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ABSTRACT OF THE THESIS

Distributed Query Processing in
Local Network Databases
by
Thomas Wingfield Page, Jr.
Master of Science in Compater Science
University of California, Los Angeles, 1983
Professor Gerald J. Popek, Chair

There are as yet no. {ully operational distributed relational databases for local
ares networks. Consequently, all work in this area has been purely theoretical, based
on experience in geographically distributed systems, or on simulation and modeling.
Current treads toward decentralized computer systems and the need for database capa-
bilities in office systems necessitate the production of distributed databases for high
speed local petworks in the very near future. This thesis provides some necessary
ra;llta pertaining to the problems of query processing and database management sys-

tem architectures in lecal area computer networks.

The first goal of this research is to provide empirical resuits about the nature of
high speed networks as an environment in which to perform distributed query optimi-
zation. Query optimizers in geographically distributed databases where the network is
a bottieneck, most commonly attempt to minimize communications traffic. This thesis

shows that in local networks, it is reasonable for the optimizer to treat network com-




R



munieations as free. The costs of disk retrieval and local processing dominate com-
mupications cost; and thus, like in single site systems, the goal is to minimize disk and
processing costs. However, the optimization problem in distributed databases differs
from that in single site systems because of the potential for parallel processing preseat-

ed by the many processors in the network.

The second goal of this thesis is the implementation of a remote query pr«oce.!a-.

ing mechanism for [ngres. This mechanism is operational in the LOCUS distributed
operating system and allows a single site Ingres module to perform subqueries at re-
mote sites. The purpose of this effort is to address the difficuity of constructing distri-
buted databases. Such systems are very much more expensive to build than their sine
gle site ancestors because of the different and more complex interfaces to remote
resources, the more complicated model of the underlying system, the richer set of
failure modes with which the software must deal, and the need to mask these problems
from the user. Cur distributed database is obtained by running a single site Ingres sys.
tem in LOCUS which provides the database with a network transparent view of the
anderiying system. The operating system handles many of the probfem that make
brilding distributed databases difficnit. It provides access to remote data, transactions,
distributed directory management, replication, partitioned operation aad recovery from
failures. With the implementation of a3 remote query procsssing mechanism, the data.
base is able to make use of the many processors in the network to speed the query by
operating on portions of the job in parallel. This thesis demonstrates that a diseribut-
ed database may be implemented quickly and efficiently using the distributed environ-

meas provided by the LOCUS operating system.
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CHAPTER 1
Introduction

1.1 Introduction to Distributed Databases

A great number of computer science papers in recent years have begun with
some subset of the following observations. '

| Equivaleat computing power caa often be provided more cheaply and flexibly
by a collection of small machines thaa by a single large one.

2 Software is more costly, less reliable, and more time consaming to develop thaa

hardware.

3.  Software for distributed systems is very much more difficuit to write than

software f{or single machines.

A result of the first observation is that small systems are proliferating. Because
of the smaller amounnats of money involred, the decision o buy a small machine ¢can be
made by low to mid level management, encouraging a decentralized organization of
computing resources. Users themselves retain autcnomy aver their own machines and
thus have considerable say over such things as when the machines are to be taken

down or when new software is to be installed.
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A problem with this decentralization is that while the processors themseives
have become cheap enough that we can afford to dedicate one or more per person, oth-
er resowrves mast still be shared. Laser printers, super computers, plotters, and com-
nunieatiéna lines are but a few examples. The decentralized controi that we sought is
in direct coaflict with the desire to coordinate the sharing of expeénsive resources
efficiently and fairly.

Data ia.t.hn resource whose effective sharing is most critical. It has been obe
served that data management is what computers really do in the business world.
Scientific computation, control, CAD/CAM, sﬁnula&ions, and document preparation
ses are dwarfed by the database applications. Databases are an invaluable tool in the
centralized environment because they free the user or programmer from the concerns of
physical data storage and they allow different users to share the same data without
couflict. For precisely the same reason they will be needed in the decentralized com-
puter systems of the future where the probiems of the physical storage of data and the
coordination of unrelated users take on added dimensions of compiexity. Distributed
databases allow us to store information near the point where it is most often needed
yet still permit global access to it. [t is the goal of distributed databases to make the

user view of data no more complex than in single machine facilities.

Distributed databases are a current research “hotspot”. As usual the two driv-
ing forces behind this interest are economicy and silicon. Rapid advances in local net-
work technology and the advent of personal workstations has made the distribation of
resources possible. The economics of small machines has made the distribution of
resources necessary. It is pot just hardware resources which have become dispersed but

also software and data.




The management of dmpe.:sed data is not a new problem. Many applications
such as airline reservation systems or automatic teilers by their very nature create and
consame data in a distribated way. However, the problem of data management in a
local area network is quite different from the probiems encountered in geographically
distributed networks. Perhaps the main difference is the user ‘model of such systems.
Local area neitworks connecting small machines are replacing Lmaim‘r-.*una as the pri-
_ mary compating tool for most users. Thus users expect the 2ew eavironment to pro-
vide equivalent if not superior semantics and performance to the central facilities to
which they have become accustomed. Because of the response characteristics of local
aetworks, users can view the network as a singie resource. The applications created for
local area networks exhibit a high degr=e of cooperation among machines and high des
gree of sharing of resources. Distribution of data in local networks occurs not only be-
canse data is created in a distributed fashion but also to increase reliability by replicat-
ing data, to increase speed by allowing several processors to work on one problem in
parallel, and to improve average response time by keeping data near the users who

need it most often.
1.2 Introduction to Query Processing

Our distributed database is organized according to the relational model of data
[Codd 70|. This model provides data independence, semantic completeness and a logi-
cal view of the database which {rees the user from concerns about the physical storage
of data. A relational database consists of a collection of relations, each of which may
be thought of as a flat table. Each row in the table is an individual entry in the rela-
tion and is called a tuple. The columns in the table are called attridutes. For example,
each tuple in an employee relation might have a name, number, and a salary attribute.

The nser expresses his query not by an access plan but instead by the contents of some




of the attributes of the tuples being addressed. He uses a non-procedural interface
language such as Quel [Held 75], SQL [Chamberlin 78] or QBE [Zloof 77| and the onus
konthcmmdezmineueﬁcimmpuﬁ.

Quel is the language most often used for interactive access to an Ingres data-
base and will be wsed in this paper for examples. [Held 75| contains a complete presen-
tation of the language. We will briefly introduce the subset of the language considered
in this thesia. '

Quel supports four basie commands: RETRIEVE, REPLACE, DELETE, and
APPEND. This discussion will be restricted to the processing of retrieves as the other.
commands are implemented using a retrieve. Examples in this thesis will wse the fol- -

lowing sampie database.

supplier (Sname, S#, Scity, Sstatus)
part  (Pname, P#, Peolor)
spq  (S#, P#, Quantity)

Consider the query, “What suppliers supply part number one and in what
quaatity?” This can be expressed in Quel as follows:

RANGE OF s IS supplier

RANGE OF y IS spq

RETRIEVE (s.Sname, y.Quantity)
WHERE (9.5 == y.S$)
AND (y.P# = 1)




This query illustrates the three most common relational operators: restriction,
projection, and join. The clause (y.P#% == 1) is a restriction of the part reiation to to
only those tuples whose P# attribute contains the valne 1. The clause (s.S% == y.S#)
is the join condition. A join is a binary operation which crestes a single new relation.
Each tuple of the new re!at_ion consists of a tuple from each of the source relations such
that the join condition is ;aq'aﬁed. Thus the join clause in the abaove query will, for
each tuple in the sapply reiation and each tuple in the spq relation with the same S#
feld add to the result relation the concatenation of the two taples. Finally, the clause
RETRIEVE (s.Sname, y.Quantity) projects the Sname and Quaztity domains out of
the resuit of the join. Thas is, a projection selects only those domains out of a relation

which are of further interest.

Query optimization is the process of transforming a query expressed in some
non procedural language sach as Quel into a sequence of local lower level database ac-
tions so a3 to minimize some measare of “cost”. Distributed query processing is the re-
trieval of data from the varions starage sites in the network. From the point of view
of an interactive user, the cost is primarily the elapsed time required to process the
'query. From the point of view of the system as a whole it may be preferable to max-
imize throughput by minimizing the total resource asage. In single machine databases
this may mean minimizing the number of page fetches. In geographically distributed
databases with low bandwidth, high delay commusication media, it often suffices to
minimize the voiume of data sent over the network. In local network databases, net-
work traffic is no longer so simple a component of elapsed time. Whereas the commun-
ications links are several orders of magnitude siower than processing and disk transfer
rates in long haal nets, in local nets, these rates are moch closer. The opportunity ex-

ists to trade increased network traffic for increased parallel processing and consequently




improved response time. Furthermore, the cost of processing joins is worse than liear
in the size of the relations while transmission costs are essentially linear. Thus for
large amounts of data, we are given even more incentive to look for heuristics beyond
simply minimizing petwork usage. - In order to evaluate competing alternative stra-
tegies, an optimizer must be able to compute some heuristic function which approxi-

mates the true cost of running a query for the given envircnment.

The earliest work in distributed query processing was doge by Eugeae Wong for
the SDD-1 system (Wong 77, Bernstein 81b]. Wong's algorithm used a hill climbing
approach which made step by step improvements to an initial feasible solution. It used
a gegeral cost function and could minimize total time or response time. This method
Yields efficient bat not optimal access plans becanse of its susceptibility to local max- ‘
imums. The final version actuaily implemented in SDD-1 emphasized the use of semi-
joins (see section 3.4.2), used zerv processing costs, and comsidered only total time
[Goodman 79]. Distributed Ingres {Stonebraker 77, Epstein 78| uses 3 query processing
strategy known as fragment and replicate. This is a modification of the single site
Ingres decomposition strategy [Wong 78]. This strategy tries to gev a high dem; of
parallei operation by fragmenting one relation and replicating all the others and run-

ning the query in parallel at each site containing a fragment.

The solution space for distributed query processing strategies is defined by Chua
and Hurley {Chu 79]. They show how to generate the set of equivalent query trees for
a query by permutation of relational operators. Many of these trees are eliminated
from future inspection by the application of theorems about optimal query trees. The
trees are then transformed into graphs in which each node Tepresents 3 set of opera-
tions performed at a single site. The arcs between nodes can be labeled with communi-

cations costs since no two adjacent nodes represent gperations occurring at the same
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site (otherwise they would be combined into one node). The nodes themseives can be
labeled with processing costs. The graphs are scored based on the sum of their com-
munications and processing costs, and the best one is picked. This yields an optimal

strategy but is inhereatly exponential in the worst case.

For complex queries or small databases, the space of possible graphs and the

sumber of variables affecting response time are so large that the cost of finding the op-

timal plan may dwarf the cost of running the query. Furthermore, determining the ap-
timal strategy requires extensive statisties about the distribution of data in. a relation.
We must be able to predict accurately the number of tuples that are likely to resuit
from any node in the graph. Thus we canoot hope to guaraatee the choice of the hqp-
timal access path in a real-time environment. We can, however, employ heuristics
which will generate reasonable access plans. Furthermore, complex queries are the ex-
ception rather than the rule. Most user queries tend to involve only a few relations

and for these queries it may weil be beneficial to find the optimal plan.
1.3 Purpose of the Theais

The primary goal of this thesis is the implementation of a remote query process-
ing mechanism for Ingres {Stonebraker 78]. This implementation is operational in the
LOCUS distributed operating system [Popek 81] and allows a standard singie site
lagres module to perform subqueries at remote sites. This remote query processing
mechanism was implemented solely by this author over a five month period. However,
this implementation depends heavily on the work of many other people. Most impor-
tantly, this work relies on the network transparent operating system environment
developed by Dr. Gerald Popek, Dr. Bruce Walker and the LOCUS project at UCLA.

This work is also based on the Ingres database system produced at The University of




California, Berkeley.

The first motivation for this implementation was the desire to create an en-
vironment for the investigation of query processing techniques in local network en-
vironments. To our knowiedge, there are no fully operational distributed local petwork
databases. Thus work on query processing has proceeded without an understanding of
the local network eavironment. Most query processing research has a_aamed an en-
vironment in which communications are orders of magnitude slower than database
operations. Consequently, algorithms have been able to solve the cost equations at the
extreme where disk retrieval and local processing are free. The assumption that disk
and processor costs are insignificant is certainly inappropriate for the local network en-
vironment. However, little was previously known about the cost characteristics of ‘
query processing in high speed networks. At one extreme, a local network may be so
fast that communications costs may be considered to be free. At the other extreme,
the time required to set up messages, process interrupts and retransmit coilisions may
be so great that message traffic is still the bottlemeck. In between is a large middle
ground in which communications, processing, and disk requests all contribute
significantly to the total cost of evaluating a query and must all be considered. Meas-
urements of the performance of our distributed database system, reported - in chapter 4,

determine the relative importance of communications, processing, and disk costs.

The second motivation for this impiementation of a remote query processing
mechanism was to address the issue of the difficuity of developing software for a distri-
bated system. For a variety of reasons, building software in a distributed system is
often more difficuit thaz building similar software for a single machine. First, in most
networks, a very different procedure is required to access data stored on a remote

machine from that used for local data. A distributed data base must build 3 mechan-




ism to get remote files aad to coordinate updates to replicated copies. Whereas in 3
single machine the database could use commands like open, close, read, and write, for
remote data a more complex protocol such as ftp (file transfer protocol) is usuaily re-
quired. Second, software {or distributed systems must deal with much more complex
error conditions than corresponding applications on single sites. In single site systems,
a machine crash results in a total restart of the entire system. In a distributed system,
we are faced with partial system failures. That is, one or more of the sites coop?uing
on a task may fail leaving the others to clean up and continue. Furthermore, one of
the primary motivations f{or installing a distributed system as opposed to a single large
machine is the potential for reliahility presented by the redundancy pm;nt in distrie
buted systems. Unless the database is smart enough to continue executing using

redundant resources, reliability will be reduced by the use of muitipie machines.

A well designed distributed database should appear to users like the single site
database they have grown used to. Thus it must handle all of the problems arising
from the distribution of data: concurrency control, recovery from failures, mnuitiple
copies of data, distributed catalog management and distributed query processing.
These problems make the design and implementation of distributed databases very

much more difficult thaa analogous centralized systems.

A potential solution to this problem is to present the applicatien, in this case
the database, with 3 view of the worid that is like a single machine. The complexities
due to the existence of machine boundaries are pushed helow the level visible to the da-

tabase. This concept is known as network transparency.

The LOCUS operating system [Popek 81] begins with many of the same goals

as a distributed database. The designers believe that just as a database user need not




concern himself with the dispersion of data, a computer user in general shouid not have
to be aware of the existence of the network. A LOCUS network appears to the user
like a single computer running Unix. In order to achieve network transparency, the
system must provide facilities to handle the problems that arise from the distribution
of data aad processing power. Thus, like a distributed database, LOCUS haadles con-
current access to files, distributed directory management, replication, transactions, par
titioned opention and recovery {rom failures. In fact, LOCUS takes care of many of
the problems that make building a distributed database difficult. This overlap between
the mechanisms required by a database and an ainruing system occurs becamse the
problems that the meeh._:nhms address are inhereat not to databases or operating sys-
tems, but to distributed systems in general.

Becanse LOCUS provides many of the mechanisms that distributed databases
require, it would appear to be a good environment in which to build a distributed data-
base. In faet, since LOCUS is application code compatible with Unix, any database
that rans ander Unix will become trivially distributed on a LOCUS network. Ingres,
which was developed for Unix, runs ‘on LOCUS without modification. It mm‘re-

mote data, has replicated reiations and works in the face of partial failures.

That single site databases become distributed so easily in 3 LOCUS network is
no small feat but they are distributed databases only in a limited sense. Oniy a frac-
tion of the potential benefits of the network are harnessed. Becanse the data is not all
local, the site running 3 query must bring all data across the network for local process.
ing. The many other processors in the system are wasted. Not only could the use of
remote processors speed the query by operating on portions of the job in parallel, but it
¢ould also reduce the amount of data transmitted over the network. Furthermore, dis-

tributed databases give very large numbers of users access to the data. Sinee all
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queries on a given database must reference the same system catalogs and maay of
those queries modify the catalogs, their coneur;-ency control may cause serious
bottlenecks if not redesigned for a distributed system. Though most applications may
be anaware of the existence of the network, databases are in some sense special users.
They have both the requirement and the ability to make inteiligent decisions based on
the location of data. Thus the operating system provides the tools to control the locas

tion of a file or process,

The purposes of this thesis are twofold. First, the thesis provides some empiri-
cal resuits concerning the operation of a database in a high speed local area network.
'Using these resuits, conciusions are drawn about the performance of alternative qu;r.y
processing algorithms in such an environmeat. Second, this thesis tests the hypothesis
that LOCUS is a good platform on which to build a distributed data management sys-
tem. It proposes a new architecture and method of development for distributed data-

bases and demonstrates its potential.
1.4 Thesis Plan

The outline of the rest of the thesis is as follows. Chapter 2 introduces the no-
tation and distributed database model considered in this work. Chapter 3 presents the
problem of query processing in distributed databases and reviews several algorithms for
optimizing distributed access plans. Chapter 4 discusses the local area network as an
environment for distributed databasey. [t reports the quantitative results of our meas-
aremeants of a local area network database and derives vaiues for the parameters of the
cost model. Finally, it discusves the implication of these results for query processing al-

gorithmas.

11
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Chapter 5 presents a case stady of the construction of a local network distri-
buted version of [ngres in LOCUS. Details are provided of the implementation and
performance of the remote sabquery processing mechagism for Ingres which allows
many processors to cooperate in processing a query in paralled. This method of con-
structing a distribated data management system is compared to the Distributed Ingres
effort at the University of California, Berkeley. Chapter 6 presents the conclusions to
be drawn from this work and discusses the opportunities for further research. Finally,
Appeadix 1 gives a more detailed report of the mgshods and results of the measure-

ments discussed in Chapter 4.

12
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CHAPTER 3
Distributed Database Model

2.1 The Network Madel

The distributed database is implemeated on tap of a computer network consist-
ing of sites 5,Spe..,Sw Each site in the network is an autonomous computer. We wiil
assume for parposes of this thesis that each cpu is identical though it presents no great
problem so far as query processing is concerned to model heterogeneous hardware.
Each of the N sites in the network is renning a fully functional copy of the distributed
database software which is capable of originating queries or servicing remote requests.
The sites are linked by an interconnection network. We are considering both long haul
networks such as the Arpanet and high bandwidth local nets. In general, the network

may contain gateways between subnets of differing technologies and bandwidths.

We assame that the time (cost) to send data between any twao sites is a fanc-
tion of the volume of data only aad not of the identity of the sites. The volume of
data is measured in pages where each message can send up to one page. We denote the
cost of sending a page of data across the net by the constant C. The notation C(3) is
used in the discussion of the Berkeley Distributed [agres proposal to denote the cost of
sending x pages to K sites. Distributed Ingres considers the possibility of using broad-

cast or muiticast messages to reduce the number of messages. We use this notation so

13




t.a‘.;at it is clear that the time elapsed in sending data to many sites is the same as for
one site if broadeast capabilities are available. While the underlying technoiogies in
Ethernets and ring networks are brosdcast media, the protocols required for reliable
aperation impose a site to site discipline on the network. Thus the disenssion of
Berkeiey’s proposal for broadcast nets is not extended to other methods. Finally, we

assume that the network successfuily delivers all packets correctly and in order.
2.2 The Database Model

The distributed database consists of a collection of relations 7,,2,....R. A reia
tion may be stored locally (at the site originating the query), remotely (ail tuples at one
remote site), or horizontally {ragmented [Rothnie 77] over some subset of the sites in

the aetwork.
3.3.1 Horisontal Fragments

An horizontal fragment is a subset of the tuples in a relation. We will call the
i* fragment of relation R, R, Distributed Ingres [Stonebraker 78] assumes that the
union of all pieces of R, contains no duplicate tuples and thas that fragments are dis-
joint. Thus when a taple is inserted into a fragmented relation in Ingres, the update is
performed in one {ragment only. This restriction is unfortunate as it restricts a site's
autonomy to choose which subset of tuples it will store locally. As discussed in section
3.3.3, the Ingres definition of fragments resuits from its particular query processing

strategy. We know of no fundamental reason why fragments must be disjoint.

Fragments may be assigned to specific storage sites in several ways. The most
common way in which this will happen is that the relation is created with a distribue

tion criterion. A distribution criterion is a list of qualifieations for each site storing a
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fragment. Each tuple that is to be added to the relation is checked against the

qualifications at each site and stored where it is appropriate.

The distribution criteria may be used by the query optimizer in selecting an ac-
cess strategy. [Selinger 80| shows that a query on a fragmented reiation may be
transformed into a union of the results of that same query run omr each of the frag-
ments. Then the distribution criteria may then be used to eliminate some of the
subqueries before they are run. For example, consider an employee relation fragmented
such that S, stores all taples for which <State == “New York">, 5; stores all tuples
for which <State == “California">, and 5, stores tuples for which <State 3 “New
York”> AND <State 3% “California>. In order to process a query that asks “re-
rieve all taples with <State = “Maryland”>", it is can be discovered a priori that
only tuples on S; could satisfy the query. The query optimizer may check the distribue
tion criteria and them export a subquery only to those sites whose distribution criteria

allow them to store tuples satisfying the qualifications list.

Furthermore, the distribution criteria must depend only on attributes in that
relation. Joins with other relations cannot be used to define fragments. This restric.
tion-causes no loss of generality at this level for two reasons. First, equivaleat fune-
tionality caa be provided to the user via a view mechanism implemented as a prepro-
cessor on top of the query optimizer. Each fragment is actually a separate reiation as
far as the database is concermed but is mapped into a single relation by the view
mechanism. Second, query aptimizers are not able to make efficient ase of muiti-table
distribution criteria to optimize joins anyway. It is not too difficuit to check if a single
relation query contradicts the distribution criteria at any site. Howerver, if we allow tu-
ple placement to be dependent on the contents of other relations, a query must be run

in order to check for conflicts with the distribution criteria. This may be acceptable at
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update time but it is not reasonable for the optimizer to run queries on other relations

when doing retrieves.

Distribution criteria for fragments will aot always exist. Tuples may be as-
signed to storage sites at m&om, 30 as to balance the aumber at each site, or on the
basis of where they ariginated. If no criteria exist, a query processar will have to either
assemble all of the fngme:;u at one site to run a query ar invoke 3 subquery at each of

the possible storage sites.

2.2.2 Replicated Copies

An exception to the above requirement for disjoint fragments is made to allow

the database to contain replicated copies of relations or fragments. The specific copy
of a relation or fragment will be named in the model by the site aumber in the super

script. That is, the copy of the j fragment of relation R, that is stored at site | is

called Ri. It is important to note that R, is a logical data name whereas R names a
specific physical copy of the data. The superseript afects only cost or performance and
has no effect on the logical rexnit of 2 query. As will be diseussed, most query proc;la-
ing strategies map the replicated database into a materialization before optimization
begins. A materialization is a mapping of each logical relation name to a single physi-
cal instance of that relation. If only one copy of a relation or fragment exists or is be-

ing considered the superseript is omitted.
2.3 Database Cost Model

In our cost modei of the distributed database, we must consider the three major
resources used in retrieving distributed data. The cost is a weighted sum of the proces-

sor time used, the network bandwidth used, and the time required for the disk to ae-
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cess the data

TotalCoat == DiskCost + ProcesporCost 4+ CommunicationsCost

The DiskCost is incurred at each page fetch.
DiskCost = D # Jhpagefeiches

where D is the cost incurred in retrieving one page from the disk. The ProcessingCost is

" incurred with each tuple requested.
ProcesserCost sm P = dituplerequesia

where P is the cost per tupie processed. For example, joining two relations, say R, and

R with 10 and 100 tupies respectirveiy nsing a nested loop invoives 1010 tupierequests.

As discussed above, the communications cost is proportional to the number of

pages (one message per page) sent acroos the network.
CommunicationaCost == C # Jimessages

C is the cost per message which inciudes the transfer time for the data, the line tur

naround time and the instructions required to set up and receive a message.

The relative sizes of these cost constants characterize the database environ-
meat. In a database like SDD-1 which works over the Arpanet, the value of Cis many
times that of D whereas in a local net they may be quite close. In Chapter 4 and Ap-
pendix 1 methods and anits for characterizing these weighting factors are discunssed.
Values are obtained for the constants P, C, and D for both a long haul network and a

local netwerk database.
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It is not being suggested here that this cost function is the optimization fune-
tion that shouid be minimized by the query processing algorithm. Rather, this fune-
tion is a total resource wsage function. It's usefulness is in illustrating how each of the
three major resources contribute to the total cost of processing a query. For example if
it turns out that the total cost of processing a given query by method A is 100 and by
method B is 150, we do oot conclude thas A is superior to B. Method B may utilize
more sites in parallel, increasing this total cost function while actnally running faster.
What is of inul"at is the fraction of the total cost due to each component. If in pian
A for a given environmeat only a few seconds of network time are required, while the
disk and processor time are high, it indicates that methods which wounld trade off more
network traffic for more parallel processing shouid be preferred. On the other hand, if
the 100 cost units is 95% due to communications overhead, this would indicate that al

gorithms which minimize network asage are appropriate.

As loug as none of the three resources is nearing 1009 utilization, this total
cost fanction is a valid indicator of the percentage of cost due to each resource. How-
ever, il one resource is a bottleneck, this model must be extended to consider queneing
effecta. In the local network evironment, the only candidate for such a model is the
disk system. Developing a queuneing modei of query processing is a difficuit andertak-
ing in itself and will not be attempted here.

The next chapter examines proposed solutions to the problem of query process-
ing in distributed databases. The solution space is defined and then several algorithms
are presented. The algorithms chosen for review here are selected becanse they are ac-

taally implemented or close to implementation.
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CHAPTER 3
Query Processing in Distributed Databases

3.1 Intraduction

The basic problem in evaluating a relational query in a distributed database is
that the information required may be on different machines. U the information re-
quired is all on one machine, then the problem reduces to that of determining an
efficient access path in a single site database. Assuming the query does span maltiple
machines, the boundary between machines may occur between reiations, between tu-
ples within a relation (horizontal {ragmentation) or between attributes of a3 reiation
(vertical fragmentation) as weil as in combinations of these three. Let us ignore for the

moment the problems of redundant data and fragmentation.

We are left with the general problem, that is, finding an access plan for multi-
variable queries that require joins on relations that span machine boundaries. The ex-
istence of the boundaries introduces three complexities not present in the single
machine environment. The first is that we will inevitably have to move some informa-
tion over the network, introducing a potential cost not present in single machine data~
bases. The second is that we pow have many redundant processors which can work in
parallel in evaluating a query, introducing a potential to decrease response time which

we did not have in single machine systems. The third complexity (which is being ig
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nored for the moment) is that redundant copies of data are aiso available, giving many
more options for accessing the needed information. So, our probiem is to use the op-
tions presented by redundancy to find in a reasonable amount of time, an efficient way

to combine information that spans machine boundaries.

The problem of finding the optimal query processing strategy has been shown
by [Hevner 79| to be NP-hard. The work of Chu and Hurley, reviewed in the next sec--

tion has shown how tao generate the entire solution space and how the time to seareh it
can be reduced. However, most strategies use heuristics to avoid the exponential com-
plexity of searching the entire solution space. These strategies do not produce true op-
timal solutions because they are susceptible to local minimums and are based on possi-
bly erronecus estimations of result refation sizes. However, they produce solutions that
are dramatically better than naive approaches [Epstein 80b]. Two of these heuristics
are described below.

As we have said, if data is dispersed, information must eventmally be sent
across the network; we cannot avoid some communications costs. However, we can
hope to reduee the volume required. The first technique is to perform all unary opera-
tions as soon as possible. The costs of performing unary operations are minute as they
never involve intersite transmissions and the time required to process a Select is almost
entirely the cost of retrieving the relation from disk. The benefits from this strategy
arise from the reduction properties of unary opérations. The iaput volume of data is
always greater than or equal to the output volume so they serve to reduce the scope of
the query. Just how much the size of the relations in the range is reduced by the
unary operators depends cn the distribution of the values in the attributes being res-
tricted aad various techniques have besn proposed to estimate the cardinality of the

result relations. [Epstein 30b] has shown through simulations that the plans resulting
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from optimization using these estimation techniques are only siightly inferior to plans

derived from perfect knowledge.

Secondly, it is often beneficial to exeeute all joins that can be executed with
only local computation. If these relations must be joined, chances are that there is no
cheaper way to accomplish the join than to perform it directly. This is of course, an
heuristic and not a theorem as it is possible to conceive of examples where it might
have been cheaper to first join one of the local relations with a remote one in such a
way as to greatly reduce its cardinality. However, the bemefits in the normal case far
outweigh the increased costs in these worst case examples. The advantage of this
heuristic is thas it reduces the number of relations remaining in the range of the query
from 2 to n-1 which reduces the namber of possible join orders by a factor of 2 (in the
absence of replication). By the above heuristics, the task of the distributed query op-

timizer is reduced to the problem of distributed join optimization.
3.2 Searching the Solution Space

There are two phases to the query optimization task as it is implemented by
most algorithms. The first phase generates and compares possible join orders (called
Jostrategies) which may be viewed as programs for an abstract join machine [Reiner
82]. These programs are represented by query trees in which the leal nodes are rela-
tions and internal godea are either joins or temporary result relations. The second, or
P-strategy phase generates programs for an abstract phyvical machine. These stra-
t.egie‘ are generally represented as computation graphs in which nodes are groups of
operations and ares represeat data movement. This phase considers the many different
join methods available for each join in the query trees. For example a typical abstract

physical machine might implemeat scan, join, sort, move, and create index operators
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[Rosenthal 82]. A cost model allows the optimizer to choose between the strategies in
the P domain. A query optimization algorithm is characterized by the sabsets of the P
and J spaces it considers and the cost model it uses to judge alternatives.

Chu and Hurley [Chu 82] show how to generate the entire space of feasible
query optimization strategies. They staln with an initial feasible solution or ifs. A
simple ifs. is obtained by transmitting the entire database to a single site and runaning
the query there as if it was a single site database. They describe algorithms to derive
the entire space of J-strategies from the ifs and subsequentiy to obtair all possible P-
strategy graphs.

The initial feasible solution is represented by a query tree in which each leaf is
a storage node for a relation, each internal node is a relational operation, and the root
is the result. Arcs linking the nodes indicate data flow from the leals towards the root
of the tree. Using the commutative, associative, and distributive properties of the reia-
tional operators the set of feasible query trees that produce the correct result are gen. -
erated.

If the goal is simply to insure that the optimal solation is generated, their aigo-

rithm prunes the set of feasible query trees using theorem I from [Cha 82.

Theorem [: [f the unit communication cost between any two sites in the
distributed database is the same, and the processing cost of a given operation is
the same for all computers and is proportional to the volume of data, then piae-
ing each unary operation at the lowest possible position in a query tree is a

necessary condition to obtain the optimal query processing policy.
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This theorem is a formal statement of the common wisdom that it is desirable
to perform unary operations first. The more expenmsive binary operations (joins) are
postponed in the hope thas the unary operations will reduce the volume of data and
thus make the joins cheaper.

Inordi-erforthisthmmtobeuedinamnld;uhm, we must add a further
stipulation. Sﬁppmo our initial feasible solution calls for a join of R, and R; on attrie
butes dy, and dn where 4, is 3 primary key for R,. Suppose further that each relation
contains 10 tuples and R, has an unclustered index on 4. In order to perform this
join, we would scan R, sequentially and for each tuple, we would get the corresponding
R, tuple using the index. This will require we fetch each tuple once for a total of 20
taple requests. Now consider the case if the query contains a cianse restricting R, on
some other domain 4. If this restriction is performed before the join as the above
theorem dictates, we would lose the mde: on the join Seld. Without the index, the

join requires 110 tuple requests. Thus we will state our version of the theorem.

Theorem !a& If the unit commanication cost between any two sites in
the distributed database is the same, and the processing cost of a given opera-
tion is the same for all computers and is proportional to the volume of data,
then for each unary operation on relations which do not have an index om any
domain named elsewhere in the query tree, placing each unary operation at the
lowest possible position in a query tree is a necessary condition to obtain the

optimal query processing policy.

Given the set of [easibie query trees in the J-space, Chn and Hurley's method
then transforms them into the complete set of query processing graphs. Each node of

the graphs represent a set of operations executed at a single site. Each arc represents a
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transmission of data between sites. 'fhe graphs are transiated into query processing
policies by mapping each node to an exeention site. Leal nodes are mapped to their file
staorage sites and three theorems generate possible mappings of internal nodes to sites.
Again, application of another theorem can eliminate grapha which counid not possibly

represent an optimum plan.

This reduced solution space may then be searched for the optimal plan. Each
graph is scored based on the cost function and the lowest cost graph selected. This
method guarantees an optimal plan because the entire solution space is considered.
While it is still inherently exponential, the algorithm performs in only 3 fraction of the
time of a complete exhaustive search, Furthermore, it can be easily extended to cover‘ .
semijoin Mﬁ by generating additional graphs at the fimal step in which each join
is replaced by the corresponding sequence of a semijoin followed by a join. In a two
phase optimization strategy such as this, the abstract physical machine can be extend-
ed with additional join methods such as semijoins without affecting the first phase.

3.3 The Distributed Ingres Proposal

Ingres (Interactive Graphies and Retrieval System [Stonebraker 78|) is a data-
base management system implementing the relational model of data [Codd 70|.
Curreat Vax Ingres comsists of two user processes on top of a Unix or LOCUS operat-
ing systemn. The first process, the “monitor”, is either an interactive interface to the
user’s terminal or an applications program with embedded EQUEL statements. [t for
mulates a character string representation of the query and passes it dowa a pipe to the
second process. The .seeond or “main" Ingres process interprets the query and prints

the results on the user's terminal.

24




Berkeley Distributed Ingres consists of a monitor and a collection of main [ngres
processes. The monitar is connected by a pipe to one of the main processes which is
the master. The master receives the character string representation of the query and
runs the query decompesition module. This module has the ability to cause subqueries
to be executed on other sites and to move relations or {ragments between sites via the
Unix version 4.2 interprocess communieations system. For a more compiete discussion |

of the system architecture see [Stonebraker T8|.
3.3.1 Query Processing in Single Site Ingres

Epstein’s Distributed Ingres query processing proposal [Epstein 73] is an exten-
sion of the single site algorithm. Thus it is essential to understand the standard Ingres
approach before proceeding to the distributed version.

Ingres builds an internal binary tree representation of the query. The left
branch of the root node specifies the list of resuit domains (RESDOMS), also called the
target list. The right branch of a RESDOM is a VAR node while the left branch is ei-
ther the next RESDOM or an end of list marker (a TREE node). A VAR node names
the attribute to participate in the result. It also contains pointers to a copy of the re-
lation relation tuple and the attribute relation tuple for the attribute to be used in pro-

cessing the query.

The right side of the tree is the list of qualifications clauses in conjunctive nor-
mai form. [t is represented by a list of AND nodes. The left branch of each AND is a
BOP node which specifies a single qualification while the right branch either heads the
remainder of the list (another AND node) or marks the end of the list (a QLEND
node). A BOP has an operator such as 's==' or '<'. Its left branch is a VAR node

while its right branch is either another VAR node or a value with a type specification.
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The interpretation of the claase is tha- -r.he statement ‘“left child operator right child”
must be true for any tuple surviving the qualification. If both children are VARs from
different reiations the BOP node specifies a join condition. If one child is a2 VAR and
the other is a constant, the qualification is a simple restriction such as “salary >

- 20000".
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RANGE OF s is supplier

RANGE OF p is part

RANGE OF y is spq

RETRIEVE (s.Sname, p.Pcolor)
WHERE (s.5# = y.S#)
AND (y.P# == p.P#)
AND ({p.Pname == 'boit’)
OR (p.Pname == 'nut'))

Figure 1: Ingres Query Tree.

ngres uses trees to represent queries and subqueries intermaily. Future exam-

ples of subqueries will wse QUEL but it shonld be understood that it is really parse
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trees that are being manipulated internaiiy.

The above tree specifies the query but it says nothing about how it is to be pro-
cessed. One method that would always work is to form the cartesian product of all the
relations in the raage stminent. Then test each tuple against each of the
qualifications and remave ones that do not satisfy all qualiﬂ:cation:. Finally project out
those fields specified in the targes list and eliminate dnpiima tupies. However, the
cost of this simple method can be enormous. Consider the query in the previous exam-
ple on the database of 3 small manufacturing company. They might have 100 different
suppliers supplying 1000 different parts. With only a 109 overlap in what suppliers
supply there would be 10,000 spq tuples. Thus the cartesian product of the range con-
tains 1,000,000,000 tuples. At, say 100 bytes per tupie, processing this query would re-
quire 100 gigabytes of temporary storage to say noching of the time required to scan

such a relation.

In an interactive system such as Ingres, query “optimization” is not possible.
There are simply too many possible ways of attacking a query and the real cost is too
complex. Ipstead, the database searches for a aubofninal algorithm. Using several
“rules of thumb™ that work in ail cases, Ingres breaks down the query into pieces that
are always simpler than the original query. When the pieces are brokea down into
suficiently simple subqueries, they are individually optimized. Thus it uses a “greedy”
algorithm in which each piece is optimized without looking at the global structure of
the query. While it is capable of generating any arbitrary query tree, the gresdy looka- .

head scheme canses it to examine only a very small number of alternatives Reiner 82|.

Ingres uses a strategy called decompesition to break down a query. Decomposi-

tion has two main objectives: Firstly, that there be no cartesian product formed; And
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secondly, that there be no geometric growth, That is, that the number of tuples

scanned be kept to 3 minimum [Wong 78]. Decomposition uses two maia tools:

1. Given a query with a range of n relations, it can be repiaced by a set of queries
on n-1 relations. This is accomplished by substitating, tuple by tuple, for the
relation removed. This process is called (uple sudstitution. |

2. Aqurmebchrokenintoasequeneeofof;woqneiteudQ2whera
Q1 and Q2 have only one relasion in common. This is called reduction.

Consider the query, “Retrieve all suppliers who supply part number 1.

RANGE OF s is supplier
RANGE OF y s spq
RETRIEVE (s.Sname) WHERE {3.S# = y.S#)
AND (y.P# =1)
Using method 2 above, this query can be broken into two pieces that overlap on only
one variable. .

-

RANGE OF y is spq
RETRIEVE (y.5#) INTO temp
WHERE (y.P# = 1)

RANGE OF s is spq

RANGE OF ¢ is temp

RETRIEVE (s.Sname) WHERE (s.S#% == t.5#%)
The first has a range of only one relation and can be submitted directly to Ingres’ one
variable query processor (OVQP). The second may be attacked by tuple substitution.

Suppose the spq relation contained the following tuples:

29




pq L_Sqii P

1 1 10
2 1 100
3 1 14
3 1
The resuit of the first query would be:
temp S
1
3

Tuple substitution would decompose the remaining query into thres pieces in which the
variable t.S# has been replaced by the three values im temp.

RETRIEVE (s.Sname) WHERE (s S# == 1)
RETRIEVE (s.Sname) WHERE (s.S¢ = 2)
RETRIEVE (s.Sname) WHERE (3.S# = 3)

The Ingres query decomposition algerithm is a combination of the two tech-
niques of reduction and substitution. The Reduction module divides the query into ir-
reducible componeats. Subquery Sequencing turms the result of Reduction into a se-
quence of calls to Tuple Sabstitution. Tuple Substitution calls Variable Selection to
select which relation to substitute for. The entire decomponition process is repeated re-
cursively for each sabquery generated until only one rariable subqueries are left. These

one variable queries are executed by .the One Variable Query Processor.
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Figure 2: Ingres Query Decomposition Calling Sequence.

It is important to note that tuple substitation and detachment of averiapping
subqueries represent no optimization in and of themseives. Tuple substitution is tan-
tamount to forming a cartesian product in the number of tuples scanned if not in
storage requirements. The optimization is embodied in the Variable Selection module.
Firstly, it performs all one variable subqueries before doing any tuple substitution.
Thus it ﬁduca the cardinality of the join relations. Consider the query “Retrieve the
names of all suppliers supplying part number 1."" Assume the cardinalities of sapplier
and spq are 100 and 10,000 respectively and that there ten suppliers who sapply rpan
1. If the select out of spq is done before the join of 3pq and suppiier, 10,000 + 10(100)
== 11,000 tuples are examined. If, however, the join is dome first, 100(10,000) ==
1,000,000 tuples must be examined; a difference of two orders of magnitude. Secondly,
the Variable Selection module decides which relation to substitate for. This is

equivalent to deciding which variable to make the inner and which the outer in a nest-
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ed loop. Suppose we must join the 100 supplier taples wif.h the 10,000 spq tuples.
Further, assume that there are 10 tuples per disk block and that we can keep only 10
blocks in core at a2 time. The entire suppiier relation will fit in core while spq will zot.
If apq is the variable substitated for, it will require 1000 + 10 == 1010 block fetches. If,
however, we substitute for supplier, it will require 10 + 100(1000) == 100,010 block
fetches to do the join. The intelligence is embodied in the heuristies of the Variable
Selection moduie. These heuristics are detailed in [Wong 78).

3.3.3 Query Processing in Berkeley Distributed Ingres

[Stonebraker 78] presents a proposed set of extensions and modifications to -
Ingres to allow it to manage data distributed over multiple machines. We will examine
only those isaues reiated to query processing in such a system. The following sections
are a review of the query processing strategy proposed in [Epstein 78| and [Epstein
80b]. The algurithms and equations reported here are the work of Epstein, Stonebrak-
er and Wong and their implementation is anderway at the University of California,

Berkeley.

What the user interface to fragment definition aad placement should look like is
a very open question. Here we will use the additions to QUEL suggested in [Stone-

beaker 78] in which the location of data can be explicitly visible to the user.

Suppoee we wish to define the supplier relation such that S1 stores all suppliers
located in Los Angeles, S2 stores all suppliers in San Diego, and S3 stores the remaining
suppliers. This is expressed in extended QUEL by:

RANGE CF 3 IS supplier
DIST_CREATE supplier (Sname == c18, S# == [4, Scity == ¢12)
(s.Scity == 'Los Angeles’ == 51,
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s.Scity == 'San Diego’ == 52,
3.5city » 'Los Angeles’
AND

s.Scity y 'San Diego’ = 53)

The abave example will create a distributed supplier relation. The system will
automaticaily insure that future updates are accomplished so as to meet the distribo-
tion criteria. Furthermore, the system will use the distribution criteria to optimize the
Query. To accomplish this, before forking a subquery at any site, it checks if aay of
the qualifications in the query contradict any of the distribution criteria. If the inter
section of the set of possible tuples satisfying the query with the set of tuples that
could exist at a particular site is obviousiy empty, the subquery is not run as that site.
To handle the general case requires a theorem prover. However, given that distribntic;n
criteria are restricted to single variabie statements, 3 simple mechanism will suifice for

most cases,
3.3.3.1 The Distributed Ingres Algorithm

The basis of the distributed QUEL processing algorithm proposed iz [Epstein
78] is the same a3 the decomposition procedure used in single site Ingres. It breaks the
query down into simple pieces and optimizes them individmally. The “master’’ Ingres
site (the site from which the query was initiated) orchestrates the processing of the
query. It uses the parse tree (Figure 1), the location of each fragment, its cardinality
and distribution criteria, and the network type (point to point or broadcast). The

master site in Berkeley’s implementation, has at its disposal the ability to:
i. iavoke a slave Ingres at site i to run query Q.

2. move the fragment R, to specified sitea.
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The Irst step of the aigorithm is to perform all one variable subqueries. The
two one variable (unary) operations considered are select and project. The number of
tuples resuiting from a select is always less than or equal to the namber of tuples in the
operand relation. Similarly th width of tupies resniting from a project is always less
than or equal to the width of the input tuples. So for any unary operation, the output
volume of data is always less than or equal to the input volume of data. Doing unary
operations first reduces the cost of future binary operatioas 'by reducing the number of
tupies in the input relations. Unary operations are quite cheap as compared to binary
operations betause they do not involve any network communications. There are exam-
ples in which postponing the unary operations is superior bat the penalty in such cases °
is very small compared to the gain in the nsual case. .

Consider 3 database with a supplier reiation fragmented as defined above and

the query:

RANGE OF s is supplier
RANGE OF y is spq ~
RANGE OF p is part
RETRIEVE (p.Pname) WHERE (y.S# == 3.S#)
AND (s.Sstatus > 10)
AND (y.P# == p.P#)

The restriction on the supplier relation is a one variable subquery which may be

separated and run immediately.

RANGE OF 3 IS supplier
RETRIEVE INTO temp (3.S#)
WHERE (s.Sstatus > 10)

The master Ingres site first checks that the qualification (s.Sstatus > 10) does not con-

tradict the distribution criteria for any of the sites storing supplier. Since in this case
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there is no condiet, it creates the temp relation distributed among 91, 92, and 33 with
no distribution criteria. The master Ingres then invokes a slave process at each of the
three sites storing {ragments of suppiier and instructs them to run the above subquery.

After ranning the subquery, the remaining query is:

RANGE OF ¢ [S temp

RANGE OF y IS spq

RETRIEVE (y.Pname) WHERE (t.S# == y S#%)
AND (y.P# == p.P#)

Since the query is expressed in conjunctive normal form, if aay subquery was
not satisfied by any tuples, then the whole query is false and we can quit. In cur ex-
ample there was only one one variable subquery and we will assume each of the three

sites yielded sonte tuples.

The next step is to apply the reduction algorithm presented in the single site
discussion [Woang 78] to the remaining query to produce a sequence of queries that

overlap on at most one variable. Our exampie query is broken into:

RANGE OF t IS temp
RANGE OF y IS spq
RETRIEVE INTO templ (y.P#)
WHERE (t.S# == y.S#)
followed by
RANGE OF t IS templ

RANGE OF p IS part
RETRIEVE (p.Pname) WHERE (p.P# == t.P#)

The algorithm now selects the cheapest remaining piece of the query to process

and decides whether to evaluate it directly or to sabdivide it further. For example, if
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the piece selected is 2 join on three relations it could moave all reiations to one site and
perform the join there. Alternatively, it could join two of the three to produce a tem-
porary relation and thea join that to the third. Berkeley Ingres considers all possible
ways of subdividing the query and compares the estimated cost of each to the estimat-
ed cost of executing the query directly. This exhaustive search is made possible by the

assumption that the number of relations remaining in the range of aa irreducible

subquery is qnij_:a small.

Then Epstein’s algorithm must choose which sites will process the piece select-
ed. If the query can run at a colleetion of sites without moving any data, the master
simply multicasts the query to these sites and lets it run. In our example, we need to )
join temp and spq where temp is {ragmented between three sites and spq is at one site.
Thus some data must be moved before the processing can proceed.

There are at least three options for our example. Since temp is distribated
between three sites and 3pq is at ome, we could multicast spq to the sites storing temp.
The subquery joining temp and spq could thea run in parallei at the three sites produc-
ing a distributed templ relation. Alternatively, we could choose to assemble the pieces
of temp at the site storing spq. This might be the choice of preference if the spq rela-
tion is much larger than temp. Finally, we might want to equalize the load between
the three (or more) machines by balaacing the number of temp tuples in each of the
fragments. Since the time to process the subquery is equal to the maximum of the

time required at the individual sites, the advantage of load balancing is obvious.

In the centralized Ingres case choosing how to process the “next piece” amount-
ed to choosing R,, the variable to substitute for given a query on relations Ry, Ry, ...,

R. However, doing tupie substitution in the distributed case is enormousiy expensive
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as it involves a Mﬂsion for each of the tuples in the relation substituted for.
Sending small amounts of data across the net is in general inefficient because there is
an imitial setuﬁ cost for net messages which is independent of the volume of data.
Rather thaa using tuple substitation, Ingres uses fragment substitution. The number,
K, of fragments into which R, is divided determines the degree of parallelism and the
number of transmissions reqmred to assembie the remaining n-1 relations at the pro-
_cessing sites. Furthermore, fragment substitution allows the optimizer to take advan-
tage of the fact that R, may already be fragmented so that no {urther transmissions
may be required to distributed the substituted variable. The optimization problem is

to determine K sites to be processing sites and R, the relation to be left fragmented.

Some criteria must be used for comparing the varions strategies. Epstein's cost
functions, allow Ingres to minimize either network communications or processing time

for either point to point ar broadcast networks.
3.3.3.3 Processing Cost Fuaction

Epstein defines P(Q) to be the time required to process the query Q if K = ;
that is, if it is done on a single site. If a vralue of K greater than 1 is chosen, then some
processing may be done in parallel. The time required for the whole query is equal to
the maximum of the time required at each of the sites which is approximately propor
tional to the number of tupies from the fragment of R, at that site, assuming the frag-

ments are disjoiat.

rizdR,)

WH Q)

max AQ,) = max

It is clear that maximum parallelism and thus mipimum processing time is achieved

when the nambers of tuples from R, at each site are equal. Balaneing the number of
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tupies in each fragmeat improves the processing time from

rize{ R,,) 1
=ar) " 79

where site j was the site with the larzers fragment of R, The system must move tu-
ples from R, tupies so that each site has the same number. The additional amount of
daazhammbnrmnimdtoequnathahgmnuisgheiby

N
3 pent sise(R,) - %.uqa,)]
“ -
where the function pos(x) equals x for x > 0 and Q otherwise.
3.3.2.3 The Communications Cost Function

In the Berkeley Distributed Ingres work, the cost of sending x pages of data to
K sites is denoted Cx{z). This function differs for broadcast networks and point-to-
point networks. [n broadcast networks, the cost of sending x pages to K sites is the
same 3s the cost of sending x pages to any number of sites whereas in point-to-point
systems, the cost of seading x pages to K sites is K times the cost of sending x pages to :
one site. Assuming the relation R, is already (ragmented at K of the N sites in the net-

work, then the communications cost is givea by:
4 ] N ] N
Com ¥ c,_l[z uze(R,,)] + 3 c.{g m(x‘,)] + 3 c,[mm,,)]
) .oy k-4l .y JiCd

Using these functions, the algorithm can compare network communication costs, pro-

cessing times and the costs and benefits of equalizing the fragments of R,
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3.3.2.4 Minimizing Communications Costs

The comnuicat.ians. cost function is particularly simple for broadcast net-
works. The cost is minimized when K equals 1 or K equals the number of sites which
store fragments of R, [Epstein 73| gives the following two rules for minimizing com-

munieations costs in broadcast detworks:

L If there exists a site for which the total of all relevaat data stored at that site

exceeds the size of the largest reiation choose K == 1 and use that site.

2. Otherwise choose R, to be the largest relation and chocse K to be the namber

of sites which store fragments of R,
Minimizing commanications in the point to point case is somewhat more complieatéd.

The rules are:

L. Arraage the sites in deereasing order of the volume of data at that site. Thus

site 1 contains the most data.

2 Let R, be the largest relation.

3. Choose K == 1 and the processing site to be site 1 if

g'[n'zqﬂ.) - s Ry)] > rizeRy)

This says process -t the site containing the largest volume of data if the
number of tuples it must receive is greater than the number of tuples of R, that

it has,

4, Choose K to be the largest j such that
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T ’[m(#.) - siseR,)| < rizelR,)

This says 3 site should be chosen to be a processing site if and only if the
valume of data that it. must receive if it is a processing site is less then the ad-
ditional data that it would have to transmit as a nonprocessing site. Sites |

through j are processing sites.
3.3.2.5 Minimising Processing Costs

In order to minimize the processing costs we must achieve maximum parallel-
ism. This is achieved when all N sites in the network are processing sites and the tu-
ples of relation R, are equally distributed among all processing sites. Therefore, the al-
gorithm chooses K equal to N. Furthermore, the formuia given above for the process-
ing time at each site in terma of P(Q) is independent of which relation is chosen as R,

Thus Ingres can choose to leave {ragmented the relation which mirimizes the transmis-

sions costs for N sites.
3.3.2.8 Running the Query

The last step in processing a query is to run the subquery at the selected sites.
If the resuit is empty, the query processor can quit. Otherwise, it adjusts the ranges of
variables remaining in the query to redect the new temporary relations and goes back

to the “select next piece” step.
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1. Dc 2!l one variable subqueries.

2. Appiy reduction algorithm.

3. For each remairing subquery do:
4. Decide whether to subdivide farther.
5. Choose processing sites and relations to move.
8. Move relations.

7. Rua the local queriea.

3.3.3 Discussion of the Ingres Algorithm

The Distributed Ingres approach is known as the “fragment and replicate” stra-
tegy. It is derived from the ceatralized technique of decompesition [Wong 76 and its
basic strategy is to fragment one relation and to replicate the others. All of the sites
with fragments of the chosen relation can work in parallel to execute 2 join. This ap-
proach does not perform well in sitesto-site networks or in un{ragmented databases
[Saceo 81]. In order to do a join, we must first distribute fragments of ome reiation
about the network. This is expensive if the relation was not already fragmented.
Then the remaining 2«1 relations have to be sent to ail of the K processing sites which,
in the absence of a broadcast capability involves transmitting each reiation K times.
While technologies such as the Ethernet or the Token Ring are inherently broadcast
technologies at their lowest levels, the requirements for refiability necessitate the impo-

sition of protocols which effectively create point to point semantics.

The Distributed [ngres algorithm provides solutions to the problem of selecting
K and R, at the two extremes, minimizing processing costs and minimizing communica-

tions costs. Minimizing processing cost implies assaming that network usage is free
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while minizizing communications c““.- implies that local processing is free. Assuming
that one of the compenents of cost is zero greatly reduces the complexity of the optimi-
zation function and its solution. The quantity that we would really like to minimize is
some linear combination of response time and total time, each of which are non trivial
functions of procemsing time and network traffic. Minimizing response time is the goal
from a individual user’s point of view while minimizing total time maximizes the
throaghput of the system as a whole (in the absence of queneing delays). Iz siow net-
works like the ARPANET where sustained data rates are of the order of 10
kilobits/see, the communications costs are 3 good éppmximacian of real costs and the
assumption of zero processing costs u reasonable. It is not satisfactory to minimize |
| communications or processing costs alone in a local network database. Our resuits, rev -
ported in the following section, indicate that the most significant source of delay in
query processing is neither processing or network communications bat rather the re-
trievai of data from the disk. With the goal of reducing the cost of evaluating an ac-
cess plan, Distributed Ingres has proposed a cost model that is insufficient to model the

true nature of modern local area networks.

Distributed Iagres also does not attack the problem of fragmented relations in
its full geaerality. [t does allow the user to define distribution criteria which determin-
istically specify the site at which any given tuple will be stored, based either on the
values of attributes within the tuple or on its creation site. The fragments of a relation
must be disjoint in the [ngres distributed data model. Thus each taple occurs oaly
once and the union of the sets of tuples from all sites storing a relation form the set
(without duplicate tuples) of all tuples in the reiation. This restriction seems to be an
unfortunate breach of local autonomy as it means that users cannot independently de-

cide which tuples each would like to store at their sites. In an ideal system, one site
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with a large amount of disk space and many users should be able to store all tupies
while another with less space but the requirement for fast access of frequently needed
data should be able to store some subset of interest to it. Stated differently, user A’'s
desire to store tuples for suppliers located in Los Angeles on his workstation should not
preeiml:ie user B from storing tuples for suppiiers in Los Angeles or Dearver. Storing re-
latio {ragmented in this way is not diffcait. Each fragment is simpiy a different reja-
tion from the point of view of the lowest levels of the database. However, it greatly
complicates the design of middle levels of the database whick mast maks the many re-
lation fragments transparently appear as one refation to the user. The most difficult

probilems occur in the directory design and the data definition interface.

It is important to note that the issues of fragmentation and replication are inex-
tricably linked. Full relation replication is a special and particularly interesting case of
fragmentation ia which all tuples occur at each storage site. Alternatively, fragmenta
tion can be viewed as tuple level replication. Replication has the potential to increase
system performance and reliability. Distributed Ingres does not address this issue ei-
ther, and understandably so as it is a very difficalt problem. Comsider the task of
finding the optimum join order for four refations. The gumber of possible join orders
is four factorial or 24 which is a reasonably small space in which to do an exhaustive -
search. Now consider the sitnation if each of the relations is replicated at three sites.

The number of ways these can be joined is now given by

@ T~

which is far too large to search exhaustively. The approach taken by most query op-
timizers is to form a ‘“materialization” of the database independently of query optimi-

zation [Bernstein 21b), (Sacco 81]. Materializations of 3 database consist of exactly one
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copy of each relation in the range of the query and are constructed using heuristics.
These heuristics are poorly understood and are generally independent of the query
characteristics and thus do not guarantee optimal scheduies.

The site at whick the result is needed is not considered by the Distributed
Ingres proposal. In many cases, thers is a final transmission cost to move the result to
he destination site which is not considered in the cost caleuiation. It shouid be a rela-
tively minor modification to the algorithm to include the final transmission cost in the

evaluation of the access scheme.

Epstein’s Distributed Ingres pmp;:sal does not comsider the potential savings °
from the use of semi-joins which are a valuable tool in distributed query processing.
The idea behind 3 semi-join is to send over the network only that data which will
eventually participate in the solution. In order to perform a distributed equi-join on

attribute A between R, at site 1 and R, at site 2 we could:

L. Project attribute A from R, and send the column to site 2.

2. Join R, with the column of R, and put the resuit in Ryw,
3. Send R,y to site 1.
4. Join R,y 30d R;.

The above schedule, first does a semi-join of R; and R, to reduce R, to only
those tuples which will actually join with R, It thea performs the join between the R,
and the surviving tuples of R, Semi-joins alone are not sufficient to evaluate arbitrary
reiational queries. When data resides in two relations that are at different sites, we

must eventually transmit one of those relations and perform a join. The role of the
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semi-join is to limit the communications cost required to perform the join as much as

possible.

In {Bernstein 81] and [Goodmaa 82| the reduction properties of semi-joins have
beea investigated. A sequence of semi-joins is called a semi-join program. Any semi-
join program that .re:tricts the database to only those tuples that participate in the

result (with respect to a given query q) is said to be 3 full reducer.

We define a query graph for a3 query q 23 follows. Thereisa node for each rela-
tion in the range of q. There is an are between each pair of nodes i and j for which
there is a clause in the qualifications list of q that references both R, and R. The set Q
of all queries is partitioned into two classes. A query is called a tree query (TQ) il its
query graph is a tree. Otherwise its graph contains a cycle and it is called a cyelic

query (CQ)-

These are important distinctions because for all q which are elements of TQ
there exist semi-join programs which are [uil reducers. For cyclic queries, not anly does
no full reducer exist for ail database states, but no sequence of semi-joins that is even
partially begeficial may exist. [Bernstein 81 gives a linear time algorithm for determin-

ing if a query is a member of TQ or CQ.
Semi-joins can result in 3 large savings when:
1. commanications costs are high.

2. the join field is very small compared to the length of the tuple.

3 a small percentage of the tapies participate in the join.
4, the relations are large enough that in-transit time dominates startup costs.
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[Sacco 31] suggests that semi-join strategies are extremely beneficial for queries
in which a small number of semi-joins will fully reduce the query. The performance of
semi-joins for cyelic queries and for queries that are not f{ully reduced by 2 few semi-
joins is generally very poor. While semi-joins appear to be essential for the perfor-
mance of systems that must contend with siow networks, we would not expect semi-

joins to be very useful in local network databases.
3.4 Query Processing in SDD-1

SDD-1 is a Distributed Relational Database developed by the Computer Cor

poration of America [Rothaie 30]. It manages data geographically distributed among
sites connected by the Arpanet. The database provides {or redundant storage but the -

query mechanism considers only a materialization of the database. As network com-
muaications are considered to be the bottleneck in the system, the goal of the query

processing mechanism is to minimize network communications.
3.4.1 The Hill Climbing Approach

The original SDD-1 aigorithm [Wong 77| was one of the first distributed query
processing algorithms published. The algorithm selects an Initial Feasible Solution
(IFS) and then tries to make stepwise improvements. To construct the [FS the stra-

tegy is 23 followa:

1. Perform all local operations (selects and projects) that can be done without

moving any data.

2 Make the minimum gumber of relation maves which will aswemble ail data at

one site.
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The idea behind this appm#h is that distributed query processing has to con-
tend with two types of boundaries: between relations and between sites. Traversing
machine boundaries (moves) ineurs transmission costs and traversing relation boun-
daries (joins) incurs processing costs. Optimizing moves is the primary concern in the
SDD-1 environment and thus Wong’s strategy isolates the two problems. This is done

by considering two diferent views of the database (denoted V; and V3).

Vi: The aser’s view consists of the user data model plus some or all of the distribution

information.

Vi The Distribution view consists of one relation per site each of whick is the cartesian
product of the relations stored at that site.

Step 2 in the formation of the [FS above finds a transformation of the query on V; into

a query on 3 single variable {site). Next the algorithm attempts to optimize this

transformation.

Wong denotes by M, the sequence of moves compile-d in step 2. The next step
is to attempt to replace M, by two sets of moves, M, and M, that when executed
sequeatially with some local processing between them have the same result as M, The
{My, Mz} pair that decreases total cost the most is selected. The algorithm is applied

recursively to each of the pieces until no further beneficial modifications caa be found.

Like Ingres, this is a greedy algorithm and thus cannot possibiy guarantee an
optimal solution. Avenues which have high initial costs but which lead to greater

overall savings at later stages may be discarded in favor of more immediate gains.
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3.4.3 The Final Version

[Goodman 79| ceports the algorithm as it was finally implemeated in SDD-1.
The final version of the SDD-1 algorithm differs from the first version in three impor-

taat ways [Sacco 81
1. It recognizes the importance of semi-joins in distributed query processing.

2. " It uses a simpler cost model (which is appropriate for the Arpanet) in which
| processing cests and message setup costs are zero and the communications costs

are proportional to the volame of data.

3. Toatal ﬁne is minimized. (The Ent version could minimize total or elapsed |
time.)
The basic plan is in three steps and differs little from the original version. First, a pro-
gram P of relational operations executed at the various sites to delimit a subset of the
database. This phase determines an envelope which contains a superset of those tuples
actually required to process the query. Next, this envelope is transmitted to a single
site. Finally, the renauung query iy executed at the chosen site. The optimization
problem is primarily in the reduction phase and this is where this algorithm differs

from the previous one.

A reduction of a database D with respect to a query Q is any database ' such
that QD) < ¥ < D. A reducer for Q is a program P of relational operations sach
that for all databases D, P(D) is a reduction of D with respect to Q. The benefit of a
reducer is the amount of data it removes from the database. Its cost is the amount of
intersite transfer of data that the reducer requires. In this cost model, restricts and

projects entail no cost as they require no data to be moved. Since they have no cost
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and have positive beﬁeﬁta, our reduction stage applies all of the restrictions and projec-
tions allowed by the query. Any {urther reduction requires some transmission of data.
As we have seen before, the semi-join is the ideal operator for such an environment. it
can- limit the scope of the database without transmitting any complete reiations.
Furthermore, semi-joins always result in a non-negative benefit whereas joins can actu-

ally increase the size of the envelope. The complete algorithm is as follows:

L. P == the sequence of all local operations permitted by the envelope, E.
2 Estimate the cost and benefit of all non local semijoins permitted by E.
3. Do while some non local semijoia has benefit > cost.

4, Let sj be the mos: profitable semijoin.

S.  Append sj to P.

8. Estimate the reduction effect of sj and update the cost and benefits ac-
cordingly.

7. End ioop.

a. For each site S let size(S) equal the sum of the sizes of all relations stored at S
and referenced by Q.

9. Select S, ta be the site with maximam #ize.
10. Append to P commands to move data from all other sites to S,

11. End.

There are at least two simple enhancements to this method [Bernstein 81bj.
The first enhancement is to reorder the semijoins within the program in such a way so
as to reduce the cost of doing some without inereasing the cost of any others. This is
accomplished by delaying some expensive semijoins until the reiations involved have

been reduced by other less expensive semijoins. This compensates to some exteat for

49




the lack of backup in the search algerithm.

Bernstein's second enhancement takes care of mistakes that can be made a3 a
result of having chosen the sequence of reductions before picking the site at which the
processing will be done. We can prune from P those semijoins that are readered

- unprofitable by the choice of 5,

It is important to nots that the SDD-1 strategy compiles queries whereas Ingres
mt,erpteta them. A compiled approach is much more semsitive to the quality of the es-
timates of the efect of its operators than is an interpreted approach which gets feed-
back after each operation. Furthermore, the SDD-1 algorithm, like Ingres, is a greedy
algorithm. [t maximizes the immediate gain, never !ookigg ahead and pever baeking'_
up. Thus it too is distinctly sub-optimal. The algorithm due to Cha and Hurley for
generating the solution space, while inherently exponential, does indeed yieid the op-
timal solution. It may be a reasonable approach if access plans are compiled and used

many times.
3.5 Distributed Query Compilation in R»

The R+ database [Haas 32| like System R {Astrahan 78] on which it is based,
takes a query compilation approach to distributed query optimization. R* compiles
SQL statements into low level programs or sccess modules which make cails to the
Research Storage System or RSS+ routines. In System R the access modules were actu-
ally machine code. In R+ they are a higher level representation, similar to Paseal P-
codes, which are executed by an access interpreter at run time [Danieis 82]. The access
modules are themselves stored in the database. The desigmers believe that by compil-
ing queries and re-using the access modules, they achieve considerable performance im-

provements over systems such as Ingres which use an interpretive approach (Chamber-
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lin 81). By compiling queries, R* avoids the overhead of having to perform access path
selection each time a query is run. However, R* must record with each access moduie,
the dependencies upen which it is based to ensure that nothing has changed between
compilation time and excution time which would necessitate re-compilation [Danieis
82). For example, an index upon which an access module relies may have been dropped

|
or a user's authorization may have changed.

Beeansc queries are assumed ta be compiled off line and wsed maay times, the
designers of R+ are willing to allow the optimizer do more work to find an optimal ac-
cess plan than were the designers of Ingres or SDD-1. Thus R* uses exhaustive search
to find the optimal soluticn. The search algorithm considers both nested loop’ and
merge scan methods for performing joins. I also considers all possible orders of table
access and all methods available for accessing each table [Daniels 32}

The cost of performing the exhaustive search is reduced by the use of dynamic
programming techniques [Selinger 79|. Dymamic programming is useful in selecting the
join otders for multi-table joina. N reiation joins are implemented as a sequeance of two
way joins. Two of the relations are joined together, thena each additional relation is
successively joined to the composite. The cost of performing each join depends on the
cardinality, location and order of the tuples in the composite relation and the single re- A
lation being joined, and not om the method in which the composite was formed. This
satisfies the principle of optimality [Hillier 74]. Thus only the cheapest method of ob-
taining each interesting ordering of the composite relation must be maintained in the

search tree.

The master site selects the global access plan and distributes the individual

parts to be executed at apprentice sites. The global plan consists of the order of tabie
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accesses and the method to be used for éach muiti-site join. Each subquery is compiled
separateiy at the site at which it runs. The costs of retrieving tables at the apprentice
sites that are used for the giobal optimization are based on munau:s of the access path
" which the apprentices will use. The global optimizer does ot have complete
knowledge about all indexes available to the storage sites. R* allows the apprentices to
recompile their portions of a query without requiring giobal reoptimization. [Ng 82}
contends that local recompilation often resuits in a query‘ processing strategy that is
stili optimal wén though access paths relied upoa in the 6rigina.l giobal plan may have
been dropped. R* does allow apprentices to initiate global recompilation if relations
have migrated or it is determined by heuristics that the plan resuiting from a local

recompilation would be greatly sub-optimal.

The R+ approach to query processing is quite differeat from SDD-1 and Ingres.
The most major difference is that it uses a tree searching approach. Thus it examines
the entire solution space and finds the optimal solution given its estimates of resuit re-
lation sizes. Ingres and SDD-1 use hillclimbing strategies to incrementaily modify an
initial feasible solution and thc7 are therefore susceptible to local maximums. R»* com-
mits itseif to an entire access plan before executing any part. Consequently, the Re
query optimizer cannot change its strategy if one of its estimates turns out to be very
inaccurate. Since it relies less on heuristics which contain knowledge about the en-
vironment and more on search, the R+ algorithm is more easily adaptable to diferent
cost environments. There is no assumption that network communications are a

bottleneck built into the algorithm.

It must be remembered that the R+ algorithm is intended to solve a different
problem from that faced in Ingres and SDD<1. R+ assumes that queries are often com-

plex, reference very large databases, and are used repeatedly. Ingres and SDD-1 are in-
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tended for interactive systems in which users sit at terminals and formulate relatively
simple queries. ingres might weil benefit from using a compilation and exhaustive

search strategy for EQUEI; queries.

The next chapter presents qualitative and quantitative resuits about local net~
“ works as an eavironment in which to do query processing. Chapter 4 reports measure
. ments which determine values for the parameters of the cost model introduced in
Chapter 2. Using these values the relative importance of network traffic, local process-

ing and disk retrievals in the cost fanction is determined.
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CHAPTER 4
The Local Network Eavironment

4.1 The Computing Eavironment of the Future

It is widely predicted and partially demonstrated that the primary roie of the.
computer in the office of the future will be 23 a communication system. While “com- .
maunication system™ used to simpiy simply to the telephone and mail systems, it now
carries 3 much broader meaning. Each function of an office: data storage and process-
ing, document preparation, forms creation and compietion, planning, aad forecasiing
must become an integral part of the office system. Much of these functions depend on
the data management services if they are to be successful. This thesis attacks some of
the problems associated with designing a distributed database to operate in the new

generation of computer petworks.

The modern compauting environment (as opposed to that of the fature) is
characterized by a large central compater facility with a hodgepodge of smaller sys-
tems. The central facility is responsible for maintaining large databases such as em-
ployee records and payroil applications, and operates primarily as a batch processor.
Because of the inflexibility of the central facility, most large companies have acquired
many satellite minicomputer systems. These smaller machines usnally belong to indivie

dual departments or projects and consequently there is very little coordination among
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them. Thus they often canno: sommunicate with each other without hervic humaa in-
tervention {carrying tapes), caanat share axpensive hardware like printers, caanot share
software or data, and run different operating systems requiring the retraining of work-
ers when they change projects. The relatively low price of these minicomputers allows
this chaos to come about without any coordination from higher levels of management.
However, now that many of these systems are in place, it is increasingly apparent that
wge_tﬁu, f.he;n systems represent an emormous expenae and warrant more carefui coor

dination and management.

Into this picture has come a new breed of computer, the personal work atation.
A workstation with a processor of equivalent power to a large minicomputer, a kaif
megabyte or more of memory, a winchester disk, 3 network interface and a bitmap ter
minal costs only a few thousand doilars. These machines are designed and priced to

devote one machine to each person.

However, a stand alone desk top computer does little more thaa an electric
typewriter and a filing cabinet in helping with the real business of an office, communi-
cation. These systems must be tied together by a local area network so that users may
send mail, share files, and access expensive shared resources. Thus the local area net-

work is a primary component of the new generation of office systems.

The underlying topology of this office system of the future is finally erystalizing.
The mode! will probably consist of an ethernet like local area network snaking through
each building or group of buildings. There will be gateways to other local area net-
works of similar or different technologies (e.g. ring networks) and also gateways to long
distapes petworks. These long haul networks, primarily provided by common carriers,

will link branch offices in other cities together and also provide access to other services
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such as market reports, ma.‘ll systems, and airline reservations. Within the building,
each qualified =mployee will have a workstation on his desk with a small amount of
disk storage. There may remain a central facility, also tied to the network consisting
of 3 large mainframe for computation intensive jobs and record keeping. It will be pos-
sible for the network to run a distributed operating system that makes the network
Wt to most users. The data and computing resources of the central facility as
'ella all other nodes would be aceessibl‘e from the individual’s workstation in such a
ant dia‘tributed system. '

4.2 How This Differs From Modern Networks

There are three common models of the modern computer system that are sub- -
sumed by the above picture of the distributed system of the future. They are, the
large ceatral facility, the loosely connected local network of small machines, and the
low bandwidth natioawide network linking local systems. By virtue of their different
topologies, user model, and resource cost parameters, transparent local networks make
3 very different environment ia which to perform distribated database query optimiza-

tion.
4.2.1 Qualitative Diferences

The network transparent local area network presents a very different model of
the computing resource to the user which affects usage patterns. The user’s model of
the system is derived more from the single machine modei than the network model.
The machines exhibit a much higher degree of integration and interaction than in a
long haal network. Access of remote data is very much more common than in a long

distance network because the user level distinction between remote and local has been

blurred.

58




The motivasions for data pla:ement and replication are also very different. In 3
nationwide distributed database, data is stored near the site where it is‘ most often
ased because of the desire to minimize access time and communications costs. Data is
replicated if efficient access is needed at several sites. As remote access caa be almost
as fast 23 local access in a local area metwork, the motivation to store data where it is
most often needed is decreased. Similarly, there: js little need to replicate data at many
or all usage sites. The primary motivation for _rﬁplicat.ing data in a local area network
database is the desire to maintain data availability in the face of node failores. Data
may also be placed by value to decrease not access time, bat query processing time.
For example, we might fragment the employee refation so that empioyees on proje-cf.
one are stored on sites one and two and all other employees are stared on site three.
We might instead chocse to balanee the aumber of employes tuples stored at each site

in order to maximize parallelism when processing enpio_yee records.

Thus, local network databases differ from long kaul nets in 3 number of qualita-
tive ways which influeace query precessing in this environment. The data usage pat-
tern is likely to be very different in that remote data is accessed much more frequently
than in long distance networks. Data distribution and replication occurs for different
reasons in local network databases. Most importaatly, because the user model of the
system is that of 3 single machine rather than a network, the database design is orient-

ed less towards conserving the network than towards serving the users.
4.2.2 Quantitative Diflerences

Most importaat to this thesis is the way in which local network databases differ
quantitatively from widely distributed databases. As we have said before, the conven-

tional wisdom in distributed databases as been that the network communications
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bandwidth is the scarcest resoures by séreral orders of magnitude. Consequently, the
query processing algorithms heve been designed to minimize network traffic at the ex-
pense of local processing and disk access. We question the validity of this approach

not only in local aetwork databases bat in long haal nets as well.

The query processing cost model developed in section 2.3 is designed to illus-
trate and quantify the resource cost parameters in the local network database. Rerail
that the cost model was in terms of the constants, P, C, and D which are the processor
cost per tuple, the communication cost per page, and the disk retrievai cost per page,
respectively. These constants define the query processing cost eavironment. The total

cost to process a query in this model is given by:

TotaiCost = D # jhpagefeiches = P # fituplierequesis + C ¢ fimessages

For example, consider a join between the supplier relation and the spq relation

on the S4 attribute.

RANGE OF 3 IS supplier

RANGE OF Y IS spq

RETRIEVE (s.all, y.all)

WHERE (2.S% == y.S3)
Assume that supplier has 1000 tapies on 100 1K byte pages with an unclustered index
on S# with 1000 differeat S# values and 10 index pages. Sapply has 5000 tuples on

200 1K byte pages with a clustered index on S#, 1000 S# values and 30 index pages.

In order to join spq and supplier when they are both located on the same site,
the best policy would be to scan the supplier relation sequentially. The system would
join each supplier tuple to all spq tuples with a matching S# value obtained by using

the index. This requires that the system retrieve do 100 page fetches for the supplier
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relation, 100C page fetches of spq relation data pages, and 30 page fetches for the spq
relation index. In addition, 6000 tuple requests are issued by the processor. Thus the

total cost is given by:

TotaiCost == 1130 s D + 6000 # P,

If spq aad supplier are on different sites, we mast add the cost of 101 messages
to request service aad to retrieve the 100 supplier data pages. The cost equation for

this discributed join now becomes:
TolaiCast == 1130 # D + 8000 #P + 101 # C.,

In a geographically distributed database, a reasonable ration of C to D to P is 440:20:1
[Selinger 80} This ratio is obtained by assuming 3 50Kb network, a 1 MIP (370/158)
processor running Re, and 2 3350 disk. For this cost configuration, the total cost is

oz%dnet.oWtﬂﬁc,m%dnewdi:km,anda%duetopmcasingcost.

This eoat ratio is based on a slow, Arpanet like network linking relatively fast
machines and fast disks. With these parameters, the cost due to the network is ap-
proximately double the disk and processing cost. For smaller queries, the dominance of
petwork costs is more propounced. This is because the communications costs are
better than linear in the sizes of the relations (the algorithm can choose to transmit the
smaller), while the disk and processor costs are worse than linear. To illustrate this
fact, consider joining two relations stored on different machines, each containing only
one taple. The cost is 2C (to send a request and receive the tuple), plus 2D (to retrieve
the two tuples), plus 2P to process the two tuples. This yields a total cost which is
95% due to communications. queries. As the query becomes more complex or the
volame of data increases, the amount of work required of the database approaches that

done by the communications network in this model.
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It is important that this model is not considering the queueing delays due to the
slow network. A 50 Kb mnetwork is indeed a bottleneck. Thus, systems such as SDD-1

working in this environment choose to minimize only the volume of communications.

ﬁe relevant question being addressed in th.is. thesis is how this environment
changes in high speed actworks where communications are not 3 bottleneck and quene-
ing delays on the network are negligible. The communications media in our local net-
work is about 200 times faster than the one modeled above and the processors in our

netwofk operate at about one half MIP,

Measarements were done of the Ingres database running on Vax 11/750s with
Fujitsa Eagi-e disks connected by a 10mb ethernet. Appendix 1 gives the details of how
measurements were obtained. The resuits of the measurements are that the ratio of C
toD to P is 8.5 to 13.6 to 1. For the distributed join in the above example, the totai
cost is 69.1%% due to disk page fetches, 27% due to processing tuples, and 3.9% due to
the ase of the network. It should also be noted that this example uses indexes which
greatly reduce the disk access requirements. Without the indexes, the system woald
have to perform a more expensive kind of join either using a nested loop or creating an
access path. For example, Ingres would perform tuple substitution, joining each‘tupie
of the supplier relation with the entire spq relation requiring 200,000 page fetches of
the spq relation and the processing of 500,000 tupies while still seading only 101 pages
over the network. Thas, in the above query which is a worst case example, only 3.9%
of r.h& work resuited from the presence of machine bourdaries. Even in cases where
disk access and processing are minimized by the existence of efficient access paths, the

cost of using the network is insignificant.
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4.3 Implications for Qnacy Processing

Qnery processing algorithms generally attempt to minimize either total time,
response time, or a linear combination of the two. Minimizing total time maximizes
system throughput, but it does not give any ineentive for the algorithm to use parailel
processing to speed au individual query. The right solution seems to be to minimize a
weighted combinatior of total time and response time. The weights should be variable
so that the database can favor response time when the system is lightly loaded and to-
tal time when it is heavily loaded. What to minimize is a policy decision and the data-
base shouid be capable of adapting to a changing policy.

As was stated in chapter 2, this total cost function is ot an optimization fu:-n?-
tion. This m beeagse the units are secouds, and seconds of network time are mot the
same as seconds of disk or proeessor time. It would be a rather arbitrary rule just to
minimize the sam of these three times. [t does, however, make sense if we weight time
on the disk, time on the net and time on the processar in some way 3o as their value is

equivalent.

A good alternative for weighting the relative costs of these resources would be
to weight them in proportion to their dollar costs. This calenlation is done in Appen-
dix 1. The results are that the ratio of the cost of one second of network time to one
second of disk time to one second of processor time is 1 to 7.5 to 19.4 and the dollar
based ratio of C to D to P is 8 to 6.8 to 1. For our sample join with two sites, this
yields a total cost which is 53% due to page fetches, 42.5% due to processing, and
$.7%% due to communications. The contributions of processing cost and disk cost are

both an order of magnitude greater than message cost.
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The primary resuli of ilese measurements is that disk retrieval and processing
costs are significanily more important than communications costs in a local network
environment. What are the implications of this resanit for query processing? First, we
wounld like to perform ilie cxpemsive tasks in parallel. By decomposiag a task into
pieces which may be executed in parallei, the time required to complete the task can be
reduced to the maximum of each of the pieces. The mos expensive tasks are first, re-
trieving the data from disk, and seeond, the local processing. Retrieving the data from
disk in parallel can only be achieved by storing data on difereat sites or differenat disks.
Since network commuanications are s0 cheap, it is cost effective to fragment data at
_ maay sites in order to retrieve and process in parallel, even if the usage site is known.
'in advance. These resuits suggest that commaunications may be thought of as free or
instantaneona by the optimizer without serious effect on the efficiency of the resuiting

schedule.

Secondly, this research underlines the necessity to maintain efficient access
paths for relations. Direct access indexes greatly reduce the number of times a given
page is retrieved from disk. For example, to soive the above sample query required
1130 page fetches. [f there were no index on the spq relation the system wouid have to
use the index on the supplier relation requiring 5210 page fetches. If there were no in-
dex on the spq relation index however, the system would either have to create an ac-
cess path dynamically, sort the relations, or scan the spq reiation for eackh tuple in the
suppiier relation. [ngres uses tuple substitution (nested loop) for all but the final join
(when it may do a merge join); and thus, has no choice but to scan the whole spq reia-
tion for each tuple. This requires 200,100 page [etches, none of which may be done in
parallel. The bottom line is that, just as in single machine databases, indexes are

essential to reasonable performance.
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A corollary to the abéva is that the system must avoid making indexes ohsoiete
due to fragmentation. [n 3 desire to achieve parallel processing, _Di.stribut.ed Ingres has
proposed the fragmeant and replicate strategy for distributed query processing [Epstein
78|. This method dynamically [ragments one relation and replicates all others. Hower-
er, in so doing, it readers useiess any indexes that may have existed for aay of the rela
tions. It has been sugsested before that fragment and replicata strategies are only good |
if the database is already highly fragmented [Sacco 81|. This was because of the com-
munications overhead of {ragmenting cne relation and replicating all the others at the
processing sites. [n the local petwork egvironment, we have shown that the communie
cations overhead is minimal. Howerer, the need to recreate or do without indexa_ is

catastrophie.

Finally, it is very important to have the pages of the relations well laid out on
the disk. Unix and LOCUS, on which Ingres runs, perform read ahead in order to
speed the sequeatial scaaning of fles. This is particularly useful in database applicas
tions where most access is sequential. Unix is not particularly well suited to such ap-
plications becanse it has no provisions to keep sequential blocks of a fle coloc;zed on
the disk. Though the free list is initially laid out contiguously (blocks placed consecu-
tively separated by enough space to account for interrupt latency), as files are added
and deleted, consecutive fle blocks tend to become scattered over different cylinders re-
quiring large seeks between data transfers. The small, 1024 byte block size further lim-
its the file system's throughput. As disk throughput is the limiting factor in local net-
work databases, improvements to the fle system would greatly improve the perfor-
mance of databases in Unix. [MecKusick 32} suggests several ways of improving the
performance of the Unix fle system which will soon be incorporated into Unix and

LOCUS. They include use of a larger, variable block size, and optimal placing of con-
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secutive disk blocks. [McKnasizcx 82] predicts performance gains of up to 10 times over

the old Unix file system. Aoy za.a at all would be directly reflected in database perfore

mance.

'fhis chapter has described how a local network differs from a long distance net~
work as an environment in which to do query processing. We conciuded that they
differ in degree of site interaction and data sharing, user model, motivations and pat
tern of data distribution and replication, and in cost model parameters. Measurements
conducted oa our distributed [ngres running over 3 10mb ethernet indicate that the
cost of network communication is indeed negligible compared to the costs of local pro-

-

cessing and disk access,

The next chapter examines possible database architectures. [n particuiar it
describes the facilities provided by the LOCUS network transparent operating system,
which make it a good foundation on which to build a distributed database system.
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CHAPTER 5
Case Stady, A Distributed Database in LOCUS

5.1 Conventional DDMS Architacture

Unlike the operating system commaunity, the database commuunity has geaerally
agreed from the start that distribated databases should present the user with a tran-
sparent view of the data. Transparent, in this context, implies that the user does not
have to know where the data is physically stored either on the disk or in the network.
In particular, there is no notion of local or remote; resourees ace accessed the same way
regardless of their storage site. A relation name resolves to the same set of data, in~
dependest of the site at which the name is uttered, and 3 name does not imply a par-
ticular storage site. Data or users may move to different sites without afecting access
methods. From the user’s point of view, there is nothing distributed about the data-
base except the volume of data that is accessible. Very few systems that are actually

functional go very far toward meeting these goals.

If the user is to view the distributed system as a single site database, then all of
the problems of data distribution must be handled by some component of the system.
These problems include maiptaining concurrescy of multiple copies of data, coordinat~
ing shared aceess to data, recovering from partial failares, distribated catalog manage-

ment, and distributed query processing. In most distributed databases designed to
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date, all of these functions zre handjed-explicitly by the database. A typical distribat-

ed database architecturs is described in [Hevner 79] and is shown in figure 3.

When a query is submitted to this system, the user interface forwards it to the
query processing sudsyatem, wiﬁch is responsible for impiementing the optimization al-
gorithm. The query optimizer must interact with severai other modules. It is the job
of the a'augﬂ'tf subaysten to determine a unique materialization of the database when
replicated relations are invoived. The integrity subsystem also implements the update
synchronization {unctions which insures the consistency and integrity of the database
in the face of concurrent queries. Onece the optimizer has received the materialization
information, it determines the access plan for the query and passes it to the scheduler .

subdayatem.

The role of the scheduler is to send the commands to the local database systems
on each site. At the site originating the query, the scheduler coordinates the distribu-
tion of the pieces access plan to the cooperating sites. At each of the other sites, the
scheduler receives the network messages, forwards commands to the local database,

and sends the results back to the master site.

The reliability subsystem moaitors the petwork and other sites. [t makes the
database more reliable by sensing when a communications line or node that is partici-
pating in an active query fails. It deals with the failure by backing out the query, and
possibly restarting it with a different copy of some part of the data. The reliability
snbsystem is also responsibie for reintegrating a site or groap of sites back into the net-

work when failed components return.
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Figure 3: Query processing in a distributed database system
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Correct implementation of t.hu? subsystems in a distributed environment is
very expensive. The integrity subsystem must implemeat either a locking or times-
tamp protocol to coordinate concurreat access to data and be able to detect or prevent
deadlocks caused by the protocol. The reliability subsystem must be able to “undo™
the effect ofaqueryorpag of a query in the case of a failure of a node or 3 communi-
cations link during mut;om A log or shadow page mechanism must be used along
with a two phas* commit protocol to guarantee atomicity of updates. It is these proto-
cols which deal with the discributed natare of the database thaﬁ make building distri-
buted databases so expeasive and difficuit. |

5.3 Two New Architectures

The network transparent application program interface of the LOCUS network
operating system permits a much simpler method of creating distributed databases. As
has been observed eariier, many of these protocols that deal with the network are need-
ed by many applications in the distributed enviroament. At therefore makes sense to

implement them once in the operating system and to make them available to ail pro-

grams.

This thesis examines implementation of a distributed database by pushing the
integrity subsystem, reliability subsystem, and communications subsystem, below the
level of the operating system interface. Two new distributed database architectures
have beea implemented and tested. In the first model, hereaftar called the ‘““trivial”
modei, a distributed database is obtained by running a standard Unix single site data-
base in the LOCUS system. The location of the data is not visible to the database in
this model. The database runs exactly as if it were on a singie machine. When it is-

sues an open call for a file that is not loeal, the operating system takes care of choosing
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a storage site to supply the file, and bringing the pages across the network. The single
site database becomes trivially distributed without adding one line of ende or even
recompiling. The database thus obtaized is capable of retrieving data from remote
sites, transparently repiicating data, continuing to operate in the face of partial
failures, gracefuily recovering from such failures, and maintaining the consistency of
data while allowing concurrent access on different sites. This trivial database, obtained
almost for free, gives us much of the desired fumction of a distributed data manage-
ment system. The performance of Ingres rumning in LOCUS and retrieving remote

data is reported in sectioa 5.4.

While it is adequate for many applications, the above model does not exploit
‘he network to its failexs potential. [t does take advantage of the existence of muitiple
sites to increase the reliability and availability of the data by allowing for replication
on many sites. However, it wastes the potentiai for greatly improved performance pro-
vided by the extra processors in the aetwork which can work on a query in parailel. In
order to take advantage of the potential for parallelism, the query optimization algo=
rithm of the single site database must be extended to know about the additional pro-
cemors. In addition, a scheduler subsystem which was not geeded in the firs¢ model

must be constructed.

The seecond model of the distributed database consists of a local database
management system, 3 simple scheduler subsystem, and a query processing mechanism.
The local database management system is basically the same as that found in the frst
model. It is siightly modified to communicate with the scheduler subsystem when re-
mote actions must be initiated. The scheduler subsystem performs the fanctions
. described above in the section on the conventional database architecture. However, its

construction is very much easier in a LOCUS system because the database does not
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have to implement its own interprocess communications system. The operating system
provides netwark pipes [Kirby 82| with which scheduler systems on different sites can
send ipstructions and receive results. Furthermore, it does not have to implement the
“move relation from site A to site B" primitive found in most distributed databases,
gor keep track of the location of database information, because LOCUS already makes
all fles available on all sites and maintains catalogs. |

This distributed database architecture gives us a fully functional distributed da-
tabase. Any query processing algorithm can be implemented in the optimizer and exe-
cuted by the scheduler. The scheduler can canse operations to happea in parailel on .

remotie sites and wait for these remate operations to complete.
5.3 Implementation

In order to experiment with query processing in a local network and to investi-
gate the premise that a fail distributed database can be easily constructed out of a sin-
gle site system, a distributed query processing mechanism was added to Ingrss. This
mechanism allows the master Ingres process at the query origination site to canse
subqueries to be performed at any or all remote sites in parallel. The structure of this

mechanism is shown in Figare 4.

Remote suabqueries in this system are performed by [ngres server daemons called
iservers. Each machine creates one or more iserver processes when it is booted. Also
created at boot time are two network pipes stored on that machine. The iserver pro-
cess immediately attempts to open the first pipe named “remotepipe”, for read. The
process hangs waiting for some other process to open the other end of the pipe for

write.
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Figure 4: Structare of the remote subquery mechanism
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When 2 user ‘vishes to run Inéu, he forks a monitor and a master Ingres pro-
cess at his site. If the master [ngres needs to run remote subqueries, if opens the “re-
motepipe” and ‘‘respipe’’ named pipes for write and read, respectively, for each of the
sites to be used. The first open wakes up the iserver processes on each of those sites.
The iservers in turn open for write their respipes which they use to send resuits back
to the master [ngres. The master first sends the necessary control information to the
iservers. This information includes the name of the database, the pathname of the

Ingres subtree in the fle system, and the debug variables to tumn on.

When the query optimizer in the master [ngres has a subquery that it wishes to
execate remotely, it calls the OVQP module which implements the scheduler function.
The scheduler reerives a pointer to the parse tree of the subquery and a list of sites at
which to run the fragment. As there is currently no optimizer for this impiementation,
the query processing strategy must be controiled by hand. The defauit strategy is to
ran the query using the standard Ingres decomposition method with one variable

queries run at the storage sites of the data. .

The parse tres of the subquery is converted back into Quel to be sent to the
servers. Using this high level interface over the network causes some small perfor-
mance peaalties, but has some important advantages. Because they take Quel as in-
put, the iserver modules are very similar to the main Ingres processes in standard
Ingres; and consequently, required only a small amount of programming time to con-
struct. Furthermore, any type of database can be imbued with the ability to convert
ity inner data structures which represent subqueries into Quel. In sueh a way, this
mechanism allows heterogeneous databases to request service from the slave iserver
processes. Similarly, siave procssses can be constructed with Quel parvers to provide

access by distributed Ingres databases to data stored in other types of databases. The
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high level, standardized interface also provides different sites the individual sites the lo-
cal antonomy to run differc=e releases of the system. There is some overhead in recur-
sively traversing the tree to convers it to the ariginal Quel and parseing it again at the
service sites. This ovex’izad is small as the subqueries that are actually executed are
generally simple queries, usually involving oniy a single relation. The ease of imple
mentation and the potential for heterogemeous databases made transiation of

subqueries into Quel desirable.

The query is written to each of the remotepipes. The iservers read the query,
parve it, and exeente it locaily. There is carreatly no prevision for the iservers to cause
other remote subqueries to be run. If the loeal subqueries still require remote data,
LOCUS provides aceess to it transparently as if the file were local. Thus, the query is
globally optimized at the master site. The iservers run the standard Ingres decomposi-
tion algorithm on the query to do the local optimization. The iservers are able to put
the results of the subqueries into temporary relations or send them, tuple by tuple,
back to the master via the respipes. The master site waits on each of the respipes in

turn to read the result data.

Because work on concurrency comtroi in LOCUS is not yet completed, con-
current access to the system catalogs by the remote iserver daemons could not be per
mitted. To avoid having the many servers accessing the system catalog relation cata-
logs concurrently, the catalogy were replicated at each site, and updates to the catalogs
were temporarily avoided. Using the LOCUS hidden directory mechanism, the same
relation name issued at different sites was forced to map to the local copy of that rela-
tion, avoiding concurrent access between processes on different sites. This has aveided
rather than solved the issue of the design of a distributed relational catalog. The tools

that LOCUS shouid provide and the design of a catalog mechanism for a distributed




database in local network is itself a good topic far 3 thesis.

A simple implementation of horizontally fragmented relations was also achieved
in a simil;r manner {or the purposes of performance testing of parallel access to frag-
ments. Tlns was done by crutmg the database in the directory /usr/database. The
/use directory was in fact a hidden directory containing components for each of the
sites in the network. Mounted on the component of each site was a local version of the
file system. The same file name, when opened by the database on different sites,
mapped to that file in differeat versions of the /usr file system. For example, test
queries were run retﬁeving data from the supplier reiation, which contained a total of
30000 tuples. The relation was actually stored in three fles on three different sites.
Sapplier was fragmented with one-third of its tuples being stored on each of the three ‘
sites. Hidden directories appear to be an appropriate tool for building fragmested reia-

tions in a transparent file system.

Currently, while an iserver daemon is performing a remote subquery, it keeps
open t.l;e “remotep’” network pipe. Il another master Ingres running anywhere else in
the network requests service from that site, the second master's open of the pipe will
fail until the first sabquery is finished. Clearly this is anacceptable behavior in a mul-
tinser eavironment. There are very simple changes to the mechanism as it exists,
which would alleviate this problem. One solution would be to have the iserver daemon
fork a child process to service each request. The pareat could then go back to waiting
on the pipe for further requests. This method incurs the overhead of doihg a local fork
to create a new process. Similar overhead is incurred by the use of an exec of the slave
by the master across the metwork. Altermatively, several daemons could be created for
each site wheﬁ it is booted, each waiting for requests on its own network pipe. Master

lagres processes requiring remote siave service would keep trying different pipes for the
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desired site uatil one is found which is 2ot already open. A site can control the
pumber of remote queries it is willing to serve at a time by the number of daemons it

creates. This second solution appears preferable.

This implementation took about five maa months to compiete with only about
two months devoted to coding and testing. The bulk of the execution time was speat
in understanding the way standard Ingres works in order to be.able to make
modifications. A programmer who is experienced with the system he is modifying,
could convert much of a single site database into a distributed ome in the method
described above in much less time. The remote query mechanism required only about
1000 lines of code and modifications to aboat 25 Ingres source files. The buik of the
pew code performed the transiation of the parse tree back into Quel. The remaingin
code changes occurred mainly in the high level control routines, and the One Variable
Query Processor.

The paacity of VAX [ngres documentation contributes to the implementation
' difficuities. The existing Design and /mplementation of Ingres [Stonebraker 75b| doen-
ment deseribes Ingres as it was originally created in 1978 for PDP 11 series computers.
Due to the limited address spacs of these processers, [ngres was implemented a3 a chain
of cooperating processes connected by Unix pipes. The original database system has
since been modified to run on VAXs as a single process. However, the relics of the

multi-process impiementation remain within the source code.

In order to map the fire processes into a single process, VAX Ingres is imple-
mented as a table driven system with its own context stacking mechanism. The maizn
routine is invoked with an initial state. This state is mapped to a function which the

database must perform by an internal table. Also contained in the table is the next




=stat.c that should be entex;ed after the current cne is compieted. When a nei state or
function is eatered, the structare containing all local variables is placed on the context
stack. If after ¢ompistion of a function, there is no corresponding next state in the
table, the context stack is popped and execution of the previous state is continued.
This mechanism is well suited to performing the recursive query processing algorithm
shown in Chapter 3, Figure 2.

Both tlie master [ngres process and the iserver daemon take Quel queries as in-
‘pat ﬁom a pipe. Consequently, both have the Parser function as their initial state.
These two processes share a large amount of code and function. Differences in their
behavior are controlled by checking the global flag, Remq, which indicates whether the
process is a master or 3 remote slave, The Parer calls view, integrity and decomposi- ‘
tion functions, which in turn cause one variable subqueries to run. Gaining initial
nndema;:ding the process table and the context stacking mechanpism is time consam-
ing, as they make tracing the flow of control of the system difficuit. However, once
understanding is attained, modifying Ingres is not exceedingly difficuit.

5.4 Performance Results

Timing measurements were performed to determine how this implementation of
3 remote query processing mechanism compared to the varions other incarnations of

Ingres. For these measurements, the following queries were run:

Ql: RANGE OF ¢ IS test
RETRIEVE (t.all) WHERE (t.aumber < 0)

Q2: RANGE of t IS test
RETRIEVE (t.ail)
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The relatioa Lest contained 30000 tuples, each 100 bytes long so the relation
contained 3 total of 3MB of data. No tuple had a sumber field less than 0 so no tuples
satisfied the quaiificatica in the first query. The second query had no qualifications;
and thus, all tupies were returned. In bath cases, the outpat of the query was directed
into /dev/null so the cost of scanning the entire relation was measured, while the cost
of printing the runtlta on the terminal was not. These queries were run on standard
[agres running on LOCUS with parely local data, on distribated [ngres with loeal data,
on standard Ingres with all data on a single remote site, on distributed [ngres with ail
data on a single remote site, and on distributed Ingres with the data fragmented
between thres remote sites. The average startup and shutdown time of 7 seconds and
8 seconds for standard Ingres and distributed Ingres respectively have been suht.r.aq:ted
from the elapsed time so that it reflects the true time required for a single query.

Ingres with local data
Dist. Ingres with local data
[ngres with remote data
Dist. Ingres remote data
Dist. Ingres data on 3 sites

Table 1: Performance of different [ngres architectures

The results for the first query are approximately what we would expeet. It
takes only slightly louger to run distributed [ngres for local data than to run standard
Ingres. The differeace is the time it takes to parse and anparse the query, and to han-
dle the synchronization over the named pipe. It would not be difficult to force the the

master [ngres process to go ahead and run all queries on local data itself, to avoid this
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penalty whea all data is local. The tiﬁe required to run the standard database on re-
mote data is about one minute eight seconds longer than for local data. This is quite
reasonable, sinee the time required to read a 3MB file across the network in LOCUS is
about one minute five seconds. Running distributed [ngres on remote data with the
siave process running at the storage site takes about the same amount of time as did
the first two trials. The time required to send control messages through the network
pipe accounts for the few extra seconds. Running distzibuted Ingres with remote data
is about one minute faster than is standard [ngres, because the distributed version is
able to run at the storage site avoiding any data being sent over the network. Retrier-
ing the data in parailel from three sites runs as expected in about one third of the time-
that retrieving the entire refation from one site does. This final result is very encourag- -
ing as it implies that for relatively large queries, the overhead of the remote subquery
mechagism is amortized and we do achieve the performance gains of parailel operation.

The only difference between the first query and the second is that in the firss,
no taples were returned, while in the second, all taples satisfied the request. For stan-
dard [ngres with local data, about 1 minute 48 seconds of overhead was added by the
exira processing that outputting the tuples reqnired. When the data is on another site,
33 seconds of additional time is required by standard Ingres. Distributed Ingres re-
quires abont the same time as standard Ingres when the data is local to the process.
When distributed [ngres is run with the data on a remote site, 21 seconds of elapsed
time is added by sending the data across the network. The three site case performed
very well, completing in under half the time of the single remote site trial. The full
factor of three speed up that was achieved by parallel processing in Ql is not quite
realized here due to inefficiencies in the remote pipe mechanism. The performance of

the remote query mechanism for Q2 is again very encouraging.




These measarezents have revealed some room for optimization in the design of
the remote named pipe mechanism in LOCUS. The contents of a pipe is sent across
the petwork each time the reader is ready for more data. If the reading process is con-
suming the data faster than the writer can produce it, very poor metwork utilization
may result. Asit was first comstructed, the code for returning resuit tuples to the mas-
ter site read all tuples from each of the slaves in turn. The three site trial of Q2 re-
quired 7 mﬁmt.u 34 seconds to complete. This code was subsequently changed so that
the mutc;' reads one block from each of the slaves each time through the loop. This
gives each of the remote daemons time to il ap more of the buffer before it is pulled
over the network by the master procems, greatly reducing the number of network mes
sagen being sent for cach page of data. This changed improved the time from 7
mingtes 34 seconds to 2 minutes 59 seconds. Then the size of the bufler which the
slave writes to the network pipe was increased from 128 bytes to 1024 bytes. This
final change improved the time to the reported 2 minutes ¢ seconds. Careful optimizas
tion of the remote pipe mechanism within the operating system could fres application

programs from the geed to be aware of these sorts of performance comsiderations.
5.5 Comparison With Berkeiey Distributed Ingres

Implementation is currently underway at the University of California, Berkeley
of Distributed Ingres based on the 4.1¢BSD version of Unix [Stonebraker 83a]. It
makes use of eghancements to Unix made at Berkeley including remote interprocess
communications and remote process execution. The design of Berkeley Distributed
Ingres is in many ways similar to that executed here with a master [ngres at the query
origination site and slave processes at the data storage sites. The Berkeley version ases
a lower level interface between the master and slaves so the slave processes need 20

parser. Rather more work at Berkeley has gone into the nser interface to {ragmented
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relations aud int» concurrency control but, the function provided is very similar to that

provided by this thesis.

Valid performance eompar'uona- between Berkeley Distributed Ingres and
LOCUS distribated Ingres are difficuit. Berkeley’s published benchmarks were rug us-
ing a network with a 11/780 and several 11/750s connected with a 3 mbit ethernet.
The measurements reported here used a 10 mbit ethernet and oniy 11/730s. Berhlq’s
implementatioﬁ, like that reported above, required about the same amount of time as
standard [ngres when data was local. ‘fhey did suffer some penaity when data was re-
mote. The Berkeley system was alsa tested using three slaves in parailel. This t.n'al-
achieved oniy a slight improvement in response time over the single site test. Runaing |
Berkeley Distributed Ingres on a single site with the same amount remote data took
2:54 of elapsed time, while the three site case took 2:37. Thus, oniy modest gains were
made by the use of parallel processing. Before any meaningfnl conciusions can be
drawn about the relative performance of these twa versions, much more careful testing

must be done ranning both systems in the same eavironment with the same queries on

the same data.

Conciusions may, however, be d.ra'c;n about the way in in which the two sys-
tems were constructed. Tixe Berkeley Distributed [ngres was built in a standard Unix
environment enhanced with some remote interprocess communications tools. Conse-
quently, it had to deal internaily with access to remote data. To get an initial system
up and running took about four man years of programming effort [Stonebraker 33b].
Getting a vaguely equivalent system running in the network traansparent environment
took only about two man months of programming. While neither system is a fully
functioning distributed database, the time required to get a first cut operational is very

important, as further enhancements may be made and tested incrementally. That a
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system of roughly »qnivalent function and peffomanee ¢an be built in LOCUS in years

less time is a signifcani resuit.

The mechanism built for this thesis fails short of being a fully functioning dis-
tributed database in several ways. [t does not implement a true distributed query op-
timization algorithm. Its defanit mode of operation is to decompose the query using
the standard Ingres decomposition code and thenm run the individual subqueries submit~
. ted to the One Variable Query Processor on the site which stores the data. Any vana.
tion from this defacit must be hand coded. !mplementing a given algorithm should re-
quire 3 few man mouths of programming. waem, what is really required is the im-
plementation of and experimentation with 3 number of algorithms, a task worthy of 3
dissertation.

The problems of concurrent access to the database from different sites has not
been addressed. It is anticipated that new versions of LOCUS shortly forthcoming will
provide the concurreacy control tools that will make solving this problem in the data-
base very easy. For the moment, the database is completely locked by the first user.
Once saitable tools exist in LOCUS, a few man mon;ha of effort would provide a usable
mechanism. However, databases really require finer than file granularity locking, and
the design of this feature for LOCUS is, again, worthy of 3 dissertation.

The design of a catalog mechanism appropriate for this eavironment has not
been compieted. Suck a mechanism must sﬁpport replicated and fragmented relations
and their distribation criteria. The work reported in [Theil 83| begins this task, but

has not yet been integrated with the implementation reported here.
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Finally, a cleaa user interface to the defining and accessing and updating distri-
buted reiations must be designed. While access to the database is generally network
transparent, the user must have some way to specify site dependent information in the
data definition language. Implementation of the set of extensions suggested by [Stone-
braker 77] could be completed in a few maa months of work. A nsable distributed
Ingres in LOCUS is probably one and a hall man years of work away. The solution to
all of the problems of a distributed database in a local area network requires break-
throughs equivalent to several dissertations.

In contrast, Berkeley Distributed Ingres requires about ten man years of work
beyoad the initial version to creste a usable distributed dacabase [Stomebraker 83bj.
The reason for this difference is that much of the mechanism required to make a distri
buted data management system has already been buiit into the LOCUS operating sy
tem. Crash recovery, conflict detection, and atomic transactions are examples of
{features already present in LOCUS and usable by a database. Systems built on top of
standard Unix operating systems must provide these expeasive functions internally at
enormous expense. All results so far have indicated thas these features which deal with
distributed data can be provided by the operating system, and can be made to perform

eficiently enough for database applicationa.

This implementation of a local network database in LOCUS realizes the goals it
set. ous to achieve. Because of the network transparent eavironment provided by
LOCUS, the time required to build this mechanism was quite short compared to the
development time for most distributed systems. While it identifies a necessity for op-
timization of the network named pipe algorithms, the performance of this mechanism

for loeal, remote, and parailel operations is very encouraging.
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CHAPTER 8
Conclusions and Future Research

There are as yet no fully operational diatribuudrreiasional databases for local
petworks. Consequently, work. in this area has been mostly theoretical, based on ex-
perience in geographically distributed systems, or on simulation and modeling. Based
on the current trends toward decentralized compater systems and the geed for data
processing capabilities in office systems, there is little doubt that distributed databases
designed for local ares networks will be produced in the very near future. This thesis
has provided some necessary results pertaining to the problems of query processing aad

database architectures in local area computer networks.
8.1 Query Processing

This research has provided empirical results about the natare of local networks
as an environment in which to do distributed query optimization. We have construct-
ed a cost model with which to compare the cost characteristies of different
configurations of machine, network, and disk speeds. Measurements were conducted to
determine reasonable values for the costs of local processing, disk access, and network
usage. These cost parameters were used to analyze several typical queries. The model
showed that for these queries the disk retrieval and processing costs dominate network

message costs. [ no case was the percentage of the total cost due to the petwork
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greater than 10%.

The quantity that :%.id generaily be minimized by the query optimizer is the
response time for a qmey. While in the long ‘haul case this goal was ostensibly
equivalent to minimizing network messages, this is not the case in local networks. In
the local network environment, the response time is 2 much more complicated function
of the data retrieval, processing and transmission schedules. The reason the function is
so complex is that it is very difficuit to determine just what actions occur in parallel.
There is a significant amount of processing invoived in both sending network messages
and retrieving data from the disk. These operations do not occur completely in parallel
with processing tuples, Furthermare, sinee the operating system is doing read ahead .
both on the disk and across the network, it is difficuit to tell when the database will
have to wait for the data to be available, and when it will aiready be in the system

 buflers. Further work is necessary to derive a viable optimization fanction.

These resuits indicate that it is reasonable to assume that intersite communica
tions are free. [t is far more important that joins be done in the correct order and with
the correct inner and outer relations than that they be dome at the site which minim-
izes communications. Furthermoare, it is sasy to use rules such as those given in {Chu
79| to make decisions about where local processing should be done. It is easier to baild
an optimizer with an evaluation function which ignores communications costs while
avoiding bad processing site choices with rales and heuristics thaa it is to inclede the
delay due to network messages in the response time function and to search this large

space.

Since disk retrieval is the costliest component of query processing, it is impor-

tant to use all available tactics to reduce the number of page fetches and to increase
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parallelism. This is mostly dome at database creation time rather than dymamically.
These techniques incinde constructing indexes on commonly referenced attributes, hor
izontally fragmenting large relations between several sites, and placing the blocks on

the disk so as to minimize arm movement.
8.3 Distributed Databases in LOCUS

The second goal of this thesis was to address the diffienity of developing
software for a distributed system. Such software is more expensive to build because of
the different and more complex interfaces to remote resources, the more complicated
model of the underiying system, the richer set of failare modes with which the software
must deal, and the desire to mask these problems from the user of the system. This
thesi has proposed aod demonstrated that a distributed database could be impiement-
ed quickly and efficiently using the distributed environment provided by LOCUS. The
first implementation involved simply running a standard single site [ngres database on
top of a LOCUS network. The distributed database thus obtained couid retrieve and
update data stored on any site in the network and was resilient to partial failures in
the system. This provided much of the desired function. However, it did not address
the potential for greatly improved performance that the presence of redundant proces-

sors in the net offered.

This frst model was extended by a mechanism that allowed concurrent
subqueries to be run in parallel a¢t many sites. This mechanism was relatively cheap to
build and achieved the potential for parallel operation. Measurements showed that
indeed three sites working in parallel could complete a query in slightly over one third
the time required by one site. Most distributed database projects ever attempted have

devoted tens of man years to reach this level of function. The approach of taking a
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single site database, which itself has mahy tens of man years of work in it, and extend-
ing it with some simple mechanisms which have very modest knowiedge about the net-
work is shown by this thesis to be a viable and cost effective method of producing a

distribated database.
8.3 Future Research

The next step in this research is to build an distributed query optimizer which
makes use of the remote query mechanism constructed for this thesis. This is poten-
tially a large piece of work involving many theoretical and experimental resuits as weil
a3 volumes of code. The remote subquery mechanism is general enough to be usefu to .
any type of optimizer; one that does dynamie optimization, or one the compiles queries
completely before executing any subqueries. The optimizer can be constructed as a
filter which modifies and annotates the parse tree. [t then would sabmit partial sab-
trees in the case of a dynamic optimizer, or a complete annotated parse tree in the case
of a query compiler, to the scheduler module. This design [acilitates experimentation
with different optimization algorithms because one optimizer can be substituted for
another a3 long as it adheres to the same input and outpat interfaces. Further work in
query processing in this environment may address the use of dynamic programming
techniques to determine optimal processing and storage sites in the presence of replicat-
ed data, handling distribation criteria which reference multiple relations, and dealing

with vertically fragmented relations.

There are deeper questions about the relationship between an operating system
and a database. Traditionally, database systems have not been built on top of operat-
ing systems, but rather beneath, or instead of operating systems. This work has shown

that databases can be constructed muoech more cheaply on top of a distribated tran-
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sparent opercting system. However, it has not been proven that this architecture can
be made to perform competitively with systems such as IMS, which perform disk
managemesnt and processor scheduling themseives. It is possible that by implementing
more database functions deeper within LOCUS much greater performance could be
achieved. For example, the relational storage structures and access methods couid be
implemented within a strongly typed file system. These are questions which must be
addressed, as there is no doabt that the coming generation of distributed office systems
will be e:.lled upon to pravide both operating system and database services.
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APPENDIX 1
Determining Cost Ratics

We wish to determine appropriate values for D, C, and P, the time based costs
ofretﬁevingapaéefmndisk, the cost of sending a page across the network, and the

cost of processing a tuple, respectively.

The time required to (etch 3 page from the disk mast inciude the seek time and
average rotational delay of the disk, the time to transfer the data, and the time ree
quired to process the read request and disk interrupt. The disk parameters were ob-
tained from the Fujitsu manual [Fujitsu 79]. The processing time was obtained nsing
the measurement software developed by Arthor Goldberg [Goldberg 82|. The com-

ponents of disk access time are summarized in Table 2 with all times shown in mil-

liseconds.
Average seck time plus rotational delay  25.58
Read call processing 4.25
Disk interrapt procesing 1.00
Transfer time for one 1024 byte page .54 |
Total page fetch time 31.%7

Table 2: Disk Costs (in milliseconds)

The time based cost of nsing the communications network is rather more com-
plicated to measare. This implementation of a distributed database nses the remote
pipe mechanism of LOCUS to perform interprocess communications between cooperat-
ing sites. Data is pulled over the netwark by the read system cail The operating sys-

tem sends a request message to the service site and waits to receive a response mes-
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sage. The arrival of the request message at the remote site causes an interrupt. The
interrupt handler places the wwisage on 3 queas to be processed by a server pracess,
which eventually generates a read response output interrapt to send back the requested
data page. The interrupt handler sends the data page across the network to the origi
nal siu where a read response inpat interrapt is generated and the requesting process
awakezed. Thas, the commugications cost measurement maust inciude the propagation
rddays on the network, the time to process the request on both sites, and the time to

handle the network interrupts. The resuits are summarized in Table 3.

Local read request pmceamg 4.26
Read request output interrapt 1.6
Read response urput. interrapt 3.2

Total loeal processing 9.08
Remote server proces time 533
Read request input interrups 2.2
Read response outpat interrapé 1.9 |
Tatal remote procesing 2.43

Transfer time on 10mb ethernet 1.0

Total message time 19.49 I

Table 3: Communications Costs in milliseconds

To determine the processing cost per tuple, time calls were placed in Ingres
around the loop which scans all tuples in a relation sequentially. [ngres was modified
slightly to force it to process a single taple 10,000 times. This was done so that we
would be guaranteed that the tuple was in core %o that we were not measuring any
disk actess time. However, the processing time per taple depends, to some exteat, on
the type of processing being done. For example, processing a tuple may invoive check-
ing zero or more of its domains agaiast a3 list of qualifier clauses. Table 4 shows the

time required to process a taple for zero throagh foar qualifier clanses. For this test, a
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32 byte tuple with 3 domains was used.

#hclanses
0 1 2 3 4
time(ms) {20 |23 ]30135]42|

Table 4: Processing time versus number of clauses
Tests were also run to determine whether or not the processing time depended
heavily on the length of the taple ar on the number of attributes in the tuple. Table 5
shows the procewing time in milliseconds versus the length of the taple in bytes for a

query on one integer domain. Table § shows the processing time versus the number of

attributes in the tuple.

4 8 18 32
time(ms) | 3.1 |311]32]34]

Table 5: Proceming time versus length of tuple

sattributes
1 2 3 4 _8
time (ms) | 3.4 137 1 41 ] 45| 48 |

Table 8: Processing time versus number of attributes
These measurements show that the processing time depends primarily on the
aumber of clanses in the qnaliﬁmic.m: list. Since we are primarily interested in join
optimization in this thesis, and single attribute equijoins are by far the most common
type of join, the 2.3 millisecond measarement is the correct value for P. This implies

that [ngres performs approximately 1400 instructions per tapie.
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We now have a good idea of the relative time based cost of using the processor,
disk, and ethernet. The ratio of C to D to P is 19.49ms. to 31.37ms to 2.2ms or, more

simply, 8.5 to 13.0 to L.

If we wish to compare more [airly the cost of using these resources for a given
amount of time, we must factor in the “opportunity cost” of each type of resource. To
do this we want the cost per second of using each resource. We have already shown
that, for example, a page fetch requires anproximately 26ms of disk time and Sms of
the processor’s time; thus, we can get the real cost of performing a page fetch. Table 7
shows the coat of using each of the three resources. The cost for the Ethernet
hardware is a per site cost. If we are considering a 10 site network, we must muitiply
the cost per second by 10 since any site transmitting has sole use of the network and
is, in a sense, using all of the nctwork interfaces. However, the portion of netwark
message cost due ta the use of the network itseil is so small compared to the cost of
zhepme-ingrequbed,itdoanmeﬂmchoanalcmtmion. The Ethernet cost in~
ciudes an Interlan metwork interface, a transceiver, and SO feet of cable installed. The

disk cost ineludes the coat of the disk drive and one controiler.

ltem Purehase Price _ Cost Per Second
Ethernet $1875.00 $.0000173
Fuit Eagle _$14000.00 $.00013087
[Vax 11/750 $36500.00 $.00033974

Table 7: Cost per second of using resources

‘ Operation Network Time

Processor Time

Disk Time

Memage 1 18.49 Q
Page Fetch 0 5.25 28.02
Tuple Processing 0 2.3 0

Table 8; Time (in milliseconds) per database operation on each resource
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To compute the deilar based raiio of C to D to P, we must weight the measure.
ments reported in Table 8 by these dollar amounts. The results are that a network
message coats $.000299 per site in the net, a page fetch costs $.005313, and processing a
taple costs $.0007814. This implies that the ratioof Cto D to P is 8.0 t0 6.8 to 1.

92




References

{Apers 83]P M.G. Apers, A.R. Hevner, and S.B. Yao, *Optimization Algorithms for Dis-
tributed Queries,” [EEE Transactioms on Software Engineering, Vol.
SE-9, No. 1, January 1933. :

[Astrahan T8|M.M. Astraban et. al., "System R: Relational Approach to Database
Maaagement,” ACM Transactions on Database Systems, June 1978.

[Bernstein 81a]P.A. Bernstein and D.W. Chia, "Using Semi-Joins to Solve Reiational
Queries,” Journal of the ACM, Vol. 28, Ne. 1, January 1981.

[Bernstein 81b|P.A. Bernstein, N. Goodman, E. Wong, C.L. Reeve and J. Rothauie,
*Query Processing in a System for Distzibated Databases (SDD-1),”
ACM Transactions on Database Systems, Vol. 8, No. 4, December
1981.

[Chamberlin 78|D.D. Chamberlin et al, "SEQUEL: A Unified Approach to Data
Definition, Manipulation, and Control,” [BM J. Rea. Vol. 20, Na.8,
1978.

[Chamberlin 81D.D. Chamberlin et al., "Support for Repetitive Transactions and Ad-
Hoe Queries in System R,” ACM Transactions on Database Systems,
March 1932. '

[Chu 68]W.W. Chu, "Optimal File Allocation in 3 Multiple Computer System,” [EEE
Transactions on Computers, Vol. C-18, No. 10, October1969.

[Chu TO{W.W. Chu, and P.Hurley, "A Model for Optimal Processing for Distributed
Databases,” Proe. 18th [EEE Compcon, Spring 1979, pp. 116-122.

[Cha 79|W.W. Chu, and P.Hurley, *Optimal Processing for Distributed Databases,”
[EEE Transactions on Computers. Vol. C-31, No. 9, September 1982.

[Codd 70IE.F. Codd, "A Relational Model of Data for Large Shared Data Baaks,’
Communications of the ACM, Vol. 13, No. 8, June 1970, pp. 377-
337.

(Danieis 82|D. Daniels, and P. Ng "Distribated Query Compilation and Processing in

Re," Quarterly Bulletin of the [EEE Computer Soeiety Technical
Committee on Database Engineering, Vol. §, No. 3, September 1982.

93




[Date 81/C.J. Date, "An Introduction to Database Systems,” Third Edition, Addison-
Wesley, 1981.

[Epstein T8|R.Epstein, M.R.Stonebraker and E. Wong, "Distributed Query Processing
in a Relational Data Base System,” Proe. ACM SIGMOD, May 1978,
pp. 169-130.

[Epstein S0|R.Epstein and M.R.Stonebraker, " Analysis of Distributed Data Base Pro-
; cessing Strategies,” Proceedings [ntermational Conference on Very
! Large Data Bases, Montreal, 1980.

[Epstein 80bjR.S.Epstein, "Query Processing Techniques for Distributed, Relational
. Data Base Systems,” Ph.D. Thesis, College of Eagineering, University
of California, Berkeley, Memorandum No. UCB/ERL M80/9, 15

March, 1980.

[Fujitsa 79} "M2351A/AF Castomer Engineering Mannal,” Fujitsa Corporation, Tok-
yo, Japan, 1979.

[Goldberg 83]A. Goldberg, S. Lavenberg, G. Popek, "A Validated Distributed System
Performance Model,” Pree. Performance 83, 1933.

[Goldberg 32]A. Goidberg, G. Popek, "Measurements of a Distributed Operating Sys-
tem: Locas,” Unpublished paper, 1982

(Goodmaa 79|N. Goodman et al., "Query Processing in SDD-1: A System for Distribut.
ed Databases,” Computer Corporation of America, Tech. Rep.
CCA-79-08, 1979. ‘

(Haas 82|L.M. Haas, P.G. Selinger, E. Bertino, D. Daniels, B. Lindsey, G. Lohman, Y.
Masunaga, C. Mohan, P. Ng, P. Wilms, R. Yost, "Rs: A Research
Project on Distributed Relational DBMS," [BM Research Report RJ
3853, [BM Research Laboratory, San Jase, CA., October 21 1982.

[Held 75|G.D. Heid, M.R. Stonebraker, E. Wong, "INGRES - A Relational Data Base
System,” Proe. NCC, Vol. 44, 1975.

[Hevner 78{A.R. Hevner, and 5.B. Y30, "Query Processing in Distribated Database Sys-
tems,* [EEE Trans. on Software Engineering, Vol. SE-5, No. 3, May
1979.

[Kirby|O.T.Kirby, " Architecture of LOCUS Pipes,” LOCUS Growp Memo 10, UCLA
Department of Computer Science, School of Engineering and Applied
Science, University of California, Los Angeles, December 3, 1882,

(McKuasick 82]M.K.McKusick, W.N. Jay, §.J. Lefller, R.S.Fabry, "A Fast File System
for UNIX,” Draft of September 8, 1982, Computer Systems Research
Group, Computer Science Divivion, Department of Electrical En-
gineering and Computer Seience, University of California, Berkeley,
1982.




[Meteall 78[R.M. Meteall and D.R. Boggs, "Ethernet: Distributed Packet Switching for
Local Computer Netwarks,” CACM, Vol. 19, Ne. 7, July 1978.

[Parker 31[D.S. Parker, Jr., G.J. Popek, G. Ruadisin, A. Stoughton, B.J. Walker, E.
Walton, JM. Chow, D. Edwards, S. Kiser, C. Kline, "Detection of
Mutual Inconsistency in Distributed Systems,” [EEE Transactions on

Seftware Engineering, Vol. SE-9, No. 3, May 1983, pp. 240-246.

[Popek 81]G. Popek, B. Walker, J. Chow, D. Edwards, C. Kline, G. Rudisin, and G.
Theil, "LOCUS: A Network Transpareat, High Reliability Distribut-
ed System,” Proceeding of the Eighth Symposium of Operating Sy>-

tems Prinicpies, Pacifie Grove, CA, December 1931.

[Reiner 32|D. Reiner, A. Rosenthal,”Strategy Spaces and Abstract Target Machines for
Query Optimization,” Builetin of the [EEE Technical Committee on
Database Engineering, Vol. § Na. 3 September 1932,

{Rosenthal 82]A. Rosenthal, D. Reiner, "An Arehitecture for Query Optimization,”
ACM SIGMOD Conlf., Oriando, Florida, June 1982.

[Rothnie 80]J.B. Rothnie, P.A. Bernstein, S.A. Fox, N. Goodmaa, M.M.Hammer, T.A.
Landers, C.L. Reeve, D.W. Shipman, and E. Wong, "latreduction to
a System for Distributed Databases (SDD-1)," ACM Trans. on Datae

.bm S"m’, 571 Mh 1930, ppo 1.17-

(Saceo 81]GM. Sacco and S.B. Yao, "Query Optimization in Distributed Data Base
Systems,” Department of Computer Science, University of Maryland

[Selinger TO|P.G. Selinger, M. Astraban, D.D. Chamberlin, R.A. Lorie, and T.G.
Price, *Aceess Path Selection in a Relational Database Management
System,” ACM SIGMOD 1979.

(Selinger 80}P.G. Selinger, and M. Adiba, " Actess Path Selection in 2 Relational Datar
base Management System,” ACM SIGMOD 1979. :

[Stonebraker 75a]M.R. Stonebraker, "Impiementation of Integrity Copstraints and
Views by Query Modification,” University of California Berkeley,
Electronics Research Laboratory, Memorandum ERL-MS14, March

1975.

. |Stonebraker 75bjM.R. Stonebraker, E. Wong, P. Kreps, G. Held, "Design and Imple-

mentation of lngres,” University of California Berkeley, Electronics
Research Laboratory, Ingres Distribation Tapes, December 1973.

(Stonebraker T7IM.R. Stonebraker and E. Neakold, " A Distributed Database Version of
In

gres,” 1977 Berkeley Workshop on Distributed Data Management
and Computer Networks, May 1977.

95



(Stonebraker 33a]M.R. Stonebraker, J. Woodfill, J. Ranstrom, J.' Kalash, K. Arnoid,
and E. Anderson, ”"Performance Analysis of Distributed Data Base
Systems,” University of California, Berkeley Memorandum No.
UCB/ERL 83/12, 25 July 1983.

[Stonebraker 33b]M.R. Stonebraker, Personal communications, November 10, 1923.

{Theil 82]G. Theil, "Distribated Database and Distributed Operating System Dezign,”
Woerking Draft, August 1982, .

[Theil 83]G. Theil, "Partitioned Operation and Distributed . Data Base Management
System Catalogs,” Ph.D. Dismertation, University of California Los
Angeles, 1983,

(Wong 78|E. Wong and K. Yousefi, "Decompositione A Strategy for Query Processing,”
ASM Trazs. on Database Systems, Vol. 1, No. 3 Sept. 1978.

[Wong 77]E. Wong, "Retrieving Dispersed Data from SDD-1: A System for Distributed
Databases,” Berkeley Workshop on Distribated Data Managemens
and Computer Networks, 1977.

{Yao 79|S.B. Yao, "Optimization of Query Evaluation Algorithms.” ACM Transactions
on Database Systems, Vol. 4, No. 2, June 1979.

[Zloot TTIMM. Zloof, " Query-by-Example: A Data Base Langnage,” [BM Systems Jour
nal, Vol.16, no.4 1977.

96




