THE DESIGN & IMPLEMENTATION OF NESTED
TRANSACTIONS IN LOCUS

Erik Musller 1984
Johanna Moore Report No. CSD-840214
Gerald Popek

The Design and Implementation of

Nested Transactions in Locus

by
Erik T. Mueller
Jobanna D. Moore

Gerald J. Popek

Computer Science Department
School of Engineering and Applied Science
University of California

Los Angeles, California 90024

February 1984

This research was sponsored by the Advanced Research Projects Agency,
Department of Defense, under Contract No. DSS-MDA-903-82-C-0189, Secure
Reliable Processing Systems.

Table of Contents

1.2 Transactions as a Programming Toolcoecovvvveeveeeeeececrnnnn,
1.3 Nested Transactionscccccceecerevecrrninieivenicnisse s esesesenesasnosseens
1.4 Purpose of the Reportcocoiciriiieeereineiicieiit oo eeeaae
1.5 Points of NOVEILY ...t cecneie i e s oo secemsessreeeraas
1.6 Contents of the Reportoccooiiiivmerereeeeeeieeeee s e e v

2 THE LOCUS ENVIRONMENT

2.1 Underlying Systemccciiivriviirrmirseiicssisesreecaessesisssssesssnrevenees

2.2 The Locus Operating SyStemocoeereieriiveerecrie s e se e e e e
2.3 Locus File SYStem ...ccooiiiiiericiececieeee e ccceittats i e s cens e v se e e e
2.4 Locus Partition Managementccccceeeeeceiieiiieieiesvsereoreesemssseens

3 NESTED TRANSACTION MODEL ...ttt et eeee e e v esenennaan
3.1 Differences From Other Modelsoocerimiiiricie e ceecee e

3.1.1 Replication ...t eccrceeeivscnrrcsse e r e re e

3.1.2 Network Transparencyccccccccccviiiiieereeeeieisisiisesssesseesnees

3.2 Transaction IDVOCAtIOnccceoeeieieiieiieeceee it re e s e e

3.3 Transaction Completionccccceeviiiiiiiireninrcse e e eee s eas

3.4 FHe ACCESE ettt ceer e esr s st nes e st e en e eneenaens

3.5 Network Partitioningcccccoeveeenireiiieee s rerenereraseenanas

3.6 SUIMMABIY .corciiinieiiiiciiieiitrere e rerecseseaes e e e e smrs e e esssssses bt e emeenneeene

4 BASIC IMPLEMENTATION

4.1 Transaction Data SLIUCLULESccoiiciriii e vt e e ee et e e e e e e eeneas ereeneen
4.2 Transaction File Operationsc.cocciiiiiiiiiiimrovereeecessasreesessonnns
4.2.1 File Protocolsccoceiiieeiieeeiieeeiiieeccinncc e rrrees vsae e
4.2.2 Recovery and Lockingooovvvvremvieeriiieiiiiiiieee e e veeee e
4.3 Transaction Controlo.ceeieviiieccetcc e veesee e e aeaean
4.3.1 Trapsaction IRVOCationccoccorvvvevivriviiiinieceseeersreeesesaas
4.3.2 Transaction Completionccoeeoiiiiivneiierreeeeeveseeeeeenaen,
4.4 Transaction Committingooooiiriiiiiiiiiiii e
4.4.1 SubtransactioB COMIMILooivreiii et ecee e v e e e e ee e anaans
4.4.2 Top-Level Transaction Commitcoeveeieiiecieieerriricines
4.5 Transaction ABOFUIDE ...ococoeieieeieciiiieeieie i iececerseaeeeseeeseeeeeeeesaeens

5 HANDLING NETWORK PARTITIONS . .t veee e
5.1 Extensions to Abort Algorithmccoooviviiiriiiec e
5.2 Orphan Removal ...t e
5.3 Inaccessible Synchronization Sitescccoeviiieiiie e

6 EXTENSIONS AND OPTIMIZATIONS et et emerecsnees
6.1 Remote Transaction Processescooocoveviiiiiiiiiiieimieeeceeesaeseenns

6.1.1 Member Process Managementccocovviiieivcninenennn,

6.1.1 File Managementcccoeeeeiimmmmereiniiieeieeeeeiitiieeeaeeeneeeeeeenns

6.2 Handlirg An Unreliable Networkooviiimiiviiniiieiecceeen

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

.........................

page

00 -1 O O Y o =

12
14
15

19
19
19
20
21
24
26
27
27

29
29
31
31
33
38
38
39
40
40
43
45

47
47
49
54

56
56
56
38
60

6.3 Version Stack Optimization ... s e

7 TOP-LEVEL TRANSACTION COMMIT ..o ccer vt cassansnensssse s snssannaa s sans srsssaasn saas
7.1 Two-Phase Commit Protacolcocimiiisimsisnieiimrarimisisensssrssensssssesesses s csstas vanens

7.2 L0g SEPUCLUIE .ooviiiimeririininisr e et rs ettt s st s s assersa st s em s s en e s an e s e stn

7.3 Normal Case BeBaviorccoveccrccrreriieciorcoiereeismcsessrmsssssssssnsesstansssssnsstnesessssssass e

7.4 Handling Partitions and QULAZESccevirrvrnrirmirmrmsaessse et isve s s e ann st snananasns

7.4.1 Participant Viewpoint

7.4.2 Coordinator VIEWDOILL ivicesrircsmiiinincnstassnnenianmsiansisiarsss s nasssessssssssas sosensranes

8 OPTIMIZATIONS TO TWO-PHASE COMMIT ...ttt s nssresn s anee
8.1 Batching Messagesccimrmieiriiri e s

8.2 Removing Completed Participants ..o

8.2 Replication of Coordinator LOgscccceeivumeiiniieiiie ettt s e

8.4 Participant QUeEIYIDE ..cocoooiiriiviiiinriinreetneinerer e s et st b s st s e s sae e s e

9 RELATED WORK ...t senans
9.1 Single-level Transactionsccccvvvensesmercnecas reemrieeeseresbaseressssarsstasisissasserrrnraetnen
0.1.1 SySteM R oottt et e s s
9.1.2 Tandem ENCOMPASS ooiircer e crmssssnss st i i mase s snsssasnangssess ssssssannns oo
9.1.3 Distributed INGRES ..o iiiirieieeeurarrrrrrssseaosseoraremssurssisssrmrrrssrssssssnssssssansanse
0.1.4 SIFUSDIEIEA cooceerereiriiererenssssisisineransrsssorassteasnenssssnsansassessserntssnsasnsssssaraesansassese
0.2 Nested TIADSALIONS ccvceeererereeiererrerretreeeerenmmeretesesssseremmrssrersesesesesessrasasasassssnssensrstsss
.27 REEA ..oovrreee e soeereraennsrssstmsrsnsmsassssssemaesemstamesssibars totasansessssonnsassossernrayniosssias
.27 MOSSE .roeeeeeenmeanssrererennnnsssssesesssinnssssssassteresannnnssisisierirsesnnnnsssrasasereretisieitissisens
0.3 ATEUS cooeireiiiitiiieciiniri e ern s et ses e es e et e e et e As SRS AL SenAL HLe sa
9.4 Remote Procedure Call ..ottt s e

10 CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH ..o
10.1 ChReckPOIDLIIE ..ooveivieerrvesertiiiiransns e srse e st b e s st ar s s s s et st s e
10.2 Abstract Data TYPeS oottt st s e b e s
10.3 Inter-Process COMMUNICALION ..ccoevvvrrvicmiiiiiiiiiiinrrie et ts s e s v e st s sn v saanes

10.4 CODCIUSIONS weuereveieeneurarseessrsrmmsssresrassmesensssssssnsensesannssssas s stsssnnrnsmssssssssssssmasasissanas
REF EREINCES ooiteieeeeeeeceteeesasisteseermomretasesssbnsssssssssrs se st smsassashstsshinsessastantnssnnrcrietastsesassns e seratarasne

Appendix A NESTED TRANSACTION ALGORITHM .o .

A.1 Description LADGUAZE ..ccooiiiiiiiiiiiree ettt s e
A.2 Datatypes and Operationsocooooiiiiriiinimiiie e
A.3 Description of AIGOPIthmM ..o

Appendix B SUMMARY STATISTICS ..ooiiiiiii i
Person Hours Spent in Implementationcccooooiiiiniemiieiinimiinn s
Number of Lines of Code in Implementation ...
Performance MeasUTeImMeItsc.coceevurerrrmnseamisistiesmesuimreransrmantsrssmaresbtiasssamnnsssmsnnistasasases
Performance Measurements of Two-Phase Commit ...,

List of Figures
page

Figure 1: Transaction Treeccoeieeenne - - 23

Figures 2, 3a, 3b: Version Stacks ...cecoeiiniisimmimimniines sttt bt 35
Figure 4a, 4b: Commit Failure RECOVEIY ittt s 44
Figures 5a, 5b: Orphan RemOvVal oottt b 51
Figure 6: Two-Level LOg SUTUCLUIE .ooveuimrerinitiie ittt bt s st 70
Table 1: Elapsed Time — All Files Local oo 177

Table 2: Elapsed Time —~ All Files Remote reveretransasanaen sans teeerenessnseenrvsnerissssssreresscnene 118

Table 3a: CPU Time — All Files Local ..ottt ssanassen et s et 182
Table 3b: Elapsed Time —~ All Files Local ..ottt s 183
Table 4a: CPU Time -- Half Local, Half Remotecocccocennnns e 183
Table 4b: Elapsed Time — Half Local, Half Remote ...occooriiiniicnc i 184
Table 52: CPU Time — All Files Remote ...ceovviiiirriiicnni it s 185

Table 5b: Elapsed Time — All Files REMOtE oovoeovcuvesrmmrererecessissssarsmssssossssnsssssssssssssesrieeerrnes 186

ACKNOWLEDGEMENTS

The implementation 67 this work could never have existed were it not for the
Locus operating System under development at UCLA. Critical comments and sugges-
tions were offered by many members of the Locus research group. We also owe
many thanks to Richard Guy, Bruce Walker, and Greg Thiel who worked hard to
develop a user-friendly testing environment and to Richard Guy and Evelyn Walton

who kept the facility up and running, even when we did our best to break it!

This research has been supported by the U.S. Department of Defense, ARPA,
under contract DSS-MDA-903-82-C-0189.

PREFACE

This report documents the design and implementation of ;. mechanism for full
nested transactions within the Locus distributed operating system. The research re-
ported here was carried out by the first two authors for their Master’s theses.
Chapters 4, 5, 6, and Appendix A are largely the work of Erik Mueller, and Chapters

7 and 8 are largely the work of Johanna Moore.

ABSTRACT

Atomic transactions are useful in distributed systems as a means of providing
reliable operation in the face of hardware failures. Nested transactions are a generali-
sation of traditional tramsactions in which transactions may be composed of other
transactions. The programmer may initiate several transactions from within a tran-
saction, and serializability of the transactions is guaranteed even if they are executed
concurrently. In addition, transactions invoked from within a given transaction fail
independently of their invoking transaction and of one another, allowing use of alter-
nate transactions to accomplish the desired task in the event that the original should
fail. Thus nested transactions are the basis for a general-purpose reliable program-

ming environment in which transactions are modules which may be composed freely.

A working implementation of nested transactions has been produced for
Locus, an integrated distributed operating system which provides a high degree of
network transparency. Several aspects of our mechanism are novel. First, the
mechanism allows a trapsaction to access objects directly without regard to the loca-
tion of the object. Second, processes running on behalf of a single transaction may be
located at many sites. Thus there is no need to invoke a new transaction to perform
processing or access objects at a remote site. Third, unlike other environments,
Locus allows replication of data objects at more than one site in the network, and
this capability is incorporated into the transaction mechanism. If the copy of an ob-
ject that is currently being accessed becomes unavailable, it is possible to continue
work by using another one of the replicated copies. Finally, an efficient orphan re-
moval algorithm is presented, and the problem of providing continued operation dur-

ing network partitions is addressed in detail.

CHAPTER 1
INTRODUCTION

In the last few years, computers have become widely available. Microproces-
sors are in our cars, household appliances, and video games. Small business comput-
ers have become less expensive and personal computers are now commonplace. The
second generation of microprocessors will soon give us inexpensive personal worksta-

tions with a capability equivalent to that of current-generation minicomputers.

With this proliferation of compufers, people have begun to connect their pro-
cessors using a communications petwork. Such networks range from the 300 baud
telephone lines used to connect personal computers, and long-haul networks such as
the 50 Kbps Arpanet, to high-speed low-delay local area networks such as the 10
Mbps Ethernet. It is easy to visualize the day when every home will connect into a
world-wide integrated digital network which will carry audio and visual information,

along with other data such as text and programs.

It is now feasible and natural to construct a computer system from a collec-
tion of processors connected by a communications network. Such distributed systems
have several potential advantages over single-machine systems including decreased
cost, incremental growth, increased parallelism, and enhanced reliability and availa-

bility.

Despite the increasing popularity of distributed systems, the task of building

software in a distributed environment may be more difficult than on single-machine

systems for several reasons. First, in many distributed environments the method of
accessing a remote resource such as a data object or program is different from, and
more complex than, local resource access. A solution to this problem is the concept
of network transparency. The network should not be of concern to most users and
programs. An operation should have the same syntax and semantics, regardless of
whether it is performed locally or remotely. For example, the same interface should
be used to access a file whether it is local or remote. Programs should be able to exe-
cute at any site in the network with the same results. Of course, one still needs a
way to control resource location for optimization purposes, but that control should

be independent of the syntax and semantics of the use of the resource.

Second, writing distributed applications is made difficult by the richer set of
failure modes that arise when both the network and processors are unreliable. For
example, suppose one is running a program which updates several data objects locat-
ed at different sites in the network. If the site on which the program is executing
crashes, or if some of the data objects stored on other sites become inaccessible while
the program is running, the system may be left in an inconsistent state unless correc-
tive action is taken. One approach to coping with the failures which may occur in a

distributed environment is the transaction concept.
1.1 Transactions

There are two problems which arise in the context of failures and concurrent
computations and thus arise in distributed systems as well. Consider the following
example of a banking system. Suppose there are two bank account data objects, each
containing the balance of the account and other information. Further suppose it is
desired to execute a fransfer program, which withdraws some amount of money from

one account, and deposits the amount into another account. Now suppose the

transfer program first subtracts the amount from one account, but, before it is able
to add the amount into the other account, the processor on which the program is ex-

ecuting fails. In this case, the money withdrawn from the one account has been lost.

The second problem occurs when another program examines the amount of
money in the two bank accounts after the transfer program has removed money
from the one account, but before it has added the amount to the other account. In
this case, the program views a state of the bank accounts which does not obey the

constraint that the total amount of money in the system be constant.

The solution to these problems is for the transfer program to be an atomic
transaction, i.e., the operations performed by the program take place indivisibly ;.vith
respect to both failures and concurrent computations. That is, either all of the
operations will take place or none of them will take place, and other programs exe-
cuting concurrently cannot modify or observe intermediate states in which some of

the operations have been performed but others have not.

Another important property of transactions is consistency. A program which
performs manipulations on shared data objects assumes that the data satisfies cer-
tain consistency constraints. For example, in a banking system, it is assumed that
the sum of the balances of all the accounts in the system totals to some particular
constant. While such constraints are not usually explicitly stated by the program-
mer, programs nonetheless depend on the system data objects satisfying such asser-
tions. The set of all data objects in the system, or system state, is consistent if the

contents of the data objects satisfy the consistency constraints.

We assume that given a consistent system state, a transaction transforms the

system state into another consistent state. That is, we assume that the programmer

of a transaction has taken care to ensure that the transaction preserves consistency.
For example, in a banking system, a transaction which transfers money from one ac-
‘count to another will preserve the constraint that the sum of the balances in the sys-
tem total to a particular constant. In practice, the task of assuring that a program

preserves a set of constraints is quite difficult.

A serial ezecution of a set of transactions {Ti, Ty, ..., T.} is an execution in
which the transactions are executed one at a time, i.e., each transaction runs to com-
pletion before the next one is started. Serial executions of transactions preserve con-
sistency, since each transaction starts with a consistent system state and transforms
the consistent state into another consistent state which is passed to the next transac-

tion.

Although serial executions preserve consistency, they may lead to poor perfor-
mance because they do not allow one to take advantage of possible concurrency.
However, arbitrary concurrency between transactions can lead to inconsistency. For
example, consider the following situation in which two transactions T, and T,, which
are running concurrently, wish to withdraw money from the same account. The
withdrawal would be accomplished by first reading the amount of money in the ac-
count, subtracting the appropriate amount, and then writing the new amount back
into the account. Suppose that T, reads the amount, calculates the new amount,
but, before it writes the new amount, T, reads the amount and calculates the new
amount. Next, 7, writes back the new amount and then T, writes back the amount.
Here the effect is as if only one of the withdrawals were performed. Thus concurren-

¢y can easily cause consistency to be violated.

In order to allow concurrency while preserving consistency, the notion of seri-
alizability [Eswaran 76] is introduced. An execution is serializable if it is computa-
tionally equivalent to a serial execution. That is, a serializable execution has the
same effect as some serial execution. Since serial executions of transactions preserve
consistency, so do serializable executions. There are two methods to guarantee the
serializability of transactions: locking and timestamps. In this report, we employ

locking.
1.2 Transactions as a Programming Tool

Although many transaction implementations currently exist, especially in da-
tabase management systems [Borr 81] [Gray 79|, these implementations have two
significant limitations which make them unsatisfactory for a general programming
tool in a distributed environment. First, existing transaction mechanisms are typi-
cally implemented as part of an application-level program such as a database
manager. As a result, it is not possible for other clients of the system to use the tran-
saction mechanism. Consider an application that invokes some database actions as
well as performing several file updates directly. In case of abort, the database sys-
tem undoes its updates, but it is the application program’s responsibility to deal
with its own actions in a way that is synchronized with the database system’s
behavior. For this reason, the transaction facility should be provided in the underly-
ing operating system so that it is generally available. Given a transaction facility
implemented in this manner, the example of the application calling the database sys-

tem is straightforward to handle.

More importantly, in existing implementations, transactions cannot be initiat-
ed from within transactions. While not significant in a database management system,

this restriction prevents users from constructing new transaction applications by

composing existing transactions. The programmer should instead be able to write
transactions as modules which may be composed freely, just as procedures and funec-

tions may be composed in ordinary programming languages.
1.3 Nested Transactions

Transactions which are composed of other transactions, or nested transac-
tions, have been the subject of much current literature [Moss 81| {Liskov 82] [Reed
78] [Svobodova 81]. A transaction invoked from within a transaction, or subtransac-
tion, appears atomic to its caller. That is, the operations it performs take place indi-
visibly with respect to both failures and concurrent computations, just as for tradi-
tional transactions. Thus a nested transaction mechanism must provide proper syn-
chronization and recovery for subtransactions. Such a mechanism guarantees that
concurrently executing transactions are serializable. Another property of nested tran-
sactions is that subtransactions of a given transaction fail independently of their in-
voking transaction and of one another, so that an alternate subtransaction may be
invoked in place of a failed subtransaction in order to accomplish a similar task. It
has been pointed out that many applications naturally lend themselves to being im-

plemented as nested transactions [Gray 81} [Moss 82}.
1.4 Purpose of the Report

This report describes an original algorithm for full nested transactions and its
implementation within the Locus distributed operating system [Walker 83] {Popek
81]. Full nested transactions builds on the simple nested transaction mechanism re-
ported in [Moore 82a] and [Moore 82b]. Although the implementation has been pro-
duced in the Locus environment, we believe that the algorithms described in this re-

port are generally applicable.

The majority of the design and implementation reported in this document is
the work of Erik Mueller, with the following exceptions. An important part of the
mechanism, the two-phase commit protocol which is used to atomically commit a
top-level transaction, was designed and implemented by Johanna Moore. The
mechanisms necessary to support remote process forking were designed and imple-

mented by August-Wilhelm Jagau.
1.5 Points of Novelty

To our knowledge, this is the first actual implementation of nested transac-
tions on a distributed system. So far, others have produced only a preliminary, cen-
tralized implementation as part of the Argus language [Liskov 82] and a centralized
simulation of a distributéd implementation [Moss 81]. Further, as discussed in
Chapter 3, our nested transaction mechanism provides additional functionality
beyond that which is usually proposed. First, our mechanism allows transparent ac-
cess by transactions to objects at sites other than the site on which the transaction is
executing. Second, unlike other environments, Locus allows replication of data ob-
jects at more than one site in the network, and this capability is incorporated into
the transaction mechanism. If the copy of an object that is currently being accessed
becomes unavailable, it is possible to continue work by using another one of the re-
plicated copies. Third, transactions may be composed of processes running at many
sites in the network, without the need to invoke separate subtransactions to accom-
plish work at the many sites. Finally, an efficient orphan removal algorithm 1is
presented, and the problem of providing continued operation during network parti-

tions is addressed in detail.

1.8 Contents of the Report

This document is organized as follows. Chapter 2 describes the particular dis-
tributed environment which this report assumes, namely that of the Locus distribut-
ed operating system. Chapter 3 describes the model of nested transactions which is
presented to the programmer and describes those aspects of our model which differ
from other nested transaction models. Chapter 4 presents the basic implementation
of nested transactions, which is extended in Chapter 5 to deal with network parti-
tioning. Chapter 6 explores several extensions and optimizations which can be made
to the nested transaction algorithm developed in the preceding chapters. Chapter 7
describes the implementation of top-level transaction commit using the two-phase
commit protocol. Chapter 8 looks at optimizations to the commit protocol described
in the previous chapter. Chapter 9 reviews the work 'of others in order to put our
work in proper context. Finally, Chapter 10 presents conclusions and suggestions for
further research. Appendix A contains a detailed description of the nested transac-
tion algorithm developed in Chapters 4 and 5. Appendix B presents summary statis-
tics, including a breakdown of the number of lines of code in our implementation,

and measurements of the performance of the mechanism.

CHAPTER 2
THE LOCUS ENVIRONMENT

This report assumes a particular distributed environment, namely that of the
Locus distributed operating system [Walker 83| [Popek 81]. In this chapter, we first
describe the underlying architecture on which Locus is built. We then give an over-
view of the Locus operating system, describe the Locus file system, and conclude

with a discussion of the Locus partition manager.
2.1 Underlying System

A distributed system consists of a collection of processors, called sites, which
communicate via the communications subsystem. Failures of both the sites them-
selves and the communications network are expected to occur. However, we expect
all failed components to recover eventually. Our protocols view the permanént loss of

a site as intolerable behavior and hence do not attempt to deal with such failures.

The sites in our environment are expected to be heterogeneous ranging from
personal workstations with little or no permanent memory to large mainframes with
vast amounts of permanent storage. Each site has both volatile and stable storage.*

When a site fails, the state of the processor and the contents of volatile memory are

= It is not strictly necessary to require that each site have its own stable storage. A site which has
little or no stable storage capacity could use that of another site in the network by arranging a
suitable protocol with that site. However, we will assume that if this is the case, the protocol to make
this occur will be hidder within the operating system of that site and hence, to our protocols, it will
look as though the site itself has stable storage. We will not provide special protocols to handle this
case. Thus, without loss of generality, we will assume for the remainder of this discussion that each
site in the network has stable storage. Although Locus does not yet provide such a protocol, future
plans include such support.

lost, while the contents of stable storage remain intact. Stable storage has two pro-
perties: (i) stable storage is reliable, i.e., its only acceptable behavior is to store and
retrieve information correctly as instructed by the processor, and (ii) updates to
stable storage take place atomically, i.e., each update must appear to have occurred
in its entirety or not at all. Our notions concerning stable storage have come from
the work of Lampson and Sturgis who have designed a method for implementing
stable storage of arbitrarily high reliability using magnetic disks [Lampson 79]. Gray
has suggested several alternative schemes in [Gray 78]. The actual form of imple-
mentation is not important for the remainder of our discussion and will not be con-

sidered further.*%

We have stated that permanent loss of a site is viewed by our protocols as
unacceptable behavior and as such would not be dealt with in our algorithm. What
we really view as intolerable behavior is the unrecoverable loss of data stored in a
site’s stable storage and not of the site itself. Thus the problem comes down to
building stable storage on a device which can easily be moved to another site, should
the site it is currently connected to fail, and building a mechanism by which the sys-
tem can handle such migration. In fact, the Locus operating system contains such a
mechanism. This mechanism, known as pack porting, works in the following manner.
In Locus, all data objects are associated with a pack anci all packs are uniquely
identified within the network by a global pack identifier. The system keeps a
network-wide table mapping global pack identifiers to site identifiers. In this manner,

it is possible to determine the site at which a pack currently resides. Whenever a

#x Currently a strict form of stable storage is not implemented in Locus. However, Locus does
provide an atomic file update capability. In our implementation we store and update all information
which must be relied upon to survive crashes on magnetic disks as files. We assume that true stable
storage will eventually be implemented in Locus.

10

pack migrates, the table is updated.* Thus through the use of stable storage accom-
panied by pack porting, we can, in practice, reduce the probability of the behavior

which we consider intolerable to an arbitrarily small factor.

We assume no particular topology of the communications network. The net-
work could consists of Ethernets, ring networks, connected by muitiple gateways,
and so on. However, a level of software called the partition manager enforces certain
constraints regarding the communications system which our algorithms rely on. This

will be discussed in the last section of this chapter.

Sites communicate using messages which are transmitted from a source site to
a destination site by the communications system. Each message contains the source
site, destination site, and a stream of data. We assume that messages are not al-
tered by the communications system. Error-checking codes such as cyclic redundancy
checks or checksums may be used to discard any messages which have been corrupt-
ed. Although such techniques cannot eliminate all corrupted messages, they can el-
iminate such messages with arbitrarily high probability. Thus we assume that mes-
sages are delivered to their proper destination and that the stream of data in the

message remains unaltered.

We.do not otherwise assume the communications system to be particularly re-
liable. The communications system may lose messages, may deliver duplicate mes-
sages, may deliver messages in a different order than the order in which they were
sent, and may delay messages arbitrarily. However, we do assume that if 2 message

is repeatedly sent, it will eventually reach its destination.

* See |[Reiher 82| for the details of pack porting in Locus.

11

If techniques such as sequence numbering are used to eliminate duplicate, de-
layed, and out-of-order messages at the low level, ie, that of the communications
system, our high-level algorithms must still cope with lost messages. However, in
order to cope with lost messages, our algorithms will have to retransmit messages. As
a result, duplicate messages will be generated at the high level, and must be dealt
with. Thus it can be seen that handling duplicate messages at the low level is wast-
ed effort, since they will be generated and dealt with at the high level in any case.

This is an example of the end-to-end argument [Saltzer 81].
2.2 The Locus Operating System

Locus is an integrated distributed operating system providing a high degree of
network transparency, while at the same time supporting high performance and reli-
ability. Locus makes a collection of computers connected by a communications net-
work look to the user and application program like a single UNIX* [Ritchie 78] sys-
tem. For example, there is one tree-structured hierarchical name space for files and
one may run processes locally or remotely with identical semantics. In Locus, files
may be replicated, i.e., one may store a file at several sites. The system in operation-
al use at UCLA consists of a set of VAX 11/750 computers connected by a standard

Ethernet.

Locus provides for graceful operation during network partitions, i.e., the si-
tuation where various sites in the network cannot communicate with each other for
some length of time due to network or site failures. This is a very real problem in a
distributed system. A partition occurs if a site becomes disconnected from the net-
work for some reason, such as if the site’s network interface fails. In some cases it

may even be desirable to operate in partitioned mode, for example if the site is a

* UNIX is a Trademark of Bell Laboratories.

12

personal workstation which connects to the rest of the network by an expensive
long-distance telephone line. General partitions are possible in an environment where
local networks are connected by gateways. Even in the Ethernet, gateways can be
inoperative for significant lengths of time while the Ether segments they normally
connect operate correctly. Locus employs a sophisticated merge algorithm which al-
lows sites to leave and return to the network gracefully without interrupting service

[English 83].

One of the most important goals which drove the design of Locus was the
desire to make the development of distributed applications no more difficult than
single-machine programming. In fact, users of a Locus network have the illusion
that they are operating on a single machine. The network is essentially invisible.
Users have no need to refer to a specific site or to the network itself. There is a uni-
form interface to all resources in the distributed environment independent of their
location. For example, if open(filename) is the method used to access local files, then
it is also the method used to access remote files. Thus the network becomes invisible
in much the same way that virtual memory hides secondary store. An extensive dis-

cussion of the principle of network transparency may be found in [Popek 83a}.

Distributed systems providing redundant resources have substantial potential
for reliable, available operation. However, in order to realize this potential, it must
be possible to substitute alternate versions of resources when the original is corrupt-
ed or unavailable. For the sake of availability, operation must be allowed to contin-
ue in the face of network partitions. If the resources for an operation are available
in a given partition, that operati‘on must be allowed to proceed even if some of the
required resources are replicated in other partitions. Although this policy can easily

lead to consistency conflicts at partition merge time, we believe it is a reasonable

13

policy for the following reasons. First, we believe that conflicts of this type are like-
ly to be rare, since actual sharing in computer utilities is known to be relatively in-
frequent. Furthermore, an algorithm has been developed to detect conflicts if they
have occurred [Parker 83]. For those data objects whose update and use semantics is
simple and well understood, it may be quite possible to reconcile the conflicting ver-
sions automatically [Faissol 81] [Faissol 83]. Our philosophy regarding replication

and recovery is discussed in greater detail in [Popek 83b).
2.3 Locus File System

Locus provides for the manipulation of permanent objects called files. In this
section we summarize the Locus file system; a complete discussion may be found in
in [Walker 83|. As in UNIX, files are organized into sections of mass store called file
systems. However, in Locus file systems may be replicated, i.e., we may store a file
system at several sites. Files may be replicated at any of the sites storing the con-
taining file system. However, replicating a file system does not imply that copies of
“all files contained in that file system must be stored at each such site. Files are
uniquely identified in the network by a filename, which is the pair <FileSystem,
FileNumber>. Each copy of a replicated file is uniquely identified by the pair
<FileName, PackNum> .*

For each file system in a given partition, one of the sites storing the file sys-
tem is designated the current synchronization site (CSS) for the file system. This site
manages synchronization for all of the files contained in the file system. That is, all
open requests involve a message to the CSS. It is not necessary for the CSS to be

the site from which data access is obtained. Any site which has a copy of the file can

* Recall that the pack porting mapping scheme allows one to determine the site where a pack is
located from the pack number; see [Reiher 82}.

14

provide the data. Such a site is called the storage site (SS) for the open request.

An outline of how actual file operations are handled will serve to clarify the
Locus synchronization mechanism and the roles played by the various sites partici-
pating in a file operation. When an open request for a particular file is issued, the
user-level character string pathname is translated into a system-level filename at the
requesting site.#* This name is then sen‘t from the requesting, or using site (US) to
the CSS in an open request message. If the file is not locked in a conflicting mode,
the CSS selects an SS and sends it a message. After the SS decides to provide ser-
vice, it replies to the CSS, which records appropriate synchronization information
and notifies the US. The US installs appropriate information and the open is com-
plete. The US may now read and write file pages by conversing directly with the SS.
When the US wishes to commit any modifications it has made to the file, it sends a
commit message to the SS causing the new version of the file to replace the old ver-
sion of the file in stable storage at the SS. As part of the commit operation, the SS
sends messages to all the other SSs of that file as well as the CSS. At this point, the
other SSs will bring their version of the file up to date by propagating the changes
made to the file. When the US is finished using the file, it sends a close message to
the SS which causes it to send a similar message to the CSS. Access information kept

at the SS and the CSS is appropriately updated.
2.4 Locus Partition Management

Locus is designed to operate gracefully in the face of network partitions, i.e.,
when a group of one or more sites is isolated from other sites in the network due to
communications failures or site outages. When the network is partitioned, we as-

sume that the collection of sites making up the network is broken up into a number

=+ See [Walker 83| for details of this name translation.

15

of disjoint sets of sites. We assume that any site in a given partition can communi-
cate with every other site in that partition, and that no site in a partition may com-
municate with a site which is not in that partition, i.e., that members of a partition

are strongly connected.

This model of network partitioning differs in some respects from what may
actually occur and some extra measures must be taken to enforce this model. For
example, a communication link may fail in only one direction (or input buffers at one
site may become full effectively causing communication failure), allowing one-way

communication between a pair of sites.

In order to ensure that our model is accurate and that the protocols which we
have designed based on this model operate correctly, Locus employs a partition
management algorithm which enforces the partition model we have described above.
Each site maintains a table of those sites with which it can communicate, called the
site table. A logical partition is defined as the subnetwork indicated by the sites in
the site table. The site table is managed by the partition management software and
may lag behind the actual physical state of the network while topology changes are

in progress.

The partition management software enforces the requirements of our model in
the following rnanx.xer. Before sending a message, the site table is checked to see if
the intended recipient is available. If so, the message is queued to be sent out over
the network. If not, the process attempting to send the message is notified of this

condition.

Although, in general, messages will not be sent to sites which are not in the

site table and transmissions from such sites will not be accepted, some special mes-

16

sages must be allowed to bypass this constraint so that new sites can be added to a
partition, ie., so that partitions may merge. Thus the partition management
software employs a set of special messages which can be sent to and received from
sites currently assumed to be unavailable. In this manner, sites may join a given

partition.

Sites which are no longer available are detected in the following way. When
attempting to transmit to a remote site, a timeout with retransmission strategy is
used. If an #cknowledgement from the remote site is not received before the
specified time interval has elapsed, the message is retransmitted. This scheme is re-
peated a number of times until the retransmission limit is exceeded. Once this limit
is exceeded, the recipient site, which has not responded to these repeated communi-
cation attempts, is assumed to be down and the site table is updated to reflect this

topology change.

Whenever any sites join or leave the network, a topology change procedure is
run. This procedure manages the site table and maintains consistency of the system
data structures. One of its tasks in this respect is to locate any processes waiting for
messages from sites which have become inaccessible, and to notify them of this
event. This prevents processes from waiting indefinitely for messages from sites
which have crashed or been partitioned away. Another important task of the topolo-
gy change procedure is to select new CSSs for each file system and to reconstruct
locking information. In addition, recovery must be performed for any conflicting file
copies, i.e., they must be reconciled. For a complete description of the partition
management software, see [English 83]. The algorithms employed in Locus are dis-

cussed in greater detail in [Edwards 82].

17

A large portion of this report is devoted to the design of topology change al-
gorithms for properly maintaining consistency of the system data structures used by
the nested transaction mechanism. In designing strategies for dealing with network
partitions or site outages in our transaction system, we make the assumption that if
a site is partitioned away, it is likely that the site will stay partitioned away for
quite a while. Thus we abort anything which cannot continue work because of the
partition and attempt to recover to a state where work can continue. We do not
wait indefinitely for the inaccessible sites to become accessible again. We also free
any resources which are held by processes not in our partition, so that processes

which are in our partition may access the resources.

18

CHAPTER 3
NESTED TRANSACTION MODEL

This chapter describes the Locus model of nested transactions. Our model of
nested transactions differs in significant ways from traditional views. We discuss
these differences in the first section. In the sections which follow, we explain the
model of nested transactions which is presented to the Locus user, including transac-
tion invocation, completion, and file access. Finally we discuss the user-visible results

of network partitioning and conclude with a summary of the chapter.
3.1 Differences From Other Models

In this section, we describe how our model of nested transactions differs from
other models. First we discuss our philosophy regarding replication, and then we dis-

cuss how network transparency makes our model different from others.
3.1.1 Replication

Other models of nested transactions insist that replication of data objects be
built on top of the transaction mechanism [Moss 82]. However, the mechanism for
replication of objects at more than one site in the network is provided within the
Locus file system. Thus our transaction mechanism assumes that each object may
consist of several replicated copies. During partitioning of the network, transactions
may continue gracefully if copies of the necessary objects are available within the
partition. Of course, serious consistency problems can result when partitions merge‘

and a given object has been independently updated in several partitions. Difficulties

19

are even worse if that object has already been used by other transactions as a basis
to update other objects. Nevertheless, there is potentially great value in permitting
these transactions to execute during a partition. First, an algorithm has been
developed to detect any conflicts that have occurred upon partition merge; see [Park-
er 83} and [Parker 82]. Second, for many applications, including airline reservation
and banking, it is usually possible, and feasible, to automatically reconcile all data
values at partition merge time. The problem of automatic reconciliation of data in
the context of network partitioning is dealt with extensively in [Faissol 81] [Faissol
83]. This work breaks the semantics of transaction operations into several classes,
develops reconciliation algorithms for each class, and claims that most real cases of

data management fall into the simpler of these classes.

One suspects that in many systems, automatic reconciliation will be feasible
for the large majority of data objects. For those applications for which automatic
reconciliation is not feasible, a scheme such as voting [Menasce 77] [Thomas 78| or
primary sites [Alsberg 76] may be implemented at the application level, in order to
limit object accesses to at most one partition. Of course, there will remain cases that
require human intervention, such as when an external action has been taken that
cannot be undone and for which a compensating action cannot be taken. These
cases are the same ones for which general-purpose data management recovery is also
impossible. The problem of consistency of application data objects in the environ-

ment of network partitions is beyond the scope of this report.
3.1.2 Network Transparency

Other models assume that a transaction directly modifies objects residing only
" at the site on which the transaction is executing {Moss 81] [Liskov 81]. In order to

modify objects at another site, it is necessary to invoke another transaction at the

20

remote site. In contrast, we believe that the location of both data objects and
processes should be transparent to the programmer. Thus a transaction may directly
access objects at any site, the same way that local objects are accessed. The object
may in fact be replicated at more than one site. Siniflarly, our model does not re-
quire that all processes withinr a single transaction execute at the same site as in oth-
er models [Moss 81} [Svobodova 81] {Liskov 82]. A transaction may transparently
consist of processes at several sites just as it may be composed of several processes at
a single site. In addition to transparency considerations, the ability to execute
closely-cooperating processes within a transaction at multiple sites and the ability to
access remote objects directly without artificially imposed mechanisms substantially

improves transaction performance.
3.2 Transaction Invocation

We now explain the model of nested transactions which is presented to the
programmer. In this section we discuss transaction invocation. The process model
we use in this discussion is the same as that of UNIX in which a process may invoke
another process only by creating a replica of itéelf, an operation known as forking a
process. The new process, called a child process, can distinguish itself from the origi-
nal process, the parent process, by the return value of the fork operation. The child
process inherits all the open files of its parent. A process may wait for its children to

complete via the wait system call.
A process starts a transaction with the following site-transparent* calk:

relcall(load-module, args)

* Specific site requests are performed with a context mechanism, such as that proposed in [Popek
83a].

21

This system call causes load-module to be executed as a transaction with command-
line arguments args, which is a list of character strings. Typically, args gives the
names of files which are the input data objects to the transaction. Open files are in-
herited from the process issuing the call.*+ The call waits until the transaction com-
pletes and then returns with a completion code. When a transaction is started with
relcall, it consists of only one process, the top-level process of the transaction. This
process, however, may fork locally or remotely giving rise to transactions consisting
of more than one process. Each process that is a part of a transaction, including the

top-level process, is called a member process.

Processes running as part of a transaction are permitted to invoke other tran-
sactions. A transaction invoked by a process running as part of a transaction is
called a subtransaction, since it is a transaction invoked from within a transaction.
Subtransactions are frequently referred to merely as transactions. In Figure i, tran-
sactions Ty and T, are subtransactions of 7, and transaction T, is a subtransaction of
T,. The transaction whose initiator is not a transaction, in this case Ty, is called a
top-level transaction. To speak of the related group of transactions, i.e., a top-level
transaction and all of its subtransactions, the term entire transaction is used. In the

figure, the entire transaction consists of Ty, To, Ty, and T,

#+ Strictly speaking, inter-process communication through shared files or pipes should not be
permitted between running transactions since this violates indivisibility of transactions. (However,
communication is allowed between the closely-cooperating processes making up a transaction.) Thus
passing open liles with relcall is discouraged. Nevertheless, it is sometimes necessary for users to
interact with running transactions and for error messages to be printed on an output device or logged
to a file. Passed open files must only be used for these purposes. Any file operations performed on an
open file passed from a caller are treated as if they were performed by the transaction that originally
opened the file. When a transaction wishes to work on a file, it must open the file itsell so that proper
locking and recovery may be performed. It is not difficult to extend our algorithms to allow a
transaction to explicitly pass open files to a subtransaction, so that it is not necessary to close a set of
files before invoking a subtransaction that uses those files.

22

Figure 1: Transaction Tree

23

Tree terminology will be used in discussing relationships between transactions.
When a transaction calls a subtransaction, the calling transaction is called the parent
of the subtransaction, and the subtransaction the chsld of the calling transaction. In
our example, transaction T,'s children are T, and T,, and T, is the parent of T, and
T,, and so on. We also speak of ancestors and descendants. A transaction is an
ancestor and descendant of itself. Thus the ancéstors of T, are T, Ts, and T,. The
descendants of T, are T, T,, Ts, and T,. We also use the terms superior and inferfor.
A transaction is neither a superior nor an inferior of itself. Thus the superiors of T,

are T, and T,. The inferiors of T, are T,, Ty and T,
3.3 Transaction Completion

A transaction completes either by .committing or aborting. A transaction may
commit only after its children have all completed. However, a transaction may abort
at any time. Processes terminate by issuing the ez:if system call which has an argu-
ment indicating the success or failure of the process. Thus in order for a transaction
to commit, its top-level process must issue an exit call with a successful completion
code. However, if a top-level process issues an exit call with an unsuccessful comple-
tion code, the transaction aborts. In addition, if a top-level process terminates be-
fore all other member processes have terminated, the transaction aborts. This is re
quired to enforce the UNIX programming convention that each process waits for its

children before terminating.

A subtransaction will be said to commit if certain operations which must be
performed by the system complete successfully. If, for example, one of the objects ac-
cessed by the subtransaction has become inaccessible because of a network partition,
then the commit will fail. The actual committing of any updates performed by the

subtransaction is contingent upon the commit of each superior transaction all the

24

way up to the top-level transaction. If a superior transaction aborts, then the up-
dates of all descendants of that transaction will effectively be undone. Thus no up-=
dates performed within an entire transaction are made permanent until the top-level
transaction commits. A top-level transaction will commit if the two-phase commit
protocol [Gray 78] [Lindsay 79] [Lampson 79] reaches the commit point. After a
transaction commits or aborts, control returns to the process that invoked the tran-

saction.

Since a calling process waits for the completion of a transaction, a single pro-
cess may invoke at most one transaction at a time. A transaction may initiate
several subtransactions concurrently by simultaneously invoking subtransactions
from several of its member processes. For example, the following transaction code In
the C language [Kernighan 78| executes two subtransactions subtransl and subtrans2
in parallel, committing only if both subtransactions commit:

if (fork() == CHILD) {

exit({relcall(”subtrans1”, argsl));

return_code2 = relcall{”subtrans2”, args2);

wait(&return_codel);

if ({return_codel == COMMIT) && (return_code2 == COMMIT))

exit(COMMIT);

exit{ABORT);

else

This code, which we assume is running as the top-level process of a transaction,
forks a child process which calls subtransaction subtransl and then exits with the
transaction completion code. At the same time, the parent process invokes subtran-
saction subtrans2. When subtrans? completes, the parent process waits for its child
process to terminate and is passed its completion code, which corresponds to whether
subtransl committed or aborted. The parent process then instructs the system to

commit only if both subtransactions committed, and to abort otherwise.

25

3.4 File Access

-

A transaction requests a lock on a file with the open system call and releases
it with the close call. A transaction holding a lock on a file reads and writes.data
with the read and write system calls. When a transaction commits, the transaction’s
caller and all the caller’s inferiors see the updates of the transaction. If a transaction

aborts, the updates of the transaction are undone.

In order to guarantee serializability between transactions, the locking rules of

[Moss 81] are extended (we have added the last rule and slightly modified the oth-

ers):

* A transaction may open a file for modification (kold a lock in write mode) if
no other transaction holds the lock (in any mode) and all retatners of the lock
are ancestors of the requesting transaction.

* A transaction may open a file for read {hold a lock in read mode)} if no other
transaction holds the lock in write mode and all retainers of write locks are
ancestors of the requesting transaction.

* When a transaction aborts, all its locks are simply discarded. If any of its su-
periors hold or retain the same lock, they continue to do so, in the same mode
as before the abort.

* When a transaction commits, all its locks are inherited by its parent (if any).
This means that the parent retains each of the locks (in the same mode as the
child held or retained them).

* When a transaction closes a file (for the last time), the held lock becomes a re-

tained lock.

It has been noted in [Moss 81] and [Liskov 82] that if parents of transactions
are prevented from running when their children are running, then the distinction
between held and retained locks is not required. There is no easy way to enforce this
policy in C without also preventing a tranmsaction from starting concurrent
subtransactions--if we stop all transaction processes whenever one of them invokes a
subtransaction, then only one subtramsaction may be invoked at a time. The pro-

gramming language Argus [Liskov 82] solves this problem by introducing a language

26

construct used only to start several concurrent subtransactions.*
3.5 Network Partitioning

We now consider what happens when a network partition occurs, i.e., if one or
more sites leave the current partition. Under certain conditions, such an occurrence
will cause some transactions to be aborted. First, if a transaction is separated from
its caller, the following will occur. If the transaction is a subtransaction, it is abort-
ed and its caller is made aware of this fact by an appropriate completion code of rel-
call. However, if the transaction is a top-level transaction, the caller is notified that
the transaction has been partitioned away, although it is impossible to determine
whether the transaction has committed or aborted.** Second, if a transaction holds
" or r;ata.ins a lock for a file which has become inacceﬁsible, the transaction is aborted.
If another copy of the file is accessible in the current partition, transactions left una-

borted by the network partition may then open the file.
3.8 Summary

In this chapter we have presented the model of nested transactions which is
provided to the programmer. For a sample application which has been run using

Locus nested transactions, see [Mueller 83bj.

* Specifically, the construct is
action foreach element in list

subtransaction(element)
end

The meaning of this construct is: For each element of a list, concurrently invoke a subtransaction
with that element as its argument.

++ There are two simple solutions to this problem. One is to build a mechanism to record completed
_top-level transactions. The other is advise users not to invoke remote top-level transactions.

27

Our model differs from traditional views in two significant ways. First, we as-
sume that files may be replicated at more than one site in the network. For the sake
of availability during network partitions or site failures, we allow s~transaction to ac-
cess a file if one of the replicated copies of the file is available. Although this policy
can lead to consistency problems, in many cases such conflicts can be reconciled au-
tomatically. Second, in order to ease programming in a distributed environment, we
have argued that the network should be invisible to most programs. Remote
resources, such as processes and data, should be used the same way as local resources
are used. We adhere to the concept of network transparency in our transaction
mechanism. Thus unlike most other models, we allow a transaction to access data at
any site the same way it accesses local data. Similarly, since transactions may be
composed of closely-cooperating processes located at a single site, they may just as

easily be composed of processes executing at many sites in the network.

In the chapters which follow, we present our implementation of the nested
transaction mechanism described in this chapter. Chapter 4 presents the basic imple-
mentation of nested transactions. A detailed discussion of fop-level transaction com-
mit is deferred until Chapters 7 and 8, and the handling of network partitions is de-
ferred until Chapter 5. In Chapter 6, we present several extensions and optimizations

to the algorithms developed in Chapters 4 and 5.

28

CHAPTER 4
BASIC IMPLEMENTATION

This chapter describes the basic implementation of nested transactions in
Locus. Several aspects of the implementation will be deferred until later chapters to
simplify the presentation of our algorithms. We believe that our algorithms depend
little on the Locus operating system and could be adapted to many distributed en-
vironments. However, the design and implementation of our mechanism was greatly
simplified by the high degree of network transparency which Locus provides and by

the partition management and recovery schemes which are part of Locus.

We have made the assumption that the underlying communications system
may lose, duplicate, delay, and reorder messages. However, these characteristics of
the communications network will be ignored in this chapter in order to simplify the
description. We will assume here that messages are not lost, except in the case of
network partitioning, and that they are not duplicated, delayed, or reordered. In
Chapter 6, we will show how our protocols may be amended to handle these com-

munications failures.
4.1 Transaction Data Structures

The site on which a transaction begins executing is called the iransaction
home site. Each transaction is uniquely identified in the network by its {ransaction

unigue identifier (Tid). We assume that it is possible to determine the home site of

29

a transaction from its Tid.* Processes are uniquely identified in the network by a
process unique identifier (Pid), from which one may determine where the process is
executing. Associated with every process executing at a site is a process structure
whi;:.h, among other information, contains a flag which indicates whether the process
is executing on behalf of a transaction, and if this flag is set, the Tid of the transac-
tion. Processes running as part of a transaction may fork, giving rise to transactions
which have more than one member process. Our implementation has been designed
in an environment which allows processes to fork remotely as well as locally. Thus it
is possible for a transaction to have member processes at a site other than the tran-
saction home site. Such processes are called remote member processes. However, in
this chapter we assume that all processes making up a transaction reside at a single

site. In Chapter 6, we will amend our algorithm to handle remote transaction

processes.

Associated with each transaction, be it a top-level transaction or a subtran-
saction, is a volatile data structure called the {ransaction structure which resides at

the transaction home site:

Trans = Struct[Tid, Super, Status, Pid, Members, Files]
Super = List[Tid

Status = Oneof]| EFINED, COMMITTED, ABORTED)]
Members = List[Struct[Pid, Subtransi]

Files = List[Struct[FileName, PackNum, Mode]]
Subtrans = Oneof[NULL, Tid]

Mode = Oneof(READ, WRITE]

* Tids may be implemented as the pair <HomeSite, LocaiUid>, where HomeSite is the transaction
home site and LocalUid is an identifier unique to the transaction home site. Thus the transaction
bome site generates a Tid by generating a local unique id, and pairing it with its site identifier.
However, in our implementation, we will require the generation of a Tid by the site invoking the
transaction, not the home site of the transaction. Thus the above pair is not easy to generate without
a message exchange between the transaction home site and the generating site. Instead, we employ
the triple < HomeSite, GeneratingSite, Uid>. We are simply generating a giobally unique id
< GeneratingSite, Uid> and pairing it with some extra information—the transaction home site. Note
that such a Tid scheme does not allow transaction migration. However, we do not allow transaction
migration in the current mechanism.

30

The transaction structure contains the Tid of the transaction and a list of the Tids
of the transaction’s superiors. If the transaction is a top-level transaction, the list of
superiors is empty. The status of a transaction is UNDEFINED from the time it is
initiated until its fate is determined, at which time its status will be changed to
COMMITTED or ABORTED. A Pid identifies the process which invoked this tran-
saction and thus indicates where to return control when this transaction completes.
The Members field contains a list of the member processes of the transaction. This
list is called the member process list and it contains an entry for each process mak-
ing up the transaction. Each entry contains the Pid of the process and any active
subtransaction of the process. An active subtransaction is a subtrénsaction which
has been invoked, but has not yet completed. The Files field contains a list of the
files involved with the transaction, i.e., the files for which the transaction holds or re-
tains locks. This list is called the participant file list and each of its entries contains
the filename and a pack identifier which together uniquely identify a physical copy of
a file. Mode indicates the type of access (READ or WRITE) the transaction has to
this file.

4.2 Transaction File Operations

For simplicity, we will only discuss file operations performed by transactions.
Non-transaction file operations in Locus are treated in [Walker 83] and [Edwards 82.
In this section, we first discuss the protocols which are used to perform the various

file operations, and then we describe file recovery and locking in more detail.
4.2.1 File Protocols

As mentioned earlier, a transaction process requests a file lock via the open

system call. Data is read and written with the read and write system calls, and a

31

lock is released with close. Thus the following operations must be provided to a

transaction process:
Open(FileName, Mode, Tid, Super
Read(FileName, Index, Tid) => Data

Write(FileName, Index, Data, Tid)
Close(FileName, Tid)

The site of the transaction accessing a file is called the using sste (US).

When a file is first opened by a transaction, one of the sites storing the file is
designated the fransaction synchronization site (TSS) for the file. This site manages
synchropization for the file and provides data access.» Other copies of the file are
brought up to date after top-level transaction commit. The TSS provides access to
the file and performs locking decisions for transactions using the following opera-

tions:

TssOpen(Tid, Super, Filename, Mode)
TssRead(Tid, Filename, Pagenum) =>> DataPage
TssWrite{Tid, Filename, Pagenum, DataPage)
TssClose(Tid, Filename)

TssCommit(Tid, Super, Filename})

TssAbort(Tid, Super, Filename)

When a transaction process invokes the Open operation,** a message is sent to the

TSS for the file.#** Upon receiving the message, the TSS executes the TssOpen rou-

* In Locus, the site which manages synchronization for a file (CSS) may be different from the site
which provides data access (SS). However, since our transaction algorithms require the site which
provides data access to be the same as the site which manages file locking once the file is open for
modification by a transaction, we do not make this distinction here. Our implementation could easily
be extended to allow many SSs for a file, but only if the file is not being modified by any transaction.
In this case, transactions must still be aborted if the TSS for a file becomes inaccessible, as will be
discussed. However, if only SSs become inaccessible, while the TSS remains accessible, an alternate SS
may be substituted and no transactions need be aborted as a result.

++ We assume that any pathname searching has already been performed; see [Walker 83].
#s* From now on, we will speak of sending messages with the understanding that if the site to which

we are sending the message is local, we really do not send a message. Instead, we directly invoke the
appropriate routine.

32

tine and makes a locking decision. The results of tﬂe decision are returned to the US.
If the open was successful, the US adds the file to the transaction’s participant file
list and returns control to the caller of the open system call. For a US to read or
write a data page, a message which contains the Tid of the transaction is sent to the
TSS. When a US closes a file, it sends a message to the TSS and waits for a
response. The close causes the transaction’s held lock to become a retained lock. Fi-

nally, when a transaction commits or aborts, it informs the TSS.

In Locus, all open requests are first directed to the CSS for the file. If the file
is not already open, the CSS chooses a TSS, and that TSS is used for subsequent
opens until the top-level transaction commits or if all transactions involved with the
file abort. There is an optimization to. this Locus open protocol. If a US wishes to
open a file and the US happens to be the TSS for the file, the locking checks may be

performed directly without contacting the CSS.
4.2.2 Recovery and Locking

To enable recovery in the event of transaction abort, for each file modified by
a transaction we must save the state to be restored should the transaction abort.
Following is a discussion of what state information must be kept and how file state
restoration is accomplished. When a file is first opened, the current version (or state}
of the file is maintained in volatile storage at the TSS. When a transaction opens a
file for modification, a copy of the curreﬁt version of the file is saved. When the held
lock is released and becomes a retained lock, this copy, along with the Tid of the
transaction, is pushed onto a version stack stored in volatile memory. The version

stack is a stack of file versions, with an entry for each transaction retaining a write

33

lock.* The locking rules constrain write retainers to form a line in the transaction in-
vocation tree, and thus a stack, rather than a tree, may be used. A transaction open-
ing a file for read only access will not cause a new entry to be added to the version

stack.

The operation performed when a transaction commits is called a commit-
lock-update. For retained read locks, the parent of the committing transaction (if
any) inherits the retained read lock, unless it already retained a read or write lock.
For fetained write locks, if the parent of the committing transaction has an entry on
the version stack, the comimitting transaction’s entry is merely popped. If the parent
of the committing transaction does not have an entry on the version stack, then the
committing transaction’s entry becomes the parent’s entry. That is, the Tid of the
version on the top of the version stack is changed to that of the committing

transaction’s parent.

The operation performed when a transaction aborts is called an abor!-lock-
update. Retained read locks are siﬁply removed. For retained write locks, the entry
on the top of the version stack is popped and this version of the file from the stack
replaces the current version of the file, thus recovering the file to its state prior to

modification by the transaction.’

For example, suppose transaction T, has invoked transaction T,, and both
transactions have modified a file F, as shown in Figure 2. Since both transactions
have modified the file, both have an entry in the version stack for file F. Fy is the ori-

ginal state of the file, F, is the state of the file after T, has performed its

* Each entry in the version stack does not have to be a complete version of the file. For each entry,
enough information is required in order to restore the file to the proper state should the transaction
fail. In the implementation of version stacks in Locus, we are able to save file versions incrementally,
i.e., only those file pages that are new since the last version need be recorded in the new version. This
scheme is described in Chapter 6.

34

FILE F:

T2

F1

T4

Fo

' VERSION
STACK

Figure 2: Initial Version Stack

FILE F:

Tt

Fo

VERSION
STACK

F2
VERSION

F2
VERSION

Figure 3a: Vorsim Stack If T2Commits

FILE F:

Figure 3b: Version Stack If T2 Aborts

b B =~

T1

Fo

VERSION
STACK

CURRENT
VERSION

modifications but before T, has performed its modifications, and F; is the state of the
file after T, has performed its modifications. F; is the current state of the file at this
point. Now suppose T, commits. In this case, the entry for T; on top of the version
stack is simply popped and discarded as shown in Figure 3a. If T, instead aborts,
the version for 7, which is on top of the version stack is popped and replaces the

current version as shown in Figure 3b.

Locking decisions are performed by the TSS because the transaction locking
information is stored there. The locking information is stored there because the ver-
sion stack is a part of that information and the version stack is best kept at the site

where modifications are recorded.

The locking and recovery information maintained at the TSS for a file in-
volved with a transaction is referred to as a f-lock. A t-lock consists of the current
volatile file state as possibly modified by transactions, a list of held and retained
locking transactions, and file state restoration information for write locks:

Tlock = Struct[FileState, Holders, ReadRetainers, WriteRetainers}

Holders Oneof[NULL, ReadHolders, WriteHolder]

ReadHolders = List(Struct[Tid, Super]]
WriteHolder = Struct{Tid, Super, FileState]
ReadRetainers = List{Struct(Tid, Supei]n
WriteRetainers = Struct[VersionStack, Ancest
VersionStack = List{Struct[Tid, FileState]]
Ancest = List[Tid|

For each transaction holding a read lock, the t-lock contains the transaction’s Tid
and the Tids of the transaction’s superiors. If a write lock is held by a transaction,
the t-lock contains the Tid, the superiors, and the state of the file that was current
before the write lock was obtained. For each transaction retaining a read lock, the
t-lock contains the Tid and the superiors. For write retainers, a version stack is kept.

The t-lock also contains a list of ancestors of the top element of the version stack.

36

The need for lists of superiors and ancestors in the t-lock structure will be explained

in the next chapter.

-

The TSS denies a request to open for modification if any other transaction
holds a lock or there is a retainer of a lock that is not an ancestor of the requesting
transaction. An open request for read access is denied if any other transaction holds
a write lock or there is a retainer of a write lock that is not an ancestor of the re-
questing transaction. These locking checks are necessary to assure serializability; see

[Moss 81].

In Locus, a file may be open several times by a single process. Because of
this, and since a file may be open for read by more than one transaction at the same
US, the US must keep a separate reference count for each transaction which indi-
cates the number of times the file is open by that transaction. When the count for a

transaction becomes zero, a close message is sent to the TSS.

A transaction may lock a file in the current partition even if there are other
copies of the same file in other partitions. Given this policy, there is the possibility
that when partitions merge there will be more than one TSS maintaining lock infor-
mation for a particular file. This situation is called a t-lock conflict. The topology
change software is responsible for electing new CSSs, gathering the locking informa-
tion from all accessible TSSs, and handling any such lock conflicts. Methods for
handling lock conflicts are discussed elsewhere; see [Edwards 82|, [English 83|, and
[Rudisin 80}. Essentially, the two conflicting locks will both be handled, and recovery
will be invoked when the operations complete, just as if the partition merge had oc-

curred after the operations had completed.

37

4.3 Transaction Control

In this section, we describe the basic control of tramsactions, i.e., transaction
invocation and completion. In the next two sections, we will detail our algorithms for

transaction commit and abort.
4.3.1 Transaction Invocation

This section describes how a process invokes a transaction. The process
which initiates the transaction is called the calling process. If the calling process is
running as part of a transaction, the invoked transaction is a subtransaction. Other-

wise, the invoked transaction is a top-level transaction.

In order to invoke a transaction, the folloiving steps are performed at the site
of the calling process. First, a Tid is generated for the new transaction. If the cal-
ling process is itself running on behalf of a transaction, we note in the member pro-
cess list of the caller’s transaction structure that the calling process has a subtransac-
tion, i.e., we record the called transaction’s Tid. Now, depending on where the user
(or context mechanism) wishes the transaction to be run, we either invoke a local
routine to start the transaction, or converse with a remote site. If we are starting a
remote transaction, we pass to the remote site the name of the load module to be ex-
ecuted, the command-line arguments, the Tid of the new transaction, the Tids of its
superiors, and the Pid of the calling process. The details of forking a remote process

are dealt with elsewhere [Jagau 82|.

At the home site of the new transaction, we create a transaction structure for
the new transaction and fill in the fields appropriately. We enter the Tid of the new
transaction and the Tids of its superiors, initialize the transaction status to UNDE-

FINED, note the Pid of the calling process, create a member process list containing

38

one entry--an entry for the process we are about to start-—-and enter an empty parti-
cipant file list, since as yet the transaction has no participants. In addition, in the
process structure of the new process we note that this process is running on behalf of
a transaction and indicate the Tid of this transaction. Finally, we mark the new

transaction process as runnable so that it may be scheduled to execute.

While the invoked transaction is running, the calling process waits for the
called transaction to complete. Once the called transaction has committed or abort-

ed, control will be returned to the calling process, as will be described.

If a transaction process performs a fork operation, we record the fact that this
transaction now has an additional member process. We accomplish this by adding
the Pid of the newly created process to the member process list in the transaction

structure.
- 4.3.2 Transaction Completion

In order for a transaction to be able to commit, its top-level process must exit
with a successful completion code. If the top-level process exits with an unsuccessful
completion code, the transaction aborts. The member process list is used to manage
the processes which make up a transaction and to determine when they have all ter-
minated. Each time a member process of a transaction terminates, we remove its en-
try from the member process list associated with that transaction. If a top-level pro-
cess terminates before all the other member processes have terminated, then we force
all the other member processes to terminate in order to abort the transaction, as will

be described.

39

When the member process list becomes empty, i.e., all the member processes
have terminated, the transaction is ready to complete. We will return to the prob-
lem of committing and aborting a transaction in the following sections. After the
transaction has either committed or aborted, control is returned to the calling pro-
cess. If the calling process is running as part of a transaction, it has an associated
member process list. In this list, there is an entry corresponding to the calling pro-
cess whose subtransaction Tid is the Tid of the just completed transaction. We re-
move the subtransaction Tid from this entry. Finally, at the home site of the just
completed transaction, we remove the transaction structure associated with the tran-

saction.
4.4 Transaction Committing

We take different actions to commit a transaction depending on whether the
transaction is a top-level transaction or a subtransaction. We will discuss subtran-

saction commit first, and then we will deseribe the commit of top-level transactions.
4.4.1 Subtransaction Commit

If the transaction is a subtransaction, we must commit-lock-update all the
files in the subtransaction’s participant file list, in order to pass the transaction’s
locks to its parent. Thus our algorithm for subtransaction commit performed at the
home site of the subtransaction is as follows. We first check to see if all TSSs for files
in the participant file list are accessible. This is intended to minimize the chance that
partitioning will be detected during the subtransaction commit procedure. If any are
not accessible, we abort the subtransaction and send an SUBABORT message to the
home site of the parent transaction. If however, all are accessible, we send a

REQCOMMIT message to the home site of the parent transaction, containing our

40

participant file list. This message informs the parent transaction home site that the
invoked transaction wishes to commit and allows participant files of the called tran-
saction to be added to the parent’s participant file list. If a particular file is already
in the parent’s list, the stronger mode of that which is in the parent’s list and that
which is in the child’s list is taken. The parent transaction must be aware of the
I;articipant files from this point on, so that it can properly recover should the com-
mit fail as a result of subsequent partitioning. After adding the files to its list, the
parent sends a GRTCOMMIT message to the child transaction home site, informing

it that it may commit.

Upon receiving the GRTCOMMIT message, the child home site accomplishes
the commit-lock-updating of files required for subtransaction commit by sending a
TSSCMT message to all sites acting as TSSs for files in the participant file list. The
TSSCMT message contains a list of files to commit-lock-update. Each site receiving
the message performs the commit-lock-update and returns a RTSSCMT response
message along with a success code. If the child transaction home site receives a
RTSSCMT response message from all sites and all sites have succeeded,* the sub-
transaction has successfully been committed and a SUBCOMMIT message is sent to
the parent home site. When the parent home site receives the SUBCOMMIT mes-

sage, control is returned to the calling process.

If the child home site does not receive all RTSSCMT response messages be-
cause of partitioning or if a site was unsuccessful at performing the updates for some
reason, a SUBCMTFAIL message is sent to the parent home site. Upon receiving

this message, or if the child home site becomes inaccessible to the parent home site

* This operation can be performed in parallel: We send out all TSSCMT messages and then wait for
all RTSSCMT messages to come back before proceeding. In the rest of our discussion, whenever we
speak of sending out several messages and waiting for responses, we imply this parallel algorithm.

41

after the parent sends the GRTCOMMIT message, the parent transaction must

abort itself in order to recover properly.

Thus we consider 2 subtransaction commitied if and only if we are successful
at commit-lock-updating all the files in the subtransaction’s participant file list. To
ensure this requirement, it might first seem that the commit-lock-updates must be
accomplished using a two-phase commit protocol, since the lock update is 2 distri-
buted operation—the lock information is located at the TSSs for the files which can

be at any site on the network.

However, two-phase commit is an expensive and complicated operation that
we wish to avoid. Fortunately there is a way to avoid two-phase commit at the cost
of some reliability in the slim window of subtransaction commit. We notice that if a
subtransaction commit cannot be completed once it is begun, either because we are
partitioned away from a TSS or a TSS is unable to perform the commit-lock-update

for some reason, we can recover simply by aborting the parent of the subtransaction.

There are two rea;.sons why this works. First, the parent inherits any locks of
the subtransaction and thus since the parent cannot commit until the commit of the
subtransaction has completed, only the parent and inferiors of the parent can obtain
locks to those files of the subtransaction that have been successfully commit-lock-
. updated. Thus the only transactions which may view some of the subtransaction’s

committed files are those which will be aborted.

Second, it is possible to properly recover the files and their t-locks. If a par-
ticular file was not commit-lock-updated, because subtransaction commit failed, then
we must still have the version to restore when we abort the parent transaction. The

version to restore is either in the version stack entry associated with the subtransac-

42

tion that was trying to commit, or in an entry for the parent if the parent modified
the file. If, on the other hand, the file was commit-lock-updated in the subtransac-
tion commit algorithm, then either 1) the version to restore was passed to the parent
if the parent did not already have an entry in the version stack, or 2) the parent al-
ready had an entry in the version stack to restore. In both cases, we have the proper
version to restore. Figures 4a and 4b show what happens if the version stack has
been commit-lock-updated, or not commit-lock-updated, for the cases in which the
parent has an entry in the version stack and the case in which it does not. We show
how the abort-lock-update initiated when the parent aborts recovers the version
stack (and thus the t-lock) to the proper state. Our abort-lock-update algorithm
must be enhanced to handle these cases of course; how to do this will be explained in

the next chapter.
4.4.2 Top-Level Transaction Commit

Now we discuss the problem of top-level transaction commit. In this case, the
transaction’s participant files are first commit-lock-updaﬁed. This will cause all files
that were only opened for read by the entire transaction to have their t-lock struc-
ture released at the TSS.* If any commit-lock-update fails, we must abort the top-
level transaction, and this is accomplished by abort-lock-updating all participant
files.#* If the entire transaction has modified a particular file, then after the top-level
commit-lock-update the version stack will be empty, and the current version is the
one that we wish to commit to stable storage. We invoke a distributed two-phase

commit protocol to accomplish these updates atomically. The participant file list

* In Locus, the CSS is informed at this point, unless transactions which are outside this entire
transaction also retain or hold read locks.

++ This is feasible at the top level because although we have discarded the version to restore from the

version stack, we still have the original version on disk. The abort-lock-update algorithm must be able
to deal with this case.

43

Not In Parent's
Participant List

T2 | Fo

CURRENT: F1

T 2 Commit-Lock-Update

T1 Fo

CURRENT: F 1

T 1 Abort-Lock-Update

v

e————)

CURRENT: Fo

in Parent's
Participant List

T2 F1

T1 Fo

CURRENT: F2

T 2 Commit-L.ock-Update

Figure 4a: Commit-Lock-Update Performed

Not in Parent's
Participant Liat

T2 | Fo

CURRENT: F 1

T 1 Abort-Lock-Update

v

|

CURRENT: F o

in Parent's
Participant List

T2 | F1

71 | Fo

CURRENT: F2

T 1 Abort-Lock-Update

v

| I

CURRENT: Fg

Figure 4b: Commit-Lock~Update Not Performed

44

minus the files that were only opened for read becomes the participant list for the
two-phase commit protocol. We defer discussion of the two-phase commit protocol
until Chapters 7 and 8. The commit-lock-update algorithm may be incorporated
into the first phase of the two-phase commit protocol, but this is ignored here for

simplicity.

Once the first phase of the protocol is complete, we return control to the cal-
ling process by sending a TOPCOMMIT message to its site. If the protocol fails or if
the top-level transaction is aborted for some other reason, a TOPABORT message is
sent to the site of the calling process. It is impossible for the caller to know for sure
whether the transaction has committed or aborted if a partition occurs before the
caller has been notified {(unless we want to wait until we contact the site again, and
even then we have to add more mechanisms to remember the fate of old transac-
tions). Even if we add a message exchange to ask the caller if we may commit, a par-
tition after this exchange and before the final completion message is received will
still leave the caller in doubt as to whether the transaction has committed. This may |

be a good reason to advise users not to invoke top-level transactions remotely.
4.5 Transaction Aborting

Although a transaction may commit only when all of its children complete, a
transaction may decide to abort at any time. Thus an aborting transaction may have
running descendant subtransactions. In order to abort a transaction and each of its
running descendants, we wish to kill all the transaction’s processes, abort each of the
transaction’s running descendants, and abort-lock-update the transaction’s partici-
pant files. This releases locks held or retained by the transaction and if the transac-
tion held or retained a write lock, restores the curfent version of a file to its state

prior to modification by the transaction.

45

Thus our abort algorithm is as follows. First we destroy each of the
transaction’s member processes. We then send a FORCEABT message to each of
our running children and wait for RFORCEABT responses. After we have received
all responses, we send a TSSABT message to each site having a participant file of
the aborting transaction and wait for RTSSABT responses. A child receiving a
FORCEABT message in turn follows the same algorithm, destroying ¢fs member
processes, aborting its children subtransactions by sending FORCEABT messages,
waiting for responses, sending out TSSABT messages and waiting for responses, and
finally returning a RFORCEABT response. In the absence of partitions, this algo-
rithm will abort all descendants of the aborting transaction and cause files to be
abort-lock-updated in the proper order. Handling network partitions will be dis-

cussed in detail in the next chapter.

If two transactions decide to abort at the same time, where one transaction is
a superior of the other, the inferior transaction will receive a FORCEABT message
when it has already initiated an abort. In this case, the inferior simply waits for the
existing abort operation to complete before responding. Alternatively, this situation

is handled by the mechanisms developed in the next chapter.

48

CHAPTER 5
HANDLING NETWORK PARTITIONS

This chapter discusses algorithms for dealing with network partitioning.
First, we extend our abort algorithm to handle partitions. Then we consider the
problem of aborting transactions that are separated from their calling transaction
home sites as a result of a network partitions. This problem has come to be known
as the "orphan problem” in the literature. Finally, we treat the situation in which a

TSS for a participant file is partitioned away from the transaction.
5.1 Extensions to Abort Algorithm

If an aborting transaction cannot send a FORCEABT message to its child
transaction because that child is partitioned away, the aborting transaction must ig-
nore that child in its abort procedure. As a result, when the aborting transaction
abort-lock-updates its files, some of those files may be locked by the inaccessible
child and its inferiors. Thus we need the capability of abort-lock-updating a file for
all descendants of a transaction. In addition, since any of the inferiors of such an
inaccessible child may also attempt to abort themselves, we must be able to ignore
abort-lock-update messages for updates that have already been performed. This is
required in case the aborting superior has completed the abort-lock-update before the

inferior attempts the update.

In order to achieve these two capabilities we keep a list of superiors for each

transaction holding or retaining a lock. For write locks, we need only keep a list of

47

the superiors of the top element of the version stack. Now we must modify our
abort-lock-update algorithm as follows. In order to abort-lock-update the locking in-
formation for all descendants of an aborting transaction, we simply search through
all holders and retainers and abort-lock-update those having the aborting transaction
as an ancestor. If the abort-lock-update has already been performed, no such holders
or retainers will be found. For write locks, we can perform the following optimiza-
tion: If the aborting transaction is an ancestor of the transaction associated with the
top element of the version stack, we simply pop elements off the stack until the
aborting transaction is associated with the top element and then pop it off and re-

store the current version of the file from this entry.

If a subtransaction commit fails, we must abort the parent of the subtransac-
tion that we were attempting to commit. In this case, the aborting transaction may
not necessarily be on the stack and thus we must amend this algorithm to pop ele-
ments off the stack until the stack is empty or the top element is a superior of the

aborting transaction. The restored version is that of the last popped entry.

There is an optimization which we can now make to the abort algorithm
given in the preceding chapter. This optimization will enable us to send only one
abort-lock-update message per file involved in a branch of aborting transactions. The
extension to the algorithm is to pass the transaction’s participant file list to children
in the FORCEABT message. The children then only abort-lock-update files not in
the passed down participant file list. When the children send FORCEABT messages
to their children, they add their participant file list to the participant file list passed
to them from their parent. In this way, lock information is updated only once in

each branch of the transaction invocation tree,

48

5.2 Orphan Removal

If a network partition occurs, we wish to abort any transactions which no
longer have a path in the transaction invoecation tree to the top-level transaction. We
wish to eliminate such orphan transactions and abort-lock-update files for which they

hold or retain a lock.

Our algorithm for accomplishing the abort of orphan transactions is driven by
both the transaction home sites and the TSSs. As part of the topology change pro-
cedure at a transaction home site, if a superior transaction home site is inaccessible,
we destroy all of the transaction’s member processes and remove the transaction
structure, thus aborting the transaction without abort-lock-updating files or aborting
child subtransactions. We call such an abort a silent abort. The abort of a child sub-
trapsaction is effected when the topology change procedure detects the same condi-

tion for the child subtransaction, i.e., one of its superiors is inaccessible.

The abort-lock-updating of files is accomplished by the TSS: Since each lock
held or retained by a transaction has associated with it a list of all the transaction’s
superiors, we can drive the lock cleanup from the TSS as follows. The topology
change procedure simply goes through all t-locks at the site, abort-lock-updating any
locks held or retained by a transaction which is inaccessible or a transaction which
has a superior which is inaccessible to the TSS. There is an optimization for write
locks: We need only find the holder or bottommost retainer in the version stack
which is inaccessible or has a superior which is inaccessible to the TSS and abort-
lock-update the file for that transaction. This causes the stack to be popped up to
and including that point, restoring the appropriate version of the file. This scheme

assures us that locking information is properly updated in the case of partitions.

49

Note that when the topology change procedure abort-lock-updates a file, the
transaction holding a lock to the file may continue to run for a short period of time
and may attempt to read or write the file. Since each such read or write request con-

tains the Tid of the requesting transaction, requests from orphan transactions whose

locks have been released may be denied.

Our lock cleanup strategy is correct because if a transaction is inaccessible to
the TSS, then the transaction must eventually abort since one of its files is inaccessi-
ble.x If one of the transaction’s superiors is inaccessible to the TSS but the transac-
tion 1s accessible, then by network tranmsitivity a superior of the transaction is inac-

cessible and the transaction will silently abort.

An example will serve to clarify our orphan removal algorithm. Assume tran-
saction T, invoked T, which invoked T, which invoked 7,. Assume these transactions
each execute at a different site and that each retains a write lock for a particular file
F, whose TSS is at yet another site. For brevity we will refer to the sites as T,, T,
Ty, T, and F. Suppose noiv that 7, and Ts leave our partition and that those two
sites can communicate in a new partition, i.e., the network is organized as the parti-
tions {T,, T, F} and {T,, Ts:}, as shown in Figure 5a. We can see that we would like
Ty Ts, and T, all to be aborted, and for their retained locks to be abort-lock-updated
so that the only retainer of a write lock is-T,. The following actions will be per-
formed by the topology change procedure. Since transactions T,, Ts, and T, all have

an inaccessible superior, they are all aborted as described above. The bottommost

* 5o far, we know that a transaction cannot commit if one of its files is inaccessibie. However, suppose
the file becomes accessible again, just before the commit. In this case, if we have abort-lock-updated
the file as part of our cleanup strategy, then this can be detected when the transaction attempts to
commit and an error code is returned. In this case the transaction will not commit. Thus our strategy
is self-satisfying in that if we abort-lock-update the file, then it is impossible for the transaction
holding a lock to the file to commit. Of course, we would not wish to perform such an update
unnecessarily. In the next section, we will describe a method whereby transactions having inaccessible
TSSs are immediately aborted.

50

%
;
O

FILE F: Ta | F3
T3 | F2
T2 | F1
Ty | Fo
VERSION
STACK

Figure Sa: Before Orphan Removal

FILE F: T

Fo

VERSION
STACK

Figure Sb: After Orphan Removal

51

Fa
CURRENT
VERSION

F1
CURRENT
VERSION

retainer in the version stack (highest in the transaction invocation tree if the root
transaction T, is at the top) that is inaccessible or has a superior which is inaccessi-
ble to the TSS is T,. Thus we abort-lock-update the file for T, Now the only remain-

ing retainer of a write lock for the file is T,, as shown in Figure 5b.

Imagine a variation of the previous example in which only T, retains a write
lock for F. The same transactions will be aborted, however now T, is the bottommost
retainer in the version stack with an ancestor that is inaccessible to the TSS. In this
case, we abort-lock-update the file for T, leaving no lock holders or retainers and

thus the t-lock structure may be removed at the TSS.

Now we move on to an example in which the file is separated from the top-
level transaction. We have the same situation as in our first example, except that T,
T,, and F leave our partition and that those three sites can communicate in a new
partition, i.e., our network is organized as the partitions {7, T.} and {T Ts, F}.
What we would like in this case is for Ty, Ty, Ty, and T, all to be aborted, and for all
their retained locks to be abort-lock-updated so that there are no retainers left and
the t-lock is released at the TSS. The following actions will be performed by the to-
pology change procedure. Since transactions T Ty, and 7, all have an inaccessible
superior, they are all aborted. The retainer bottommost in the version stack which
is inaccessible or has a superior that is inaccessible to the TSS is T. Thus we abort-
lock-update the file for T, which causes the t-lock to be freed. Now, transaction Ty

will eventually abort because one of its files is inaccessible.

If our orphan removal algorithm aborts a transaction, the transaction’s caller
must be notified. This is accomplished by adding the following function to the to-
pology change procedure. For any process having an active subtransaction whose

home site is inaccessible to the calling process, an abort completion code is returned

52

to the waiting process. Note that returning control to a transaction may be unneces-
sary if that transaction or one of its superiors is also aborting as a result of the parti-
tioning. Thus we should not return control unless all the transaction’s superiors are

accessible.

In the scheme that we have described, there are two outstanding problems
which must be dealt with. First of all, when a lock on a file is requested, it may be
impossible to grant the requested lock because aborted transactions that have not
yet completed their abort algorithm hold or retain a conflicting lock on the file. This
problem can be handled either by waiting and later retrying the lock request, or re-
quiring the TSS to query the home site of the transaction supposedly holding or re-
taining a conflicting lock. If the response to the query is that the transaction is
ABORTED or NONEXISTENT, we can clean up the transaction’s locks and its des-
cendants’ locks for all files at the SS. This will generate extra message traffic for
opens that truly are lock conflicts; however, these may be rare. It is probably
sufficient simply to retry up to some limit, as is done in our current implementation,
since in the normal case the calling process of an aborting transaction does not re-
gain control until the abort has completed, i.e., all locks have been properly updated.
That is, in the normal case a transaction invoked as an alternate to an aborted tran-
saction which wishes to lock some of the same files as the aborting transaction will
not begin execution until the abort has completed. It is only when a transaction is
separated from its child that the alternate transaction may request a lock before the
abort has completed. In addition, note that orphan extermination takes only as long

as it takes the topology change procedure to run and this may be short.

The second problem is that when a transaction wishes to commit and it be-

gins to commit-lock-update its files, it may have to deal with locks that are held or

53

retained by aborted transactions whose aborts have not yet completed. This can be
handled simply by abort-lock-updating any inferiors of the committing transaction
before performing the commit-lock-update. This strategy works because all descen-
dants of a transaction must be resolved--either committed or aborted--in order for
the transaction to commit, and therefore any descendants still holding or retaining
locks may be considered aborted since if they cbmmitted they would ﬁot still hold or

retain locks.
5.3 Inaccessible Synchronization Sites

If a TSS for a file becomes partitioned away, in general many tranéactions will
as a result be unable to commit. Any transaction having the inaccessible file as a
participant will thus abort. We may wish to force such an abort immediately upon
detecting that a TSS is inaccessible. Suppose we added a condition to our topology
change procedure which immediately aborts a transaction if any of its participant
files is inaccessible. This will accomplish what we desire, however this algorithm is
inefficient: Since some of the transactions having inaccessible files have superiors who
also have inaccessible files, we will perform many simultaneous aborts, generating
unnecessary processing and network traffic. For example, if transaction T, invoked
T, which invoked Ty, and all three transactions have file F as a participant, then if F
is separated from Ty, Ty, and Ts, we will abort Ty, T;, and Ts.* We need only abort T,.
Thus what we would like to do is to abort simply the topmost transaction involved
with the inaccessible file. What this means is clear in the case of write locks: The
transaction which is the topmost retainer or holder (bottommost in the version
stack) of a write lock must be aborted. It is not immediately clear what this means

in the case of read locks, since they do not form a line.

* We cannot silently abort the transactions, because this condition does not cause all tranactions in a
branch to be aborted. It only causes those with inaccessible TSSs to be aborted.

54

Let us present a method for determining who is a "topmost” involved transac-
tion. When a file is opened for the first time by a transaction, a topmost token for
the file is passed to the transaction. We will call a transaction that has such a token
:1 topmost retainer of the file. This token is passed to a parent when a transaction
commits and discarded when the transaction aborts. When a file which is already
locked by a transaction is opened, then a topmost token is given to the transaction if
no superiors of the transaction hold or retain a lock to the file. In the case of write
locks this means that no other transactions hold or retain locks. In the case of read
locks this is the topmost retainer in one branch of ‘the transaction tree, distinct from

other branches.

Given this, we abort a transaction if a TSS is inaccessible and the transaction
is a topmost retainer of the file. This causes the write retainer bottommost in the
version stack for a file to be aborted; otherwise there are no write retainers and each

of the topmost read retainers are aborted.

Note that this algorithm does not prevent multiple aborts cansed by more
than one file becoming inaccessible to several transactions where different transac-
tions are topmost retainers of different files. For example, if T, is the topmost re-
tainer of F,, T, is the topmost retainer of F,, T, is the parent of T,, and now if £, and
F, become inaccessible both to T, and T, then both T, and T, will be caused to

abort.

53

CHAPTER 6
EXTENSIONS AND OPTIMIZATIONS

This chapter explores several extensions and optimizations which can be made
to the nested transaction algorithm we have developed in Chapters 4 and 5. First,
we describe the extensions which are necessary to support remote member processes.
Second, we describe the modifications which are necessary in order to handle lost,
duplicated, delr;ed and out-of-order messages. Finally, we discuss the optimization

of version stacks in Locus.
8.1 Remote Transaction Processes

This section presents the extensions which must be made to our algorithms in
order to support remote transaction processes. We first deal with the implications
with respect to the control of transaction member processes, and then we cover file

locks.
8.1.1 Member Process Management

The extension to manage remote transaction processes uses the transaction
home site as a centralized coordinator for the transaction’s member processes. In
this way, we can limit the impact on other parts of our algorithm.' As an example of
this strategy, consider the following situation. Suppose the home site of a transac-
tion T, is &, and a remote member process of the transaction is executing on site S,
Now suppose that S, the transaction home site, becomes inaccessible to %, the site

where the remote member process of the transaction is executing. In this case, we

96

wish to abort T,. At S, we simply destroy the remote member process and do noth-
ing else. That is, we do not take actions to abort the transaction in S,’s partition, be-
cause existing mechanisms already handle this. Any inferior transactions of T, whose
home sites are in Sy's partition will be silently aborted when the topology change
procedure detects that the home site of their superior T; is inaccessible. Similarly,
any files locked by T, or inferiors of T; will be abort-lock-updates by the topology

change procedure.

We now describe what additions must be made to our member process control
algorithms. First note that the member process list is already capable of listing
processes which are not at the home transaction site. This is because Pids are unique
in the network and one may determine the site where a process is executing from its
Pid. If a local transaction process forks a remote process, we may simply add the Pid
of the remote process to the transaction’s member process list as usual. However, if
a remote transaction process forks locally or remotely, the remote site must send an
ADDMEMB message containing the Pid of the new process to the transaction home
site and wait for its response in order to add a new entry to this list. When a re-
mote member process terminates, the remote site must send 2 REMOVEMEMB mes-
sage to the transaction home site and await a response in order for the home site to

remove the entry for the remote process from the member process list.

If a remote member process wishes to start a subtransaction, the remote site
first sends a STARTSUB message containing the new transaction’s Tid to the tran-
saction home site and waits for a response. When the subtransaction of the remote
process completes, a FINISHSUB message must be sent to the transaction home site
and a response awaited in order to remove the entry for the subtransaction from the

remote process’s entry in the member process list. With these additions, the transac-

57

tion structure is always kept up to date. If responses were not used, then a carefully
timed partition might allow a member process or subtransaction to be created-
without the message being received by the home site. In this case it would be quite
impossible for the home site to destroy all member processes and abort all subtran-

sactions.

The transaction home site is responsible for accomplishing commit and abort
as previously described, except that the algorithm for aborting a transaction must be
modified as follows. If a running member process of the transaction is remote, a
KILLMEMB message containing the Pid must be sent and a response awaited in ord-

er to destroy the process.

It is possible for a remote member process of a transaction to becom‘e parti-
tioned away from the home site of the transaction. In this case, the remote process
must be destroyed and the transaction must be aborted, as in our example abcve.
Thus our topology change procedure must perform the following two functions. Ifa
remote process of a transaction becomes inaccessible to the home site of the transac-
tion, the transaction must be aborted. Conversely, il a transaction home site be-

comes inaccessible to the remote process, the process must be destroyed.
6.1.1 File Management

The addition of remote member processes also adds additional complexity to
our file management algorithms. In order to allow a transaction to access a file from
both the home site of the transaction as well as other sites that are running processes

of the transaction. we must make the following changes to the t-lock data structure:

ReadHolders = List[Struct{Tid, Super, UsingSites]g
WriteHolder = Struct{Tid, Super, UsingSites, FileState]
UsingSites = List[Site]

o8

That is, we keep a list of USs for each transaction holding a read or write lock. The
US must be recorded since now the site accessing the file is not necessarily the tran-
saction home site. A list is required since the same file may be open from the same
trapsaction at more than one US. We modify our algorithm so that when a US
sends a close message to the TSS, the US is removed from the list of USs. When the

list becomes empty, the transaction’s held lock on the file becomes a retained lock.

In addition, recall that if a process forks remotely the child process inherits
the open files of its parent, as in UNIX. Since the file is open from more than one
site, file access tokens are required to coordinate access to the file. This is discussed

in detail in [Jagau 83}.

We now consider the possible partitionings between the transaction home site,
remote member process site, and TSS, and show how our topology change procedure
allow us to recover from each case. First, if the site of a remote member process us-
ing a file is partitioned from the TSS, there are two cases to consider. Suppose the
transaction home site is still accessiblé to the TSS. Then by transitivity of the net-
work, the remote member process site is inaccessible to the transaction home site.
As a result the transaction will be aborted, causing the file to be abort-lock-updated
for the aborted transaction. Otherwise, suppose the transaction home site is not ac-
cessible to the TSS. In this case, the topology change procedure will abort-lock-
update the file as usual, since the home site of an ancestor of the transaction holding

or retaining a lock on a file is inaccessible.

We must also consider what happens if the remote member process site can
still communicate with the TSS, but they are both partitioned away from the tran-
saction home site. In this case the topology change procedure again will abort-lock-

update the file and destroy the member process which is separated from its home

59

site.

There is one more change which must be made to our algorithms to support
remote member processes. The participant file list, which keeps track of all files ac-
cessed by a transaction, is stored at the transaction home site, and must be kept
current. This is accomplished as follows. When a remote member process opens a
file, the remote site must send an ADDFILE message to the transaction home site
and wait for a response. This allows the transaction home site to add a file to its

participant file list.

If the site of the remote member process crashes or is partitioned away from
the transaction home site before it can send the ADDFILE message, then a file will
be open by a transaction but not listed in the transaction’s participant file list.
There are two cases to consider. If the network partition separates the transaction
home site from the TSS for this file, our existing algorithms will abort-lock-update
any files held by the transaction. However, if this is not the case, our algorithms will
not abort-lock-update these files. To handle this case we must enhance our topology
change procedure to abort-lock-update any file having a US that is partitioned away.
This works because if the transaction home site is not partitioned away, then by
transitivity of the network the remote transaction site is inaccessible to the home

site, and thus the transaction will be aborted.
6.2 Handling An Unreliable Network

So far in our design we have ignored the possibility of lost, out-of-order, du-
plicate, and delayed messages. One expects lost messages to be rare in local net-
works. They can effectively be eliminated by keeping a copy of each outstanding

message until a low-level acknowledgement for that message is received and re

60

transmitting the message if an acknowledgement is not received within a certain
timeout period.* Out-of-order, duplicate, and delayed messages may be eliminated
using a sequence numbering scheme, and thus may be modeled as lost messages.
Furthermore, lost messages can be modeled as a network partition, p;ovided that
they can be detected. Our algorithms are already robust in the face of network parti-

tions.

However, simulating a network partition every time a message is lost is unsa-
tisfactory, since it may cause unnecessary disruption of service. In addition, even if
the communications network itself is reliable, a site may run out of buffer space,
effectively causing messages to be lost. Thus our algorithms should be able to handle
lost messages gracefully. In this section, we present modifications to our algorithms
which make them robust in the case of lost, as well as out-of-order, duplicate, and

delayed messages.

Lost messages are detected by using timeouts while waiting for a response. If
a response is not received within a suitable timeout interval, the message in question
is retransmitted until a response is received or the site is determined to be inaccessi-
ble, in which case our topology change procedure will handle recovery. We have al-
ready provided high-level responses to most of our messages. We have not yet pro-
vided responses to the TOPCOMMIT, TOPABORT, SUBABORT, REQCOMMIT,
GRTCOMMIT, SUBCOMMIT, and SUBCMTFAIL messages. We will describe these

messages shortly.

Retransmission requires our algorithms to be able to cope with duplicate, de-

layed, and out-of-order messages. To handle these cases, the operations performed by

+ Here we assume that any message received by the low level will eventually be processed by high-
level protocols except in the case of site failure. Our protocols are robust in the case of site failure.

61

the messages must be idempotent. In most parts of our algorithm, operations per-
formed by sending messages can be made idempotent, usually by comparing unique
identifiers such as Pids, Tids, and filenames. Once a response to a message is re-

ceived, any future duplicate responses are simply ignored.

The ADDFILE operation which adds a file to the participant list is easily
made idempotent by ignoring the request and sending a response if the file is already
present in the list. The ADDMEMB, REMOVEMEMB, STARTSUB, and FINISH-
SUB operations, which add or remove Pids from the member process list and add or
remove active subtransactions from an element of the member process list,‘can also
be made idempotent as follows. For each element which has been removed, a dummy
entry must be kept around so that delayed and duplicate add and remove messages
may be ignored. The assumption here is that the same element will not be added
and removed and then added again. This is true for member processes and subtran-
sactions. We also assume that different elements can be distinguished. In fact we can,

since Pids and Tids uniquely identify processes and transactions.

Now, when adding an element to the list, we ignore the request and send the
appropriate response if the element is already in the list or a dummy entry exists for
the element. When removing an element from the list, we ignore the request and
send a response if a dummy entry exists for the element. If the element does not ex-
ist at all, then the remove message must have arrived before the corresponding add
message. However, this situation cannot occur since our algorithms always wait for
a response before continuing and thus the remove message would never be sent until
the add message was acknowledged. Since we assume that a message cannot arrive
before it is sent, i.e., that the system is causal, many out-of-order sequences such as

this one can be ruled out.

62

Killing a remote process via KILLMEMB and foreing a transaction to abort
with FORCEABT can be made idempotent as follows. If the process or transaction is
already destroyed or aborted,, the request is ignored and the appropriate response is

sent.

Duplicate TOPCOMMIT and TOPABORT messages can be ignored and the
appropriate response sent when either the calling procelss no longer exists, did not
call a transaction, or if the Tid of the returning transaction does not match the Tid
of the transaction which the process invoked. Duplicate SUBABORT messages may
similarly be ignored when either the calling process no longer exists, the calling pro-
cess does not have an active subtransaction, or the Tid of the returning transaction

does not match the Tid of the process’s active subtransaction.

The situation for the subtransaction commit protocol is more complex. In
this protocol, which is described in Chapter 4, a child subtransaction which wishes to
commit sends a REQCOMMIT message to its parent. The parent then grants the
commit by responding with the GRTCOMMIT message. The child then attempts to
commit and responds with either a SUBCOMMIT or SUBCMTFAIL message,

depending on its success.

In the following discussion, we will say that a site is interesfed in a message if
it is waiting for the mes—sage as part of its normal-case algorithm. Specifically, a site
is interested in 2 REQCOMMIT message if there is a transaction process running at
that site which has successfully started the subtransaction which is requesting the
commit and the transaction is waiting for a REQCOMMIT or SUBABORT message
from the subtransaction. Thus if the calling transaction’s site has already received a
REQCOMMIT message for the subtransaction, then the site is no longer interested

in the message. In addition, if no such transaction exists, then the site is also not in-

63

terested in the message. A site is interested in a GRTCOMMIT message if there is a
subtransaction at that site which has sent a REQCOMMIT message to its parent
and is waiting for a GRTCOMMIT message. Thus if the subtransaction has already
committed or aborted, the subtransaction’s site is no longer interested in the mes-
sage. A site is interested in the SUBCOMMIT and SUBCMTFAIL messages if there
is a transaction process running at that site which has successfully started the sub-
transaction which is sending the message, and has sent a GRTCOMMIT message to

the subtransaction,* and the transaction is waiting for the messages.

Now we specify our subtramsaction commit algorithm which is immune to
lost, delayed, repeated, and out-of-order messages. A subtransaction which wishes to
commit sends the REQCOMMIT .message and retransmits the message until a
corresponding GRTCOMMIT message is received. A site which receives a
REQCOMMIT message in which it is not interested simply ignores the message,
sending no response. The parent’s site which has received a REQCOMMIT message
sends the GRTCOMMIT message and retransmits the message until a SUBCOMMIT
or SUBCMTFAIL message is received. A site which receives 2 GRTCOMMIT mes-
sage in which it is not interested also ignores the message, sending no response. A
subtransaction which has succeeded or failed in its commit algorithm sends the ap-
propriate SUBCOMMIT or SUBCMTFAIL message and retransmits the message un-
til a RSUBCOMMIT or RSUBCMTFAIL ;espons‘e, respectively, is received. A site
which receives a SUBCOMMIT or SUBCMTFAIL message in which it is not interest-
ed sends a RSUBCOMMIT or RSUBCMTFAIL response. Any unexpected RSUB-
COMMIT and RSUBCMTFAIL responses are ignored.

* Il a site receives the SUBCOMMIT or SUBCMTFAIL message for a transaction, it must have
previously sent a GRTCOMMIT message to the transaction.

64

Messages sent to the US to the TSS to open, close, read, and write can be
made immune to communications failures by attaching sequence numbers to the
messages, as is done in Locus. It is difficult to avoid the use of sequence numbers in
this case, since the order of updates and reads matters. Finally, the commit-lock-
update and abort-lock-update operations which are initiated via the TSSCMT and
TSSABT messages must be idempotent; we have already shown how to do this in

Chapter 5 in order to cope with network partitions.
8.3 Version Stack Optimization

There is an optimization to version stacks which is employed in the Locus im-
plementation of nested transactions. Locus uses a modified intentions list [Lampson
79} scheme for single-file atomic commit. In this scheme, a file is represented by an
array of pointers to physical data pages in stable storage. This array is called the
file's inode. Each entry in the inode array corresponds to a logical page of the file.
When a ﬁle; is opened at the TSS, a volatile copy of the inode, called an incore
inode, is maintained. Associated with each pointer in the incore inode is a modified
bit, which indicates if the page has been modified since being opened. When one
wishes to modify a logical page of a file, the page is not directly modified. Instead, a
new physical page is allocated, the data from the old page is copied into the new
page, and then the page may be modified. The pointer in the inode is set to point to
the new page and the corresponding modified bit is set. In order to commit changes,
the file’s volatile inode (with the modified bits removed) replaces the inode for the
file in stable storage. In order to abort changes, the modified pages are freed and the

volatile inode is simply discarded since the old inode is still in stable storage.

65

Using this mechanism, the implementation of version stacks can be optimized
as follows. The current version of the file is represented by the current fnode of the
file. Each element of the version stack is an inode with modified bits as well. We
will call the version on top of the stack the top inode. When saving the state of a
file by pushing the current inode onto the version stack, the modified bits in the
current version are reset. If a transaction aborts, we free those modified pages listed
in the current inode, pop an element off the version stack and restore the current
inode from the popped top inode. If a transaction commits, we free those pages
which have been modified in the top inode but which are not present in the current
inode. We also set the modification bit in the current inode for those pages which
have been modified in the top inode and which are present in the current inode, and
pop the element off the version stack. In this way, pages which are not needed are
freed, and the current inode reinherits the modification bits for those pages which
were modified since the previous version. Additional mechanism is also present to
support large files that are structured through indirect pages that contain page

pointeré.

Thus version stacks allow us to incrementally save file versions: Ounly those

file pages that are new since the last version need be copied.

66

CHAPTER 7
TOP-LEVEL TRANSACTION COMMIT

In this chapter, we discuss the implementation of to'p-level transaction com-
mit. The scheme makes use of a two-level log structure and the well-known two-
phase commit protocol. After a brief review of this protocol and an overview of the
log structures, we will present a detailed description of the algorithm. We begin by
considering only normal case behavior, leaving the discussion of how exceptional con-

ditions are handled until last.
7.1 Two-Phase Commit Protocol

To commit a transaction, we employ the two-phase commit protocol which
has been described by Gray [Gray 78], Lampson and Sturgis [Lampson 79], and
Lindsay [Lindsay 79]. The two-phase commit protocol is used to allow multiple sites
to coordinate transaction commit so that all participants in the transaction agree on
the final outcome of that transaction, i.e., whether the transaction has been commit-
ted or aborted. In this protocol, one site must play the role of coordinator and it Is
the coordinator which, after conferring with each of the participants, will make the
final decision regarding the fate of the transaction. During the first phase of the pro-
tocol, known as the prepare phase, the coordinator queries each participant to deter-
mine whether that participant can and will commit its portion of the multi-site,
multi-file transaction. If all participants successfully prepare to commit, the coordi-
nator will then make its decision and will command all participants to commit in the

second phase of the protocol. If for any reason (e.g., communications failure, site

67

failure, or participant refuses to prepare for local autonomy reasons) a participant
cannot or will not prepare, the coordinator will decide to abort the transaction and

this will be done in the second phase.
7.2 Log Structure

As we have seen, the form of the two-phase commit protocol we have chosen
utilizes a centralized coordinator to synchronize the activity of its distributed partici-
pants.x To facilitate the implementation of this protocol, we apply a two-level log-
ging scheme. At the top level is the coordinator log which presents a global view of
the transaction. This log includes the identities of all participants and the state of
the transaction as it changes throughout the protocol. This collection of information

resides in stable storage at the site designated as coordinator for this transaction.

We have seen that the coordinator log contains the identities of the partici-
pants, but not the information necessary to commit or abort each participant at will.
_This information is distributed among the many participants in the form of partici-
pant logs, each of which contains the information necessary to commit or abort the
corresponding participant according to the coordinator's command. The log
corresponding to a given participant is created as part of the prepare actions of each
participant and is stored in stable storage at the participant’s site. Once the partici-
pant log is created and a low-level name assigned to it, the coordinator is informed
of the name of the participant log. Once all participants have created associated
participant logs, the coordinator log will be updated to include the names of all of
these participant logs. Thus we see that the coordinator log actually contains cen-
tralized information as to the identities of all of its participants as well as references

to the distributed information which is necessary to commit or abort the transaction

* See [Lindsay 79| for alternative forms of the two-phase commit protocol.

68

as illustrated in Figure 6.

In the sections that follow, we describe in detail how and when each of these
logs is created and the interaction between them throughout the two-phase commit
protocol. We first describe the operation of the protocol under favorable conditions
and then extend our discussion to include handling of failure conditions. Some op-
timizations to our two-phase commit algorithm are possible and we discuss these in

the next chapter.
7.3 Normal Case Behavior

The two-phase commit protocol is initiated when the top-level process of the
top-level transaction completes successfully and after all of the transaction’s partici-
pant files have been commit-lock-updated. Since the two-phase commit protocol is
invoked only during completion of a top-level transaction, we no longer need to dis-
tinguish between transactions and top-level transactions. For simplicity, we will use
the term transaction and top-level transaction synonymously throughout the discus-

sion of the two-phase commit protocol.

The two-phase commit protocol is driven by the messages sent by the coordi-
nator to all of the sites which store files which must participate in the two-phase
commit of this top-level transaction. Up until the commit point, the functions of the
coordinator are performed by the process running on behalf of the application pro-
gram which invoked the top-level transaction. When the commit point is reached,
the transaction is added to a completion queue and control is returned to the appli-
cation process which invoked the transaction as described in Chapter 4. The second
phase of the two-phase commit protocol is performed by a daemon which services

the completion queue. In the discussion that follows, we use the term coordinator to

69

Figure 6: Two-Level Log Structure

70

refer to the process which is performing the first phase of the protocol as well as the

daemon which later services the completion queue.

Before beginning the prepare phase of the two-phase commit protocol, a coor-
dinator for the two-phase commit of this transaction must be selected. In our
scheme, the coordinator is simply the site where the two-phase commit protocol is
invoked, i.e., the home site of the top-level transaction. Designating a site as coordi-
nator consists of atomically writing the coordinator log to stable storage. Once this
is done, this site assumes coordinator responsibilities for the duration of the two-
phase commit of this transaction. The coordinator log is essentially a stable version
of the transaction structure of previous chapters and it includes the Tid of the tran-
saction, the transaction’s status (at this point UNDEFINED), and the participant file
list. Once the log is written to stable storage, we begin the prepare phase of the pro-

tocol.

During the prepare phase, we must cause each participant to take such ac-
tions as are necessary to guarantee that the participant can later commit or abort as
commanded by the coordinator. If the participant is local, we take the prepare ac-
tions locally. Otherwise, a message is sent to the participant site causing the prepare
actions to be taken at the remote site. What comprises the prepare actions is deter-
mined by the single-file commit mechanism provided by the system. Since the
single-file commit mechanism employed in Locus uses intentions lists [Lampson 79],
the prepare actions consist of stably storing the intentions list and returning the
name of this stable intentions list to the coordinator. This stably-stored intentions
list is the participant log and there is one such such log for each participant file. Re-
call that in the intentions list scheme, a file is represented by an array of pointers to

physical data pages, called the file's indez. When we wish to modify a logical page

71

of a file, we do not write over the old version of the page. Instead, we allocate a new
physical page, copy the old page data into the new page, modify it, and record the
address of the new page in the intentions list. The act of committing consists of
atomically carrying out the intentionms, i.e., atomically updating the file’s index so

that the new pages are referenced.*

When a local participant completes the prepare actions, we change its status
to PREPARED and record the participant log name in the appropriate entry in the
volatile participant file list. When a remote participant completes the prepare ac-
tions it sends a response to the coordinator, and we similarly update the appropriate
entry in the participant file list. Once all entries in the participant file list have their

status set to PREPARED, the transaction is ready to go on to the commit phase.

Here note that preparation of the participants is done in parallel to the degree
that is feasible. We traverse the participant file list entry by entry. If a local parti-
cipant is encountered the local prepare actions are taken, the participant file list is
updated, and then we move on to the next entry. However, if a remote participant
is encountered, we simply send a prepare message to the remote site and move on to
the next participant entry. Upon reaching the end of the list, we return to the head
of the list to traverse it once again. This time we check the status of each entry. If
the status of an entry is PREPARED, we move on to the next entry. If the status is
still UNDEFINED, we wait on this entry until its status becomes resolved using the

sleep and wakeup mechanism described above. If the status indicates that an error

+ Note that our algorithm does not depend on the particular single-file commit mechanism provided
by the system. If the system used a logging mechanism instead of intentions lists, the prepare actions
would consist of making the appropriate log entries. Furthermore, the log associated with the
participant file would act as the participant log.

+ The topology change procedure which is part of Locus will notify us if we are waiting for a response

from 3 site which is no longer in the current partition. This eliminates the need for timeouts in many
parts of our algorithm.

72

occurred or that a participant wishes to unilaterally abort, we change the status in
the transaction structure to ABORT and put this transaction on the completion
queue. The completion queue is a list of transactions which are waiting to be com-
pleted, either committed or aborted based on the status in the trapsaction structure.
Transactions are added to this queue as soon as their final disposition is determined.
The queue is serviced by one or more daemons, the number of which should be set to
satisfy performance criteria. The details of the abort procedure will be described

later.

If we reach the end of the participant file list, we know that all of the partici-
pants are prepared and the transaction can be committed. We update the status field
in the transaction structure to COMMITTED and atomically write the information
in the transaction structure—-the Tid of the transaction, status of COMMITTED, and
participant file list including the participant log names--to the coordinator log,
overwriting the version written out prior to the prepare phase. This atomic action is
the commit potnt bf the transaction, i.e., the atomic action which irrevocably com-
mits the transaction. Once this point is reached, we are assured that the effects of
this transaction will eventually occur irreversibly at all sites involved in the transac-
tion. As in the abort case, the transaction is added to the completion queue where
the commit phase of the protocol will be performed when a daemon becomes avail-

“able.

The daemons servicing the completion queue remove the first item from the
queue and check its status to determine what actions must be taken. If the status
indicates that this transaction is to be committed, the daemon traverses the partici-
pant file list and does the following for each entry. If the participant is local, the

commit actions are performed locally. Otherwise, a message is sent to the partici-

73

pant site causing the commit actions to be taken at the remote site. The commit ac-
tions consist of retrieving the intentions list from the version stored in the partici-
pant log* and carrying out those intentions, i.e., changing the file’s index so that the
new data pages belon; to the active version of the file. Once the participant is com-
mitted, we delete the participant log and release the locks held on the participant
file. When a local participant completes the commit actions, its status is changed to
COMMITTED in the appropriate entry in the participant file list. When a remote
participant completes the commit actions it sends a response to the coordinator
which causes the status to be updated in the appropriate participant file list entry.
Once all entries in the participant file list have their status set to COMMITTED, the
transaction is gomplete and all that remains is the cleanup phase. The commit
phase is carried out in parallel among the participants as much as is feasible as
described in the discussion of the prepare phase. The cleanup phase consists of
deleting the coordinator log and releasing volatile data structures used for this tran-

saction, e.g., the transaction structure and participant file list.

Before considering the abort procedure, we look at some of the possible causes
of transaction abort at this stage. An abort will be caused if any of the participants
cannot be reached during the prepare phase (e.g., due to a site failure or network
partition) or if a participant decides to unilaterally abort the transaction during the
prepare phase fo-r local autonomy reasons. Recall that being prepared to commit
means that any resources held on behalf of the transaction must remain sequestered
until the outcome of the transaction is determined and the participant site is notified
to commit or abort. This compromises local autonomy, but is a necessary constraint

if the coordinator is to assume that all participants will remain able to commit or

+ [n the normal case, when the site storing the participant does not crash or become partitioned from
the coordinator between the prepare and commit phases, the intentions list will be in volatile storage
and will not have to be retrieved from the stable participant log.

74

abort at its command. Hence, if a participant wishes to abort at any time, it must
be done before it responds affirmatively in the prepare phase. If such a condition oc-
curs during the prepare phase, the status of the participant wishing to abort the
transaction is set to ABORTED in the appropriate entry in the participant file list.
When the coordinator discovers any participant whose status is set to ABORTED it

immediately initiates the abort procedure.

The abort procedure is much the same as the commit procedure, with minor
differences. To abort a transaction, the status in the transaction structure is set to
ABORTED and the information in the transaction structure—the Tid of the transac-
tion, status of ABORTED, and participant file list with the statuses and participant
log names—-is atomically written to the coordinator log, writing over the version
stably stored before starting the prepare phase.* Again, the participant file list is
traversed with abort actions for local participants taking place immediately, and
abort messages being sent to remote participants to invoke the abort actions remote-
ly. The abort actions consist of deleting the participant log for the participant (if
one exists) and releasing t.he t-lock for the participant file. Once every participant
has taken the abort actions, the transaction is complete and we go on to the cleanup

phase just as in the commit case.
7.4 Handling Partitions and Outages

Through careful examination of the effects of crashes and network partitions

once the two-phase commit protocol is invoked, we attempt to convince the reader

+ Any participant which does not have a associated participant log will have a null entry in this field
in the coordinator log. The participant log name is simply stored for efficiency reasonms and is not
strictly necessary. As we will see when failure conditions are discussed in the next section, each site
maintains a table mapping participants to their associated participant logs. Storing the participant
log names in the abort case allows us to delete the participant logs directly thus bypassing this table
lookup.

75

that the protocol is robust. As will become evident throughout the discussion, the
algorithm relies not only on the transaction management code, but also on the topol-
ogy change procedure and consistency check programs which are regularly run dur-

ing system restart.

At this point we recall the policy we wish to enforce. If a failure occurs be-
fore the commit point, we must abort the transaction leaving the files it involved in
the state they were in before the transaction began. If a failure occurs after the
commit point, the transaction must be completed so that all participant files reflect
the effects of the transaction. Furthermore, we wish to ensure that the effects of any
transaction whose final disposition is unknown are not seen outside the scope of the

transaction. To commit a transaction, we must do the following:

1) For each participant:

a) Reéplace the old version of the file by the new version as
instructed by the intentions list.

b) Delete the participant log which was created for this par-
ticipant.

¢) Release the lock beld on the participant file.

2) Delete the transaction coordinator log.
3) Release any volatile structures used in processing the transac-
tion.

To abort a transaction, we perform the same actions with the exception of replacing
the old version of the file with the new (step 1a). To see that our protocols operate
correctly in the face of failures, we will describe how these the actions are eventually

accomplished either when the failure occurs, at partition merge time, or site restart.

76

Recall from our discussion of operation under normal conditions that we begin
the two-phase commit protocol by atomically writing the coordinator log to stable
storage at the site which invokes the two-phase commit protocol. This site then acts
as coordinator for the remainder of the protocol. If a failure occurs in writing out
the log, (e.g., the coordinating site has run out of space and hence cannot write out
the log), the two-phase commit software returns to its caller with an error code that
indicates that the transaction cannot be committed. As a result, the caller will take
the actions necessary to abort the transaction, ie., it will abort-lock-update the par-
ticipant files and inform the transaction’s caller that the transaction has been abort-
ed. Since writing the coordinator log is an atomic action, a crash which occurs be-
fore this act is completed is indistinguishable from a crash which occurs before the’
two-phase commit protocol is invoked. The handling of such failures was described

in our discussion of transaction abort in Chapter 4.

Once a coordinator log has been successfully written to stable storage at a
site, that site is designated coordinator for this transaction and will be responsible
for seeing that it is completed--either committed or aborted. The coordinator then
enters the prepare phase as described in the preceding section. From this point, it is
useful to consider the effects of failures and network partitions first from the

participant’s viewpoint, and then from the coordinator’s perspective.
7.4.1 Participant Viewpoint

Each file which is a participant in a transaction has a t-lock structure in vola-

tile memory. A flag in this data structure indicates whether or not the participant is

77

prepared and if so, it contains the name of the corresponding participant log.*
Whenever the topology change procedure discovers that 2 site has left the current
partition, it examines all t-locks to find-those files participating in some operation in-
volving the site which has just disappeared. These t-locks are then removed from
memory in order to prevent tying up volatile storage for an indefinite duration and
to allow continued operation during network partitions.** In particular, participants
which have become separated from their coordinators as a result of the topology

change are located and their associated t-locks removed.

If a participant has not yet been prépared when it becomes partitioned from
its coordinator, the orphan removal algorithm discussed in Chapter 5 will release the
lock on the file and free the t-lock structure. The algorithm becomes somewhat
more complex if the participant has already been prepared when it loses communica-
tion with the coordinator. There are two problems which must be handled in this
case and both arise because the t-lock structure associated with the participant file
must be removed from volatile memory as a result of the topology change. This
data structure contains two vital pieces of information which are not stored in the
stable version of the file for performance reasons: the prepared flag and the name of
the participant log. We first consider the ramifications of losing the knowledge that
this file is prepared. Whenever a partition occurs, locks on files held by sites no
longer in the current partition are released. This allows users in the current parti-
tion to access the file independent of what is going on in other partitions thus in-

creasing availability. Of course, copies of files which are replicated in various parti-

* This flag and the name of the participant log are not stored in the stable version of the file because
this would add two IO operations to the prepare actions of every participant and this was deemed to
be a significant performance penalty.

»+ However, access to files which are participants in an incomplete transaction will be prohibited until

the transaction completes. In our case, we will prohibit access to the file until the transaction is
either committed or aborted.

78

tions may be in conflict when the partitions merge, but this is handled by the
recovery software provided in Locus. For files which are not participants in a tran-
saction, such a policy poses few problems. However, prepared participant files must
remain locked until the fate of the transaction can be determined. Hence we need
some means by which to indicate that this file (or at least this copy of a replicated
file) is involved in an as yet unresolved transaction and hence cannot be accessed by
others until the transaction completes. The topology change procedure assumes this
task by setting the appropriate flag in the stable version of the file when it removes
a prepared participant’s t-lock from volatile storage. Subsequent requests to open

this copy of the file can thus be denied whenever this flag is set.

The other important bit of information which will be lost when the volatile
data structure is removed from memory is the name of the file's participant log.
Thus we need some mechanism to allow us to find the participant log when we re-
gain communication with the coordinator. The solution is to keep a volatile table of
participant logs whose entries are of the form: <FileName, ParticipantbLogName>.
Whenever a prepared participant is removed from volatile storage by the topology
change procedure, an entry is added to this table. In this manner, the participant log

for this file may be found later.

To complete our discussion of the protocol from the participant's vantage
point, we must describe what happens to participant files when the site upon which
they reside crashes and subsequently comes back up and wishes to merge with the
rest of the network. When a site crashes, all of the information contained in its
volatile memory is lost. In particular, the t-locks containing the prepared flag and
the name of the participant log, if one exists, are lost. We must show that this in-

formation can be reconstructed from information in stable storage. In fact, this in-

79

formation can be regained through inspection of the file storage system. Whenever a
site crashes, various inconsistencies in the file storage system may result. These are
routinely handled by running consistency check programs which lock for and at-
tempt to repair any problems which exist. These programs are run before the site
allows any access to files stored on that site and before the site attempts to rejoin
the network. In order to gather the information needed by the transaction mechan-
ism, some additional checks are added. In particular, the check programs find all
participant logs and rebuild the volatile table of participant logs. They then set the
appropriate flag in the stable version of all those files for whom a participant log has
been found. Thus by the time a site rejoins the network, its participant log table
has been rebuilt and the stable version of all prepared participants has been flagged.
In this manner, all participant logs may be located and all subsequent attempts to
access prepared participants can be denied until such time as these participants be-

come resolved.

Thus we have seen that the appropriate actions are taken at the participant
site in all possible cases. We have seen that all unprepared participants can and will
be aborted if they become separated from their coordinator as a result of a network
topology change. We have also seen that participants which are unprepared at the
time of a site failure are implicitly aborted since all volatile information is lost as a
result of site failure. Furthermore, we have seen that all prepared participants
remain inaccessible and prepared to commit or abort until they receive orders from
the coordinator in both the network partition casé and the site failure case. It
remains to be shown that our algorithm is robust from the coordinator’'s vantage

point.

80

7.4.2 Coordinator Viewpoint

We will begin by considering how the coordinator handles partitions which
separate it from one or more of its participants. Again, we will see the interaction
between the transaction mechanism and the topology change procedure. Partitions
during the prepare phase which separate participants from the coordinator will cause
the transaction to be aborted, while those during the commit phase will cause pro-
cessing on that transaction to be abandoned until a partition merge. From there we
will go on to describe how the coordinator recovers from a crash and continues its

transaction processing.

Recall that during the prepare phase the coordinator sends prepare messages
to all remote participants and then awaits their responses. Clearly some mechanism
is needed to prevent the coordinator from waiting forever for a response from a par-
ticipant which has been made uravailable by a failure or network partition. Again
we rely on the topology change procedure to éolve this problem. If any of the re-
mote participants becomes unavailable before it has responded to the prepare mes-
sage, the topology change procedure will set that participant’s status in the partici-
pant file list to SITEDOWN and notify the coordinator. When the coordinator dis-
covers any participant whose status is set to SITEDOWN, it sets the status in the
transaction structure to ABORTED, and immediately initiates the abort procedure.
As we saw earlier, this procedure atomically updates the coordinator log and then
adds this transaction to the completion queue where it will be aborted in the second
phase of the protocol. If the transaction completes the prepare phase successfully,
its status is set to COMMITTED, its coordinator log is atomically updated, and it is

added to the completion queue to be committed.

81

The second phase of the protocol works on the trapsactions which are on the
completion queue. At this point we will discuss management of this queue. The ac-
tual queue is an incore cache consisting of a finite number of transaction structures.
A transaction structure (plus the associated participant file list) is just a volatile ver-
sion of the coordinator log. The cache is used for performance reasons. If there is
room in the cache when a transaction completes phase one, it can be put directly
into the cache. In this case, we do not have to read the coordinator log before per-
forming the second phase. If the cache becomes full, we do not add any further
transactions to it, but instead allow it to empty. Whenever the cache becomes emp-
ty, we try to refill it by going through the coordinator logs looking for all those tran-
sactions which can be completed. Those which are eligible are those with their
status set either to COMMITTED or ABORTED and which -are not flagged as im-
possible to complete due to the current network topology. Those transactions which
are still in the prepare phase will have their status set to UNDEFINED and hence

will not be put on the queue.

Now we consider what happens if a partition separates the coordinator from a
remote participant during the second phase of the protocol. As in the prepare phase,
the coordinator sends commit {or abort) messages to remote participants and then
waits for their responses. Here again we rely on the topology change procedure to
guarantee that the coordinator is informed if a participant which has not yet
responded is no longer available. If such a partition occurs the transaction cannot be
completed until the lost participant again becomes available. Work on this transac-
tion is suspended, its transaction structure is flagged to indicate that it cannot be
éompleted until a network merge, and the transaction is removed from the cache.
Whenever a site rejoins the ne-twork, the topology change procedure unmarks the ap-

propriate transaction structures making them eligible to be put into the cache when

82

it is refilled.

Finally, we must consider the effects of coordinator failure. Whenever a site
crashes and comes back up, it must complete all of the transactions for which it is
responsible, i.e., all of those transactions whose coordinator logs reside at this site.
This requires little more than refilling the cache and initiating the daemons which
service the completion queue. However, before allowing any transaction activity to
continue, we must examine the status field of each log. Transactions which have
completed the prepare phase, le., those whose final disposition was determined be-
fore the crash, have a status of COMMITTED or ABORTED and need not be
changed. But, any transaction which was still in the prepare phase when the coordi-
nator crashed will have a status of UNDEFINED. The protocol requires that these
transactions be aborted. When such a transaction is encountered, its status is
changed to ABORT. We cannot simply leave their status UNDEFINED because as
soon as we allow new transactions to be initiated, coordinator logs with UNDE-
FINED status will be created for these new transactions. In this case, we would not
be able to distinguish the transactions which are active and in the prepare phase
from those which must be aborted as a result of an earlier crash. Once these have
been attended to, the cache can be refilled, the daemons invoked, and new transac-

tion activity can be allowed.

83

CHAPTER 8
OPTIMIZATIONS TO TWO-PHASE COMMIT

In the previous chapter, we gave a detailed description of the two-phase com-
mit protocol employed in Locus nested transactions. The presentation of the algo-
rithm was organized so as to facilitate the reader’s understanding. However, several
optimizations to the mechanism as described are possible. We present them in this

chapter.
8.1 Batching Messages

One of the most trivial and obvious optimizations to the algorithm is to batch
messages for participants which are stored at the same site and to batch all
responses from these co-resident participants to the coordinator. Recall that in our
description of the algorithm, we sent a message to each participant even if several
participants were located at a single site and that each of these participants subse-
quently sent a response to the coordinator. Considerable message overhead may be
saved by grouping together the messages to and from participants which reside at
the same site. Sending one long message rather than several short ones saves both
message processing and message space. We save processing at both the sending and
receiving sites since there are fewer messages to send and receive. We also save mes-
sage space because one long message requires only one header and trailer whereas
each of several small messages requires its own header and trailer information.
Furthermore, the data in each .message at any phase of the protocol is the same to

all participants, e.g., the prepare message tells each site to prepare and hence we

84

need include this only once if one large message is sent. Note however that
responses from participants at a given site to the coordinator may differ. For exam-
ple, one participant may choose to respond negatively to a prepare message while all
others at a site respond positively. Hence the response of each participant will need

to be included in the batched response message.

Extending this batching scheme, we can reduce the four message protocol as
described, to a protocol requiring three plus epsilon messages. Recall that the final
message of the two-phase commit protocol is simply used in order for the coordinator
to know when all participants have completed so that it can delete the coordinator
log. If, instead of sending these responses promptly when a participant completes,
we batch the responses of several participants even across transactions and send
these responses only periodically, the protocol basically becomes a three message pro-
tocol. The basis for this optimization comes from the SafeTalk protocol reported in

[Menasce 80}.
8.2 Removing Completed Participants

Another optimization concerns the handling of completed participants. Recall
that in our original discussion, we kept a volatile version of the coordinator log dur-
ing the entire protocol for transactions currently being processed and did not update
the non-volatile version after the commit point until we deleted the log. Thus each
time a coordinator log was pr::)cessed after an exceptional condition occurred, we sent
messages to all of the participants and awaited their responses. If instead, we write
out the coordinator log (with completed participants removed) whenever a group of
responses is received, we can avoid sending redundant méssages to sites whose parti-
cipants have already completed. In this manner, we do pot require all participants

of the transaction to be present in order to complete the transaction. Note that the

85

scheme previously described did impose this restriction. Thus we see that once the
commit point is reached, we can complete a transaction even if all of the original
participants never come together again. We require only that the coordinator talk to

each of these participants at some time subsequent to the commit point.

This optimization further expedites the protocol since we can flush the coordi-
nator log from core immediately after sending the command messages (commit or
abort) in the second phase. Then, when responses are received, we will read in the
coordinator log, make the necessary updates and write it out again. This may in-
crease the parallelism between the processing of transactions which have the same

coordinator.
8.3 Replication of Coordinator Logs

Another optimization to the simple scheme described in this report is replica-
tion of coordinator logs. The goal of this addition is to free resources as soon as pos-
sible in extraordinary situations. As we noted in an earlier section, participants in a
transaction wait for the coordinator to command them to commit or abort. Once a
participant has positively responded to a prepare message, that participant can take
no further action until instructed to do so by the coordinator. By replicating coordi-
nator logs, we believe that significant benefit can be gained especially in an environ-

ment where partitions are expected to be frequent.

Having decided that replication of coordinator logs is desirable, we are faced
with an important question. When is it useful to replicate the coordinator log? We
will argue that substantial benefit may be derived from replicating the coordinator
log once the fate of the transaction is known but not before this time. To see this

recall that the motivation for selecting a single centralized coordinator is to provide

86

ap atomic action which can act as the commit point of the transaction. If we were
to replicate the coordinator log before this single actions occurs, we would require a
scheme for coordinating the replicated copies of the log, i.e., we would need a two-
phase commit strategy (or some similar scheme) to ensure that all copies of the coor-
dinator log record the same value of the transaction status. If such a scheme is not
employed, a carefuliy timed partition could cause there to be two partitions which
have copies of a coordinator log with different statuses. For example, in one parti-
tion the status may be COMMIT while in the other it is UNDEFINED. In this case,
participants which are in the partition containing the log whose status is COMMIT
could be resolved and their resources released. However, participants in the other
partition can take no action and thus this situation is no different from the case
where there is only one copy of the coordinator log and it is in another partition.
Thus nothing is gained in this case by replicating the log before the commit point.
Furthermore, we can no longer blithely change the status of a transaction from UN-
DEFINED to ABORT when an exceptional condition occurs. (Recall that the
. current scheme, upon site restart any transaction whose status is UNDEFINED is
simply changed to ABORT.) We need some other way of determining when a tran-
saction whose status is UNDEFINED may be changed to ABORT.

In sum, we cannot change the status of a transaction unless we guarantee that
all copies will have unconflicting statuses, i.e., we must avoid a situation where some
copies of the log think that the transaction is to be aborted while other copies think
that it is to be committed. Thus we see that replicating the coordinator log before
the final disposition of the transaction has been determined provides no advantage
and can lead to inconsistent results unless some additional measures are taken. For
example, Reed proposes a scheme which essentially replicates the coordinator before

the fate of the transaction is determined and then employs a voting scheme to decide

87 -

whether to commit or abort the transaction [Reed 78]. Completion does not require
a unanimous vote, so in any partition containing a majority of the copies of the
coordinator, the transaction can be resolved. However, since only one partition can
have a majority of the copies, for our purposes, this scheme is little better than the
scheme which employs one coordinator. In all fairness to Reed, he proposed this
scheme as a solution to a different problem, namely the problem of permanent failure
of the coordinator during the two-phase commit. However, while narrowing the
window of failure, Reed’s proposed algorithm does not eliminate it, as Moss points

out in [Moss 81].

If, however, we maintain only one copy of the coordinator log until the fate of
the transaction is.known and then add replicated copies*, we can realize significant
gain in exceptional conditions as will be described below. Using this scheme, we in-
cur little additional overhead to manage the replicated copies of the coordinator log
and we make considerable progress towards our goal to release sequestered resources
.quickly. Note that this does not solve the problem Reed was attempting to solve.
Permanent loss of the coordinator between the time the first phase of the protocol is
begun and before the commit point is reached causes some participants to remain
locked forever. However, through the use of stable storage and the pack porting
scheme described earlier, we hope to have made the probability of such an event so

small as to be inconsequential in practice.

* Several implementation strategies are possible. A single copy may exist until final outcome of the
transaction is known at which time additional copies are created. Alternatively, all copies may be
created simultaneously with one flagged as the valid copy until the commit point when this version is
propagated to all other copies marking them valid as well. Regardless of the chosen implementation
details, it remains true that there can be only one valid copy of the log until the fate of the
transaction is determined.

88

We now have the problem that if there are copies of the coordinator log in
different partitions, they can be in different states when the partitions merge due to
the removal of completed participants. However, the semantics of coordinator log
files is sufficiently simple as to make automatic reconciliation possible. Given several
conflicting copies of a coordinator log, they may be resolved using the following sim-
ple rules. The number of participant entries in a coordinator log monotonically de-
creases until no participant entries are left at which time the coordinator log file may
be deleted. Once a participant has been removed in any copy of the coordinator log,
that participant has been resolved and can be removed in all copies. Hence, when
merging several copies of the coordinator log we obtain the set of remaining partici-
pants by forming the intersection of the participants in all copies of the log. Given
that the recovery system of Locus can detect conflicts between multiple copies of a
file and that the semantics of the files which act as coordinator logs is well under-
stood, we can easily build system software which will automatically resolve multiple

copies of coordinator logs at partition merge time.

So we see that replication of coordinator logs can be very beneficial in an en-
vironment where partitioning is frequent. In particular, more participants can be
resolved and hence resources can be freed more quickly if replicated copies of the

coordinator log are dispersed throughout the different partitions.
8.4 Participant Querying

In addition to coordinator log replication, ﬁe will also add a mechanism by
which participants can query the coordinator log file. By employing such a mechan-
ism, we hope to avoid some futile attempts to complete transactions whose un-
resolved participants are unavailable. Recall that whenever a site restart or parti-

tion merge occurs, each site marks all coordinator logs as active and attempts to pro-

29

cess each log in hopes of completing the corresponding transaction. In an environ-
ment where partitioning is frequent and highly variable, there may be many at-
tempts to process a given log before actually succeeding. We intend the querying
scheme to act as an advisory mechanism to coordinators. In this way, a coordinating
site can queue up logs to be processed in response to an inquiry from one of the par-
ticipants interested in this log. This may eliminate the processing of logs which have

no unresolved participants in the current partition.

In order to make clear the problem (or inefficiency) we are trying to alleviate
we present the following example. Suppose a given network consists of three sites
which are denoted A, B, and C and that site C becomes partitioned from A and B.
Further suppose that there are several transactions at site A and B which are epn-
queued at their respective sites and which have participants at site C. Whenever a
log at site A or B is processed and it is discovered that some of the participants are
unreachable, that log will be marked as inactive. Participants which are reachable
will be resolved and removed in the log whenever responses indicating that they have
completed are received by the coordinator. Now assume that A and B become parti-
tioned from one another and then merge and that all the while site C remains una-
vailable. Recall that our algorithm will mark all coordinator logs at A and B as ac-
tive because of the partition merge even though many of them cannot be resolved
because they require communication with participants at site C. Clearly if C is
down for a long period of time and many short-lived partitions occur between A and
B in the interim, the amount of work wasted in vain attempts to resolve these logs
can be considerable. Moreover, logs which could be resolved will wait behind the

others in the queue of logs to be processed.

90

To solve the problems illustrated above, we propose to implement a querying
scheme which allows participants to play a more active role in the scheduling of logs
to be processed. Recall that upon site restart and partition merge, we locate all
prepared participants and build a table mapping participants to their participant
logs. These participants then wait for commands from their coordinators. Some
simple additions to the existing scheme will allow us to add a querying mechanism.
One addition is to include the coordinator log name in the participant log for each
participant. Then for each prepared participant, we send a query to any site which
has a copy of the coordinator log.* To determine which site, if any, in the current
partition stores a copy of this log file, we simply use the parts of the file open
mechanism already existing in Locus. Recall that in Locus, one opens a file simply
by specifying its application level name. One does not have to specify the site at
which the file resides and the system will locate and open any copy of the file which
is available in the current partition. If a copy of the coordinator log is reachable, the
participant site will send a query to the coordinating site. This query will cause the
‘coordinating site to mark this coordinator log as active (if it is currently inactive).
This log will then be queued and processed at the coordinator’s convenience as in the
scheme we have previously described. Note that this could cause multiple copies of
a given coordinator log to be processed. However, this is not a problem since all
copies agree on the status of the transaction and we have taken care to guarantee
that the actions taken by a participant when it is commanded to commit and abort

are idempotent.

We propose that queries not explicitly be acknowledged by the coordinator so

as to save on message traffic and protocol overhead. If this advice is followed, sites

« Throughout this discussion we intend coordinator or coordinator log to mean valid copy of the
coordinator log.

91

should periodically initiate querying to protect against the deleterious effects of lost
queries. Of course, this need only be done if it has been a long time since the last

site restart or partition merge which themselves cause querying to be initiated.

Through use of this query mechanism we hope to eliminate much wasted
effort in environments where partitioning is frequent and in which both long and

short-lived partitions are expected to occur.

92

CHAPTER 9 -
RELATED WORK

In this chapter we present a review of work related to ours in an effort to put
our work in proper perspective. In particular, we review the result of recent research
in the area of transaction management including work on single-level as well as nest-
ed transactions. We also review the Argus language which incorporates nested tran-

sactions, and the work in remote procedure calls done by Bruce Nelson.

In reviewing other work, we will attempt to compare this work to ours in
various respects including functionality, reliability, replication, concurrency control,

network transparency, performance, and degree of implementation.
9.1 Single-level Transactions

The transaction comcept has long been a common notion and we do not at-
tempt to trace its origins. Gray states that the transaction concept derives from
contract law [Gray 81]. The use of transactions in computer systems, for example in
electronic funds transfer and airline reservations systems, has become commonplace.
Here we will review just some of the work that has been done in the area of single-
level transactions. We have attempted to select the work which we believe is
representative and we discuss some of the systems which employ transactions as a
means to guarantee system consistency and/or reliability. For a good survey of the:
transaction concept and many frequently used techniques, see [Gray 78] [Gray 81]

[Lindsay 79] [Lampson 79].

93

9.1.1 System R

System R is a relational data management system which employs single-level
transactions to allow applications to commit, abort, or partially undo their effects.
Its implementation consists of two layers of software which lie above the operating
system. The internal layer provides, among other data management features, tran-
saction management and recovery. For simplicity, one may assume that applicatioﬁ
programs consist of conventional programs which invoke a sequence of calls to this

internal layer.

A transaction is defined as a application specified sequence of actions on the
objects implemented in System R's internal layer. Examples of such actions include:
insert record, fetch record, and create file. An application declares the start of a
transaction by issuing a BEGIN action. Thereafter, all data manipulation actions re-
quested by that application are within the scope of that transaction until the appli-
cation issues a COMMIT or ABORT action. Transactions may also be aborted by
the system, for example in cases of authorization violation, deadlock, or system
crash. System R also defines the additional notion of transaction save point, which
is a fire-wall where transaction undo may stop. Application programs declare a save
point by issuing a SAVE action. If an exceptional condition occurs during the execu-
tion of a transaction, e.g., deadlock or resource limitations, it may be sufficient to
back up the transaction to such an intermediate save point rather than undoing all

the work of the transaction.

The internal layer of System R is responsible for running concurrent transac-
tions and for assuring that each transaction sees a consistent view of the database.™
Each transaction is a unit of recovery and System R will recover the data to its most

recent consistent state in the event of failure or user request to cancel the transac-

94

tion. Recovery is accomplished using an undo-redo log technique as described in
[Gray 78] and [Gray 79]. All System R data is stored in files and System R defines
two types of files: shadowed and non-shadowed. No automatic recovery is provided
for non-shadowed files and these are updated directly. Users are responsible for
making redundant copies of such files if they desire such functionality. By contrast,
System R maintains two versions of shadowed files: a shadow version and a current
version. In this case, operations affect only the current version of a file. The shadow
version is altered only by file save and restore commands. The act of committing
thus becomes the act of SAVing the current version of a file as the shadow version.
Alternatively, the current version of a file can be RESTOREA to the shadow version
thus undoing all updates since the last SAVE or COMMIT of this file. The current
and shadow versions are implemented using an intentions list technique, just as in
our scheme. The shadow version of a file survives system restart, but the current
version does not. At system restart, all shadowed files are reset to their shadow ver-
sions. Then the log is used to remove the effects of aborted transactions and to re-
store the effects of committed transactions. The shadow and current versions are
used to recover individual files and the log mechanism is used to coordinate the

effects of multi-file transactions.

The transaction and recovery mechanisms of System R are in some ways simi-
lar to our implementation. As previously noted, System R employs an intentions list
scheme similar to ours for its shadowed files. Recall that Locus employs an inten-
tions list scheme for single-file commits and our scheme makes use of this mechanism
by storing the intentions list as a participant log. However, note that our scheme is
not tied to the use of intentions lists and could easily be modified to work properly
with whatever single-file commit mechanism were made available by the operating

system. Also note that System R employs a log for coordinating multi-file transac-

95

tions and for object state restoration. Recall that we also emplof a log to perform
our two-phase commit. However there are some differences. System R stores in its
single log enough information to undo or redo every transaction which has ever tak-
en place on a given site. In our case, a coordinator log only exists for the duration of
the two-phase commit protocol, i.e., from the time the two-phase commit is invoked
until the transaction is completed. Thus System R must provide schemes to decide
when to move parts of the log to tape archives, since they canpot possibly be stored
entirely on direct access devices. Of course, we do not require such mechanisms.
However, System R does gain additional functionality by keeping this log, namely
that recovery from media failure is possible for logged files. However, part of regular
Locus system maintenance is a daily dump routine which dumps files to tape ar-
chives. Thus we can always restore files to a version not more than 24 hours out of
date. Furthermore, we employ one coordinator log per transaction as opposed to a
single log for all transactions at a given site. This will allow our coordinator logs to
be replicated and/or to migrate on a per-transaction basis and, as we saw in Chapter

8 future plans include extending our current implementation to include such flexibil-

ity.

The transaction scheme employed in System R is also similar to our imple-
mentation in its use of locking for synchronization. Both schemes lock objects for

the duration of the transaction in which they are involved.

Of course, the transaction mechanism of System R is limited in functionality
when compared to our scheme since it is implemented as part of a data management
system and not a general-purpose programming environment. Thus the operations
which applications may include in their transactions are limited to database opera-

tions. Most importantly, the transaction mechanism of System R does not support

-

96

nested transactions. As we have argued in previous sections, we believe that these
limitations are too severe for a general-purpose programming environment. In addi-
tion, System R transactions have no parallelism within a transaction, for example if
multiple nodes of a network execute a single transaction, at any given time only one
node is executing that transaction. By contrast, we have seen that our scheme al-

lows parallel execution among processes which make up a transaction.

System R’s transaction facility provides some functionality which we do not
provide, and that is the transaction save point mechanism which allows transactions
" to replace the shadow version with the current version. We could easily add a simi-
lar mechanism to our scheme, in particular we could add a mechanism which would
perform intermediate commits of the top-level transéction. However, the since Sys-
tem R keeps a log as well as the shadow version, their tramsactions can be rolled
back beyond transaction save points using the log. If we add intermediate commits
to our scheme, we could not roll back past intermediate commits without keeping

multiple "old” versions of the files.

System R’s transaction management system as described here is fully imple-
mented. Further development is ongoing including a distributed version of system
R, known as Rx. For more information on System R and System Rx the reader is

referred to [Gray 79] and [Lindsay 79].
9.1.2 Tandem ENCOMPASS

ENCOMPASS+ is a distributed data management system developed by Tan-~
dem Computers Incorporated. ENCOMPASS is part of the Tandem system which

provides a high degree of reliability by employing redundancy at both hardware and

« ENCOMPASS is a Trademark of Tandem Computers Incorporated.

97

software levels. At least two paths connect any two components in the system.
Each Tandem node consists of from 2 to 16 processors each of which runs a copy of
the operating system. The message-based operating system manages all system
resources in a decentralized fashion. The message system makes the physical distri-
bution of hardware éomponents transparent to processes. The message-based struc-
ture of the Tandem operating system allows easy extension to a local network of

Tandem nodes.

The transaction management facility of ENCOMPASS, known as the Tran-
saction Monitoring Facility (TMF), implements single-level transactions. To initiate
a transaction, the user issues a BEGIN-TRANSACTION call. This marks the begin-
ning of a sequence of operations which are to be treated as a single transaction. The
allowable operations are invocations of application "server” programs which access
and update database files. The structure of each application server program is sim-
ple and single-threaded: 1) read the transaction request, 2} perform the database
function requested, 3) reply. The network location of the application server process
and/or all or part of the database is transparent to the user and may reside on re-
mote network nodes. Execution of BEGIN-TRANSACTION causes a unique tran-
saction identifier, transid, to be generated. From this transid, it is possible to deter-
mine the identity of the processor in which the transaction was initiated, and the
identity of the network node of which this processor is a component, called the home
node for the transaction. All messages sent from this processor on behalf of this
transaction, e.g., disk I/O or record locking requests, have this transid appended to
them. When the sequence of operations which make up this transaction are com-
plete, the user issues the END-TRANSACTION command to cause the transaction’s

database updates to become permanent.

98

TMF uses locking for synchronization. All data items required by the tran-
saction must be locked before they are read or updated and must remain so until the

end of the transaction.

The Tandem system provides the notion of a process-pair. A process-pair
consists of two cooperating processes which run in two different processors. One of
these processes is designated the primary and the other the beckup. The primary
handles all requests to access the resource it manages, for example an /O device,
and the backup functions as a standby in case of failure of the primary. The pri-
mary process sends to the backup process checkpoints which ensure that the backup
process has all the information that it requires to assume management of the
resource and complete any pperation initiated by the primary in the event of failure
of the primary. A DISCPROCESS, implemented as an I/O process-pair, controls all
accesses to the disk volume it manages and protects the integrity of the files resident
on this volume. This scheme represents a type of stable storage. TMF also main-
tains distributed audit trails of logical database record updates. The DISCPRO-
CESS which manages a disk volume automatically causes before-images and after-
images of database updates by application processes to be written to an audit trail.
This audit trail will remind readers of the log kept by System R and is used to re-

cover from total node failures.

TMF uses a two-phase commit protocol similar to those we have already seen.
At each network node, there is a process-pair known as the Transaction Monitor
Process {(TMP). The messages .required to perform the well-known distributed two-
phase commit protocol are sent from TMP to TMP. Each node which participated
in the transaction sends transaction state change messages to the TMP of all nodes

for which it was the direct source of transmission of messages relating to this tran-

99

saction. Upon receipt of such a message, the TMP broadeasts the message to all
processors within that node. For phase one to complete successfully, each node to
which the home node directly transmitted the transid must be accessible and reply
affirmatively. Before replying, the TMP writes the transaction’s audit records to
disk and guarantees that all nodes to which the transid was further transmitted have

done likewise. The remainder of the protocol is similar to that of other systems.

This form of the two-phase commit protocol offers an interesting contrast to
the scheme we have implemented. Recall that we kept a single list of participants at
the home site of the top-level transaction rather than having each node keep a list of
all participants at that node and a list of all nodes on which it invoked transaction
related operations. We believe the two schemes to be equivalent in terms of record
keeping. However, note that our scheme requires us to inform the home site when a
new participant is added to a transaction. This involves a round-trip message delay
when this occurs. The Tandem scheme does not incur this delay when new partici-
pants are added. However, our scheme allows us to send the two-phase commit mes-
sages directly to all participants. Thus we do not have to wait for these messages to
trickle down and back up a tree of participants. Depending on the characteristics of
the communications links involved, the time spent processing these messages, and
the depth of this tree, the performance of the two-phase commit protocol will vary

and may degrade considerably using a scheme such as Tandem’s.

TMF compares favorably with our scheme in the area of network transparen-
cy. Both schemes allow transactions to access resources at remote sites without hav-
ing to specify the site upon which those resources are stored. Note, however, that
this property of network transparency is not a feature of either transaction mechan-

ism, but rather the operating systems upon which these transactions have been buiit.

100

It has been our experience that transparency provided at a low-level greatly

simplifies programming distributed tasks at higher levels.

As is true of the transaction management facility of System R, TMF is imple-
mented as part of a data management system and hence is not a general-purpose
tool. Furthermore, TMF does not support nested transactions. TMF is 2 working
system and is commercially available as part of the ENCOMPASS data management
system. Readers interested in a more thorough discussion of TMF are referred to
[Borr 81]. Those who desire more information regarding the Tandem Operating Sys-

tem are encouraged to read [Bartlett 78] and [Bartlett 81].
9.1.3 Distributed INGRES

Distributed INGRES is a distributed version of the relational database
management system, INGRES. The concurrency control, crash recovery, and multi-
ple copy update algorithms are based on a primary site model, much like that
presented in [Alsberg 76]. Each object possesses a known primary site to which all
updates in the network for that object are first directed. Distinct objects may have
distinct primary sites. In this system, an object is a subset of the rows of a relation,
called a fragment. Each relation is partitioned into fragments, each with a primary

site and some number of multiple copies.

A transaction in the distributed INGRES environment may consist of a single
query language command which is either a command to retrieve or update data.
While the authors claim that the more general case, where a transaction consists of
an arbitrary collection of such commands, requires no additional algorithmic com-
plexity, the more general cas.e is not now implemented and future plans do not in-

clude its implementation. Crash recovery is decomposed into local crash recovery at

101

each node with some additional processing. The single-site crash recovery software
handles only transactions which consists of a single command. However, if single-site
recovery were modified to handle the general case, the authors believe that their al-

gorithms would work for the general case.

Concurrency control is achieved through locking. Each site in the netwbrk
has a local concurrency controller (CC) which handles control for all local transac-
tions. The lock tables that each CC creates and uses are local to its site and are not
present at any other site in the network. Thus, locking is handled in a distributed
fashion. Deadlocks may occur. Deadlock detection and resolution is handled by a
single, universally known machine called the SNOOP. When a local CC notices that
transaction X holds a lock for which transaction Y waits, this information is sent to
the SNOOP. This machine then constructs a global "wait for” graph from which it

can detect deadlocks.

To control multiple copy consistency and handle crash recovery, each node
maintains an up-list. This is a list of sites that the given node believes to be opera-
tional. This up-list is analogous to the site table discussed in our algorithms. Furth-
ermore, each site maintains the identity of the current SNOOP. If, at any time, the
current SNOOP is not in the up-list, there is a globally agreed upon procedurre for
selecting a new SNOOP. The location of all copies of an object may be determined
by examination of some system catalogues, and there is a known linear ordering of
all these copies. The primary copy is defined to be that copy which is the lowest in
the ordering among those sites in the up-list. When the network is partitioned, a
primary copy of an object is defined to exist only if a majority of all copies are at

sites in the up-list.

102

The correct operation of distributed INGRES requires some assumptions con-
cerning the underlying communications subsystem. These are as follows. First,
every message sent is reliably received if the recipient is in the up-list and the sender
does not crash while sending the message. In the case that the recipient is not in the
up-list, the sender can queue messages for later delivery. Lastly, messages arrive in
the order in which they originated from the sender. Note that our transaction
mechanism requires none of these assumptions to operate correctly. Furthermore,
the management of the queues of messages for inaccessible sites seems to us burden-

some if sites are down for long periods of time.

A transaction is initiated from a user process at some site. This causes a
" master” collection of INGRES processes to be invoked at that site. This master
creates "slave” INGRES processes at other sites where processing on behalf of this
transaction is to take place and ensures that each slave knows the identity of all oth-
er slaves. The master then examines the up-list and calculates the primary site for
each object involved in the transaction. If the primary site of any object is inaceessi-
ble, the transaction fails. Otherwise, the master supervises the distributed transac-
tion making sure that each slave knows the updates that the slave must make local-
ly. The master then waits for a ready message from each slave. When such a mes-
sage is received from every slave, the master sets its commit flag. This is the com-
mit point of the transaction. Next, the master sends commit messages to all of the
slaves and waits for a done message from each of the slaves. It then notifies the ap-

plication process that the transaction has completed.

Each slave assists the master in processing the transaction. After a slave has
completed its portion of the transaction, it notifies the master that it is ready and

then waits for further instructions. If the master sends a commit message, the slave

103

commits its updates and responds to the master with a done message. If the master

sends a reset message, the slave runs a local recovery algorithm.

Above we have briefly reviewed just a portion of the algorithm. There are
recovery algorithms which govern the behavior of the master and its slaves if failures
occur while a transaction is in progress. The algorithm we have briefly described is
part of the performance algorithm. Two versions of the algorithms exist. One
promises good performance but can lead to data integrity problems. The other
guarantees that no data integrity problems will occur if a certain number of the sites
are up, but the performance degradation suffered by this algorithm is severe. The
latter algorithin requires a commit to update all copies of an object instead of just
the primary copy. See [Stonebraker 79| for a more detailed discussion of the two

sets of algorithms.

This brings out one of the fundamental differences between distributed
INGRES and Locus. Namely, the builders of Locus decided that, for the sake of reli-
ability, operation must be allowed to continue during network partitions. If the
resources for an ope;ration are available in a given partition, that operation must be.
allowed to proceed even if some of the required resources are replicated in other par-
titions. Although this policy can easily lead to consistency conflicts at partition
merge time, we believe this to be a reasonable policy for the reasons we argued In
Chapter 2. The builders of INGRES do not take this philosophy and thus have at-
tempted to avoid consistency problems by using a primary copy strategy which does
not allow update in partitions which do not possess the primary copy. The price
paid by the INGRES system is reduced availability during network partitions and

poor response time if the reliable algorithms are used.

104

The transaction mechanism of Distributed INGRES, like that of System R, is
limited in functionality when compared to our scheme. Again, this is largely due to
the fact that it is implemented as part of a data management system. Furthermore,
the operations which applications may include in their transactions are limited to da-
tabase operations and in fact are limited to single query language commands. Of
course, the transaction mechanism of distributed INGRES does not allow nesting of
transactions. However, we have seen that the transaction mechanism of distributed
INGRES does exist in an environment where replication is included in the basic sys-

tem and hence provides algorithms to manage replicated copies.

One feature provided by distributed INGRES which is not yet implemented in
our system is that of promoting a slave to master so that the transaction can com-
plete in some cases if its master becomes unavailable. Their algorithm works in the
following manner. If a slave motices that its master has become unavailable, the
slave examines its up-list to determine whether or not all other slaves are accessible.
If so, and this slave is the lowest numbered in a predetermined order among the
slaves, this slave takes on master responsibilities. Otherwise, it waits for another
slave to take over. The new master then queries all slaves to see whether or not any
had previously received a commit command. If so, this transaction may be commit-
ted by the new master, otherwise it is aborted by the new master. In our scheme,
functionality of this type will be gained when we implement replicated coordinator

logs as discussed in Chapter 8.
9.1.4 Sirius-Delta

Delta is a real-time distributed transaction processing system built within the

framework of Project Sirius at INRIA [LeLann 81].

105

A transaction is a set of elementary actions -- such as READ, WRITE,
DELETE, CREATE -- which manipulate data objects grouped into files. Two types
of executive processes are used in transaction management: producers are in charge
of controlling the execution of transactions and consumers are in charge of perform-
ing transactions on objects. As in our implementation and that of distributed
INGRES, Delta emplﬁys a scheme to keep track of which nodes are currently accessi-
ble. Each producer is assigned a unique identifier that defines its order in the set of
producers which make up a virtual ring. Every producer is required to periodically
exchange messages with its successor to determine whether or not its successor is still
available. If several messages go unacknowledged, the producer attempts to contact
the next producer in the sequence. This procedure is repeated until a positive
response is received or the producer discovers that it is the only active producer.
There is also a virtual ring insertion protocol which allow producers to rejoin the

network. The set of producers currently in the ring are the accessible nodes.

The virtual ring is also used as- a distributed concurrency control mechanism
in the following way. A special message called a control token circulates around the
virtual ring. This token carries with it a sequencer that at any time has an integer
value called a ticket. A producer obtains a ticket by accessing the sequencer to find
its current value and then incrementing the sequencer. Protocols exist to guarantee
that a token is circulating at all times and that there is only one such token and
that the sequencer maintains thé required properties. The sequencer is used to times-
tamp transactions which are submitted to producers by applications. Each transac-
tion obtains a unique ticket and all actions invoked on behalf of a given transaction
carry the ticket value allocated to that transaction. This mechanism provides all the
information necessary for a consumer to correctly schedule competing actions. When

two transactions have conflicts at several consumers, all such conflicts will be

106

resolved identically as follows. Whenever an action possessing a lower-numbered
ticket is received, a consumer decides immediately either to roll back or to abort any

actions possessing a higher-numbered ticket.

The use of timestamps as a concurrency control mechanism is quite different
from the locking scheme that our system employs. Our scheme requires us to keep
state information in the form of lock tables, while the timestamp scheme requires
only timestamps to be kept. However, the timestamp mechanism causes some
number of unnecessary rollback and aborts. Lelann argues that in real-time transac-
tion processing systems, transactions do not represent large amounts of processing.
Hence rolibacks and aborts should not be considered costly when compared with the
price of exchanging state inforr_nation among nodes in a distributed environment.
Since our system is a general-purpose programming environment, we cannot make
assumptions about the amount of transaction processing requested by users nor the
duration of those transactions. In such an environment, we believe locking to be the
superior choice for concurrency control. Furthermore, our implementation is part of
the Locus c;perating system which uses locking as its synchronization mechanism and

hence for compatibility reasons locking seemed an obvious choice for our mechanism.

Transactions which write, create, or delete objects update copies of these ob-
jects rather than the actual objects. A form of the two-phase commit protocol is
used to cause the modifications to be made to the actual data objects. Objects are
locked during the two-phase commit protocol. The two-phase commit protocol em-
ployed in Delta is similar to the version employed in our scheme with the following
modification. Included in the prepare to commit message which the producer sends
to all participating consumers is the list of all consumers involved in the execution of

the transaction being committed. This enables any consumer noticing that the pro-

107

ducer has failed, to attempt to contact all other consumers involved in the transac-
tion to determine what the outcome of the transaction should be. If any consumer
has aborted, the transaction will be aborted. Similarly, if any consumer has commit-
ted, the transaction will be committed. If all are accessible and all have responded
positively to the prepare to commit message, the transaction will be committed. The
only case in which no action may be taken is the case where none of the accessible
consumers has either committed or aborted and the producer as well as some of the
consumers are inaccessible. In this case, the transaction cannot be completed until

the failed consumers are once again available.

In order to recover from crashes, each node keeps a log containing all informa-
tion necessary to survive failures. Whenever a write action is issged, the system em-
ploys a two-phase commit 'protocol to atomically update all copies of an object and
to make appropriate entries in the log. The log entry includes the list of all consu-
mers involved in this write operation. In this manner, writes are atomic even if some
elements crash. Furthermore, consumers periodically cause checkpoints to be written-
to the log. Thus upon restart, a consumer begins by returning to the state recorded
as the most recent checkpoint in the log and then processing all write operations
which occurred after this checkpoint as recorded in the log. Upon encountering a
write action which was prepared but not committed, this consumer consults other
consumers belonging to the associated list in order to determine whether to commit
or abort this action. Once this is completed for all write actfons in the log, the con-
sumer is once again accessible. Since it is not necessary to wait for a failed producer
to complete a transaction, producers may be considered memoryless systems. Only
consumers are provided with stable storage. Thus the failure and recovery of pro-

ducers does not affect data consistency.

108

This approach to crash recovery is an interesting alternative to our method.
Recall that we keep a list of all participants and the state of the transaction in a sin-
gle centralized coordinator log. By contrast, Delta keeps no centralized information
about the state of the transaction (once a producer has failed) and keeps a list of all
participants {consumers) with each participant. In the normal case, our approaches
are equivalent. It is in cases of failure that our schemes differ. We identify some of
the tradeoffs briefly. Delta uses a truly decentralized approach. Some may argue
that this provides a greater degree of local autonomy than an approach such as ours
since participants may be able to free locked objects sooner. However, il we repli-
cate coordinator logs, a participant need only communicate with one of the many
sites storing the replicated coordinator log to determine the outcome of the transac-
tion. In addition, if we so desire, we can approximate the Delta scheme by replicat-
ing the coordinator log at each participant site. Furthermore, in some cases, we be-
lieve that the Delta scheme may even cause resources to be held longer. To see this,
recall that in the case that the producer has failed, no accessible consumer has either
committed or aborted, and at least one consumer is inaccessible, Delta requires all
consumers to be in communication again before the trapsaction can complete. Our
scheme, with the optimizations described in Chapter 8, can complete a transaction
once all participants have responded suecessfully to the prepare message even if they
are never again in the same partition. Furthermore, we believe our approach to be
simpler, since the fully decentralized algorithm requires much more sophistication
from its consumers {participants) while requiring the same complexity of the produc-
er {coordinator) since it is responsible for committing the transaction in the normal
case. Thus, in choosing between the two schemes, a system designer must decide

what is appropriate for the particular environment in question.

109

Another significant difference between our systems is the notion of network
partitioning. While Locus deals with this issue in a general manner, Delta assumes
that all nodes are either in the virtual ring or inaccessible. While this is a suitable
model for a single local area network, this model does not gracefully extend to more

sophisticated topologies such as multiple local networks connected by gateways.

While Delta does not support nested transactions, it is a transaction tool for a
general-purpose programming environment, unlike the traosaction mechanisms we
have reviewed up to this point. In addition, Delta provides replication of data ob-
jects containing vital information so that the system can survive crashes of storage
elements. However, the details of this replicated copy consistency were not available
fér our review. We have discussed this subject at length in our review of distributed

INGRES.
9.2 Nested Transactions

In recent years, the concept of nested transactions has been developed as a
general-purpose programming tool for an unreliable environment. The earliest paper
describing something resembling nested transactions seems to be [Davies 73]. His
term is spheres of control. However, this work does not represent a design for a
nested transaction mechanism, but rather attempts to define some of the general

properties required of any such scheme.

In this section, we review two substantial previous designs for nested transac-
tions. We first consider a design for nested transactions using locking for synchroni-
zation proposed by Eliot Moss in his doctoral thesis at MIT [Moss 81]. Next, we
present a summary of a nested transaction scheme which uses timestamps for syn-

chronization. This scheme came about as part of a general object naming scheme

110

proposed by David Reed in his doctoral thesis at MIT [Reed 78]. We compare and

contrast their designs with ours.

Also worthy of note is the Eden File System (EFS) which is currently being
designed at the University of Washington. EFS employs an object model approach
in the design of a transaction-based file system which will be a part of the Eden dis-
tributed system. The Eden distributed system, which is currently under develop-
ment, provides a high degree of network transparency among its many features. In
addition, EFS will provide support for nested transactions, file replication, and mul-
tiple versions. At the current time, few details about EFS are available. In particu-
lar, very little information regarding the issues of transaction management for nested
transactions, concurrency control, and recovery management is available. However,
some portions of EFS are currently being simulated and we believe that much useful
knowledge will come out of this effort. For a brief summary of the Eden

Transaction-Based File System, readers are referred to [Jessop 82].
9.2.1 Reed

Reed has designed a mechanism for implementing nested transactions using a
timestamp technique for synchronization and recovery. This mechanism is part of
the NAMOS (Naming as Applied to Modular Object Synchronization) system which
is described in detail in [Reed 78]. The essence of Reed’s approach is as follows.
Each modifiable object in the system is regarded as a sequence of unchangeable ver-
sions. Each version is the state of the object after an update is made to the object.
The sequence of versions 1s referred to as the object history. In NAMOS, each ver-
sion has a two-component name consisting of the object name and a pseudo-time.
The pseudo-time is the name of the system state to which the version belongs.

Thus, we can envision each object history as a set of values each of which is valid

111

over a region of pseudo-time. For example, the object O and its value history might

be:
0: <v0,[t0,t1]>, <v1,[t1,t2]>, <v2,[t2,t¥]>

meaning that O had the value v0 from pseudo-time t0 to t1, then at time t1, O was
assigned the value v1, then at time t2, O was assigned the value v2 and this is the
current value. If a program now reads O at time t3, it will see the value of the ob-
ject at that time. If t3 > t2, then the value v2 will be made valid for the period
[t2,t3]. If a program assigns value v3 to O at time t3, one of the following occurs. If

t3 > t2, the object history of O becomes:
0: <v0,[t0,t1]>, <vL,[t1,12]>, <v2,[t2,t3]>, <v3,{t3,*]>

However, if t3 <== t2, then the program is aborted because it is attempting to

rewrite history.

In this context, synchronization is a mechanism for naming versions to be
read and for deﬁﬁing where in the object history a new version resulting from some
update belongs. Synchronization of access to multiple objects is achieved by giving
programs control over the pseudo-time in which an access is made. To accomplish
this, Reed introduces the notion of a pseudo-temporal environment which is simply a
region of pseudo-time. The pseudo-temporal environment allows a program to en-
sure that the objects it accesses change only as a result of actions performed by this
program. That is, the pseudo-temporal environment provides a means to reserve a
range of pseudo-times for the exclusive use of the program making the reservation.
We can think of pseudo-temporal environments in the following way. There is a
root pseudo-temporal environment which is the set of all pseudo-times. This root

may be subdivided into subranges that begin and end in pseudo-times that are

112

system-wide consistent states. One of these subranges that corresponds to the execu-
tion of a sequential program is further broken up into subranges that begin and end
in pseudo-times that correspond to the states in between execution of operations that
are separate modules of this program. All of these ranges are pseudo-temporal en-

vironments.

Reed observes that pseudo-time must be correlated with real time. In order
to generate pseudo-times that are ordered in correspondence with real time, one
must have at each node a way of creating a pseudo-time value that exceeds all previ-
ous values created at that node. The pseudo-time value created must also exceed all
values created at other nodes at significantly earlier times. Reed discusses how the
correlation with real time may be achieved using approximately synchronized clocks

[Reed 78.

Reed further introduces the concept of a possibility. A possibility is a group
of tentative versions created by updates that can simultaneously be installed as real
versions. A possibility contains a boolean value. This value is set to true when the
associated set of updates complete. The possibility mechanism also includes a
timeout after which the boolean value cannot possibly be set to true. This allows
the system to bound the time that a group of updates may be in progress. Thus
there are three important states of a possibility. Before its value is determined, a
possibility is said to be in the wait state. An attempt to access the value at this
time will be forced to wait until the value is set or until the timeout goes off. If the
group of changes have been completed, the possibility enters the complete state. i
an error occurs or the timeout goes off while the possibility is still in the wait state,
the possibility enters the ebort state. All of the changes made under the control of a

particular possibility form an atomic action, since any computations attempting to

113

access the objects which are part of this possibility will either see all of the changes
(if the possibility eventually completes) or see none of the changes (if the possibility
eventually aborts.) Reed extends this concept to include dependent possibilities

whose completion also depends on the completion of their parent possibility.

The concepts of pseudo-temporal environments and possibilities. can be used
to implement nested transactions in the following way. Any computation that mani-
pulates shared objects can be executed as a transaction by: 1) executing it in a
unique pseudo-temporal environment; and 2) making all of the updates conditional
on a possibility that is completed if no errors occur that prevent the computation
from finishing. The first of these insures that the transaction reads and writes con-
sistent data and that the only changes made to _the state of the system during the
range of pseudo-times composing the transaction are those that the transaction itself
initiates. The second guarantees that no other computations see any of the inter-

mediate states that the transaction creates as it proceeds.

Within a transaction, accesses to objects must oceur in a certain order, name-
ly the order of the statements making up the transaction. To guarantee this, the
rules for getting a pseudo-time for a pseudo-temporal environment are as follows. If
a pseudo-time is needed for a read operation, use the pseudo-time of the last write
operation. If a pseudo-time is needed for a write operation, it must be strictly later
than any pseudo-time used for a previous read or write operation. This ensures that
changes made by earlier statements are seen by later statements. Reed also provides
an operation for constructing parallel streams of pseudo-time. See [Reed 78] for de

tails.

114

A subtransaction is executed in a pseudo-temporal environment which is a
unique subregion of the transaction which invoked it. I a transaction invokes
several subtransactions, the ordering of the subregions must correspond to the order-
ing of the statements in the transaction code which invoked the subtransactions. In
addition, the pseudo-temporal environments of the subtransactions must be ordered
with respect to the pseudo-times used for object accesses in the invoking transaction.
More specifically, all accesses to objects within a subtransaction must deal with ver-
sions later in pseudo-time than those accessed by statements preceding the invoca-
tion of the subtransaction. In addition, all accesses following completion of the sub-
transaction must deal with versions later in pseudo-time than any of the versions ac-
cessed by the subtransaction. To execute subtransactions in parallel, a subregion is

further divided into non-overlapping regions.

Associated with each subtransaction is a stably stored commit record which
contains the state of the subtransaction: waiting, complete, or aborted, as well as a
reference to the transaction which invoked this subtransaction. Each time an object
is updated, a new stable version of the objeét, called a token is created without des-
troying the old onme version. This token contains a reference to the updating
transaction’s commit record. While the commit record corresponding to a token is in
the waiting state, only the transaction which created this token may access it. Once
a transaction completes, all tokens created by this tran_sactioﬁ become versions, thus
making valid all updates performed on behalf of this transaction. This is accom-
plished by setting the state of the transaction's commit record to complete and
broadcasting the transaction outcome. To change a commit record, the system must
locally lock that commit record. The object history of each object involved then in-
" corporates the updates of this completed transaction. Then all descendants of the

trapsaction which invoked the completed transaction may see the updates caused by

115

the completed transaction. If a transaction aborts, the tokens created by this tran-
saction are discarded, thus invalidating all of its updates. This is accomplished by
setting the state of the transaction’s commit record to aborted and broadcasting this

information.

Querying is used to check the state of a commit record not stored locally.
When a transaction requests access to an object in a pseudo-time for which a token
currently exists, the site storing the object will query the commit record to determine
the state of the transaction which created this token. Suppose the commit record is
in the wait state. If the requester is part of the transaction which created the token,
the token may be accessed by the requester. However, if the requester is not part of
this transaction, the requester must wait until the commit record leaves the wait
state. The mechanism is actually more complicated than presented here when depen-
dent possibilities are involved. For more details on determining the right to access a
token, especially in the case of dependent possibilities, see {Reed 78].- If the commit
record is aborted, the token will be discarded and the previous version may be ac-
cessed. If the commit record is in the complete state, then the token will eventually

become a version and the requester will be able to access this new version.

Reed uses a timestamp scheme as opposed to our locking mechanism. Hence
Reed’s scheme allows applications the full power of time-domain addressing. For ex-
ample, if old versions are retained, Reed's scheme can easily produce answers to
queries about the state of the system at some previous time, e.g., the inventory as of
the end of last year. However, keeping all the known history of an object would re-
quire the system to provide an ever increasing amount of memory. Thus the system
can maintain only a subset of the known history of each object. A mechanism must

be devised for choosing the subset of versions to be maintained. Reed notes that a

116

system which does not retain old versions requires that a very large read-only tran-
saction, e.g., one involving many sites and consequently much delay, lock out all up-
dates to any objects being read by this transacif_ion for a relatively long period of
time. He points out that systems based upon locking suffer from this problem as
well. His use of timestamps for ensuring correct synchronization makes it possible to
eliminate this form of lockout if sufficient old history of objects likely to be involved

in read-only transactions is retained.

However, as we pointed out in our discussion of Delta, the use of timestamps
for synchronization produces some of its own problems. We previously noted that
use of a timestamp mechanism for concurrency control causes some number of un-
necessary rollback and aborts. In addition to this drawback, reads of an object often
cause extending the time period for which an particular value of an object is valid,
as in our example above. Thus reads must update the object history, which may in-
crease I/O activity. Furthermore, a long-running transaction which performs many
updates may encounter starvation, never finishing because it is repeatedly aborted
by new transactions accessing some of the same objects. Another problem is dynam-
ic deadlock, where several transactions cause each other to be mutually aborted and,
upon each restart, the timing of the transactions causes mutual aborting to recur.
Reed proposes a reservation scheme which can be used to reduce the likelihood of
starvation and dynamic deadlock where needed, at the cost of requiring that a tran-
saction "reserve” its resources in advance. This scheme is useful if the transaction

can predict the resources it will need. To us, such ”reservations” sound very much

like locks.

There are other complications in Reed’s scheme. For example, commit

records are very special entities and the protocols for deleting them and reusing

117

them, although not presented here, are quite complex. Secondly, for performance
reasons, Reed suggests encached commit records, again requiring mechanisms to keep

encached versions consistent with the real version.

In summary, several problems remain to be worked out before an implementa-
tion of such a scheme for nested transactions can be implemented. However, many
of these issues may be settled when actual implementation is attempted. Reed and

his colleagues are currently developing such a system [Svobodova 80].
9.2.2 Moss

Qur work is heavily influenced by the model of nested transactions developed
by Eliot Moss and the Distributed Systems Group of MIT’s Laboratory for Comput-
er Science. Moss [Moss 81] develops the nested transaction concept in detail, includ-
ing the locking rules which are necessary to ensure serializability. A transaction
manager design which implements nested transactions and a deadlock detection algo-
rithm to guarantee transaction progress are presented. In this section, we review

Moss's design for nested transactions and compare and contrast it with ours.

Each site in t_he network runs a lransaction manager, and all the transaction
managers follow the same algorithm. The transaction manager handles transaction-
related processing requests at a site. It is informed when transactions are created,
when they are to be committed or aborted, and so on. The transaction managers
communicate privately among themselves according to the protocols which we will
explain shortly. In the following discussion, when we speak of the transaction
manager of some transaction, we mean the transaction manager of the transaction’s

home site.

118

Transactions are assumed to run at a single site. That is, a transaction is not
permitted to be distributed over several sites. In order to accomplish work at another
site, a separate subtransaction must be invoked at the other site. Moss imposes this
restriction for simplicity. This does not compromise the functionality of the system.
By imposing this restriction the bookkeeping for each transaction is localized to the
transaction’s home site. In contrast, our model does not impose this restriction, in
keeping with the principle of network transparency. We are able to restrict most of
the transaction bookkeeping to the transaction home site in any case. The remote
site informs the home site whenever the bookkeeping information must be updated,
e.g., if the remote process opens a file, forks, terminates, or starts a subtransaction.
Our topology change procedure simply aborts a transaction having member processes

which cannot communicate.

Moss also assumes that a transaction may modify objects only on the site on
which the transaction is executing. Although a transaction may modify objects only
at the trapsaction's home site, it may modify objects at another site by invoking a
subtransaction at the other site. We do not impose this restriction, since it violates

object location transparency.

When a new transaction is encountered by a transaction manager, an entry
for the transaction is created. Entries for all the transaction’s superiors are also
created if they do not already exist at that site. When a transaction is first started,
it is in the running state. When the transaction is done performing its work and
wishes to commit, it enters the finished state. Before a transaction may commit, all
the _tra.nsaction’s children must be resolved, i.e., either committed or aborted. How-
ever, a transaction may abort at any time. Once the transaction’s children have all

been resolved, the transaction manager moves the transaction from fintshed to com-

119

mréted.

Although transactions cannot modify objects at other sites, they may exist at
other sites in the sense that they may retain locks to objects at other sites. Each
transaction manager maintains object locking and state restoration information in
volatile storage. When a site’s transaction manager is informed of the commit or
abort of a transaction, it updates locking and state restoration information associat-

ed with that transaction at the site.

A transaction has visited a site if the site is the home of the transaction or
one of the transaction’s committed inferiors. The transaction manager keeps a list of
sites visited by each of its transactions. When a transaction commits, the list of
visited sites specifies which other transaction managers must be informed of the com-
mitment, via a commit notice. The parent’s transaction manager must also be
notified. The list of visited sites is sent to the parent’s transaction manager, which
adds the received list to its list. Thus once all the children of a transaction have
committed, the transaction’s transaction manager has an accurate list of sites visited
by the transaction. The visited sites must be informed when a transaction commits,
so that they may update locking information. Note that in Moss's model, the orly
locking information which must be updated when a transaction commits is that
which is located at the home sites of the committing transaction’s descendants.
Once a transaction has committed and the necessary adjustments to other tables
have been completed, the entry for the transaction may be discarded at that site,

since the necessary information has been passed to the parent.

A transaction may abort at any time without waiting for its children. When
a transaction aborts, all the inferior’s transaction managers are informed. This is ac-

complished by sending an abort notice to all children, who in turn send abort notices

120

to their children, and so on. Each transaction manager receiving the abort notice
appropriately updates locking and state restoration information associated with that

transaction.

Lost messages are handled in Moss’s design as follows. If a transaction
manager does not hear about 2 transaction it is interested in for some length of time,
it queries the transaction’s transaction manager. Such queries are repeated until a
response is received, or is no longer required. Out-of-order, duplicate, and delayed

messages are also handled in the scheme.

The first kind of querying is called parent querying. This type of querying is
performed when a transaction that wishes to commit queries its unresolved remote
children. This will handle the loss of commit notices from a child to parent as well as

a loss of the original message to cause the child transaction to be started.

The second type of querying is called participant querying. This kind of query-
ing handles the loss of a commit notice from a transaction to its visited sites. The
visited sites query the transaction’s transaction manager. This kind of querying is
also performed when resources held by a remote transaction are requested by another

transaction.

If a site on which a transaction has been run crashes before the top-level tran-
saction commits, work performed by the transaction will be lost since the updates to
objects are stored in volatile memory. Thus a transaction which has committed may
be aborted by a crash. To handle this, the top-level commit is accomplished using a
two-phase commit protocol. In the prepare phase, each participant, or committed in-
ferior of the top-level transaction, checks that crashes have not destroyed transac-

tions thought to have committed. The top-level transaction may complete only if

121

every transaction which is in the transaction’s list of committed inferiors is still com-
mitted at each participant, that is, the transaction has not aborted as a result of a
crash. In addition, the participant resolves any unresolved inferiors of the transaction
using a list of committed inferiors passed to it in the prepare message. A transaction
which is in the list and unresolved at the participant should be committed; all other
inferiors which are unresolved at the participant should be aborted. Also, there may
be sites which ran unsuccessful inferiors, which are not ircluded in the top-level
transaction’s list of committed inferiors. These sites will eventually discover that the

transactions were unsuccessful through participant querying.

Since Moss's algorithms require all of a transaction’s children to be resolved
before the transaction may commit, a transaction must wait until all children sites
become accessible before it may commit. In order to solve this problem, each tran-
saction wishing to invoke a remote subtransaction first invokes a local subtransac-
tion. This local child subtransaction then invokes the desired remote transaction.
Thus each remote subtransaction is really a grandchild of the invoking transaction.
Suppose the remote site crashes. In this event, the local child subtransaction may be
aborted, effectively aborting the remote subtransaction as well. By aborting the local
child, the invoker may commit if it wishes. Now, since the remote subtransaction
has crashed, inferiors of the remote subtransaction will not necessarily receive the
abort notice from the aborted intervening transaction. Thus some inferiors of the re-
mote subtransaction are orphans--they continue to run and hold resources. Partici-
pant querying will eventually resolve orphans; however, in Moss’s algorithm, partici-
pants only query the most deeply nested transactions. Since a site which is down
cannot respond to queries, orphans cannot be resolved until the crashed site comes
up. Thus alternate transactions which wish to access resources at orphan sites be-

fore the site comes up will not succeed.

Since Moss seems to assume that both site and communications failures are of
short duration, this is not a problem.* We, on the other hand, have taken a different
approach in our design. In particular, we acknowledge the possibility of network par-
titions: the situation in which a set of sites will be isolated from other sets of sites
for an unknown length of time. We assume the existence of a partition manager,
which assures us that within a partition all sites can communicate with one another.
We have used the concept of topology change to drive our recovery algorithms, which
assure prompt orphan removal. In the event that a transaction requests a resource

before the orphan removal has completed, querying is employed.

Moss also designed a deadlock detection algorithm which finds all deadlock
cycles, and does not report many ”phantom” deadlocks. The algorithm is initiated
whenever a transaction begins to wait for a lock which is held in a conflicting mode
by another transaction. The algorithm follows edges of the transaction/resource
waits-for graph in real time, looking for cycles. When a eycle is found, an appropri-

ate transaction is aborted to break the deadlock.

We have not provided such a deadlock detection algorithm in our design. In
our system, when a transaction requests a lock on a file, if the lock cannot be grant-
ed after trying a certain number of times, the transaction is refused the lock. The
transaction has the option of trying to request the lock again, to accomplish the
work in some other way, such as by requesting a lock on an alternate resource, or
the transaction may simply abort. Thus instead of incorporating a deadlock preven-
tion or detection algorithm into our transaction mechanism, we rely on the applica-
tion programmer to resolve deadlocks. Transactions can avoid deadlocks simply by

aborting if a lock cannot be obtained after trying a certain number of times. Simi-

« In any case, this problem may be fixed by querying superiors as well.

123

larly, a subtransaction which aborts as a result of not being able to obtain a lock,
may be reinvoked by its caller. In this case, the calling transaction should also abort
after a certain number of retries. Thus our system makes no guarantee that progress
will be made. Cyclic restart and starvation effects are possible, but may be avoidable

through careful programming. Additional experience is needed in this area.

Unlik;a Moss, we have incorporated replication into our transaction mechanism
because we believe it is essential for data replication to be managed by the system.
Update of different copies' of the same object is permitted during partitioning. For
those data types which the system understands, automatic reconciliation is per-
formed. Otherwise, the problem is reported to the application level. Although in thisk
report we have not considered the problems of consistency of data objects in the
event of updates in multiple partitions, this problem has been dealt with extensively

in other work.

In order to gain confidence in his protocols, Moss performed a centralized
simulation of his design. We have produced an actual distributed implementation
which has been integrated into the Locus operating system, and have solved many
implementation issues in the process. We are now well equipped to evaluate the util-

ity of a nested transaction mechanism, since we have a functioning system.
8.3 Argus

In this report we have developed a design for 2 mechanism to provide for the
construction of reliable programs in a distributed system, i.e., the nested transaction
mechanism. We have provided the relcall system call which invokes a program as a
subtransaction of its invoker, or as a top-level transaction if its invoker is not a tran-

saction. We do not address the general issue of how a nested transaction mechanism

124

should be incorporated into a distributed programming language. Much work has
been done in this area by Barbara Liskov's group at MIT in developing the Argus

language [Liskov 82].

Argus is a programming language and system which is designed to organize
and maintain distributed programs. The language is based on the CLU language
[Liskov 81}, and MIT’s model of nested transactions [Moss 81]. In Argus, a program |
is constructed from a collection of modules called guardians. A guardian is an
abstraction of a physical node of the underlying network. In constructing a distribut-
ed program, one thinks of the program as a collection of abstract nodes, each of

which performs a meaningful task for its application.

A guardian is used to control access'to one or more resources such as a
hardware device or a database. The interface to a guardian is through a set of opera-
tions called handlers. Each guardian consists of a set of data objects and processes.
Processes are spawned for each handler invocation, and perform background tasks as

well. Every handler is executed as a subtransaction of its caller.

A guardian’s state consists of both volatile and stable objects. The stable ob-
jects are written to stable storage only when the top-level transaction commits. The
stable state of a guardian may be saved incrementally, that is, only those objects
that were modified by the committing transaction need be written to stable storage;

see for example [Mueller 81].

Processes within a guardian can share objects directly, however, sharing
between guardians is not permitted--guardians may communicate only by calling
handlers. In this way, each guardian retains control of its objects. Guardians are

created dynamically by specifying the site at which a guardian is to be created. A

125

guardian may be used without knowing its location.

The objects which obey the indivisibility properties of atomic transactions are
called atomic objects. Since Argus is based on CLU, a language which supports the
use of abstract datatypes, Argus provides built-in atomic datatypes as well as user-

_ defined atomic datatypes, through the atomic eluster mechanism.

Argus allows the arguments and results of a handler invocation to be of arbi-
trary type. Since different guardians may have different internal representations for
the same abstract object, a scheme had to be devised for communicating abstract
values in messages. The scheme is described in [Herlihy 82]. For each transmissible
abstract type, one must define a canonical representation, or ezternal representation
which is used to communicate the values of objects of the type. The external
representation may be any transmissible type. Encode and decode operations con-
vert between the abstract type and the external representation. When it is desired
to transmit a value, the system calls the encode operation to obtain an object of the
type of the external representation. If the external representation is an abstract type,
then the encode opellation for this type is called, and this process is repeated until
the original object is translated into a built-in type. The system knows how to com-
municate objects of built-in type. The reverse process occurs using the decode

operation when a message containing the value is received.

So far, only a preliminary, centralized implementation of Argus has been pro-

duced.

126

9.4 Remote Procedure Call

Bruce Nelson defines remote procedure call (RPC) as "the synchronous
language-level transfer of control between programs in disjoint address spaces whose
primary communication medium is a narrow channel” {Nelson 81]. Nelson attempts
to provide both syntactic and semantic transparency for RPC. That is, the syntax
for a remote procedure call must be the same as for a local procedure call. The se-
mantics of a remote transactions should also be made the same as the semantics of a
local procedure call. In order to do so, several possible semantics for procedure calls

are examined.

In ezactly-once semantics, a procedure is executed exactly once after which
control is returned to the caller. This assumes in both the local and remote cases
that the hardware is reliable. In at-least-once semantics for a remote transaction
call, the procedure may be executed one or more times. This semantics results from a
protocol in which the caller retransmits an invocation message periodically until the
return message is received. In this case the called site may repeat the execution.
When the caller feceives a response, it is assured that the procedure was executed at
least once. In at-most-once semantics, proposed in [Liskov 79], a remote procedure
call is executed as a subtransaction of its invoker. The system guarantees that the

call was acted upon exactly once (commit), or not all all (abort).

Last-one semantics is the semantics of a local procedure call with the possibil-
ity of crashes. That is, a procedure computation may be cut short. If the machine 1s
rebooted and the program restarted, the procedure will be repeated. Since crashes
can occur repeatedly, the call results are of the last call that executes. The results of
intermediate executions—partial or total--are abandoned, although the side effects of

intermediate calls can influence the last one. Thus last-one semantics is several par-

127

tial or complete executions of the procedure call followed by one complete execution
of the call. In this case, the programmer must perform crash recovery for a remote
procedure call, just as one must in a local procedure call if one is not using a tran-

saction mechanism.

Nelson then devises suitable algorithms to achieve last-one semanties for re-
mote procedure calls. This semantics is provided as follows. After a crash of the
calling site, and before restarting any programs, all outstanding activity (called or-
phans) must cease. Several algorithms for dealing with orphans are developed. The
most simple of these algorithms is extermination. In essence, when a crashed site S
comes up, it contacts all the sites that it called, informing them to exterminate all its
calls. Each of these sites in turn exterminates the children calls of the calls from S
(by contacting other sites if necessary). Once having achieved last-one semantics, re-

mote procedure calls have the same semantics as local procedure calls.

Liskov [Liskov 79] argues for at-most-once semantics for remote procedure
calls in Argus, which addresses robust applications such as airline reservation sys-
tems, bank accounting systems, and so on. Nelson’s work covers a broader spectrum
of applications and argues for last-one semantics, on the grounds that the expense of
transactions is not justified for many applications, e.g., mail systems, non-database
type applications, and so forth. Additionally, he argues that remote procedures and
atomicity are basically independent notions that require more investigation and ex-
perience before being tied together. We take Liskov's position, since it has been our
experience that top-level transactions are at most twice as expensive as non-
transaction programs. The expense is mostly in the top-level commit, which requires
use of the two-phase commit protocol. Furthermore, as the transaction itsell per-

forms more operations, the expense of two-phase commit becomes less significant.

128

Executing a program as a subtransaction has even less overhead than running a
non-transaction program, since the final committing of data to stable storage is de-
ferred until top-level transaction commit. We feel that the additional expense of
running a program as a transaction is well worth the reliability gained. See Appen-
dix B for comparisons of execution times of top-level transactions, subtransactions,
and non-transaction programs, as well as detailed measurements of the two-phase

commit protocol.

129

CHAPTER 10
CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this chapter, we present some suggestions for further research and conclu-

sions.
10.1 Checkpointing

As the duration of a transaction increases, it becomes more likely that the site
on which the transaction is executing will crash during its lifetime and the transac-
tion will not succeed. A mechanism to checkpoint the state of a transaction may be
desirable in such cases. If the site executing the transaction crashes, the transaction

may be restarted from the last checkpoint when the site comes up again,

Our nested transaction mechanism allows a subtransaction to fail, as a result
of a partition or a crash, and for its caller to select an alternate transaction to ac-
complish a task similar to that of the failed subtransaction. If we were to checkpoint
the subtransaction, and the invoker desired to employ the checkpointing, then the
invoker would have to wait until the subtransaction's site recovered before it could
complete. An alternative would be to send checkpoint information to another site,
and to move the trapsaction to the other site in the event that the original site
crashes or becomes inaccessible. However, the mechanisms required to accomplish
such transaction migration can get quite complicated in a nested transaction
mechanism. Thus a checkpointing mechanism may not fit well into our mechanism

as it currently stands. However, simple checkpointing of top-level transactions could

130

be useful.
10.2 Abstract Data Types

In this report, the data objects of interest have been Locus files. The granu-
larity of locking was also the file. In the future, the file system should be expanded
to aliow each data object to be of some abstract type, with associated access and par-
tition recovery/merge operations. Each type should be able to have its own locking
rules. Every access operation would obey the locking rules for the type of object be-
ing accessed. For example, the mailbox type would allow many transactions to con-
currently append elements to a user's mailbox. In addition to there being predefined

object types, abstract object types should be definable by the programmer.

Qur design for nested transactions has assumed that the granularity of lock-
ing was the file. We saw that there was much information associated with each file
locked by a transaction. This same amount of information must be kept with each
lockable granule of an abstract data object. Schemes will have to be devised to

reduce the overhead required for each component of an object.
10.3 Inter-Process Communication

It is not clear what the relationship is between transactions and inter-process
communication. Suppose we wished to relax the restriction that running transactions
may not communicate in any way, through shared objects or inter-process communi-
cation. If we allow such communication, indivisibility of the communicating transac-
tions with respect to one another is clearly lost, since intermediate states of an ob-
ject being modified by one transaction may be viewed by another transaction. Thus
the communicating transactions cannot really be distinct tramsactions, since they

disobey the properties of transactions.

131

Hence, when several transactions communicate, the transactions must
somehow merge to form a single transaction. Now, all transactions participating in
the merge commit or abort together. In a nested transaction scheme, transaction
merge means that the tree structure of transaction invocation becomes an acyclic
directed graph. Much additional mechanism may be required to manage transaction
merge. The locking algorithms would have to be enhanced to deal with this more

complex structure, e.g., the superiors of a transaction no longer form a list.

It is not clear whether there are any advantages to the concept of tfansaction
merge. It could be argued that if two transactions wish to communicate, they should
not be considered as two transactions. Rather, the two transactions should be com-
bined into a single transaction (consisting of possibly many processes) and invoked

that way. Further research is needed in this area.
10.4 Conclusions

Programming in a distributed environment is complicated by the additional
failure modes of that environment. The transaction concept is an effective approach
for coping with failures in a distributed system. The extension of transactions to
nested transactions allows programmers to compose transaction programs freely, just
as subroutines can be composed. Nested transactions also allow the programmer to
perform two supposedly inéiependent tasks simultaneously. By running the two tasks

as subtransactions, the programmer is assured of serializable results.

A distributed implementation of nested transactions has been designed, imple-
mented, and tested on the Locus operating system. Preliminary performance results
indicate that transactions are not that expensive. The major expense lies in the two-

phase commit protocol, used to commit a top-level transaction. The additional relia-

132

bility gained is well worth the added cost. Future work includes completing remote
member process support,* taking extensive performance measurements, and incor-

porating appropriate optimizations.

The teal benefits of nested transactions will probably not be known until they
are widely used by programmers. Now that an operational environment for nested
transactions exists, we look forward to considerable actual experience with real prob-

lems to evaluate their utility.

+ The current implementation does not contain all of the mechanism necessary to support remote
member processes,

133

REFERENCES

[Alsberg 76]
[Bartlett 81]

[Bartlett 78]

[Bernstein 80]

[Borr 81]

[Davies 73]

[Edwards 82|

[English 83]

[Eswaran 78]

[Faissol 83}

[Faissol 81}

Alsberg, P.A., and Day, I.D., "A Principle for Resilient Sharing of
Distributed Resources”, Proceedings of 2nd International Confer-
ence on Software Engineering, October 1976.

Bartlett, J. P., "A Nonstop Kernel”, Proceedings of the Eighth
Symposium on Operating Systems Principles, Pacific Grove, Cali-
fornia, December 1981.

Bartlett, J. P., A NonStop Operating System”, Eleventh Hawait
International Conference on System Sciences, 1978.

Bernstein, Philip A., and Goodman, Nathan, "Fundamental Algo-
rithms for Concurrency Control in Distributed Database Systems”,
Computer Corporation of America Technical Report CCA-80-05,
February 1982.

Borr, A. J., Transaction Monitoring in Encompass: Reliable Dis-
tributed Transaction Processing”, Proceedings of 7th International
Conference on Very Large Data Bases, Cannes, France, September
g-11, 1981, pp. 155-185.

Davies, C. T., "Recovery Semantics for a DB/DC System”,
Proceedings ACM National Conference 28, 1973, pp. 136-141.

Edwards, D. A., "Implementation of Replication in LOCUS: A
Highly Reliable Distributed Operating System”, Masters Thess,
Computer Science Department, University of California, Los
Angeles, 1982,

English, Robert M., and Popek, Gerald J, 7Dynamic
Reconfiguration of a Distributed Operating System”, unpublished
paper, Center for Experimental Computer Science, University of
California, Los Angeles, January 1983.

Eswaran, K. P., Gray, J. N, Lorie, R. A., and Traiger, L. L., "The
Notions of Consistency and Predicate Locks in a Database Sys-
tem”, Communications of the ACM, Vol. 19, No. 11, November
1976, pp. 624-633.

Faissol, Sergio Z., and Popek, Gerald J., "Partitioned Operation of
Distributed Databases”, submitted for publication.

Faissol, S., ”Availability and Reliability Issues in Distributed Data-

bases”, Ph. D. Dissertation, Computer Science Department,
University of California, Los Angeles, 1981.

134

[Goldberg 83]

[Gray 81]

[Gray 79

[Gray 78|

[Herlihy 82

[Jagau 83]

[Jagau 82]

[Jessop 82|

[Kernighan 78]

[Lampson 79

[LeLann 81}

[Lindsay 79]

Goldberg, A., "Performance Evaluation of Local Area Distributed
Systems”, Master's Thesis (forthcoming), Computer Science
Department, University of California, Los Angeles, 1983.

Gray, J. N., The Transaction Concept: Virtues and Limitations”,
Proceedings of the Seventh International Conference on Very
Large Data Bases, Cannes, France, September 9-11,1981, pp. 144-
154.

Gray, 1. N., McJones, P., Blasgen, M. W., Lorie, R. A., Price, T.
G., Putzulu, G. F., and Traiger, L L., "The Recovery Manager of
a Data Management System”, IBM Research Report RJ2623, Au-
gust 1979.

Gray, J. N., "Notes on Data Base Operating Systems”, Operating
Systems An Advanced Course, Lecture Notes in Computer Science
60, Springer-Verlag, 1978, pp. 393-481.

Herlihy, M., and Liskov, B., A Value Transmission Method for
Abstract Data Types”, ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 4, Oct. 1982, pp. 527-551.

-Jagau, August-Wilhelm, "File Access Tokens”, LOCUS Internal
Memorandum 13, Center for Experimental Computer Science,
University of California, Los Angeles, March 2, 1983.

Jagau, August-Wilhelm, "Process Management Under LOCUS”,
LOCUS Internal Memorandum 11, Center for Experimental Com-
puter Science, University of California, Los Angeles, December 16,
1982.

Jessop, W. H., et al.,, "The Eden Transaction-Based File System”,
Proceedings of the Second Sympostum on Reliability mn Distributed
Software in Database Systems, Pittsburgh, Pennsylvania, July 19-
21, 1982, pp. 163-169.

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice Hall, Englewood Cliffs, NJ, 1978.

Lampson, B. W. and Sturgis, H. E., »Crash Recovery in a Distri-
buted Data Storage System”, XEROX Palo Alto Research Center,
April 1979.

LeLann, Gerard, "A Distributed System for Real-Time Transac-
tion Processing”, IEEE Computer Magazine, Vol. 14, No. 2, Febru-
ary 1981, pp. 43-48.

Lindsay, B. G., Selinger, P. G., Galtieri, C., Gray, J. N., Lorie, R.
A., Price, T. G., Putzolu, F., Traiger, I. L., and Wade, B. W,
"Notes on Distributed Databases”, [BM Research Report
RJ2571(33471), IBM Research Laboratory, San Jose, CA, July 14,
1979, pp. 44-50.

135

[Liskov 82]

[Liskov 81]

[Liskov 79]

[Menasce 77]

[Menasce 80]

[Metcalfe 76

[Moore 82a]

[Moore 82b]

[Moss 82]

[Moss 81]

[Mueller 83a)

Liskov, Barbara, and Scheifler, Robert, "Guardians and Actions:
Linguistic Support for Robust, Distributed Programs”, Proceed-
ings of the Ninth Annual Symposium on Principles of Programming
Languages, Albuquerque, NM, January 1982, pp. 7-19.

Liskov, B. et al., "CLU Reference Manual”, Lecture Notes in Com-
puter Science 114, Goos and Hartmanis editors, Springer-Verlag,
Berlin, 1981.

Liskov, Barbara, "Primitives for Distributed Computing”, Operat-
ing Systems Review, Vol. 13, No. 5, pp. 33-42, December 1979.

Menasce, D.A., Popek, G.J., and Muntz, R.R., A Locking Proto-
col for Resource Coordination in Distributed Systems,” Technical
Report UCLA-ENG-7808, Department of Computer Science,
UCLA, October 1977.

Menasce, D. A, Popek, G. J., and Muntz, R. R., "A Locking Pro-
tocol for Resource Coordination in Distributed Databases”, ACM
Transactions on Database Systems, Vol. 5, No. 2, June 1980, pp.
103-108. :

Metcalfe, R.M. and Boggs D.R., "Ethernet: Distributed Packet
Switching for Local Computer Networks”, Communications of the
ACM, Vol. 19, No.7, July 1976, pp. 395-404.

Moore, J. D. "Simple Nested Transactions in LOCUS: A Distri-
buted Operating System”, Master’s Thesis, Computer Science
Department, University of California, Los Angeles, 1982.

Moore, Johanna D., Mueller, Erik T., and Popek, Gerald J., ”Nest-
ed Transactions and Locus”, unpublished paper, Center for Experi-
mental Computer Science, University of California, Los Angeles,
October 1982.

Moss, J. Eliot B., "Nested Transactions and Reliable Computing”,
Proceedings of the Second IEEE Symposium _on Reliabilily in Dis-
tributed Software and Database Systems, Pittsburgh, PA, July
1982.

Moss, J. Eliot B., "Nested Transactions: An Approach to Reliable
Distributed Computing”, Technical Report MIT/LCS/TR-260, La-
boratory for Computer Science, M.IT., 1981.

Mueller, Erik T., Moore, Johanna D., Popek, Gerald J., "A Nested
Transaction Mechanism for LOCUS”, Proceedings of the Ninth
Symposium on Operating Systems Principles, Bretton Woods, NH,
October 10-13, 1983.

136

[Mueller 83b]

[Mueller 81]

[Nelson 81]

[Parker 82]

[Parker 83]

[Popek 83a]

[Popek 83b]

[Popek 81]

[Randell 75]

[Reed 78

[Reiher 82]

Mueller, Erik T., "Implementation of Nested Transactions in a
Distributed System”, Master's Thesis, Computer Science Depart-
ment, University of California, Los Angeles, 1983.

Mueller, Erik T., "An Incremental Stable Storage System for
Guardians”, S.B. Thesis, M.LT. Department of Electrical En-
gineering and Computer Science, May 1981.

Nelson, Bruce J., "Remote Procedure Call”, Report Number CSL-
81-9, XEROX Palo Alto Research Center, May 1981.

Parker, D.S., and Ramos, R., A Distributed File System Architec-

ture Supporting High Availability”, Proceedings of the Sizth
Berkeley Conference on Distributed Data Management and Com-
puter Networks, Asilomar, California, February 1982.

Parker, D. Stott, Popek, Gerald J., Rudisin, G., Stoughton, A.,
Walker, B., Walton, E., Chow, J., Edwards, D., Kiser, S., and
Kline, C., "Detection of Mutual Inconsistency in Distributed Sys-
tems”, IEEE Transactions on Software Engineering, May 1983, pp.
240-247.

Popek, Gerald J., and Walker, Bruce J., "Network Transparency
and its Limits in a Distributed Operating System”, unpublished
paper, Center for Experimental Computer Science, University of
California, Los Angeles, January 1983.

Popek, Gerald J., Thiel, Greg, and Kline, Charles S., "Recovery of
Replicated Storage in Distributed Systems”, unpublished paper,
Center for Experimental Computer Science, University of Califor-
pia, Los Angeles, January 1983.

Popek, G., Walker, B., Chow, 1., Edwards, D., Kline, C., Rudisin,
G., and Thiel, G., "LOCUS: A Network Transparent, High Relia-
bility Distributed System”, Proceedings of the Eighth Symposium
on Operating Systems Principles, Pacific Grove, California, De-
cember 1981.

Randell, B., "System Structure for Software Fault Tolerance”,
IEEE Transactions on Software Engineering, Vol. 1, No. 2, 1975.

Reed, D. P., "Naming and Synchronization in a Decentralized
Computer System”, Technical Report MIT/LCS/TR-205, Labora-
tory for Computer Science, M.LT., 1978.

Reiher, P., "Pack Porting Users Manual”, LOCUS Internal

Memotandum 4, Center for Experimental Computer Science,
University of California, Los Angeles, September 1982.

137

[Ritchie 78]

[Rudisin 80]

[Saltzer 81|

[Stonebraker 79|

[Svobodova 81]

[Svobodova 80]

[Thomas 78|

[Walker 83]

Ritchie, D. and Thompson, K., "The UNIX Timesharing System”,
Bell System Technical Journal, Vol. 57, No. 6, Part 2, July - Au-
gust 1978, pp. 1905-1930.

Rudisin, G., "Architectural Issues in a Reliable Distributed File
System”, Master’s Thesis, Computer Science Department, Univer-
sity of California, Los Angeles, 1980.

Saltzer, J. H., Reed, D. P., and Clark, D. D., "End-to-End Argu-
ments in System Design”, Proceedings of the 2Znd International
Conference on Distributed Computing Systems, Versailles, France,
April 1981.

Stonebraker, Michael, "Concurrency Control and Consistency of
Multiple Copies of Data in Distributed INGRES”, [EEE Transac-
tions on Software Engineering, Vol. SE-5, No. 3, May 1979, pp.
188-194. :

Svobodova, L., "Recovery in Distributed Processing Systems”, un-
published paper, INRIA, Rocquencourt, France, July 1981, revised
version to appear in [EEE Transactions on Software Engineering.

Svobodova, L., "Management of Object Histories in the Swallow
Repository”, Technical Report MIT/LCS/TR-243, Laboratory for
Computer Science, M.L.T., 1980.

Thomas, R.F., A Solution to the Concurrency Control Problem
for Multiple Copy Data Bases,” Proceedings Spring COMPCON,
Feb 28 - Mar 3, 1978.

Walker, Bruce J., Popek, Gerald J., English, R. M., Kline, C., and
Thiel, G., *The LOCUS Distributed Operating System”, Proceed-
ings of the Ninth Symposium on Operating Systems Principles,
Bretton Woods, NH, October 10-13, 1983.

138

APPENDIX A
NESTED TRANSACTION ALGORITHM

This appendix contains a detailed description of the nested transaction algo-
rithm developed in Chapters 4 and 5. The description omits the implementation of
remote member processes for brevity. That is, member processes of a particular tran-
saction are required to execute at a single site. This of course does not disallow the
invocation of subtransactions at remote sites. Our description also omits the
mechanism required to cope with lost, duplic_ate, delayed and out-of-order messages,
although we do handle network partitions. For a description of the modifications
which are necessary both to support remote member processes and to cope with an
unreliable communications system, see Chapter 6. Our description also does not in-
corporate the two-phase commit protocol which is required to commit final updates
when a top-level transaction commits. The two-phase commit protocol is described

in detail in Chapters 7 and 8.

In the first section of this appendix, we specify the language that will be used
to describe the nested transaction algorithm. In the second section, we present the
datatypes and operations which will be needed in the third section, which is the de-
tailed description of our nested tramsaction algorithm. A shortened presentation of

our nested transaction algorithm may be found in [Mueller 83a].

139

A.l Description Language

Our description language is similar to CLU [Liskov 81], except that we have
relaxed its strong typing for simplicity. The data entities of the language are called
objects. Each object is a member of a particular datatype. Numbers such as 1, 2, 3,
etc., are objects of the Int datatype. The objects TRUE and FALSE are the sole
members of the Bool datatype. One may refer to objects using variables. A variable

is made to refer to an object with an assignment statement such as i := 4.

In our description language, one may define a new type simply by equating it
to some other type. For example, we might define a new type Site as follows:

Site = Int

Several constructors allow the creation of new types from other types. The oneof
constructor allows a new class of objects to be created. Each object in this new class
may be one of many types. For example,

BoolOrint = Oneof[Bool, Int]

defines a new type BoolOrInt. Each object of this type may actually be a Bool or an
Int. The Type{object} operation allows the construction of a Oneof of the specified
Type from an object of that type. For example, in order to create an object of type
BoolOrlnt, we might use: -

truth := Bool{TRUE}

One may determine which of the possible types an object actually is by using the Is-
Type operation. For example, IsBool(truth) would return TRUE, and IsInt{truth)
would return FALSE. Note that our language is not strongly typed, as is CLU. We
allow an object to be of many types, although most of the time it will be obvious

which type is intended. For example, once we have determined that the above Oneof

140

object truth is actually boolean, we may use it as if it were of type Bool, although,

strictly speaking, it is an object of type Oneof[Bool, Int].

The structure constructor, called Struct, allows a tuple to be created which
consists of a fixed number of fields, each of which may contain an object of a partic-

ular type. For example,

Tid = Struct[Site, Int]

defines a structure Tid which contains two fields: the first which contains an object
of type Site, and the second which contains an object of type Int. In order to create
an object of the above type, the following statement might be used:

tid1 := Struct{site, num}

This statement causes the variable tidl to refer to a new structure containing a site
identifier and an integer. Another variable tid2 may be made to refer to the same

structure as follows:

tid2 = tid1l

In order to select a field of a strﬁcture, a period followed by the type of the
field is placed after the structure. For example,

number := tid1l.Int

causes the number variable to refer to the object contained within the Int field of the
structure, that is, to set number to the integer in the structure's Int field. Note that
the type of the field is used to uniquely identify the field. This will cause no prob-

lem for our purposes, since each field of every structure we use will be of a different

type.

141

In our language, fields of a structure may be altered with an assignment state-
ment such as:

tid1.Int := newnumber

If tidl and tid2 both refer to the same object, as in our example, then tidl.Int and

tid2.Int are now both equal to newnumber.

Our last constructor, the list constructor, allows the creation of a variable-
length tuple of elements of a particular type. For example,

Ancest = List{Tid]

defines a new type Ancest as a list of Tids. Such a list containing two elements
would be created as follows:

list := List{tidl, tid2}

It is also possible to create a list of zero elements:

empty := List{}

There are several operations which may be performed on lists. The first one
adds an element to the head of a list:*

List$AddHead(Type, *List[Type])

This operation takes an object of some type and a list of that type, and adds the ob-
ject to the head of the list. Thus the length of the list is increased by one. For ex-
ample, after executing

IntList = List[Int|

list :== List{1l, 2, 3}
List$AddHead(0, list)

*+ We will use an asterisk before an argument to indicate that the operation modifies one of its
arguments.

142

the list becomes {0, 1, 2, 3}. There are several other operations on lists which will be
required in our description:

List$Length(List) =>> Int
- Return the length of a list.

List$Empty(List) => Bool
- Return TRUE if the length of the list is zero, otherwise return
: FALSE.

List$Remove(Type, *List{Type])
- Remove the first element in the list which is equal to the first
; argument.

List$Member(Type, List[Type]) => Bool
- Return TRUE if the first argument is equal to some element in the list,
- otherwise return FALSE.

List$Add(Type, List[Type}) => List{Type]
- Add an element to the head of a list and returns a new list.
- Its list argument is unchanged.

List3Head(List{Type]) => Type
: Return the first element of a list.

List$Tail(List{Type]) =>> List[Type]
: Return a list with the first element removed.

List$RestFrom(List{Type|, type) => List[Type] ,
- Return a list consisting of the first element of the argument list that is
- equal to the element argument, and all elements thereafter in the list.

List$Reverse(List[Type]) => List{Type]
- Return a list containing the elements of the argument list in reverse order.

An iterator construction allows one to loop through the elements of a list:
tids := List{tid1, tid2}
for tid in tids do
<body>
endfor
The above code causes body to be executed with tid set to tid1 the first time around,

and then tid2 the second time around. It is permissible to remove elements from a

list that is being iterated through in the body of the iterator.

143

The syntax which we will use in our language for sending a message and re-
ceiving a response is:
send MESSAGE(<args>) to Site
receive RESPONSE,(< params>}:
< action; >

receive RESPONSE/{ <params>>):
< actiona >

partit-ionz
< aciion, >
endsend
This causes MESSAGE to be sent to Site, and a response awaited from the site. For
each of the possible RESPONSEs, a different action may be specified. In addition, an

action may be specified should Site be partitioned away. Only one of the actions is

executed depending on which of the possible responses is received.

When a message is sent to a site, a message handler of the form:

MESSAGE({ < params>)
begin
<body >
end
handles the message. It begins execution with the arguments contained in the mes-
sage. Within the body of a message handler, a respond statement allows the message

handler to respond to the message which caused it to begin execution:

respond MESSAGE(< args>)

We assume that the response is properly directed by the system to the sender of the

message.

A respond statement may optionally request yet another response to the

response as follows:

144

respond MESSAGE(< args>>) response
receive RESPONSE,(< params>):
< action, >
receive RESPONSE{ < params>):
< actiony, >

partifion:
< action, >
endrespond

For simplicity, we employ the message construct whether or not the receiver
is remote. If the receiver is local, then the network need not be employed. In this

case we assume the system directs the message to the proper local message handler.

Our language provides parallelism via the cofor iterator:
cofor elem in list do
<body>
endfor
The cofor iterator is similar to the for iterator, except that the bedy of the iterator is
executed for each element of the list and these executions are performed in parallel.

This construct is used in our algorithm to send a collection of messages out and wait

for the corresponding collection of responses.

In our description, we follow the following conventions. Variables are in lower
case. We use mixed upper and lower case for procedures and datatypes. Data struc-
tures which are global to a site are in all upper case; constants are in all upper case;
and message names and message handlers are also in upper case. Comments are pre-

ceded by a semicolon.

145

A.2 Datatypes and Operations

This section describes the datatypes and operations which will be used in our
description of the implementation of nested transactions. In addition tc-the data-
types described in the previous section, we assume the existence of the following
types. A Site datatype is used to identify sites in the network. A process unique
identifier (Pid) uniquely identifies processes in the network. A tramsaction unique
identifier (Tid) type is used to uniquely identify a transaction, and we assume the
following operations:

Tid$Generate(Site}) => Tid

- Generate a Tid for a transaction whose home site is

: the specified site.

Tid$Home(Tid) =>> Site
- Return the home site of a transaction, given its Tid.

Tid$Equal{Tid, Tid) => Bool
- Check if two Tids identify the same transaction.
The FileName datatype is used to uniquely identify a file. The Args datatypes is

used to contain the character-string arguments to a transaction program.

Now we move on to the data structures which are required in our design. As-
sociated with each transaction, be it a top-level tramsaction or a subtransaction, is é
volatile data structure called the transaction structure which resides at the transac-
tion home site. Each site in the network has a global list of such transaction struc-
tures:

TRANS == List[Trans]

Trans Struct|Tid, Super, Status, Pid, Members, Files, SilAbt, ToAbort]

Super = List[Tid]

Status = Oneoi}UNDEFINED, COMMITTED, ABORTED]
Members = List[Member]

Member = Struct&Pid, Subtrans]

Files = List[File]

File = Struct[FileName, Site, Mode]

148

Subtrans = Oneof[Null, Tilc\l(}
Mode = Oneof[READ, MOD]
SilAbt = Bool

ToAbort = List{Tid]

We assume several operations exist which allow us to retrieve, add, and remove tran-
saction structures from a site's list of transaction structures:
GetTrans(Tid) => Oneof[Trans, Null]

AddTrans(Tid, Trans)
RemoveTrans{Tid)

Associated with each process is a process structure, which contains the follow-.
ing information: the Pid of the process, a reference to the transaction structure of
the transaction it is running as a part of, if any, and a flag indicating whether or not

this process is the top-level process of a transaction:

Process = Struct|[Pid, Type, TopProc]
Type = Oneof[Trans, NonTrans]
TopProc = Bool

NonTrans = Null

We assume several routines exist to create, start, and destroy processes:
CreateProcess(FileName, Args) =>> Process

StartProcess(Process)
DestroyProcess(Process)

In each partition, one of the sites storing a particular file is designated the
transaction synchronization éite (TSS) for the file. This site manages synchroniza-
tion for the file and provides data access. Our algorithms assume the existence of a
topology change procedure [English 83] which enforces the partition model described
in Chapter 2 and maintains certain system data structures. In particular, it is as-
sumed that this mechanism decides on a TSS for each file in each partition, provides

a mapping mechanism which allows us to determine the TSS in each partition, elects

147

new TSSs when the network topology changes and handles any lock conflicts. Thus
we assume the following routines:

Inaccessible(Site} => Bool
: Returns TRUE if the specified Site is accessible.

GetTss(FileName) ==>> Site
- Returns the TSS for a file in the caller’s partition.

Each site maintains a collection of files in stable storage. Several operations
allow us to create a new stable file, retrieve the state of an existing stable file, .‘omi-
cally replace the state of a stable file, and remove a stable file:

stable FILES = List[Struct[FileName, FileState]]

GetStableState(FileName) =>> Oneof[FileState, Null]

CreateStableState(FileName, FileState)

ReplaceStableState(FileName, FileState)

RemoveStableState{FileName)

We assume that the system is responsible for maintaining replicated file copies.
When the ReplaceStableState operation is called, the new state of the file must be
propagated to the other sites storing the file. The Locus file update propagation and

recovery mechanisms are described in [Edwards 82].

The locking and recovery information maintained at the TSS for a file in-

volved with a transaction is called a ¢-lock. Each site maintains a list of volatile t-

locks:
TLOCKS = Llst[StructgFileName,Tlock]]
Tlock = Struct|[FileState, Holders, ReadRetainers, WriteRetainers]
Holders = Oneof[Null, ReadHolders, WriteHolder]
ReadHolders = List|ReadHolder]
ReadHolder = Struct[Tid, Super]
WriteHolder = Struct|Tid, Super, FileState]
ReadRetainers = List[ReadRetainer]
ReadRetainer = Struct{Tid, Super]
WriteRetainers = Struct{VersionStack, Ancest]
VersionStack = List[Version]

148

Struct(Tid, FileState]

Version =
UsingSites === List[Site
Ancest = List{Tid

Several operations allow us to retrieve a t-lock, add a t-lock to the site’s list of t-
locks, and remove a t-lock from the site’s list of t-locks:

GetTlock(FileName) =>> Oneof[Tlock, Null]
AddTlock(FileName, Tlock)
RemoveTlock(FileName)

We make the assumption that operations on a particular t-lock are serialized,
although this is not specified explicitly in our description. That is, only one handler
may be performing an operation on a t-lock (such as TssOpen, TssClose, TssCom-

mit, to be discussed) at a given time, and each operation runs to completion before

the next operation is allowed to proceed.

Finally, there are several other operations which will be needed in our rou-
tines:

Members$Find(Members, Pid) => Oneof[Member, Null|
- Return the entry for the specified process in the member process list.

Members$EnterSub{*Members, Pid, Tid)
- Enter a subtransaction for the specified process in the member process

. list.

Members$RemoveSub(*Members, Pid) .
- Remove the subtransaction entry for the specified process in the member
: process list.

Ancest$GetTopTid(Ancest) => Tid
- Retrieve the top-level Tid from the list of ancestors.

Ancest$GetParent{Ancest) => Oneof[Tid, Null]
- Retrieve the parent Tid from the list of ancestors.

ReadRetainers$Find(ReadRetainers, Tid) => Oneof[ReadRetainer, Nulij
: Return the entry for the specified read retainer.

ReadRetainers$Remove(*ReadRetainers, Tid)
- Remove the entry for the specified read retainer.

149

ReadHolders$Find(ReadHolders, Tid) =>> Oneof[ReadHolder, Null]
: Return the entry for the specified read holder.

ReadHolders$Remove(*ReadHolders, Tid)
: Remove the entry for the specified read holder.

Files$Find(Files, FileName) => Oneof[File, Null}
- Return the entry for the specified file in the participant file list.

: Definition of return codes.
Status = Oneof[SYSABORT, IKﬂ,
Success = Oneof[SUCCESS, FAILURE, USERABORT, PARTITIONED)]

A.3 Description of Algorithm

Here is the description of our nested transaction algorithm.

150

;**************#*******************#*#**********************************#***#*

;NESTED TRANSACTION MECHANISM

; The following routines provide the interface to the nested transaction
- mechanism in the form of system calls:

- FILE RELATED:

: Open - Request a lock on a file

: Read - Read the state of a locked file

: Write - Modify the state of a locked file

; Close -- Release a held lock on a file

- CONTROL RELATED:

' RelCall -- Invoke a transaction
Fork - Fork another transaction member process
Exit - Terminate a transaction member process

r
1
1

;**#*******************#**

Open(file: FileName, mode: Mode, proe: Process) => Success
begin
trans ;= proc.Type
send TSSOPEN(file, trans.Tid, trans.Super, mode) to GetTss(file)
receive RTSSOPEN(success: Success}:
if success == SUCCESS then
AddFile(trans, file, GetTss(file), mode)
endif
return(success)
partition:
Abort(trans, SYSABORT)
endsend
end

Close(file: FileName, proc: Process)
begin
trans := proc.Type
send TSSCLOSE(file, trans.Tid) to GetTss(file)
receive RTSSCLOSE: -
return
partition:
Abort(trans, SYSABORT)
endsend
end

Read(file: FileName, proc: Process) =>> Oueof[FileState, FAILURE]
begin
trans := proc.Type
send TSSREAD(file, trans.Tid) to GetTss(file)
receive RTSSREAD(filestate: FileState):
return(filestate)
partition:

151

Abort(trans, SYSABORT)
endsend
end

Write(file: FileName, filestate: FileState, proc: Process) =>> Success
begin -
trans := proc.Type
send TSSWRITE(file, trans.Tid, filestate) to GetTss(file)
receive RTSSWRITE(success: Success):
return(success)
partition:
Abort(trans, SYSABORT)
endsend
end

: RelCall -- This routine is invoked when a process wishes to invoke

; a transaction using the relcall system call. The specified

; file is invoked as 2 transaction with the specified arguments
; at the specified site.

Abort = Struct[Status, Success]

RelCall(file: FileName, args: Args, site: Site, proc: Process) =>
Oneof{COMMIT, Abort, INACC, PARTITIONED]
begin
topflag := IsTrans(proc.Type)
pid := proc.Pid

if topflag then

trans := proc.Type

super :== List§Add(trans.Tid, trans.Super)
else

super:= List{}
endif

if Inaccessible(site) return(INACC) endif
- Generate a tid for the new transaction.
tid := Tid$Generate(site)
- If calling process is running as a transaction, enter subtransaction
. in the calling process’s entry in the member process list.
if !topflag then
dh/t[_embers$EnterSub(trans.Members, pid, tid)
endi

- Now start the transaction and wait for completion message or
; partition.
send STARTTRANS(file, args, tid, super, pid) to site
receive TOPCOMMIT:
- Called top-level transaction committed.

152

return(COMMIT)

receive TOPABORT (status: Status, success: Success):
- Called top-level transaction aborted, return exit status to

. caller of system call.
return{Abort {Struct{status, success}}) -

receive REQCOMMIT(files: Files):
- Called subtransaction wishes to commit.

- First add child’s list of files to our list.

for file in files do
AddFile(trans, file.FileName, file.Site, file. Mode)

endfor

- Send message granting the commit and wait for results or
; partition.
send GRTCOMMIT to site

receive SUBCOMMIT:

. Commit of subtransaction successful.

: Remove subtransaction entry for this process in the member

; process list.
Members$RemoveSub(trans.Members, pid)

: Called subtransaction committed.
return(COMMIT)

receive SUBCMTF AIL(success: Success):

partition:
. The commit of a subtransaction failed, so abort the caller.

: Remove subtransaction entry for this process in the member

; process list.
Members$RemoveSub(trans.Members, pid)

. Abort self and exit (do not return from RelCall system call)
Abort(trans.Tid, SYSABORT)
Exit(SYSABORT, proc) -

endsend

receive SUBABORT(status: Status, success: Success):
- Remove subtransaction entry for this process in the member

; process list.
Members$RemoveSub(trans.Members, pid)
return(Abort{Struct{status, success}})

partition:
if topflag return(PARTITIONED)
else return{Abort{Struct{SYSABORT, PARTITIONED}})

endif

153

endsend
end

; Fork -- This routine must be executed whenever a transaction process
; forks, so that the new child process can be added to the
; transaction’s member process list.

b

Fork(parent: Process, child: Process)
begin
trans := parent.Type
List$AddHead(Struct{célild.Pid, Null{}}, trans.Members)

child. TopProe := FALSE
end

; Exit -- This routine is executed whenever a transaction process
; terminates using the exit system call. The process passes
; along an exit status to this routine.

L

Exit(status: Status, proc: Process)
begin
trans := proc.Type
pid := proc.Pid
member := Members$Find(trans.Members, pid)

- Add an active subtransaction of the exiting process to the transaction’s
: list of subtransactions to abort.
if IsTid(member.Subtrans} then
List§AddHead(member.Subtrans, trans. ToAbort)
endif :

- Remove exiting process from member process list.
Members$Remove(trans.Members, pid)
if ('proc.TopProc) and (trans.Status != ABORTED) then
- If the top-level transaction process is not exiting and an abort
; gas not been initiated, just destroy the exiting process and we are
; done.

DestroyProcess{proc)

return

endif

- Determine if there are any remaining member processes.
empty := List$Empty(trans.Members)

- Determine if there are any inaccessible participant files.
inaccp := FALSE
for file, site, mode in trans.Files do
if Inaccessible(site) then
inacep := TRUE

154

break
endif
endfor

if (trans.Status = ABORTED) or {status != COMMIT) or (lempty) or inaccp then
- If an abort has already been initiated, or if the top-level transaction
; process exits with non-zero status, or if there are any member

. processes remaining, or if there are any inaccessible participant
- files, we must perform abort processing. :
H ¥ o

- Initiate abort processing if it has not already been initiated.
if trans.Status = ABORTED then

Abort(trans, status)
endif

if empty then

- If the member process list is empty, the last member process
 is exiting, so we complete the abort processing by

. aborting descendants, updating locks, and returning control
: to the caller (unless this is a silent abort).

if trans.Silabt = FALSE the
AbortDesc{trans); .
AbortTlocks(trans);

endif

: Return appropriate information to caller.
if List$Empty(trans.Super) then
: We are the top-level transaction.

respond TOPABORT(status, USERABORT)
else
- We are not the top-level transaction.

respond SUBABORT(status, USERABORT)
endif

- Remove transaction from the site’s list of transactions.
RemoveTrans(trans.Tid)
- Destroy the exiting process and we are done.
DestroyProcess(proc)
return

endif

else
- We are the top process and the member process list is empty and the exit
- status is zero: transaction wishes to commit.

if List$Empty(trans.Super) then
: We are a top-level transaction.

- First we commit-lock-update our files. In an actual

: implementation, this final update for top-level transaction
: commit would be accomplished using a two-phase commit protocol.

155

: This is ignored here for simplicity.
success := CommitTlocks(trans}

if success != SUCCESS then
AbortTlocks(trans)
respond TOPABORT(SYSABORT, success)
else
respond TOPCOMMIT
endif

- Remove transaction from the site’s list of transactions.
RemoveTrans(trans.Tid)

: Destroy the exiting process and we are done.
DestroyProcess(proc)
return

else
: We are not a top-level transaction.
respond REQCOMMIT|(trans.Files) response
receive GRTCOMMIT:
: First commit-lock-update our files.
success := CommitTlocks(trans)

if success 1= SUCCESS then
respond SUBCMTFAIL(success)
else
respond SUBCOMMIT.
endif

partition:

: No need to abort-lock-update files. Other mechanisms accomplish
; this: topology change in our partition, commit failure recovery

; in our parent’s partition, and topology change in a partition

: containing neither us nor our parent.

: Remove transaction from the site’s list of transactions.
RemoveTrans(trans.Tid)
; Destroy the exiting process and we are done.
DestroyProcess(proc)
return
endrespond

: Remove transaction from the site’s list of transactions.
RemoveTrans(trans.Tid)

; Destroy the exiting process and we are done.
DestroyProcess(proc)
return

endif
endif

156

end

- Abort - Cause a transaction to abort by forcing all the transaction’s
; member processes to exit. The aborting of descendants and

: abort lock updating takes place when the last member process
; exits.

]

Abort(trans: Trans, status: Status)

begin
- Simply return if transaction has already begun aborting.
if trans.Status = ABORTED then return endif

: Set status of transaction to ABORTED.
trans.Status := ABORTED

- Force exit of all member processes.
for proc, subtrans in trans.Members do
Exit(status, proc)
endfor
end

- AbortDesc -- Abort all descendants of an aborting transaction by sending
; FORCEABT messages to all accessible sites in the ToAbort list

and waiting for responses or a partition.

b

1

AbortDesc(trans: Trans)
begin
cofor tid in trans.ToAbort do
if Inaccessible(Tid$Home(tid)) then
send FORCEABT(tid) to Tid$Home(tid)
receive RFORCEABT:
continue
partition:
continue
endsend
endif
endcofor
end

- AbortTlocks -- Abort-lock-update t-locks for transaction by sending TSSABT
; for each participant file and waiting for responses
or a partition.

b

1

AbortTlocks(trans)
begin

tid := trans.Tid

ancest :=— List$Add(tid, trans.Super)

cofor file, site, mode in trans.Files do

if Inaccessible(site) then _
send TSSABT(file, tid, ancest) to site
receive RTSSABT:

continue

157

partition:
continue
endsend
endif
endcofor
end

: CommitTlocks -- Commit-lock-update t-locks for all files involved with
: transaction by sending TSSCMT messages and waiting for
; responses or a partition. Returns with error code if

; the commit was unsuccessful, in which case the caller,

: which is the parent, must abort itself.

CommitTlocks(trans) ==> Success
begin ,
tid := trans.Tid
ancest := List$Add(tid, trans.Super)
success := TRUE

: Attempt to perform all commit-lock-updates. Fail if any update fails,
- or if there is a partition. An optimization would be to discontinue
; processing once the first failure is encountered.
cofor file, site, mode in trans.Files do
if Inaccessible{site)
success ;= FALSE
continue
else
send TSSCMT(file, tid, ancest) to site
receive RTSSCMT(code: Success):
success := success and (code = SUCCESS]
continue
partition:
success := FALSE
continue
endsend
endif
endcofor
if success then return{SUCCESS) else return(FAILURE) endif
end

; AddFile -- This routine must be invoked when a transaction
; opens 2 file in order to the file to be added to
; the transaction’s participant list.

AddFile(trans: Trans, file: FileName, site: Site, mode: Mode)
begin
existing := Files$Find(trans.Files, file)

if IsNull(existing) then
: File not in our list. Add it.

158

List$AddHead(Struct{file, site, mode}, trans.Files)
else
- File already in our list. Upgrade mode if necessary.
if mode = MOD then
existing.Mode = MOD
endif
endif
end

;
- AnyInacc - Determine if any transaction in a list is inaccessible.

H

Anylnace(tids: List[Tid]) => Bool
begin
for tid in tids do
if Inaccessible(Tid$Home(tid)) then return(TRUE}) endif
endfor
return{FALSE)
end

; FORCEABT -- This message handler forces the specified transaction to abort.

1

FORCEABT(tid: Tid)
begin
trans := GetTrans(tid)
if IsNull{trans) then
Abort(trans, SYSABORT)

endif
respond RFORCEABT
end

. STARTTRANS -- This message handler causes a new transaction to be started

- at the site where the message is received. The messages TOPABORT, TOPCOMMIT,
- REQCOMMIT, SUBABORT, which are sent from the Exit routine, will be

- directed to the process which sent the STARTTRANS message. .

1

STARTTRANS(file: FileName, args: Args, tid: Tid, super: Super, caller: Pid)
begin

- First create a new process which will execute instructions in the

- given file and with the given arguments.

newproc := CreateProcess(file, args)

: Set up a transaction structure for the new transaction
trans := Struct{tid, super, UNDEFINED, caller,
List%Struct%newproc.Pid, Null{}}},
List{}, List{}, FALSE})

159

; Set up appropriate fields in the process structure of the new process.

newproc Type := trans
newproc. TopProc := TRUE

: Add the new transaction to the site’s list of transactions.
AddTrans{tid, trans)

: Finally, start the execution of the new process, passing on
: to the Exit routine the responsibility of responding to
the STARTTRANS message.
StartProcess(newproc)
end

* s 3k 3k 3 ok sk ok ok Kk 3k 3k 2 ok ok o ok ok Sk ok sk sk sk sk sk i ok ok 3k s ok e e ke ok ok i R ok o 3K % 3 2k ok 3k 3K 3 3 i ik K ok s 3k e e ke K ok kR % K ok K

; TransTopchg -- This routine is invoked when there is a network topology
: change by the topology change procedure in order to perform
; those topology change functions that are required in the

; nested transaction algorithm.

+ sk s s 3 ok 2k ok ok ok ok ik ok ok ok e e e i o ek sk 3k ok ke i sk sk ok ok sl ok ok ok ok ok s ok ok ke ke ok ok ok ok ok ok ok ko K Ok sk ok ok sk ok ok ok ok ok 2k vk ok ok ok ok ok Kok k ko Xk

TransTopchg()
begin
. Abort any transactions having an inaccessible superior.
for trans in TRANS do
if AnyInacc(trans.Super)
; A superior is inaccessible.
trans.SilAbt := TRUE
Abort{trans, SYSABORT)
endif
endfor

; Perform recovery for all t-locks at this site.
for tlock in TLOCKS do
TopchgTssCleanup(tlock)
endfor
end

'****************i****************************#***********************

T-LOCI& MESSAGE HANDLERS: These message handlers form the interface
to the transaction locking and recovery
mechanism.

?
3
3
,***#************#************************#***************************

: TSSOPEN -- This message handler allows a US to request a lock on
a file for which this site is the TSS.

P

TSSOPEN(file: FileName, tid: Tid, super: Super, mode: Mode)
begin

160

success := TssOpen(file, tid, super, mode)
respond RTSSOPEN(success)

- end

: TSSCLOSE -- This message handler allows a US to release a heid lock.

TSSCLOSE(file: FileName, tid: Tid)
begin
success := TssClose(file, tid)
respond RTSSCLOSE
end

- TSSREAD -- This message handler allows a US to read the state of a file
; for which it holds a lock.
TSSREAD(file: FileName, tid: Tid)
begin
filestate ;= TssRead(file, tid)
respond RTSC')READ(ﬁlestate)
end

: TSSWRITE -- This message handler allows a US to modify the state of a file
: for which it holds a write lock.

TSSWRITE!file: FileName, tid: Tid, filestate: FileState)
begin

sucecess 1= TssWrite(file, tid, filestate)

respond RTSSWRITE(success)
end

- TSSCMT -~ This message handler accomplishes a commit-lock-update for the
: specified file and transaction.

TSSCMT{file: File, tid: Tid, ancest: Ancest)
begin
success ;= TssCommit(file, tid, ancest)
d1'ee‘,pond RTSSCMT{success)
en

- TSSABT -- This message hander accomplishes an abort-lock-update for the
; specified file and transaction.

TSSABT(file: File, tid: Tid, ancest: Ancest)
begin

TssAbort{file, tid, ancest)

drespond RTSSABT
en

TssOpen — This routine is invoked at the TSS for a file in order
; for a transaction to request a lock on the file.

H

161

TssOpen(file: FileName, tid: Tid, super: Super, mode: Mode) => Success
begin

ancest := List$Add(tid, super);

tlock := GetTlock(file)

if IsNull(tlock) then
: There is no t-lock for this file at this site. This is the

: first open of the file.

: Create a new t-lock for the file.
tlock := Struct{GetStableStateSﬁle), Null{}, List{},
Struet{List{}, List{}}};
switch mode
case READ:

tlock.Holders := ReadHolders{List{Struct{tid, super}}}

case MOD:

tlock.Holders := WriteHolder{Struct{tid, super, tlock.FileState}}
endswitch

: Add t-lock to the site’s list of t-locks.
AddTlock(file, tlock)
return(SUCCESS)

else

: File already open.
switch mode

case READ:

if IsWriteHolder{tlock.Holders) then

- Someone holds a write lock. It may be tid, however, the

. ability for a transaction to possess both READ and MOD access
: to a file-is not implemented here.

return(FAILURE)

elseif IsReadHolders(tlock.Holders) then
: Someone holds a read lock.
reader := ReadHolders$Find(tlock.Holders.ReadHolders, tid)
if 1IsNull(reader) then
: Read lock already held by tid.
: Multiple opens will never reach the TSS.
return(FAILURE)
endif
: Tid does not already hold read lock, fall through.
else
: No locks are held.
: Set up an empty read holder list.
dt.l{ock.Holders := ReadHolders{List{}}
endi

if !CheckWretns(tlock, ancest) then
: There are write retainers that are not ancestors,

; so deny request.
if List$Empty(tlock.Holders.ReadHolders) then

162

tlock.Holders := Nuli{}
endif
return(F AILURE)
endif

- Grant a new held read lock.

: Add read holder to list of holds.

List3AddHead(Struct{tid, super}, tlock.Holders.ReadHolders)
return(SUCCESS)

case MOD:

if IsWriteHolder(tlock.Holders) then

- Someone holds a write lock.

i tlock.Holders. WriteHolder.Tid = tid then

- Write lock already held by tid.
: Multiple opens will never reach the TSS.
return(FAILURE)

else -

- Write lock held by another tid, so deny request.
return(FAILURE)

endif
elseif IsReadHolders(tlock.Holders) then
- Someone holds a read lock. It may be tid, however, lock
: upgrading is not implemented here.
return(FAILURE)
endif

: No held locks.

if 'CheckRretns(tlock, ancest) or 1CheckWretns(tlock, ancest) then

- There are retainers that are not ancestors, so deny request.
return(FAILURE)
endif

. Grant new held write lock.

tlock.Holders := WriteHolder{Struct{tid, super, tlock.FileState}}

return(SUCCESS)

endswitch

; TssRead -- This routine is invoked at the TSS for a file in order

for a transaction to read the state of a file for which it
holds a lock.

TssRead(file: FileName, tid: Tid) =2 Oneof[FileState, FAILURE]

tlock := GetTlock(file)
if CheckRead(tlock, tid) then

163

return(tlock.FileState)
else return(FAILURE)
endif

end

Tsserte -- This routine is invoked at the TSS for a file in order
: for a transaction to modify the state of a file for which it
; holds a write lock.

H

TssWrite(file: FileName, tid: Tid, filestate: FileState) ==>> Success
begin
gt,lock :== GetTlock(file)
if CheckWrite(tlock, tid) then
tlock.FileState := filestate
return(SUCCESS)
else return(FAILURE)
endif
end

CheckRead -- This routine verifies that a transaction holds a read or
; write lock for a file.

CheckRead(tlock: Tlock, tid: Tid)
begin
if IsWriteHolder(tlock.Holders) then
return(tid = tlock.Holders. WriteHolder.Tid)
elseif IsReadHolders(tlock.Holders) then
return(ReadHolders$Member(tid, tlock.Holders.ReadHolders))
else return(FALSE)
endif
end

; CheckWnte -- This routine verifies that a transaction holds a write
C s lock for a file.

CheckWrite(tlock: Tlock, tid: Tid)
begin
if IsWriteHolder(tlock.Holders) then
return(tid = tlock.Holders. WriteHolder.Tid)
else return(FALSE)

endif
end

; TssClose -- This routine is called by a transaction in order for its
; held lock to become a retained lock.

164

.
1

TssClose(file: FileName, tid: Tid)

begin
tlock := GetTlock(file)
if |CheckRead(tlock, tid) then return endif
TssClosel(tlock, tid, mode}

end

TssClosel(tlock: Tlock, tid: Tid)
begin
if IsWriteHolder{tlock.Holders) then
- Tid holds write lock.

if 1TopVerstkIsTid(tlock, tid) then
- Tid does not already retain a write lock, so add a new retainer.

retainer ;= ReadRetainers$Find(tlock.ReadRetainers, tid)
if 1IsNull(retainer) then
: Remove a retained read by tid.
ReadRetainersS$Remove(tlock.ReadRetainers, tid)
endif
Tlock$VerStkPush{tlock, tid,
tlock.Holders. WriteHolder.Super,
tlock.Holders. WriteHolder.FileState)
endif

: Remove the held lock.
tlock.Holders := Null{}

else if IsReadHolders(tlock. Holders) then
- Tid holds read lock.

reader := ReadHolders$F ind(tlock.Holders.ReadHolders, tid)

retainer := ReadRetainers$Find(tlock.ReadRetainers, tid)
if 1TopVerstkIsTid(tlock, tid) and IsNull(retainer) then
- Transaction does not already retain a lock, so add a retained
: read lock.
L%st?bAddHead(Struct{tid, reader.super}, tlock.ReadRetainers)
endi

. Remove held read lock.
ReadHolders§Remove(tlock.Holders.ReadHolders, tid)
if List$Empty(tlock.Holders) then
tlock.Holders := Nuli{}
endif
endif
end

; TssCleanHelds -- TssClose any write lock holders and any read lock

165

holders of which we are a superior.

.
H

b

TssCleanHelds(tlock: Tlock, tid: Tid)
begi
if IsWriteHolder(tlock.Holders) then

: Close a write lock holder.
TssClosel(tlock, tlock.Holders.WriteHolder.Tid)

elseif IsReadHolders(tlock.Holders) then
: Close all read lock holders of which we are a superior.
for readholder in tlock.Holders.ReadHolders do
if List$Member(tid, readholder.Super) then
: We are a superior of the holder, so close the holder.
TssClosel{tlock, readholder.Tid)
endif

endif
end

; TssCommit -- Perform the commit-lock-update operation on a file.

¥

TssCommit(file: FileName, tid: Tid, ancest: Ancest) =>> Success
begin

tlock := GetTlock(file)

toptid := Ancest$GetTopTid(ancest)

topflag := Tid$Equal(tid, toptid)

if topflag = FALSE then :

parent := Ancest$GetParent{ancest)
endif

; Clean up any held locks.
TssCleanHelds(tlock, tid)

: Clean up any write retainers which are inferiors: pop and replace until
; top element is an ancestor or bottom of stack is reached.
while 'List$Empty(tlock.WriteRetainers.VersionStack) and
{List$Member(List$Head(tlock. WriteRetainers. VersionStack).Tid, ancest)
do
Tlock$VerStkRepl(tlock)
endwhile

: Clean up any read retainers: remove any read retainers of which we
; are a superior.
for retainer in tlock.ReadRetainers do
if List$Member(tid, retainer.Super) then
ReadRetainers$Remove(tlock.ReadRetainers, tid)
endif
endfor
if IList$Empty(tlock. WriteRetainers.VersionStack) and

166

Tid$Equal(tid, List$Head(tlock.WriteReta.iner.VersionStack).Tid) then

- Tid retains a write lock.
if topflag then
: Perform commit-lock-update for a top-level transaction.
Tlock$VerStkPop(tlock)
TopCommit(filename)
else

; Perform commit-lock-update for a subtransaction.
if !List$Empty(List$Tail(tlock.WriteReta.iner.VersionStack)) and
‘ Tid$Equal(Lis§$Head(List$Tail(tlock.WriteRetainer.VersionStack)).Tid,
parent
- Parent of tid already retains a write lock, so simply
. diseard top of version stack.
Tlock$VerStkPop(tlock)

else
- Parent inherits held write lock.

List$Head(tlock.WriteRetainer.VersionStack).Tid := parent
tlock.WriteRetainers.Ancest := List$Tail{ancest)

endif
endif

else
- Tid retains a read lock.
retainer := ReadRetainers$Find(tlock.ReadRetainers, tid)

if IsNull(retainer) then
. Tid doesn't retain any lock; the commit fails. This may happen

- if we do not force the abort of a transaction having an
 inaccessible participant file.

return(FAILURE)
endif

if topflag then ‘
ReadRetainers$Remove(tlock.ReadRetainers, tid)

- If this is the last read retainer (there can be no

- write retainers), then we can remove the t-lock.

if List$Empty(tlock.ReadRetainers) then
TopAbort(file)

endif

else
if !List$Empty(tlock.WriteRetainer.VersionStack) and

Tid$Equal(List$Head(tlock.WriteRetainer.VersionStack).Tid,

parent)
. Parent of tid retains a write lock.
ReadRetainers$Remove(tlock. ReadRetainers, tid)

else
retainer := ReadRetainers$Find(tlock.ReadRetainers, parent)

if IsNull(retainer) then
- Parent of tid retains a read lock.
ReadRetainers$Remove(tlock.ReadRetainers, tid)

else

167

: Parent of tid inherits retained read.
retainer.Tid := parent
retainer.Super := List$Tail{retainer.Super)
endif
endif
endif
endif
return(SUCCESS}

end

: TopCommit - This routine accomplishes the final top-level commit of
a file to stable storage. In an actual implementation

these updates would have to be accomplished using a
two-phase commit protocol.

t

?
H
1

TopCommit(file: FileName)

begin
tlock := GetTlock(file)
ReplaceStableState(file, tlock.FileState)
RemoveTlock(file)

end '

; TopAbort - This routine accomplishes the final abort of a t-lock, simply
; by removing the t-lock from the site’s list of t-locks, and
not performing any updates to stable storage.

)

.
H

R

TopAbort{file: FileName)
begi

RemoveTlock(file)
end

; TssAbort -- This routine performs the abort-lock-update operation for a file.

H

g‘ssAbort(ﬁle: FileName, tid: Tid, ancest: Ancest)
egin

tlock := GetTlock({file)

toptid := Ancest$GetTopTid(ancest)

topflag := Tid$Equal(tid, toptid)

if topflag = FALSE then

super := List$Tail(ancest)
endif

: Clean up any held locks.
TssCleanHelds(tlock, tid}

: Clean up any write retainers which are inferiors: pop and replace until

168

. top element is a superior or bottom of stack is reached.
while !List$Empty tlock.WriteRetainers.VersionStack) and
IList8Member(List$Head(tlock. WriteRetainers. VersionStack).Tid,
super) do
Tlock$VerStkRepl(tlock)
endwhile

- Clean up any read retainers: remove any read retainers of which we
; are an ancestor.
for retainer in tlock.ReadRetainers do

if List$Member(tid, retainer.Super) or

Tid$Equal(tid, retainer:Tid) then
ReadRetainers$Remove(tlock.ReadRetainers, tid)

endif

endfor

: Remove Tlock if no remaining read or write retainers.
if List$Empty(tlock.WriteReta'mers.VersionStack) and
List$Empty(tlock.ReadRetainers) then
TopAbort(filename)
endif
end

- CheckRretns -- This routine returns TRUE if all read retainers are ancestors.

L

CheckRretns(tiock: Tlock, ancest: Ancest)
begin
for retainer in tlock.ReadRetainers do
if 'Tid$Member(retainer.Tid, ancest) then return(FALSE) endif
endfor
return{(TRUE}
end

; CheckWretns — This routine returns TRUE if all write retainers are ancestors.

1

Check Wretns(tlock: Tlock, ancest: Ancest)
begin
if List$Empty(tlock.WriteRetainers.VersionStack) return(TRUE)
return(Tid$Member(Tid$Head(tlock.WriteRetainers.VersionStack).Tid,
ancest))
end

- Version Stack Routines -- These routines push an entry onto the version
; stack, pop an entry an replace the version

; on top of the version stack into the current

; volatile file state (abort action}, and pop

; and discard an entry on top of the version

169

stack (commit action).

1

’

Tlock$VerStkPush(tlock: Tlock, tid: Tid, super: Super, filestate: FileState)
begi
List$AddHead(Struct{tid, filestate}, tlock.WriteRetainers.VersionStack)
tlock.WriteRetainers.Ancest := List§Add(tid, super)
end

Tlock$VerStkRepl{tiock)
begin : :
tlock.FileState := List3Head(tlock.WriteRetainers.VersionStack).FileState
tlock.WriteRetainers.VersionStack :=
List$Tail(tlock.WriteRetainers.VersionStack)

if List$Empty(tlock.WriteRetainers.VersionStack) then
tlock.WriteRetainers.Ancest := List{}

else
tidontop := List$Head(tlock.WriteRetainers.VersionStack).Tid
tlock.WriteRetainers.Ancest :==

List$RestFrom(tlock.WriteRetainers.Ancest, tidontop)
endif
end

Tlock$VerStkPop(tlock)
begin
tlock.WriteRetainers.VersionStack :=
List$Tail(tlock.WriteRetainers.VersionStack)

if List$Empty(tlock.WriteRetainers.VersionStack) then
tlock.WriteRetainers.Ancest := List{}
else :
tidontop := List$Head(tlock.WriteRetainers.VersionStack).Tid
tlock.WriteRetainers.Ancest :=
List$RestFrom(tlock. WriteRetainers.Ancest, tidontop)
endif
end

; TopVerstkIsTid -- This routine determines if the top element of the version
; stack is for the specified Tid.

1

.
1

TopVerstklsTid(tlock: Tlock, tid: Tid) =>> Bool
begin
if List$Empty(tlock.WriteRetainers.VersionStack) then return(FALSE) endif
return(Tid$Equal(Tid$Head(tlock.WriteRetainers. VersionStack).Tid, tid))
end

;***t**************************#**

; TopchgTssCleanup -- This routine is invoked by TransTopchg to accomplish

170

: the necessary recovery on a file when there is a
; network topology change.
¥

'****************#********#*****************#**#*#*****#******************

TopchgTssCleanup(tlock: Tlock)
begin
: Clean up any locks held by inaccessible transactions.
it IsWriteHolder(tlock.Holders) then
site = Tid$Home{tlock.Holders. WriteHolder.Tid)
super = tlock.Holders.WriteHolder.Super
if Inaccessible(site) or AnyInace(super) then
TssClosel(tlock, tlock. Holders.WriteHolder.Tid, site)

endif
elseif IsReadHolders(tlock.Holders) then
for readholder in tlock.Holders.ReadHolders do
site := Tid$Home(readholder.Tid)
super :== readholder.Super
if Inaccessible(site) or AnyInacc{super) then
TssClosel(tlock, readholder.Tid, site)
endif
endfor
endif
: Remove any read retainers having inaccessible ancestors.
for retainer in tlock.ReadRetainers do
if AnyInacc(List$Add(retainer.Tid, retainer.Super)) then
- An ancestor is inaccessible, so remove read retainer.
dféeadRetaineﬁRemove(tlock.ReadRetainers, retainer.Tid)
endfor _

- Remove any inaccessible write retainers and their descendants.
wretns := tlock.WriteRetainers
if List$Empty(wretns.VersionStack) then

: Search for topmost inaccessible write retainer.
for tid in List3Reverse(wretns.Ancest) do

if Inaccessible(Tid$Home(tid)) then

- There is an inaccessible ancestor. Abort it.

super :== List$Tail(List3RestFrom(wretns.Ancest, tid))

- Clean up any write retainers which are inferiors:
: pop and replace until top element is a superior or
- bottom of stack is reached.

while !List$Empty(wretns.VersionStack) and

IList$Member(List$Head(wretns. VersionStack).Tid,
super) do
Tlock$VerStkRepl(tlock)

endwhile

break

endif

171

endfor

endif :
: Remove Tlock if no remaining read or write retainers.
if List$Empty(tlock.WriteRetainers.VersionStack) and
ListSEmpty{tlock.ReadRetainers) then
TopAbort(filename)
endif
endif

172

APPENDIX B
SUMMARY STATISTICS

Person Hours Spent in Implementation

The implementation of full nested transactions as described in this report, in-
cluding detailed design, coding, and debugging took approximately eight person-

months.
Number of Lines of Code in Implementation

There are approximately 7208 lines of code in the implementation, which is a
little more than twice that required to impiement simple nested transactions [Moore
82a] [Moore 82b]. This figure includes both newly added code and modifications
which had to be made to existing Locus code to support nested transactions. The
current implementation does not contain all of the mechanism necessary to support

remote member processes.

The additional functionality gained over simple nested transactions is syn-
chronization of transactions within an entire transaction and the ability to limit the
effects of subtransaction abort. With full nested transactions, only the aborting
subtransaction’s work is undone, while in simple nested transactions, the entire tran-
saction must be aborted. Much of the additional mechanism is devoted to recoverings

from the wealth of failures which may occur.

173

The breakdown of code according to the major tasks is as follows:

Module Lines of Code
Data Structure Definitions 432
Locus Data Structure Modifications 159
Transaction Control 1991
Transaction File Locking 1577
Two-Phase Commit Protocol. 1601
Utility Code 824
Locus Modifications 624
Total 7208

Performance Measurements

In an attempt to estimate the performance overhead incurred by nested tran-
sactions, we compare the difference in elapsed time between simply running a pro-
gram, and running that program as both a top-level transaction and as a subtransac-
tion of some other transaction. We have performed these measurements on Locus,
executing on VAX 11/750s using RKO07 disks for file storage and a 10 Mbps ring net-
work. The activity being measured was the only user activity taking place in the

system at the time the measurements were taken.

The measurements are of a program which modifies data in several files. In
each case, the second page of a two page file is updated (page size = 1024 bytes).
The files were initialized before each run. The program was run as a non-
transaction, as a top-level transaction, and as a subtransaction of a top-level transac-
tion. For each of the cases, a program was run which modifies 0, 1, 2, 4, 6, 8, and 10
files. Each test was run three times. Tests were run where all the files were local, and
all the files were remote. All programs were run locally and the copy of the load

module to be executed was stored locally. The additional time required to invoke and

174

return from a remote transaction is comparable to that required for a remote non-

transaction process, and thus was not measured.

For transactions, the measurement is of the elapsed time from the time relcall
was invoked, until it returned. For the non-transaction program, the time is meas-
ured from just before the child process is forked to run the program, until the parent
process, which waits for the'child process to com{)lete, is awakened. The measure-

ments were taken with the fiime system call.

The measurements are shown in Tables 1 and 2. The first observation is that
the time required to simply invoke and return from a program which performs no file
modifications is approximately the same whether the program is run as a nob-

transaction, top-level transaction, or subtransaction.

In Table 1, we give the measurements for a program which modifies all local
files. We can see that running the program as a top-level transaction takes less than
twice as long as running the program as a non-transaction. Running a program as a
subtransaction is substantially faster than running it as a non-transaction, almost

twice the speed.

We can explain these results as follows. Much of the time required for running
a non-transaction is taken by the file close operations, which write the file
modifications to disk. Much of the time required for running a top-level transaction
is taken by the two-phase commit operation, which is used to atomically commit a
group of files, and requires more disk writes than simple closes. However, running a
program as a subtransaction does not cause any file modifications to be written out
to disk. This is because the modifications performed by a subtransaction are only

written out when the top-level transaction commits. Thus the time required to run

175

the program as subtransaction is less than the time required to run it as a non-
transaction program. Of course, the subtransaction must update locking information
for each of the files before it may commit, as must a top-level transaction. But we

can see that these operations do not contribute much to the overall time.

In Table 2, which gives measurements for a program which modifies all re-
mote files, we see that the times for running the program as a subtransaction and as
a non-transaction become closer. This is because the time to send messages over the
network starts to dominate. The times for a top-level transaction become closer to
non-transactions for the same reason, although the two-phase commit protocol re-

quires twice as many messages as would be required for non-atomic commit.

176

ELAPSED TIME (in seconds)

All Files Local
Number of Files | Non-Transaction | Top-Level Transaction | Subtransaction
0 233 183 .218
0 .200 233 .184
0 .183 27 183
1 .350 783 267
1 .450 17 283
1 .350 .800 250
2 .450 916 334
2 .450 .900 .350
2 .483 883 300
4 700 1.233 483
4 .700 1.083 416
4 i ¥i 1.200 417
6 .966 1.483 .H66
6 .933 1.483 584
6 917 1.450 617
8 1.183 1.700 733
8 1.166 1.683 700
8 1.100 1.733 683
10 1.384 2.100 .783
10 1.350 2.067 866
10 1.417 2.133 .767

Table 1: Elapsed Time — All Files Local

177

ELAPSED TIME (in seconds)
All Files Remote
Number of Files | Non-Transaction | Top-Level Transaction | Subtramsaction
0 .250 200 216
0 217 216 .183
0 216 .200 ' .183
1 .550 1.050 .533
1 .584 1.050° 517
1 .583 - 1.050 500
2 917 1.450 833
2 967 1.450 834
2 916 1.484 .833
4 1.650 2.267 1.467
4 1.650 2.216 1.433
4 1.683 2.250 1.450
6 2.350 3.016 2.067
6 2.367 3.066 2.066
6 2.384 3.034 2.017
8 3.000 3.833 2.717
8 2.966 3.900 2717
8 3.000 3.783 2.650
10 3,700 4.616 3.334
10 3.633 4.684 3.300
10 3.667 4.750 3.333

Tabie 2: Elapsed Time — All Files Remote

Performance Measurements of Two-Phase Commit

Because the two-phase commit protocol appears to be the primary factor of
additional delay in our nested transaction mechanism, we have taken detailed meas-
urements of the protocol. These measurements were made using a tool for measuring
activity in local area distributed systems which is 'currently under development as
part of the Locus research effort. More information about this measurement tool

may be found in [Goldberg 83].

The performance of the two-phase commit protocol is measured in various
conditions. In particular, we show the difference between the time taken to perform a

two-phase commit and the time required to simply close the participant files. We

178

present measurements for three different situations and for varying numbers of files

in each case.

As in the last section, the files were all two logical pages long and the second
page was updated by the transaction, In measuring the CPU time for an operation
involving both a local and a remote site, we have measured the processing time at
each site individualfy and then summed these individual measurements to get a

measurement of total CPU time.

The tables summarizing our measurement data may be found on the following
pages. These tables are organized as follows. For each case, there are two tables,
one reporting measurements for CPU time and the other reporting measurements for
elapsed time. Each table contains measurements for file closing, phase 1 of the two-
phase commit protocol, phase 2 of the two-phase commit protocol, and a total time
for the two-phase commit protocol. Tables 3a and 3b give the measurements for the
case when all participant files are local. Tables 4a and 4b show the measurements
for the case when half of the participant files are local and the other half are remote.
Finally, Tables 5a and 5b present the measurements for the case when all participant
files are remote. In each case, we give results for both CPU and elapsed time when

the number of files is 2, 4, 6, 10, and 16.

In Table 3a, we see that for 2 files, the CPU time required for two-phase com-
mit is about 10 times as great as that required for file closing. For 16 local files,
two-phase commit requires about 5 times as much CPU time as that for file closing.
In Table 3b, we see that the elapsed time for 2 local files is about 7.5 times greater
for two-phase commit than for file closing, and for 16 local files is about 3 times as

great.

179

Table 4a shows that for one local file and one remote file the CPU time re-
quired to perform a two-phase commit of the participant files is about 5.5 times
greater than the CPU time required to close these files. For 8 local files and 8 re-
mote files this factor is reduced to about 2.5. The elapsed time figures in Table 4b
show that two-phase commit is slower by a factor of 5 than file closing when there is
one local and one remote participant file. For 8 local and 8 remote participant files,

this factor is reduced to about 1.25.

In Table 5a, we see that the CPU time required to perform a two-phase com-
mit of 2 remote files is about 3 times as great as that for closing the files. For 16 re-
mote files, only twice as much CPU time is required by two-phase commit. As
shown in Table 5b, the elapsed time figures indicate that the overhead incurred by
two-phase commit is about 3.5 times as great as that incurred by file closing for 2 re-

mote participant files, and about 1.5 times as great for 16 remote participant files.

We note that in all cases, the CPU and elapsed time for both file closing and
two-phase commit are approximately linear on the number of files being updated.
This makes sense since we are performing the same updates, i.e., modifying a single
page, on all our files. Furthermore, we note that two-phase commit performs much
worse than simple file closing when all files are local, but not significantly worse than
file closing when some files are remote. And when all files are remote two-phase
commit only increases CPU usage by a factor of two and elapsed time by a factor of
1.5 with 16 participant files. This is because remote close operations require message
exchanges approximately equivalent to the second phase of the two-phase commit

protocol.

180

Comparing the tables, we see that the best elapsed time measurements result
from the case when half of the files are remote and half of the files are local. In par-
ticular, when the number of participant files is larger than two, the elapsed time of
two-phase commit measured in the mixed case was less than the elapsed time in ei-
ther the all local or the all remote case. In the mixed case, we see some of the ad-
vantages of parallel processing since our two-phase commit mechanism exploits such

parallelism to the degree that is feasible as discussed in Chapter 7.

We believe that these measurements are encouraging. In cases where a
moderate number of participant files, say 6, are involved in the two-phase commit,
the protocol is worse than file closing by factors of 4, 2.4, and 2.1 in the all local,
mixed and remote cases, respectively. This does nét seem a severe penalty for the
reliability gained through the use of a two-phase commit protécol. In addition, note
that these measurements were taken using the current implementation of simple
nested transactions which incorporates none of the optimizations we proposed in

Chapter 8.

In conclusion, it appears that the greatest cost in Tunning transactions is in
the two-phase commit protocol and that there is little additional cost in the mainte-
nance of locking information. Since the cost of the two-phase commit protocol be-
comes less significant as the amount of work performed by the entire transaction in-
creases, transactions are not that much more expensive than non-transaction pro-

grams.

181

CPU TIME (in seconds)

All Files Local
Two-Phase Commit
Number of Files | File Closing

Phase 1 | Phase 2 |} Total

2 .0292 187 104 201
2 0260 .189 .104 .293
4 0599 .240 157 397
4 0627 .240 .149 389
6 0833 310 205 .515
6 .0817 287 210 .497
10 .140 414 .309 723
10 137 392 014 .706
16 222 .561 .488 1.049
16 206 062 .467 1.029

Table 3a: CPU Time - All Files Local

182

ELAPSED TIME (in seconds)

All Files Local
Two-Phase Commit
Number of Files | File Closing

Phase 1 | Phase 2 |{ Total

2 .109 563 267 800
2 107 559 .239 798
4 170 645 351 .996
4 192 694 337 1.031
6 311 894 .449 1.343
6 317 857 464 1.321
10 .553 1.244 .671 1.915
10 .570 1.333 626 1.959
16 862 1.687 958 2.645
16 835 1.741 944 2.685

Table 3b: Elapsed Time — All Files Local

CPU TIME (in seconds)
n/ 2 Files Local, nf 2 Files Remote

Number of Files Two-Phase Commit
(a) File Closing
Phase 1 | Phase 2 || Total
2 .0697 222 113 335
2 0549 218 .118 336
4 110 27N 190 461
4 133 289 187 476
6 190 336 257 093
6 207 365 .295 660
10 330 465 .399 .864
10 326 476 377 853
16 489 700 .586 1.286
16 .490 637 .590 1.227

Table 42: CPU Time — a/2 Files Local, n/2 Files Remote

183

ELAPSED TIME (In seconds)
nf 2 Files Local, nf 2 Files Remote

Number of Files Two-Phase Commit
(n) File Closing
Phase 1 { Phase 2 || Total
2 185 593 .267 .860
2 157 .609 .260 .869
4 350 628 358 986
4 304 680 348 1.028
6 .501 .791 405 1.196
6 .o03 .746 465 1.211
10 878 977 .551 1.528
10 875 971 .557 1.528
16 1.321 1.066 .589 1.655
16 1.340 1.032 .560 1.592

Table 4b: Elapsed Time — n/2 Files Local, n/2 Files Remote

184

CPU TIME (in seconds)

All Files Remote
‘ Two-Phase Commit
Number of Files | File Closing

Phase 1 | Phase 2 || Total

2 124 .230 142 371
2 .103 239 144 383
4 225 334 216 550
4 205 311 210 521
6 274 .447 310 757
6 342 465 319 784
16 479 .603 479 1.082
10 498 607 .472 1.079
16 737 859 797 1.656
16 734 884 .806 1.660

Tabie 5a: CPU Time - All Files Remote

ELAPSED TIME (In seconds)
All Files Remote

Number of Files

File Closing

Two-Phase Commit

Phase 1 | Phase 2 || Total

2 247 517 296 813
2 217 539 344 || 83
4 AT 730 361 || 1.091
4 433 735 .398 1.133
6 .659 867 493 1.360
6 642 943 455 1.398
10 1.146 1.320 910 || 2.230
10 1.127 1.269 876 2.145
16 1.742 1850 | 1.036 || 2.886
16 1,786 1.669 1.046 2.715

Table 5b: Elapsed Time ~ All Files Remote

186

