the daia is retriesed and passed
10 the f(ormaner. it will perform the muitiplication
“emploveesalany 117

Meanwhile the request has alse bcen processed by the
DM M anajogoush 10 the retrieval case. The DMM
eventually is ready 10 exccuie a wnile on the data base and
it prepares a request specifiing the physical location. [n our
example many tuples may be updated. The KIC checked
the user's update access 0 the logical entiny name as
specified in the protection daa

When the base kemnel receives the reguest from the DMM
selecting the tocation to be updated. 1w reads the speaified
loczhwn in the data hase and checks the logical entity tag
on the data w bBe sure that the DAVEM has ponied 10 the

correct logical entity. IT the location is correct and if the
user is allowed update access (o the logical entity, the data
that was compuied by the formaiter is writien with the
correct tag auwached. The base kernel must place the
domains in the correct location in the tuple. On a create
request the base kernel woudd have checked 1o see if space
were rcally available, and Uhen created the tag from  the

‘information received from the KIC. The DMM is never

alowed (o0 manipulate e¢ither the tag or the data that is
stored in the data base

This design - suppons valwe independent data security
because access authorizaton is checked on any attempted
access 10 the daa base whewe data is retumed 10 the user
for rectnieval or received from him for updatle The
identification of the daia is always secure since the kernel
mainiains the association botween the data and  its
ientification during translati:on through all levels. Most
mponant. the mechanism deang the checking of all relevant
nages of the operation and mmaintaining the association can
be cenified.

4.0 TIngres

It is instructive to apph e design just outlined 1o a real
DBMS One might prefer wn desiga 2 sccure DBMS from
scrateh with the securmy kewnel as the design base and
secunty  the guiding concept dunng  the design  and
mplementanon.  However, rnuch cffort has alrcady been
avpended on evisting DBN®s and it would cenainly be
helpful if the security kernetd could be retrofitted 10 some
dready enising DBMSs. Ttrhe Ingres system. 2 relational
DBMS developed at U.C. Barkeley which runs “on the Unix
gperaling system. was examnned 10 demonsuale the possible
Tzasibitinn of such a project.  Ingres was chosen for several
reasons:

1. The compuier facility -most easily avaidable for the
wample  implemenwuon  ran Unix, and Ingres was
already installed

()

Ingres is available frex for Universines.

3 The relational model wizich Ingres supports contributed
10 an internal structure hat cased the retrofit effor

4 Ingres has becn prograsmmed in a structured manner.
The internal modularity of the code was essential to
the success of the abwrations that were performed.

5 A secure sersion of Wnix has been developed at
UCLA. proniding 1 suiiable tesibed.

there are abkw disadvantages m using [ngres [t does not
Rave @ wide use 25 an conmmercial sistem. although it has

been mstalied in over 10 insaliations [EpsRI8: the




rcaticnal model is not used in many commercial DBMSs;
azd there is hardly any documentation of the internals of
Ingres other than the commented code itself.

QOverzl] the advantages fur outweighed the diszdvantiges and
so [egres was chosen,

4.1 Ingres Internals

Ingres is made up of § major modules: Monitor, Parser,
OVQP, .Decomp and DBU. These modules are organized
in'o processes and Figure 2 shows a represcntation of the
process structure, including communicaion channels, for
relanse 6.2, which was used for the security alterations. The
Monitor handles the temminal interactions with the user,
The Parser parses the user query and contains the lexical
anzlyzer, parser and concurrency control routines. QVQP,
the oze variable query processor, does accessing of tuples
frem 2 single relavon given a particular one variable query.
Deomp decomposes Gueries involving more than one
vatab’s into a series of one variable qucries and
accumzletes the results until the query is sausfied DBU,
the dzia base utility. conmatns all the auxiliary processing
suzi os creating databasses, sorung, handling expiration dates,
ete Access Method softwzre (AM). present in several
micdulzs, provides low level access o actual tuples in the
dauzbose.  Ingres is a sigrificant DBMS, with over halfl a
milion lines of compiled cods. Since Unix limits a process
0 &K words of code, dividing Ingres into several processes
wzs necessary, The DBU, which in itsell is much larger
thza 64K, runs with many overlays.

Decomp -
Manitor Parser “{ovap OBy
< AM < AM < AM

Figure 2

Inges supporis the language Quel for interactive access to
the daty base. In this paper, Quel has been used for
exzmples, and explained as necessary. A full presentation of
ithe language can be found in [HelG75]

4.2 Retrieval in Ingres

mZon of Ingres czn be dcomonstrated by running
Zrsugh 2 simple retrieval request

range of p is parts

range of s iz supply

retrieve (p.pname, s.quin)

where peolor = “black™ and p.pnum = spnum

O Y

This request requires a join on the pans and supply
relations in order to retrieve the part name and the quaatity
of black parte Statements 1 and 2 are the range statements
and specify what relations must be accessed to retrieve the
query results, Io this case parts and supply are two
relations alrcady existing in an Ingres data base, Statement
3 specifies what domains arz tp be retrieved and which
relations they are loated in the lciters preceding the
domain names specify the relations. This part of the query
is called the target list Statement 4 is the qualification list
and specifies conditons 10 be met by a tuple before it is
retrieved.  In this case the color of the part must be black
and a join of the two relations parts and supply is made on
pant number.

Ingres will begin exccution of the query in the Monitor
where 2 workspace will be created for the user. Interaction
between the user and the Monitor continues until the query
has been formulated correetly. When the syntax is comect
the query is sent 1o the parser. There the query is parsed
and the results sent 0 Decomp.

There are several imporant wubles involved in servicing a
query. These tables, as with all information in Ingres that
is variable, are retained in the data base as relations, The
first table is the "relavon™ rclation. The “relation™ relation
contains one tuple for each relation in the-data base
Stored in this wple is the relation-name, information which
describes how each refation is actually stored in the data
base. ownership information. size data. number of domains,
etc. The secord important tabis is the “atuibuta™ relation
which contains one tuple for cach domain of each relation
in the data base. This refation deseribes the position of
tach domain in the tuple, 1s formal, its length, whether it is
used in part of the key, and whether or not it is coded
The “relation” and “atibute”™ relation are used by Decomp
and OVQP to access the other relations in the data base.

To continue the execution of the retrieval command
Decomp decomposes the query into one variable queries,
"One variable query™ refers to the variables in the range
statement that iabel rclations. In the example of Figure 2
the first varizble “p” labeis pasts and the second variable
“s" labels supply. Decomp must [irst formulate a one
variable query that retrieves all the domains labeled by one
vanable (p} and then use those retrieved domains to
formulate other one variable querics which retrieve the
domains labeled by the other vanable (s). The first one




varigble query that would be formed for the request in
Figure 2 is shown in Figure 3. Ingres uses a trec that is an
endorder representation of the request. with the target list
cn the left branch of the ROOT node and the qualification
list the right branch. RESDOM’s are result domains and in
this tree indicate what results are to be returned to the user
by the variable nodes which ar¢ the RESDOM's right child
The variable nodes contain pointers to the correct member
of the "relation” relation and also to the correct member
of the “"attribute” rclation along with format information.
The end of the target list is designated by the TREE node.
Qualification clauses, the right branchi off the ROOT node,
are headed by an AND node and the last qualification is
marked by QLEND.

ROQT

T TN

RESDOM AND
VAR BOP
RESDOM = QLEND
. pname :
VAR VAR CHAR
TREE pnum color black
Figure 3

Decomp attempts to chose first the one variable qualification
that would most reduce the number of tuples selected In
this case the qualification that "part color be black™ was
chosen and is represented in the gualification clause. This
requcst tree, as with all one variable requests sent to OVQP,
only specifies one relation, in this case parts, and the "one
variable” is "p". The target list contains RESDOM nodes
and VAR nodes for those domains ta be retrieved from the
pant relation. In this case the part number {pnum) must be
retrieved for the join with the part number in the supply
relation. The pant name {(pname) is rctrieved in order to
eventually return it to the user. The compicte algorithm

used by Decomp for chosing one variable querics to be
passed o OVQP is given in [StoM76]

Decomp must aow send the one variable query shown in
Figure 3 to OVQP. Decomp gives to OVQP a
representation of the trec and specifies whether the results
are to be placed in a specified temporary relation of
retumed to the user. For the one variable query in Figure
1 the results will be placed in a2 tcmporary relation,

OVQP will retrieve those tuples whose pan color is black
and will save their pnum and pname in a temporary
relation. . OVQP will inform Decomp when processing of
the one variable query is finished and Decomp. who has
tetained the name of the temporary relation where the

results are stored, can continue processing the query using’

the intermediate results in the lemporary relation. Figure 4
shaws the results that would be placed in the temporary
relation if the query in Figure 3 were invoked

pname powum
disk 3
lape drive 4
paper tape roader 13
paper tape punch 14 .
Figure 4 .

Decomp must then use the informatiom in the lemporary
relation and the other qualification clause which references a
domain in the supply relation to formy other one variable
quenes 10 be sent 10 OVQP. Figure 5 rcpresents the tree
formed for the first one variable query on the supply
relation,

ROQT

RESDOM AND

T X

VAR BOP
guan =

s

CHAR VAR INT
disk pnuem

RESDOM QLEND

TREE

Figure 5
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In this tree representilion of the one varigble query,
Dccomp replaces the domain names in the paris relation
with the values retrieved in the previous one variable query
and stored in the temporary relation. The query indicated
by this tree will be repeated and sent to OVQP for each of
the four tuples stored in the temporary relation shown in
Figure 4, with the new values substituted for the part
rclation's domains, The target list is the same target list as
the original query, since the part prname and the supply
quon are to be returned to the user. But since pname
came from the pars relation and was retrjeved and stored
in the temporary relation, the actual value for pname,
“disk™, has been inserted in the target list The value for
the ‘other result domain must still be retrieved from the
supply relation. The qualification for finding the comect
tuple in the supply relation is that the pnum be 3, where
the value 3 was also obtained from the temporary relation.

Since the final values will be retrieved on this round, OVQP
is instructed by Decomp to return the results specified by
the target list to the user. Afler the tuple is retrieved from
the supply relation with the part number (pnum) = 3, a
tuple containing the part name and the quantity are
re.arned to the user.  All tuples in the supply relation are
checked for pnum = 3. After the tuples are tested and any
results returned to the user, Decomp is signuled and another
tree is formed to be sent to OVQP. The resuits that are
printed cn the users terminal by OVQP after processing the
four supply trees are shown in Figure 6.

pname quan [
disk
disk 3
disk ]
tape drive 1
tape driva 8
Figure§

QOune line was printed for every tee sent to OVQP that
specified sending the results to the user. In the case of this
retrieval request there were several instances of disks and
tape drives that were black in the supply relation, but there
was no supply of black tape punches or paper tape readers.

Updating in Ingres is implemented in 3 manner smilar 1o
retrieval except that the final results are wrilten into the
data base instead of being rctumed to the user.

5.0 Ingres Security Kemnel

Before outlining the sccurity kernel structure necessary for
Ingres it is important to list what functions a security kemel
must supply to support retrieval and update. For retrieval,
it is necessary to:

1 Parse thé query.

2 Check access to relationdomains in the qualificaton
clause (it may be efficient 10 check aecass to
relationdomains in the target list alse) and cancel the
request if access is denied

3. Upon an Ingres request to return dala to the user,
check access to lhe relalion domains reguested: if the
retnieval is legal, cause the 170, retrieving the data and
passing it to the formatier for forwarding to the user.
If it is not legal, cancel the request

In the general design presented previously the first twe
functions are handied by the KIC and the last one by the
base kernel In the Ingres implementation of the sccurity
kemel, the KIC and the base kernel are an inilegrated
module and will be referted w0 as the security kerngl
Merging was done in order lo minimize process switching

For an update request the sccurity kemel must
1  Parse the query.

2. Check the legalilty of acress to reletion.domains in
qualification clause {(and perhaps target list) and cancel
request if it is not legal

3.  Retain the rslationdomain names with the data to be
placed in the daa base

4. If the command is replace the tuple rrust be retrieved
from the daw base, the correst domaims updared with
the retained data and the tuple rewriten after the
legality of the access has been checked If the
command is append, the tuple is formatted and written
where Ingres specifies. If the command is defste the
twple s deleted




The security kemel for Ingres will run in a separate process
so that the secure opecrating system can protect the DBMS
security kernel's environment The process structure for
Ingres release 6.2 with the security kermel is shown in
Figure 7.

- . | Decomp .
Monitor| ~ | Parser “iovar |- o8y
< AM < AM AM
L
»{ kernel »
Figure7

Let us follow a retrieval in detail to see how the security
kernel bpcmtcs. When the user starts Ingres an invocation
of the DBMS is initiatcd for her/him; all users have their
own family of Ingres processes. The user enters commands
into a workspace, in actuality a file which is writeable only
by the user and will be read by Ingres and the security
ternel. The Monitor communicates with the user until the
query in the workspace is in the correct form.  Since the
Monitor cannot access the data base and since a new copy
is invoked for cach user the Monitor cannot retain data.
Thereforc the Muonitor actions are not security relevant and
need not be verifisd When the query is in the correct
form the security kermnel will receive a copy, and parse it
Using the query that was shown in Figure 2 as an example,
the security kermnel would request the user's id from the
secure operating system and check the protection data to
assure that the wuser held read access 1o partecolor,
partpnum, partpname, supply.pnum, and supply.quan. If
read access is not allowed to all domains, the query is
cancelled and the user is informed

During this time Ingres has also parsed the query and
Decomp has built the guery tree. However, there is a
problem in checking access 10 2 domain at the time when
the retrieved domain is to be returned to the user. In a
query with more than one variable, intermediate data has
been retrieved and stored in 2 temporary relaion. When
the daia is to be returned to the user it has aiready been
substituted into the tree and there is no indication of the
uple or refation where it originated. In the earlier example,
after the pants rclation has been retneved and its values
substituted intc the tree, there is no way to delcrmine [rom
which tuple in the parts rclation the value “disk™ was
retrieved. In the sccure architecture however, it is necessary

that the security: kemdl itsell actually retrieve the tuple and
seiect the proper domain to obuwin the data, since [ngres
cannot be trusted to have placed the correct value in the
tree,

It would be heipful if Ingres instead of actually retrieving
the tuple would insicad retrieve a pointer to the tuple and
redin that pointer in ils temporary relation and in the tree.
Ingres defines its relations in the “relation” relation, its
domains in the "attribute™ relation, and its tuples by a "lid"
{tuple identification). The tuples in each relation are
numbered sequentially begioning at xero. The tid is
considered to be in domain O of every tuple in every
telation. The tid cin be the pointer to be saved in
temporary relations and inserted in the tree by Ingree
Then using the tid and the pointers to the “relaion® and
"attribute™ relations the security kemnel can retrieve the tuple
itself and pick the comrect dommain  Since the VAR node
already contains a pointer to the “relstion™ relation it is
only necessary that the sccurity kemmel change the domain
pointer 1o 0 and zlso alter the reievant format information
in order o force Ingres to retain the tid of the tuple instead
of the actuai do:main. I Ingres should chose the wrong tid,
that would not be 2 dowa secunity relevamt failure, since
protection is at the level of domains and not tuples. The
domain the user reccives may mot answer the qualification
clause but it will still be a dommain Lo which the user has
legal access. At the point where the security kemel is
called, when the actual data is to be returned w0 the user,
the tree contains tids—or pointers—1o the tuples which hold
the information that is to be roiumed to the wuser.

In order to force Ingres to retrieve lid's instead of values,
the secunty kemel is cilled after the tree has been formed
in Decomp. The sccurity keroed makes a copy of the target
list, which would be the iefl branch of the iree from the
ROOT node as shown in Figmre 3, 0 retain itself, The
target list at this Ume specifies in the VAR nodes which
relaion, which demaing, and the correct format and position
in the tuple. The original tree’s wrget list is then altered to
request lids instead of values amd sent on for processing by
Ingres. At this point the tarpet list could also be checked
for correspondence to the ariginal user's query if the
domains in the target list were rewined when the sercurity
kernel parsed themn. If a correspondence check is made, the
sccurity kernel cam assure that the requested domains are
rerrieved.  Otherwise the sccurity kernel can only assure that
legal domains are retreved

When OVQP receives 2 tree specilying that the results are
10 be sent to the user, the security kernel will be called for
cach RESDOM and VAR coembinstion and will be passed
the ud of the wple conwining the domain o be retrieved,
Using the information in the rewined copy of the original
twee, which was checked Dy the KIC for  security




authorization according to the protection data, plus the tid,
the tupie is retrieved and the domain formatied and printed
out.

To print out Figure 6 the kernel would have to be invoked
eight times, once for each domain in each twple. But
Ingres, in producing the output in Figure 6, accessed the
dawa base a total of 106 times to read the tuples in the parns
and supply relaions. These numbers result when the query
i rup with the standard demonstrauion rclations stored in
the daiabase supplied with an Ingres release. Parts had 14
tuples and each was accessed once by the query shown in
the uree in Figure 3. The supply relation has 23 tuples and
all 23 were aceessed for each- of the four irees represented
by Figure 5. These accesses do not include any made by
Ingres 10 cheek indexes or other secondary information.
The extra accesses necessary for the security kernel should
therefore be a small increase in the total. For update the
sccurity  kernel functions are simitar to retrieval

5.1 Comments

The size and complexity of the security xernel needed lo
implement the mainline functions of retrieval and update as
described here are surprisingly himited:  about 7350 lines of
the high level langauge €. Since some of thal ¢oede was not
bullt with kemel architecture goals in mind (see below), ane
axpects that funther reductions in kernel size and complexity
are possible.

In the actual implementation. rather than tagging, the low
level access method software of Ingres was included in the
kernel (0 assure the correctness of that portion of the
logical/physical map.  This mcthod. while simpler in the
case of Ingres than the gencral tgging method previously
outhned. has the disadvantage that additonal access methods
ar changes (0 e eusting ones would requre  kernel
alicrations. together with receruficaiion efforts.

There are other functions of a DBMS which affect security
that were not discussed and thai are not supporied by the
kernel which has been implemented: back-up and recovery,
2 2cneral security policy. elc. A general approach for these
faciliies that 1s an exiension of the basic technique
presented here is outlined by Downs [DowD79)

64} Conclusions

‘This paper has presenied a yencral design for a data secure
DBMS that can be used to deselop a ~afe envirenment for
handling sensitive data. We have also <hown how this
demign could be retrofit 1o an atrcady  enisting  svstem.
resulting o the first DBMS with a high degree of daw

security. We feet that the relatively easy retrofit of the
sccurity kermel architeciure to Ingres illustrates feasibility
both as a general security design and as a retrofit package
in some cases. However other DAMSs may not prove to be
as applicable to retrofit since Ingres was definitely a very
structured, mogdularized system.

‘The promise of kernel based architectures in data

management is both surprising and encouraging. Arguments
had been raised why it would not be feasible [StoM78], but
without limiting the amount of mechanism involved in
protection, it'is not clear how reliable enforcement could be
accomplished
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Encryption and Secure Computer Networks*
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The increasing growth of compuler networks and general distributed computing applications,
together with concern about privacy, security and integrity of information exchange, has created
considerable interest in the use of encryption to protect information in computer networks, This
interest has been accompanied by the development of various encryption algorithms.

Here issues of how to make use of encryption in networks are discussed. Key management,
nerwork encryption protocols, digital signatures, and a comparison of the utiity of conventicnal and .
public key encryption are all considered, logether with related 1S5ues. )
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1. fmroduction 1

It has long been observed that, as the cost per unit of equivalent computation in smail
machines became far less than large centralized ones, and as the technoiogy of inierconnecting
machines matured, computing would take on a more and more d:stributed appearance. This change of
course is now happening. In many cases, users’ data manipulation needs can be served by a separale
machine dedicated 10 the single user, connected to a network of integrated data bases. Crganizational
needs, such as easy incremental growth and decentralized control of computing rtesources and
information, are also well served in this manner. Multiprogramming of general appiication software in
such an environment diminishes in importance.

p— T T

As a result, the nature of the protection and security problem is beginning to change. Concern
over the convenience and reliability of central operating system protection facilities is transferring to
analogous concerns in networks. The issues of prolection in computer networks differ in several
fundamental ways from those of centraiized operating systems. One of the most important distinctions
is the fact that the underlying hardware cannot in general be assumed secure. In particular, the
communications lines that comprise the network are usually not under the physical control of the
network user. Hence no assumptions can be made about the safely of the data being sent over the
lines. Further, in current packet switched networks, the software in the swiiches themseivas is typically
quite complex and programmed in assembly language: one cannot say with certainty that messages are
delivered oniy to their intended recipients.

Th= only general approach 1o sending and storing data over media which are not safe is to use

. some form of encryption. Suitable encryption algorithms are therefore a  prerequisite 10 the
development of secure networks. and considerable work has been developing in this area. However,

equu iy important questions concern integration of encryption methods inio the operating svstems and

appii :ations sofiware which are part of the neiwork. We focus here on thesa latter issues, iaking a l

" Th's work was supporied by the Advanced Research Projects Agency of the Depariment of Defense
under Coniract MDA 903-77-C-0211.




pragmatic. engineering perspeclive toward the problems which must be settled in order to develop
secure neiwork functions. Cases where the safety of the entire network can be assumed are not

discussed here, because issues in that environment are essentially those of distributed systems alone.

In neiworks. as in operating systems, there are several major classes of proieciion policies that
one may wish 10 enforce. The most siraightforward policy, satisfactory for most applications, concerns
data security; assufing that no unauthorized modification or direct reference of data takes place. Highly
-eliable data security in networks today is feasible; suitable methods to attain this security will be
outlined in the next sections.

A more demanding type of policy is the enforcement of confinement in the newwork:
preventing unauthorized communication through subtle methods such as signailing via noticeable
vari: tions in performance [LAMP73]. One commonly mentioned (and fairly easily solved)
confinement probiem is traffic analysis: the ability of an observer 10 determine the various flow patierns
of message movement. However, evidence to be presented later indicates that the conditions under
which confinement in general can be provided in a network are quite limited.

[n the following sections, we describe design problems and alternatives available for the design
of s:cure networks, discuss their utility with respect to data security and confinement, and present an
illustrative case study. The material is iniended as a practicum for those concerned with the
deveiopment of secure computer networks, or those who wish to understand the characteristics of
encryption algorithms useful in network applications.

1.1. The Environment and its Threats

A network may be composed of a wide variety of nodes interconnected by transmission media.
Some of the nodes may be large central compuiers; others may be personal computers or even simple
terminals. The network may contain some computers dedicated 10 switching message waffic from one
transmission line to another, or those functions may be integrated into general purpose machines which
support user computing. One of the important functions of computer networks is to supply convenient,
private communication channels to users, similar 1o those provided by common carriers. The
underlying transmission media, of course. may be point-to-point or broadcast. Considerable software is
tvpically present to implement the exchange of messages among nodes. The rules, ar prowocols,
governing these message exchanges form the interface specifications between network components.
These protocols can significantly affect network security concerns, as will be seen later. In any event,
pecause of the inability to make assumptions about the hardware and switches, one typically must
expect malicious activity of several sorts.

1. Tapping of lines. While the relevant methods are beyond the scope of this discussion, it should be
recognized that it is frequently a simple matier o record the message traffic passing through a given
communications line, without detection by the participants in the communication [(WEST?0]. This
probiem is present whether the line is private, leased {rom & common carrier. or part of a broadcast
satellite channel.

2. Introduction of spurious messages. [t is often possible to introduce invalid messagss with valid
addresses inl0 an operating network, in such a way that the injected messages pass all relevant
consistency checks and are delivered as il the messages were genuine.

3. Retransmission of previously transmitied. valid messages. Given (hat it is possible both tc record
and introduce messuges into a network. it is therefore possible 10 retransmit a copy of a previousiy
transmiticd message.




4. Disruption. [t is possibie that delivery of selected messages may be prevented: portions of messages
may be aliered. or compiete blockage of communications paths may occur.

Each of the preceding threats can, in the absence of suitable safeguards, cause considerable
damage 10 an operating network, and make it useless for commuunication. Tapping of lines leads 10 loss
of privacy of the communicated information. Introduction of faise messages makes reception of any
message suspect. Even retransmission of an earlier message can cause considerabie difficulty in some
circumstances. Suppose the message is part of the sequence by which two parties communicate their
identity 10 one another. Then it may be possible for some node to falsely identify itself in cases where
the valid originator of the message was temporarily out of service.

While all of the previous examples require malicious intent, more and more applications of
computer networks are becoming sensitive: increased motivation to disturb proper operation can be [
expected. Cansider the attention that will be directed at such uses as military command and controi
systems (by which missile firing orders are sent) or commercial electronic funds trans{er sysiems {with
hundreds of billions of U.S. doliars worth of transactions daily).

1.2. Operationai Assumptions L

The following discussion of protection and security in computer networks will be based on
several underlying assumptions.

v

1. M.licious attacks, including tapping, artificial message injection, and disruption are expected.

2. The insecure network provides the only available high bandwidth transmission paths between those
sites which wish 10 communicate in a secure manner (1].

3. Reliable, private communication is desired.

4. A large number of scﬁarately protected logical channels are needed, even though they may be
multipiexed on a much smailer number of physical channels.

Y m————l g T YV T

5. High speed, inexpensive hardware encryption units are available.

It is believed that these assumptions correctly mirror many current and future environmentis.
In the next sections, we outline properties encryption rejevant to network use. Those interested in a
deeper examination should see the companion papers in this issue. After this brief outline, the
discussion of network security commences in earnest.

— =t iy = g Y——— rr—

2. Eucrypron Algorithms and their Nerwork Applications

Encryption provides a method of storing data in a form which is unintelligible without the "key”
used in the encryption. Basicaily, encryption can be thought of as a mathematical function

E = F(D,K)

whe: : D is data {0 be encoded, K is a key variable, and E is the resuiting enciphered text. For F 10 be
a use ‘ul function. there must exist an F', the inverse of F,

{1} Tt will turn out that some presumed secure and correct channe! will be needed to get the secure dala
chanrel gotng, aithough the pre-exisiing secure channel can be awkward to use. with high delay and low
bandwidth. Distribution of the priming information via armorad truck might suffice. for example.

3. - §
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D = F(E.K)

which. therefore, has the property that the original data can be recovered from the encrypied data if the
value of Lhe key variable criginally used is known.

The use of F and F' is valuable oniy if it is impractical to recover D from E without knowledge
of the corresponding K. A great deal of research has been done to develop algorithms which make it
virtually impossibie to do so, even given the availability of powerful computer tools.

The “sirength® of an encryption algorithm is traditionally evalualed using the following
assumptions. First. the algorithm is known 10 all involved. Second. the analyst has available 10 him a
significant quantity of encrypied data and corresponding cleartext {i.e. the unencrypted text, also called
plaintext}). He may even have been able 10 cause messages of his choice 10 be encrypted. His task is'to
deduce. given an additional, unmatched piece of encrypied text, the corresponding cleartext. Ajl of the
malched 1ext can be assumed 10 be encrypted through the use of the same key which was used 1o
encrypt the unmaiched segment. The difficulty of deducing the key is directly related 10 the sirength of
the algorithm.

F is invariably designed to mask statistical properties of the cleartext. The probability of each
symbol of the encrypted character set appearing in an encoded message E ideally is t0 be equal.
Further. the probability distribution of any pair (digram) of such characrers is to be flar. Similarly, it is
desirable that the n-gram probability distribution be as flat as possibie, for each n. This characteristic is
desired even in the face of skewed distributions in the cleartext, for it is the statistical structure of the
input language, as it "shows through” 1o the encrypted language, which permits cryptanalysis. '

. The preceding characteristics, desirable from a protection viewpoint, have other implications.
In particular, if any single bit of a cleartext message is altered, then the probability of any particular bit
in the corresponding message being altered is approximately 1/2. Conversely, if any single bit in an
encrypled message is changed, the probability is approximately 1/2 that any particular bit in the
resulting decrypted message has been changed {FEIS75]. This property foilows because of the necessity
for flat n-gram distributions. As a result, encryption algorithms are excellent error detection
mechanisms, as fong as the recipient has any knowledge of the original cleartext iransmission.

The strength of an encryption algorithm is 2iso related to the ratio of the iength of the key with
the length of the data. Perfect ciphers, that compietely mask statistical information, require Keys of
lengths egual 1o the data they encode. Fortunately, currently availabie algorithms are of such high
guality that this ratio can be small; as a result, a key can be often reused for subsequent messages.
That is. subsequent messages essentially extend the iength of the data. Tt is still the case that keys need
1o oe changed periodically to prevent the ratio from becoming oo smail, and thus the statistical
information available to an anaiyst 100 great. The loss of protection which would result from a
compromised key is thus also limited.

2.1. Public Key Encryption

Diffie and Hellman [DIFF76b] proposed a variation of convent onal encryptuon methods that
may. in some cases, have certain advantages over standard algorithms. In their class of algorithms,
there exisi

E = F(D.K}

as before 10 encode the data, and
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D = F(EK"

1o recover the data. The major difference is that the key K' used to decrypi the daia is not equal o,
and is impractical 1o derive from, the key K used to encode the data. Presumably there exists a pair
generator which based on some input information, produces the maiched keys K and K' with high
strength (i.e., resisiance 10 the derivation of K’ given K, D, and maiched E = F(D.K)).

Many public key algorithms have the property that either F or F' can be used for encryption,
and both resuit in strong ciphers. That is, one can encode data using F', and decode using F. The
Rivest et. al. algorithm is one that has this property [RIVET77al. The property is usefui both in key
distribution and "digital signatures®, and will be assumed here.

The potential value of such encryption aigorithms lies in some expected simplifications in initial
key distribution, since K can be publicly known; hence the name public key encryption. There are also
simplifications for "digital signatures”. These issues are examined further in sections 4 and 10. Rivest
et. al.. and Merkle and Hellman have proposed actual aigorithms which are believed sirong, but they
have not yet been extensively evaluated [RIVE77a] [HELL78l.

T

Much of the remaining material in this survey is presented in a manner independent of whether
conventional or public key based encryption is empioyed. Each case is considered separaiely when
necessary. -

YT

2.2, _Error Detection, and Dupiicate or Missing Blocks

~ Given the general properties of encryption described in the earlier sections, it is a fairly simple {
matter to detect (but not correct) errors in encrypted messages. It is merely necessary that a small par |
of the message be redundant, and that the receiver know in advance the expected redundant part of the
message. One can conclude that, in a block with k check bits, the probability of an undetected esror
upon receipt of the block is approximately 1/ (2k) for reasonable sized blocks, if the probabilistic
assumption mentioned in section 2.0 is valid. For example, if three eight-bit characiers are empioyed 3
as checks, the probability of an undetected error is less than 1/(109).

In the case of natural language text, no special provisions need necessarily be made, since that ;
text already contains considerable redundancy and casual inspection permils error detection with very b
high probability. The check fieid can also be combined with information required in the block for
reasons other than encryption. In fact, the packet headers in most packet switched networks contain
considerabie, highly formatted information, which can serve the check function. For exampie,
duplicate transmitted biocks may occur either because of a deliberate attempt or through abnormal %
operation of the network switching centers. To detect the duplication, it is customary 10 number each
biock in order of transmission. If this number contzins enough bits, and the encryption block size

maiches the unit of transmission, the sequence number can serve as the check field.

Feiste! et. al. [FEIS75] describe a variant of this method, called block chaining, in which a small
segment of the preceding encrypted block is appended to the current cieartext biock before encryption
and transmission. The receiver can therefore easily check that blocks have been received in order, by
making the obvious check, but if the check fails, he cannot teil how many blocks are missing. In both
of these cases. once a block is lost, and not recoverable by lower level network protocols, some methoed
for reesiablishing validity is needed. One method is to obtain new matched keys. An alternative
{essential {or public key systems) is to empioy an authentication protocol (as described in section 3) (o
choose a new, valid sequence number or data value to restart block chaining.

=



2.3. Block vs. Stream Ciphers

Another important characteristic of an encryption method, which both affects the strength of
the algorithm and has implications for computer use, is whether it is a block or stream cipher. A
stream cipher, in deciding how to encode the next bits of a message, can use the entire preceding
portion of the message, as well as the key and the current bits. A block cipher, on the other hand,
encodes each successive block of a message based only on that block and the given key. 1t is easier 10
construct strong stream ciphers than strong block ciphers. However, siream ciphers have the
characteristic that an error in a given block makes subsequent blocks undecipherable. In many cases,
either method may be satisfactory. since lower leve!l network protocois can handle necessary
retransmission of garbled or lost biocks. Independent of whether a block or stream cipher is employed,
some check data, mentioned in section 2.2 above, is still required to detect invalid blocks. In the
stream cipher case, when an invalid block is discovered after decoding, the decryption process must be
reset to its stale preceding
handled. oo :

[ . "

On the other hand, stream ciphers are less acceptable for computer use in general If one
wishes 10 be able selectively 1o update portions of a long encrypted message (or file), then block ciphers
permit decryption, update, and reencryption of the relevant blocks alone, while stream ciphers require
reencryption of all subsequent blocks in the stream. Therefore, block ciphers are usually preferred.
Fortunately, there exist reasonably strong block ciphers. The Lucifer system [FEIS73] is one such
candidate. Whether or not the National Bureau of Standards’ Data Encryption Standard (D.E.S.), with
its 56 bit keys, is suitably strong is open to debate [DIFF77], but it is being accepted by many
commercial users as adequate [NBS77].

2.4. Nerwork Applications of Encryption

Four general uses of encryption have application in computer networks. Each is presented
below,
1. Authentication. One of the important requirements in computer communications security is to
provide a method by which participants of the communication can identify one another, in a secure
manner. Encryption solves this problem in several ways. First, possession of the right key is taken as
prima-facie evidence that the participant is able t0 engage in the message exchanges. The transmitter
can be assured that only the holder of the key is able to send or receive transmissions int an intelligible
way. ‘

However, one is still subject to the probiems caused by lost messages, replayed valid messages,
and the reuse of keys for multipie conversations (which exascerbates the repiay problem). A general
authentication protocol which can detect receipt of previously recorded messages when ths keys have
not been changed is presented later. The actual procedures by which keys are distributed in the general
case is of course important, and will be discussed in subsequent sections.

9. Private Communication. The traditional use for encryption has been in communications, where the
sender and receiver do not trust the transmission medium, whether it be a hand carr'ed nate, or
megabytes shipped over high capacity sateilite channels. The use of encryption for protection of
transmission becomes crucial in computer networks.

3. Nemvork Mail. in the private communication function, it is generally understood that all parties
wishing 10 communicate are present, and wiiling to tolerate some reasonabie amoum of overhead in
order to get the private conversation established. Thus, a key distribution algorithm invoiving several
messages and interaction with all participants would be acceptable. In the case of elecironic mail, it

-6-

the invaiid biock, so that the valid biock, when received, will be properly
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may be unreasonable for the actual transmission of what is frequently a short message to require such
significant overhead. Further, mail should not require an active receiver, one that is actually iogged in,
at the time the message is received. On the other hand, some queueing delays at the sending or
recewmg site may be acceplable If the number of overhead messages ¢an be mgmﬁcantly reduced.

4. Digiral Signatures. The goal here is t0 ailow the author of a digitally represented message to "sign” it
in such a fashion that the "signature” has properties similar to an analog signature written in ink for the
paper worid. Without a suitable digital signature method, the growth of distributed systems may be
seriously inhibited, since many transactions, such 2 lhose mvolved m banking, reqmre a legaliy
enforceable contract.

The properties desired of a digital sighature method include the following:
1. Unforgeability: Only the actual author should be abie 0 create the s:gnamre.

2. Authenticity: There must be a straightforward way to conchmwely demonstme the
validity of a signature in case of dispute, even long after authorship. |
3. No repudiation: It must not be possibie for the author of s:gned correspondence to
subsequemly d:sclaarn authorship. S

4, Low cost and hxgh convemence The slmpler and lower cost the methocl, t.he more hke}y
it will be used. - - :

RN TR L

Much of the remainder of this paper is devoted to discussion of how these geneml encryption
apphcanons can supported.

2.3, Minimum Trusted Mechamsm. Minimum Central Mechanism

In all of the functions presented in section 2.4, it is desirable that there be mimimum trusied
mechanism involved [POPE74b]. This desire occurs because the more mechanism, the greater the
opportunity for error, either by accident or by intention (perhaps by the developers or maintainers).
One wishes to minimize the involvement of a central mechanism for analogous reasons. This fear of
iarge, complex and central mechanisms is well justified, given the experience of failure of large central
operating systems and data management sysiems to provide a reasonabie level of prowection against
penetration [POPE74a][CARL75]. Kernel-based approaches to software architectures have been
developed to address this problem, and have as their goal the minimization in size and complexity of
¢entral, trusted mechanisms. For more information about such  designs, see
[MCCA79}[POPE79]{DOWN79].

Some people are also distrustful that a centralized, governmental communieation facility, or
even a large common carrier, can assure privacy and other related characteristics. These general criteria
are quite important 1o the safety and credibility of whatever sysiem is eventuaily adopied. They aiso
consirain the set of approaches that may be empioyed. .

2.6, Limitations of Encryption
While encryption can contribute in useful ways to the protection of information in computing
systems, there are a number of practical limitations 1o the class of appiications for which it is viable.

Several of these limitations are discussed beiow.

1. Processing in Cleartexr. Most of the operations that one wishes to perform on data. {rom simple
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arithimetic operations 10 the complex procedure of constructing indexes to data bases, require that the
data be supplied in cleartext. Therefore, the internal controls of the operating sysiem, and to some
exter.t the applications software, must preserve protection controls while the cieartext data is present.
While some have proposed that it might be possible t0 maintain the encrypted data in main memory,
and have it decrypted only upon loading into cpu registers (and subsequently reencrypted before storage
into memory), there are serious questions as to the feasibility of this approach (GAINT7). The key
management facility required is nonirivial, and the difficullies inherent in providing convenient
controlled sharing seem {orbidding. Another suggestion sometimes made is that an encoding algorithm
be used which is homomorphic with respect to the desired operations [RIVE78]. Then the operation
couid be performed on the encrypted values, and the resuit can be decrypied as before. Unfortunately,
those encoding schemes known with the necessary properties are not strong algorithms, nor is it
generaily believed that such methods can be constructed. o - A

Therefore, since data must be processed in cleartext, other means are necessary for the
protection of data from being compromised in the operating sysiem by applications software, The
remarks in the previous section concerning minimization of those additional means are very imporiant
in this context. : .

2. Revocanon. Keys are similar to simple forms of capabilities, that have been proposed for operating
svstems [DENNG66J[DENNT9]. They act as tickets and serve as conclusive evidence that the hoider
may access the corresponding data. Holders may pass keys, just as capabilities may be passed. Selective
revocation of access is just as difficuit as those known to simpie capability methods [FABR74]. The
only known method is to decrypt the data and reencrypt with a different key. This action invalidates all
the old keys, and is obviously not very selective. Hence new keys must be redistributed to all those for
whom access is still permitied. e e 4y ree U R MRV T RRLIELI S .+
3. Protection Against Modification. Encryption by itself provides no protection against inadvertent or
intentional modification of the data. However, it can provide the means of detecting that modification.
One need merely include as part of the encrypted data a number of check bits. When decryption is
performed, if those bits do not match the expected values, then the data is invaiid.

Detection of modification, however, is often not enough protection. In large data bases, for
example, it is not uncommon for very long periods to elapse before any particular data item is
referenced. It would be only at this point that a modification wouid be detected. While error correcting
codes could be applied to the data after encryption to provide redundancy, these will not be heipful if a
malicious user has succeeded in modifying stored data at will, as he can destroy the adjacent daua into
which the redundancy has been encoded. Therefore, very high quality recovery software would be
nece:sary to restore the data {rom old archival records.

4. Kev Siorage and Management. Every data item that is to be protected independently of other data
items requires encryption by its own key. This key must be stored as long as it is desired 1o be able t0
access the date. Thus, to be able to separately protect a large number of long lived data items, the key
storage and management problem becomes formidable. The collection of keys immediately becomes so
large that safe system storage is essential. After all, it is not practical 10 require a user o supply the
key when needed, and it isn't even practical to embed the keys in applications software, sincs that
would mean the applications software would require very high quality protection

The problem of key storage is also present in the handling of removable media. Since an entire
volume (tape or disk pack) can be encrypted with the same key (or small set of keys), the size of the
problem is reduced. If archival media are encrypted. then the keys must be kept for a long pericd. ina
highlv reliable way. One solution to this problem would be 1o store the keys on the unit 10 which they
correspond. perhaps even in several different places 0 avoid local errors on the medium. Ti.e kevs
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would have 10 be protected. of course; a simple way would be 10 encrypt them with yet a different

*master” key. The protection of this masier key is absolulely essential to the sysiem's security.

In addition, it is quite valuable for-the access control decision to be dependent on the value of
the rlata being protected. or even on the value of other, reiated data: salary fields are perhaps the most
quoted exampie. In this case, the software involved, be it applications or system procedures, must
maintain its own key table siorage in order to successfully examine the cieartext form of the data. That
siorage, as well as the routines which directly access it, require-a high quality protection mechamsm
beyond encryption. St

Therefore, since a separate, reliable protection mechanism seems required for the heart of a
muitiuser system, it is not clear that the use of encryption (which requires the implementation of a
second mechanism) is advisable for protection within the sysiem. The system’s protection mechanism
can usually be straightforwardly extended to provide ail necessary protection [facilities.

3. System Aurhentication

Authentication refers to the identification of one member of a communication to the other, in a
reliable, unforgeable way. In early interactive computer systems, the primary issue was to provide a
method by which the operating system could determine the identity of the user who was attempting 10
log in. Typically, the user suppiied confidential parameters, such as passwords or answers (o personal
guestions, for checking at each login attempt. There was rarely gny concern over the machine
identifying itself to the user. . . A

In networks, however, mutual authentication is of interest: each "end® of the channei may wish
to assure iself of the identify of the other end. Quick inspection of the ciass of methods used in
centralized systems shows that straightforward extensions of the methods are unacceptable. Suppose
one required that each participant send a secret password to the other. Then the first member that
sends the password is exposed. The other member may be an imposter, who has now received the
necessary information to pose to other nodes in the network as the first member. Extension to a series
of exchanges of secret information will not solve the problem. [t oniy makes necessary a multi-step
procedure by the imposter. A different approach is required.

There are a number of straightforward encryption-based authentication protocols which provide
reliable muiual authentication without exposing either participant. The methods are robus: in the face
of all the network security threats mentioned eartier. The general principle involves the encryption of a
rapidly changing unique value using a prearranged key, and has been independently rediscovered by a
number of people [FEIS7TS1{KENT76][POPE78]. An obvious application for such protocols is to
sstablish a mutually agreed upon sequence number or block chaining initial value that can be used to
guithenticats communications over a secure channel whose keys have been used before. The sequence
number or value should either be one that has not been used before, or should be selected at random,
in order to protect against undetectaed replay of previous messages.

Below we outiine a simple, general authenticalion sequence between nodes A and B. At the
end of the sequence, A has reliably identified itself 10 B. A similar sequence is needed for B 10 identify
itself 10 A. Typically, one expects o inierieave the messages of both authentication sequences.

Assume that A uses a secret key, associated with itseif, in the authentication sequence. The
reliability of the authentication depends only on the security of that key. Assume that B holds A's
maiching key (as well as the matching keys for ail other hosts to which B might taik).
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1. B sends A, in cleartext, a random, unique darta item, in this case the current time of day as
known to B.

2. A encrypis the received time of day usms its authentication key and scnds the resulnng
cipheriext to B, : . it .

3B deq-ypls A’s authentication message, using A's matched key, and cornpares i-t ;with the
time of day which B had sent. If they mach, then B is satisfied that A was the ongmator of the
message.

This simple protocol does not expose either A or B if the encryption aigerithm is strong. since
it should not be possible for a cryptanalyst (0 be abie 1o deduce the key from the encrypied time of day,
even knowing what the corresponding cleartext lime of day was. Further, since the authentication
messages change rapidly, it is not possitie 10 record an old message and retransmit it

To use such an authentication protocol to establish a sequence number or initial value for biock
chaining, it is merely necessary for A 10 include that information, before encrypiion, in its message to
Binstep 2 above . ,

4. Key Managemem - "

For several participants in a network conversation 10 communicate securely, it is necessary for
them to obtain matching keys to encrypt and decrypt the transmitted data. [t should be noted that a
matched pair of keys forms a logical channel which is independent of all other such logical channelis,
but as real as any channel created by a nerwork's ansmission protocols. Possession of the key admits
one 10 the channel. Without the key, the channe! is unavailable. Since the common carrier function of
the network is 10 provide many communication channels, how the keys which create the corresponding
necessary private channels are supplied is obviously an important matter. The following sections
describe various key distribution methods for both conventional and public key encryption systems.

4.1. Convemional Key Distribution

As there are, by assumption, no suitable transmission media for the keys other than the
physical network, it will be necessary o devise means 10 dismibute keys over the same physical
channels by which actual data is transmitted. The safety of the logical channels over which the keys are
1o pass is crucial. Unfortunately, the oniy available method by which any data, including the keys, can
be transmitted in a secure manner is through the very encryption whose initialization is at issue. This
seemning circularity is actuaily easily broken through limited prior distribution of 2 small number of kevs
by secure means. The usual approach involves designating a host machine, or set of machines
fHELL78], on the network to play the roie of Key Distribution Center (KDC), at ieast for the desired
connection. It is assumed that a pair of matched keys has been arranged previously betwesn the KDC
and each of the potantial participants, say Al, A2, ..., Am. One of the participants, Ai, s¢nds a short
message (¢ the KDC asking that maiched key pairs be distributed 1o all the A’s, including Ai. If the
KDC'’s protection policy permits the connection, secure messages conuining the key and other suawus
information will be sent 10 each A, over the prearranged channels, Data can then be sent over the
newly esiablished logical channel. The prearranged key distributon channels carry a low guantity of
iraffic. and thus, recailing the discussion in section 2.0, the keys can be changed refatively infrequently
by other means.




This generai approach has many variations (o support various desirable properiies such as a
distributed protection poiicy, integrity in face of cmshes. and the like. Some of these are discussed
beiow, s iman el T R . . . .

S m A P

1. Cemraiized Key Coritrol. Perhaps the simplest form of the key disiribution method employs a single
KDC for the entire network. Therefore n prearranged matched key pairs are required for a network
with n distinguishable entities. An obvious disadvantage of this unadorned approach is its affest on
network reliability. 1f communication with the KDC becomes impossibie, either because the node on
which the KDC is located is down, or because the network breaks, then the establishment of any
further secure communication channels is impossible; il the overal! sysiem has been constructed to
prevent any inter-user communication other than in. a secure manner, then the entire network
eventually stops. This design for distributed systems is, in general, unacceptabie excapt when the
underiying communications topology is a star and the KDC is located at the center. Note however that
this drawback can be fairly easily remedied by the availability of redundant KDCs in case of {ailure of
the main f{acility [1]. The redundant faeility can be located at any site which supports a secure operating
sysiem and provides appropriate key generation facilities. Centralized key conuwol can quite easily
become a performance bottleneck however.

Needham and Schroeder present an exampie of how such a KDC wouid operate [NEED78).
Assume that A and B each have a secret key, Ka and Kb, known oniy 1o themseives and the KDC. To
establish a connection, A sands a request to the KDC requesiing a connection to B and includes an
identifier (a random number perhaps). The KDC will send back to A i) a new key K< 10 use in the
connection. ii) the identifier, and iii) some -information which A can send to B t0 estabiish the
connsction and prove A’s identity. That message from the KDC 10 A is encrypted with A’s secret key
Ka. Thus, A is the oniy one who can receive it, and A knows that it is genuine. In addition, A can
check the identifier 1o verify that it is not a replay of some previous request.

Once A has receivéd this message, A sends 10 B the dawa from the KDC intended for B. That
data includes the connection key Kc, as weil as A's identity, ail encrypted by B's secret key. Thus, B
now knows the new key, that A is the other party, and that all this came from the KDC. However, B
does not know that the message he just recsived is not a repiay of some previous message. Thus, B
must send an identifier 10 A encrypted by the connection key, upon which A can perform some
funcrion and return the resuit back w0 B. Now, B knows that A is current, i.e. there has not besn a
replay of previous messages. Figures 1 illustraies the messages invoived. Of the five messages, wo
can e avoided in generai by storing frequemly used keys at the local sites, a Lachmqu: known as
caching. . .

2. Fully Distribured Xey Comtrol. Here it is possibie for every "inteiligent” node in the network w serve
as a KDC for certain connections. (We assume some nodes are "dumb”, such as terminals ar possibly
personal computars.) If the intended participants Al, A2, ... Am reside at nodes N1, N2, ..., Nm,
then only the KDCs at each of those nodes need be invoived in the protection decision. One node
choaoses the key, and sends messages to each of the other KDCs Each KDC can then decide whether
the artempted channel is to be permitted, and reply 10 the onginating KDC. At that pont the keys
would be distributed to the participants. This approach has the obvious advantage that the oniy nodes
which must be properly functioning are those which support the intended participants. Each »f the
KDCs must be able to talk o all other KDCs in a secure manner, impiying that a*{n-1)/2 mawched key

(11 The redundant KDCs form a simpie distributed, replicated daiabase, where tha rerlicated
information includes private keys and permission controis. However, the database is rarely ujdaied.
without serious requirements for synchronization among updates. [t is not necessary for copies 07 a key
ai all sites to be updated simuitaneously, for example. Therefore. iittle addilional compleaity fram ihe
disiributed character of the key management function would be expected.
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pairs musi have besn arranged. Of course, each node needs to store oniy n-l of them. For such a
method (o be successful. it is also necessary for each KDC 1o talk with the participants at its own node
in & secure fashion. This approach permits each host to enforce its own security policy if user software
is forced by the local system architecture tg use the network only through encrypted channels. This
arrangement has appeai in decentralized organizations. * Ce ot '
3. Hierarchical Key Conmrol.’ This method distributes the key control function among "local”, *regional®,
and “global® controllers. * A local controller 'is able to communicate securely with entities in its
immediate logical locale: that is, for those nodes with which marched key pairs have besn arranged. If
all the paricipants in a channe! are within the same region, then the connection procedure is the same
as for centralized control. If the participants belong 10 different regions, then it is necessary for the
locai controiler of the originating participant to send a securs message 10 its regionai controlier, using a
preafranged channei. The regional controiler forwards the message to the appropriate local controlier,
who can communicate with the desirsd participant. Any of the three levels of KDCs can select the
keys. The details of the protocol can vary at this point, depending on the exact manner in which the
matched keys are distributed. This design approach obviously generalizes to muitiple leveis in the cass
of very large networks. [t is analogous to national teiephane exchanges, where the exchanges piay a
role very simiiar to the KDCs. '

e bt BT

One of the desirabie properties of this design is the limit it places on the combinatorics of key
control. Each local KDC only has to prearrange channeis for the potential participants in its area.
Regional controllers oniy have to be able to communicate securely with local controllers. While the
combinatorics of key control may not appear diffcult enough to warrant this kind of soiution, in certain
circumstances the probiem may be very serious, as discussed in the subsequent ion on levels of
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The design aiso has a property not present in cither of the preceding key conmol architectures:

locat consequences of iocal failures, If any component of the distributed key controi facility should fail

or be subverted, then only users iocal to the failed component are affected. Since the regionai and

giobuai controllers are of considerabie importance to the architecture, it would be advisable to replicate

them, so that the crash of a singie node wiil not segment the network. :

- Lo . - . DR

All of these key control methods permit easy extension to the interconnection of different
nerworks, with differing encryption disciplines. The usuai way to connect different neworks, with
typically different transmission protocols, is to have a single host called a gateway common to both
networks [CERF73] (BOGG30]. Inter-network data is sent to the gateway which forwards it toward the
final destination. The gateway is responsibie for any format conversions as well as the support of both
sysiems’ protocols and naming methods. If the networks’ transmissions are encrypted in a manner
simiiar 1o that described here, then the gateway might be responsible for decrypting the message and
reencrypung it for retransmission in the next nerwork. This step is necessary if ths encryption
algorithms differ, or if there are significant differences in protocol. [f the facilities are compatible, then

the gateway can merely serve as a regional key controiler for both nerworks, or even be totally
uninvolved,

There are strong similarities among these various methods of key distribution, and diffarences
tan be reduced further by designing hvbrids to gain some of the advantages of each. Ceantraiized
control is a degenerate case of hierarchical control. Fully distributed control can be viewed as a variant
of hierarchical control. Each host's KDC acts as 2 locai key controller for that host's entities, and
communicates with other local key controllers to accompiish a connection. In that case, of cour:e, the
communication is direct, without a regional controiler required.
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4.2 Public Key Based Disiribution Aigorithins

The class of public key algorithms discussed earlier have been suggesied as candidates for key
distribution methods that might be simpler than those described in the preceding sections. Recail that
K'. the key used to decipher the encoded message, cannot be derived from K, the key used for
encryption. or from matched encrypted and cieartext. Therefore, each user A, after obtaining a
maiched key pair <K, K'>, can publicize his key K. Another user B, wishing 10 send a message to A,
can employ the publicly availabie key K. To reply, A empioys B's public key. ‘At first glance this
mechanism seems to provide a simplified way to esuablish secure communication channeis. No secure
dialog with a key coniroller to initiate a channel appears necessary. : -

That is. an automated "telephone book® of public keys could generaily be made availabie, and
therefore whenever user A wishes (0 communicate with user B, A merely looks up B's public key in
the book, encrypts the message with that key, and sends it 1o B (DIFF76bl. Therefore there is no key
distribution probiem at all. Further, no central authority is required initiaily to set up the channei
betwesn A and B.

It is ciear, however, that this viewpoint is incorrect: some form of a central authority is needed
and the protocoi involved is no simpler nor any more efficient than one based on conventional
algorithms [NEED78). First, the safety of the public key scheme depends critically on the correct
public key being selected by the sender. If the key listed with a name in the "telephone book” is the
wrong one, then the protection suppiied by public key encryption has been lost Furthermore.
maintenance of the (by necessity machine supporied) book is nonatrivial because keys wiil change.
sither because of the desire 10 replace a key which has been used for high amounts of daw
transmission, or because a key has been compromised through a variety of ways. There must be some
source of carefully maintained *books® with the responsibility of carefully authenticating any changes
and correctly sending out public keys (or entire copies of the book) upon request

A modified version of Nesdham and Schroeder’s proposal to deal with these issues is as
follows. Assume that A and B each have a public key known to the authority, and a private key known
only to themseives. Additionaily, assume the authority has a pubiic key known (0 ali, and a2 private key
known aniy to the authority.

A begins by sending to the authority a timestamped message requesting communication with B.
The authority sends A the public key of B plus the timesamp, encrypted using the private key of the
authority. A can decrypt this message using the public key of the authority, and is thus also sure of the
source of the message. The timesiamp guarantees that this is not an old message from the authority.
containing a key other than B's current pubiic key (1]

A @n now send messages (0 B because he knows B's public key. However, to ideatify himself.
as well as 10 prevent a replay of previous transmissions, A now sends his name and an identifier 1o B.
encrvpiad in B's public key. B now performs the first two sieps above with the authority 0 retrieve A's
public key. Then B sends to A the identifier just received, and an additional identifier, both encrypied
with A's public key. A can decrypt that message and is now sure that he is talking 1o the current B.
Howaver, A must now send back the new identifier (o B so that B can be sure he is taiking to a current
A. These messages are displayed in figure 2. The above protocol conuins 7 messages. but 4 of them,
thos. which retrieve the public keys, can be largely dispensed with by local caching of public keys.
Thu-. as in the conventional key distribution exampte, we again find that 3 messages are nesded.

{1] Thes= initial sieps are essentially an adapiation of the authentication protocol given in seglion 3.




Some public key advocates have suggested ways other than caching in order 1o avoid requesting
the public key from the central authority {or each communication. Certificates is one such proposai
[KOHN78). A user can request that his public key be sent 0 him as a cerrificare, which is a
user/public-key pair, together with some certifying information. For example, the user/public-key pair
may be stored as a signed message(l] from the cenwal authority. When the user wishes to
communicate with other users, he sends the certificate to them. They each can check the validity of
the ceriificate using the cerifying information, and then rewieve the pubhc key. - Thus, the comral
authorny is only needed onee, when the uuual ceruﬁute is roquer.od. TRAT S B B S e e
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Both cemﬁales and caching have severai problems. First, the mechanism used 1o store the
cache of keys must be correct. Secoad. the user of the certificare must decode it and check it (verify
the signature) each time before using it, or must aiso have a secure and correct way of storing the key.
Perhaps most important, as keys change, the cache and oid certificates become obsoiete. This is
essentially the capability revocation probiem revisited (REDE74]. Either the keys must be verified (or
re-requested) periodically, or a global search must be made whenever invalidating a key. Notice that
even with the cache or certificates, an internal authentication mechanism is still required.

Pubiic key sysitems aiso have the probiem that it is more diflicult to provide protection policy
checks. In particuiar, conventional encryption mechanisms easily allow protection policy issues 0 be
merged with key distribution. If two users may not communicate, then the key controller can refuse 0
distribute keys.[2] However. public key sysiems imply the knowiedge of the public keys. Me:hods o
add prote:uon checks 0 pubhc key sysiems add an addmonal layer of mochnnm :

G owr T T

4.3. Campanson of Pubhc and Comventional Key D:mbunon _ﬁ:r Pr:vare Commumamou
- L U- R b N RO N
It shouid be dear unt both of the above protocols stabhsh a secure channel, md lhat both
require the same amount of overhead to sstablish a connection (3 messages). Even if that amount had
been different by a message or two, the overhoad 13 sull small compared to tho numbor of messages for
which a typical connection will be used. S o
-4 “!" . PR AT : .
The above protocois can be modified to handlo multipie authoriﬁes: such modiﬁcations have
also been performed by Nesdham and Schroeder. Again, the number of messages can be reduced to
three by caching.

oo

. It should also be noticed that the safery of these methods depends only on the safery of the
secret keys in the conventional method. or the pnvuo keys m the pubhc key mer.hod. Thus an
equivalent amount of secure storage is required. .

One might suspect, however, that the software required o implemem 1 public key authority
would be simpler than that for 2 KDC, and therefore easier to certify its correct operation. [ this view
were correct, it would make pubiic key based encryption potentiaily superior 10 conventional
algorithms, despite the equivalent protocol requirements. It is true that the coatents of the authority
need not be protected against unauthorized reference, since the public keys are to be 2vailable (0 all,
while the keys used in the authentication protocol berween the KDC and the user must be protected
against reference. However, the standards of software reliability which need (0 be imposed on the
authority for the sake of correciness are not substantially different from those required for the
development of a secure KDC. More convincing., ail of the KDC keys could be siored in encrypied

{1] ¢ ee section 10 for a discussion of digital signatures.

{2] This approach blocks communication if the host operating systems are consiructed tn such ¢ way as

10 prohibit cleartext communication over the network. ‘
N
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form. using a KDC master key. and oniy decrypted when needed. Then the security of the KDC is
reduced 1o protection of the KDC's master key. and protection of the individual keys when in use.
This situation is equivaient o the publi€ key repository case, since there the private key of the
reposilory must be safely stored and protected during use. A

It has also besn pointed out that a conventional KDC, since it issued the conversation key, can
listen in. and in fact generate what appear (0 be valid messages. Such action cannot be done by the
public key repository. This distinction is minor however. Given that both systems require a (rusted
agent, it is a simple matter to add a few lines of certified correct code to the conventional key agent
(the KDC) that destroys conversation keys immediately afier distribution. Thus the sysiem
characteristics of both conventionai and public key algorithms are more similar than initiaily expected.

3. Levels of Integration

There are many possible choices of endpoints for the encryption channet in a computer
nerwork, each with their own tradeoffs. In a packet switched network, one could encrypt each line
between two switches separately from all other lines. This is a low level choice, and is often called /ink
encryprion. Instead the endpoints of the encryption channeis could be chosen at a higher architectural
level: at the host machines which are connected to the network. Thus the encryption system would
- support host-host channeis, and a message would be encrypted onily once as it was sent through the
network (or networks) rather than being decrypted and reemcrypted a number of times, as implied by
the low level choice. In fact, one could even choose a higher architectural level endpoints could be
individual processes within the operating systems of the machines that are attached w0 the nerwork. If
the user were employing an intelligent terminal, then the lerminai is a candidate for an endpoint. This
viewpoint envisions a single encryption channel from the user directly o the program with which he is
interacting, even though that program might be running on a site other than the one to which the
{erminal is connected. Thig high leve! choice of endpoints is sometimes cailed end-/o-end encryption.

The choice of ﬁrchiteczurai level in which"ihe ‘encryption is W0 be integrated has rnany
ramifications. One of the most important is the combinatorics of key control versus the amount of
trusied software, -

In general, as one considers higher and higher system leveis, the number of identifiable and
separaiely protected enmtities in the systern tends to increase, sometimes dramatically. For exampie,
while thers are less than a hundred hosts attached w0 the Arpanet (ROBE73I, at a higher level there
ofien are over a thousand processes concurrently operating, each one separately protected and
controlled. The number of terminals is of course also high. This numericai increase means that the
number of previously arranged secure channeis — that is, the number of separatedy distributed matched
key pairs = is correspondingly larger. Also, the rate at which keys must be generated and diswibuted
can be dramatically increased.

In return for the additional cost and complexity which resuits from higher level choicas, there
can be significant reduction in the amount of software whose correct functioning must be assured. This
issue is very important and must be carefuily considered. It arises in the following way. When the
lowest level (i.e. link ancryption) is chosen, the daia being communicated exists in clearzext form as it
is passed from one encrypted link o the next by the switch. Therefore the software in the switch must
be trusted not to iniermix packets of different channels. If a higher level is selectad, thean proteciion
errors in the switches are of litle conseguence. In a host-io-host level, however, aperaling sysiem
failures are still serious. because the data exists as cleartext while it is system resident
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In principie then. the highest level integration of encryption is most secure. However, it is siill
the case that the data must be maintained in ciear form in the machine upon which processing is done.
Therefore the more classical methods of protection within individual machines are still necessary, and
the value of very high levei end-end encryprion may be somewhat lessened. A rather appealing choice
of level that mtegmes eﬁ'ecuveiy wuh kemel smmured openung wnem archnecmm 1s ouumed in
lhe case study in secuon 8. -

ST ST [TV ..u‘! -‘-- "4.-'-6.'.'-' .--J- Call R I F LT S 157 Y I T PRV L

Another operauoml drawback to high level encrypuon should be pomted out. Once the dzta is
encrypted, it is difficult to perform meaningful operations on it. Many front end systems provide such
low leve! functions as packing, charscter erasures, and transmission on end-oi-line or controi~character
detect. If the daw is encrypted when it reaches the front end, then these funclions cannot be
performed. Any channel processing must be done above the level at which encrypuon takes place,
despite the fact that performance and considerations such as the above sometimes impiy a lower level,

8. Encrypiion Protocois

Network communication protocols concern the discipline imposed on messages sent throughout
the nerwork to control virtuaily ail aspects of data traffic, both in amount and direction. Choice of
promcol has dramatic impacts on the flexibility and bandwidth provided by the network. Since
encryption facilities provnde a potentially large set of Iogu:l channels, the protocols by wh:ch t.he
operation of these channeis is manased also has sngmﬁcam impact.

Thers are sevmi unportam qumom whxch any ena-ypnon protocol must answer'
1. How is the initial dennaxduphenext/cleanext channel from sender o receiver and bnd:
established? o N
2. How are cleartext addresses passed by the sender around the encryption famlluu 10 the network
without providing a path by wh:ch cleanex: data can be inadvertently or :mennonally laked by the
same means?
3. What facilities are provnded for arror recovery md resynchromzauon of the protocol’
4. How are channeis closed?
5. How do the encryption protocois interact with the rest of the network protocols?
6. How much software is nesded to impiement the encryption protocois? Does the secunty of the
neiwork depend on d'us sofrware"

Y P

One wishes a protocol which permits channeis 10 be dynamicaily opened and closed, ailows the
traffic flow rate to be controiled (by the receiver presumably), provides reasonabie error handling, and
ail with a minimum of mechanism upen which the security of the network depends. The more
software involved, the more one must be concerned about the safety of the overall nerwork.
Performance resuiting from use of the protocol must compare favorably with the atainabie
performance of the network using other suitabie protocols without enmcryption. One would prefer a
general protocol which could aiso be added to existing networks, disturbing their exisuing wransmission
mechanisms as little as possible. Each of these issues must be settied in addition to the levei of
integration of encryption, or the method of key distribution, which is selected.

Fortunately, the encryption channel can be managed independently of the conventional
communication channet which is responsible for communication initiation and closing, flow controi,
error handling and the like. As a resuit. many protocol questions can be ignored by -the encryption
facilities, and handled by conventional means.
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In section eight we outline a complete protocol in order to illustrate the ways in which these
considerations interact and the independence which exisis. The case considersd employs distributed
key distribution and an end-to-end architecture, ail added to an existing network. '
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To confine a m, process or user means that it will be unabie to communicate at all other
than through the expiicitly controiled paths. Often improper ‘communications are possibie through
subtle, sometimes liming dependent, channels. As an example, two processes might bypass the
controiled channels by affecting each other’s data throughput. Although many such improper channe!s
are inherenuy error prone, the users may empioy error detection and correction protocols o overcome
that problem. A e T e DT et b

Unfortunately, the confinement problem in computer networks is particularly difficult to solve
because most network designs require some information to be transmitted in cleartex: farm. This
cleartext information, 2ithough limited, can be used for the passage of unauthorized information. In
particular, the {unction of routing 2 message from computer to computer toward its final destination
requires that the headers which conuain network addresses and control information be in cleartext form,
at least inside of the switching centers. ' A malicious user, cooperating with a penewator, &n send da
by the ordering of messages among two communication channeis. Even though the data of the
communications is encrypted, the headers often are transminted in cleartext form, uniess link
encryption is also used (0 encrypt the entire packet, including header. In any case, the routing task,
often handied in large networks by a set of dedicated interconnected machines which form a subnet,
reguires host addresses in the clear within the switching machines. Thus a penetrator who can capture
parts of the subnetwork can receive information. The oniy soiutions to this probiem appear t0 be
certification of the secure nature of some parts of the subnetwork and host hardware/software. Work is
in progress at the University of Texas on the application of program verification methods to this
problem [GOOD77). « - - S A I LIS TL I S VO P . . T
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Ceruain confinement problems remain even if certification as suggested is appiied. ! For
example, the protocoi implementing software in a given system usually simuitaneously manipulates
communications {or several users. Either this software must be trusted, or daia must be encrypted
before it reaches this software. Even in this latter case, certain information may be passed between the
user and the nerwork software, and thus, potentally, to an unauthorized user. As an exampie, ilfa
queus is usad to hoid information waiting to be sent from the user to the newwork, the user can recsive
information by noticing the amount drained from this queue by the network software. [n almost any
reasonabie implementation on a system with finite resources, the user will at least be able to sense the
time of data removal, if not the amount.

How well current program verification and cerification methods apply here is open o question,
since these confinement channeis are quite likely to exist even in a correct implermentation. Tha: is,
any feasible design seems to include such channeis.

Given the difficuity of confinement enforcement, it is fortunate that most applications do not
require it :
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8. Nerwork Encryption Protocol Case Studv: Privare Communication at Process-Process Level

it is useful to review an actual case study of how encryption was integraled into a reai system (o
recognize the impormnce of the varicus issues outlined aiready. The exampie here was designed and
implemented for the Arpanet, and is described in more deuwil by Popek and Kline [POPE78]; here we
only outline the solutiont in general (erms. The goal is 10 provide secure communication that does not
involve application software in the security facilicies, nor requxre qusting that software in order to be
assured of the safety of the facilities, We also msh o tmmrmze the amount of u-uswd system software,
. A LY SR -, halbidi s

The protocol provides proaa-to-procus channels, and suannu:es that it is not poss:bie for
application software running within the process to cause clesrtext (o be transmitied onto the nerwork.
Basic operauon of the protocol is suggested in Figure 3. It is assumed, in kesping with the discussion
in section 2.5, that the system software base at each nodc isa sunahiy small, secure operating system
kernel, which openm correcty.

- TRy, s ® =, PR I PR F. B

It is a.lso expecmd that the amount of sofmre mvolved in rnanagemem of the network from
the operating system's point of view is substantial, and thersfore one wishes not to trust its. correct
operation.[1] Responsibilities of that software include establishing communications channeis, supporting
retransmission when errors are detected, controlling data flow rates, muitiplexing multipie logical
channels on the {usuaily) single physicai network connection, and assisiing or making routing decisions.
We will cail the moduies wtuch provide these functioas the netwark rmmger (NM). | oo

B T A S L L) RERRLLE LA AN

Let us assume for the moment that the keys luve drudy been dmnbuted. and logml channels
established so far as the nenwvork managers are concemed. The gperating system nucieus in each case
has besn augmented with new calis: emcrypr(channel name, data) and decrypt(channe! name, data
destination), Whenever a process wishes 10 send an encrypted block of data, it issues the enerypt cail
The nucieus wkes the dawa, causes it w be encrypted, and informs the nerwork manager, who can read
the block into its workspice. Assuming that the nerwork manager knows what destination site is
intended (which it must learn as part of establishing the logical channei), thea it can place a cleartex:
header on the encrypted biock and send it out onto the network. The cleartex: header is essential, so
that switching compuzers which typicaily make up a ne:work can route :he biock apm-omau.-.ly {21 -
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When the block arrives at the desunauon host compum, me network manage.r mere ruds it in
and strips off the header. It then notifies the kernel, and teils the kerne! for which process it claims the
biock is intended. The kernel informs the process, which can issue a decrypt call that causes the data to
be dacrypted with the key previcusly arranged for that process. If this block really was intended for this
procass (i.e., encrypted with the maiching key), then the data is successfuily received Otherwise,
decrvption with the wrong key yields garbage. The encrypt and decrypt functions manage sequence
numbers in a2 manner invisible 10 the yser, as discussed in section 2.3.

Clearly this whole mechanism depends on suitable distribution of keys together with informing
the network managers in a coordinated way of the appropriate endpoints of the channel It is worth
noting at this stege that mawched keys form a well defined communication channel, and that in the
structure just outlined, it is not possible for processes to communicate to the network or the network
manager directly; only the encrypt and decrypt functions can be usad for this purpose. It is for this

latter reason that applicalion software cannot communicate in cleartext over the network, an advantage

(1] As an example, in the Arpanet softrware for the Unix operating sysiem, the network sofr.are is
comparabie in size to the operating sysiem itseif.

{2] Network encryption facilities must in general provide some way to supply the header of a riessage
in cleariext, even though the body is encrypred.




i that code is not trusted (the usual assumption in military exampies).

8.1, Initai C om:ecr:’au

—_— -
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To utahhsh the secure channeL severa! szeps are neccssar}' The local nezwork manaser must
be informed to whom the local process wishes to communicate. This would be done by some highiy
constrained means. The network manager must communicate with the foreign nerwork manager, and
establish 2 name for this channel, as weil as other suite information such.as flow controi parameters.
The network manager softwars invoived nesd not be trusied Qnce these sleps are done, encryption
keys need to be set up, mas:few:y R . . ,.,,. o

We first oumne how this step would be done employing conventional en&yption with fﬁiiy
distributed key management, and then comment on how it wonid change il public key systems were
uSCd- D st »:E’!-.‘::. PRS- I . el ' L T TR N 11 P

IR S S R

Assume tha't there is a kemnei-maintained key tabie which has emri of the t’orm:'  ppeeeen
< foreign host name, channel name, sequence number, local process name, key> . . .

There are aiso two additionai kernel calls. Open{foreign process name, local process name, channef
aame, policy-data) makes the appropriate entry in the key table (il there isn't aiready one there for the
given channei), setting the sequence number to an initial value, and sending a message 1o the fore:zn
keenel of the form <local pmwssname.channeimpoh:y-dm. key>.[1] - .= il -m =S

Ifr.here almdy usanenuy in thelocalkzyuble. ‘it should have be:ncausedby thsotherhosts ‘
kernzi; so Open checks 10 make sure that the sequence number has been initalized, and doesn’t
generate a Kkey, but sends out the same message, less the key. Close(channe! name) deletes the
indicated emry in the Iocal key table, and sends a message (0 the {oreign kernel to do the same: . '

ANy

’ The pohcy data supphed in the Open call. such as dassxﬁ:anonldeara.nc mformauon. w\ll be
sent (0 the other site invoived in the channel, so that it, oo, will have the relevam basis w dec:de
whetherornotmallowthchanneltobembhshed. o R RTTT

Once both s:du have lsued corrupondmg Open calls, the processes can comnmmuxe. The
foilowing steps illusmrate the overall sequence in more detail.

The hos: machmes mvolved are numbered 1 and 2. Process A is at host | and B is at host Z
The channei name will be x. T -
l. A informs NM@]1 (network manager at site 1), "connect using x w B@2*. This message can be
sent locally in the ciear. If confinement between the nerwork manager and locai processes is important,
other methods can be empioyed to limit the bandwidth between A and the NM.

2. NM@1 sends control messages t0 NM@2 including whatever host machine protocol messages are
required. {2]

(1] The reader will note that the kernel to kerne! message generated by the Open cail must be sent
sacuraly, and therefore must empioy a previously arranged key. The nerwork manager must also be
involved, since only it contains the software needed to manage the nerwork.

(2] The host-host protocol messages would normaily be sent encryptad using the NM-NM key in most
implementations.
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3. NM@2 receives an interrupt indicating normal message arrivai, performs an I/O call 10 retrieve it,
examines the header, determines that it is the recipient and processes the message.

4 NM®2 initiates step 2 at site 2, leading o step 3 being executed at site 1 in response. This
exchange conunus unul _NM@I and NM@Tmbhsh a logicai channel, usmg X as the:r mtemnl name

fOf “- o liniad i ot - + nﬁ PET
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6 In executing the Open the kemel@l generates or obtains a key, ‘makes an entry in its Key Table,

and sends a message over its secure channel 10 kemnel@2, whxch maku a corrspondmg emnf in s

table and mterrupts NM@2, giving it the tripie <B,Ax>.- * 7
. o A

7. NM@2 issues the corresponding Open(A, B, x, pohcy-dau') This all interrupts B, md evemually

causes the appropriate erm-y to be made m lhe kernel table at host 1. 'l'he makmg of dm entry

interrupts NM@1 and A@1. T RO RO e e

8. A and B can now use the channei by issuing successive Encrypt and Decrypt cails.

There are a number of places in the mechanisms just described where faiiure can occur. If the
network sofiware in either of the hosts fails or decides not 0 open the channel, no kernei calls are
invoilved and standard protocols operate. {If user notification is permitted, sn additional confinement
channe! is present) An Open may fail because the name x supplied was siready in use, a protection
- policy check was not successful or because the kernel wabie was full. The caller is natified. He may oy
again. In the case of failure of an Open, it may be necessary for the kemel to exeense most of the
actions of Close to avo:d race condzuons that cant result from other methods of mdaa:m: t‘mlure to the
foreign site. : ST wea G 0w o R
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The encryption mechamsm just outlined contains no efror correction faulme.s. II' Mmessages are
lost, or sequence numbers are out of order or duplicated, the kernel merely notifies the user and
network software of the error and renders the channel unusable.{!] This action is mken on ail channels,
including the host-host protocol channels as well as the kernei-kernel channeis. For every case but the
last, Closes must be issued and a new channel cruted via Opens. In r.he lasx msr.. the procedures for
bnngmz up the network must be used. Lo

VIS ) Tl the _J - - ._~.--'. ER

This simpie-minded view is accspuable in part because the error raie which the logical
encryption channel sees can be quite low. That is, the encryption channel is buiit on op of lower levei
facilities supplied by conventionai network protocols, some implemented by the NM, which can handle
transmission errors (forcing retransmission of errant biocks, for exampte) before they are visibie to the
encryption facilities. On highly error prone channeis, additional protocoi at the encryption leve! may
still be necessary. See (KENT76] for a d;scuss:on of resynchronization of the sequencmg supported by
the encryption channel. ,

(1} Recail that thess sequence numbers are added to the cleartext by the kemel Encrypt cail before
encryption. They are removed and checked after decryption by a Decrypt cail issued at the re eiving
site. before deiivery to the user, Hence, il desired, sequence numbers can be bhandled oy the
encryption unit itself, and never sesn by kernmel software. [f such a choice is mads, then the
conventionai network protocols supporied by the NM will have (0 have another ser of st quence

numbers for error controi.




From the protection viewpoint, one can consider the collection of NMs across the network is
forming a single (distributed) domain. They may exchange information freely among them. No user
process can send or receive data directly to or from an NM, except via narrow bandwidith channels
through which control information is sent 19 the NM and staws and error information s returnad.
These channels can be limited by adding parameterized calls 10 the karnel to pass the minimum amount
of data to the NMs, and having the kernel post, as much as possibie. status reports directly to the
processes involved. The channel bandwidth cannot be zero, however,

The protocols just presented above in this case study can also be modified 10 use public kay
algorithms. The kernel, upon receiving the open request, shouid retrieve the public kay of the
recipient. Presumabiy, the kerne! wouid employ a proiocol with the authority (o retrieve the pubiic
key, and then utilize the authentication mechanisms described in the protocois of section 3.

More precisely, in siep § above, when the kerne! receives the open call, it would retrieve the
public key: either by looking it up in a cache, regquesiing it from the central authority, or via other
methods such as certificates. QOnce the key is retrieved. the kernei would send a message o the other
kernel, over the securs kernel-kerne! channel, identifying the user and supplying those policy and
authentication parameters required. The other kernel, upon receipt of that message, wouid retrieve the
user's privaie key (from wherever local user privaie keys are stored) and continue the authentication
sequence.

8.2. System [nitialization Procedures

The task of bringing up the network software is composed of two important parts. First, it is
necessary 10 establish kays for the secure kernel-kernel channeis and the NM-NM channels. Next, the
NM can initialize itseif and its communications with other NMs. Finaily, the kernel can initialize its
communications with aother kernels. This latier problem is essentially one of mutual authentication, of
eacht kernet with the other member of the pair, and appropriate solutions depend upon the expected
threats against which protection is desired.

The initialization of the kernel-kernel channe! and NM-NM channel key table entries wijl
require that the kernel maintain initial keys for this purpose. The kernei can not obtain these keys
using the above mechanisms at initialization because they reguire the prior existence of the NM-NM
and kernel-kernel channels. Thus. this circularity requires the kernel to maintin at least wo key
pairs.[1] However, such keys couid be kept in read only memory of the encryption unit if desired.

The initialization of the NM-NM communications then procesds as it wouid il encryption were
not present. QOnce this NM-NM initialization is complete, the kernel-kernel connections couid be
sstablished by the NM. Al this point, the systerm would be ready for new connection estabiishment It
should be noted that, if dasired, the kernels couid then sat up new keys for the kernel-kernel and NM-
NM channels. thus only using the initialization keys for a short ume. To avoid overhead at
initiaiization time, and to limit the sizes of kernel key tables, NMs probably shouid oniy estabiish
channels with other NMs when a user wants to connect (o that particular foreign site, and perhaps close
the ™ M-NM channei after all user channeis are closed.

(1] In a centrulized kev controiier version. the only keys which would be needed would be :hose for the
channel beiween the Key controller’s NM and the host’'s NM, and the chuannel betweszn the key
conirotler’s Kernet and the host's kernel. In a distributed key management sysiem. kevs wouid be
needed for sach key munager.
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This case siudy shouid sarve 10 illustrate many of the issues present in the design of a suitabie
network encryption faciiity.

8.3. Svomnewy

The case study portrayed a basically symmetric protocol suiwzbie for use by intelligent nodes. a
fairly general case. However, in some instances, one of the pair lacks aigorithmic capacity, as iilustrated
by simple hardware lerminais or simple microprocessors. Then a strongly asymmetric protocoi is
required, where the burden fails on the more powerful of the pair.

A form of this problem might aiso occur iff encryption is not handied By the system, but rather
by the user procssses themseives. Then {or cartain operations, such as sending mail, the receiving user
process might not even be present. (Note that such an approach may not guarantes the encryption of

all network traffic.) The procasdures cutlined in the next section are oriented loward reducing the work
of one of the mambers of the communicaling pair.

9. Nerwork Mail

Recall that network mail may often be short messages, to be delivered as soon as possible 10
the recipient site and siored there, even i’ the intended receiver is not currently logged in.

Assume that a user at one site wishes (0 send a2 message 0 a user at another site, but, becauss
the second user may not be signed on at the lime, a system process (sometimes called 2 "daemon”) is
used 1o recsive the mail and deliver it to the user's “maiibox” file for his laier inspection. 1t is desirable
that the daemon procass not require access to the cleartext form of the mail, for that wouid require the
mail receiver mechanism to be trusted. This task can be accomplished by sending the mail 10 the
daernon procsss in encrypted form and having the daemon put that encrypled data directly into the
maiibox file. The user can decrypt it when he signs on to read his mail.

In either the conventional or public key case, the protocols described in section 4 can be
employed with only slight modifications. In the conventional key case, the last two messages, which
exchange an identifier o assure that the channel is current, must be dropped. since the recipient may
not be present. After the sender requests and gets a conversation key (and a copy of it encrypted with
the receiver's secret kay), he appends the encrypted mail to the encrypied conversation kay and sends
both to the receiver. The receiving mail daemon can deliver the mail and key (both still encrypied),
and the intended recipient can decrypt and read it at his leisure.

[n the case of public keys, the sender retrieves the recipient’s public key via an exchange with
the repository, encrypts ihe mail, and sends it to the receiving site. Again the maii daemon delivers the
encrvpled mail, which can be read later by the recipient since he knows his private key. Again. the
authentication part of the public key protocol must be dropped. In both of these approaches. since the
auth :nticaiion steps were not performed, the received mail may be a replay of a previous message. If
dete::ting duptlicate mail is important, the receiver must keep records of previous mail.

Both mechanisms outtined above do guarantee that only the desired recipient of a message will
be anie (o read it. However, as pointed out, they don't guaraniee (o the recipient the icantity of the
sencar. This problem is essentially that of digital signatures, and is discussed in section 10, next.

T

]

LA

AT

ﬁ




1N, Dwnal Signatures

The need for digital signatures has by now become apparent. Applications such as bank
transactions, mililary command and control orders, contract negotiation, will require relfiabie signatures.
At-first, it appeared that pubiic key methods would be superior 10 conventional ones for use in digial
message signatures. The method. assuming a suitable pubiic key aigorithm. is (or the sander 10 encode
the mail with his privare key and then send it. The receiver decodes the message with the sander’s
public key. The usual view is that this procedure does not require a central authority, except 10
adjudicate an authorship challenge. However, two points should be noted. First, a centrai authority is
needed by the recipient for aid in deciphering the first message recsived from any given author (lo
retrieve the corresponding public key. as mentioned in section 1.2). Second. the central authority must
keep all oid values of pubiic keys in a reiiabie way lo properly adjudicate conflicts over oid signatures
(consider the relevant lifetime of a signature on a real estate deed, for exampie).

Further, and more serious, the unadorned public key signature protocol just described has an
important {law. The author of signed messages can effectively disavow and repudiate his signatures at
any ume, merely by causing his secret key 1o be made public, or “compromised® (SALT78]. When
such an event occurs. either by accident or intention, all messages previously "signed” using the given
private key are invalidaied, since the only proof of validity has been destroyed. Because the private key
is now known, anyone could have created any message claimed (o0 have been sant by the given author.
None of the signatures can be relied upon.

Hence the validity of a signature on 2 message is only as safe as the ensire future protection of
the private key. Further, the ability 10 remove the protection resides in precisely the individual (the
author) who shouid not hoid that right. That is, one important purpose of a signature is to indicate
responsibility for the content of the accompanying message in a3 way that cannot be later disavowed.

The situation with respect to signatures using canventional aigorithms might initiaily appear
slightly beuer. Rabin [RABI78] proposes a method of digital signatures based on any sirong
conventional algorithm. Like pubiic key methods it 100 reguires either a cental authority, or an
explicit agreement betwesn the two parties invoived, to get matters going.[1] Similarly, an adjudicaror is
required for challenges. Rabin’s method however uses a large number of keys. with keys not being
reused from message (0 message. As a resuit, if 2 (ew keys are compromised, other signatures based
on other keys are suill safe. However, that is not a real advantage over public key methods, since gne
could readily add a layer of protocol over the public key method to change keys for each message as
Rabin does for conventional methods. One could even use a variant of Rabin’s scheme itself with
public keys. although it is easy w0 develop a simpier one.

However, all of the digital signature methods described or suggested above suffer from the
problem of repudiation of signature via key compromise. Rabin's protocol or anatogues (0 it merely
limit the damage (or, equivalently, provide selectivity!). It appears that the probiem is intrinsic to any
approach in which the validity of an author's signature depends on secret information. which can
potentially be revealed, either by the author or other interested parties. Surely improvement would be
desiruble.

(H In his paper. Rabin describes an initialization method which involves an explicit coniract between
cach pair of parties that wish 10 communicate with digitaily signed messages. One can easily instead
Add a central authorty 1o piay this rofe. using suitable authentication protocols. thus cbvialing any need
for 1wo parties 10 make specific arrangemenis priot (o exchanging signed correspondence.
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10.1 Refiable Digital Signatures

A number of proposais have besn made to augment or replace :he unadorned approaches just
outlined. One. suggested in (KLIN79] empioys a network wide distributed signature facility. Others.
based on analogues 1o notaries public in the paper world, or replicated. trusted archival faciiities,
provide a2 dependable timestamping mechanism so that authors cannot disavow eariier signed
correspondence by causing their keys (0 be reveajed. ,

10.2 Nerwork Regisiry Based Signatures - A Conventional Key Approach

The regisiry soiution is based on the obvious approach of interposing some trusted inlerpretive
layer, a secure hardware and/or software "unit". betwesn the author and his signature kevs., whaiever
their form. Then it is a simpie matter 1o organize the coilection of units in the network 1o provide
digtwal signature facilities. Consider ali the cooperaling unils logether as a distributed Network Registry
(NR). Some secure communication protocol among the components of the Registry is required, but it

-¢an be very simpie: low leve! link slyie encryption using conventional encryption wouid suffics,

Given that such facilities exist, then a simple impilementation of digital signatures which does
not require specialized protocols or encryption aigorithms is as follows:

1. The author authenticates with a local component of the Network Registry (NR), creates
4 message. and hands the message t0 the NR together with the recipient identifier and an
indication that a registered signature is desired.

2. The Nerwork Regisiry (not necessarily the local component) computes a simple
characteristic function of the message. author, recipient, and current time, encrypts the
resuit with a key known only to the Network Registry, and forwards the resuiting "signaiurs
block™ 10 the recipient. The NR only reuins the encryption key empioyed.

3. The recipient, when the message is received, can ask the NR if the message was indeed
signed by the claimed author by presenting the signature biock and message. Subsequent
chailenges are handled in the same way.

Cerwin precautions are nesded o assure safety of the keys used to encrypt the signature
blocks, inciuding the use of different keys berwesn pairs of distributed NR components, and a signature
biock computation which requires compromise of muitipie components before signature validity is
affected. For example, several NR components couid each generate fragmenis of the keys being used.
There is no need for ail NR companents even (0 be under control of 2 single centralized authority, so
long as they can ail cooperate.

10.3 Notary Public and Archive Based Solutions

Public key aigorithms can provide safe signature methods aiso. One straighiforward method is
bused on the behavior of notaries public in the paper world.[1] Brieflv. thers can be a number of
independently operating (but perhaps licansed) notary public mactunes attached to the network. When a
signed message has been produced. it can be sent to saveral of the notary public machines by the
author. after the author has signed the message himself. The notary public machine timesiamps the
messuge, signs it himseif (thereby encoding it a second time). and returns the result to the author, The
author cun then put the appropriate cleariext information around the doubly signed corresponder :2 and
send it 10 the intended receiver. He checks the notary's signature by decoding with the notary's pubtic

{1] This approach was tnitially suggesied 10 one of the authors by Davig Radail.




key. then decodes the message using the author’s public key. Several notarized copies can be sent if
desired, 10 increase safety.

The assumption underiying this method is that most of the notaries can be trusied. Since each
notary timesiamps its signature. it is not possibie for the original author 10 disavow prior signed
correspondence by "losing” his key at a given lime. One might think however, that it is still possible for
someone 10 claim that his key had been revealed without his knowledge sometime in the past. and
selective messages forged. This probiem can be guarded against by having each notary public return a
copy of each notarized message 10 the author’s permanent address. (This "paich® of course raises the
question of how notaries are kept reliably informed of permanent addresses.)

Each nowary is an independent facility, so that no coordination among them is required. Of
course, if only one notwary exists, then the approach is at best no improvement over the scheme
presented in the previous section without muitipie NR components. Danger of compromise of the
notaries’ private keys is reduced by the redundant facilities.

A related way to achieve reliable time registration of signed messages is for there to be a
number of independent archivai sites where eicher authors or recipients of signed mail may send copies
of correspondence to be timestamped and stored permanently. Of course, the entire message nesd not
be siored:. just a characterisiic function will do. Challenges are handled by interrogating the archives,
The possibility of an individual's key being compromised and used without his knowiedge can be
reated in the same way as with notaries pubiic.

10.4 Comparison of Signature Algorithms

- The improved conventional key and public key based signature algorithms share many common
characteristics. They each involve some generally (rusted mechanism shared among all those
communicating. The safety of signatures still depends on the future protection of keys as beiore, now
those for the Network Registry, notaries pubiic, or archive facilities. However, there are several cruciai
differences from previous proposais. First, the authors of messages do not retin the ability to
repudiate signatures ac will. Second. the new facilities can be structured so that failure or compromise
of several of the components is necassary before signature validity is lost. In the early proposals, a
single failure couid lead 1o compromise.

11. User Aurhentication

While digitai signatures are important, one must realize that there still muss exist a guaranteed
authentication mechanism by which an individual is authenticated 0 the sysiem. Any reasonabie
communication sysiem of course uitimately requires such a faciiity, for if one user can masquerade as
another, all signature systems will fail. What is required is some reliable way to identify a user sitting
at a terminal -- some method stronger than the password schemes used today. Perhaps an unforgeabie
mechanism based on fingerprints or other personal characteristics will emerge.

12, Conciusions

This discussion of network security has been intended to outline the issues in developing secure
compuier networks, as well as the context in which encryption algorithms will be increasirzly used. Ii
1§ surprising to note that, once the sysierm impiications are understood. public key aigorithms and
convenuonal aigorithms are largely squivalent.




If one assumes that the purpose of a secure network is mainly o provide privaie pipes, similar
10 those supplied by common carriers. then gencral principies by which secure, common carrier based.
point to point <comrmunication can be provided are reasonabiy well in hand. Of course, in any
sophisticated implementation. there will surely be considerable careful engineering 1o be done.
Howevcer, this conciusion rests on an important assumption that is not universally valid. The security,
and correctness of function. of the underlying operating sysiems must be suitably high so thal the
newwork security methods described here are not being built on an unrefiabie base, obviating their
safety. Fortunaiely, reasonably secure operating systems are well on their way, so thal this intrinsic
dependency of neiwork security on- appropriate operating systemn support shouid not seriously delay
common carrier security [MCCA79][POPE73}{FEIE?Y].

One could, however, take a rather different view of the natire of the network $ecurity probiem:
the goal might be 10 provide a high level exiended machine for the user, in which no explicit awareness
of the network is required. The underiying facility is trusted 10 secureiy move data from site 10 site as
necessary o support whatever data types and operations are relevant 1o the user. The facility operates
securely and with integrity in the face of unpianned crashes of any nodes in the network,
synchronization of operations on user meaningf{ul objects (such as Withdrawal from CheckingAccount)
is reliably maintained. using minimum trusted mechanism. Other higher level security refevant
operations beyond gigital signawures are provided. If one takes such 2 high level view of the goal of
network security, then the simpie common carrier solutions are insufficient and more work remains.
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6. Technical Discussion: Distributed Systems

Four reports are included in this section. The irst presents a discussion of the ceatral concept of
transparency in computer networks and. distributed systems. The second describes the transparent distri-
buted file system in LOCUS, the prototype distributed system igitially developed under this contract sup-
port. The last two papers concern reliability aspects of distributed systems: first replication of data and
second the reconfiguration of the system in the face of failures of many kinds.







Transparency and its Limits in Distributed Operating Systems*

- Gerald J. Popek and Bruce J. Walker

University of California at Los Angeles

Abstract

The continuing high cost of software has been increased in a number
of ways by the advent of distributed systems Building software for
many purposes in a distributed environment is in a pumber of respects
more difficuit than for similar functions on a singie machine, because
of richer error modes, incompatible interfaces, and impoverished func-
tionality.

Local area networks and the applications that are envisioned for
them afford dramatic improvement to the software view of the distri-
buted envirooment. This occurs because of i) the improved
bandwidth /delay/reliability characteristics of typical local area net-
works over previously predominant, long haul communications; ii) the
low cost of local net connections, which permit effective connection of
small machines; and iii) the expected higher ievel of integration of the
applications on the varicus machines in the local net compared to long
haul practices. )

In this paper, we discuss one of the major architectural approaches
to ease soltware development in a distributed environment; network

' transparency. Relevant concepts and implementation issues are both
discussed. Examples from existing systems are used for illustration. We
suggest that similar concepts apply to long haul and low speed networks
as well. Individual workstations connected by conventional links to a
cluster of larger machines is an obvious exampie.

1 Introduction

It is well known that the cost of software development and maintenance is increas-
ingly dominating the cost of hardware development and maintenance in computing sys-
tems today. Also, the connection of machines into various forms of distributed com-
puting systems is an accelerating trend which is widely recognized to have just begun.

! This research was supported by the Advanced Research Projects Agency under research
contract DSS-MDA-903-82-C-0189.




What is not as widely appreciated however, is that this second trend significantly exas-
cerbates the first; that is, distributed software is generaily far more difficult to
develop, debug and maintain than single machine software. There are several reasons.
First and foremost, in virtuaily all distributed systems which exist today, the way in
which a user or a program accesses remote resources, be they data| programs, or
tasks, is different from {and more complex than) local resource access. For example,
a local file is typically accessed through open, close, read or write calls, while remots
access may require execution of a flle transfer protocol accompanied by renaming of
that flle. Second, the error modes present in distributed systems are richer and often
mors [requent than those present in single machine systems. For example, partial
Jailure of a distributed computation can easily cccur in a distributed enavironment,
sinca cne of the participating machines may fail while the others continue unaware. By
centrast, in a single machine environment, both programmers and users generally
expect that a failure will stop their entire computation. Third, in long haul networks.
the bandwidth of the natwork is typically limited and the delay is considerable, espe-
cially when compared Lo analogous parameters within a machine connected to the net-
work. Comparse for exampie the 13 megabyte bus speed of a Vax-11/780 (or even the 5
megabyte Multibus) with 4800 baud international links, or even the 50 kilobit lines in
the Arpanet. Further, when networks were being deveioped, the chajlange was to find
ways by which the machines inveoived could successfully exchange information, by
whatsver means, rather than finding an appropriate interface. The hetercgeneity of
the systems being connected didn't make the job any easier.

Local nsts, by contrast, provide connections where the bandwidth and delay charac-
teristics, while still considerably inferior to those within a mainframe, are dramatically
better than the long haul case. The local net may be 3-10% of the internal bus of
machines that are interconnected by it. One expects that since local networking is
immature, further improvement is quite possible.

This bandwidth/delay improvernent of between one and two orders of magnitude,
accompanied by substantial cost reductions, permits one to serously rethink the
means by which systems are interconnected at the various software leveis. One of the
most significant resuits of such an effort is the concept of making the network of no
concern, i.e. invisible, to most users and appiications.

In the next sections, we examine the concept of such fransparency and motivate its
desirability. Then methods of realizing transparency are discussed and compared.
Limits to transparency are pointed out, and their impact evaluated. Finaily, conciu-
sions regarding the proper role of transparency in local area, iong haul, 7 nd low speed
networks are offered.




2 The Concept of Transparency

We have already pointed dut the unpleasant truth of distributed systems: software
in that environment, especially for true distributed applications, is often far harder to
design, implement, debug, and maintain than the analogous software written for a cen-
tralized system. The reasons - the errors/failures problem and issues of heterogenaity
have ajso aiready been mentioned.

Many of these problems need not be intrinsic to the application view of distributed
systems, however. It may be perfectly reasonable to open a flle in precisely the same
manner independent of whether the flle is local or remote; i.e. issue the same system
call, with the same parameters in the same order, ete. That is, the syntax and seman-
tics of services should not be affected by whether or not a given function invoives local
or remote support. If open (file-namae) is used to access local flles, it also is used to
access remote flles. That is, the network becomes “invisible”, analogous to the way
that virtual memory hides secondary store. Hiding the existence of the network, at
least so far as the nature of interfaces is concerned, can greatly ease software develop-
ment. '

This soluticn is called network lransparency, all resources are accessed in the
same manner independent of their location.

0f course, one still needs some way to control resource location for optimization
purposes, but that control should be separated from the syntax and semantics of the
system calls used to access the resources. That is, the existence of the network should
not concern the user or application programs in the way that resources are accessed.
ldeally then, one would like the graceful behavior of an integrated storage and pro-
cessing system for the entire network while still retaining the many advantages of the
distributed systam architecture. If such a goal could be achieved, its advantages
inelude the following. '

1. Easier software development. Since there is only one way to access resources, and
the details of moving data across the network are bult in, individual software packages
do not require special purpose software for this purpose. Functions are location
independent.!

2. [ncremental Change Supported. Changes made below the level of the network wide
storage systerm are not visible to application software. Therefore, changes in resource
support can be made more easily.

1 On the local network instailed at UCLA, the first version of network software made the network
appear like ancther Arpanet, in which the details of the network are visible to application
programs. The construction of & network-wide printer daemon required over 20 processes and
several thousand lines of code beyond the spocier function itself, to deal with error conditiors,
size problems, and asynchronous events. Once a network transparent system was icstalled,
virtually all of this mecharism vanished.




3. Potential for 'ncreased Reliatility. Local networks, with a tair level of redundancy

of resources (both hardware and stored data), possess considerabie petential for reli-

able, availabie operation. However, if this potential is to be realized, it must be possi-

ble to easily substitute various resources for cne another (including processors, copies

of dles and programs. etc.). A uniform interfacs which hides the bihding of those

rescurces to programs would seem to be Recessary if the higher reliability goal is to be
realized,

4. Simpler Usur Modal. By takdng care of the details of manpaging the network, the user
sees a conceapluaily simpler storage facility, composed merely of files, without machine
boundaries, replicated copies. atc. The same is true for other user visible resources.
Thersfors, when moving from a simple machine to muitisits operation. the user view is
oot naedlessly disturbed.

In the next sections, we sutline principles of network transparency and associated
design issues that arise. Subsequently, we point out the full transparency is not
achievable, or even desirabie. in practice. Nevertheless, axceptions must be made with
great care, in order not to destroy the benefits transparency is designed {and able) to
provide.

3 Dimensions to Transparency

There are a number of aspects to network transparesncy. First is the manner in
which objects and resources are named. Clearty, each cbject (such as a file) must have
2 globally unique name from the application point of view. In particular, the meaning
of a name, ie. the object with which it is associated, should not depend on the site in
the network from which it is issued. This characteristic is called name tronsparency.
‘Without it, moving or distributing software in the network can be very painful, since the
effect of the program changes with the move.

Second. is the location of the resource encoded in the name? This is often the
approach taken in early systems; the site name would be prepended to the existing fle
name to provide uniqueness. However, this choice has the unfortunate effect of making
it quite difficult to move a dle. The reason is that it is common to embed file names in
pi'ogra.ms. Moving a file implies changing its name, making previously correct software
no longer operational. The challenge, of course, is to provide location transparency in
an efficient way, without significant system overhead to find the node(s) storing the file
Sorne additicnal mechanism is necessary, since location would no longer be discernibie
from inspection of tk 2 name of the object.

I addition, automatically replicated storage is one important way that a gystem
can increase effective reliability and availability to the user. To do so transparently, it
i3 essential that the location of an object oot be reflected in the name, since then it
would be rather difficult to store a copy of the object at more than one site, and have




any copy accessed automatically when others were not available.

Semandtic consistency is a third, important issue. By this we mean that systemn ser-
vices, support libraries, commeoniy used application programs, and the like have the
same effect independent of the site on which they are executed. This groperty is covi-
ously essentia] if one is to be able to move program execution and data storage sites; 2
critical facility for the sake of reliability and availability methods. However, it is alsoc
very important from the viewpoint of managing software maintenance. If multiple ver-
sions of software are needed fo compensate for subtle differences in environments, the
maintenance problem grows significantly.

Actually, this environment consistency problem is an old cne. People commonly
complain that it is not possible to directly transport software even between two identi-
cal hardware environments, because of local changes to the operating systems,
because of differences in location or naming of libraries and other application services,
or even because of differences between the versions of software currently installed.
While this compatibility issue is serious enough among unconnected installations, it is
far worse in a distributed system, where a much more intimate mode of cooperation
arnong sites is likely to be the rule.

Unfortunately, this issue of semantic consistency conflicts with goals of local auton-
omy, because it constrains the conditions under which individual sites install new
software and customize existing facilities. Methods by which this conflict can be recon-
ciled are outlined later.

4 Transparency and System Levels

There are many levels within a distributed system at which one could choose to pro-
vide transparency. One could build a true distributed operating system. for exampie,
in which the existence of the network is largely hidden near the device driver level in
the operating system nucleus. Alternately, one could construct a layer of scftware
over the operating systems but below appiication software. That layer would be
responsdibie for dealing with distribution issues and functions. These first two
approaches probably look very similar to users. Or, one could instead provide tran-
sparency via an extended programming language; those who wrote in that language
would enjoy a network-wide virtual programming environment. Lastly, one might build
transparency into an important application subsystem, such as a database. All of these
methods have been or are being pursued. Below, we brieflv comument on various of
these approaches.



4.1 Distributed Database Supported. Transparency

Most developers of distributed database systems mean by that label that the user of
the distributed database system sses what appears Lo be a system-wide transparent
database. Queries are expresssd in the same manner as when all the data is resident
on a single machine. The database system is responsible for ksesping track of where
the data is, and processing the query, inciuding any optimization which rmay be
appropriate. A distributad data base can be built on top of multiple copiex of identicai
singie machine operating systems, or it may even be constructad on top of a set of
differing operating systems. The latter case may imply multipie implementations, of
course. In some cases one may put an additional layer cn top of existing heterogene-
ous database systems, to provide yet again another, albeit common, interfacs. Each of
these approaches have besn followed in practice. Distributed Ingres [STON 78] is fol-
lowing the Arst, R® will support the second [LIND 80a), and the third is being pursued in
current ressarch,

4.2 Programming Language Supported Tranasparsncy

As ap alternative approach to transparency. one could provide distribution mechan-
isms in a suitable programming language. Argus (LISK 81] is an exampie of such an
approach. In addition to providing primitives in the language to facilitate the construc-
ton of distributed programs that actually use the availabie parallelism, the language
compiler and runtime system are responsible for providing many of the services that
will be cutlined in this paper.

In particular, some researchers have proposed some form of a remote procadure
call as the central approach to transparency in distributed systems [NELS 81) [SPEC
82] {LISK 81]. In that view, a procedure call should have the same semantics (and syn-
tax) whether the called procedure is to be executed locally or remotely. Sormmetimes
restrictions on the remote case are imposed, such as {orbidding the sharing of global
variables among procedures that can be executed on difering sites. With thus restric-
tion, all data exchanged between the calling and called procedurs is passed as explicit
arguments. Specter shows that. with special protocols and micrecode. even shared
globais can often be supported in a local area network without serious performance
degradation. Nevertheless, providing suitable semantics for remote procedure calls 1s
a diffficult task in the face of faidures. Argus treats each call as a complete transaction.
Nelson (NELS 81] gives a series of protocols intended to correct matters wnen errors

Qccur.




4.3 The Operating System Leve—l_

In our judgment, however, if it is feasible within the constraints of existing systems,
or if such constraints do not exist, it is more attractive Lo provide transparency at the
operating system level than only via the alternatives mentioned above. [n this way, all
clients, including the database and language processor, can capitalize on the support-
ing facilities, custormizing them as appropriate. Much of the work required to provide
transparency is the same, independent of the level at which it is done. A global name
map mechanism is needed. Inter-task cormmunication across the network must be sup-
ported in a standardized way. Distributed recovery is important. Given that there is
substantial work to be done, it is highly desirable that the resuits of that work be avaii-
abie to as many clients as possible. Putting transparency only into the dbms or the
language means that users not accessing the database, or programs not written in the
extended language, do not have access to these desirable facilities. This situation is
especially regrettable when part of a given function is built using the transparent facili-
ties, but the rest cannot be, because it has been written in a different language. or
must use other than the dbms or language functions.

For these reasons, in those few cases in this paper where it is necessary to assume
a context, we will couch our discussion in operating systems terms. The only
‘significant case where this view is apparent is in the naming discussicn, where we
assume that the underiying structure is an extended directory system, rather than
some other representation of the name-to-location mapping.

S5 Optimization Control

Cne of the functions that conventional, non-transparent systems provide is the abil-
ity of applications to take explicit network related actions for the sake of optimuzation.
Placing a given flle at a particular site, or moving a resource from one site to another,
are obvious examples. In a distributed environment, one in general has the choice of
moving the data to the process or the process to the data. When location of resources
are explicitly part of the application interface, then it i1s generally clear how to take
site dependent actions. However, when a high level of transparency is provided, loca-
tion of resources is by definition not apparent to the program. Unless some means are
provided in a transparent environment to accomplish the same optimization actions.
cne could lairly expect significant performance difficulties, even in a local network.

The principle by which this optimization goal can be accomplished is straightfor-
ward. One can think of the set of functions by which the distributed system prowides
service to applications as an effect language. This language in the typical case is com-
posed of a set of systern calls; in some cases a more extensive JCL is also supplied as
part of the system interface. We argue that a separate optimization language shoul!d
be created, “"orthogeonal” to the effect language. The optimization language is seman-
tics fres, in the sense that whatever is stated in the optirmization language cannot



affect the ocutcome of a program; i.e. cannot change the result of any statement or
series of statements in the sffact language. The optimization language permits one to
determine the location of resources, request that the system move a resource, stc.
Sinces in a transparent system such actions do not affect the manner by which
resources ares accessed by applications, it is straightforward to make optimization
language free of semantic effect. In the case of a distributed operaling system, this
orthogonal language might consist of additional system calls such as:

my-loc returns node number at which call is made;

odject loc (object_namae); returns node number of location of namead abject

maks.near (object_nema, sia_nams); tries to move object.nama to a site
where access from site sife_namae will be sfficient.

With this kind of interfacs, a program such as the fragment below executes
correctly whether or not the optirmmization commands are successtully performed by
the system.

X <-my_loc
make_near (fle_foo, x);
open (flle.foo)

The same advantages accrue to operations such as inter-process communication, sys-
tem management, ate.

Now note that the total set of system cails are available to a given program, so that
It is certainiy possible to create a program which will behave differently depending on
the site of execution (i.e. mot in a transparent manner). Consider the following pro-
gram fragment.:

if object loc (fila_foo) = my_lac
then call  alse call y

We consider the above a Recessary dimension to the trapsparency concept.

This general view of orthogonal languages applies equally well to programming
language based approaches to distributed systems. The effect language is the normal
procedure language, as extended for example to provide tools for parallel execution
The optimization language represents an additional set of extensions that are non-
procedural, as declarations are, but which do not arfect the meaning of the program.




Another way of viewing this semantics-free optimization language is that if the sys-
tem were to ignore the commands, the program would still work correctly‘. Ip fact the
system might do just that if, for exampie, the application asked for a flle to be made
local, but there was not enough room on the local storage medium. Lastly, as indicated
above, if the appiication really wishes not to run unless its opt.imizalion commands
were successful, it should be straightforward to do so.

8 Naming

As we saw earlier, naming is a key component of transparency. It is desirable that
each resource (data, processing agent or device) be uniquely ideptifiled (name tran-
sparency) so that uttering a given name always references the same resource. This
form of transparency allows software to migrate both before and during it's execution.
As we shall see in this section however, name transparency can be misieading, even in
the single site situation, because name-to-resource translation is often context depen-
dent.

Location transparency is a further refinement to name transparency. To attain
location transparency one must avoid having rescurce location be part of the rescurce
name. By so doing, one is given the flexibility of transparently a) moving resources
from site to site (akin to the flexibility data independence yieids in transparently res-
tructuring database data): and b) substituting cne copy of a resource for ansther.

In this section we will investigate not only name and location transparency but aiso
the whole area of contexts, some performance considerations, the role of resource
replication and some local autonomy considerations. ‘

8.1 Single Site Giobal Naming

Before considering naming in a multisite environment. consider the single site. One
would imagine that most gingle site environments have unique resource narning faeili-
ties. Nonetheless, the action of a given command may often be context dependent,
which is to say that the identical sequence of commands may not always have the same
effect. Such mechanisms are not new. The working directory facility in most tree
structures fllesystems is perhaps the best example. Each process, by setting it's work-
ing directory, changes the effect of names uttered by programs run in the process. It
provides a way of expanding abbreviated pathnames to globally unique names.

Another form of context is the use of aliasing. A user or process may have a trans-
lation table that is used in preprocessing names. Different users, then, can access
different resources using the sarne name. The syntatic context in which a name is
uttered can aiso be significant. Typing the word "whe" in the context of a command
may cause some extensive searching to find the load module. On the other hand, the
word "who"” in the context of the command copy who to wha.oid will not invoke the
extensive searching but may only look for something called 'who' in the working



directory. -

So we see that eventhough giobal naming provides a means for uniquely identifying
resources in a single site system, there are several ways tha context in which a name is
uttsred can influence which resource is accsssed. Next we turn to the issue of con-
taxts in a distributed environment.

6.2 Naming Contexts

Much of the needed mechanism to support transparency is ¢oncerned with name
transiation. Similarly, many of the ostensible problems with transparency also con-
cern the way that a name is associated with an object. The distributed directory sys-
tem alluded to in this paper provides a system-wide decision about the association
between object names and ths cbjects themseives. A number of transparency prob-
lems can be avoided if it wers possible to associate with a process or user a different
set of decisions. We will call the preprocessing of names according to a set of per user
or procass rules the applicaticn of a naming contezt.

Use of contexts can solve a set of probiems in a network transparent distributed
systam. Consider the following probiems:

1. Two network transparent systems that wers developed independently using
the same distributed operating system are subsequently merged. Clearly one
must expect numbers of name conflicts; i.e. object x exists in both networks
and refers to differsnt fles.

2. A set of programs are imported from ancther envirenrment,; there different
naming conventions wers used so that changes are needed if the programs
are Lo be run in the target distributed system. Source code may not be avail-
able. While this problems occurs teday in singie systems, one expects it to be
more {requent in a large scale transparent system with a single fixed naming
hierarchy.

Both of these examples, as well as the temporary flle problemn mentioned below, have
the characteristic that the giobal, hierarchical name structure provided by the distm-
buted system did not meet the needs of individual programs.

Suppose by contrast it were possible to construct an efficient name map package
on a per program basis that is invoked whenever a name is issued. That package would
conovert the program issued names to appropriate global system names. The database
used by that package is the naming context within which the program is then run.
There are many degrees of generality one might achieve with a context mechanism,
from the simple working directory mentioned earlier, to [BM's JCL to Unix shelil
aliases, to the extensive closure mechanisms discussed by Saltzer [SALT 78].
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Here we are interested in those aspects of such proposals which aid in selution of
distributed system problems like thé:..-_.e mentioned above. What is needed is the ability
to replace a partial string of components of a path name with a different string of com-
ponents. For exampie, in the case of merging two networks, a process might issue the
name /bin/special.program, and the context mechanism might converlt, that name to
/networkl/bin/special.program, where /network!l is a network-wide directory which
contains special programs needed for software developed in networkl that use library
file names incompatibie with naming conventions in network2. One might imagine then
an implementation of a contsxt mechanism as a hash tabie, whers the string to be
hashed is part of 2 path name, and the entry to be found is the path name part to be
substituted. Definition of contexts should be loadable and changeable under program
controi. Presumably contexts are stored in Ales in the global directory system. A
default context can be invoked at user login time.

8.3 Local Data

Thers are numbers of situations where, for the sake of significantly improved per-
formance, or to ease operational problems, it may be desirable to make a few excep-
tions to complete transparency. In Unix, fer example, it i3 conventional for the /tmp
directory to be used for tamporary storage needed by running programs. Typically,
any user may read or write into that diractory, creating flles as necessary. Programs
have path names embedded into their code which generate and use files in /tmp. It is
rare that any flies in /tmp ars shared among disparate users. The question arises:
should /tmp be treated as just another globally known directory in the nstwork-wide
naming systam? If so, there will be the unavoidabie overheads of synchronizing access
to fles in that directory, maintaining consistency among muitipie copies if they exist,
etc. Is the /tmp cirectory itseif highly replicated? If so, these overheads can be
significant. If not, then when most sites create a temporary file, that creation wil
inveive a remote directory update. These costs will be {requently paid, and generally
for no good reason.

Alternately, one could introduce the concept of local file directorias. A local file
directory is not network transparent. A directory of that name exists on each node,
and flles created in that directory are accessible only from that node. /tmp/foc on:
site i and /tmp/foo on site j are different flles. Since this local file directory is not
replicated and not globally known, access can be faster and inexpensive. Berkeley's
COCANET effectively uses this solution One could even give each local directory two
names. One name is the common shared name:; /tmp in the above. Each such direc-
tory would also have a global, network transprrent name as well; /tmpi and /tmpj for
example, so that if necessary, temporary files could be remotely accessed in a tran-
spar=nt fashion.
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Such a compromise induces serious problems however, and should be generally
avoided. It makes process transparency nearly impossible to achieve, for exami:le. Two
programs which run successfully on the same site, exchanging data through temporary
files. will not run if separated. There are many better solutions to the f:!esire to avoid
overhead in the support of temporary files that do not inveive compromising tran-
sparency. For example, the context mechanism discussed below can be used to cause
temporary file names issued by a program to be mapped to a {globally available, net-
work transparent) directory which happens to be locally or near locally stored. and not
replicated.

The desire for site dependent naming is aiso rajsed by system initialization issues.
Once the basic system is booted on a node, a program which fnishes initialization worl
may wish to open a file which contains local configuration parameters. That initializa-
tion program wishes to be simple. If the initialization directory is a local directory,
then the identical copy of the initialization program could be run on each site with the
appropriate effect. This motivation is especially strong if an existing, single site pro-
gram is being adapted for use in the distributed environment. A better solution is to
add to the system a call that permits a program to determine what site it is running
on. for then the calling program can compose a specific (global, network transparent)
fle name from that information. Such a mechanism can be used to get the desired
effect,

7 Hetarogeneity

Despite the clear and overriding advantages to transparency, there are severa]
intringic limitations in certain environments to making the network system entirely
transparent. The problems are presented by heterogeneity of hardware and software
interfaces. Additional problems that are often mentioned. such as local autonermy,
dynamic optimization desires, or the hecessity Lo support siow links connecting sub-
nets themseives connected by local area technology, are of far less importance in our

judgement. Each of these issues is discussed below.
.

7.1 Hardware Heterogeneity

Differences in hardware among the machines connected to the network fall into
several major categories. First, the instruction sets of the machines may differ This
means that a load module for one machine cannot be executed on another, incornpati-
ble machine. A distributed System which required the user {or his program) to issue
one narne to get a function done when executing on one machine, but another name for
the same function when execution is to occur on another machine, is not transparent.
What one really wants in this case is for 2 single application visible name to be mapped
to rmultipie objects, with the choice of mapping and execution site (including shipping
of needed data) to be automaticaily done in a way that depends on external conditions.
However, this one-to-many mapping rmust be set up carefully, as there are other times
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when the individual objects need to be named individually (when a load medule is to be
replaced, for example). - _

Second, while differences in instruction set can be hidden via methods insgired by
the above considerations, incompatibilities in data representations a.relmore difficult
to handle.[RASH 81] Suppose, lor example, that program x, for which there exists a
load moduie only for machine type X, wishes to cperate on data produced by program
y, which runs only on machine type Y. Unfortunately, the macnines invoived are Vaxes
and M880QCs, and the data includes character arrays. The MEBBROO, with 18 bit words, is
byte addressable, and if the low order byte of a word has address i, then the high order
byte has address i+1. The Vax, also byte addressibie, addresses bytes within a word in
the reverse order. Since both instruction sets enforce the corresponding conventions,
attempts to index through the character array will have different effects on the two
machines. As a resuit, it is not possible in general to provide transparent access to
that data. This is one exampie of the "big ender/little ender”’ problem described by
Cohen. Differences in floating point formats are another well known example, which
may be diminished by impending standards. Incompatibilities in higher level data
structures are usuaily not an intrinsic problem, as those are generally induced by com-
piler conventions, which can be altered to conform to a common repreasentation.
Nevertheless, reaching such an agreement can be rather difficuit, and there is always
the remaining problem of compatibility with the past.

The third dimension of hardware incompatibility concerns configurations. While the
cpus may be functionally identical, one systern may have more space, either in main or
secondary store, or may have certain attached peripherals essential to execution. This
problem is generally relatively minor. The availability of virtual memory on most
machines, even microprocessor chips, relieves the main store problem, and a good dis-
tributed flle system can hide secondary store boundaries. The other problems can
largeiy be treated in a similar way to the incompatible instruction set issue, that is, by
automatically and invisibly causing the invoked program to be run on a suitable
configuration if one exists in the network.

Hence, we conclude that hardware heterogeneity, with the exception of data
representation problems, presents no significant obstacie to complete transparency.

7.2 Operating System Heterogeneity

While hardware issues can largely be handled by suitable techniques, if there are
requirements to support more than one cperating system interface in the transparent
distributed systemn, serious probiems can arise. The issue is not the heterogeneity of
the system call interface of and by itseif. After all, many systems today support more
than one such interface. Usually, one set of system calls are considered native, and
the others are supported by an emulation package which transiates the additional set
of system calls into the corresponding native ones. That approach is usually taken
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because it is architecturally simple and because most of the expected load will use the
native set. There is no particular need to faver one set over the other so far as the
internal implementation is concerned, however. In fact, one could sven Support one
system call interface on one machine, another on a different set of machines, and
automatically cause a given load moduie to be executed on the appropriate machine,
much in the same manner as done to Support heterogeneous cpu instruction sets.
(After all, system calls are merely extensions to the basic set of instructions anyway.)

7.3 Nle System Heterogeneity

Many of the significant problems in operating systems heterogeneity occur in the
fle systems, for it is there that sach system provides an environment which must be
globally visible. Thus the nature of the parameters with which one requests functions
from the Ale system is paramount. Unless the fle system modeis are closely compati-
bie, troubie resuits. Consider an item so simple as the nature of a file name. In Unix. a
file name is hierarchical, with each element of the path composed from virtually any
ascii character except '/*, which is used to Separate elements of the path name. While
VMS superficially presents a hierarchical path name to applications as well, the first
component is a device name (followed by a "') and the last component is of the form
COXX. Xcx. Any component is of limited length. As a result, while Unix programs can
generate and use any VMS flle name, the reverse is not true. If one tries to glue one
tree into the other as a subtree, many attempts to create or use files will fail. If the
two hierarchies are combined with a pew “super root”, then those problems still
remain, and in addition, any program which used to give what it theught was a com-
plete path name is now missing the initial component (although this is just one more
historical problem). Alternately, one can build a general purpose map mechanism that
takes a symbolic path name in one naming system and maps it to a pame in the other.
This approach can give a high level of transparency. but it suffers from the perfor-
mance degradation implied by the necessity to use bi-directional maps and keep them
consistent. This cost need not be great in terms of overall system performance if file
System opens are relatively rare. However, this map is one of the architectural strue-
tures which contributed to NSW's poor performance.[CARL 81] Still other approaches,
based on careful use of contexts, are possible when the target operating systems can
be altered to provide richer mechanismas.

Cne also encounters significant differences in the semantics of file system opera-
tions and the file types supported. Even if both systems support such types as sequen-
tial, muiti-indexed, etc., it is often the case that the details of the types differ. For
example, one indexed fie type might permit variable length keys but no duplicatas
while the other supports the reverse. This problem is not really as serious as it may
geern at first glance. In fact, it is not strictly a transparency issue since it occurs in
single machine systems, in the sense that a single site operating system may support a
set of file types that are not mutually compatible. In the distributed case we are
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considering, we merely have a larger set of flle types. Of course, it is unpieasant in any
environment to have two neariy the same but incompatible facilities. .

File systemn semantic incompatibility is further increased by emerging desires to
see such functions as transaction suppert and muiti-object commit supported in the
basic system for use across rmuitipie programs. rather than being limited to the data-
base, for exampie.

Intearprocess communication is another important issus. The conventiens by which
processes dynamically exchange information in a system is another area where lack of
agreement causes troubie. If the operating systems across which transparency is
desired use ipc mechanisms that cannot be reasonably mapped one to the other, then
the situation is not unlike that of muitiple similar access types in the flie system.

8 Error Nodes

It is the conventional wisdom that distributed systems present a significantly richer
set of errors to the appiication and user, and [or this reason compiete transparency is
not possibie. In general, that statement is of course true. [ndividuai nodes can fail,
talking parts of computations with them which cannot be repeated eisewhere because
of special, now lost, resources. However, in our experience, the error situation in dis-
‘tributed systems is often not nearly so complex, [or two principal reasons. First, many
of the failures in a distributed environment map well into failure modes which aiready
existed in single machine systems. It might be useful to add additional error cedes so
that the program invoived has additional information, but that is hardly a serious
change. Even with the additional information, the program'’s options may be quite lim-
ited, For example, if two programs ar= cooperating, exchanging data, and altering
their own states (i.e. their local memory) as a result of data received from the other
program, then if one of the pair is destroyed due its host system failing, the other pro-
gram in most cases will just have to abort.

Second. the additional mechanisms being added to distributed systems to address
the admittedly richer error environment are also appropriate {or, and are being added
to, single machine systems. The best example is the transaction concept. Transac-
tions provide a uniform set of tools for controlling the effect of failures in the distri-
buted environment. Nested transactions have been proposed to limit the effect of
failure within a transaction, and now exist in LOCUS [MUEL 81]. Flat transactions have
been implemented on gsingle machine systems {or sorne time.

Nevertheless, there are significant differences between errors in the distributed
environment and a centralized systern. and they can show up in somewhat subtle ways.
For exampie, some errors which are often received immediately in a single machine
environment might be received asynchronously, delayed by seme amount. in the distri-
buted systern. Suppose there is no space on a disk [or pages being written by a user
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process. In a single machine system. an attempt to write the first overflow page gen-
erally will cause the application to be immediately signalled. However, in a distributed
system, it is rather difficuit for the system to notify the user immediately, as there are
various delays and buffering in the path from user to remote disk. and !rom remote
machine back to the user. It is quite easy for the user to have writted a substantial
number of pages before receiving word that none of them can be stored.! It is unrea-
sonable to expect that the system will give explicit acknowledgement after each write,
as the round trip time implied has unpleasant performance implications.

In this example, while the error is the same, the conditions under which it is
reported differ, making the user-specific recovery options more difficult, since a sub-
stantial amount of data may have been lost. In the singie machine system the user
may have been able to keep a few buffers of data, so that in case of error that data
could be written eisewhere. This case is an example of the “partial failure” problem
mentioned earlier, but here one of the processes invoived was the system. while the
application continued unaware.

Service outages alse make it difficult to maintain completaly the illusion of tran-
sparency. If communication between sites is lost, then it becomes paintully clear what
resources are local and which are remote. There is no parfect solution to this problem:;
replication of resources heips, but if a replicated storage object is updated on both
sides of a broken link, problems may resuit upon reconnection. replication is incom-
plete, then loss of resources will still occur. The handling of partitioned operation
when replicated resources are present is a substantial topic in its own right. See
(POPE 83, FAIS 83] for an overview. lastly, programs written for a single machine
envircnment may not be able to usefully deal with the error reports in the network, nor
be abie to use the added functions like transactions.

9 Local Autonomy and Transparency

It has been well recognized that while a distributed system interconnects a number
of sites, those sites may wish to retain a considerable degree of control over the
manner in which they operate. The desire for local autonomy is real whether each site
is a persconal workstation or when the site is a large multiuser system supporting an
entire department of users.

Ope immediately wonders about the relationship between autonomy and tran-
sparency. There are multipie issues to be examined:
1. resource control

2. naming

! This is especially the case if the systern maintains global bufler pools at each site and sends
buffers across the net. or initiates writes to disk. ouly after the pools are filled. Whiie this
preblem can occur in a single machine system, the delay is worsened in the distributed
environment.
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3. semantic consistency
4. protection -
5. administration
The subject is clearly substantial. here we only briefly touch on the major issues.

8.1 Rescurce Control

In many cases the machines interconnected in a distributed system are operated
by different peocple in the case of a network of persona'l computers or by different parts
of an organization in the case of larger rnachines. Each of these different groups typi-
cally wish to retain some significant leval of control over resource use on their
system(s). For example, the personal computer user may well be quite disconcertad if,
in the middle of a cpu intensive bitmap update to his screen, some other user in the
network dispatched a large task to run on the first user's machine! Transparency
makes such an action triviai to take.

The problem i= not that transparency is bad; after ail, such an action would be pos-
sible even through an awkward interface to foreign rescurces. Rather, resocurce con-
trol tools are needed in any distributed systern that connects different administrative
domains. Resource controls are alsc attractive as a way to handle system tuning and

. load control. I! the nature of the controis that are desired is simple, then it may be
possible to slightly extend the protection system to accomplish the desired goal. For
example, storage space on the local disk could be limited by setting protection con-
trois on the directories whose flles are stored on that disk. Control over whether a
given user can consume processing resources does resquire some extension, but in any
cage, these resource controls are not sumﬁcantly different in principle from those typ-
ically found on single machine systems.

9.2 Naming

The naming problem occurs in the {ollowing way Different users of even the same
type of systemn may conflgure their directory systems in different ways: on one system
the Fortran library is found under one name, while on another system it is elsewhere.
It software from these two different systems are to be run in the context of a single,
integrated name space, a conflict arises. To solve this problem. one must either force
consistent name spaces or use contexts, as described earlier.

9.3 Semantic Consistency

This issue, me.tionerl early in this paper, is one of the ways that transparency
conflicts directly with local autoncmy, as we already noted. However, contexts once
again help, sinice the user who wishes to specily a different mapping of name to spectfic
object can do so.
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8.4 Protection -

The protection probiem has several dimensions in a distributed eavironment. First
is the question of what protection controls are actually desired. Are access control
lists needed, or will the <owner, group. pubiic> mechanism found u:l many systems
today suffice? We do not discuss this issue here, as it does not seriously impact the dis-
tributed system architecture. A second question, however, might. What should a given
system trust? That is, machine x recsives a message {rom machine y asking to have
file foo opened on behalf of user bar and a set of pages replaced by updated ones.
Should that message be believed? How much does machine x trust machine y?
Lindsay [LIND 80c] argues that, at least at the data base levei, the most that should be
believed is that the message camne from machine y. X cannot be sure that the user is
really bar because the remote softwars is not trustworthy. Here, we argue that all sys-
tems are running the same basic software, and so long as x is sure that machine vy is
running the standard system, the user authentication can be accepted, and there is no
serious problem. Simple, encryption based methods can easily be used to assure that
X can tall that the actually loaded software at y is the standard approved version.!

9.5 Administration

Large systems require administration and coordination. A distributed, transparent

- natwork is no exception Statistics must be constantly gathered to monitor system

operation, detect bottlenecks and failures, etc. Hardware and software must be main-

tained in a coordinated way. Mechanisms to accomplish these goals are needed, and

must be installed and run in each of the participating systems, whether they are
wanted or not. b

10 Integration of Separate Networks

Despite the attractions of transparency, it is well recognized that when a given sys-
tem must interface to the outside world (a distributed Unix net connected via SNA to
IBM mainframes, say), it will not be feasible to maintain transparency. Hence the more
traditional approach of explicit user and application visible protocols will remain.
Given that is the case, one coud argue that those protocols might as well be used in
the local net too. This reduces development, since the transparent mechanism wil! not
be needed. Further, since certain programs will have to operate in a distributed
manner over the heterogeneous link. having transparency on one side of that link is no
savings. Those programs might as well employ the single global network interface
throughout.

! Encrypt the system load module and a comrmunication key. Decrypt that load medule as part of
the booting procedure. Employ the communication key for a digital signature. There are a few
additional safeguarda actuaily required ta make this procedure safe.
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This argumnent is naive. Much of the transparency mechanism is going to be built
anyway by applications; to the extent possible it should be made universally available.
In addition, there will certainly be many applications which will not be required to use
the heterogeneous link. To force them to do so would be unfortunate indeed. Further.
the hypothetical network appiication mentioned earlier airsady raust ‘use the single
machine interface anyway. The transparent extension can largely present the same.

A more interesting case occurs when one has several local networks, sach tran-
sparent within itself, but whers those networks are themselves intsrconnected by siow
links on which a standard protocol such as X.25 or a lower level of SNA is run. How
should resources on the distant network look to an application on the local net? We
turn to this issue below.

10.1 Long Haul and Low Speed Networks

Geographicaily dispersed networiks predominate by far in today's distributed com-
puting environments. These systems do not provide a high degree of transparency, for
three significant reasons. First, many of these networks connect a heterogeneous set
of often vendor supplied systems. It is often not practical to modify vendor supperted
software, and even if it were, differences among the systems make the design of a tran-
sparent standard rather difficuit. The National Software Works, mentioned earlier,
represents one such attempt, that layered a standard interface on top of the system,
but below the application. It's incompleteness and poor performance were menticned
eariier. [HOLL 81]

A second important reason for the lack of transparency in existing networks con-
cerns the manner in which they were developed. These systems are generally directly
derived from early network architectures in which the most important task was to
~develop methods by which machines could communicate, rather than to take ints
account then poorly understood lessons of distributed computing. Third, long haul net-
works typically represent a scarse resource. They are characterized by either low
bandwidth or high delay, and usually by both. Therefore, it is quite appropriate in
many pecples’ view to make that resource application visible through a different inter-
face than the one through which local rescurces are seen.

The first issue, heterogeneity, undoubtedly wiil always be present; in general a high
level of transparency in that case is probably not feasible. However, when most of the
computers of interest invelve the same operating system interface, often the case in
local networks or within a given organization, the hetersgeneity issue is far less pre-
valent. The historical reason for the nature of cross system interfaces, while interest-
ing, shouid not constrain new system architectures. Therefcre, we are often left with
the nature of the underlying transmission medium as the significant issue to be con-
sidered when evaluating the possibility of providing a high level of transparency in long
haul environments.

19




There is no doubt that the media are different; the long haul environment presents
far higher delay, much lower bandwidth, and significantly greater error rates than the
local net. These differences make absolutely necessary a significant low level protocol
which is responsible for error handling (using acknowledgements. fetransmssion,
sequence numbers, etc.), flow control, resourcs management, connedtion establish-
ment, names mapping, data conversion, out of band signalling, and the like. These facil-
ities are typically implemented in a multilayered protocol, meeting one of the several
international or domestic standards.

Further, existing implementations provide an explicit interface to the network, per-
mitting substantial control over it3 use. This characteristic is highly desirable, as the
net is often a scarse resource, to be managed rather carefully.

However, it is our view that these issues do not conflict with the goal of tran-
sparency at all. First, just because a substantial set of protoeol medules are needed to
manage a compiex device (the network) is not a reason to make the interface to the
resources accessed through that device different from. and more awltward than, local
resources. Similarly one gives a simple open/close, read /write intarface to local disks
in conventional systems, rather than requiring one to write the complex channel pro-
gram which ultimately does this work.

The desire for explicit resource control is real, however. Some mechanism is
needed to accomplish that goal. We argue that the optimization language described
earlier provides a suitabie framework, at least from the individual user's point of view.
Extensions to that language, to permit a system administrator to set more global
resource management policies, undoubtedly will be needed in some environments.

The effect of this transparent approach to long haul networks yeids a picture com-
pesed of a number of local machine clusters, sach cluster internally connected by a
local area network, with the ciusters interconnected by long haul media. However this
view generates a number of internal architecture problems which rnust be solved.
They include:

a) the unsuitability of such local net based algorithms as page faulting across
the local network, as LOCUS does: '

b) the flow control problems present in networks where fast and slow links are
connected in series (long queues in front of the slow link back up into the fast
links, biocking their use as weil as associated resources such as buffers);

c} the need for considerable control over location of resources, for optirmuza-
tion reasons, beyond the often simple ones that can be tolerated in a local
area environment.

However, these issues are relatively minor compared to the improvernent which results
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from transparency.

11 Conclusmions

It is both obvious and easy to say that network transparency in distributed systems,
like virtual memory in operating systems or data independence in data‘bases, is highly

desirable.

However, the task of achieving a high degree of transparency is far more

subtle than it may have appeared at first glance. Many issues raise themselves, as we
have tried to indicate in this paper. In addition, there are some inherent limitations
which preclude full transparency in numbers of cases. Nevertheless, the benefits of
transparency are substantial, and the actual costs (beyond considerable care in
design) are relatively modest by comparison.
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A substantial amount of the LOCUS flle system design, as wel] as lmplementation, has
been devoted to appropriate forms of error and failure management. These i1ssues will
be discussed throughout this paper. Further, high performance has always been a crit-

local, access is no More expensive than on a conventional Unix system. When
resources are remote, access cost is higher, but dramatically better than traditional
layered file transfer and remote terminal protocols permit. Measured performance
results are presented in (GOLD 83].

The next sections discuss the static representation of a distributed Locys file sys-
tem. Following sections show how that structure is used tgo provide transparent
resource access.




The LOCUS Distributed File System!

Bruce J. Walker and Gerald J. Popek

University of California at Los Angeles

Abetract

LoCUS is a distributed operating system which supports transparent
access to data through a network wide flle system, permits automatic
replication of storage, supports transparent distributed process execu-
tion, supplies a number of high reliability functions such as nested tran-
sactions, and is upward compatible with Unix. Partitioned operation of
subnets and their dynamic merge is also supported.

This paper concentrates on the architecture of the distributed file
system component of 1OCUS, including the automatic replication of
storage. The dynamic behavior of the system, as well as its supporting
data structures are outlined, both for normal behavior as well as for
recovery and partitioned operation. Various architectural choices and
tradeofls are discussed.

1 ntroduction

LOCUS is a Unix compatible, distributed operating system in operational use at UCLA
on a set of Vax computers connected by a standard Ethernet. The machine
configuration in January 1983 consisted of 17 Vax-11/7505.2 The system supports a
very high degree of nafwork transparency, i.e it makes the network of machines
appear to users and programs-as a single computer; machine boundaries are com-
pletely hidden during normal operation. Both files and programs can be moved dynam-
ically with no effect on naming or correct operation Remote resources are accessed in
the same manner as local ones. Processes can be created locally and remotely in the
same manner, and process interaction is the same, independent of locatien. Many of
these functions operate transparently even across heterogeneous cpus.

! This research was supported by the Advanced Research Projects Agercy under research
contract DSS-MDA-903-82-C-0189.

! Initial work was dane on DEC PDP-11/45's using both 1 and 10 megabit ring netwarks ard on
VAX 750's using 10 megabit rings.




3 Static Picture of the Filesystem

In order to understand the LocUs file syatem, it is helpful to examine the data struc-
tures that represent a functioning system. Below we do so, first discussing the per-
manently stored structures, and then the dynamically maintained i.nforfnation in vola-
tile memory.

The user and application program view of object names in LOCUS is analogous to a
single, centralized Unix environment; virtually all objects appear with globally unique
names in a gingle, uniform, hierarchical name space. Each object is known by its path
name in a tree!, with each element of the path being a character string. There is only
one logical root for the tree in the entire network. Figure 1 gives a very small sample
of a pathname tree. Note that the dotted lines name the file 7user /walker/mailbox.

To a first approximation, the pathname tree is made up of a collection of file groups, as
in a conventional Unix environment® Each group is a wholly self contained subtree of
the naming hierarchy, including storage for all files and directories contained in the
subtree. Connections among subtrees compose a ‘super’ tree, where the nodes are file
groups.

A file group is implemented as a section of mass storage, composed primarily of a
small set of file descriptors (called inodes) which serve as a low level internal "direc-
tory”, and a large number of standard size data blocks. A file is composed of an inode
and an associated ordered collection of data blocks. These are used beth for leaf or
regular flle data, and intermediate node or directory file data. One of the directories is
treated as the root of the subtree for this file group. Figure 2 sketchs the contents of
a filegroup. So far, this portrait is no different than norma! Unix. Gluing together a
collection of file groups to construct the uniform naming tree is done via the mount

! There are a few exception to the tree structure, provided by Unix style links.

* The term file group in this paper corresponds directly to the Unix term filesystem.




Header or Superblock
(filegroup #, pack #, etc..)

File Descriptors ( Inodes )

L
2] type, status information, data page pointers, etc..
al Yi (size, owner, modification date, etc.)
41 (regular, directory, device)
5]
Data Pages
1006 Data Pages of directory type flles
1001 contain a set of <character string narme, inode #> pairs,

1002 sc as to make up the naming catalogue tree

Figure 2: File Group Structure

mechanism. However, the structure of file groups and their inter-relationships is actu-
ally more complex in LOCUS than Unix. Complexity is due partly because of the pres-
ence of mechanisms for rernote operation, but a significant amount of the additional
mechanism and data structuring is also present to support replication, so we turn to
this subject now.

3.1 Replication

Replication of storage in a distributed file system serves multiple purposes. First,
from the users’ point of view, muitiple copies of data resources provide the opportunity
for substantially increased availability.

From the system point of view, some form of replication is more than convenient; it
is absolutely essential for system data structures, both for availability and perfor-
mance. Consider a file directory. A hierarchical name space in a distributed environ-
ment implies that some directories will have file name entries in them that refer to
fles on differing machines. There is powerful motivation for storing a copy of all the
directory entries in the path, from the naming root to a given file, local to the site
where the file itself is stored. or at least "nearby”. Availability is one clear reason. If a
directory in the naming path to a file is not accessibie because of network partition or
site failure, then that file cannot be accessed, even though it may be stored locally



Second, directories in genera] experience a high level of shared read access compared
to update. This characteristic is precisely the one for which a high degree of repli-
cated storage will improve system performance.

3.1.1 Architectural Izsues '

Support for replicated storage presents a host of probiems. One needs highly
efficient but themselves replicated mapping tables to find copies of the replicated
objects, and those mapping tables must be kept consistent and up to date. Suitable
action in the face of failures, to maintain consistent copies of the replicated object as
well as the catalog mapping tables, is necessary. It is rather difficult to develop a sim-
ple solution to these problems while at the same time addressing the further problems
imposed by goals of high availability and performance.

LOCUS replication is designed to:

a. permit multiple copies at different sites, not just on different media on the same
machine, although multiple copies at a given site is possible;

b. allow a flexible degree of replication. A given flle can be stored on Just a single
site, at several sites or at many sites. with the possibility of increasing or
decreasing the number of copies after initial creation and reasonable freedom
to designate where the copies should reside. The system is responsible for keep-
ing ail copies consistent and insuring that access requests are satisfied by the
most recent copy.

¢. allow the user and application program to be as unaware as they wish of the
replication system. In other words one can either let systemn defaults control
the degree of replication and file location or one can interact and stategically
place flle copies.

d. treat all copies of a file as equal. This is not a primary site/backup strategy,
Thus as long as cne copy is available, operations needing access to the file can
continue.

€. support high performance and smooth operation in the face of failures. For
example, a running application with a given flle open should not be disturbed
when another copy of that file reappears in the network.

With these goals in mind, let us consider the static structure that allows replication.

File replication is made possible in LoCUS by having mulliple physical containers for
a logical file group. Any given logical file group may have a number of corresponding
physical containers residing at various sites around the network A given file belonging
to logical file group X may be stored at any subset of the sites where there exists a phy-
mcal containers corresponding to X. Thus the entire logical file group is not replicated
by each physical container as in & "hot shadow” type environment. Instead, to permit
substantiaily increased flexibility, any physical container is incomplete,; it stores only a
subset of the files in the subtree to which it corresponds. The situation is cutlined in

e ——



figure 3.

From the imnplementation point of view, pieces of mass storage on different sites are
named and maintained as containers for a given file group. Each container is assigned
& unique pack number and this number, along with the associated lodica.l file group
aumber, is kept in the physical container header (Unix superblock).

To simplify access and provide a basis for low level communication about files, the
various copies of a flle are assigned the same flle descriptor or inode number within the
logical file group. Thus a file’s globally unique low-level name is:

<logical file group number, flle descriptor {inode) number>

and it is this name which most of the operating system uses. Figure 3 gives an intro-
ductory sketch of replicated file groups and replicated files.

file group # 43 file group # 43
pack # 1 superblocks pack # 2
file group size = 80,000 file group size = 40,000
inode size = 1000 inode gize = 1000
2] status info and pg ptrs inode 2 | status info and pg ptrs
3| status info and pg ptrs blocks 3 | null
4 | oull 4 | status info and pg ptrs
data .
79,000 data blocks blocks ' 39,000 data blocks
Note:

- inode #2 is replicated with the same status information on both packs
- inodes #3 and #4 are not replicated

Figure 3: Containers for 2 copies of a File Group

In the example, there are two physical containers corresponding to the logical file
group. Note that.

a
b.
c.

the file group number is the same in both copies;

the pack numbers are different:

files replicated on the two packs have the same file status information in the
corresponding inode siot;

any file can be stored on either pack or on both;

page pointers are not global, but instead maintained local to each pack Refer-
ences over the network always use logical page numbers and not physical block
numbers.

the number of inodes on each physical container of the file group is the same so




, that any flle can be replicated on any physical container of the file group!;
{ & if a copy of a file is not stored on a given pack, the status information in that
: inode slot will a0 indicate. '
h the inode information stored with each copy indicates not on{y where other
i copies are stored but also contains enough history to determine 'which versions
| of a file dominate or conflict with other versions. A complete discussion of the
version vector scheme is given in [PARK 80).

The advantages of this replication architecture include:

a. globally unique low level names are implemented, so that high to low level name
transiation need happen only once in a file access. Inter-machine network
traffic uses this terse, efficient name:

b. physical containers can be different sizes;

¢. all copies of a file are equal. Therefore if any copy is accessible, normal opera-
tion proceeds. Further, from the impiementation viewpoint, only one mechan-
ism is needed, instead of one for a primary copy and another for backups, or
one for normal operation and another during partitioned mode.®

d. agiven file need not be replicated, or may have as many physical copies as there
are containers for the file group. The decision can be made on a per file basis
and the decision can change over time.

Potential disadvantages include:
8. acopy of a flle can reside only at those sites which host a pack for the file group;
b. garbage collection of inode slots and sometimes even data pages can be compli-
cated.

LOCUS treats directories as a special type of file. A general replication mechanism
was built for files, which hormally operates in the same manner, independent of the file
type. Additional treatment for handling recovery of directories is provided to automat-
ically merge copies of those directories which were independently updated while a
LOCUS system was partitioned. More information can be found in (ENGL 83].

In this section we have concentrated on the LOCUS structure within a single logical
file group. We now move on to a discussion of how the super tree is created and main-
tained.

—_—
! In the event that one wishes to have a small physical container of a large flle group (ie. just
store a few of the fles), one may not want to pay the overhead of being able to store all the
inodes. In that case ane could build an indirection mechanism that maps global inode numbers
o the smaller local space,

2 Of courve, permitting update when some of the copies are not available can lead to conflicting
updates in certain failure modes. The LocUs solution to this problem is briefly described in a
later section. A more extensive discussion appears in [POPE 83b].
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3.2 The Fle Group Mount Table

Logically mounting a file group attaches one tree (the file group being mounted) as
& subtree within an already mounted tree. Figure 4a shows a flle group with an empty
directory "user"; 1

Pigure 4b: Pathname Tree After Mounting File Group 10

figure 4b shows the result of mounting a physical container for file group number 10 on
top of /user. It is not a constraint that /user be an empty directory but if it were not,
its inferior subtree would become hidden and inaccessible after the mount operation.

The mount operation does not change any secondary storage information in either
the mounted flle group or the "mounted upen” file group Instead, the glue which
allows smooth path traversals up and down the expanded naming tree is kept as
operating system state information. In standard, single-site Unix, a table is kept indi-
cating where each flle group is mounted. Further, the inode for the directory which 1s
mounter over is kept incore at all times and marked so that requests concerning that
directory will be indirected to the initial or root directory of the mounted file group




In LocUs this basic mechanism is expanded in several ways. Each machine must
bave a consistent and complete view of where file groups are rnounted; where in the
naming hierarchy the subtree was placed, and which sites host packs for the file
groups. To maintain the expanded information, the mount table info tion was split
into two tables. The logical mount table is globally replicated and c::fains. for each
logical file group, the following information:

&. the logical flle group number and the inode number of the directory over which

the flle group is mounted!.

b. a pair of vectors indicating where (i.e. at what sites in the network) packs of this

file group are located.

c. indication of which site is currently responsible for access synchronjzation

within the file group. The role of this site will be described in section 4.2.
In addition, each site which stores a copy of the directory over which a subtree is
mounted must keep that directory's inode incore with an indication that it is mounted
over., so any access {rom any site to that directory will be caught, allowing the standard
Unix mount indirection to tunction (now via the logical mount table).

Update of the logical mount table must be done each time a mount or umount
operation is performed or whenever a site joins or leaves the network. There is a pro-
tocol implemented within the LOCUS mount and umount systemn calls which interrogates

-and informs other sites of mount information. Also, part of the topology change proto-
col reestablishes and distributes the logical mount table to all sites.

The other part of the mount information is stored in confainer tables. These tables
are not replicated. Each site has a container table which holds entries just for those
physical containers stored at its site. Local information (eg. a translation from file
group number to mass storage location) is kept in this table. Changes are made when-
ever a physical container of a file group (i.e. a pack) is mounted at that site.

Given the global mount information, unique low level file names (logical file group
number, inode number), and container tables, one can now see the basis for a system
mechanism to cause users and application programs to view the set of all files on all
machines as a single hierarchical tree. We discuss that dynamic behavior now.

4 Accessing the Filesystem

The important functions of the LOCUS distributed file system are creating and
removing objects and/or copies of objects, Supporting access and modification of those
objects, implementing atomic file update, translating path names to physical location,
and providing support for remote devices and interprocess communication Each of
these functions is examined below.

! The root or base file group is mounted on itself.

0 ————————




4.1 General Philosophy

There weres several goals directing the design of the network-wide file access
mechanism. The first was that the system cail interface should be uniform, indepen-
dent of file location. In other words, the same system call with the sarthe parameters
should be able to access a file whether the fille is stored locally or not. Achieving this
goal of transparency would allow programs to move from machine to machine and allow
data to be relocated.

Good performance was key - both local and remote. Ideally, operations working on
data stored locally should not be delayed by any interactions with other machines.
Although this objective can often be met, it is sometimes in conflict with the objective
of replicated copy consistency. The amount of message traffic was to be minimized,
not because of a desire to reduce network load, but because of the software cost of
sending and receiving messages. A general message based design was rejected
because of the beliefs that: a) the intra-node cost of sending a message could not be
made nearly as inexpensive as a corresponding procedure call, b) the local case would
dominate aystem behavior, and c) consequently the overall system performance would
be degraded in a non-trivial way if a general message based design were implemented.

Because of the assumption that the underlying network transport medium provided
reasonably high bandwidth and low delay, network-wide page fauiting was assumed
satisfactory. This assumption has worked out well in practice for several different local
networks which have hosted Locus.

The resulting flow of control structure is a very special case of remote procedure
calls. Operating system procedures are executed at a remote site as part of the ser-
vice of a local system call. Figure 5 traces, over time, the processing done at the
requesting and serving site when one executes a system call requiring foreign service.
The primary system calls dealing with the fllesystem are open, creale, read, write,
commil, close and unlink. After introducing the three logical sites involved in file
access and the flle access synchronization aspect of LOCUS, these system calls are con-
sidered in the context of the logical tasks of file reading, modifying, creating and delet-
ing.

10




KRequesting Site | Serving Sife
initial | |
system call ' timel
processing
essage setup |
| Jmessage analysis
o l:ystem call
| ontinuation

Isend return message

rocessing

call

system
completion

return message |
|
!
!

Rgure 5: Processing a System Call Requiring Foreign Service

4.2 10CUS Logical Sites for Filesystem Activities

LOCUS is designed so that every site can be a full function node. As we saw above,
however, fllesystem operations can involve more than one host. In fact there are three
logical functions in a file access and thus 3 logical sites. These are:

a. using site, (US), which issues the request to open a file and to which pages of the

file are to be supplied,

b. storage site, (SS), which is the site at which a copy of the requested file is

stored. and which has been selected to supply pages of that file to the using site,
¢. cwrrent synchronization site, (CSS), which enforces a global access synchronjza-
tion policy for the flle's file group and seilects SSs for each ocpen request. Agiven
physical site can be the CSS for any number of file groups but there is only one
CSS for any given file group in any set of communicating sites (i.e. a partition).
The CSS need not store any particular file in the file group but in order for it to
meake appropriate access decisions it must have imowledge of which sites store
the file and what the most current version of the file is.
Since there are three possible independent roles a given site can play {US, CSS, 88), it
can therefore operate in one of eight modes. LOCUS handles each combination, optimiz-
ing some for performance.

11




Since all open requests for a file g0 through the CSS tunction, it is possible to imple-
ment easily a large variety of synchronization policies.

4.3 Synchronization

As soon as one introduces data replication, synchronization is a nece‘ssity. In addi-
tion, one must resolve how to operate when all the copies are not accessible. There are
several alternatives. One could use a primary copy model, where all access must be
done to the primary copy and propagated to auxiliary or backup copies. As a variant,
secondary copies could be read independent of access to the primary. Ancther alterna-
tive is the majority consensus approach [THOM 78]. Under such a scheme a file can be
modified only if the appropriate majority of copies are accessible. Still another
approach is to update one copy without any consultation with other copies and then
propagate the new version to the other copies. If a conflicting update was done some-
where else, some kind of extraordinary action would be necessary to deal with the
problem.[LIND 79] All of these strategies have been proposed or employed, and all have
serious operational drawbacks that are discussed in [PARK 80).

In LOCUS, so long as there is a copy of the desired resource available, it can be used.
If there are muitiple copies present, the most efficient one to access is selected. Other
copies are updated in background, but the system remains responsible for supplying a
mutually consistent view to the user. Within a set of communicating sites, synchroniza-
tion facilities and update propagation mechanisms assure consistency of copies, as well
&8 guaranteeing that the latest version of a file is the only one that is visible. The syn-
chronization policy which is currently operational is a generalization of "single writer,
multiple reader”. Additional options exist partly to permit compatibility with the
observed behavior of Unix programs (which typically are run in an environment largely
bereft of synchronization control), partly to permit more general behavior in a distri-
buted environment, and partly to support nested transactions. All processes in a pro-
cess family, or within a given transaction, are treated es a single unit for synchroniza-
tion purposes.!

Since it is felt important to allow modification of a file even when all copies are not
currently accessibie, LOCUS contains a fille reconciliation mechanism as part of the
recovery system. Recovering two copies of a file involves checking the version vectors
of the two copies. If they are the same, the contents of the two copies are the same. If
they differ, either one dominates or there is a conflict. A normal propagation is started
in the case of domination. A conflict is detected when the file has been modified on two
sides of a partition (i.e. on two sites which were not communicating). Conflicting file
types like directories and user mailboxes can be reconciled autornaticaily by the sys-
tem. Other flle conflicts are marked as conflicted: the owner is informed and recovery
software must be run by the user to reconcile the conflict. More detail on this subject

! Synchronization within a nested transaction is supported, however. See [MUEL 83].
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is given in [POPE 83b].
44 Reading Files

To read a file, an application or system supplied program issues th open system
eall with a fllename parameter and flags indicating the open is for read. As in standard
Unix, pathname searching (or directory interrogation) is done within the operating sys-
tem open call.! After the last directory has been interrogated, the operating system on
the requesting site has a <logical file group number, inode number> pair for the target
file that is about to be opened. If the inode information is not already in an incore
inode structure, a structure is allocated. If the file is stored locally, the local disk
inode information is fllled in. Otherwise very little information is initially entered.

Next, the CSS is interrogated. If the local site is the CSS, only a procedure call is
needed. If not, the CSS is determined by examining the logical mount table, a message
is sent to the CSS, the CSS sets up an incore inode for itself, calls the same procedure
that would have been called if the US=CSS, packages the response, and sends it back to
the US. The CSS is involved for several reasons. One is to enforce synchronization con-
trois. Enough state information is kept incore at the CSS to support those synchroni-
zation decisions. For example, if the policy is that only a single site may have a file
open for medification at a specific time, the current modification site number is kept
- incore at the CSS. Another reason for contacting the CSS is to determine a storage
site. The CSS stores a copy of the disk inode information whether or not it actually
stores the flle. Consequently it has a list of packs which store the file. Using that infor-
mation and mount table information the CSS can select potential storage sites. The
potential sites are polled to see if they will act as storage sites.

Besides knowing the packs where the file is stored, the CSS is also responsible for
knowing the latest version number. This information is passed to potential storage
mites 30 they can check it against the version they store. If they do not yet store the
latest version. they refuse to act as a storage site.

Two obvious optimizations are done. First, in it's message to the CSS, the US
includes the version vector of the copy of the file it stores, if it stores the file. If that is
the latest version. the CSS selects the US as the SS and just responds appropriately to
the US. Another simplying case is when the CSS stores the latest version and the US
doesn't. In this case the CSS picks itself as SS (without any message overhead) and
returns this information to the US.

The response from the CSS is used to complete the incore inode information at the
US. For example, if the US is not the SS then all the disk inode information {(eg. file
size, ownership, permissions) is obtained from the CSS response. The CSS in turn had
obtained that information from the SS. The most general open protocol (all logical

! Pathname searching is described in the next section
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functions on different physical sites) is:
US->CSS OPENrequest
CSS —>SS requast for storage site
SS -=>CSS response to previous message
=>US response to first message. l

Alter the file is open, the user level process issuee read calls. All such requests are
serviced via kernel buffers, both in standard Unix and in LocUS. In the local case data is
paged from external storage devices into operating system buffers and then copied
from there into the address space of the process. Access to locally stored files is the
same in LOCUS as in Unix, including the one page readahead done for files being read
sequentially.

Requests for data from remote sites operates similarly. Instead of allocating a
buffer and queueing a request for a page from a local disk, however, the operating sys-
tem at the US allocates a buffer and queues a request to be sent over the network to
the SS. The request is gimple. It contains the <logical file group, inode number> pair,
the logical page number within the flle and a guess as to where the incore inode infor-
mation is stored at the SS.

At the S5, the request is treated, within the operating system, as follows:
& The incore inode is found using the guess provided:
- b. The logical page number is translated into a physical disk block number:
¢. A standard low level operating system routine is called to allocate a buffer and
get the appropriate page from disk (if it is not already in a buffer):
d. The buffer is renamed and queued on the network i/o queue for transmission
back to the US as a response to a read request. -
The protocol for a network read is thus:!
US —>» S8 request for page z of flle y
SS->US response to the above request
As in the case of local disk reads, readahead is useful in the case of sequential
behavior, both at the SS, as well as across the network.

One of several actions can take place when the close system call is invoked on a
remotely stored flle, depending on how many times the file is concurrently open at this
UsS.

If this is not the last close of the flle at this US, only local state information need be
updated in most cases. However, if this is the last close of the file, the SS and CSS
must be informed so they can deallocate incore inode struc:ures and so the CSS can
alter state data which might affect it's next synchromzation policy decision. The

! There are mo other messages involved;, no acknowledgements, flow control or any other
underlying mechanixm. This specialized protocol is an important caatributer to Locts
perfarmance, but it implies the need for careful higher level errar handling.
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protocol is!:
US -> S8 US close
§S5->CSS SSclose
CSS —> SS  response to above
S ->Us response to first message l

Closes of course can happen as a result of error conditions like hosts crashing or
network partitions. To properly effect closes at various logical sites, certain state
information must be kept in the incore inode. The US of course must know where the
SS is (but then it needed that knowledge just to read pages). The CSS must know all
the sites currently serving as storage sites so if a certain site crashes, the CSS can
determine if a given incore inode slot is thus no longer in use. Analogously, the SS
must keep track, for sach file, of all the USs that it is currently serving.

4.5 Pathname Searching

In the previous section we outlined the protocol for opening a file given the <logical
file group number, inode number> pair. In this section we describe how that pair is
found, given a character string name.

All pathnames presented to the operating system start from one of two places,
sither the root (/) or the current working directory of the process presenting the path-
name. In both cases an inode is incore at the US for the directory. To commence the
pathname searching, the <logical file group, inode nurnber> of the starting direc tory is
extracted from the appropriate inode and an internal open is done on it. This is the
same internal open that was described at the start of the previous section, but with one
difference. A directory opened for pathname searching is not open for normal READ
but instead for an internal unsychronized read. The distinction is that no global lock-
ing is done. If the directory is stored locally and there are no propagations pending to
come in, the local directory is searched without informing the CSS. If the directory is
not local, the protocol involving the CSS must be used but the lockdng is such that
updates to the directory can occur while interrogation is ongoing. Since no system call
does more than just enter, delete, or change an entry within a directory and since each
of these actions are atomic, directory interrogation never sees an inconsistent picture,

Having opened the initial directory, protection checks are made and the directory
is searched for the first pathname component. Searching of course will require read-
ing pages of the directory, and if the directory is not stored locally these pages are
read across the net in the same manner as other file data pages. If a match is found,
U.e inode number of that component is read from the the directory to continue the

! The ariginal protocol for close was simply:

US --> S5 US cliose of file y

885 ->» US S5 close of flle y
However, we encountered a race condition under this scheme. The US could attempt to reoper.
the flie before the CSS knew that the file was closed. Thus the responses were added.
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pathname gearch. The initial directory is closed (again internnlly).' and the next com-
ponent is opened. This strategy is continued up to the last component, which is opened
in the manner requested by the original system call.

Some special care is necessary for crossing fllesystem bounda.ries‘ as discussed
earlier, and for creating and deleting files, as discussed later.

4.8 FMie Modification

Opening an existing file for modification is much the same as opening for read. The
synchronization check at the CSS is different and the state information kept at all
three logical sites is slightly different.

The act of modifying data takes on two forms. If the modification does not include
the entire page, the old page is read from the SS using the read protocol. If the change
involves an entire page, a buffer is set up at the US without any reads. In either case,
after changes are made, the page is sent to the SS via the write protocol, which is sim-
piy":

US —->S8S Write logical page z in flle y
The action to be taken at the SS is described in the next section in the context of the
commit mechanism.

. The close protocol for modification is similar to the read case. However, at the US
all modified pages must be flushed to the SS before the close message is sent. Also, the
mechanism at the SS is again tied up with the commit mechanism, to which we now
turn.

47 nNle Cammit

The important concept of atomically committing changes has been imported trom
the database world and integrated into LocUs. All changes to a given file are handled
atomically. Such a commit mechanism is useful both for database work and in general,
and can be integrated without performance degradation. No changes to a file are per-
manent until a commit operation is performed. Commit and abort (undo any changes
back to the previous commit point} system calls are provided, and closing a file com-
mits it.

To allow file modifications to act like a transaction, it is necessary to keep both the
original and changed data available. There are two well known mechanisms to do so: a)
logging and b) shadow pages or intensions lists [LAMP 81a]. LocUS uses a shadow page
mechanism, since the advantage of logs, namely the ability to maintain strict physical
relationships among data blocks, is not valuable in a Unix style flle system. High per-
formance shadowing is also easier to implement.

! There are low leve! acknowledgements on this message to ensure that it is received. No higher
level respanse is necessary.
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The US function never deals with actual disk blocks but rather with logical pages.
Thus the entire shadow page mechanism is implemented at the SS and is transparent
to the US. At the SS, then, a new physical page is allocated if a change is made to an
existing page of a file. This is done without any extra i/o in one of two ways: if an entire
page is being changed, the new page is filled in with the new data and Written to the
storage medium; if the change is not of the entire page, the old page is read, the name
of the buffer is changed to the new page, the changed data is entered and this new page
iz written to the storage medium. Both these cases leave the old information intact. Of
course it is necessary to keep track of where the old and new pages are. The disk
inode contains the old page numbers. The incore copy of the disk inode starts with the
old pages but is updated with new page numbers as shadow pages are allocated. If a
given logical page is modified multiple times it is not necessary to allocate different
pages. After the flrst time the page is modified, it is marked as being a shadow page
and reused in place for subsequent changes.

The atomic commit operation consists merely of moving the incore inode informa-
tion to the disk inode. After that point, the flle permanently contains the new informa-
tion. To abort a set of changes rather than commit them, one merely discards the
incore information since the old inode and pages are still on disk, and free up page
frames on disk containing modified pages. Additional mechanism is also present to

. support large flles that are structured through indirect pages that contain page

pointers.

As is evident by the mechanism above, we have chosen to deal with file modification
by first committing the change to one copy of a file. Via the centralized synchroniza-
tion mechanism, changes to two different copies at the same time is blocked, and read-
ing an old copy while another copy is being modified is prevented.! As part of the com-
mit operation, the SS sends messages to all the other SS's of that file as well as the
CSS. At a minimum, these messages identify the file and contain the new version vec-
tor. Additionally, for performance reasons, the message can indicate: a) whether it was
just inode information that changed and no data {eg. ownership or permissions) or b)
which explicit logical pages were modified. At this point it is the responsibility of these
additional SS's to bring their version of the file up to date by propagating in the entire
file or just the changes. A queue of propagation requests is kept within the kernel at
each site and a kernel process services the queue.

Propagation is done by “pulling" the data rather than "pushing” it. The propagation
process which wants to page over changes to a file first opens the file at a site which
hax the latest versior. It then issues standard read messages either for all the pages
or just the modified ones. When each page arrives, the buffer that contains it is
renamed and sent out to secondary storage, thus avoiding copying data into and out of

! Simultaneous read and modification at different sites is allowed for directory files as described
sarlier.
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an application data space, as would be necessary if this propagation mechanism were
to run as an application level process. Note also that this propagation-in procedure
uses the standard commit mechanism, so if contact is lost with the site containing the
Dewer version. the local site is still left with a coherent, complete copy of‘ the file, albeit
stil] out of date.

Given this commit mechanism, one is always left with either the original file or a
ecompletely changed flle but never with a partially made change. even in the face of
local or foreign site failures. Such was not the case in the standard Unix environment.

4.8 HNie Creation and Deletion

The system and user interface for flle creation and deletion is just the standard
.Unix intertace, to retain upward compatibility and to maintain transparency. However,
due to the potential for replicated storage of a new flle, the create call needs two addij-
tional pieces of information - how many copies to store and where to store them.
Adding such information to the create call would change the system interface so
instead defaults and per process state information is used, with system calls to modify
them.

For each process, an inherited variable has been added to LOCUS to store the default
number of copies of files created by that process. A new system call has been added to
modify and interrogate this number. Currently the initial replication factor of a file is
the minimurn of the user settable number-of-copies variable and the replication factor
of the parent directory.

Initial storage sites for a file are currently determined by the following algorithm:
a. All such storage sites must be a storage site for the parent directory:
b. The local site is used first if possible:
¢. Then follow the site selection for the parent directory, except that sites which
are currently inaccessible are chosen last.
This algorithm is localized in the code and may change as experience with replicated
files grows.

As with all flle modification, the create is done at one storage site and propagated to
the other storage sites. If the storage site of the created file is not local, the protocol
for the create is very similar to the remote open protocol, the difference being that a
placeholder is sent instead of an inode number. The storage site allocates an jnode
number from a pool which is local to that physical container of the file group That is,
to facilitate inode allocation and allow operation when not all sites are accessible, the
entire inode space of a file group is partitioned so that each physical container for the
flle group has a collection of inode numbers that it can allocate. '
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File delete uses much of the same mechanism as normal file update. After the file
is open for modification, the US marks the inode and does a commit, which ships the
inode back to the SS and increments the version vector. As part of the commit
mechanism, pages are released and other sites are informed that a new version of the
file exists. As those sites discover that the new version is a detete, tlx;y also release
their pages. When all the storage sites have seen the delete, the inode can be reallo-
cated by the site which has control of that inode.

5 Other Issues

The LOCUS name service implemented by the directory system is also used to sup-
port interprocess communication and remote device access, as well as to aid in han-
dling heterogeneous machine types in a transparent manner. We turn to these issues
now,

6.1 Site and Machine Dependent Files

While globally unique user visible flle naming is very important most of the time,
there can be situations where an uttered filename wants to be interpreted specially,
based on the context under which it was issued. The machine-type context is a good
example. In a LOCUS net containing both DEC PDP-11/45s and DEC VAX 750s, a user
would want to type the same command name on either type of machine and get a simi-
lar service. However, the load modules of the programs providing that service could
not be identical and would thus have to have different globally unique names. To get
the proper load modules executed when the user types a command, then, requires
using the context of which machine the user is executing on. A discussion of tran-
sparency and the context issue is given in [POPE 83a). Here we outline a mechanism
implemented in LOCUS which allows context sensitive files to be named and accessed
transparently.

Basically the scheme consists of four parts:

a. Make the globally unique name of the object in question refer to a special kind of
directory {hereafter referred to as a hidden directory) instead of the object
itself.

b. Inside this directory put the different versions of the file. naming them based on
the context with which they are associated. For example, have the command
/btn/wha be a hidden directory with the file entries 45 and vaz that are the
respective load modules.

c. Keep a per-process inherited context for these hidden directories. If a hidden
directory is found during pathname searching (see section 4.4 for pathname
searching), it is examined for a match with the process's context rather than
the next component of the pathnames passed to the syster.

d. Give users and programs an escape mechanism to make hidden directories visi-
ble o they can be examined and specific entries manipulated.
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62 PMiesystem Support for Inter-process Communication

Interprocess communication (ipc) is often a controversial subject in a single
machine operating system, with many differing opinions. In a distributed environment,,
the requirements of error handling impose a number of additiona! req‘nrements that
belp make design decisions, potentially easing disagreements.

In LocUs, the initial ipc effort was further simplified by the desire to provide a
network-wide ipc facility which ig fully compatible with the single machine functions
that were aiready present in Unix. Therefore, in the current LOCUS system release, Unix
namad pipes and signals are supported across the network. Their sernanties in LOCUS
are identical to those seen on a single machine Unix system, even when processes are
resident on different machines in LocUs. Just providing these seemingly simple ipe
facilities was non-trivial, however.

Pipes appear in the flle system, and may be explicitly opened. They exhibit fifo
behavior, with appropriate bloclking occurring when the queue is empty or full. How-
ever, multiple readers and writers are permitted, and pipe connections are passed as a
side effect of creating a child process. If two processes are reading from a pipe, and
one reads one character, and the other then reads a character, the second read gets
the character which immediately followed the character in the pipe read by the first
pProcess. Such behavior {s natural when there is shared memory among users of the
file; they each access the pipe through a common descriptor. However, since all these
processes are potentially located on different machines, an implementation is
effectively forced to simulate some characteristics of shared mermory in order Lo
ensure correct behavior. The challenge is to do so with high performance in the normal
case. Unix application programs typically insert or remove substantial quantities of
information from a pipe in a single aystem call. The LOCUS pipe buffering strategy can
iovolve as many as three sites: the reading site, the storage site, and the writing site,
even when there is only a single pProcess at each end of the pipe. Each site has a
different view of the buffer and the current queue pointers. In the general case, data
flows from the writing site, through the storage site, to the reading site, with optimiza-
tions when these site roles are co-located.

5.3 Acceszing Remote Devices

In a distributed operating system such as LOCUS, it is desirable that devices, like
other regources, be accessible remotely in a transparent manner. In LOCUS, that is the
general approach. Device names appear in the single, global naming hierarchy. That
{s, each device has a globally unique path name, just as other named resources do.
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The implementation of transparent remote devices bas two important parts. First
is the naming and locating part. That is similar to any other type of entry in the catalog
system. Pathname search is done until the inode for the device is found. An internal
open is done, and a copy of the inode is placed in memory at the storage site (the site
where the device is located) as well as at the using site (where the request was made).

The second part of remote device operation is the support for the actual operations
that are needed. We distinguish three types of devices: buffered biock, buffered char-
acter and unbuffered. A buffered block device is one for which the system is responsi-
bie for managing reading and writing of the device in standard sized blocks, and the
actual device operation is asynchronous from the caller. Unix block devices, including
& number of drna peripherals, fit this category. Support for transparent buffered dev-
Iices is present in LOCUS in the current implementation. The necessary mechanism is
little different from that needed for file support. Remote device access is of course
rather valuabie. For example, the dump and archive software on LOCUS need not be any
different from such software for a single machine Unix system. Compare this situation
of "no additional work needed” with the dumping strategies used in less integrated net-
works. Often, it is the individual users’ responsibility because providing a system ser-
vice is too difficult.

Terminals are the best example of buffered character devices. In the case of a ter-
minal local to the program accessing it, the kernel queues both incoming and outgoeing
characters, with some processing (eg. echoing) done by the terminal driver portion of
the kernel. Remote terminals are not too much different. Data from the terminal is
queued only until a remote read message arrives. Then the data is sent to the request-
ing site and process as a response to the outstanding read. Writes from the remote
process are sent to the gite of the device for queueing to the device.

There are three major differences between handling remote buffered block and
character devices. First, of course is that the number of bytes transferred is variable
in the character case. Second, remote read requests in the character case must be
bandled specially, because it may take an arbitrary time to complete, waiting for user
input. Third, it is necessary to provide a means for programs to communicate with
remote terminal drivers to indicate the mode in which the terminal is to run. Although
code to handle remote buffered character devices is not integrated in the current sys-
tem, no major problems exist in completing the implementation.

The third class of device is unbuffered. Data is transfered directly from the
process’s data image to the device. Large data reads or writes can be done in one i/o,
80 tape drives, for example, are often treated as unbuffered devices. While it is cer-
tainly possible to construct a means of accessing remote unbuffered devices, it would
require setting up a large buffer space at the device home site and sending across the
data one block at a time. One reason for this ig that typical local area network
bardware cannot handle large messages. By having to buffer at the device site,
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bowever, one loses much of the advantage of dealing with an unbuffered device.
Instead, if at all possible, one wouid like in this case to move the process {o the data
instead of the data to the process. Consequently, LOCUS does not support remote
unbuffered device access. I

Whenever a node is lost from an operational LOCUS network, cleanup work is neces-
sary. If a CSS for a given file group was lost, another site must take over this role and
must gather from all the remaining storage sites of the file group the status of all open
files in that file group. Ia addition, all open inodes involving the lost site(s) must be
cleaned up at all remaining sites. This action is the reason why all storage sites keep
per file state information indicating which other sites have a given file open. Certain
data pages must be discarded, and those processes involved in modification of a
remote flle which is no longer available must be aborted. Processes reading a remote
fle whose storage site has been lost may continue if another storage site for that file
remains available.! There are a number of other actions which are also necessary. See
(ENGL 83] for an extensive discussion of these issues.

6.4 Node failures

8 Conclusions

The most obvious conclusion to be drawn from the LocUS work is that a high perfor-
mance, network transparent, distributed file system which contains all of the various
functions indicated throughout this paper, is feasible to design and implement, even in
a small machine environment.

Such concepts as specialized operating system to operating system protocols fas
opposed to a layered approach with network server processes), customn remote system
calls, lightweight kernel processes, and optimized synchronization protocols are all
valuable in achieving this goal.

Replication of storage is valuable, both from the user and the system's point of
view. However, much of the work is in recovery and in dealing with the various races
and failures that can exist.

Nothing is free. In order to avoid performance degradation when resources are
local, the cost has been converted into additional code and substantial care in immple-
mentation architecture. LocUs is approximately a third bigger than Unix and certainly
more complex.

! That mechanism was not operaticnal in the January 1883 version of Locus.




Starting from an operational system such as Unix has been largely beneficial, since
many functions did not have to be built. Occasionally, the goal of Unix compatibility
made the LoCUS task more difficult. The clearest exarnples involve synchronization and

links.

In summary, however, use of LOCUS (now with tens of thousands of lonnect hours)
indicates the enormous value of a highly transparent, distributed operating system.
Since flle activity often is the dominant part of o.3. load, it seems clear that the LocUS
architecture, constructed on a distributed flle system base, is rather attractive.
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Recovery of Replicated Storage in Distributed Systems*

Gernld J. Popek, Greg Thiel and Charles S. Kline
University of California at Los Angeles

ABSTRACT

LOCUS is a distributed operating system which supperts repii-
cated storage of user and system files and also permits partitioned
operation. Replicated objects may be updated in different parti-
tions. In this paper, these design decisions are discussed, and the
actions needed Lo manage the inconsistencies which can result
from such unrestricted replicated operation are described.

1. Introduction

We are concerned with the motivations underlying a desire for replicated
storage in a distributed system, the design issues which result, and an architec-
ture pilus impiementation which demonstrates the feasibility of the solutions
proposed. The context is the LOCUS system, in which file replication, network
transparency, and support for partitioned operation are provided by the under-
lying operating system.

We begin this paper with the motivations for replicated storage and the
functionality those motivations impose. Several significant problems require
solution. Chief among them are synchronization of copies during normal opera-
tion, and merging partitions after a failure. Since we will argue that indepen-
dent update of different copies of replicated data in different partitions is an
essential functionality, the merge problem is then significant, since conflicting
updates in general will have occurred. In this paper, we concentrate on the
merge problem, and outline the soluticns which have been adopted for the
LOCUS system, as well as for applications in that distributed environment.

1.1. LOCUS Recovery Philosophy

The basic approach in LOCUS is to maintain, within a single partition, strict
synchronization among copies of a file 8o that all uses of that file see the most
recent version, even if concurrent activity is taking place or different machines.
General update is permitted during partition however: upon merge, conflicts are
reliably detected. For those data types which the system understands,
automatic reconciliation is done. Otherwise, the problem is reported to a higher
level, a database manager for example, who may itself be able to reconcile the
Inconsistencies. Eventually, if necessary, the user is notified and toois are pro-
vided by which he can interactively merge the copies.

An impeortant example where replicated operation is needed, in a distri-
buted system, is the name service, the mechanism by which the user sensible
names are translated into internal system names and locations for the

* This research has been mupported by the Department of Defense under contract DSS-MDa-
S03-82-C-0188.
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associated resource. Those mapping tables must themseives be replicated, for
reasons that will be explored below. A significant part of the basic replication
mechanism in LOCUS is used by its name service, or directory system, and so we
will concentrate on that part of recovery in the remainder of our discussion.

2 Motivation for Replication

Replication of storage in a distributed file system serves rnultiple purposes.
First, from the users’ point of view, multipie copies of data resources provide
the opportunity for substantially increased availability. This improvement 1s
clearly the case for read access, aithough the situation is more complex when
update is desired, since if some of the copies are not accessible at a given
instant, potential inconsistency problems may preciude update, thereby
decreasing availability as the level of replication is increased.

The second advantage, from the user viewpoint, concerns performance. If
users of the file exist on different machines, and copies are available near those
machines, then read access can be substantially faster compared to the neces-
sity to have one of the users always make remote accesses. This difference can
be substantial; in a slow network, it is overwhelming, but in a high speed local
network it is still signficant.! .

In a general purpose distributed computing environment, such as LOCUS,
some degree of replication is essentia] in order for the user to be abie to work at
all. Certain files used to set up the user's environment must be available even
when various machines have failed or are inaccessible. The start-up files in Mul-
tics, or the various Unix shells, are obvious examples. Mail aliases and routing
information are others. Of course, these cases can generally be handled by
read-only replication, which in general imposes fewer problems.?

From the system point of view, some form of replication is more than con-
venient, it is absolutely essential for system data structures, both for availability
and performance. Consider a flle directory. A hierarchical name space in a dis-
tributed environment implies that some directories will have entries which refer
to files on different machines. There is strong motivation for storing a copy of all
the directory entries in the backward path from a file local to the site where the
file itself is stored, or at least "nearby”. Availability is one clear reason since
the entries . in general, will be required to name the file. If a directory entry in
the naming path to a flle is not accessible because of network partition or site
failure, then that flle cannot be accessed, even though it may be stored locally.
LOCUS supports replication at the granularity of the entire directory (as
opposed to the entry granularity) to address this issue.

Second, directories in general experience a high level of read access com-
pared to update. As noted earlier, this characteristic is preciselv the one for
which a high degree of replicated storage will improve system performance. In
the case of the file directory hierarchy, this improvement is critical. In fact, the
access characteristics in a hierarchical directory system are, fortuitously, even
better behaved than just indicated. Typically, the top of the hierarchy extubits
a very high level of lookup, and a correspondingly low rate of update. This pat-
tern occurs because the head of the tree is heavily used by most programs and

1 In the LOCUS symem, which iz highly optimized for remote access, the cpu overhead of ac-
ceming & remote page i3 twice local access, and the cost of a remote open is mgnificanty
more than the case when the emtire open can be done locally.

2 The problems which remain are present because few fles are strictly read-anly; it is jus:
that their update rate is jow. When an update is done, 30me way o maike sure taat al) conies
are cormistent is needed. [f the rate is low enough, manual methods may suffice.
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users as the starting point for name resolution. Changes disrupt programs with
embedded names, and so are discouraged. The pattern permits (and requires)
the root directories to be highly replicated, thus improving availability and per-
formance simuitaneusly. By contrast, as one moves down the tree toward the
leaves, the degree of shared use of a any given directory tends to diminish, since
directories are used to organize the name space into more autonomous sub-
spaces. The desired level of replication for availability purposes tends to
decrease as well. Further, the update traffic to directories near the leaves of
the naming tree tends to be greater, now increasing the motivation for lessened
directory replication to improve performance.

The performance tradeoffs between update /read rates and degree of repli-
cation are well known, and we have already discussed them. However, there are
other costs as well. For example, concurrency control becomes more expensive.
Without replication the storage site can provide concurrency control for the
object since it will know about all activity. With replication some more complex
! algorithm must be supported. In a similar way, with replication, a choice must
| be made as to which copy of a object will supply service when there is activity on
the object. This degree of {reedom is not available without replication. If objects
move, then, in the no replication case, the mapping mechanism must be more
general. With replication a move of an object is equivalent to a add followed by a
deiete of a object copy.

| The remaining performance costs are due to the possibility of failures. One
such impact is the maintenance of system objects and internal tables. When a
failure occurs, and some copies of objects becorne unavailable, cleanup must be
} : done and this may involve selecting another copy of the object, restoring a
‘ checkpoint, and continuing. A second example concerns the maintenance of
! system naming structures. These will continue to be medified in the face of par-
titions and sufficient information must be preserved to produce a consistent
structure when both copies are available.

3. Partitions

Partitions clearly are the primary source of difficulty in a replicated
environment. Some authors have proposed that the problem can be avoided by
baving high enough connectivity that failures will not result in partitions. In
practice, however, there are numerous ways that effective partitioning occurs.
In single local area networks, a single loose cable terminator can place all
machines in individual partitions of a single node. Gateways between local nets
fail Long haul connections suffer many error modes. Even when the hardware
level is functioning. there are a miriad ways that software levels cause messages
not to be communicated: buffer iockups, synchronization errors, etc. Any distri-
buted system architectural strategy which depends for its correct and con-
venient operation on the collection of these failure modes being exceedingly
infrequent is a fragile model, in our judgment.

There are also organizational reasons why effective partitioning can ocecur
One results from the differential tariffs on cornmunications lines depending un
time of day. burst usage. and other considerations. It is often cheaper not to
maintain a continual connection between nodes in a network, instead batching
updates at night, or when a large amount of traffic has been accumulated. Thus
practice has the same effect as a real partition. Another reason concerns
organizational boundaries. Different organizations are often unwilling to permit
tight integration of their respective systems. The various arline reservation
systems typically operate effectively in a partitioned manner, periodically bring-
ing one another up to date through constrained system interfaces, even though

e ]
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the user view is transparent.

Given partitioning will occur, and assurning replication of data is desired for

availability, reliability, and performance, an immediate question is whether a
data object, appearing in more than one partition, can be updated during parti-
tion. In our judgment, the answer must be yes. There are numerous reasons.
First, if it is not possible, then availability goes down, rather than up, as the
degree of replication increases. Secondly, the system itself must maintain repli-
cated data, and permit update during partitioned mode. File system directomes
are the obvious example. Solutions to that problem may well be made available
to users at large. Third, in many environments, the probability of conflicting
updates is low. Actual intimate sharing is often not the rule, as a result permit-
ting update in all partitions will lead to update in at most one partition anyway,
uniess the user involved needed to get at an alternate copy because of system
failures. In that case he can be kept aware, To fordid update in all partitions,
or all except ong, can be a severs constraint, and i most cases will have been
unnacessary.
_ Given the ability to update a replicated object during partition, one must
face the problem of mutual consistency of the copies of each data object.
Further, the merge procedure must assure that no updates are lost when
different copies are merged. Solutions proposed elsewhere, such as primary
copy [Alsberg78]. majority consensus [Thomas?8]), and weighted voting
[Menasce77] are excluded. They all impose the requirement that update can be
done in at most one partition. Fven methods such as that used in Grapevine
(Birrell82] are not suitable. While Grapevine assures that copies will eventually
reach a consistent state, updates can be lost.

It is useful to decompose the replication/merge problem into two cases. In
the first, one can assume that multiple copies of a given object may be recon-
ciled independently of any other object. That is, the updates done to the object
during partition are viewed as being unrelated and independent of updates {or
references) to other objects. B

The second case is the one that gives rise to transactions. Here it is recog-
nized that changes to sets of objects are related. Reconciliation of differing ver-
sions of an object must be coordinated with other objects and the operaticons on
those objects which occured during partition.

LOCUS takes both points of view. The basic distributed operating system
assumes, as the default, that file updates and references are unrelated to other
files. The steps which are taken to manage replication under those assumptions
are discussed in the next section. In addition, LOCUS provides a full nested
transaction facility for those cases where the user wishes to bind a set of events
together. Case specific merge strategies have been developed. The recovery and
merge implications of these transactions are discussed later.

4. Detection of Conflicting Updates to Fliies

Suppose file f was replicated at sites S; and Sz . Initially assume each
copy was identical but after some period sites S; and S, partitioned. 1f f is
modified at S, producing f, then when S, and S, merge the two copies of f will
be inconsistent. Are then in conflict? No. The copy at S, (f:) should propagate
to 5; and that will produce a consistent state. The copies of the object would be
in conflict if during the partition not only was S,'s copy medified to produce f,
but S;'s copy was modified to produce f, At merge a conflict should be
detected. As aiready pointed out the system may be able to resolve the conflict.
This is just a simple example. There could be several copies of the object and
the history of the modifications and partitions can be complex. Detecting
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consistency under the general circumstances is non-trivial, but a elegant solu-
tion is presented beiow.

First a notation is presented to represent the partition history of a particu-
lar flle.

Definition:

A Partition Graph G(f) for any flle f is a directed acyclic graph (dag) which is
labelled as foliows: The source node (and the sink node, if it exists) is labelled
with the names of all sites in the network having copies of file J. and all other
nodes are labelied with a subset of this set of names. Each node can only be
labelled with site names appearing on its ancestor nodes in the graph; con-
versely every site name on a node must appear on exactly one of its descen-
dents. In addition. a node is marked with a "+" if f is modified one or more

times within the corresponding partition, and/or a version conflict had to be
reconciled,

A partition graph for a file represents the history of partitions and modifications
of the flle {See Figure 1 for an example).

Consistency problems among copies of files are detected by maintaining a
vector with each copy of each file. Within every partition (unit of mutual con-
sistency), these vectors keep an update history for the file. As partitions merge,
these vectors for the possibly inconsistent files are compared. It turns out that
version conflicts are signalled when, and only when, the vectors are "incompati-
ble.” We formalize this as follows.

Definition

A version vector for a flle / is a set of n pairs, where n is the number of sites at
which f is stored. The i-th pair (S;: v;) gives the index of the latest version of !
made at site S;. In other werds, the i-th vector entry counts the number v, of
updates to f meade at site S;. We will use ietters AB.C.... to designate site
names, and vectors will be written as {A:9, B:7, C:22, D:3).

Definition

A set of version vectors are compatible when one vector is at least as large as
any other vector in every site component for which they each have entries. A
set of vectors conflict when they are not compatible.

For exampie, the version vector {A:1, B:2, C:4. D:3] dominates {A:0, B:2, C:2,
D:3{ so the two are compatible; and {A:1, B:2, C:4, D:3} and {A:1, B:2, C.3. D:4l
conflict, but {A:1, B:2, C:4, D:3{, {A:1, B:2, C:3 D:44, and {A:1, B:2, C:4, D:4] do not
eonflict, since the third vector dominates the other two. In Figure 2 version vec-
tors are given for f in every partition of Figure 1. The vector {A:2, B:0, C.:, D:0{
associated with the node labelled BCD, indicates that f was modified twice at
site A, once at site C, and nowhere eise. Note in particular that during the }A.B}
partition, the flle is modified twice at site A. The final merge results in a
conflict.

We adopt the {ollowing usage of version vectors:

[1] Each time an update to f originates at site S,, we increment the S;-th
cornponent of f's version vector by one. The vector is committed with the
updated file.
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[2] File deletion and renaming are treated as file updates. Deletion results
in a version of the file of length zero, for example; when all versions of a file
are of length zerc, information on the file may be removed from the system.

[3] When version conflicts are reconciled within a partition. the S;-th entry
of the version vector for the reconciied file is set to be the maximum of the
S;-th entries of all of its predecessors, and in addition the site initiating the
reconciliation increments its entry. This ensures future compatibility with
any old versions of the file still remaining on the network.

[4] When copies of a file are subsequently stored at new sites, the version
vector is augmented to include the new site information. The definition of
compatibility above still applies in this case.

Point [4] states that the vectors are not required to be of fixed length, but
may grow as long as the relevant site information is maintained. If a copy of f
is added at a site E during some partition, the vector in the partition where the
copy was obtained is simply augmented to reflect the existence of the E copy.
Thereafter, sites merging with this partition will be required to augment their
vectors accordingly. Also, note that the version vectors should be of variable
length, so running out of space will not be a problem.

Version vectors serve basically to encode the partial order defined by the
partition graph: If one node in the graph "precedes” another, i.e., there is a path
from the graph source through the former to the latter, then the version vectors
of the two nodes will not conflict.

The version vector of each flle copy can therefore be used to detect con-
sistency problems among the copies of an unrelated file in the Iollowing way.
When a partition merge occurs all the vectors are compared. If two vectors are
equal then no action need be taken. !f one vector is pairwise greater than or
equal to the other then the copy with the larger {dorminate) vector should pro-
pagate to the smaller (dominated) copy. If neither of the above is true then the
copies are in ¢onflict and the system needs to notify the next higher level to
resolve the conflict.

For some types of system supported single file structures the system can
resolve conflicts mechanijcally. Directories and mailboxes have relatively simple
semantics (add and deiete are the major operations) and can be done in this
manner. These cases are critical to LOCUS, and will be discussed below.

5. File System Merge

A distributed file system is an important and basic case of replicated
storage. The LOCUS file systern is a network wide, tree structured directory sys-
tem, with leaves being data files whose internal structure is unknown to the
LOCUS systern nucleus. All filles, including directories, have & type associated
with themn. The type information is used to by recovery software to take
appropriate action. Current types are:

directories

mailboxes (several kinds)
database files

untyped data filles

The LOCUS recovery and merge philosophy is hierarchically organized. The
basic system is responsible for detecting all conflicts. For those data types that
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it manages, including internal systemn data as well as flle system directories,
autornatic merge is done by the system. If the system is not responsibie for a
given fiie type, it refiects the problem up to a higher level; to a recovery/merge
manager if one exists for the given file type. If there is none, the system notifies
the owner(s) of the file that a conflict exists, and permits interactive reconcilia-
tion of the differences. :

The current LOCUS typing mechanism is very simple and restricted. Data
files and associated load modules are marked with one of a set of types. If a pro-
gram is run that attempts to modify a typed flle, and that program is not
marked with the same type, then either the attempt fails. or the type of the
data file is changed to untyped. The only exceptions are certain system utilities
like the copy program, which are trusted not to aiter the type structure of the
data flle. Substantial extensions of this mechanism are under way of course.
However, this rudimentary facility is enough to permit recovery/merge software
to be type specific, and to be assured that the structure of the data objects has
been preserved.

8. Transaction Recovery and Merge

We now consider the case where updates and references to objects in the
file system were made within a transaction. The generally desired serializable
behavier of transactions, even in the face of failures, is well known. Replication
raises additional issues, given that goal. The problem is easy to illustrate. Con-
sider partitions P, and P, and replicated data items 7, and /;, each available in
both partitions. Transactions T, and T are run in partitions P, and P, respec-
tively. T, reads /, and writes /; as a function of /,. T; reads /; and writes /, as
a function of /. Then the partitions merge Certainly one wishes the resulting
value of all data items be the same as it would have been had the transactions
been run in a non-partitioned environment. It is not difficult to demonstrate
that, in the general case, the only solution is to undo one or both transactions
before merge, and then rerun them. Worse, undoing one transaction may
require another transaction also be undone. Suppose in the example above,
transaction Ts had run in partition P, atter T, had completed. Ty read /, and
wrote /4 as a tunction of /,. Then undoing 7, in general requires undoing 7y. The
ocbvious domine effect ¢ould cause all work which occurred during partition to be-
undeone and then redone; the total computational cost considerably exceeds
what would have occurred if operation during partition had merely been halted.
Little user inconvenience was avoided by permitting transaction execution dur-
ing the partition, since no results obtained during partition could be trusted. In
fact, even the drastic solution of substantial undo-redo rnay not be acceptable if
some of the transactions have generated irreversible external actions.

Surprisingly however, it is possible, in many cases, to permit operation dur-
ing partitioned mode and allow the transactions to commit. Upon partition
merge, it is feasible to follow merge procedures which are inexpensive, rapid,
and that yield a serializabie result, without altering any external results.

To aid the reader's intuition, consider an on line banking system. Sco long
as user's accounts do not reach an unacceptably negative balance, it is easy to
permit credits and withdrawals to his balance in different partitions. All that is
necessary to merge satisfactorily is to have kept the value of the balance at the
time that partitioned operation began. Then the merged value of the balance is
that initial balance, altered by the two deltas.

This happy state of affairs occurs cnly if the semanties of the operations
which were done during partitioned mode meet a number of axioms which
guarantee that merge can be done, in some cases assumung also that certain
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additional information is kept. In the preceding example, the ahdditional his-
tory information was merely the initial account balance, and merge was trivial
because the operations during partitioned operation were commutative and
compressible.?

In fact, it is possible to define different classes of semantics, and for each
class define the additional record keeping that is required and give the
automatic merge algorithm. Faissol [FaissolBi] develops half a dozen such
classes, together with the necessary record keeping and merge procedures. For
each case, serializability of the result is proven. He further shows that many of
the common data base cperations fit into the simplest of the classes, with the
most efficient of merge algorithms and the most limited of record keeping
requirements.

7. Reconciliation of a Distributed, Hierarchical Directory Structure

In this section, we consider how to merge two copies of a directory which
has been independently updated in different partitions. Logically, the directory
structure is a tree* but any directory can be replicated. A directory can be
viewed as a set of records, each one containing the character string comprising
one element in the path name of a file. Associated with that string is an index
that points at a descriptor for a file or directory. In that descriptor is a collec-
tion of information about the file. LOCUS generally treats that descriptor as
part of the file from the recovery point of view. The significance of this view will
becomne apparent as the reconciliation procedure is outlined.

To deveiop a merge procedure for any data type, including directories, it is
necessary to evaluate the operations which can be applied to that data type.
For directories, there are two primitives:

insert (character string path element) and

remove (character string path element).

These operations have rather simple semantics, so that in most cases,
automatic merge is easily done. The basic merge aigorithm for a given direc-
tory, partitioned copies J; and Dp and resulting directory L., is as follows.

Let V¥ be the version vector for object i, and let a directory entry in D, be
denoted D,/. Then:

It Vvp, = VVp, then exit;

It VWp, > Vip, then O, <- A; exit

It WD; > WDI then L, <- B: exit

L, is initially empty

For each Dy in D, )
it D,/ not deleted, then D, <- B, U {D,’}

For each D in D, _
it Dz’ not deleted, then D, <- D, U { D7}

This basic approach must be augmented, however, to deal with name conflicts.
If file name F was inserted into D, in one partition, and 7 was also inserted into
Dy in the other partition, special action is required. In LOCUS, the two Fs are
considered as different flles, and their names are slightly altered to be

3 By compresxible we mean that the effect of a series of operations can be replaced by a zin-
gle one.
4 With the exceptian of links. See section 7.2.
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distinguished before the directory merge algorithm is executed. The owners of
the two files are notifled by electronic mail that this action has been taken.

) ! In LOCUS, record of deletion is kept in the flle descriptor pointed at by a
' directory entry, instead of in a directory entry.

Further augmentation to the directory merge algorithm must be done
because of links, but it is best to postpone that subject until file descriptor
merge s described.

7.1. Merge of File Descriptors

; LOCUS file descriptors, a generalization of Unix inodes, contain a number of
| items which also must be merged. These include link count, file size, last
modification time, last discriptor modification, protection mask, owner
identification, group identification, file type. version vector and block pointers.
‘ Most of these fields present no problem: they are treated as part of the file.
That is, whenever such a field is changed, the flle's version vector is incre-
mented, and the intent is that the new version of the file be propagated to all
storage sites. This is a reasonabie strategy when the propagation algorithm is
clever enough to only propagate changes to a file descriptor, rather than the
entire file. The LOCUS replicated update protocol operates in that fashion.®

There are two information iterms in the descriptor which require special
attention: the delete flag and the link count. There are two cases of interest
when there is only cne directory entry in the hierarchy pointing at this descrip-
tor® and when theres has been more than one. In the first case, if a delete is
done. the link count becomes zero, the delete bit is set, the directory entry is
removed, and the file's pages are released. The inode is nof reused until all sites
which store the flle group (see [Walker83]) containing this flle have been notified
that the flle has been deleted. This step is necessary to assure that an old direc-
tory entry doesn’'t get used to access a new file which bas adopted that file
descriptor. This problem can be soived in another way, by a change to the
directory. Use unique ids, and store them in the directory and descriptor: Most
files in LOCUS (and Unix) never have a link count greater than one, and so can
be handled in the simple manner just described. However, when the link count
is greater than one. significant problems result. and are discussed in the section
on links, to which we now turn.

7.2. Links

The naming hierarchy in LOCUS is basically a tree. However, there are
several exceptions. Each directory has an entry pointing to itsell and an entry
pointing to its immediate parent. These cases are handled specially by LOCUS,
and cause no particular problems. The remaining exception is significant, how-
ever. Any leaf node {i.e. not a directory) in the naming hierarchy can have multi-
ple path narnes.

The problem which arises concerns deletion. The expected behavior is that
when the last directory entry pointing at the file is deleted, only then is the data
to be actually deleted. The obvious implementation of such a policy in a singie
machine is to keep a link-count with the data; when it becomes zero, remove the
file. Unfortunately, it is difficult to keep an accurate link count in the face of

& Doing #o in the face of record keeping for commit and the fact that muitiple updates may
occur before all remote copies have been updated implies that conmiderable care in this task
is needed.

8 Not counting the pointers in the directory which point to iteelf and ita parent. They are
bandied specially.

RN ]
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network partitions. The problem is that, given replication, the file and various
directories may exist in more than one partition. Within each partition, the link
count can be independently varied by the addition or deletion of directory
entries ("links") pointing at this file. Without keeping a complete history of link
changes during partitioned mode, it is very difficult to obtain the correct value
at merge time.

There are several straightforward solutions. One of the more radieal is to
abandon the link count as the means of deciding when to free up flle space,
using garbage collection instead. Garbage collection has a number of
unpleasant effects in a high performance environment, and if the data strue-
tures are distributed and not concurrently available, it cannot be done. Alter-
nately. one could restrict the conditions under which links and unlinks can be
done, so that record keeping would be easier. One could even abandon this link
facility, perhaps replacing it with symbolie links as in Multics [Organick72). This
step would not maintain cormpatibility with Unix, of course. Unfortunately, none
of these obvious methods is tully satisfactory. Garbage collection is totally
unworkable, since some of the pointers which must be checked may not even be
available in the current partition, and space may be needed before merge.
Compatibilty with Unix links is important, since they are heavily used for a small
number of flles, and so restrictions on use, or the change in semantics implied
by symbolic links, represent significant change.

In LOCUS, substantial additional record keeping is being implemented to
permit a general solution. Essentially, a history of link activity during parti-
tioned operation is being provided so that deletion and link merge can automati-
cally be done.

In Section 7 a simple algorithm was presented for merging directories when
each directory entry is associated with exactly one file. When links are intro-
duced so that multiple entries exist for each flle then the algorithm becomes
more complex. The major probiem is the lack of a delete bit in the directory
entry. In UNIX a deleted entry is indicated by a zero value for the descriptor
number. But in order to do the merge it is essential to remember the descrip-
tor nurnber since it is the only way to detect name conflicts. Therefore, in order
for merge to operate properly deleted entries must maintain the descriptor
number and a deiete indication. It is also important for the unique part of the
entry name to be retained. This is due to the existence of muitiple links to the
same descriptor in the same directory.

The alternation to the merge algorithm can be decomposed into an exhaus-
tive set of cases and a number of simple observations. The cases and observa-
Uons are given below, assurning D, and [, are the partitioned copies of a direc-
tory.

The first observation is that the resclution of an entry F is independent of
all entries with entry names not equal to #'s.

Now consider all entries from D, and D, with the same entry name, in turn.
Separate them into groups of equal descriptor numbers. If the resolution of
more than one group results in an entry being saved then a name conflict has
occurred (For example, this can occur by creating two files with the same name
In distinct partitions). If only one group produces an entry for the result direc-
tory then it is appended. If no groups produce an entry then no entry is kept.

All entries within a group have equal entry names and descriptor values and
therefore only the delete bit couid vary among the entries. If there is only one
entry in the group then that result is the entry if the delete bit is off, otherwise
nothing. If there are twc entries’ in the group then there are four possible

7 A umlink-link sequence of an existing entry results in the unsetting of the delete bit in the
original entry. Thus there can be at most two entries with the name name and descripior
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combination of their delete bits (off-off, off-on, on-off and on-on). Only the first
resuits in a saved entry, all others give no saved entry.

; The outline presented above indicates how directory merge is performed in
the face of links. The next section outlines how reconciliation of mailboxes is
performeq.

8 Reconciliation of Hailboxes

Automatic reconciliation of user mailboxes is important in the LOCUS repli-
cation system, since notification of name conflicts in flles is done by sending the
user electronic mail. It is desirable that, after merge, the user’'s mailbox is in
suitable condition for general use.

Fortunately, mailboxes are even easier to merge than directories. The rea-
son is that the operations which can be done during partitioned operaticn are
the same: insert and delete, but it is easy to arrange for no narne conflicts, and
there are no link probiems. Further, since mailboxes are not a systemn data
structure, and generally are seen only by the small number of mail programs,
support for deletion information can be easily installed.

Thus, for each different mail storage tormat® there is a mail merge program
that is invoked after the basic file systemm has been made consistent again.
These programs deal with conflicted files detected by the version vector algo-
rithm which the typing system indicates are mail flles.

9. Conflicts Among Untyped Data Objects

When the system has no mechanisms to deal with conflicts, it reports the
matter to the user. In LOCUS, mail is sent to the owner(s) of a given file that is
in conflict, deseribing the problem. ]t may merely be that certain descriptive
information has been changed. Alternately. the file content may be in conflict.
In any case, flles with unresclved conflicts are marked so norral attempts to
access them fail, although that control may be overridden. A trivial tool is pro-
vided by which the user may rename each version of the conflicted file and make
each one a normal file again. Then the standard set of application programs can
be used to compare and merge the flles.

10. Other Name Spaces

The operating system is not the only environment which must provide a dis-
tributed name space with replicated objects. The name space of a data base
management system is in many respects quite similar. If the underlying system
is a distributed operating system (DOS) providing a giobal and transparent name
space and the replication and recovery support described above, then substan-
tial advantage may be obtained by an appropriate mapping of the distributed
data base management system's (DDBMS) name space ontc the DOS's name
space. This section indicates how that mapping can be done.

First, the nature of the DDBMS name space is briefly outlined. It should be
giobal and transparent [PorekB3] in order to provide flexibility and ease of use.
Two considerations suggest it should be hierarchical in nature. First, in a large
distributed systermn name collisions at the data base level could be frequent (for
example, many employee data bases). A hierarchical name space would avoid

walue at a partition merge.

8 There are two storage Jormats in LOCUS; one in which multiple messages are stored in a
singie flle, the default, and another where cach message is a different flle, and messages are
grouped by parent directary. This second storage discipline is used by the mail program mh

| NSRS S



-12-

this problem. Second, if the DDBMS supports partitioned relations®, a hierarchi-
cal relationship among them is natural. These considerations suggest the
DDBMS should provide a global, transparent and hierarchical name space. The
next section discusses how to map that name space onto similar name space of
a distributed operating system.

10.1. DDBMS To DOS Name Mapping

If the DDBMS's name space is directly mapped to the DOS's name space
then DOS's name mechanisms can provide most of the name support. For exam-
ple, the directory recovery mechanism would perform the merge and conflict
detection of the DDBEMS's name catalogue required after network reconnection.
In this way the DDBMS does not rebuild much of the functions of the DOS. Also,
with one commen mechanism improvemetns are shared by both users. Third,
performance enhancements of the DOS name transiation mechanisms will have
direct impact on the DDBMS.

The alternative is for the DDBMS to build its own name space within a few
iles of the DOS. If the DDBMS name space is implemented by structure within a
few DOS objects, then the DDBMS must duplicate many of the functions provided
by the DOS. It must deal with the replication of the appropriate entries, parti-
tion merges of the catalogues, etc. On the cther hand perfoermance tuning is
DDBMS specific. The catalogue could look much like a normal relation.
Representation of the hierarchy may be confusing when displayed in this
fashion, however. .

There are other DDBMS catalogues, such as protection catalogues, which
share similar characteristics with the naming tacility. They benefit in a similar
fashion frorm use of the underrlying system directory management facilities.

10.2. DOS Requirements

Mepping the DDBMS's name space ontc the DOS's name space places
several requirements on the DOS’s name support mechanism.

First the user needs to be able to associate some variable length data with
each directory entry in order to store the catalogue information. The user must
be able to change the data (update the catalogue information) and the system
must be able to detect conflicting updates to the data. This implies a version
vector be associated with the directory entry. Lastly, the DDBMS must be abie
to easily specily a particular entry. This suggests that there should be a direc-
tory entry identifier (The equivalent functionality to a tuple identifier, if the
catalogue were a real relation). This will permit the DDBMS to have tuple
identifiers for all reiation and catalogue tuples and only at the access method
level need it be concerned about representation, in normal operation. Depend-
ing on the granularity of the replication provided by the distributed operating
system it may be essential that symbolic links also be provided.

10.3. A Proposed Mapping
Given the DOS functions proposed above the DDBMS name space can be sup-
ported in the following manner.

For each node in the DDBMS hierarchy there will be a directory in the DOS
flle system. The children of the node will be entries in the directory. In

¥ Partitioned relations provide, in normal operation, the ability to store portions af relations
at sifferent sites, and yet have the data base system make its composition itransparent 1o
the user.
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addition each entry will contain any additional data describing the child node.
All other catalogues will be maintained in a child directory with tuples being
directory entries in the catalogues's directory. The catalogue's information will
be stored in the user supplied data of the directory entries that comprise the
catalogue. In order for the recovery mechanism to perform properly Lthe name
of a directory entry must be a unique key for the catalogue.

Symbolic links will be used whenever the replication factors for a node
requires the entry be created in another part of the distributed operating
system's name space. This should only be necessary if arbitrary replication is
not provided at the grapularity of a file.

10.4. Recovery Algorithms

In Section 10 it was suggested that directory merge algorithms might be
used to merge database catalogues. Here a presentation of a catalogue merge
algorithm is given Four basic operations are performed on a data base catalo-
gue. They are:

tnsert (cotalogue eniry),

remove (catalogus entry).

readentry (key) and ‘

updateentry (key, domain, newvalue).

These four operations comprise a basic set of the operations that the database
may perform since more complex operations can be formed as compositions of
. the four above. The first two operations add and delete catalogue entries. The
third operation permits the DDBMS to examine a catalogue entry and the last
operation provides a means for the DDBMS to change a field of an entry.

The first two operations are essentially equivalent to the insert and remove
operations of the directory merge algorithm. The only difference is that entries
in different catalogues may be related. while in the operating system directory
case all entries were assumed to be independent of one another. This is not a
problem since all catalogue entries will have a unique key as the entry name
used by the directory merge aigorithm. Name conflicts will only occur when the
user creates two relations with the same pame. Conflicts of this sort must be
resolved by discarding or renaming one of the two relations. At this point the
DDBMS must have sufficient backpointers to properly resolve the catalogue
entries for each relation.

The read operation by itsel! presents no probiems, but the update opera-
tion, by itself or in combination with read causes difficulty. In general this is the
problem being addressed by Faissol's work [Faissol81], but due to the limited
number of operations which may exist (only those defined by the DDBMS) and
the lact the DDBMS is executing the operation, itself, it may be possible for
simplifications to be made. The exact nature of the simplifications will depend
on the operations and the importance of having exact data in the catalogue.
One possible simplifaction is to consider how critical it may be to have exact
data in the catalogue. Consider a catalogue update of the last modification lime
for a relation. A merge of a catalogue with conflicting umes for a particular
relation's last modification could be resoived by selecting the most recent time.
This simple merge algorithm results from the DDBMS's total understanding of
the implications of the fieid in the catalogue and it’s use.
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10.5. mmmLDCU&AC-n&udy.

FORDELE is a DDBMS being developed at UCLA. The approach used in the
development was to extend the DBMS Ingres [Stonebraker?s] to be distributed
and run it on top of LOCUS instead of UNIX [Ritchie74). Because of the global,
transparent nature of LOCUS, Ingres will operate in a semi-distributed mode
without modification. For more details of on FORDELE see [Thiel83).

Most of the current protolype implementation of FORDELE has invoived
implementation of the the catalogue management work described above. The
directory structure of the LOCUS operating systemn was extended in the manner
described in Section 10.2. At the time of the initial implementation the authors
did not understand that all the catalogues could be supported by the LOCUS
name space so the implementation in progress only implemented the naming
catalogue of FORDELE within the LOCUS name space. Ingres has six catalogues;
which are: the relation catalogue, the attribute catalogue, the protection catalo-
‘gue. the integrity catalogue, the tree catalogue and the index catalogue. The
relation catalogue is the Ingres catalogue that supports the name space of
Ingres and is the one FORDELE mapped onto the LOCUS name space.

The types of operations performed on the relation catalogue are the addi-
tion and deletion of tuples when reiations are created and destroyed. Also the
read and update operations are performed on catalogue entries since the
catalogue contains information like tuple counts and purge dates. Neither of
these two items need to be exact, it can be argued, since the former is only used
for query optimization decigions and the later need only be the most optimizitic
of conflicted values. Incorrect query optimization decisions will enly result in
degraded performance and not incorrect behavior and therefore the tuple count
need not be exact. Occasionally an application can run and cause the count to
be correctly updated by examining the data base. As examples of operations
that must be maintained correctly by the DDBMS are those operations which
effect the protection information in the protection catalogue. For example, one
field in the catalogue specifies which terminals are permited for a user to use in
referencing a particular reiation. When this field s updated the DDBMS must
guarentee a partition merge does result in the change being correctly pro-
pagated.

11. Conclusions

It is our experience that replication is important in a distributed environ-
ment, and that & liberal update policy is very valuable. However, developing the
appropriate architecture and mechanism is a non-trinal task. It is clearly feasi-
ble to do so, as the LOCUS implementation demonstrates.

Our experience also suggests the name service functions which occur at
different levels in a system share many common elements, and there is consid-
erable promise in providing a reasonably general name service function which
can support a distributed file directory mapping system, a database catalog sys-
tem, etc.

There are also a number of ways in which the nature of the name service to
be supported affect the ease with which a replicated impiementation can be con-
structed, and modest differences in function can have dramatic effect. The
clearest case in LOCUS are file links.

Lastly, it is striking that update of a replicated data itern in different parti-
tions can be permitted as often, and in as general a set of circumstances, as we
have found. This is a pleasant surprise indeed.
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Figure 1. Partition graph G(f) for file stored redundantly at sites A, B, C, D.



<A:0. B:Q, C:0, D:0>
<A:2,B:0,C:0,D:0>
+ (D) casacars
<A:0, B:0.C:0,D:0>

<A:0, B:Q, C:0, D:0>

<A:2, B:0,C:1,D:0>

<A:3, B:0,C:0,D:0>

CONFLICT!

vector begomes
<A:3,B:1.C:1.D:0>
after reconciliation

at site B

Figure 2. Partition graph G{f) for f with version vectors effective at the end of each partition.







Dynamic Reconfiguration of a Distributed Operating Systemn!

Robert M. English and Gerald J. Popek
University of California at Los Angeles

Abstract

LOCUS is a distributed operating system which provides a very
high degree of network transparency. In addition, subatantial high relia-
bility, availability and recovery mechanisms are provided, including au-
tomatic user controlled replication of files, nested transactions, and au-
tomatic reconfiguration of the network. Because LOCUS gives the appli-
cation the illugion of a single machine, there are subsantial relation-
ships among the system data structures in different computers in the
network. System protocois also assume connectivity of the transmis-
gion medium. For these reasons, the task of dynamically reconfiguring
the network as machines leave and arrive, or as the network becomes
partitioned, is essential to LOCUS.

hthispaper.thereeonﬁgunﬁnnmhitectnreofLDCUSis
described. The protocols are presented by which a set of machines
agrees on the membership in a partition, maximizing that set while still
running rapidly, and operating correctly in the face of various continu-
ing failures and race conditions. Then the actions taken to recover
internal data structures are briefly outlined.

1 Introduction

The commen arguments for distributed operating systems—incremental growth
potential, decreased costs—are valid only if the software costs on a distibuted system
are comparable to those on a single machine operating system. It does little good to
provide incremental growth capabilities in hardware when the software must be
modified with each change. A system requiring explicit network handling affects every
application program, multiplying the network costs.

LOCUS was designed to be a network transparent, high reliability, high availabili-
ty distributed operating system. A primary goal was to minimize network related pro-
gramming costs by providing a consistent user interface independent of transient net-
work topologies. LOCUS provides, for example, file replication for reliability, and allows
full operation even in a partitioned environment. File names are independent of the
storage location: with portable media, a group of flles can even be moved from one site
to another in a matter of minutes without the change being noticed by user programs

Transparency in LOCUS applies not only to the static topology of the network,
but to the configuration changes themselves. The system strives to insulate the users
from reconfigurations, providing continuing operation with only negligtble delay Asin
the static case, requiring user programs to deal with such situations shifts the network
costs from the operating system to the applications programs.

! This research was supported by the Advanced Research Projects Agency under research
contract DSS-MDA-803-82-C-0189.




This paper discusses the concept of transparency as it relates to a dynamic net-
work environment, gives several principles that the operating system should foilow to
provide it, and presents the reconfiguration protocols used in LOCUS. The protocols
make use of a high-level aynchronization strategy to avoid the message overhead of
two-phased commits or high-level ACKs, and are largely independent of the specific ar-
ehitecture of LOCUS. The discussion concludes with an overview of future plans.

8 Other Work

The degree to which the details of an operating system design aflect the
reconfiguration strategy makes comparisons difficult. Different design goals, philoso-
phies, and assumptions can lead to widely varied definitions of the problem, and even
wider variations in the solution. It may, in fact, be unwise to speak of “reconfiguration
architectures” except as solutions to specific problems imposed by particular cperat-
ing systems, and as yardsticks for comparing varicus system designs.

In the Medusa system at Carnegie-Mellon, for example, individual processors
have only fragments of the operating system. Robustness in the face of all possible
failure conditions was considered unreasonable: it was never a goal to respond to all
possible failures or changes in environment.. . Massive failures... are both infrequent
and very difficult to overcome [OusterhoutB0].” The degree of interaction between
nodes makes the full solution impractical. Medusa-type systems could be classified as
muiti-processor systems: while they do not share primary memory, they depend upon
a high degree of interaction and a highly reliable communications bus for correct
operation.

At the other end of the spectrum, the Grapevine system developed by Xerox
binds nodes together so loosely that reconfiguration never becomes an issue [Bir-
rellB2]. No overall network status is maintained; correct operation depends on site-to-
site protocols. In Grapevine, and other network environments such as the ARPAnet,
correct operation of the nodes depends solely on local status, and while network failure
can interrupt network services, it does not affect local service.

We characterize network operating systems by complete replication of local
functionality. and separation of local and remote operations; multiprocessors by
dependence on communications for most operations. A distributed system such as
NSW{Miilstein 77] lies somewhere between the two extremes.

LOCUS also falls somewhere between these two extremes: each node has a self-
sufficient operating system, but a high degree of interaction takes place to provide file
replication, synchronization, and inter-node communication. The system requires ex-
plicit reconflguration strategies to handle failures, but a full solution of the problem is
feasible because the effects of failures are limited by the architecture.

3 The LOCUS Operating System!

! This section reviews thrwe aspects of LOCUS relevant to this paper. Readers familiar with
LOCUS can safely skip this section.



The distributed operating system LOCUS runs on a high bandwidth local area

network. Derived from Unix,! it provides application code compatibility with Unix user
programs in an environment of network transparency, enhanced reliability. and high
avallability, To the user a LOCUS system appears, to the first approximation, like a
large, single-site Unix machine. The network is invisible to normal user activity,
although additional system calls are available that give network status inforrnation.

The LOCUS flle system presents a single tree-structured naming hierarchy to
users and applications. It is functionally a superset of the Unix tree-structured naming
system. There are three major areas of extension. First, the single tree structure in
LOCUS covers all objects in the flle system on all machines. As noted in the companion
paper on transparency,[Popek83] LOCUS names are tully transparent; it is not possible
from the name of a resource to discern its location in the network. The critical impor-
tance of such properties are discussed in that paper. The second direction of exten-
sion concerns replication. Any flle in LOCUS can be made replicated, and it is the
LOCUS system's responsibility to keep all copies up to date, assure that access re-
quests are served by the most recent available version, and support partitioned opera-
tion. Third, the current implementation of LOCUS provides a rich, although still file
grained, synchronizatien policy. That policy, a generalization of 'multiple reader, sin-
gle writer’, permits related processes to interact intimately and also supports full nest-
ed transactions.[Mueller83]

Underlying the user hierarchy is a global system hierarchy composed of file

groups.? Like the flle tree, each node of the file group tree may be replicated. File
groups may be replicated, but only one copy of a flle group may be stored at a particu-
lar site. The replication factor of a file is limited to that of its file group. File groups
are joined by the mount system call, which “mounts” a flle group on a file in another
file group, forming a file group hierarchy in which the file groups play roles analegous
to that of the files in the naming tree. The root of the hierarchy is fixed when the sys-
tem boots. The tree structure is maintained by a local structure called the mount
table, which records where a flle group is mounted in the hierarchy, where copies of
the file group are located, and. if the file group is stored locally, where the file group 1s
physically stored. A mount table reflecting the pew hierarchy can always be rebuilt
from the information available in local partitions after any configuration change.

The physical storage of a file group pack is split into a data and a directory sec-
tion. Each file has its own data descriptor called an inode The index of an file's 1node
in the inode space is unique within a file group, and points to the file in the directory
The system uses the file group number, inode number pair as a unique global internal
name for the file.

In keeping with the philosophy of network transparency. the system allows full
operation regardless of the current systern configuration. In particular, the system
places no barriers to concurrent modification to files in separate partitions. In the
Unix environment few resources are concurrently shared. and the increase in availabil-
ity gained by ailowing partitioned operation outweighs the costs of detecting and

1 Unix is a trademark of Bell Laboritories.

A LOCUS file group is nearly the same as a Unix fle system.
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resolving any resultant conflicts.3 Automatic resolution of directory conflicts, for exam-
ple, is well understood.

Within a partition, synchronization is maintained through the C£SS protocsl
Each partition chooses a Control and Synchronization Site (CSS) for each file group
available to it. Files are locked at the CSS by Storage Sites (SS), and held at the SS's
by Using Sites (US).

The high-level protocols of LOCUS assume that the underlying network is fully
connected. By this we mean that if site A can communicate with site B, and site B with
site C, then site A can communicate with site C. In practice, this may be done by rout-
ing messages from A to C through B, although the present implementation of LOCUS
runs on a broadcast network where this is unnecessary. The assumption of transitivity
of communication significantly simplifies the high-level protocols used in LOCUS.

The low-level protocols enforce that network transitivity. Network information is

kept internally in both a high-level status table and a coliection of virtual circuits.? The
two structures are, to some extent, independent. Membership in the partition does not
guarantee the existence of a virtual circuit, nor does an open virtual circuit guarantee
membership in the partition. Failure of a virtual circuit, either on or after open, does,
however, remove a node frorm a partition Likewise removal from a partition closes all
relevant virtual circuits. All changes in partitions invoke the protocols discussed later
in this paper.

The system attermnpts to maintain file access across partition changes. If it is
possible, without loss of information, to substitute a different copy of a file for one lost
because of partition, the systern will do se. If, in particular, a process loses contact
with a flle it was reading remotely, the system will attempt to reopen a different copy
of the sarme version of the flie.

The ability to mount filegroups independently gives great flexibility to the name
space. Since radical changes to the name space can confuse users, however, this facili-
ty is rarely used for that purpose, and that use is not supported in LOCUS. The
reconfiguration protocols require that the mount hierarchy be the same at all sites.

4 Requirements for the Reconfiguration Protocols

The first constraint on the reconfiguration protocol is that it maintain consisten-
cy with respect to the internal system protocols. All solutions satisfying this constraint
could be termed correct. Correctness, however, is not enough. In addition to main-
taining system integrity, the soiution must insulate the user from the underlying sys-
tem changes The solution should not affect program development, and it should be
eflicient enough that any delays it imposes are negligible.

! An elegant strategy for detecting conflicts can be found [ParkerBQ].

% The virtual circuits deliver messages from sile A to site B {the virtual circuits connect sites,
not processes) in the order they are sent. If a message is lost, the circuit is closed. The
mechanism defends the local site from the slow operaticn of a foreign site.



As an example of a “correct” but poor solution to the problem, the 0.5 could
handle only the boot case, where all machines in the network come up together Any
tailures would be handled by a complete network reboot. Such a solution would easily
satisfy the consistency constraint; however, one might expect murmurs of complaint
from the user comrmnunity.

Similarly, a solution that brings the system to a grinding halt for an unpredict-
able length of time at unforseeable intervals to reconstruct internal tables might meet
the requirement of correctness, but would clearly be undesirable.

Optimally, the reconfiguration algorithms should not affect the user in any
matter whatsoever. A user accessing resources on machine A from machine B should
not be affected by any activity involving machine C. This intuitive idea can be ex-
pressed in several principles:

1. User activity should be allowed to continue without adverse affect, provided no
resources are lost.

Any delay imposed by the system on user activity during reconfiguration should
be negligible.

The user should be shielded from any transient effects of the network
configuration.

Any activity initiated after the reconfiguration should reflect the state of the
systern after the reconfiguration.

Specialized users should be able to detect reconfigurations if necessary.

No user should be penalized for increased availability of resources.!

a0 > O D

All these principles are fairly intuitive. They merely extend the concept of net-
work transparency to a dynamic network and express & desire for efficiency. They do,
however, give tight constraints on the eventual algorithms. For example, those opera-
tions with high delay potentials must be partitioned in such a way that the tasks
relevant to a specific user request can be run quickly, efficiently, and unmediately.

The principles have far-reaching implications in areas such as flle access and
synchronization Suppose, for example, a process were reading from a flle replicated
twice in its partition. If it were to lose contact with the copy it was reading, the system
should substitute the other copy {assuming, of course, that it is still available). 1f a
more recent version became available, the process should continue accessing the old
version. but this must not prevent other processes from accessing the newer version

These considerations apply equally to all partitions, and no process should loose
access to flles simply because a merge occurred. While the LOCUS protocols insure
synchronization within a partition, they cannot do so between partitions. Thus. it is
easy to contrive a scenario where the system must support conflicting locks within a
single partition, and invoke any routines necessary to deal with inconsistencies that
result,

! This last point may cause violatians of synchronization policies, as discussed below.
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5 Protocol Structure

As noted before, the underiying LOCUS protocols assume a fully-connected net-
work. To insure correct operation, the reconfiguration strategy must guarantee this
property. If, for instance, a momentary break cccurs between two sites, all other sites
in the partition must be notified of the break. A simple scan of available nodes is
insufficient. :

The present strategy splits the reconfiguration into two stages: first, a partition
protocol runs to find fully-connected sub-networks: then a merge protocol runs to
merge several such sub-networks into a full partition The partition protocol affects
only those sites previously thought to be up. It divides a partition into sub-partitions,
each of which is guaranteed to be fully-connected and disjeint from all other sub-
partitions. It detects all site and cornmunications failures and cleans up all affected
muiti-site data structures, so that the merge protocol can ignore such matters. The
merge protocol polls the set of available sites, and merges several disjoint sub-
partitions into ocne.

After the new partition is established, the recovery procedure corrects any in-
consistencies brought about either by the reconfiguration code itself, or by activity
while the network was not connected. Recovery is concerned mainly with file con-
sistency. It schedules update propagation, detects conflicts, and resolves conflicts on
classes of files it recognizes.

All reconfiguration protocols are controlled by a high-priority kernel process
The partition and merge protocols are run directly by that process, while the recovery
procedure runs as a privileged application program.

8 The Partition Protocol

Communication in a fully-connected network is an equivalence relation. Thus
the partitions we speak about are partitions, in the strict mathematical, sense of the
set of nodes of the network. In normal operation. the site tables reflect the
equivalence classes: all members of a partition agree on the status of the general net-
work. When a communication break occurs, for whatever reason, these tables become
unsynchronized. The partition code must re-establish the logical partitioning that the
operating systemn assumes, and synchronize the site tables of its member sites to
reflect the new environment.

In general, a communication failure between any two sites does not imply a
failure of either site. Failures caused by transmission noise or unforeseen delays can-
not be detected directly by foreign sites, and will often be detected in only one of the
sites involved. In such situations, the partition algorithm should find maximum parti-
tions: a single communications failure should not result in the network breaking into

three or more parts.! LOCUS implements a solution based on iterative intersection.

! Breaking a virtual circuit between two sites aborts any ongoing activity between those two
sites. Partition fragmentation must be minimized to minimize the loss of work.




A few terms are helptul for the following discussion. The partition set, Pa. is the
set of sites believed up by site a. The new partition set, P, is the set of sites knewn
by @ to have joined the new partition.

Consider a partition P after some set of failures has occurred. To form a new
partition, the sites must reach a consensus on the state of the network. The criterion
for consensus may be stated in set notation as: for every a f€P, Pa=Fp. This state can
be reached from any initial condition by taking successive intersections of the parti-
tion sets of a group of sites.

When a site a runs the partition algorithm, it polls the sites in P, Each sites
polled responds with its own partition set Ppoiisiss - When a site is polled successfully, it
is added to the new partition set P',, and P, is changed to PaM Ppousue . & continues to
poll those sites in P, but not in P, until the two sets are equal, at which point a con-
sensus is assured, and « announces it to the other sites.

Translating this algorithm into a working protocol requires provisions for syn-
chronization and failure recovery. These two requirements are antagonistic—while the
algorithm requires that only one active site poll for a new partition, and that other
sites join only one new partition, reliability coniderations require that sites be able to
change active sites when one fails—and make the protocol intrinsically complex. Since
the details of the protocol are not reievant to the overall discussion. they have been
placed in an appendix.

7 The Merge Protocol -

The merge procedure joins several partitions into one. 1t establishes new site
and mount tables, and re-establishes CSS's for all the file groups. To form the largest
possible partition, the protocol rnust check all possible sites, inciuding, of course,
those thought to be down. In a large network, sequential polling results in a large addi-
tive delay because of the timeouts and retransmissions necessary to determine the
status of the various sites. To minimize this effect, the merge strategy polls the sites
asynchronously.

The algorithm itself is simple. The site initiating the protocol sends a request
for information to all site in the network. Those sites which are able respond with the
information necessary for the initiating site te build the global tables. After a suitable
time, the initiating site gives up on the other sites, declares a new partition, and broad-
casts its composition to the world.

The algorithm is centralized and can only be run at one site, and a site can only
participate in one protocol at a ume, so the other sites must be able to halt execution
of the protocol. To accomplish this, the polled site sends back an error message -
stead of a normal reply:

IF ready to merge THEN
IF merging AND actsite == locsite THEN
IF tsite < locsite THEN
actgite := fsite;
halt active merge,
0K
ELSE




NO
F1
ELSE
actsite ;= faite;
0K
Fl
ELSE
NO
F1

It a site is not ready to merge, then either it or some other site will eventually run the
merge protocol,

The major source of delay in the merge procedure is in the timeout routines
that decide when the full partition has answered. A fixed length timeout long enough to
handie a sizeable network would add unreasonable delay to a smaller network or a
small partition of a large network. The strategy used must be flexible enough to handle
the large partition case and the small partition case at the same timme.

The merge protocol waits longer when there is a reasonable expectation that
further replies will arrive. When a site answers the poll, it sends its partition informa-
tion in the reply. Until all sites believed up by some site in the new partition have re-
plied, the timeout is long. Once all such sites have replied, the timeout is short.

8 The Recovery Procedure

Even before the partition has been reestablished, there is considerable work
that each node can do to clean up its internal data structures. Essentially, each
machine, once it has decided that a particular site is unavailable, must invoke failure
handling for all resources which it's processes were using at that site, or for all local
resources which processes at that site were using. The action to be taken depends on
the nature of the resource and the actions that were under way when failure occurred.
The cases are outlined in the table below.

Local Regource in Use Remotely

Resource Failure Action
File (open for update) Discard pages, close file

and abort updates
File (open for read) Close file

Remote Resource in Use Locally

Respurce Failure Action
File (open for update) Discard pages.

set error in local file descriptor
File {open for read) Internal close,

attempt to reopen at other site




teracti esses

Failure Type Action

Remote Fork/Exec, remote site fails return error to caller
Fork /Exec, calling site fails abort local process
Distributed Transaction abort all related

subtransactions in partition

Once the machines in a partition have mutually agreed upon the membership of
the partition, there is still additional work to be done in the file system in order to
make the internal data structures consistent again. LOCUS permits a given file to be
updated in different partitions, so that one must determine whether, for each file now
available, a conflict has occurred, i.e. uncoordinated update has actually occurred at
different sites during partition. In those cases where it has, if the systern is abie, au-
tomatic reconciliation must be done. Directories are an important case of a type of file
where this action can be taken. See [PopekB3a] for a discussion of how these steps are
taken. Finally, if there are operations in progress which would not be permitted during
normal behavior, some action must be taken. For example, flle X is open for update in
two partitions, the system policy permits only one such use at a time, and a merge oc-
curs. The desired action is to permit these operations to continue to completion, and

only then perform file system conflict analysis on those resources.! Lastly, the system
must select, for each group of files it supports, a new synchronization site. This is the
gite to which the LOCUS file system protocols direct all file open requests. See (Walk-
er83] for a discussion of the normal operation protocols for the file system. Once the
synchronization site has been selected, that site must reconstruct the lock table for all
open files from the information remaining in the partition.

After all these functions have been completed, the effect of topology change has
been completely processed. For most of these steps, normal processing at all of the
operating nodes continues unaffected. If a request is made for a resource which has
not been merged yet, the normal order of processing is set aside to handle that re-
quest. Therefore, higher level reconfiguration steps, such as file and directory merge,
do not significantly delay user requests.

9 Protocol Synchronization

The reconfiguration procedure breaks down into three distinet components,
each of which has already been discussed. What remains is a discussion of how the 1ndi1-
vidual parts are tied together into a robust whole. At various peints in the procedure,
the participating sites must be synchronized, and control of the protocol must be
banded to a centralized site. Those sites not directly involved in the actinity must be
able to ascertain the status of the active sites to insure that no failures have stalled
the entire network.

One approach to synchronization would be to add ACKs to the end of each sec-
tion of the protocol, and get the participants in lock-step before proceeding to the next
section This approach increases both the message traffic and the delay, both critical
performance quantities. It aiso requires careful analysis of the critical sections in the
protocols to determine where a commit is required, and the implementation of a com-
mit for each of those sections. If a site fails during a synchronization stage. the system
must still detect and recover from that failure.

t LOCUS currently does not support this behavior.




LOCUS recoenfiguration uses an extension of a "failure detection” mechanism for
synchronization control. Whenever a site takes on a passive role in a protocol. it
checks periodically on the active site. If the active site faiis, the passive site can res-
tart the protocol.

As the various protocols execute, the states of both the active and the passive
mites change. An active site at one instant may well become a passive site the next, and
a pasgive site could easily end up waiting for another passive site. Without adequate
control, this could lead to circular waits and deadlocks.

One solution would be to have passive sites respond to the checks by returning
the site that they themselves are waiting for. The checking site would then follow that
chain and make sure that it terminated. This approach could require several messages
per check, however, and communications delays could make the information collected
obsolete or misleading.

Ancther alternative, the one used in LOCUS, is to order all the stages of the pro-
tocol. When a site checks another site, that site returns its own status information. A
site can wait only for these sites who are executing a portion of the protocol that
preceeds its own. If the two sites are in the same state, the ordering is by site number.
This ordering of the sites is complete. The lowest ordered site has no site to legally
wait for; if it is not active, its check will fail, and the protocol can be re-started at a
reasonable point.

While no synchronization "failures” can cause the protocols to fail, they can slow
execution. Without ACKs, the active gite cannot eflectively push its dependents ahead
of itself through the stages of the protocol. Nor can it insure that two passive sites al-
ways agree on the present status of the reconfiguration. On the other hand, careful
design of the message sequences can keep the windows where difliculties can cccur
small, and the normal case executes rapidly.

10 Future Work

Problems yet to be addressed include: a) selective operation of protocols--at
present all protocols are run at every configuration change; b) optimization of recovery
strategies—recovery is now ignorant of recent history and makes more general checks
than are sometimes necessary; and c¢) automatic reconciliation of rultifile objects.
While a much work has been done on multi-file objects,
[MuellerB3]{Faissol81][PopekB3a], the basic unit of synchronization in LOCUS is the file.
A more general synchronization mechanism could simplify both conflict detection and
resolution.

11 Conclusions

The difliculties involved in dynamically reconfiguring an operating system are
both intrinsic to the problem, and dependent on the particular systermn Rebuilding
lock tables and synchronizing processes rinning in separate environments are prob-
lems of inherent difficulty. Most of the system-dependent problems can be avoided,
however, with careful design.

-10-



The fact that LOCUS uses specialized protocols for operating system to operat-
ing system communication made it possible to control message traflic quite selective-
ly. The ability to aiter specific protocols to simplify the reconfiguration solution was
particularly appreciated.

The task of developing a protocol by which sites would agree about the member-
ship of a partition proved to be surprisingly difficult. Balancing the needs of protocol
synchronization and failure detection while maintaining good performance presented a
considerable challenge. Since reconfiguration software is run precisely when the net-
work is flaky, those problems are real, and not events that are unlikely.

Nevertheless, it has been possible to design and implement a solution that exhi-
bits reasonably high performance. Further work is still needed to assure that scaling
to a large network will successfully maintain that performance characteristic, but our
experience with the present solution makes us quite optimistic.
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13 Appendix A: Partition Protocal Details

To satisty the dual requirements of synchronization and reliability, the partition
protocol exploits several regularities based on the natural ordering of sites in the net-
work by site number. For instance, the new partition set, rather than being indepen-
dent of the current partition set, is the subset of the current partition set with site
pumbers less than the point of polling. At the active site, this is a dynamic quantity,
but at the passive sites it is their own site number (all sites lower than them in site
number have already been polled by the active site).

A site, a, initiates the protocol whenever it notices a network failure. The site
records the failure by removing the offending site from its local partition set P,. The
site then scans the remaining sites in P, in ascending order until it finds a site g willing

to join its partition.! g sets its partition set Py to PeM\ Py and assumes the task of pol-
ling. At this point, however, only £ has joined a partition; a will not join a partition until
8 polls it.

At this stage f is guaranteed to be the lowest numbered site in its partition set.
]t continues scanning sites in ascending order. When f§ has scanned all sites in Pg, the
new partition, now defined, is sent to all siles in the old partition (so that they may be-
gin their own scanning when necessary). The algorithm for polling is

FOR fsite FROM 1 TO locsite-1 WHILE UNTIL inpart OR actsite != NULL
DO
IF oktojoin (fsite) THEN
Piscatte '= Procwtte MFreua.
actsite : = Isite
ELSE
Placwita = Piocette =F'puus
Fi
oD
IF actsite == NULL THEN actsite := locsite; inpart := TRUE F]
IF actsite == locsite THEN
FOR fsite FROM locsite+1 TO nsite
DO
IF oktojein (fsite) THEN
Piocats = Piocous N Frria
ELSE
nphai.u ‘= Plocwite =F ' foite
oD
ELSE
config-wait
F1

The subroutine oktojoin polls a site, asking if it will join the new partition. It returns

1 A site is always willing to join its own partition. If the first site a successfully scans is itself, a =
I3
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true if the foreign site will join, and false if it refuses, or is inaccessible. inpart is a
boolean flag that shows whether the local site has joined a partition

If the site starts execution of this algorithm due to a locally recognized condi-
tion, neither inpart nor actsite will be set. The site will poll all sites less than itself at-
tempting to find an active site. Ifit succeeds, that site becormes the active site and the
local site waits for it to finish the protocol. If it fails, then it becomes the active site
and polls the sites with site number greater than itself.

It the site begins execution due to action by a foreign site, then inpart and
actsite will both be set. If the active site is foreign, the local site waits for completion
of the protocol. If it is local, the order of polling assures that all sites lower in number
have already been polled, and the site polis only the higher numbered sites.

The polling algorithm is straightforward. The need to respond reasonably to site
failures complicates the decision algorithm at the polied site somewhat, as a passive
site can never be sure of the state of its corresponding active site. Suppose we based
our decision solely on the basis spelled out in the algorithm:

IF NOT inpart AND P'fm CPgcsus THEN
YES

FLSE
NO

F1

Once a site joined a partition, it could join no other. If the active site became separat-
ed. for whatever reason, the sites that had already joined its partition would hang-—
waiting for Godot, as it were. Adding a periodic check of the controlling site helps. but
is not sufficient. The sites would no longer hang, but the resulting partition could be
highiy fragmented: as the sites notice, independently, that the active site has vanished,
they start the algorithm themselves. None of the sites still waiting would join the new
partition, believing they are aiready part of one. In the worst case, this could lead to
total network fragmentation.

The polled site needs to detect these conditions when they occur. On possible
way to do so is to check the active site whenever asked to join a partition different
from the current one. This, however, leads to unnecessary message traffic and poten-
tially serious timing problems. Far better would be a method allowing a site to decide
solely on the basis its internal information and the information sent by the foreign site.

There are two cases to deal with. If the polling site has a lower site number than
the polled site, the normal decision criterion works. Here fsite €P' o Which implies
fsite €P acieue - Since fsite is no longer in Poctsise (€lse it would not be polling). the par-
tition being built by the active site is wrong &ven if it does still exist, and the polled site
can safely join anocther.

The second case, where the polling is downward, is more difficult, there being no
reliable way for the lower site to determine whether the polling site was a member of




Poastare if the lower site is not the active site.! Without this determination, the lower sitc
cannot join the partition of the polling site. Prevention of fragmentation must occur at
a higher level.

With this in mind, here is the algorithm used at the polled site:

120 o Site C Piecsits THEN
IF teite < locsite THEN
actsite : = fsite;
Pioowite : = Piacrita N Froica:
reply := OK
ELIF inpart THEN
IF actsite = locsite THEN
Pracotte = Fiocetis M Prats
reply := CK
ELSE
reply := NO
F1
ELSE
actsite := locsite;
Piocase ‘= Placxita NFprua’
reply := 0K
Fl

ELIF actsite = locsite AND
(*) Jfsite €F tyenite THEN
restart partition algorithm:
Pioceits = Piacaite M Prnite
reply := 0K

ELSE
reply := NO

F1

The first test checks the local site’'s eligibility to join the new partition. Subsequent
tests in that section determine the status of the local site vis-a-wis other partitions
which may be forming. The test marked (*) is a special case making use of the extra
information available at the active site regarding the new partition set. If the polliing
gite is a member of the active site's new partition set, it must have noticed the failure
of a site in its own P, and started polling itsel!. This makes the partition set of the ac-
tive site invalid, and it must restart the protocol.

The loss of an active site can still lead to the complete fragmentation of a parti-
tion if the sites detect the loss in descending order. The wait-probe-timeout strategy is
designed to prevent just such an occurence. The sites joirung a partition probe only
the sites immediately beneath them. If they declare a site down. they leave the parti-
tion and begin scanning for a new one baginning with the gctive site of the rrevious
partition. The test marked (*) in the above algorithm deals with just that eventuality
As noted above, such a poll causes the old active site to restart its poll Fragmentation
can only occur when a set of sites including the active site leaves the partition, and

t Agair, for efficiency reasons, we do not consider the possibility of pollicg the active site.
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then the number of fragments resulting cannot exceed the number of sites lost.? It
may be possible to guarantee maximum partitions, but doing so requires a consider-
able amount of message traffic and additional complexity. Since the probability of ac-
tive site failure is expected to be low, particularly in conjunction with secondary site
failures, and the cost of the breakdown noted is not hugh, this solution is sufficient.

! [n particular, if only the active site is lost, the number of fragments will be one: the ertire

partition.
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