GENERALIZED BEST-FIRST SEARCH STRATEGIES
AND THE OPTIMALITY OF A*

Rina Dechter December 1984
Judea Pearl Report No. CSD-840068

UCLA-CSD-84
June 1984

GENERALIZED BEST-FIRST SEARCH STRATEGIES
AND THE OPTIMALITY OF A*

Rina Dechter and Judea Pearl

This work was supported in part by the National Science Foundation, Grant #FMCS
8114209

ABSTRACT

This paper reports scveral properties of heuristic best-first search strategies whose scor-
ing functions f depend on all the information available from each candidate path, not
merely on the current cost g and the estimated completion cost . We show that several
known properties of A® retain their form (with the min-max of £ playing the role of the
optimal cost) which help establish general tests of admissibility and general conditions

for node expansion for these strategies.

Using this framework we then examine the computational optimality of A*, in the
sense of never expanding a node that could be skipped by some other algorithm having
access to the same heuristic information that A* uses. We define a hierarchy of four op-
timality types, and consider three classes of algorithms and four domains of problem in-
stances relative to which computational performances are appraised. For each class-
domain combination, we then identify the strongest type of optimality that exists and the
algorithm achieving it. Our main results relate to the class of algorithms which, like A®,
return optimal solutiops (i.c., admissible) when all cost estimates are optimistic (i.c.,
h=h*). On this class we show that A* is pot optimal and that no optimal algorithm ex-
ists, but if we confine the performance tests to cases where the estimates are also con-
sistent, then A* is indeed optimal. Additionally, we show that A* is optimal over a sub-
sct of the latter class containing all best-first algorithms that are guided by path-

dependent evaluation functions.

1. INTRODUCTION AND PRELIMINARIES

Of all search strategies used in problem solving, one of the most popular methods
of exploiting heuristic information to cut down search time is the informed best-first stra-
tegy. The general philosophy of this strategy is to use the heuristic information to assess
the "merit” latent in every candidate search avepue exposcd during the search, then con-
tinue the exploration along the direction of highest merit. Formal descriptions of this
strategy are usually given in the context of path searching problems (Pearl, 1984), a for-
" mulation which represents many combinatorial problems such as routing, scheduling,

speech recognition, scene analysis, and others.

Given a weighted directional graph G with a distinguished start node s and a set
of goal nodes T, the optimal path problem is to find a least-cost path from s to any
membcr of T where the cost of the path may, in general, be an arbitrary function of the
weights assigned to the nodes and branches along that path. A general best-first (GBF)
strategy will pursue this problem by constructing a tree T of selected paths of G using
the elementary operation of node expansion, i.c., generating all successors of a given
node. Starting with s, GBF will select for expansion that leaf node of T which features
the highest "merit”, and will maintain in T all previously encountered paths which still
appear as viable candidates for sprouting an optimal solution path. The search ter-
minates when no such candidate is available for further expansion, in which case the
best solution path found so far is issued as a solution or, if none was found, a failure is

proclaimed.

In practice, several short cuts“have been devised to simplify the computation of
GBF. First, if the evaluation function used for node sclection always provides optimistic
estimates of the final costs of the candidate paths evaluated, then we can terminate the
search as soon as the first goal node is selected for expansion without compromising the
optimality of the solution issued. This guarantee is called admissibility and is, in fact,
the basis behind the branch-and-bound method (Lawler and Wood, 1966). Second, we
are often able to purge from T large sa.;.ts of paths which are recognized at an early stage
| to be dominated by other paths in T (Ibaraki, 1977). This becomes particularly easy if
the evaluation function f is order preserving, i.e., if for any two paths P, and P,, lead-
ing from s to n, and for any common extension P of those paths, the following holds:
)= f(P) => f(P1P3) = f(PoP3). -
Order preservation is a judgemental version of the so called principle of optimality in
Dynamic Programming (Dreyfus and Law, 1977) and it simply states that if P is judged
to be more meritorious than P,, both going from s to n, then no common extension of
P, and P, may later reverse this judgement. Under such conditions there is no need to
keep in T multiple copies of nodes of G; each time the expansion process generates a
node n which already resides in T we maintain only the lower f{ path to it, discarding

the link from the more expensive father of n.

These two simplifications are implemented by the following best-first algorithm, a
specialization of GBF which we call BF* (Pearl 1984):

Algorithm BF*

1.

Put the start node, s, on a list called OPEN of unexpanded nodes.
IF OPEN is empty, exit with failure; no solution exists.

Remove from OPEN a node, n, at which f is minimum (break ties arbitrarily,
but in favor of a goal node) and place it on a list called CLOSED to be used for

expanded nodes.

If n is a goal node, exit successfully with the solution obtained by tracing back
the path along the pointers from n to s, (pointers are assigned in Steps S and
6).

Expand node n, generating all its successors with pointers ‘back to n.
For every successor n’ of n:
a. Calculate f(n')

b. If n’ was neither in OPEN nor in CLOSED, then add it to OPEN. Assign

the newly computed f(»’) to node n’.

c. If o already resided in OPEN or CLOSED, compare the newly computed
f(n') with that previously assigned to n’. If the new value is lower, substi-
tute it for the old (»’ now points back to n instead of to its predecessor).

If the matching node ' resided in CLOSED, move it back to OPEN.

Go to (2).

By far, the most studied version of BF* is the algorithm A*® (Hart, Nilsson and
Raphael, 1968) which was developed for additive cost measures, i.c, where the cost of a
path is defined as the sum of the costs of its arcs. To match this cost measure, A* em-
ploys an additive evaluation function f(n) = g(r) + A(n), where g(n) is the cost of the
currently evaluated path from s to n and h is a heuristic estimate of the cost of the
path remaining between n and some goal node. Since g(n) is order preserving and a(n)
depends only on the description of thé node n, f(n) too is order preserving and one is
justified in discarding all but one parent for each node, as in step 6c of BF*. If, in addi-

| tion, k(n) is a lower bound to the cost of any continuation path from n to T, then f(n)

is an optimistic estimate of all possible solutions containing the currently evaluated path,
and terminating A* upon the sclection of the first goal node (step 4) does not comprom-
ise its admissibility). Several other properties of A* can be established if admissibility
holds, such as the conditions for ﬁodc expansion, node reopening, .and the fact that the
number of nodes expanded decreases with increasing 4 (Nilsson 1980, results 5, 6, and
7). These properties are essential for any quantitative analysis of the performance of A*
(Pearl, 1984).

It has been found, however, that maintaining the admissibility of A* is too res-
trictive; it limits the selection of heuristics to those which only underestimate costs, and

it forces A* to spend disproportionately long time discriminating among roughly equal

(MOur definition of A* is identical to that of Nilsson (1971) and is at variance with
Nilsson’s (1980). The latter regards the requirement k =< h* as part of the definition of
A*, otherwise the algorithm is called A. We found it more convenient to follow the
tradition of identifying an algorithm by how it processes input information rather than
by the of information that it may encounter. Accordingly, we assign the symboi A*
to any BF* algorithm which uses the additive combination f = g+h, placing no
restriction on &, in line with the more recent literature (Barr, et al. 1981; Bagchi, et al.
1983; Pearl, 1984).

candidates. As a result, several attempts have been made to execute A* with non-
admissible estimates while simultaneously ILimiting the degree of suboptimality [Pohl
(1969, 1973), Harris (1974), Peari and Kim (1982)] and minimizing the computational
difficulties that overestimates may induce [Bagchi and Mahanti (1983)]. However, most
of our knowledge regarding the behavior of A* is still lin;itcd to additive cost measures

and additive evaluation functions.

In this paper, our aim is to examine how the behavior of A* will change if we re-
" move both restrictions. The cost minimization criterion is generalized to include non-
additive cost measures of solution paths such as multiplicative costs, the max-cost, (i.e.,
the highest branch cost along the path) the mode (i.c., the most frequent branch cost
along the p;th), the range (i.c., the difference between the highest and the lowest
branch costs along the path); the cost of the last branch, the averag-e cost, and many oth-
ers. Additionally, even in cases where the minimization objective is an additive cost
measure, we now permit f(n) to take on a more general form and to employ more ela-
borate evaluations of the promise featured by a given path from s to n, utilizing all the
information gathered along that path; For example, one may wish to consult the evalua-
tion function f(n)=n::'q.x{g(n')+h(n')} where ' ranges along the path from s to n. Alter-
natively, the class of evaluation functions may now include non-linear combinations of g
and & in f=f(g,k) and, as a very special example, the additive combination f=g+h with

h an arbitrary heuristic function, not necessarily optimistic.

We start by characterizing the performance of the algorithm BF* without assum-
ing any relationship between the cost measure C, defined on complete solution paths and
the evaluation function f, defined on partial paths. Later on, assuming a monotonic re-
lationship between f and C on complete solution paths, we establish a relationship
between the cost of the solution found and that of the optimal solution (section 2). In
section 3 we establish conditions for node expansion which could be used for analyzing
the performance of BF* algorithms. Finally, in section 4, we will consider the perfor-
mance of A* under the additive cost measure and will examine under what conditions
" A* (employing f=g+h) is computationally optimal over other search algorithms which
are provided with the same heuristic information b and are guaranteed to find solutions

comparable to those found by A*.

For simplicity we shall present our analysis relative to the BF* algorithm with the
assumption that f is order preserving. However, all of our results hold for evaluation
functions which are not order preserving if, instead of BF*, GBF is executed, namely,

all paths leading to a given node are maintained and evaluated separately.

Notation

G - directed locally finite graph, G=(V,E)

C* - The cost of the cheapest solution path.

C(.) - the cost function defined over all solution paths
I" - a set of goal nodes, I'CV

S A path in G between node »; and a;.

P* - a solution path, i.e., a path in G from s to some goalnode y € T

c(n,n') -‘oost of an arc between n and n’, c(n,n’)=8>0, where § is a constant.

f(.) - evaluation function defined over partial paths, i.e., to each node n along a given
path P=s,ayny . . . ,n We assign the value fp() Which is a shorthand notation
for f(s,nyn, . . . u0).

g(n) - The sum of the branch costs along the current path of pointers from » to s.

g*(n) - The cost of the cheaps_t path going from s ton

gp(n) - The sum of the branch costs along path P from s to a.

h(n) - A cost estimate of the cheapest path remaining between n and I'.

h*(n) - The cost of the cheapest path going from » to r |

k(n,n') - cost of the cheapest path between » and a’

M - the minimal value of M; over all j.

M; - the highest value of fp(n) along the J* solution path

n* - a node for which f{.) attains the value M.

8 - start node

T - A subtree of G containing all the arcs to which pointers are currently assigned.

For the sake of comparison, we now quote some basic properties of A* (Nilsson,
1980 and Pearl, 1984) which we later gencralize.

Result 1: 1 h=<h*, then at any time before A* terminates there exists on OPEN a node

n' that is on an optimal path from s to a goal node, with f(n')=C*.

Result 2: If there is a path from s to a goal node, A* terminates for every 4 = 0 (G can
be infinite).

Result 3: If h<h*, then algorithm A® is admissible (i.e., it finds an optimal path).

Result 4: If h<h*, then any time a node n is selected for expansion by A* it must satisfy:

fp(n)=C* where P is the pointer path assigned to » at the time of expansion.

Result 5: If h < h*, then every node in OPEN for which f(n) < C* will eventually be ex-

panded by A®.

10

2 L]

2. ALGORITHMIC PROPERTIES OF BEST-FIRST (BF*) SEARCH

In locally finite graphs the set of solution paths is countable, so they can be

enumerated:

PP, ..., P
and correspondingly, we can use the notation f;(n) to represent ij,(n). Let M; be the

maximum of f on the solution path Pj, i.c.:
M, = ,
f T:;Js{.ﬁ(")}
and let M be the minimum of all the M;’s:

M=m}n{MJ}.

| The minmax value M can be interpreted as the level of the "saddle-point” in the network

of paths leading from s to I'. We shall henceforth assume that both the max and the

min functions are well defined.

Lemma 1: If BF* uses an order-preserving f, and P, and P, are any two paths from s
to n such that the pointers from n to s currently lic along P, and all the branches of
P, have been generated in the past, then

fp(n) = fp(n).
In particular, if P, is known to be the path assigned to n at termination, then

Ip(n) = fp(n) ¥P €G,
where G, is the subgraph explicated during the search, namely, the union of all past

traces of T.

11

Proof: The lemma follows directly from the order-preserving properties of f and
the fact that pointers are redirected towards the path yielding a lower f value. The
former guarantees that if at least one node on P, was ever assigned a pointer directed
along an alternative path, superior to the direction of P;, then the entire P, path to n

will remain inferior to every alternative path to n, subsequently exposed by BF*.

2.1 Termination and Completeness

Lemma 2: At any time before BF* terminates, there exists on OPEN a node o’ that is on

some solution path and for which f(n')=M.

Proof: Let M=M,, i.c., the minmax is obtained on solution path Pj. Then at some
time before termination, let n’ be the shallowest OPEN node on Pj, having pointérs
directed along P} (possibly i=j). From the definition of M;:

M, = 1 ’
| ‘35?““"”
therefore,
fn') S M; = M.
Moreover, since all ancestors of o’ on P} are in CLOSED and BF* has decided to assign

its pointers along P;, Lemma 1 states

5i@") = £;(').
This implies

fi(R)s M
which proves Lemma 2.

12

Lemma 3: Let P} be the solution path with which BF* terminates; then

a. any time before termination there is an OPEN node n on Pj for which

1(m)=£;(n)
b. M is obtained on Pj, i.c., M=M;.

Proof: (a) Let n be the shallowest OPEN node on Pj at some arbitrary time t, be-
' fore termination. Since all n’s ancestors on P are closed at time t, n must be assigned
an f at least as cheap as fj(n). Thus, f;(n) = f(n) with strict inequality holding only if at
time t n is found directed along a path different than P;. However, since BF* eventually
terminates with pointers along PJ, it must be that BF* has never encountered another

path to n with cost lower than f;(n). Thus, f(r) = fi(n).

(b) Suppose BF* terminates on P§, but M;>M, and let n*¢ P be a node where
f;(.) attains its highest value, i.c., f;(n*)=M;. At the time that n* is last chosen for ex-
pansion its pointer must already be directed along P] and, therefore, n® is assigned the
value f(n*) = fj(n*)>M. At that very time there exists an OPEN node n’ having
f(n') = M (Lemma 2}, and so
I@") < f(*).
Accordingly, n’ should be expanded before n* which contradicts our supposition.
O
Theorem 1: If there is a solution path and f is such that fz(a) is unbounded along any in-

finite path P, then BF* terminates with a solution,i.e., BF”® is complete.

13

Proof: In any locally finite graph there is only a finite number of paths with finite
length. ¥ BF* does not terminate, then there is at least one infinite path along which
every finite-depth node will eventually be expanded. That means that f must increase
beyond bounds and, after a certain time t, no OPEN nodes on any given solution path
will ever be expanded. However, from Lemma 2, f(n')=<M for some OPEN nqde n’
along a solution path, which contradicts the assumption that n’ will never be chosen for
expansion.

o

The condition of Theorem 1 is clearly satisfied for additive cost measures due to

the requirement that each branch cost be no smaller than some constant 3. It is also sa-

Vr
tisfied for many quasi-additive cost measures (e.g., [2 cf]), but may not hold for
i

*saturated” cost measures such as the maximum cost. In the latter cases, termination
cannot be guaranteed on infinite graphs and must be controlled by special means such as

using iteratively increasing depth bounds.

We shall soon see that the importance of M lies not only in guaranteeing the ter-
mination of BF* on infinite graphs but mainly in identifying and appraising the solution
path eventually found by BF*.

2.2 Quality of the Solution Found, and the Admissibility of BF*

So far we bave not specified any relation between the cost function C, defined on
solution paths, and the evaluation function f, defined on partial paths or solution-

candidates. Since the role of f is to guide the search toward the lowest cost solution

14

path, we now impose the restriction that f be monotonic with C when evaluated on com-
plete solution paths, i.c., if P and Q are two solution paths with C(P) > C(Q), then f(P)
> f(Q). Since C(P) and C{Q) can take on arbitrarily close values over our space of

problem instances, monotonicity can be represented by:
flsapnz oY) = $[Clsmpnzy)] Yy €T (1)

where { is some increasing function of its argument defined over the positive reals. No
restriction, however, is imposed on the relation between C and f on non-goal nodes, that

_is, we may allow evaluation functions which treat goal nodes preferentially, for example:

Y[C(s,n;,15,...,0)] fn €T
f(eR1n2yeeem) = {F(s,nl,nz,...,n) ifne€l

where F(-) is an arbitrary function of the path P = s,n;,n5,...n. The additive evaluation
function f = g+4 used by A®* is, in fact, an example of such goal-preferring types of
functions; the condition h(y)=0 guarantees the identity f=C on solution paths, while on
other paths f is not governed by C since, in general, h could take on arbitrary values.
Other examples of goal-preferring f evolve in branch-and-bound methods of solving
integer-programming problems where the quality of a solution path is determined solely
by the final goal node reached by that path. Here f(n) may be entirely arbitrary for
non-goal nodes, but if n is a goal-node we have f(n)=C(n).

We now give some properties of the final solution path using the relationship stat-
ed above.

Theorem 2: BF* is i~ }(M)—admissible, that is, the cost of the solution path found by BF*

is at most ¢~ 1(M).

15

Proof: Let BF* terminate with solution path P = s,...,t where ¢ € T. From Lem-
ma 2 we learn that BF* cannot select for expansion any node n having f(n)>M. This in-
cludes the node ¢ € T and, hence, f;(t) < M. But (1) implies that f(:) = ¥[C(P})] and so,
since ¢ and ¢! are monotonic,

CE) = v
which proves the Theorem.

0

A similar result was established by Bagchi and Mahanti (1983) although they

used $(C)=C and restricted f to the form f=g+h.

Theorem 2 can be useful in appraising the degree of suboptimality exhibited by
non-admissible algorithms. For example, Pohl (1973) suggests a dynamic weighting
scheme for the evaluation function f. In his approach the evaluation function f is given
by: |

fin) = () + h(m) + « [l-i};ﬂ] h(n) @
where d(n) is the depth of node n and N is the depth of the shallowest optimal goal
node. Using Theorem 2 we can easily show that if A(n)=<h*(n) then BF* will always find
a solution within a (1+e) cost factor of the optimal, a property first shown by Pohl
(1973). In this case, the requirement k(y)=0 for y€I' and Equation (1) together dictate

Ww(C)=C, and we can bound M by considering max fpe(n) along any optimal path P*.
Thus,

M= %fp-(n)

16

= % 2*(n)+h*(n)+eh*(n) [l—ﬂﬁl]]
= C*+eh*(s)
= C*(1+¢€)

On the other hand, according to Theorem 2, the scarch terminates with cost C,;<M,

hence
C;=C*(l1+e).
This example demonstrates that any evaluation function of the form

1) = g(n) + () |1+ epp(m)]

will also return a cost at most (1+e)C*, where pp(n) is an arbitrary path-dependent func-

tion of node n, sansfymg pp(n)=1 for all n along some optimal path P*. For example,

the functions pp(n) = [}W(:)W] or pp(n) = [1+d(n)] -K x > 0, will qualify as re-

placements for [1-d(r) / N].

The main utility of Theorem 2, however, lies in studying search on graphs with
random costs where we can use estimates of M to establish probabilistic bounds on the
degree of suboptimality, C,~C*. An example of such an option arises in the problem of
finding the cheapest root-to-leaf path in a uniform binary tree of height ¥, where each

branch independently may have a cost of 1 or 0 with probability p and 1-p, respectively.

17

It can be shown (Karp and Pearl, 1983) that for p > 1/2 and large N the optimal
cost is very likely to be near a*N where a* is a constant determined by p. Consequent-
ly, a natural evaluation function for A* would be f(n)=g(n)+a*[N—d(n)] and, since it is
not admissible, the question arises whether C,, the cost of the solution found by At is
likely to deviate substantially from the optimal cost C*. A probabilistic analysis shows
that although in the worst case M may reach a value as high as ¥, it is most likely to fall
in the neighborhood of a*N or C*. More predisely, it can be shown (see Appendix 1)
that, as N-», P[M=(1+€)C*] - 0 for every e > 0 Thus, invoking Theorem 2, we can
| guarantee that as N-= A* will almost always find a solution path within a 14e cost ratio
of the optimal, regardless of how small e is.

Theorem 2 can also be used to check for strict admissibility, i.c., C,=C*; all we
need to do is to verify the equality $~'(M) = C*. This, however, is more conveniently
accomplished with the help of the next corollary. It makes direct use of the facts that 1)
an upper bound on f along any solution path constitutes an upper bound on M and, 2)
the relation between fp(n) and C* is more transparent along an optimal path. For exam-

ple, in the case of A* with & = A*, the relation fp(n) < C* is self evident.

Corollary 1: If in every graph scarched by BF* there exists at least one optimal solution
path along which f attains its maximal value on the goal node, then BF* is admissible.

Proof: Let BF* terminate with solution path P = s,...,s and let P* = »,...,y be an

optimal solution path such that max fpe(n) = fpe(y). By Theorem 2 we know that

/) = M. Moreover, from the definition of M we have M < m:g fi{n) for every solution
nep

18

path P7. In particular, taking P{=P*, we obtain
1) < M = max fpuln) = S ().
However, from (1) we know that f is monotonic increasing in C when evaluated on com-
plete solution paths, thus
Y(CED) = w(C*)
implying
cP) sc,
which means that BF* terminates with an optimal-cost path.

o
By way of demonstrating its utility, Corollary 1 can readily delineate the range of
admissibility of Pohl’s weighted evaluation function £, = (1-w)g + wa, 0=w=1 (see Pohl
(1970)). Here ¢(C) = (1—w)C which complies with (1) for w<1. It remains to examine
what values of w<1 will force £, to attain its maximum at the end of some optimal path

P* = g5,..,y. Writing

Ipe(n) = fp(y)
we obtain
(1-w)g*(n) + whin) = (1-w)g*(y) = (1-w)[g*(n) + A*(n)],
or
1-w h(n)
—— k‘(':l))

Clearly,iftheraﬁof;(('—;))—isknownmbeboundedﬁ'omabovcbyaconstanta, then

w < —

1+8
constitutes the range of admissibility of BF*. Note that the use of w > 172 may be per-

. 19

missible if b is known to consistently underestimate h* such that %%:))- =B <1. Con-

versely, if h is known to be non-admissible with g>1, then the use of w = -1-_‘1_—75— will

turn BF* admissible.

Ancther useful application of Corollary 1 is to check whether a given combination
of g and &, f = f(g,h), would constitute an admissible heuristic in problems of minimiz-
ing additive cost measures. If A=<h* and f is monotonic in both arguments, then Corol-
 lary 1 states that f(g,h) is guaranteed to be admissible as long as

f(z,C—g)s f(C0) for0=<g=<C
Thus, for example, f = '\/m is admissible while £ = (¢¥2 + hY2)? is not. In general,
any combination of the form f = $[¢~(z) + ¢~ 3(h)] will be admissible if ¢ is monotonic

non-decreasing and concave.

3. CONDITIONS FOR NODE EXPANSION

In section 3.1 we present separate conditions of necessity and sufficiency for
nodes expanded by BF* on graphs. Further restricting the problem domain to trees will
enable us to establish in section 3.2 an expansion condition which is both necessary and

sufficient.

3.1 Expansion Conditions for Graphs

Lemma 4: BF* chooses for expansion at least one node n such that at the time of this

choice f(rn)=M.

Proof: Let BF* terminate with P and let a*¢P] be such that fi(n*)=M;. From
Lemma 3, M;=M. Moreover, at the time that n* is last expanded, it is pointed along Pj.

Hence,

fx) = 1(n%) = M; = M.

Theorem 3: Any node expanded by BF* has f(n)<M immediately before its expansion.

Proof: Follows directly from Lemma 2.
a
Theorem 4: Let n® be the first node with f{(n*)=M which is expanded by BF* (there is at
least one). Any node which prior to the expansion of n* resides in OPEN with f(n)<M

will be selected for expansion before n*.

21

Proof: f(n) can only decrease through the redirection of its pointers. Therefore,
once n satisfies f(n)<M, it will continue to satisfy this inequality as along as it is in
OPEN. Clearly, then, it should be expanded before n*.

o

Note the difference between Theorems 3 and 4 and their counterparts, results 4
and 5, for A*. First, M plays the role of C*. Second, the sufficient condition for expan-
sion in Theorem 4, unlike that of result S, requires that n pot merely reside in OPEN
but also enters OPEN before n* is expanded. For a general f, it is quite possible that a

" node n may enter OPEN satisfying f(n)<f(n*)=M and still will not be expanded.

We will now show that such an event can only occur to descendants of nodes n*
for which f(x*)=M, i.c., it can only happen to a node n reachable by an M-bounded path

but not by a strictly M-bounded path.

Definition: A path P will be called M-bounded if every node n along P satisfies fp(n)<M.
Similarly, if a strict inequality holds for every n along P, we shall say that P is stricrly
M-bounded.

Theorem 5: Any node reachable from s by a strictly M-bounded path will be expanded
by BF*.

Proof: Consider a strictly M-bounded path P from s to n (M cannot be obtained
on s). We can prove by induction from s to n that every node along P enters OPEN be-

fore n® is expanded and hence, using Theorem 4, n will be expanded before n*.

In Section 4 we will use this result to compare the performance of A* to that of
other (generalized) best-first algorithms.

The final results we wish to establish now are necessary and sufficient conditions
for node expansion which are superior to Theorems 4 and 5 in that they also determine

the fate of the descendants of n®.

Theorem 6: Let P; be the solution path eventually found by BF* and let n; be the depth-i
node along P$,i=0,1,... . A necessary condition for expanding an arbitrary node n in the
graph is that for some m;€P; there exists an L;-bounded path from »; to n where

L; = max fi(n). In other words, there should exist a path P, -, along which

f) S max fin) W€ Py, @
Moreover, a sufficient condition for expanding n is that (2) be satisfied with strict ine-
quality.

Proof: Assume that n is expanded by BF* and let n; be the shallowest OPEN

node on P; at time ¢, when n is selected for expansion (see Figure 1).

Since P is the solution path eventually found by BF* we know (see proof of Lemma 3)

that at time 1, n, is pointed along P; and, therefore,

fin) < f(nd = filny)-
We are now ready to identify the node »; on P which satisfies (2). Let P,., be the path
along which n’s pointers are directed at time #,, and let a; be the deepest common ances-

tor of n and n, along their respective pointer paths P,_, and P;. Since »; is an ancestor

Figure 1
of n, we have i<k and so, f(n) =< f(n;) implies

f(n) = max f(ny).

k>i
We now repeat this argument for every ancestor a’ of n along the P, .., segment of P,_,.

At the time it was last expanded, each such ancestor »’ may have encountered a dif-
ferent n,, in OPEN, but each such n;, must have been a descendent of »; along Pf satisfy-
ing f(n') = fi(ny). Hence, (2) must be satisfied for all nodes »’ along the P, _, segment

of P,., which proves the necessary part of Theorem 6.

Sufficiency is proven by assuming that max f;(n;) occurs at some node n;- € P,
k'>i. Both n, and n, are eventually expanded by BF* and so, if n is not already ex-
panded at the time ¢ when n; is last selected for expansion, thea P, _, should contain at
least one OPEN node. We now identify n' as the shallowest OPEN node on P, _, at

time ¢, for which we know that

@) S fp_@).
However, since (2) is assumed to hold with strict inequality for any »’ along P, _,, we
must conclude
') S fo_(0') < fim)
implying that »’, not m;, should have been chosen for expansion at time #, thus contrad-
icting our supposition that n remains unexpanded at time ¢
o

The expansion condition of Theorem 6 plays a major role in analyzing the average
complexity of non-admissible algorithms, where f is treated as a random variable (Pearl,
1984). This condition is rather complex for general graphs since many paths may stem
from Pj toward a given node n, all of which must be tested according to Theorem 6.
The test is simplified somewhat in the case of trees since (2) need only be tested for one
node, »;€P{, which is the deepest common ancestor of n and y. Still, the condition stat-
ed in Theorem 6 requires that we know which path will eventually be found by the algo-
rithm and this, in general, may be a hard task to determine a-priori. An alternative con-
dition, involving only the behavior of f across the tree, will be given in the next subsec-
tion.
3.2 A Necessary and Sufficient Condition for Node’s Expansion on Trees

Here we present a necessary and sufficient condition for node’s expansion by al-
gorithm BF* under the assumption that the graph to be searched is a tree and the tie

breaking rule is "leftmost-first”". This condition, unlike those in Section 3.1, do not re-

quire knowing the solution path found but invokes only the properties of the search

graph and the evaluation function f.

Figure 2

The following notations and definitions will be used:

T, - a tree rooted at node s. The children of each node are ordered from left to right.

N denotes the depth of T,. Sbme of its leaf nodes are marked as goal nodes.
T,- asubtree of T, rooted at node r, r€7,.

M, - the minimax value M associated with solution paths in subtree 7,.. K T, contains

no goal nodes we will define M, ==.
P,_, - the path from i to r (including, as usual, the two end nodes).
P(;., - the path from i to r excluding node i.
Pj;-, - the path from i to r excluding node r.

Pi_, -the path fromitor excluding nodes i and r.

A;y - the deepestcommonanmtorofnodaiandjforwhichiisnotadesccndcntofj

and j is not a descendent of i.

f(r) - the evaluation function fp _(r).

For any ancestor node n of a given node k we now define two parameters called
left value and right value to be the minimum among the M values of the left and right
subtrees rooted at n, respectively. The terms left and right are defined with respect to

path P,_, (see Figure 2).

Definition: Let k be a node at depth k (k=<N) in T, and let n be a node on Py, with its
SODS 74,15, . . ., « - . ,0 Ordered from left to right where »; is on path P,_;. The left

value of n with respect to k, Vi(n), is given by

Similarly, the right value of n with respect to k is

Vi(x) = min {u}

i+1sjsb

Deﬁnition:Wesaythatniistotlwleftofnjifsomeanmtorofn,-isalcftsiblingofan

ancestor of n;.

Obviously for any two nodes in 7T, either one of them is a descendent of the other
or one of them is to the left of the other (but not both). This renders the execution of
algorithm BF* on 7, unique since, at any time, all nodes in OPEN are totally ordered by

both the size of f and the "left of” relationship.

Lemma 5: Let k be a node in T, which is expanded by BF* and let n be to the left of k
with n’=A, . If the path P,._, is bounded above by f(k) then n will be expanded before

k (see Figure 3a).

Proof: Assume P,._, is bounded above by f{k) but k is expanded before n. Im-
mediately before k is expandgd there is a node n” on P, ., Which is on OPEN. Since we
have f(n") = f(k) and n" is to the left of k (since n is), n" should be selected for expan-

sion and noi k which contradicts our supposition.

(a)
(b)

Figure 3
We are now ready to present the condition for node expansion.

Theorem 7: A node k at depth k of the search tree T, will be expanded by BF”* if and

only if the f value for each ancestor n of k along the path P,_, is lower than the

minimum M values of all subtrees stemming to the left of the path P,_,, and is not
higher than the minimum M values of all subtrees stemming to the right of P,_,. For-

mally:
For everynon P,_;

f(r) < min {Vlk.("’) In' € P[s-u)}

and
f(n) = min {Vi(n') {n' € P[:—n)}

Proof: In part (1) we show that the condition is necessary and in part (2) we

prove its sufficiency.

1. Assume to the contrary that node k was expanded but there is a node on P,
which does not satisfy the corresponding inequality. Let n be the first such

node with this counter property, that is, either

(@) f(n) = min {Vi(ﬂ') |n" € P(.t—n)}

() f(n)> min {Vﬁ(ﬂ') [n* € P(J-n)}
Assume that (a) holds and let'n* be a node on P,._,, on which the minimum of

the right-hand side of (a) is attained, i.e.,

Vi(n*) = min {Vf("') |n" € P(s—n) } .

According to the definition of V{(n*), there is a path P,._, from n* to a goal node

29

¢ that is situated to the left of n which is bounded by Vi(n*). Since Vi(n*)=/(n),
the path P,._, is bounded by f(r) and thus, by Lemma 5 t will be expanded be-
fore n and the algorithm will halt without expanding n and k which contradicts

our supposition that k is expanded by BF*.

Assume now that (b) holds. Using the same argument we should conclude that
exactly before n is chosen for expansion there is a path from an OPEN node to
a goal (situated to the right of n) which is strictly bounded below f(n). This
path should be expanded before n and the algorithm will terminate without ex-

panding n or k.

-

Let k be a node at depth k that satisfies the condition. We will show that k
mustbccxpandedby_BF‘. Let t be the goal node on which BF* halts. K t is
a descendent of k then, obviously k must be expanded. Otherwise, t is either

to the left of k or to its right.

case a: t is to the left of k. Let n’ = A, n' is on the path P,_,. Let M
be the max f value on P, and n’' €P(,.) with f(n'’) = M (see figure 3a). Since
t is expanded, n’ must be expanded, and therefore, before the algorithm expands
n'’ there is always an OPEN node on P, ;. From the condition of the theorem

N a€Pu_y fA)<M=f(a")
and therefore all the nodes on P, _,; must be expanded before n’’. Knowing that

n'’ is expanded implies the expansion of k and all its ancestors.

case b: t is to the right of k. The sitnation in this case is shown in Figure
3b. From the condition of the theorem it follows that the path P, _;; is bounded

below f(r’’) and therefore from lemma 5 k should be expanded before n’’.

4. ON THE OPTIMALITY OF A*

4.1 Previons Works and the Notion of Equally-Informed Algorithms

The optimality of A*, in the sense of computational efficiency, has been a subject of
some confusion. The well-known property of A* which predicts that decreasing errors
h*-h can only improve its performance (Nilsson, 1980, result 6) has often been interpret-
ed to reflect some supremacy of A* over other search algorithms of equal information.
Consequently, several authors have assumed that A*’s optimality is an established fact
| (e.g., Nilsson, 1971; Mero, 1984; Barr and Feigenbaum, 1982). In fact, all this property
says is that some A* algorithms are better than other A* algorithms depending on the
heuristics which guide them. It does not indicate whether the additive rule f= g+h is the
best way of combining g and h, peither does it assure us that expansion policies based
only on g and h can do as well as more sophisticated policies that use the entire informa-
tion gathered by the search. These two conjectures will be examined in this section, and
will be given a qualified confirmation.

The first attempt to prove the optimality of A* was carried out by Hart, Nilsson
and Raphacl (1968, 1972) and is summarized in Nilsson (1971). Basically, Hart et al.
argue that if some admissible algorithm B fails to expand a node n expanded by A®,
then B must have known that any path to a goal constrained to go through node n is
nonoptimal. A®, by comparison, had no way of realizing this fact because when n.was
chosen for expansion it satisfied g(n) + k(n) =< C*, clearly advertizing its promise to
deliver an optimal solution path. Thus, the argument goes, B must have obtained extra

information from some external source, unavailable to A* (perhaps by computing a

32

higher value for h(n)), and this disqualifies B from being an "equally informed"”, fair

competitor, to A*.

The weakness of this argument is f.hat it fails to account for two legitimate ways
in which B can decide to refrain from expanding n based on information perfectly acces-
sible to A*. First, B may examine the properties of previously exposed portions of the
graph and infer that n actually deserves a much higher estimate than h(n). A®, on the
other hand, although it has the same information available to it in CLOSED, cannot put
it into use because it is restricted to take the ﬁﬁﬁam h(n) at face value and only judge
nodes by the score g(n) + h(n). Second, B may also gather information while exploring
sections of the graph unvisited by A®, and this should not render B an unfair, "more in-
formed" competitor to A* because in principle A* too had an opportunity to visit those
sections of the graph. Later in this section (see Figure 6) we demonstrate the existence

of an algorithm B which manages to outperform A* using this kind of information.

Gelperin (1978) has correctly pointed out that in any discussion of the optimality
of A* one should also consider algorithms which adjust their h in accordance with the
information gathered during the search. His analysis, unfortunately, falls short of con-
sidering the entirety of this extended class, having to follow an over-restrictive definition
of equally-informed. Gelperin’s interpretation of "an algorithm B is never more informed
than A*", instead of just restricting B from using information inaccessible to A, actually
forbids B from processing common information in a better way than A does. For exam-
ple, if B is a best-first algorithm guided by f3, then in order to qualify for Gelperin’s de-

finition of "never more informed than A*," B is forbidden from ever assigning to a node

33

" o a value f;(x) higher than g(n) + h(n), even if the information gathered along the path

to n justifies such an assignment.

In our analysis we will use the natural definition of "equally informed,” allowing
the algorithms compared to have access to the same heuristic information while placing
no restriction on the way they use it. Accordingly, we assume that an arbitrary heuristic
function h(n) is assigned to the nodes of G and that the value h(n) is made available to
each algorithm that chooses to generate node . This amounts to viewing h(n) as part of
- the parameters that specify problem-instances and correspondingly, we shall represent
cach problem instance by the quadrﬁplc I=(G,s,T,h).

We will demand, however, that A* only be compared to algorithms that return
optimal solutions in those problem instances where their computational performances are
to be appraised. In partiéular, if our problem space contains only cases where
h(n) = h*(n) for every n in G, we will only consider algorithms which, like A®, return
least-cost solutions, in such cases. The class of algorithms answering this conditional ad-
missibility requirement will simply be called admissible and will be denoted by A.
From this general class of algorithms we will later examine two subclasses A ;. and Ayy.
A,. denotes the class of algorithms which are globally compatible with A®, i.c., they re-
turn optimal solutions whenever A* does, even in cases where & > A*. Ay stands for
the class of admissible BF* algorithms, i.e., those which conduct their search in a best-

first manner, being guided by a path-dependent evaluation function as in Section 1.

Additionally, we will assuﬁe that each algorithm compared to A* uses the primi-
tive computational step of node expansion, that it only expands nodes which were gen-
erated befmé, and that it begins the expansion process at the start node s. This ex-
cludes, for instance, bi-directional searches (Pohl, 1971) or algorithms which simultane-

ously grow search trees from several "seed nodes” across G.

4.2. Nomenclature and s Hierarchy of Optimality Relations

Our notion of optimality is based on the usual requirement of Dominance (Nilsson,

1980).

Definition: Algorithm A is said to dominate algorithm B relative to a set L of problem in-
stances iff in every instance [€I, the st of nodes expanded by A is a subset of the set of
nodes expanded by B. A strictly dominates B iff A dominates B and B does not dom-
inate A, i.e., there is at least one instance where A skips a node which B expands, and

no instance where the opposite occurs.

This definition is rather stringent because it requires that A establishes its su-

periority over B under two difficult tests:
1) expanding a subset of nodes rather than a smaller number of nodes
2) outperform B in every problem instance rather than the majority of instances

Unfortunately, there is no easy way of loosening any of these requirements without in-
voking statistical assumptions regarding the relative likelihood of instances in [. In the

absence of an adequate statistical model, requiring dominance remains the only practical

35

way of guaranteeing that A expands fewer nodes than B, because if in some problem in-
stance we would allow B to skip even one node that is expanded by A, one could im-
mediately present an infinite set of instances where B grossly outperforms A. (This is
normally done by appending to the node skipped a variety of trees with negligible costs

and very low h).

Adhering to the concept of downinance, the strong definition of optimality pro-
claimsalgorithmAaptimaloveraclassAofalgorithmsiffAdominatescvcrymber
. of A. Here the combined multiplicity of A and I also permits weaker definitions, for ex-
ample, we may proclaim A weakly optimal over A if no member of A strictly dominates
A. The spectrum of optimality condjtions becomes cven richer when we examine A*,
which stands for not just one but a whole family of algorithms, cach defined by the tie-
breaking-rule chosen. We chose to classify this spectrum into the following four types
(in a hicrarchy of decreasing strength):

Type 0: A* is said to be 0-optimal over A
relative to I iff in every problem instance /€L every tie-breaking-rule in A®* ex-
pands. a subset of the nodes expanded by any member of A. (In other words,
every tie-breaking-rule dominates all members of A.)

Type 1: A* is said to be 1-optimal over A
relative to I iff in every problem instance /€I there exists at least one tie-
breaking-rule which expands a subset of the set of nodes expanded by any
member of A.

Type 2: A®* is said to be 2-optimal over A
relative to I iff there exists no problem instance /€L where some member of A
expands a proper subset of the set of nodes which are expanded by some tie-
breaking-rule in A*.

Type 3: A® is said to be 3-optimal over A
relative to I iff the following holds: if there exists a problem instance /,€1 where
some algorithm B€A skips a node expanded by some tie-breaking-rule in A®,
then there must also exist some problem instance ;€1 where that tie-breaking-
rule skips a node expanded by B. (In other words, no tie-breaking-rule in A* is
strictly dominated by some member of A.)

Type-1 describes the notion of optimality most commonly used in the literature,
and it is sometimes called "optimal up to a choice of a tic-breaking-rule”. Note that
these four definitions are applicable to any class of algorithms, B, contending to be op-
timal over A; we need only replace the words "tic-breaking-rule in A*" by the words
»member of B". If B turns out to be a singleton, then type-0 and type-1 collapse to
strong optimality. Type-3 will collapse into type-2 if we insist that 7, be identical to /,.

We are now ready to introduce the four domains of problem instances over which
the optimality of A® is to be examined. The first two relate to the admissibility and con-

sistency of h(n).

Definition: A heuristic function k(r) is said to be admissible on (G,T') iff #(n) = h*(n) for

every n€G

37

Definition: A heuristic function k(r) is said to be consistent (or monotone) on G iff for

any pair of nodes, a’ and n, the triangle inequality holds:
h{n') s k(n',n) + h(n)

Corresponding to these two properties we define the following sets of problem instances:
Lap = {(G-SI-h) | b=h* on (G-I')}
Lo = {(G,.-.,l",h) lhisconsiswntunG}

" Clearly, consistency implies admissibility (Pearl, 1984) but not vice versa, therefore,

Loow € Iap

A special and important subset of L,y (and Loow), called non-pathological in-
stances, are those instances for which there exists at least one optimal solution path
along which h is not fully informed, that is, A<h* for every non-goal node on that path.
The non-pathological subsets of L,p and Loy will be denoted by Ip and Iy, respec-

tively.

It is known that if # < h*, then A® expands every node reachable from s by a
strictly C*-bounded path, regardless of the tie-breaking rule used. The set of nodes with
thispropertywi]lbereferredtoassurelyapmdedbyA'. In general, for an arbitrary
constant d and an arbitrary evaluation function f over (G, s, T, h), we let N¢ denote the
set of all nodes reachable from s by some srictly d-bounded path in G. For example, NSh

is a set of nodes surely expanded by A* in some instance of I,p.

38

The importance of non-pathological instances lies in the fact that in such instances
the set of nodes surely expanded by A* are indeed al! the nodes expanded by it. There-
fore for these instances any claim regarding the set of nodes surcly expanded by A* can
be translated to "the set of all the nodes” expanded by A*. This is not the case, howev-
er, for pathological instances in Lyp; N{7y is often a proper subset of the set of nodes ac-
tually expanded by A®. If h is consistent, then the two sets differ only by nodes for
which h(n) = C*—g*(n) (Pearl, 1984). However, in cases where 4 is inconsistent, the

difference may be very substantial; each node n for which k(n) = C*—g*(n) may have
| many descendents assigﬁcd lower h values (satisfying A+g<C*) and these descendents
may be expanded by every tie-breaking-rule of A* cven though they do not belong to
ugc-:h'

In the folldwing subsection we present several theorems regarding the behavior of
competing classes of algorithms relative to the set NG, of nodes surely expanded by A*,
and will interpret these theorems as claims about the type of optimality that A® enjoys

over the competing classes. Moreover, for any given pair (A, I) where A is a class of

algorithms drawn from {A,d,Au,A,c } and I is a domain of problem instances from

{IAD, Lps Lcons Icon }, we will determine the strongest type of optimality that can be

established over A relauve to I, and will identify the algorithm that achieves this op-
timality. The relationships between these classes of algorithms and problem domains are
shown in Figure 4. The algorithm A** is an improvement over A* discussed in Appen-
dix 2.

39

Classas of Algorithms

1,p: h admissible

fag:h agmissibie
nangathologicai

lCON; h consistent

1ggN: h consistent

nonpathological Ay Age - Ay
admissible globally compatible best-first
oni,g with A

Figure 4
4.3 Where and How is A® Optimal?

4.3.1 Optimality over admissible algorithms, A 4

Theorem 8: Any algorithm that is admissible on L,p will expand, in every instance

I€lcon, all nodes surely expanded by A®.

Proof: Let I=(G, s, T, h) be some problem instance in I, and assume that o is

surely expanded by A®, i.e., néNS,. Therefore, there cxists a path P,_, such that

¥n' € Py, , g(n") + h(n") < C*
Let B be an algorithm compatible with A*, namely halting with cost C* in L.

Figure 5
Assume that B does not expand n. We now create a new graph G (see figure 5)
by adding to G a goal node t with h(t)=0 and an edge fromn to t with non-negative
cost c=h(n)+A, where

A =12(C*-D)>0

and

D= max{f(n’) |n’ € Ngh}
This construction creates a new solution path P* with cost at most C*-A and, simultane-
ously, (due to h’s consistency on I) retains the consistency (and admissibility) of h on the
new instance /*. To establish the consistency of h in // we note that since we kept the h
values of all nodes in G unchanged, consistency will continue to hold between any pair

of nodes previously in G. It remains to verify consistency on pairs involving the new

44

goal node t, which amounts to establishing the inequality h(n’) < k(a’,f) for every node
2’ in G. Now, if at some node n’ we have A(n") > k(n',) then we should also have:

h(n") > k(n',n) + ¢ = k(a';n) + h(n) + A
in violation of h’s consistency on 1. Thus, the new instance is also in Leow-

In searching G’, algorithm A* will find the extended path P* costing C*-A, be-
cause:

f@) = gla)+c =f(A)+A <D + A =C*-A<(C*
. and so, t is reachable from s by a path bounded by C*-A which ensures its selection. Al-

gorithm B, on the other hand, if it avoids expanding n, must behave the same as in
problem instance I, halting with cost C* which is higher than that found by A®. This
contradicts the supposition that B is both admissible on I and avoids the expansion of

node n.

=

The implications of Theorem 8 relative to the optimality of A* are rather strong.
In non-pathological cases /€Ly A* never expands a node outside NG, and, therefore,
Theorem 8 establishes the 0-optimality of A* over all admissible algorithms relative to
Iy In pathological cases of Icew there may also be nodes satisfying f(n)=C* that
some tie-breaking-rule in A* expands and, since these nodes are defined to be outside
NGy, they may be avoided by some algorithm B €Ay, thus destroying the 0-optimality
of A* relative to all L. However, since there is always a tic-breaking-rule in A*
which, in addition to NGy, expands only nodes along one optimal path, Theorem 8 also

establishes the 1-optimality of A® relative the entire Iy domain. Stronger yet, the

42

only nodes that A* expands outside N, are those satisfying f(r) = C*, and since this
equality is not likely to occur in many nodes of the graph, we may interpret Theorem 8

to eadow A* with “almost” O-optimality (over all admissible algorithms) relative to Icon.

The proof of Theorem 8 makes it tempting to conjecture that A* retains the same
type of optimality relative to cases where h is admissible but not necessarily consistent.
In fact, the original argument of Hart, Nilsson and Raphael (1968), that no admissible
algorithm equally informed to A* can ever avoid a node expanded by A* (sec Section
" 4.1), amounts to claiming that A® is at least 1-optimal relative to L,p. Similar claims

are made by Mero (1984) and are suggested by the theorems of Gelperin (1977).

Unfortunately, Theorem 8 does not lend itself to such extension; if h is admissible
but not consistent, then after adding the extra goal node t to G (as in Figure 5) we can
no longer guarantee that h will remain admissible on the new instance created. Further-
more, we can actually construct an algorithm that is admissible on L,p and yet, in some
problem instances, it will grossly outperform every tie-breaking-rule in A*. Consider an
algorithm B guided by the following search policy: Conduct an exhaustive right-to-left
depth-first search but refrain from expanding one distinguished node n, e.g., the left-
most son of s. By the tjmethissearchiscompleted, examine n to see if it has the po-
tential of sprouting a solution path cheaper than all those discovered so far. If it has,
expand it and continue the search exhaustively. Otherwise,® return the cheapest solu-
tion at hand. B is clearly admissible; it cannot miss an optimal path because it would

only avoid expanding n when it has sufficient information to justify this action, but oth-

@A simple valid test for skipping a node in I,p is that max { g(n’) + A(n) | n’} on some
path P from s to n be larger than the cost of the cheapest solution at hand.

43

erwise will leave no stone unturned. Yet, in the graph of Figurc 6a, B wil avoid ex-
panding many nodes which are surely expanded by A*. A* will expand node 7, immedi-
ately after s (f(/,)=4) and subsequently will also expand many nodes in the subtree root-
ed at J,. B, on the other hand, will expand J;, then select for expansion the goal node
y, continue to expand J; and at this point will halt without expanding node J,. Relying
on the admissibility of h, B can infer that the estimate h(J)=1 is overly optimistic and
should be at least equal to h(J)—1=19, thus precluding J, from lying on a solution path

cheaper than the path (s,/3,y) at hand.

(a) (b)

Figure 6

Granted that A* is not 1-optimal over all admissible algorithms relative to I,p,
the question arises if a 1-optimal algorithm exists altogether. Clearly, if a 1-optimal al-
gorithm exists, it would have to be better than A* in the sense of skipping in some prob-

lem instances, at least one node surely expanded by A* while never expanding a node

which is surely skipped by A®. Note that algorithm B above could not be such an op-
timal algorithm because in.return for skipping node J, in Figure 6a, it had to pay the
price of expanding J;, and J; will not be expanded by A* regardless of the tie-breaking-
rule invoked. If we could show that this "node tradeoff” pattern must hold for every ad-
missible algoﬁfhn:; and on every instance of L., then we would have to conclude both
that 1o 1-optimal algorithm exists and that A® is 2-optimal relative to this domain.

Theorem 9 accomplishes this task relative to L,p.

Theorem 9: If an admissible algorithm B does not expand a node which is surely
expanded by A* in some problem instance where h is admissible and non-pathological,
then in that very problem instance B must expand a node which is avoided by every tie-

breaking-rule in A®.

Proof: Assume the contrary, i.e., there is an instance /=(G,s,I' k) € Lap such that
a node n which is surely expanded by A* is avoided by B and, at the same time, B ex-
pands no node which is avoided by A*, we shall show that this assumption implics the
existence of another instance I’ € 1,n Where B will not find an optimal solution. [’ is
constructed by taking the graph G, exposed by the run of A® (including nodes in OPEN)
and appending to it another edge (n,t) to a new goal pode t, with cost c(n8)=D -k (s,n)

where

D = max{f(n') | n’ € ugh}

and k,(n’) is the cost of the cheapest path from 2’ ton in G,.

Since G contains an optimal path P*,_y along which a(n")<h*(n") (with the excep-
tion of y and possibly s), we know that because ties are broken in favor of goal nodes
A* will halt without ever expanding a node baving f(n)=C". Therefore, every nonter-
minal node in G, must satisfy the strict inequality g(n)+h(n)<C*.

We shall first prove that I’ is in L,p, i.¢., that A(a") = h*;(n’) for every node n’
in G,. This inequality certainly holds for a’ such that g(n’)+h(n’) = C* because all such
nodes were lcft unexpanded by A* a;xd hence appear as terminal nodes in G, for which
* h*.(n')=o (with the exception of v, for which i(y)=h*(y)=0). It remains, therefore, to
verify the inequality for nodes n’ in NG, for which we have g(a") + 4(»’) = D. Assume
the contrary, that for some n’ € N_{-:.h we have a(n')>h*;(n’). This implies |

h(n') > k(' n) + c(n0)
= k,(n’,n) + D — k(s,n)

= k(') + ELe') + h(a') = k(sn)

k(s,7) > k(n',n) + k,(s;n")
in violation of the triangle inequality for cheapest paths in G,. Hence, /' is in Lzp.

Assume pow that algorithm B does not generate any node outside G.. If B has
avoided expanding n in I, it should also avoid expanding n in I’; all decisions must be
the same in both cases since the sequence of nodes generated (including those in OPEN)
is the same. On the other band, the cheapest path in I’ now goes fromston to ¢, hav-
ing the cost D < C*, and will be missed by B. This violates the admissibility of B on an

instance in I, and proves that B could not possibly avoid the expansion of n without

gencrating at least one node outside G,. Hence, B must expand at least one node avoid-
ed by A* in this specific run.

o

Theorem 9 has two implications. On one hand it conveys the discomforting fact

that neither A® nor any other algorithm is 1-optimal over those guaranteed to find an

optimal solution when given h<h*. On the other hand, Theorem 9 endows A* with

some optimality property, albeit weaker than hoped; the only way to gain one node from

A®* is to relinquish another. Not every algorithm enjoys such strength. These implica-

tions are summarized in the following Corollary.

Corollary 2: No algorithm can be 1-optimal over all admissible algorithms relative
to L,p, but A* is 2-optimal over this class relative to L,p.

The fact that Theorem 9 had to be limited to non-pathological instances is ex-
plained by Figure 6b, showing an exception to the node-tradeoff rule on a pathological
instance. Algorithm B does not expand a node (/1) which must be expanded by A* and
yet, B does not expand any node which A* may skip. This example implies that A* is
pot 2-optimal relative to the entire I,p domain and, again, this begs the questions
whether there exists of a 2-optimal algorithm altogether, and whether A® is at least 3-
optimal relative to this domain.

The answer to both questions is, again, negative; another algorithm that we shall
call A**, turns out both, to strictly dominate A* and to meet the requirements for type-

3 optimality relative to Lyp. A** conducts the search in a manner similar to A®, with

47

one exception; instead of f(n)=g(n) + h(n), A** uses the evaluation function:

f(n) = max {g(n') + h{n’) | n’ on the current path ton }
This, in effect, is equivalent to raising the value of h(n) to a level where it becomes con-
sistent with the h’s assigned to the ancestors of n (see Mero, 1984). A** chooses for
expansion the nodes with the lowest f value in OPEN (breaking ties arbitrarily but in
favor of goal nodes) and adjusts pointers along the path having the lowest g value. In
figure 6a, for example, if A** cver expands node J, then its son J; will immediately be

_ assigned the value f(J;) = 21 and its pointer be directed toward J,.

It is possible to show (see Appendix 2) that A** is admissible and that in non-
pathological cases A** expands the same set of nodes as does A*, namely the surely ex-
panded nodes in NC;,. In pathological cases, however, there exist tie-breaking-rules in
A** that strictly dominate every tie-breaking-rule in A*. This immediately precludes A*

from being 3-optimal relative to I, and nominates A** for that title.

Theorem 10: Let a** be some tie-breaking-rule in A** and B an arbitrary algorithm, ad-
missible relative to I,p. If in some problem instance /,€14p, B skips a node expanded

by a** then there exists another instance /,€L,p where B expands a node skipped by
a**.
Proof: Let

SA =M1y By coes By J -

and

SB = Mgy MYy weee ny, K-
be the sequences of nodes expanded by a** and B, respectively, in problem instance

1,€L,p, i.c., K is the first node in which the sequence Sz deviates from S,. Consider G,,
the explored portion of the graph just before a** expands node J. That same graph is
also exposed by B before it decides to expand X instead. Now construct a new problem
instance I, consisting of G, appended by a branch (J,f) with cost c(/.1) = () -2 W),
where t is a goal node and f(J) and g(J) are the values that a** computed for J before its
expansion. [, is also in Isp because h(t)=0 and c(J,t) are consistent with h(J) and with
" the W’s of all ancestors of J in G,. For if some ancestor n; of J satisfies A(n;) > h*(n;) we
will obtain a contradiction:
g(m) + h(n) > g(m) + h*(m)
= g(n)) + k(mi) + cU)
= g(J) + cls)
= fU) = max (a(n)) + h(n))]
Moreover, a®* will expand in /, the same sequence of nodes as it did in 7,, until J is ex-
panded, at which time t enters OPEN with (1) = max [g(/) + c(/.1), f()] = f¢/). Now,
since J was chosen for expansion by virture of its lowest f value in OPEN, and since .a“"
always breaks up ties in favor of a goal node, the next and final node that a** expands
must be t. Now consider B. The sequence of nodes it expands in /; is identical to that
traced in I, because, by avoiding node J, B has no way of knowing that a goal node has

been appended to G,. Thus, B will expand X (and perhaps more nodes on OPEN), a

node skipped by a**.

49

Note that the special evaluation function used by A**

f(n) = max {g(u') + h(n') I.n' on P,_,,} was necessary to ensure that the new instance, /5,

remains in I,. The proof cannot be carried out for A®* because the evaluation function
~ f(n) =g(n) + h(n) resuits in c(/.1) = A{J), which may lead to violation of A(n;) = 4*(n;)

for some ancestor of J.

Theorem 10, together with the fact that its proof makes no use of the assumption

_ that B is admissible, gives rise to the following conclusion:
Corollary 3: A** is 3-optimal over all algorithms relative to Lp.

Theorem 10 also implies that there is no 2-optimal algorithm over A4 relative to
I,p. From the 3-optimality of A** we conclude that every 2-optimal algorithm, if such
exists, must be a member of the A** family, but figure 6b demonstrates an instance of
I,p where another algorithm (B) only expands a proper subset of the nodes expanded by

every member of A**. This establishes the desired conclusion:
Corollary 4: There is no 2-optimal algorithm over A relative to L.p
4.3.2 Optimality over globally compatible algorithms, A

So far our analysis was restricted to algorithms in A4, i.e., those which return
optimal solutions if A(r) = #*(n) for all n, but which may return arbitrarily poor solu-
tions if there are some n for which h(n) > b*(n). In situations where the solution

costs are crucial and where h may occasionally overestimate h* it is important to limit

50

the choice of algorithms to those which return reasonably good solutions even when h >
h*. A®, for example, provides such guarantees; the costs of the solutions returned by
A® do not exceed C* + A where A is the highest ervor h*(n)-h(n) over all nodes in the
graph (Harris 1974) and, moreover, A* still returns optimal solutions in many problem
instances, i.c., whenever A is zero along some optimal path. This motivates the defini-
tion of A, the class of algorithms globally compatible with A*, namely, they return op-

timal solutions in every problem instance where A* returns such solution.

Since A, is a subset of A,4, We should expect A* to hold a stronger optimality
status over A, at least relative to instances drawn from L,n. The following Theorem

confirms this expectation.

Theorem 11: Any algorithm that is globally compatible with A* will expand, in problem

instances where h is admissible, all nodes surely expanded by A®.

Proof: Let 7 = (G,5,T,h) be some problem instance in I4p and let node n be

surely expanded by A*, i.c., there exists a path P,_, such that

g(n) + h(r) < C* foralln’ € P,_,
Let D = max {f(n') | n’ € P,_,,} and assume that some algorithm B€A,. fails to expand
n. Since7 € I, both A* and B will return cost C*, while D<C*.

We now create a new graph G, as in figure 5, by adding to G a goal node ¢ with
h(#') = 0 and an edge from n to ¢ with non-negative cost D-g(P;-,). Denote the ex-

tended path P,_,_, by P*, and let I’ = (G'.s,T Us',h) be a new instance in the algo-

51

rithms’ domain. Although h may no longer be admissible on /’, the construction of I’
guarantees that f(n') = D if n’ € P*, and thus, by Theorem 2, algorithm A®* searching G’
will find an optimal solution path with cost C, = M < D. Algorithm B, however, will
search I’ in exactly the same way it searched /; the only way B can reveal any difference
between / and 7’ is by expanding n. Since it did not, it will not find solution path P*,
but will halt with cost C*>>D, the same cost it found for / and worse than that found by

A*. This contradicts its property of being globally compatible with A®.

" Corollary 5: A* is 0-optimal over A relative to Ly,

The corollary follows from the fact that in non-pathological instances A* expands
only surely expanded nodes.

Corollary 6: A* is 1-optimal over A, relative to I op.

Proof: The proof relies on the observation that for every optimal path P* (in any
instance of I,p) there is a tie-breaking-rule of A* that expands only nodes along P* plus
perhaps some other nodes having g(n) + &(n) < C*, i.c., the only nodes expanded satis-
fying the equality g(n) + A(n) = C* arc those on P*. Now, if A® is not 1-optimal over
A then, given an instance I, there exists an algorithm B €A . such that B avoids some
node expanded by all tic-brea.king—rul‘a in A®. To contradict this supposition let A;* be
the tie-breaking-rule of A* that returns the same optimal path P* as B returns, but ex-
pands no node outside P* for which g(n) + A(n) = C*. Clearly, any node n which B

avoids and A,* expands must satisfy g(n) + h(n) < C*. We can now apply the argument

52

used in the proof of Theorem 11, appending to n a branch to a goal node ', with cost

c(n,t')=h{n). Clearly, A;* will find the optimal path (s,n,’) costing g(n) + A(n) < C*,

while B will find the old path costing C*, thus violating its global compatibility with At
n|

4.3.3 Optimality over best-first algorithms, Ay

The next result establishes A*’s optimality over the set of best-first algorithms
(BF*) which are admissible if provided with A=h*. These algorithms will be permitted
~ to employ any evaluation function f, where fis a function of the nodes, the edge-costs,
and the heuristic function A evaluated on the nodes of P, i.e.

fo & fls.ayng . . . on) = f({m}, {e(rni Db {h(m)} | mi€P).
Lemma 6: Let B be a BF* algorithm using an evaluation function f; such that for every
(G, s, T, h) € L,p fp satisfies:
| Fo=f(ss mynzs . .. Y)=C(P)) ¥ €T.
If B is admissibie on Lyp, then Ny C NS
o

Proof: Let 1=(G, s, T, h) € L,p and assume €N, but néNC, i.c., there exists

a path P,_, such that for every n’€P,_, gp(n’) + &(n") <C* and for some

nEP,_, fo(n')=C*.
Let

Q- n:,:exg__{s(u%h(n')}

53

Qp = max B("')}

n'eP

Obviously: O < C* and Q5 = C* => 05>0. Define G’ to include path P,_, with two

O5+0
2 ?

additional goal nodes 1,,t, as described by figure 7. The cost on edge (s,1;) is
the cost on edge (n,t;) is @—gp _(n), 1, and 1, are assigned A’ =0 while all other nodes re-
tain their old h. 7'=(G",s,I" |J {t1.12},h) € Lap since ¥’, n’€P,_,, g(n')+h(n')=Q which

implies that h(r')<Q—-g(n")=h*(n").

Q-g, (nl

$=Nn

Qg +
_2

t2
>—o—o--
N, t———
P

$=-N

P

n Y

Figure 7

Obviously the optimal path in G’ is P,-, with cost Q. However, following the
condition of the Lemma, the evaluation function f; satisfies

0z+0Q
Mp_ = fot) = CPy-) = <05

Moreover, since Mp_ = Qp, We have Mp < Mp _, implying that B halts on the subop-

timal path P,_, , thus contradicting its admissibility.

&A

Theorem 12: Let B be a BF® algorithm such that f; satisfies the property of Lemma 6.
a. If Bis admissible over I, then B expands every node in NC,..

b. If B is admissible over L, and fp is of the form:

fr,_(n) = F(gp,_(n), h(n))

then F(x,y)<x+y.
aq 8
2 \ 2
G = s/
' g 14
EP(n) h(nj
Figure 8

Proof:

a. Let M be the min-max value corresponding to the evaluation function fp. It is

easy to see that M=C*. From that and from Theorem 11 we get

NS sNE = NP

and it is implied by Theorem 5 that any node in N is expanded by B.

b. Assume to the contrary that there is a path P and a node n€P such that

- -

Flgp(n) h(m) > go(n)+h(n)
Let ay=F(gp(n)oh(n))s as=gp(n)+h(n). Obviously, a; <~

2 2<al. I.ﬁtG!xa

graph as shown in Figure 8 having nodes s,r.1,,¢; and edges (s,7), (r.ty), (5,1,) with

a,+a;
costs c(s,r)=gp(n), c(rit)=h(n), cls,t)= 7 Let I=(G,s.{t,45},k) where

h(s)=0, h(r)=h(n) and h(t))=h()=0. Obviously/ € L,p. However,

ﬂl+

a3
£(r) = F(gp(n)h(m)) = ay > —5— = e(s.t)) = f(tD)
implying that B halts on solution path P,_,, again contradicting its admissibility.

o
Corollary 7: A® is 0-optimal over A,; relative to L., and 1-optimal relative

to L. A** is 1-optimal over A, relative to Lsp.

Note that A** is not a member of A it directs pointers toward the
lowest-g rather than the lowest f path as instructed by our definition of BF* (Sec-
tion 1).

o

An interesting implication of Part b of Theorem 12 asserts that any admis-
sible combination of g and h, h=<h*, will expand every node surely expanded by
A*. In other words, the additive combination g+ is, in this sense, the optimal

way of aggregating g and k for additive cost measures.

The O-optimality of A* relative to nonpathological instances of I, also
implies that in these instances g(») constitutes a sufficient summary of the infor-

mation gathered along the path from s to n. Any additional information regard-

- 56

ing the heuristics assigned to the ancestors of n, or the costs of the individual arcs
along the path, is superfluous, and cannot yield a further reduction in the number
of nodes expanded. Such information, however, may help reduce the number of
node evaluations performed by the search (see Martelli (1977), Bagchi and
Mahanti (1983), and Mero (1984)).

4.4 Summary and Discussion

Our results concerning the optimality of A*® are summarized in Table 1.
For each class-domain combination from Figure 4, the table identifies the strong-
est type of optimality that exists and the algorithm achieving it.

The most éigniﬁmnt results arc those represented in the left-most column,
relating to A ,,, the entire class of algorithms which are admissible whenever pro-
vided with optimistic advice. Contrary to prevailing beliefs A* turns out not to
be optimal over A, relative to every problem graph quantified with optimistic es-
timates. There are admissible algorithms which, in some grapbs, will find the op-
timal solution in just a few steps whercas A* (as well as A** and all their varia-
tions) would be forced to explore arbitrary large regions of the search graphs (see
Fig. 6a). In bold defiance of Hart, Nilsson, and Raphael’s (1968) argument for
A"'s optimality, these algoritl:ms succeed in outsmarting A* by penctrating re-
gions of the graph that A* finds unpromising (at least temporarily), visiting some
goal nodes there, then processing the information gathered to identify and purge

those nodes on OPEN which no longer promise to sprout a solution better than

Domain-
of
Problem

Instances

)

Class of Algorithms

non pathologicat

A" is 2-optimal

No 1-optimal exists

A* is 0-optimal

Admissible Globally Compatible Best-First
if h=<<h* with A*
Agg Age LY
[
Admissible A" is 3-optimal A" is 1-optimai A* is 1-optimal
lao No 2-optimal exists | No 0-optimal exists | No O-optimal exists
Admissible
and

A* is O-optimal

Y
Consistent A" is 1-optimal . A" is 1-optimal A’ is 1-optimal
lcon No O-optimal exists | No O-optimal exists | No 0-optimal exists
Consistent
nonpathological A’ is 0-optimal A" is 0-optimal A* is O-optimal
IZon
TABLE 1

[l & T

the cheapest one at hand.

In nonpathological cases, however, these algorithms cannot outsmart A*
without paying a price. The 2-optimality of A* relative to I, means that each
such algorithm must always expand at least one node which A* will skip. This
means that the only regions of the graph capable of providing node-purging infor-
mation are regions which A* will not visit ar all. In other words, A* makes full
use of the information gathered along its search and there could be no gain in

changing the order of visiting nodes which A* plans to visit anyhow.

This instance-by-instance node tradeoff no longer holds when pathological
cases are introduced. The fact that A* is not 2-optimal relative to I, means that
some smart algorithms may outperform A* by simply penetrating certain regions
of the graph earlier than A* (A* will later visit these regions), thus expanding
only a proper subset of the set of nodes expanded by A*. In fact the lack of 2-
optimality in the (A4, I.p) entry of table 1 means that no aigorithm can be pro-
tected against such smart competitors; For any admissible algorithm A, there ex-
ists another admissible algorithm A, and a graph G quantified by optimistic
heuristic 4 (k < h*) such that A, expands fewer nodes than A, when applied to G.
Mero (1984) has recently shown that no optimal algorithm exists if complexity is
measured by the number of expansion operations (a node can be reopened several
times). Our result now shows that A,; remains devoid of an optimal algorithm

even if we measure complexity by the number of distinct nodes expanded.

58

The type-3 optimality of A** over A,y further demonstrates that thosc
smart’ algorithms which prevent A from achieving optimality are not smart after
all, but simply lucky; each takes advantage of the peculiarity of the graph for
which it was contrived and none can maintain this superiority over all problem in-
stances. If it wins on one graph there must be another where it is beaten, and by
the very same opponent, A**. It is in this sense that A** is 3-optimal, it exhibits

a universal robustness against all its challengers.

Perhaps the strongest claim that Table 1 makes in favor of A* is contained
in the entries related to Iy, the domain of problems in which 4 is known to be
not only admissible, but also consistent. It is this domain that enables A* to un-
leash its full prunning powers, achieving a node-by-node superiority (types 0 and
1) over all admissible algorithms. Recalling also that, under consistent h, A*
never reopens closed nodes and that only few nodes are affected by the choice of
tie-breaking-rule (see Pearl, 1984), we conclude that in this domain A* consti-

tutes the most effective scheme of utilizing the advice provided by 4.

This optimality is especially significant in light of the fact that consistency
is not an exception but rather a common occurrence; almost all admissible heuris-
tics invented by people are consistent. The reason is that the technique people in-
voke in generating heuristic estimates is often that of relaxation; we imagine a
simplified version of the problem at hand by relaxing some of its constraints,
solve the relaxed version mentally, then we use the cost of the resulting solution

as a heuristic for the original problem (Pearl, 1983). It can be shown that any

59

heuristic generated by such a process is automatically consistent, which explains
the abandon of consistent cases among human-generated heuristics. Thus, the
strong optimality of A* under the guidance of consistent heuristics implies, in ef-

fect, its optimality in most cases of practical interest.

REFERENCES

Bagchi. A. and Mahanti. A. 1983. "Search algorithms under different kinds of
heuristics- A compé.rative study.” Journal of the Association for Com-

puting Machinery, vol. 30, No. 1, January 1983.

Barr, A. and Feigenbaum, E.A. 1981. Handbook of Artificial intelligence, William Kauf-

man, Inc., Los Altos, California.

" Dreyfus, S.E. and Law, A.M. 1977. The Art and Theory of Dynamic Programming. New

York: Academic Press.

Gelperin, D. 1977. "On the optimality of A*". Artificial Intelligence, vol. 8, No. 1, 69-
76.

Harris, L.R. 1974. "The heuristic search under conditions of error.” Artificial Intelli-

gence, vol. 5, No. 3, 217-234.

Hart, P.E., Nilsson, N.J. and Raphael, B. 1968. "A formal basis for the heuristic deter-
mination of minimum cost paths.” IEEE Trans. Systems Science and

Cybernetics, SSC-4, No. 2, 100-107.

Hart, P.E., Nilsson, N.J. and Raphael, B. 1972. "Correction to a formal basis for the
heuristic determination of minimum cost paths.” SIGART Newsletter

37: 28-9.

61

Ibaraki, T. 1977. "The power of dominance relations in branch-and-bound algorithms.”
Journal of the Association for Computing Machinery, vol. 24, No. 2
pp. 264-279, April 1977.

Karp, R.M. and Pearl, J. 1983. "Searching for an optimal path in a tree with random
costs.” Artificial Intelligence. vol. 21, No. 1, March 1983.

Lawler, E.L. and Wood, D.E. 1966. "Branch-and-bound methods: A survey.” Opera-
tions Research, vol. 14, No. 4, pp. 699-719.

Martelli, A. 1977. "On the complexity of admissible search algorithms.” Artificial Intelli-

gence, vol. 8, No. 1, 1-13.

Mero, L. 1984. "A heuristic search algorithm with modifiable estimate.” Artificial Intel-
ligence, vol. 23, No. 1, 13-27.

Nilsson, N.J. 1971. Problem-Solving Methods in Artificial Intelligence, New-York:
McGraw-Hill.

Nilsson, N.J. 1980. Principles of Artificial Intelligence, Palo Alto, Calif.: Tioga Publish-
ing Co.
Pearl, J. 1983. "On the discovery and gencration of certain heuristics.” A/ Magazine

Winter/Spring 1983, pp. 23-33.

Pearl, J. and Kim, J.H. 1982. "Studies in semi-admissible heuristics.” IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-4, No. 4, pp.

392-399.

Pearl, J. 1983. "On the discovery and gencration of certain heuristics." Al Magazine
Winter/Spring 1983, pp. 23-33.

Pearl, J. and Kim, J.H. 1982. "Studies in semi-admissible heuristics.” IEEE Transactions
on Pattern Analysis and Machine Intelligence, PAMI-4, No. 4, pp.

392-399.

Pearl, J. 1984. HEURISTICS: Intelligent Search Strategies for Computer Problem Solving,

Reading, Mass.: Addison-Wesley.

Pohl, I. 1970. "First results on the effect of error in heuristic search.” Machine Intelli-

gence 5, pp. 219-236.

Pohl, I 1971. "Bi-directional Search.” In Machine Inselligence 6, B. Meltzer and D.
Michie (eds.), New York: American Elsevier, pp. 127-140.

Pohl, I 1973. "The avoidance of (relative) catastrophe, heuristic competence, genuine
dynamic weighting and computational issues in heuristic problem solv-
ing.” Proceedings of the third International joint Conference on Artifi-
cial Intelligence, Stanford University, Stanford, California, August
20-23, 1973.

APPENDIX 1: Finding an ¢-optimal path in a Tree with Random Costs

Let C*(Np) be the optimal cost of a root-to-leaf path in a uniform binary
tree of height N where each branch independently has a cost of 1 or 0 with proba-
bility p and 1-p, respectively. We wish to prove that for p > 122

PM=(1+e)C*(Np)] -0 &0

where

M= m}n max {f(n)},

n€ps

1(r) = g(n) + a*[N—d(n)],
and where a* is defined by the equation

Call a path P (a, L)-regular if the cost of every successive path segment of
length L along P is at most al. Karp and Pearl [1983] have shown that:

a. P[C*(Np)=aN] - 0 for a<a®.

b. If a<a®, one can always find a constant L, such that the probability
that there exists an (a,L)-regular path of length N is bounded away

from zero. Call this probability 1-g,, (¢,<1)-
Consider the profile of f along a (a,L)-regular path P sprouting from level
d, below the root. Along such a path g(n) satisfies:

g(n) = d,+[{d(n)—d;Ja + oL
and, consequently,

f(n) = (1-a)d,+a*N+al +d(n)(a—a*)
For a>a* the expression on the right attains its maximum when d(n) reaches its

largest value of N—d,, and so

M= max f(n) s (1-2a+a*)d,tal+Na
Now let d, be any unbounded function of N such that d,=o(N) and consider the

probability P[M=(1+8)a*N]. For every a between a* and (1+3)a* the inequality

(1-2a+a*)d,(N)+al,+Na = (1+8)a*N
will be satisfied for sufficiently large N, hence, choosing a*<a<(1+3)a*, we have

P[M=(1+8)a*N] = P[no (x,L,)—regular path stems from level d,(N)}

< [q,.]z‘.m -0

We can now bound our target expression by a sum of two probabilities:

P{M=(1+e)C*(N0)] = 1—P[(1+¢B)C‘(N,p)za‘N2(1-d2W]

1+e2 1-e2 |’
and, since each term on the right tends to zero, our claim is proved.

sP[C"(N,p)s a*N] + P[Ms ol

APPENDIX 2: Properties of A**

Algorithm A** is a variation of A*. It can be viewed as a BF* algorithm

(Section 1) that uses an evaluation function:
[p_[(n) = max {f(n') =gp_(0) + h(@') |0’ € P,_, }

A** differs from A® in that it relies not only on the g+4 va.lueofnoden,
but also considers the g+#4 values along the path from s to . The maximum is
then used as a criterion for node selection. Note that A** cannot be considered a
BF* algorithm since it uses one function, I, for ordering nodes for expansion
(step 3) and a different function g for redirecting pointers (step 6¢). Had we al-
lowed A** to use f* for both purposes it would not be admissible relative to I ,p,,

since £ is not order preserving.
We will now show that A** is admissible over I ..

Theorem: Algorithm A** will terminate with an optimal solution in every

problem instance where A=<h*

Proof: Suppose the contrary. Let C be the value of the path P,_, found by

A'* and assume C>C*.

We will argue that exactly before A** chooses the goal node r for expan-
sion, there is an OPEN node »’ on an optimal path with f'(n’) <= C*. If we show
that, than obviously A** should have selected ' for expansion and not ¢, since

[() = C* < C = f(1), which yields a contradiction.

Since A** redirects pointers according to g, the pointer assigned to the
shallowest OPEN node n’ along any optimal path is directed along that optimal
path. Moreover, h=h* implies that such a node satisfies f'(n’) = C*, and this

completes our argument.

We next show that A** dominates A* in the following sense:

Theorem:

a) For every tie-breaking-rule of A* and for every problem instance I€I,p,
there exists a tie-breaking-rule for A** which expands a subset of the

nodes expanded by A*. Moreover,

b) There exists a problem instance and a tie-breaking-rule for A** that ex-
pands a proper subset of the nodes which are expanded by any tie-
breaking-rule of A®.

Proof: Part a

From the definition of f° it is clear that all paths which are strictly bounded
below C* relative to f are also strictly bounded below C* relative to . There-
fore, both algorithms have exactly the same set of surely expanded nodes,
N = N, and this set is expanded before any node outside this set. Let n* be

the first node expanded by A* satisfying the equality f(n*)=C*. Exactly before

67

FIGURE CAPTIONS

Figure 1: The condition for expanding node » given that path P] is even-
tually found by the search. r will be expanded if all the f values along

path P, _, are lower than the maximal f value between n; and y (along P)).

Figure 2: The left and right values of ancestor a of k, with respect to the
Path S
Figure 3: Notation used is the proof of Lemma §; if P, _, is f(k)-

bounded, then n will be expanded before k.

Figure 4: Venn diagrams showing the classes of algorithm and the
domains of problem instances relative to which the optimality of A* is ex-
amined.

Figure 5: The graph G” represents a new problem instance constructed by
appending to n a branch leading to a new goal node ¢.

Figure 6: Graphs demonstrating that A®* is not optimal. Part (a)
i‘eprwents a nonpathological problem where algorithm B will avoid a node
(/) that A* must expand. Part (b) represents a pathological graph
(f(Jo) = C* = 11) where algorithm B expands a proper subset of the nodes

expanded by A°.

Figure 7: A graph showing that any admissible best-first algorithm must

n* is chosen for expansion all nodes in N were already expanded. A**, after
expanding those nodes also has a* in OPEN with f'(n*)=C*; there exists, there-
fore, a tic-breaking-rule in A** which will also choose a* for expansion. From
that moment on, A* will expand some sequence n*, ny, 53, 3, - - - ¢ for which
f(n) = C*. Since on these nodes f'(n;) = C*, it is possible for A** to usc a tie-

breaking-rule that expands exactly that same sequence of | nodes until termination.
Part b

Examine the graph of Figure 9.

Figure 9
n, and n, will be expanded by every tic-bréaking-nﬂe of A* while there is

a tie-breaking-rule for A** that expands only »,_,.

AR

assign fz(n'}<C* to every node ' along P,_,.

Figure 8: A graph demonstrating that an admissible best-first algorithm
cannot assign to any node a value f(r) = F[g(n),h(n)] greater than

g(n) + h(n).

