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ABSTRACT OF THE DISSERTATION

FTSS: A Fault-Tolerant Storage System
Supporting High Availability and Security

in a Distributed Processing Environment
by

Baron Octavius A. Grey
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor David Rennels, Chair

In this thesis, a new approach to the design of reliable shared storage
systems for local computer networks is presented. Traditional approaches have
achieved reliability for the information stored in the system via replication,
storing multiple copies at different sites in such a way that site failures will not
immediately lead to unavailability. Other traditional approaches provide spe-
cialized file server systems and backend networks which attempt to provide
higher reliability and performance through dedicated hardware and software.
Our approach is quite different. We provide high reliability through the appli-
cation of hardware fault-tolerance, high performance through the use of a spe-
cialized hardware architecture, and simple information management mechan-
isms through the use of centralization. In the system developed here, which we

call FTSS, information is stored as objects, and accessed via capabilities which

xiii



are managed independently by the system.

FTSS is intended to be used in environments where fast access to large
volumes of information is required. This can range from mainframe systems
that only need to use it as a repository from which data is downloaded for local
aécess when necessary, ot at the other extreme, simple workstations that do
not possess any online storage of their own. FTSS provides facilities that aliow
each host to independently define a storage environment tailored to the charac-
teristics of its local operating system. It is arbitrarily extensible so that more
storage can be added as needed. Information is automatically managed in a
user-transparent way; an object is stored or accessed without any regard for its

actual location or device-dependent characteristics in the system.

An important motivation for the development of FTSS is the need to
provide relfable and easily-accessible storage for large numbers of distributed
workstations, especially given the current trend towards workstations in
engineering and office automation. FTSS portends to be an important means of
allowing machines of widely differing storage and computational requirements
to share an important resource with all the cost benefits that accrue from

economies of scale.
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CHAPTER 1
INTRODUCTION

As the cost of computing and computers decreases, there is more
demand for local autonomy by system users. This has partially resulted in a
ﬁroliferatidil of distributed processing systems consisting of a set of auto-
pomous nodes or computing sites typically interconnected with a high-
bandwidth communication subsystem over which the nodes may communicate
and share information. As this decentralization takes place, new problems arise
which require novel solutions in order to provide high performance and a rea-

sonably efficient level of service to the user.

The need for decentralization is driven by many factors. Traditionally,
computing resources have been provided in a centralized computing facility
independently managed by some central authority. The reasons for this cen-
tralization was primarily the cost benefits of sharing expensive resources and
the high performance that resulted from large mainframe computers. Decen-
tralization was an effort to allow diverse users the opportunity to control and
manage their own resources autonomously. Despite the decentralization of
resources, there is still a need for information and resource sharing; hence, the

interconnection of the computing sites in local computer networks.



Despite the trend towards decentralization, there are still cases where
resources are so expensive that they must be shared. One such case is in the
processing capabilities of the system. It is often the case that an autonomous
processing site does not possess the capability to execute processes either
because of the inherent size or the speed of the processor. In such cases, it is
common to é_ptablish mechanisms whereby a processing site may execute its
processes at another site, either directly (that is, with @ priori knowledge of the
mechanisms) or indirectly. Another case is in the storage capacity of a site.
Often processing sites do not possess enough reliable online storage for the
semi-permanent repository of information. In such cases it is common to share
storage between several sites. Perhaps the most important reason for shared
storage is the requirement for large online databases; such databases usually
have constraints on size and performance which precludes their implementation
on the existing computing sites. The unreliability of storage often results in
mechanisms whereby information is replicated at several sites in the hope that
storage-related failures will not make information unavailable for long periods

of time.

The need to share storage system resources is even more important when
one considers the recent trend towards workstations. Workstations are low-cost
high-performance computing nodes that, because of their small physical size,
are ideally suited for decentralized resource management. Since it is not usually
cost-effective to provide large amounts of online storage for each workstation,
there is an evolution towards diskless workstations which, of necessity, must

obtain their storage by sharing from some centralized repository.



The decentralization of computing resources has brought about a need
for information sharing which requires techniques not found in centralized
facilities. Primary among these techniques are mechanisms for managing shared
storage distributed among several computing nodes. This thesis examines these
mechanisms and proposes alternative solutions to those that have been
developed in the pastl. The primary issues are storage system reliability and
availability, and information security. The solution proposed is to centralize
storage system resources and to provide high reliability by using fault-tolerance
design techniques for a storage system architecture. We propose a storage sys-
te:ﬁ architecture based on both file-server and backend network principles.
Security is provided by extending existing techniques for the design of secure

operating systems using the notions of objects and capabililies.
1.1 The Problems of Distributed Storage

The problems associated with distriduted storage are best illustrated by
considering Fig. 1.1 which shows a typical local network architecture of auto-
nomous computing sites. Each computing site consists of a Network Interface
(NI), a Host Processor (H), and a Storage Subsystem (S). The storage sites are
interconnected with a high-speed contention-based bus to facilitate information
sharing. By distributed storage we allude to the fact that if information is to be
shared between the various computing sites, each host must take part in this
sharing for that portion of the information which is stored in the storage sub-
'system under control of the host. For example, if a host wishes to access infor-
mation which is stored at another site, not only must the ‘local” host be
involved, but the host at the remote site as well. If one imagines the sum of all

the information stored in each storage site as the totality of information in the
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Figure 1.1: Distributed Local Network Architecture

system, it is easy to see the nature of the distribution of storage - each physical
storage subsystem S represents a (distributed) part of the system’s information.

It is the very nature of this physical distribution of storage in distributed pro-

cessing systems that lead to a plethora of problems not encountered! in cen-

tralized storage systems.
1.1.1 Availability

In general, users would like their stored information to be available a
high percentage of the time, if not ALL the time. If we consider a single com-
puting site for the moment, it is interesting to note that the reliability of infor-
matsion in the storage subsystem S is lower than the reliability of either NI, H,
or S. The reason for this is because NI, H, and S are in sertes as far as reliabil-
ity is concerned. Thus, the reliability of information in S is the product of the

reliabilities of NI, H, and S. The significance of this is the fact that informa-

1At least, not to the same extent.



tion in S can become unavailable either because of a failure in NI (due to
hardware or software), a failure in H (either due to hardware or an operating
system crash), or a failure in S itself (again due to hardware, such as a disk
controller failure, or software). If information is not replicated in other comput-
ing sites, then the availability of this information is clearly a function of the
reliability of the site components, assuming that system repair is not immedi-

ate.

One way to obtain higher availability in the presence of unreliable site
components is to replicate information at two or more computing sites; if a site
fails, there is some non-zero probability that the desired information can be
accessed from another site. This, of course, depends upon the replication fac-
tor, and on the probability that not all the sites at which a replicate is stored
will fail simultaneously. However, replication introduces the problem of main-
taining consistency among the replicates. Several novel schemes have been pro-
posed for maintaining data consistency in the face of site or component failures
and network partitioning. However, these schemes depend to a large extent on
the compatibility of storage system architectures between the storage sites. If,
in the worst case, each host H has a unique storage system architecture, then it
is virtually impossible to store information remotely at another site. Since we
naturally expect a diversity of proce;sor types in any autonomous network, the
success of replication as the sole means of achieving high availability is ques-

tionable.



1.1.2 Extensibility

One of the key requirements of any storage system is the ability to easily
extend the amount of online storage without perturbation of the system or loss
of availability. This is not easy to do with a distributed storage architecture.
The problem is caused by the close coupling of the storage subsystem S and
the host processor H. In general, the capacity of S is a function of the host pro-
cessors’ operating system. That is, once the capacity of the operating system to
address online storage is reached, there is no possibility of extending the

storage sdi)system‘s capacity without significant hardware and software

modifications.! In view of the trend towards autonomous workstations, it does
not appear that distributed storage architectures are practical in view of their

lack of extensibility.
1.1.3 Complexity

Distributed storage architectures require complex storage management
mechanisms which offer little opportunity to optimize or “tune” for perfor-
mance and efficiency gains. If information is being shared between two com-
puting sites, it is necessary to provide mechanisms at both sites that must
cooperate in information transfers. Assuming that the hosts run identical
software processes, there is a fixed processing overhead which cannot be
avoided; each computing site will observe a degradation in performance which
is the overhead of remotely accessing this information. Said in another way,
there is no way in which a remote access can appear to have been performed

locally to a host processor. While it has been argued that the incidences of

ISome systems solve this problem by simply adding another compatible
computing site to the network and sharing storage with it.



remote access are few, there are applications in which the overhead of a remote

access is a high price to pay indeed.

The added complexity in the storage management components of host
operating systems is contrary to the philosophy that simplicity often leads to
improved reliability. It would seem logical that schemes for offloading storage
management responsibilities from host processors in local computer networks
should be pursued in order to allow higher reliability in operating system

software.

1.1.4 Functionality

In any computing system, there is a need to provide automatic archiving
and incremental backup as a means of preserving the state of the system.
These tasks are complicated by a distributed storage system in which naming
" and location are local to each site; this necessitates complex intersite protocols

for mapping names to locations.

Besides the sharing of physical resources, it is useful in a distributed
processing system to share application programs as well. For example, large
database management programs can be shared, resulting in a significant sav-
ings in the use of system resources. Another possibility is the ability to per-
form dynamic load balancing by automatically migrating processes between
homogeneous hosts. Again, these services are not easy to implement in a sys-

tem in which naming and location mechanisms are not centralized.



1.1.5 Cost

Unlike the case for centralized computing centers, distributed storage
architectures do not allow one to take advantage of the benefits of the
economies of scale possible through resource sharing. Since each autonomous
processor might use resources which cannot be directly used by other sites,
there is no advantage to “pool” resources economically - this is often dictated
by the requirements of the host operating system for resources with
prespecified characteristics. Because of the decreasing cost per bit of online
;toiage, it Wwould seem that every effort should be made to take advantage of

the economies of scale in storage system configurations.
1.2 Centralization as a Solution

There are two possible solutions to the problems of distributed storage
architectures. The first is to create a logically centralized storage system on top
of the distributed storage. Storage management is distributed among the com-
puting sites in such a way that the naming and location of information in the
storage system is transparent to the host processors. That this is not an elegant
solution is immediately obvious when one realizes that all the attendant prob-
lems of distributed storage remain, only the details are hidden from the user.
This approach has been taken by several researchers because it is relatively

easy to retrofit in existing distributed systems.

The second solution is to create physically centralized facilities for stor-
ing and managing information. This approach allows one to unbundle storage
from the host processors at the computing site and to manage this storage as

an independent entity. By centralizing storage system resources in this way, it



is possible to either eliminate or significantly reduce most of the problems asso-
ciated with distributed storage systems. There are two major directions that
have been taken by researchers in this area: The first gives rise to what are

called File Server systems, and the second to Backend systems.

The attributes of file server systems is the unbundling of storage from
host processors to specialized servers attached to the same communication net-

work. This is illustrated in Fig. 1.2.
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Figure 1.2: Distributed System with File Servers

Each file server is a series conhection of NI, Server Host (SH), and storage S.
The set of file servers in the network can indeed be treated as logically central-
ized from the rest of the network. Thus, host processors no longer need to take
part directly in storage management (they simply make requests to the
servers). The file server approach has some disadvantages however. First,
storage is still isolated from the network by the SH’'s and NI's (a failure in
cither will lead to unavailability). Second, it is common practice to use off-the-

shelf computers as SH’s (at times, the same types as the host processors to take



advantage of cost benefits); there is therefore very little opportunity to improve
the overall reliability of the system except by either replicating information in
several servers, or to replicate the entire host processors if they should prove to
be a reliability bottleneck. In short, it is difficult to apply reliable design in file
server systems. Third, they do not completely solve the problems of extensibil-
ity, functionality, and cost although they do represent a significant improve-

ment over the distributed storage case.

Backend storage systems are in the same spirit as file server systems -
they unbundle storage from the host processors so that the hosts do not have
to perform global storage management. The significant difference between the
two approaches is that backend systems attempt to optimize the performance,
extensibility, and functionality of the resulting storage system by distributing
functionality in such a way that critical functions are relegated to specialized
hardware components; these components are then directly connected to the
network. An example of this structure is shown in Fig. 1.3 where SH represents
Server Host processors and C the specialized backend components. It is typi-
cal, for example, to have specialized components such as authentication and
directory servers, Random Access Memory (RAM) buffers, job allocators, and so
on. Storage components S are connected directly to the network via NI's. The
primary advantage of this organization is the ease with which the system might
be extended since new system components can be directly attached to the net-
work (possibly without perturbing existing components or resulting in loss of
availability). There is a disadvantage in this particular organization however:
it stems from the fact that since all'components are connected directly to the

network, network bandwidth is consumed whenever the components must com-
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Figure 1.3: Backend System with Distributed Storage System Components

municate. Since backend storage management implies significant communica-
tion overhead, this might lead to some compromise in the bandwidth require-
ments of the computing sites. Since, in most contemporary local network archi-
tectures, there is a limited bus bandwidth, some effort should be made to
minimize thé impact of the storage subsystem upon bus bandwidth. One

scheme for achieving this is illustrated in Fig. 1.4.

The compromising of network bandwidth is avoided by providing an
independent busing structure for the backend components. This structure has
all the advantages of the previous structure, and more, since it permits arbi-
trary extensibility and performance tuning without affecting the ability of the

host processors to meet critical intersite communication requirements.

Much of the work that has been done on file server systems is applicable
to backend systems, particularly in the software processes needed for st-ora.ge

management. We present in a later portion of this thesis an architecture which
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Figure 1.4: Backend Storage System with Independent Communication Subsystem

is somewhat of a cross between a file server and a backend system. It uses the
organizational principle of Fig. 1.4 along with established storage management

principles developed for file server systems.
1.3 The Need for Fault-Tolerance

The goal of any shared centralized storage facility is to provide an
environment in which human, software, and hardware resources can intercom-
municate and be shared in a coherent way. Because of the centralized nature of
the storage, there is a greater need for reliability and availability since unavai-
lability of the facility affects all hosts (this was not the case for distributed
storage where a failure at one or more sites might affect only a few hosts). Cer-

tainly, in the case where the hosts are autonomous workstations that depend
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upon the availability of storage, it is important that the facility maintain a

high steady-state availability.

There are two apptoaches to achieving high availability in a distributed
system. One is to use components that never fail, and the other is to provide
some form of redundancy. Since it is impossible to design systems that never
fail, given a finite amount of time and resources, the latter approach is un:.iver-
sal. One approach to the application of redundancy in reliable design is

through the use of fault-tolerant design principles.

Theﬁ approach taken to achieve high availability in distributed and file
server systems is to replicate information in locations which have independent
failure probabilities for the classes of faults expected. If a failure occurs, infor-
mation may be accessed from one of the replicated sources until the failed unit
is repaired, at which time an effort is made to reconcile any inconsistencies that
resulted from updates during the failure interval. The fallibility of this
approach is that it is not always easy to perform these reconciliations when
information is spread out over muitiple computing sites. The technique, how-
ever, works well for those classes of failures in which information is not lost
during the failure interval (as, for example, when a host operating system
crashes). However, if recovery from hardware failures in which data might be
lost is critical to the system's operation, them some form of hardware fault-
tolerance is required. In this thesis we shall investigate an approach to the
design of a Shared Centralized Fault-Tolerant Storage System (FTSS) that can

be used to realize the benefits of information sharing in a centralized reposi-

tory.
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1.4 Related Work

A number of works have markedly influenced the direction taken by this
research. First, the choice of a centralized architecture was directly related to
our first-hand observation of and experiences with our own distributed system
LOCUS [Pope8l]. LOCUS, however, espouses a logically centralized file system
built on top of a distributed system of a.utonomous machines, each of which
manages a portion of the file system. LOCUS is an excellent example of the
importance of transparency; it has also influenced our approach in the organi-

7ation of the Storage Management System in chapter 3.

Our choice of an object model in chapter 3 was heavily influenced by
the implementations of Hydra [Wulf81], the IBM System/38 [IBM78], and
iMAX [Khan8l], and the excellent work by Jones [Jone73] on protection in
operating systems. Various backend and file server systems have influenced
our implementation approach to FTSS. Notable among these are Swallow
[Svob81], the Cambridge file system [Dion80], the early work done at Xerox on
WFS [Swin79}, and the Octopus network at Lawrence Livermore [Thor80]. Our
approach to fault-tolerance using off-the-shelf components where possible, and
the use of self-checking designs is influenced by the work of AviZienis [Avi78]
and Rennels [Renn80]. Finally, the material on capability sealing in chapter 4
is derived from the works by Redell [Rede74] and Gifford (Giff82].

1.5 Organization of the Thesis

The rest of this thesis is or‘ganized in the following way. Chapter 2
discusses some key issues relating to the hardware and software architecture of

shared centralized storage systems, with emphasis upon software issues; the

14



discussion is followed by the presentation, in chapter 3, of a kernel-based
software architecture based on the abstraction of objects and capabilsties,
which we find to be ideally suited to the requirements developed in chapter 2.
This material sets the stage for the description of a hardware architecture suit-
able in meeting the requirements of the abstract system developed in chapter 3;

this we present first in Chapter 8, and then again in chapter 8.

The issue of protection and security in shared storage systems is
sufficiently important that we have addressed the topic exclusively in
chapter 4. Here we extend extant protection and security mechanisms to meet
the unique requirements of our abstract model. Chapter 5 explores issues relat-
ing to information availability in distributed processing systems; it is both an
experimental and analytical study of the role of information redundancy in
meeting the availability goals of shared storage systems. The results of this
study sets the stage for a hardware implementation of our abstract model from

chapter 2.

In chapter 6 we develop a class of fault-tolerant architectures that are
eminently suitable for implementation of centralized storage systems. Much of
the resulting hardware discussions in the rest of the thesis is based on these
architectural concepts. One might say that this chapter represents the beef of
this thesis, for it is here that fault-tolerance is applied, in a way which is both
cost effective and functional; cost-effective because it makes use of a natural
form of redundancy, and functional because it provides the necessary func-

tionality of a centralized storage system in a very stylized way.
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Chapter 7 extends some of the abstractions developed in earlier chapters
by discussing low-level mechanisms in terms of the fault-tolerant architecture
developed in chapter 6. The algorithms developed impose certain constraints on
the implementation of the architecture, a task which we undertake in
chapter 8. Chapter 9 discusses various issues relating to system performance,
largely based on our implementa.fion approach. Chapter 10 presents a sum-
mary, with conclusions we have been able to draw from our research, and offers

many suggestions for further research.
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CHAPTER 2
ARCHITECTURAL DESIGN ISSUES

This chapter investigates and discusses various issues fundamental to
the design of a shared centralized storage facility. Key among these is the need
for fault-tolerance since it is required to provide adequate reliability and availa-
bility in a resource shared by many people. As work progressed it became clear
that, given highly reliable hardware, many new services could be made avail-
able, simplifying operating system functions in host processors, and providing
orderly mechanisms for security and for sharing information between hosts in
the network. This is, of course, an intelligent storage system which applies
fault-tolerant design principles in the design of the storage system itself. This
added digital logic is expected to be relatively inexpensive in comparison to the
shared secondary storage devices, and allows us to create unique services that

can only be made available in a centralized facility of this type.

This chapter discusses the services which should be performed in the
storage system. It is used to derive a set of requirements and a basic implemen-

tation approach used in the remainder of this thesis.
2.1 Introduction

As described in Chapter 1, the goal of a shared centralized storage sys-

tem is to provide an environment in which human, software, and hardware
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resources can intercommunicate and be shared in a coberent way. In meeting
this goal, there are many requirements imposed upon the logical architecture of
such a system. Experiences with the design of Backend Storage Networks
(BSN’s) [Wats80] and File Server (FS) systems [Svob82] point out the need for:

. A logical separation of policies and mechanisms so that users can build
new services out of existing ones, or define their own storage manage-

ment polictes.

e  Application support, so that users may make use of facilities that they

do not inherently possess.

] Host software minimization, so that the storage management component
of host operating systems can be effectively removed to the storage sys-

tem, resulting in less costly and more reliable host operating systems.

. Multiple-host support, so that several users may access the system
simultaneously, each observing an environment which is unique to a par-

ticular host.

) Reliability and availability, so that the system has a high probability of
performing a particular operation to successful completion without
interruption, and that it has a high probability of being able to perform

a particular operation at some arbitrary time in the future.

) Extensibility in both hardware and software, so that the capabilities of
the system can be increased arbitrarily with little or no perturbation

upon its existing operations.

) Security, in order to prevent the unauthorized disclosure of information

18



among users of the system.

° Resiliency, so that the system has a high probability of performing an
operation which results in a consistent state irrespective of hardware or

software failures.

) Efficiency, so that the system can perform operations in a manner which

makes it appear to be local to the host making the request.

In the following sections we will develop these requirements more fully,
discussing as we go along various issues that are significant in their application

to autonomous shared centralized storage systems.
2.2 Separation of Policies and Mechanisms

The first requirement we shall discuss is the need for a dichotomy
between what is considered a policy, which is subject to arbitrary interpreta-
tion by a user, and a mechanism which is an inflexible entity provided by the
system. Experience with the design of operating systems show this to be a
powerful tool in allowing a relatively simple system to meet a diverse set of
user needs and/or requirements [Wulf8l, Ritc74]. Such a concept is ideally
suited for a shared storage system where each user might {(and usually does)
have different policies regarding the way information is stored and accessed.
Instead of trying to satisfy all policies @ priori, a mechanism which allows each
user to define his/her policy is eminently more suitable. Of course, the provi-
sion of such a mechanism should in no way constrain the user as to what kind

of policies might be implemented.
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The principle of separation of policies and mechanisms applies to the
centralized storage system in the following way: Since the system is designed to
support muitiple users with diverse requirements, what is needed are mechan-
isms with which each user can define those policies that apply to the way in
which one’s information is to be accessed and manipulated. The mechanisms
need to be quité general so that an arbitrary number of policies can be in effect
simultaneously. One such mechanism which has proven to be quite useful in
operating systems and in programming languages is the notion of abstract data
types [Lisk74]. An abstract data type mechanism permits a user to define a
new operation, and to specify the rules that govern the use of the operation.
By providing an abstract type mechanism, users can define new operations that
implement their own policy decisions. This is an important concept which is
used to satisfy several of the other requirements, and is developed more fully

(from an implementation point of view) in the next chapter.
2.3 Application Support

A centralized storage system not only permits the sharing of hardware
resources, but application programs as well. By having a centralized storage
system which permits the management of information in a coherent way, it is.
possible to provide services for users that would either be very difficult or
impossible to provide otherwise. This is particularly true when there is a mix
of host types in the network. Experiences with distributed operating systems
supporting data transparency show that added services can be provided by
judicious use of system resources [Pope8l]. For example, a process may be

migrated from site to site without concern for the data which the process mani-
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pulates, since this data is globally accessible from any site.! This allows the
establishment of special Process Servers on the network to which host
processes can be automatically migrated and serviced. This would not be possi-
ble if the location of a process is site-dependent. As another example, text files
can be shared between dissimilar host types by providing automatic mapping
structures in the sforage system to convert between various host formats.
Therefore, a user need not be concerned with the origin of a text file, as long as

it can be accessed.

In a similar way, application programs can be shared by providing
au_toma.tic mapping functions which are transparent to the hosts. For examﬁle,
several users might share a common database without any partiéular
knowledge of the physical location of the database, or even how the informa-
tion in the database is actually represented. It is also possible for inhomogene-
ous hosts to share executable program modules transparently. For example,
there might exist a host on the network with a specialized language translator;
other hosts may make use of the translator simply by referencing it through
the storage system and providing the necessary input data. The storage system
could take care of all the work necessary to perform the translation and pass
the appropriate results back to the user. It is not particularly difficult to pro-
vide the necessary functionality in the storage system to meet these needs.
Conceptually, all that is required is the mechanism to generate the necessary
mappings when they are needed -- this can be easily accomplished by a data

abstraction mechanism.

1Process migration implies that the process migrates among sites that are
capable of executing the process.
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Besides the direct sharing of application programs, a centralized auto-
nomous storage system allows hosts to augment their capabilities by making
direct use of storage system facilities. For example, a host might implement a
more capable file management system in the storage system than would nor-

mally be possible given the limited resources of the host.
2.4 Host Software Minimization

One of the important objectives of centralizing resources is to minimize
the impact_of resource management on hosts. This is true not only for the
hafdware, but the software as well. If hosts do not need to know the details of
storage management, then a significant portion of the host’s operating system
mechanisms dealing with storage management can be removed. For example,
since a host no longer needs to know the details of mapping between logical
data structures and physical storage devices, device drivers can be orders of
magnitude simpler. One goal of this centralized storage system is {o remove
the burden of storage management from the hosts, thereby making their

operating systems simpler.

One approach to the solution of this problem is to provide a mechanism
in the storage syétem with which each host can interface in such a way that
host storage management primitives can be mapped into storage system primi-
tives in a user-transparent way. For example, if a host has a primitive called
read _ file which reads the contents of a file in a host-specific format, this could
be passed directly to the storage system where it is mapped into equivalent
storage system primitives. Normally, the host would define these mappings to

ensure that the correct operations are being performed. Again, this can be
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satisfied with a data abstraction mechanism.
2.5 Multiple-Host Support

In order to provide as much generality as possible to meet the diverse
requirements of various host systems, it is desirable to design the storage sys-
tem in such a way that it can support several host types. This can range from
a mix of simple diskless workstations to large mainframe computers which sim-

ply use the storage system to augment their own mass storage systems.

In view of this requirement, at issue here are the ways in which this sup-
port should be provided. The main problem is: how does one provide an
environment in which multiple autonomous hosts may share a centralized
storage system in a coherent way using a minimum of interface mechanisms?
This problem stems from the autonomous nature of the hosts; each host type
requires a unique interface with the centralized storage system. If there are a
large number of such types, and if each type requires unique protocols to com-
municate with the storage system, the diversity of the resulting mechanisms
can lead to designs which are not easy to modify or extend. Ideally, what is
needed is a single mechanism upon which can be built the interface require-

ments of the workstations.

_One approach to the solution of the problem is to use a data abstraction
mechanism which permits each host to define a virtual machine in the storage
system which maps host commands into storage system primitives. In princi-
ple, a host would define an abstract type, which we call a subsystem, using
primitives provided by the storage system. In communicating with the storage

system, the host communicates with its defined subsystem through a suitable
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subsystem interface. The advantage of this approach is that only a single
mechanism (data abstraction) provided by the storage system is required. Using
this mechanism, several virtual machines can coexist simultaneously, each
defining ezactly the interface that each host type requires {note that it is not
necessary to have more than ope virtual machine for each host type in the net-

work).
2.6 Reliability and Avallability

| Reliability and availability are quantitative terms used to specify,
resi)ectivel'y, the probability of successful completion of an operation given that
it was successfully started, and the probability that it will be possible to start
some operation at some arbitrary time in the future. It is always desirable to
have both high availability and high reliability in any storage system, whether
it be centralized or distributed. There is, in fact, no reason to believe that dis-
tributed systems are any more reliable or available than centlfa.lized ones, or
vice versa. Although distributed systems evolved primarily because of the need
to share resources, it soon became evident that this was also a natural
approach to higher reliability because of the inherent redundancy of distri-

buted resources. The important point is not distribution, but redundancy.

While it is possible to achieve high reliability and high availability
through fault-avoidance, it has been consistently demonstrated that fault-
tolerance through redundancy is both a viable and cost-effective methodology
of doing so [Avi78, Renn80]. The reliability and availability, then, of central
ized or distributed storage systems are specified in exactly the same way; it is

only the application methodology which might differ.
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The application methodology in an autonomous centralized storage sys-
tem of the type we are proposing is not necessarily easier than in a distributed
storage system, but it is certainly less constrained. In a distributed storage sys-
tem, one is constrained by the characteristics of extant storage resources, and
by the network configuration itself. This is not the case with a centralized
facility “‘{here one is more-or-less free to choose an architecture and the devices
which are used for storage. In chapter 8 we avail ourselves of this right by pro-
posing a fault-tolerant architecture which we believe to be ideally suited to the
requirements of network storage systems. This architecture espouses the princi-

ple of redundancy while being arbitrarily extensible at the same time.
2.7 Extensibility

With respect to shared storage, extensibility implies the ability to
increase the level of service that the storage system provides for the users, in a
transparent way. The issue of transparency is an important one. It should be
possible to change the physical configuration of the system (for example,
adding disks and processors, or removing hardware for repair) without disturb-
ing ongoing services. As another example, we would like the user to be able to
create new services (or perhaps new policies for existing services) in a more-or-
less arbitrary manner. Therefore, there is a need for both hardware and

software extensibility.
2.7.1 Hardware Extensibility

Hardware extensibility is achievable through architectures that permit
online hardware modifications. For example, hardware can be designed in such

a way that replaceable or new components are electrically isolated from existing
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components, achievable through the use of transformer coupling or optical iso-
lation. This requirement is particularly important in view of the high-
availability requirement of the system; it a component fails, it should be

replaceable without resulting in system downtime.
2.7.2 Software Extensibility

One way to achieve software extensibility is to provide an environment
in which users can define their own abstractions. This is commonly referred to
as abstract date typing, or simply typing. A user .creata an abstract data type
(or simply, a type) by defining an operator and the rules governing the use of
that operator -- the operations of the type. By allowing users to create (or
delete) abstract data types at will, software extensibility is achieved. What is
therefore needed are mechanisms that will permit this dynamic creation and

destruction of abstract data types.

Data abstraction alone is not sufficient to provide true software extensi-
bility. The software must in fact be designed to be easily modifiable and
upgradable. It is desirable for example to be able to install software updates
online while the system is still in operation. Furthermore, if the software is dis-
tributed throughout the system, with each component communicating with
others over communication links using a protocol, it is necessary to design the
protocols so that new services can be added or deleted without requiring proto-
col revision. One approach to meeting these needs is modularity. By designing
the software as a set of modules with well-defined interfaces, new modules can
be added or the internal details of a module changed without significant per-

turbation on the overall function of the system's software.
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2.8 Security

In an environment where multiple users must share a common resource,
the prevention of unauthorized access of information is vitally importaat.
There has recently been much furor over the security of information in online
systems such as banking and military systems. There is no reason to believe
that systems such as that proposed in this thesis will not find applications in
these areas. Therefore, security mechanisms should be an integral part of the

system’s design.

There are two aspects to security: information security, and physical
security. Information security pertains to the unauthorized disclosure of infor-
mation in a computer system, while physical security concerns the susceptibil-
ity of the system to physical attacks. Although the notion of centralization
tends to support physical security, since the storage devices can be kept under
common surveillance, we do not consider aspects of physical security in this
thesis. On the other hand, information security must be given serious con-
sideration because of the inherent properties of contemporary computing sys-
tems. Because of the need for high performance in information management,
the density of information on storage devices is continually increasing. As this
density increases, the possibility of data interaction between independent users
increases, particularly when failures manifest themselves. However, interactions
due to failures are not the only threats to security. As pointed out in {Denn82],
information security can be subverted by eavesdropping, tampering, browsing,
searching, inference, wanton or accidental destruction, collusion and

masquerading.
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In an autonomous centralized storage system, what is ideally needed is a
single security mechanism whereby arbitrary security policies can be imple-
mented. One of the biggest problems with designing secure systems is the
diversity of security mechanisms that are used; each such mechanism requires
independent verification in addition to the complexities .O{ interfacing them. It
should be possible for each autonomous host to use thi; mechanism to eztend
those security mechanisms already extant in the host, or alternatively to use
the mechanism of the storage system to sugment that already provided. In
chapter 4 we show how a single mechanism based on access controls can be

uséd to implement arbitrary security policies.
2.9 Resiliency

Resiliency is concerned with the consistency of information in the
storage system. It introduces the notion of atomicity which has the property
that either an action is performed to completion, or its effects are not observ-
able in the system [Lamp81]. There are two conditions under which informa-
tion consistency is desirable: 1) whenever software failures occur (such as
operating system crashes in either the hosts or the storage system), a.ﬁd
2) whenever hardware failures occur. What is therefore needed is a mechanism
which will, with high probability, provide for consistency under the specified
conditions. One useful paradigm for providing consistency under these condi-

tions is the notion of a transaction.
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2.9.1 The Transaction Paradigm

The classical model of a transaction, as described by [Gray78], defines a
mechanism for constructing reliable database systems. In this model, transac-
tions are defined as arbitrary collections of operations, or actions delimited by
two markers: Begin__ Transaction a.nd End__ Transaction, and have the follow-

ing special properties:

° Either all or none of a transaction’s operations are performed. This pro-

perty is usually called failure atomicily.

e If a transaction completes successfully, the system state always satisfies
its invariant predicate. This property is usually called internal con-

sistency.

. If a transaction completes successfully, the system state corresponds to
external perceptions of it. This property is usually called external con-

sistency.

. If a transaction completes successfully, the system state reflects, as
closely as possible, the correct response to external stimuli. This pro-

perty is usually called congrusty.

) If a transaction completes successfully, the results of its actions will

never subsequently be lost. This property is usually called permanence.

. If several transactions execute concurrently, they affect the database as
if they were executed serially in some order. This property is usually

called serializability.
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° An incomplete transaction cannot reveal results to other transactions, in
order to prevent cascading aborts if the incomplete transaction must
subsequently be undone.

If a transaction is performed successfully, it is said to have commiited; if it was

started but failed, then it is said to have aborted.

Transactions are extremely useful in the design of any system since they
reduce the burden on application programmers by simplifying the treatment of
failures and concurrency. The property of failure atomicity guarantees that
When a transaction is interrupted by a failure (operating system crash or
hardware failure), its partial results are undone. Serializability insures that
other concurrently executing transactions cannot observe any inconsistencies
brought about through the temporary violation of consistency constraints by
programmers. Prevention of cascading aborts limits the amount of effort
required to recover from a failure. It it were possible to design a generalized
transaction mechanism in a centralized storage system, issues relating to con-
currency control, sharing, and failure recovery of information could be handled
by a single mechanism [Spec83]. has studied some of the requirements for the
applications of transactions in general-purpose distributed systems, and a large
portion of the significant results are applicable in this context. The reader is
referred to that work for -a more in-depth discussion of the transaction metho-
dology in distributed systems. Svobodova [Svob82] discusses the importance
and design issues of transactions in file server systems, but not in the context
of a generalized mechanism supporting abstract types; it is however, a useful
report since it discusses various approaches to the application of transactions

in contemporary file server systems (some of which have been actually con-
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structed).
2.10 Efficiency

Centralizing storage resources should not unduly impact the perfor-
mance of the network. In fact, it would be desirable to design the system in
such a way that accesses éppear to be local to each host so that the system is’
essentially transparent (from the user's viewpoint). There are several potential .'
bottlenecks to performance in these kinds of systems. First, the need to tran-
sport information across a shared network could be a bottleneck, depending
upgﬁn the bandwidth of the network, and the characteristic and volume of the
offered traffic. Second, the performance of the storage system itself; especially
so in view of the need to maintain interfaces for each host which are largely
implemented in software. In chapter 8 we propose hardware and software
architectures which are meant to provide a system which will meet the perfor-

mance requirements of a wide range of host systems.
2.11 Summary

In this chapter we have investigated a number of issues important in the
design of autonomous shared storage systems. In some cases we proposed
approaches which provide viable solutions to an issue. In the remainder of this
thesis, we explore these solutions in more detail. In the next chapter we
develop a system model and propose the implementation of a storage manage-
ment system which meets all of the software requirements discussed in this

chapter.
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CHAPTER 3
SOFTWARE SYSTEM MODEL

In this chapter, the goal is to describe a software architecture for a
Storage Management System (SMS) that attempts to meet the requirements
discussed iii the previous chapter. In so doing, we first postulate a strawman
hairdware architecture which serves as a framework for the development of the
software architecture. A generalized software model is discussed, after which
we present a software design overview, and finally an implementation of the

architecture.
3.1 Strawman Storage System

In general, it is very difficult to structure a software architecture
without some knowledge of the hardware on which it will eventually run. This
is true for such areas as memory management, process management, and 1/0.
However, it is still possible to base the design on abstractions which can be
mapped onto whatever hardware is chosen in the final implementation. It is
normally the case, however, that hardware peculiarities will severely impact the
software architecture. For example, the design of the paging mechanism in
Hydra [Wulf8l] and the I/O mechanism of the UCLA Data Secure Unix
[Pope78] were direct consequences of the underlying hardware. PSOS
[Neum?77), on the other hand, appears to be an operating system which was

designed with very few hardware dependencies; one suspects, however, that its

32



implementation was not without compromise, for reasons of efficiency.

The approach we will take, is to postulate a strawman hardware archi-
tecture on which to specify the software architecture. This hardware architec-
ture hides many of the detailed fault-tolerance techniques and multi-computer
implementations which will be developed later; but it is idealized in such a way
that the software architecture can be transferred to the detailed design in later

chapters. This architecture is shown in Fig. 3.1.

The strawman storage system architecture as shown in Fig. 3.1 consists
of _é. get of hosts connected to a local network, and the storage system con-
nected to the same network. All connections to the network are assumed to be
via a suitable network interface. We assume the network to be of the ‘‘ether-
net” variety [Metc80], with whatever transmission speed is needed to do the
job. We assume that such a network and its interfaces provide perfectly reli-
able communication at the link level, assuming.that low-level fault-tolerance to
be added later will not have a major structural or functional impact on the
software architecture. Furthermore, we assume that the storage system proper
consists of a server computer to which is attached a number of high-capacity
disk storage units. This computer is assumed to have as high a speed as is
needed and is fault-free. The disk units communicate with the server CPU via
a very high rate fault-free communication subsystem. Each disk unit is
managed by a single fault-free processor which resides logically between the
communication subsystem and the unit. These processors will be used primarily
to manage the information stored at each disk unit. The one thing that we do
not assume to be fault-free is the disks. They may fail, but we impose the

requirement that whenever such failures occur they must be detected by the
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Figure 3.1: Architecture of SMS3
processors which will prevent damaged data from propagating. The need to
replicate information on independent disks and the ability to recover is a fun-
~ damental requirement of the SMS which must be dealt with in the strawman

design to be transferable to the final architecture.

34



3.2 A Generalized Software Model

In the previous chapter several requirements of a software model for a
centralized storage system were presented. In this section we discuss a software
model which allows all these requirements to be met. In this model, all protect-
able resources -- virtual or physical -- are represented as objects and ‘accessed
via capabilities. This model follows very closely the object model as typically
applied to resource-based operating systems [Jone79]. In the model, which we
will henceforth refer to as the ‘“‘object model”, each object has a unique name,
a representation, and a type. A capability, which serves as both an access and
a naming mechanism, has a unique name (the same as the unique name of the

object to which it points), and a set of access rights.

The salient feature of the object model is the implementation of security
via access control. The representation of an object cannot be accessed unless a
capability is provided for the object which contains the appropriate rights for
the type of access being requested. Any implementation of the model must
enforce this mechanism. In addition to security, the model can easily be
extended to support abstract data types which is essential for software extensi-
bility. This is accomplished via the technique of type eztension with which_
users are able to create new object types by combining existing ones, or by
creating entirely new ones. The interested reader is referred to Jones [Jone73)
for an excellent analysis of protection using the object model, and to Wulf et al
[Wulf81] for an implementation of abstract types in the object model. In
FTSS, all information stored by users are encapsulated as objects under the
model and their security is enforced via the capability mechanism. In the rest

of this chapter we describe the implementation of the object model which
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forms the basis of the SMS.
3.3 Software Design Overview

The following paragraphs describe some tradeoffs and the basic
approach recommended for the design of software for the idealized storage sys-

tem.
3.3.1 Security-Driven Models

B One of the primary motivating forces that will drive the software archi-
tec_ﬁure of the SMS is the need for security. Within this context, there are two
further requirements: First, the need for verification that the resulting archi-
tecture does meet security goals; and second, the system provides enough func-

tionality to meet the proscribed requirements, and that it does so efficiently.

There are two approaches to the design of architectures based on the
need for verifiable security. The first is to base the design on a small nucleus of
code which implements all security-related actions in the system. This nucleus
is a virtual machine which resides directly on top of base hardware, providing
extended instructions which form the basis of all security mechanisms in the
system. This nucleus is commonly referred to as a security kernel, and gives
rise to security kernel-based architectures [Pope79, Sche80]. The second
approach is to specify the entire software architecture in such a manner that it
is possible to prove the security of the system using automated tools. It is com-
mon in such approaches to base the resulting design on a hierarchy of modules
:n which intermodule dependencies is strictly top-down. This approach was

used in the design of the PSOS operating system [Neum77}.
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Given the current state-of-the-art in specification techniques and
verification tools, especially where parallel, asynchronous processes abound, the
first approach has significant advantages over the second. If it is indeed possi-
ble to structure one’s architecture on security-kernel principles, cogent argu-
ments have been made in support of this approach, especially whgre extensibil-
ity and separation of policies and mechanisms are concerned [Poi)e79]. Furth-
ermore, since only a relatively small body of code need be proven secure, the

design is naturally modularized and therefore simpler. For these reasons, and

others,! we choose to base our software architecture on security kernel princi-
ples. In the next sections we discuss various architectural decisions based upon

the system requirements.
3.3.2 A Kernel-Based Architecture

In designing any kernel-based architecture, one must first decide on

what should be included in the kernel. As far as security kernels are concerned,

the general principle is to include all security-related mechanisms®, and to
exclude all others. By including only security-related functions, the size of the
kernel can be kept small which increases its verifiability. There is sufficient
experience in the design of operating system kernels that pave the way. For
example, in the design of the Hydra kernel, all generic operations on objects
and capabilities are included in the kernel. In UCLA Data Secure Unix, only

those operations that are directly related to security are implemented in the

IEspecially in mapping the architecture onto fault-tolerant hardware.

*Upon which arbitrary policies can later be built.
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kernel.® The lesson provided by Hydra is that it is much better to design a
flexible system, which can be mapped onto efficient hardware (or made efficient
through different codification), than to design a system which is initially
officient but is very difficult to change. From these arguments, it is clear that
there are tradeoﬂ';-between verifiable security, functionality, and efficiency. Our
approach is a co.mp:romise between the first two which, we hope, provides

enough flexibility to meet our system requirements.

The SMS is a kernel-based architecture. The objective of this system, to
reiterate, is to serve as an intelligent centralized interface between a number of
distributed hosts and a (possibly) distributed set of storage resources. The
SMS is internally structured as shown in Fig. 3.2. It consists of a kernel which
is encapsulated logically by a set of subsystems. These subsystems perform sys-
tem operations that do not pose a threat to system security, but are neverthe-
less an important part of the system'’s functionality. The subsystem ‘“level” is
encapsulated by one or more user-level subsystems that form an interface with
users; these users represent the outermost level of the system. There are several
advantages to structuring the SMS in this hierarchical fashion. First, the
hierarchy provides natural modularization which makes the design task less
onerous. Second, it allows the functions and even the properties in each level to
be modified without unduly affecting other levels, providing that there are
well-defined interfaces between them. Third, it affords the establishment of
natural “protection boundaries” which serve as firewalls for error propagation.

Finally, it helps to support the notion of abstract types by allowing users to

IThere are, however, security-related functions that are relegated to “trusted”
processes that execute in a verified “sub-kernel” outside of the main kernel.
This dichotomy was purely for verification modularity.
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User-Level Subsystems

System-Level Subsystems

Figure 3.2: Multi-Level Kernel Architecture

define the environment most suitable for their own needs. In the next sections

we will describe the primary attributes of each level in the figure.
3.3.2.1 The Kernel

The kernel implements the object model. The reason is simple: in the
object model, security is enforced via objects and capabilities - this is the only
mechanism required; all other higher-level security policies can be buiit on top

of it. In order to properly create the abstraction of the model, one must
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understand how objects and capabilities are represented, how they are created
and destroyed, how protection is enforced in the execution domain, and how
abstract types are created and destroyed. The kernel is organized into a set of
modules. There is a module that deals with the creation, manipulation, and
destruction of capabilities, a module that deals with the creation, manipula-
tion, and destruction of objects, and a module that deals with the enforcement
of protection in the execution domain (of a program). However, for reasons of
efficiency, the kernel contains other modules that provide support for some of
the system functions defined below in the subsystem level. The rationale for
thié modular organization is twofold. First, it simplifies the design task since
one can hide implementation details in the body of the module without fear of
interaction with other software in the kernel. Second, by making only those
functions that are needed outside the module visible, there is a much higher
probability that the system will perform correctly; this approach also assists in

verification since it significantly reduces the number of states in the system.

At this level, the design of the kernel parallels, in principle, the design of
the Hydra kernel [Wulf8l]. We support the notion of small protection

domains, as in Hydra, resulting in an object grain at the level of “procedures”.!

While this might seem unnecessary in SMS, it allows great flexibility and pro-
vides better security in the system. In general, the finer the object grain, the
better control one has over the unauthorized access of information. Therefore,
the kernel supports a procedure invocation mechanism which provides a pro-
tectable domain in which the procedure executes. The details of this invocation

mechanism will not be presented at this time.

The term ‘“‘procedure’ here is in direct analogy with the notion of a procedure
in high-level languages such as Pascal.



3.3.2.2 The Subsystem Level

The subsystem level implements a number of abstract types that either
provides support functions for the kernel or provides additional services neces-
sary to meet the system’s requirements. They are separated from the kernel

because, to a large extent, their operation is not a threat to system security

and this helps to keep the kernel small.! These system functions are as follows:

a. Message System: A communication facility for cooperating sequential

processes supporting the user/server model of communication.

b.  Scheduler: A facility for the scheduling and synchronization of user-level

processes.

c. Transaction Manager: A facility for the reliable execution of a single

process, or multiple sequential processes.

d. _ Object Manager: A facility for managing information storage objects in

the storage system.

e. System Monitor: A facility which provides general system monitoring

capabilities for administrative uses.

f. Security Manageﬂ A facility which allows arbitrary security policies to

be implemented.

While these subsystems are a minimum set necessary to meet system
requirements, others can be easily defined as abstract types and added when

necessary. While it is ideal to implement the object model in the kernel and all

IThey are, in fact, implemented on top of the object model.
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other non-security related system functions above it, this can be achieved only
if the performance of the resulting system is acceptable. More than likely, it
will be the case that the kernel must provide some additional support for
operations that need to be performed quickly, without the overhead of the call
_ interface between the two levels. This is the reason, for example, why it is com-
mon to find device drivers, processes, and so on implemented as a part of the
kernel. We find a similar situation in SMS; for example,. all the I/O mechan-
isms are implemented in the kernel because of the need to avoid the kernel call
interface - since a large part of FTSS's function deals with 1/0, it is logical to

optimize it as much as possible.
3.3.2.3 The SMS Interface

This level of the SMS provides a mechanism which users might use to

create an interface with their local operating system. Let us consider the case

of UNIX! as an example. In order to make the storage system transparent to a
UNIX user, one would create a virtual machine in the storage system which
emulates the behavior of the UNIX file system. That is, a user should be able
to store and access files in the storage system exactly as if they were “local” to
his machine (not considering performance issues at the present time). One way
to do this is to simulate the actions of the UNIX file system within the storage
system through a suitably defined abstraction. Clearly, this could also be done
by implementing the virtual machine in the host, but that would violate our
requirement that the storage management of host computers should be
removed, or made considerably simpler. In the case of UNIX, this would mean

removing all block 1/O management and device drivers, and implementing

IUNIX is a trademark of Bell Laboratories.
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them {or their equivalent) in the storage system via kernel mechanisms. An
advantage of this strategy is that ail hosts that make use of this UNIX inter-
face could share the same subsystem, significantly reducing the software over-
head and reliability of the storage system. The objective of the SMS interface,

therefore, is to provide an environment in which this is possible.

The SMS interface provides two basic services. First, it provides a sub-
system interface which makes it possible for users to create new abstract types
to tailor their requirements. Second, it provides an operating system interface

for those users who do not wish to build their own subsystem interfaces.
3.4 Implementation of SMS

In this section we present a high-level view of an implementation
approach to the SMS based on the logical structure of the previous section. We
show the major functional blocks of each of the levels of the SMS and describe
the visible operations that are available at that level. These operations form a
set of primitives which are sufficient to implement all the intended functions of
the storage system. At this point the interested reader is referred to Fig. 3.3

which shows the relative location of each functional block in the SMS.
3.4.1 Kernel Implementation

The kernel implements the abstractions of the object model plus addi-
tional mechanisms needed to support higher-level abstractions. These are
implemented ‘“‘below’” the protection level of the system. For example, the
abstractions of capabilities, processes, devices, and other kernel “‘types” are

created “out of thin air’’ by kernel code.
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Figure 3.3: Functional Block Diagram of the SMS

3.4.1.1 An Overview

From an implementation point of view, the kernel is an executable piece
of code that resides permanently in memory (in-core), providing the basic ser-
vices of the system. These include process, I/O, interrupt, and memory
management, as well as protection via the object/capability paradigm. In gen-
eral, it is difficult to completely dissociate each service in the implementation
without replicating large sections of the code. However, it is still possible to

discuss each independently since each has a unique function.
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In the following discussion, we will assume that the kernel is to be
implemented on conventional uniprocessor hardware with the following charac-

teristics:

1. demand paged virtual memory,

2. hardware protected address spaces; as a minimum, system versus user
space, and
3. a rich repertoire of instructions.

Characteristic of such processors are the VAX-11 series, the Motorola
MC68020, and the National Semiconductor 32032, all of which are widely avail-

able in the public domain.

The kernel is implemented in its entirety in system space. It is assumed
that the processor has alternate register sets, one for the system and the other
for users such that the execution of a program in one space will not affect
another program’'s execution in the other. The switch from ome space to
another is accomplished through a privileged instruction executable only from
system space (that is, from the kernel). Since it is not possible for programs
running in user space to access the kernel in system space (the hardware will
not allow this), the kernel is designed to have a standard set of entry points.
The SMS kernel has a number of standard entry points of which the following

are the most important:

1. The kernel call entry point; a program running in user space may call
upon routines provided in the kernel - the actual implementation is

hardware dependent; however, it is normally accomplished by a software
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interrupt from the user program; the interrupt invokes an interrupt ser-
vice routine in the kernel which then determines which service the user

requires.

2. The memory management entry point; user programs that cause
memory faults such as a page or segmentation fault (assuming the pro-
cessor supports a segmented address space) will trap to the kernel

through this entry point.

3.  The.hardware interrupt entry point; hardware interrupts such as I/O

completion or clock interrupts are handled through this entry point.
3.4.1.1.1 Memory Management

Memory management is responsible for the management of two virtual
address spaces: the first is the address space associated with physical memory
in the processor (where processes execute), and the second is the address space
in the storage system where semi-permanently stored objects reside. In SMS,
the two virtual spaces are managed independently. There is a kernel memory
management component responsible for allocating/deallocating in-core memory,
and an external memory management component in the storage system for
managing objects stored there. An interface is provided in the kernel which
allows communication between the two. When an object is currently being
accessed by kernel mechanisms, the object is said to be actsve, its representa-
tion (or a part of it) is in the processor, and the capability which points to it
contains the real address of an in-core data structure used for locating the vari-
ous incore components {more detail of this will be discussed in chapter 7).

When an object is not being accessed, it is said to be passive, its representation
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is in the storage system, and the capability which points to it contains the
unique indentifier for that object. An active object may be passivated at any
time (writing its representation to the storage system) via an appropriate ker-
nel mechanism; a passive object is activated simply by referencing it in the ker-
pel. In addition to in-core {memory) space, the kernel also manages space for

swapping processes in @nd out of the processor, as well as space for demand

paging.

The determination of how the physical (in-core) address space is divided
between sfstem and user is typically established by the system builder at sys-
tem initialization. The kernel is aware of this division and will map objects to
the proper space in conjunction with the processor's memory management
hardware. In processors such as the VAX-11, the hardware provides segmenta-
tion registers which can be used to partition the real memory space into a
number of (possibly overlapping) segments - it is the respoasibility of the ker-
nel to establish segment boundaries and to switch the processor from one space
to the other {system versus user) as a function of which segments are being
used. When an object is created by the kernel (as all objects initially are),
incore memory space is allocated for the representation of the object (more
details on this is presented in chapter 7). Since object creation is related to an
executing process {except from some specialized kernel objects), the object’s
representation must be stored in either system or user space, depending on the
space in which the process is currently running. The kernel keeps track of all
objects in a global kernel data structure indexed by the unique identifier of the

object.
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Although the management of the storage system's address space is
independent of the processor's address space, the kernel provides facilities that
permit a storage system object to be read into core, or for an in-core object to
be written to the storage system. The primary kerpel mechanism from a
memoryl-management standpoint is a set of in-core buffers for holding object
blocks; tlhese buffers are allocated in system space and are maintaineci as a cir-
cular ﬁsf with a least recently used allocation discipline. When a block of a
storage system object is to be read, a buffer is allocated from this buffer pool
and the object block is transferred to this buffer - if the buffer was previously
modiﬁed, it is written back to the storage system before it is reused. Additional

details of this mechanism will be presented in chapter 7.

Another important aspect of memory management is concefned with the
paging aspects of the system. In systems that do not support paging, the entire
executable module (representing a program to be executed) must be core-
resident for execution to take place. In a paged system, only those pages that
form the working set of the executing program needs to be in core - the rest is
paged in as desired. To reduce the overhead of paging, it is necessary to have
the pages of the executable module in relatively fast storage. A number of sys-
tems provide special paging devices such as head-per-track disks for this pur-
pose. In FTSS, a similar approach is suggested; when an executable module is
to be executed, the entire module is transferred to a paging device at the top

level of the system before execution begins.

Since processes may be swapped out of the processor to free physical
memory resources, the kernel memory management component also manages a

swap area. The swap area is again, usually, a fast special device that permits



relatively rapid swapping. Head-per-track disks is a good choice here. The pag-
ing device is sometimes partitioned so that it can also be used as the swap dev-
ice as a cost saving measure. The structure of FTSS (as will be discussed in
greater detail in chapter 8) is such that the paging/swapping devices are imple-
mented at the topmost level of the system in close proximity with the proces-

sor.
3.4.1.1.2 Process Management

- Processes are the active elements in SMS. A process is an instance of
the execution of a program. Some processes may exist and execute entirely in
kernel space, while others will execute for the most part in user space. In order
to take advantage of the protection afforded by the object model (which the
kernel implements), processes are built on top of it; that is, a process is
represented as an object. When a process is created, the kernel maintains two
data structures on it - one which is resident in the kernel as long as the process
exists which maintains information needed by the kernel even when the process
is swapped out, and the other which is dynamically loaded in the kernel when
the process is running. A process which is incore but currently pot running is
a candidate for being swapped out onto a high-speed swapping device in order

to free physical memory space for other processes. A process which is swapped

out will be swapped in again when it is scheduled to run.

Processes begin their existence in the kernel. If it is a user process, the
kernel instructs the hardware to switch address spaces and updates the proces-
sor registers in user space so that the process can run. Note that only a single

process runs in the processor at any time. If, during the execution of a user
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process, kernel mechanisms are needed, the process is switched back to system
space, the operation performed, and then switched back to user space. Since
termination of a process is a kernel operation, processes always terminate in
system space. All objects that a process accesses are rooted in the process
object itself (more details of this will be presented later in this chapter). The
protection mechanisms of the object model insures that a process cannot access
an object for which it does not possess a capability. The detatls of object access

during execution are presented later in this chapter and again in chapter 7.
3.4.1.1.3 1/O Management

That part of the kernel that deals with I/O is largely concerned with
communication between the kernel, the storage system, and users on the local
network. The basic mechanism is to buffer data between various I/O devices
and to establish lines of communication between the kernel and external dev-
ices. For this reason, the I/O component is mainly a collection of 1/O drivers
and configuration routines. Kernel memory management interacts with 1/O
through the buffer pool mentioned previously. When 1/O is to be performed, a
buffer from the pool is assigned (either for reading or writing) and the I1/O is
allowed to proceed. Although it is not fundamental that the I/O component be
implemented at kernel level, it is done so because of the high performance usu-
ally needed; for example, a typical disk will supply data at a rate of approxi-
mately 2 million bytes per second - in order to minimize processor overhead,

the transfer is usually done using Direct Memory Access (DMA).
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3.4.1.2 Kernel Modules

In order to simplify the design task, and as an assistance to possible
verifiability, we have chosen to discuss the implementation of the kernel in
terms of a set of modules. the modules are logically independent, providing
communication through well-defined interfaces. In the following discussion, we
will not be concerned with the details of implementation of each module.
Rather, we shall concentrate on the interface to each module and the interrela-
tionships between them. Each module represents one functional level of

abstraction for the kernel.
3.4.1.2.1 Capabilities

The capabilities module represents the abstraction of capabilities in the

object model. Each capability is a bit vector consisting of two fields. A 84-bit

field representing the unique identifier (UID) of the capability,! and a variable-
length bit vector representing the set of access rights for the capability. The
set of visible operations on capabilities are:

C _ restrict(capability,mask):ca ability | signal

C~_copy(capability):capability rsigna.l

C~_destroy(capability):Boolean | signal

C_ compare{capability, capability):bit _vector | signal
The first operation C_restrict allows some or all of the rights in a capability to
be restricted (i.e., removed), and either returns a capability or a signal
representing some error condition. The second operation allows a capability to

be copied, and the third destroys the representation of a capability.

IThe choice of a 84-bit field is somewhat arbitrary. However, it will permit the
generation of UID's for over 500,000 years, assuming that a new one is
generated every 1 microsecond.
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C _compare compares the representation of two capabilities and returns a bit
vector of the result. It should be néted that there is no explicit means of creat-
ing a capability - capabilities are created in concordance with objects; that is, a
new capability is created only when a new object is created. While other
operations may be possible (or even desirable), these are surﬂicient to handle
most of the a.nticipi_hted operations of FTSS. No other #nodule may manipulate

the representation of a capability.

3.4.1.2.2 Objects

The object module represents the abstraction of objects in the model. It
deals with their creation, manipulation, and destruction. Each object is struc-

tured in the following way: it consists of a capability list and a data part. Each

part is logically distinct.! The capability list (CL) is logically structured as a
variable number of slots, each of which holds exactly one capability (if a slot is
“empty”, it holds the special NULL capability). The data part (DP), on the
other hand, is logically represented as a contiguous block of storage, quantized
in some convenient way (in this case, we assume that the quantization factor is
the byte). Either the CL or the DP may be null. The following are the visible
operations on objects permissible by the kernel:

O _create__*(capability index):capability | signal

O _ create(type capability,capability _index):capability | signal

O~ copy(capability,capability index):capability | signal

O get _c(capability, capabilily _index):capability | signal

O _put c{capability, capability, capability _index):boolean | signal

O _get _d(capability, buffer, offset, count):count | signal
O~ put_ d(capability, buffer, offset, count):count | signal

15 we do not assume this, then the underlying hardware must have a means of
distinguishing capabilities from data. A tagged architecture has been suggested
for this purpose [Fabr74]. However, since such architectures are not readily
available ofi-the-shelf, we do not make this assumption.
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O info(capability): structure | signal
O " compare c(capability, capability _index,
= capability index):mask | signal’

O destroy(capability):boolean | signal

O put _ object(capability):boolean | signal
Briefly, the semantics of the operations are: O _create_* is a generic create
call which is used to create prédeﬁned kernel types; “*" is replaced by the
name of the type and object _type specifies the type of object to be created - a
capability with the right of creation is required. O _create creates a new object
of the type specified by the type _capability - this call is used to create
extended tgrpes where type _capability points to an object which defines the
structure of the type. O_copy makes a copy of an existing object. O _get _c
and O_put_c get and put capabilities into or from CL, respectively.
O _get_d and O_ put_d get or put data into or from the DP, respectively,
“buffer” is used to hold the data, while “offset”’ and ‘“‘count’” specify the loca-
tion relative to the start of the DP and the number of bytes to transfer, respec-
tively. A count of the number of bytes actually transferred is returned. O_ info
returns a structure which contains useful information about the current state
of the object specified. O _destroy destroys the representation of an object
(both CL and DL), including any capabilities in CL. O_put_ object writes
the incore representation of the object to the storage system. No other module
in the system is permitted to manipulate the representation of an object. Also,
notice that each operation requires that a capability be presented; the opera-

tion is allowed only if the rights in the capability are appropriate.
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3.4.1.2.3 Data Abstraction

The data abstraction module provides support for the implementation of
gmall protection domains in the SMS. However, on a larger scale, it is the
mechanism by which types (abstract or predefined) are executed by SMS. Pro-
tection in SMS is bound to the notion of an ezecution domain. This domain
might be a single procedure, or a collection of procedures. Protection enforce-
ment mandates that the only objects which an executing domain might access
are those that are either explicitly defined in the domain, or those passed to
the domain as parameters. This is in support of the principle of least privilege
which states that a procedufe (executing in a domain) should possess no more
privilege than it needs to carry out its intended function. The following are the
visible operations of this module.

D call(capability indexes,capability,parameter list):

~ capability | signal -

D call type(capability indexes,type_ capability,capability,

—  parameter list):capability | signal

D_return(capabiﬁty_list,parameter_list) signal
D _ call takes a capability for an instruction object, a list of parameters to be
passed to the called environment; if capabilities are to be returned, they are
stored in the indexes specified by capability _indexes. D _call _type takes a
capability for a type-definition object, a capability for an instruction object
related to the type, and a parameter list to be passed to the called environ-
ment; capability indexes serve the same function as in D_call. D_ return
returns control from an executing function to the calling environment, and may
optionally return values as specified in the parameter list, The reader should

note that direct kernel calls do not create new environments.
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3.4.1.2.4 I/O

The I/O requirements of FTSS can be quite intense, depending upon the
level of activity in the system. Since it is expected that there will be heavy
traffic between the server and the disks, this section of the SMS is implemented
at kernel levél. The major part of the I/O system supports message traffic
between the {isers and the server, and between the server and the disks. The
actual device-dependent characteristics of disks are hidden from the kernel;
information is handled independently by each of the intelligent processor on
each disk - this simplifies the I/O structure of the kernel considerably. To
mesh with the protection mechanisms of the system and to provide a uniform
access structure, each I/O device is implemented at kernel level as an object of
type device. Thus, if a user wishes to access a particular device, only a capabil-
ity for it is needed. The kernel handles all buffering of I/O so that users do not
have to handle this. In an alternative approach, the message system (described
subsequently) can be used to allow users to connect with device objects; how-
ever this would require that each user perform his own buffering. In view of the
need for efficiency, this does not seem like a reasonable approach; instead, users

make direct calls to the kernel when I/O is to be performed.
3.4.2 Subsystem Implementations

The subsystem level is made up of a number of subsystems which pro-
vide higher levels of abstraction of system resources. They create, out of the
base hardware and the kernel operations, those operations that are typically
found in contemporary resource-based operating systems. Although SMS is not

designed to be a general-purpose computing environment, it is necessary to
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include as much generality as possible in order to meet the system require-

ments discussed in the previous chapter.
3.4.2.1 Process Management Subsystem

The SMS view of process management is concerned with the creation,

manipulation, and destruction of processes.! Processes execute on a virtual
machine provided by a suitable combination of hardware and software. The
design allows for a relatively large number of these virtual machines to coexist,

executing processes in a fully asynchronous manner.

One of the crucial decisions facing the implementation of the process
abstraction concerns the distribution of the implementation between kernel
and user space. On the one hand, it is desirable to build PMS entirely in user
space in order to minimize kernel code; on the other hand, for reasons of
efficiency, it is desirable to build it in the kernel so that it does not incur the
overhead associated with the kernel call interface. Most implementors
compromise by building speed- and/or security-sensitive mechanisms in the
kernel, and other mechanisms outside. There is, however, no clear-cut approach
to what should or should not be included in the kernel. The view we take in
PMS (as we do in much of the other subsystems) is that if the kernel call inter-
face can be optimized (performance-wise), then virtually all of the subsystem
can be implemented in user space. One cannot ignore security however. If the
process abstraction is built on top of the object model (by treating processes as
objects), then all security is handled by the (kernel-implemented) object model.

We have actually made provision for this by implementing the data abstraction

1A process in this context is a schedulable piece of software, or, alternatively, a
“site of execution.
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mechanisms in the kernel.

As explained previously, a process needs a virtual machine (or virtual
processor) on which to execute. This virtual processor typically provides an
instruction pointer, a set of registers, and an execution stack, among other
things. In view of the necessity to execute processes as quickly as possible {and
therefore the :.ability to support a large number of concurrently executing pro-
cessors), it is desirable to build the virtual machine as close to the real machine
as possible. PMS takes this viewpoint. It builds the process’ virtual machine in
the kernel. However, all decisions regarding the creation, manipulation, and
destruction of processes are made outside the kernel. PMS therefore consists of
a set of kernel calls and a subsystem for managing processes. Below we discuss

the kernel and subsystem functions, and the interface between the two.
The kernel provideﬁ the following operations on processes:

P _ create():capability | signal

P " start():boolean | signal

P interrupt():boolean | signal

P kill():boolean | signal
P _create creats a process object (out of thin air) representing the virtual
machine on which the process will later execute, and returns a capability for it
— this could, in fact, be treated as one of the generic kernel create operations
(O _create__*}, but we choose to separate it for clarity. P_ create also associ-
ates with the process object all those instruction objects that are needed dur-
ing its execution; capabilities for these instruction objects are inserted into the

process object by the kernel, and the process is made ready to run. P_start

actually starts the process executing at whatever virtual address is assigned by

57



the processor; it is usually an error to start a process that has not been prop-
erly initialized. P _interrupt allows the process to be interrupted in its normal
course of execution; in effect, an interrupt call causes the process to “return”
to the control of the subsystem. P_kill causes the kernel to terminate execu-
tion of the virtual processor, deleting the process object (and, effectively, all
objects associated with the process that the kernel knows about -- from the

process’ capability list).

The subsystem, on the other hand, performs all scheduling and syn-
chronization decisions on processes. The two important implementation deci-
sions are: the choice of a scheduling algorithm, and the choice of a synchroniza-
tion mechanism. The choices are arbitrary at this point, since their implemen-
tation is hidden in the body of the module. However, given freedom of choice,
we would choose a simple priority-based scheduling algorithm which selects the
process with the highest priority ready to run, and a synchronization mechan-

ism based on semaphores [Dijk88].

It is debatable whether the PMS should provide visible operations for
other subsystems at the same or higher levels. The only such possible opera-
tions are those that would affect scheduling decisions on processes. Although it
might be useful to permit users to define their own scheduling policies, we do
not feel that this is an important enough issue to justify its inclusion. There-
fore, we have opted not to provide it at this time since it serves to complicate
the imﬁlementa.tion for dubious benefits. We may have to revise this decision if

it turns out to be wfong.
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The kernel interfaces with the PMS via a special kernel-derived object
called a process coordination object. When a process (object) is created, the
kernel also creates a process coordination object and returns a capability for it

to the PMS. All communication between the kernel and the PMS is via the

process coordination object.! Once the kernel creates a process object which is
prdperly initialized, it is passed to the PMS where it is scheduled for execution.
As the process executes, contention for system resources among parallel
processes is similarly handled by the PMS. This design approach clearly illus-
trates how- the functions of an important system operation can be split
between kernel and user space. This, of course, is all in the interest of minimiz-
ing kernel code. We will see similar approaches in some of the other subsystems

described below.
3.4.2.2 Message Subsystem

The Message Subsystem (MS) represents an alternative way in which
processes in SMS may communicate other than making procedure calls. A gen-
eral message-based communication system is very useful since it permits an
arbitrary interconnection scheme between communication components in much
the same way that gemeral network architectures do. Furthermore, since it
keeps messages out of the address space of processors, it has the desirable
effect of reducing memory requirements. SMS implements the MS by providing

messages and message servers - both are implemented as objects.

IThis is actually an implementation of shared memory, with much more
control, since all access is mediated by the protection mechanisms of the object
model.
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The MS is implemented totally in nser space as a user-level subsystem.
Since messages are based on the protection mechanisms of the kernel, and since
we assume that the kernel-call interface can be optimized, there was no

apparent reason why kernel code should be complicated by the additional

mechanisms of a message system.! The MS implements messages and message
servers as abstract data types. To send or receive a message, the sender or
receiver must have a capability for a message server object. Thus, message

servers act as both a source and a sink of messages.

M _ create_ message():capability | signal
M~ send _“message():boolean | signal
M " receive __message():capability | signal

M _ create__message creates a message object and returns a capability
for it. Obviously, since messages are objects, they can be shared. This is
extremely useful when the same message must be “‘broadcast™ to a number of
objects. M _send _message sends a message to the designated message server.
M _receive _ message receives a message from the specified message server
object. Since the MS is implemented as abstract types, these operations are
not available unless one has a capability for each object type; it is normal to
make such capabilities available to processes and other entities that wish to

commuhnicate.

In the implementation of Hydra, the message system was implemented in the
kernel. In retrospect, it was thought that it would have been better to
implement it in user space.



3.4.2.3 Security Subsystem

In view of the nature of information storage systems, a fairly general
and unconstrained mechanism is required whereby users may define their own
security policies. Contemporary systems are somewhat restricted in the type of
security policies that might be dictated on the use of “files”; for example, in
the UNIX operating system, the only protection afforded to files is global read,
write, and execute permissions for the owner, a predefined group, or all other
users. A more flexible mechanism should allow each owner to apply protection
controls, not on an individual file basis, but rather by individual users of that
file. This is what we try to accomplish via the Security Subsystem (SES). The
SES is a set of modules that provide a higher level of abstraction for the imple-
mentation of security policies by users. It is an interface whereby users may
define their own security policies based upon the security mechanisms provided
by the kernel. In this section we outline the basic architecture of the subsys-
tem; In chapter 4 we provide much more details in view of the importance of

this subsystem to system security.

The SES is distributed between kernel and user space. Those operations
that manipulate the representation of a capability are implemented in the ker-
nel; other operations are implemented in user space. The mechanism which we
use to provide the user with the ability to define his own security poliey is
based on the idea of capability sealing, whereby a user can place arbitrary
information in the representation of a capability which can be used at
capability-use time to determine if the intended access is permitted (beyond
those permitted by the access rights in the capability itself). A simple example

will suffice to illustrate the concept. If a user wishes to restrict the number of
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operations that can be performed with a capability, the user would seal the
capability with this limit information before passing a copy of the capability to
another user. Each time the capability is used, the person who sealed the capa-
bility is “‘consulted” before the operation is performed. If the imposed limit has
been exceeded, the sealer has the option of denying the request by removing
the appropriate access rights from the capability (the reader is referred to

chapter 4 for a better and more complete treatment).
The kernel provides the following operations for SES:

S seal():status | signal

S ~unseal(): capability | signal
The S_ seal operation seals user-specified information in a capability; the
S _unseal operation reverses this effect. In order for the kernel to communi-
cate with the user-level portion of SES, sealed information (from the
S _unseal) operation is passed back to the calling subsystem via a kernel-
defined object; hence the S __unseal operation returns a capability for this

object -- the object contains the sealed information.

The portion of SES in user space provides a suitable interface whereby
users might avail themselves of the kernel facilities. In general, when a user
seals a capability, a type definition object must also be provided which specifies
how to interpret the information sealed in the capability. Therefore, when a
sealed capability is unsealed, the type definition object’s code is used to mani-
pulate this information. A module is provided which allows users to define their
type definition object. Another module which extends the seal and unseal ker-

nel operations is also provided, typically allowing the user to manipulate or
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review the information sealed in the capability. The details of these modules
are elided since they do not impact the overall architecture of the system; they
can be implemented in any number of ways using the programming tools pro-

vided with, or by, the system.
3.4.2.4 Transaction Subsystem

The Transaction Subsystem (TS) is an abstract data type that imple-
ments the nested transaction model [Moss81, Muelg3]. The model fully sup-
ports the notion of a transaction (called a top-level transaction) composed of
other transactions (called subtransactions) that may either execute sequentially
or concurrently. As with other subsystems, we find it appropriate to build the
transaction model on top of the object model to take advantage of the protec-

tion and naming mechanisms provided there.

The nested transaction model consists of a set of rules for the initiation
and termination of transactions and nested transactions, a set of rules for
maintaining synchronization of concurrently executiné transactions, and a state
restoration algorithm when transactions or subtransactions abort. The inter-
face to the transaction abstraction provides a set of operations that implement
these rules. The primary objective of the transaction abstraction in FTSS is to
provide reliable concurrent operations on information storage objects {that is,
those objects stored semi-permanently on disks), rather than to provide a truly
general-purpose mechanism. In view of this, it is not expected that the over-
head of the transaction mechanism will pose a significant obstacle to perfor-
mance. Therefore, while it is tempting to implement the abstraction in kernel

space, we choose to implement it in user space at the subsystem level.



Our nested transaction model is not radically different from those used
by Moss and Mueller. In fact, our model is considerably simplified since we are
operating in a centralized, as opposed to a distributed, environment. In the
usual way, a transaction begins as a single process (called a fop-level transac-
tion). This transaction may invoke other processes within the same transac-
tion. If one of these processes (or the top-level transaction) invokes another
transaction, then this transaction is a subtransaction. Thus a single transac-
tion (or subtransaction) might be composed of several member processes. The
visible part_of the TM provides the following operations (see [Moss81] for a
mor_é detailed description of the mechanism):

T_create_transaction():T%signal

T create _subtransaction ):TID | signal

T~ commit_ transaction(TID):boolean | signal

T~ abort _fransaction(TID):boolean | signal

T~ creaté__object(TID):capability | signal

T —_get_object(capability, TID):data | signal

T _put object(capability, TID,data):status | signal

T updEte__objglt‘:ItB:apability,TID):boolean signal

get _parent(TID):TID | signal

=
T is_committed(TID):boolean | signal
T~ is_ aborted(TID):boolean | signal

TM implements these operations as an abstract data type, coordinating with
the kernel or other subsystems when necessary. In particular, suppbrt for lock-
ing objects is provided by the OMS which supports the call
OM _lock(lock _ type); this will obtain a read or a write lock on an object. The
complementary call OM _ unlock(lock _type) will free the appropriate lock. A
subtransaction commits only if each of its member processes terminate success-
fully. A top-level transaction (and hence the entire transaction) commits only if

all its subtransactions commit, and its member processes terminate success-



fully. Otherwise, the top-level transaction aborts.!
3.4.2.6 Object Management Subsystem

The Object Management Subsystem (OMS) assists the kernel in manag-
ing objects stored on disks in the system. For convenience, we shall refer to
this collection of objects as the jObject Sto;e. It handles general maintenance of
the object store by performing location, migration, archiving, and garbage col-

lection of objects.
The OMS consists of the following modules:

Object Location Module
Garbage Collection Module
Archive Module

Migration Module

Below, we give a brief description of the responsibility of each module:

. The Object Location Module is used to locate objects in the object store.
Its primary responsibility is: given this object’s unique identifier, return
its location. Or, with a finer grain, given an object’s unique identifier
and a logical block number within the object, return the block. The
details of object location is presented in a later chapter after we have
developed an architecture for FTSS. However, to give the reader an idea

of what is involved, the following paragraph describes a simplified loca-

10ne of the advantages of nested transactions is the fact that each
subtransaction can act as a firewall, preventing outside influences from
affecting the internals. If the subtransaction fails, it can be successively retried
until it commits; thus, a failure of a subtransaction does not imply the
immediate failure of the entire transaction. Although more mechanism is
required, we feel that this is closer to the real state of affairs and therefore
adopt this philosophy in FTSS.
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tion mechanism.

An object may exist in one of two states: it may be either active
or passive. An active object is one which is currently being accessed for
cither read or write and portions of it are in “core”; otherwise, it is pas-
" give and resides entirely in the object store. To assist in locating objects,
this module maintains a Global Object Dlrectory (GODI) which maps
each object’s unique identifier into its location in the object store. How-
ever, since the disks are intelligent (with their own local processors),
each ‘disk maintains local information in a Local Object Dlrectory
(LODI) which maps the unique identifier into a physical location on
disk. Thus there is a two-level mapping structure inherent in the loca-
tion mechanism. The advantage of this scheme is that the GODI entries
only need to point to a disk, and is therefore simplified. Every object

whether passive or active has an entry in both the GODI and one or

more LODI’s, depending on the replication factor of the object.! The
module provides assistance to the kernel in the following way. When an
object block is to be located in the object store, or when a location must
be found for it, the kernel transfers control to the module to resolve the
problem. The module will use the GODI to perform the necessary map-
ping and return the results to the kernel. More details of this is

presented in Appendix D.

The Garbage Collection Module is responsible for performing parallel

garbage collection operations in the system to determine unreachable or

1Gince we assumed that disks can fail, we provide high availability by
replicating objects on two or more disks that have independent f{ailure
probabilities.
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circularly reachable objects. A garbage collector is needed in order to
solve the 'lost object” problem, despite the use of mechanisms such as

reference counts.

The Archive Module is responsible for the automatic or manual archiv-
ing of objects in the object store. It presents a visible interface typically
only to system administrators, although it is quite feasible that a user
can manually request that a particular object be archived. It is
expected that archiving would be run periodically by a system daemon
in an actual implementation. This module is implemented in user space

in its entirety.

The Migration Module is called upon whenever an object must poten-
tially be migrated either for temporal or spatial efficiency. The visible
interface permits the source and destination of an object to be explicitly
specified, or that use of an internal algorithm be used to determine an
appropriate destination, given a source. This module is implemented in

user space in its entirety.

3.4.2.8 System Monitor Subsystem

The System Monitor Subsystem (SMOS) provides a convenient interface

for monitoring the use of the system. It is intended primarily for the use of sys-

tem administrators that must be in contact with system operations. In general,

the system administrator is the highest level of authority in the system, and

requires a convenient interface to kernel mechanisms. This subsystem is not

generally available for casual use. Details of its implementation are elided since

they have little bearing on the information storage issues of the system.

87



3.5 Using the System

The following sections are meant to illustrate how the SMS is used. The
kernel and system-level subsystems provide a basic set of primitives sufficient
to implement any scenario that a user might want. Objects and capabilities are
provided to form the basis of security, processes are provided to support the
implementation of a process-oriented operating system, messages are provided
to support interprocess communication, transactions are provided to support
indivisibility of operations, a security subsystem is provided to allow users to
ﬁn'plement-itheir own security policies, and object and I/O management sup-
poi-t is provided to manage the object store. For each service, a set of primitive
operations are provided; while they may not be an independent set, they are
sufficient to implement all the functionalities of FTSS discussed in chapter 2.
This section should give the reader additional confidence in the mechanisms we

have developed.
3.5.1 The Execution Environment

The most important concept is that of a program and how it is executed
by the primitives. Assuming that a user can write a sequence of instructions
that describes an algorithm, if we can provide a mechanism that can execute
them, then enything that the user can express as an algorithm can be imple-
mented. This includes such things as text editors, a compiler, a statistics gath-
erer, etc., which are typically found in a more general computing environment.
If the primitives provide support for executing programs, then anything can be
built on top of them. In FTSS, sometimes the user will want to build some-

thing of his own, at other times he will want to use something which is already



built for him. For the remainder of this section, we will discuss how programs

in general execute.

In order for anything to -execute in SMS it has to be written as a
sequence of instructions for the machine on which SMS itself is built. The
trick is for the user to give this sequence of instructions (the program) to SMS
and then have SMS pass it on to the base machine. For example, suppose a
user wishes to read a file out of the object store, a sét of instructions that
describes how this is to be done must first be obtained; this is then passed to
SMS, SMS will then pass it on the the base machine, making sure that the pro-
gram satisfies any constraints imposed by the requirements of SMS (security,
for example). We will first assume that the user has written his program in a
high-level language such as the C language [Kern78]. C provides a set of state-
ments (primitives) that can be used to implement an algorithm. We augment
the language with one very important feature - we permit the user to invoke
the primitives of SMS directly from the language. When one of these primitives
is invoked as the program is executing, a special jump is made to the appropri-
ate code in the SMS; when this code finishes executing, a return is made to just
after the invocation, and the user’s program continues. It is quite possible that
the language provides a different abstraction from those provided by SMS. For
example, the language might support the notion of files (consider C again}; the
compiler writer must make the necessary transition from file operations to
object operations, and this is where the SMS primitives come into play. There-
fore, for simplicity, ﬁre will assume that SMS provides a facility that allows

users to write code in a high level language and compile this code for execution.
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If it is accepted that any user can write and/or invoke any program,
then we only need to discuss how SMS takes this program and executes it for
the user. The abstraction that accomplishes this is the process abstraction.
Each executing program runs as a process. In theory, the process abstraction is
not required, systems have been designed without it, but it makes things more
modular, and therefore easier to design, Iimplement, and debug; we use it in
SMS because it supports data abstraction and concurrency. Processes are built
on top of the object model so that they may use the protection features of the
model. A process is implemented as an object that represcnts the virtual
maéhine on which user code is executed. This virtual machine usually consists
of an instruction space, a data space, and an execution stack - it uses the same
instructions as the base machine. The structure of a process object is shown in
Fig. 3.4. The process object is a distinguished node in a graph of objects that
are linked by capabilities (often referred to as the capability graph of the pro-
cess). This graph is not a tree since it may have cycles. The set of objects in
the graph is the set of reachable objects formed from the transitive closure of
all capabilities in the graph. The data part of the process object contains pro-
cess control information, a list of resources being used by the process, and syn-
chronization primitives (such as locking primitives). The purpose of the
P__create() call is to create an empty process object and to initialize it. Initial-
ization involves the establishment of state vectors maintained in the data part,
and installing capabilities for objects that might be needed during execution of
the process, for example, a capability for a port object to communicate with
other processes or with the I/O subsystem. The P_start() primitive estab-
lishes the initial addressability of the process by establishing an initial context

(described below) and initializing the instruction pointer to point to the first
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Figure 3.4: Structure of a Process Object
instruction of the main routine in the user’s program. It then schedules the
process for execution using the mechanisms described in the section dealing
with the PMS. In the next paragraph we will describe how execution takes

place.

SMS executes each procedure of the user’s program in a unique and
independent execution domain. This is done using the data abstraction facili-
ties of the kernel. Each user procedure is invoked using the primitive D _call()
(or D__call_type()). This execution domain is defined by another special ker-
nel object which we call a contezt object. Each time a D _ call(} is invoked from
the user's program, a new context object is created and a capability for it is
stored in the C-list of the process object in a LIFO manner; that is, the Capa-

bilities for each context object are stacked. When a D _ return() terminates the
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procedure, the context stack is popped and the current context object is
deleted; that is, the environment is destroyed. Notice that each invocation of a
procedure results in a new context (or environment). Furthermore, it is impos-
sible for one context to access objects in another context, unless a capability
for the object has been passed as a parameter during the procedure’s invoca-
tion. Thi_é data abstraction mechanism is the root of all protection in SMS; it is
the same mechanism, for example, which permits isolation between users in the
system - each user executes in a different context, even if they are executing

the same primitives. Fig. 3.5 illustrates a process object with several contexts in

effect.
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Figure 3.5: Process Object with Several Contexts

Each time a context object is created, its capability list is updated with all
those capabilities in the C-list of the instruction object of the invoking pro-

cedure, those passed in as parameters during the call, and capabilities to any
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temporary objects that the context might need. Now that we have introduced
context objects, we can revisit P__create(}). This call can also be used to create
a new process from a currently running one; if the call is given from a currently
executing process, a new process is created with the currently executing con-
text as its initial context - the process is not started until the P_start() call is
used. The calling process continues to run. This behavior is similar to the

“ork” system call in UNIX.

Whenever the context stack empties or a P__kill() is executed, the pro-

cess object is destroyed.
3.5.2 Abstract Data Types

A user will want to create an abstract data type whenever it is necessary
to exert some control over how a particular equivalence class of objects is mani-
pulated. An example of this is an object of type directory which we will discuss
below. Each abstract data type is represented by an object which defines the
type - the Type Definition Object (TDO). Initially, the kernel provides a TDO
from which all other TDO’s are created. Thus, the set of objects in SMS forms
a 3-level tree as shown in Fig. 3.8. To create an object of a particular type, the
user issues an O _ create() call specifying the type of the object. A capability
which permits the creation of new types must be submitted. Such a capability
can be obtained by users who are permitted to create new types (this could be
controlled by a system administrator, for example). As the distinguished
representative of a class of objects, the type object contains capabilities for
instruction objects which define the operations permissible on objects in the

class. Such operations are invoked by using the D __call _type() primitive with

73



Global
TDO
Type = “Type”

Derived Derived Derived
| Type Objeet Type Object | . . Type Object
Tn. - “A" TYPG - “B' Type == ncn

ANANSVAN

ve - .
| -

Objects of Type "A”  Objects of Type “B" OCbjects of Type “C”

Figure 3.6: Tree of Object Types
a capability for the TDO. In such a case, the instruction object representing
the operation to be performed is loaded into the executing processes context
and execution progresses. If an illegal operation is specified, an exception is sig-

nalled.

It is with this mechanism that users are able to provide their own
environments by defining objects of a particular type and enforcing the opera-
tions that can be performed on them. For example, a user with a UNIX operat-
ing system can declare types called “unix _ files” and enforce the operations

that can be performed on them.
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3.8 Building an Operating System Interface

Let us now discuss how one would build an operating system interface
on top of SMS and what types of services it should provide. First, it is neces-
sary to understand that an operating system interface is merely a program. It
is a program which never stops (unless killed) which has the ability to invoke
other programs; invoked programs run concurrently with it. The operating
system interface, therefore, is implemented as a process which is started at
some time during the FTSS “boot” procedure. Once it starts, other users can
dse it to invoke their own programs. Traditionally, operating systems have
provided services relating to file, process, 1/0, directory, and job management.
FTSS is not meant to be a general-purpose operating system, although there is
no reason why it cannot act as one. However, we will concentrate on those
areas of a traditional operating system that are of particular importance to us.

These are object, directory, and job management.

There are several ways in which a user can interact with FTSS. The ﬁrﬁt
is as a remote server where messages are sent to store and/or retrieve informa-
tion as files, objects, etc. In this case, the user has minimal interaction, merely
uploading and downloading whole objects or parts of objects. The second is the
case where the user uses FTSS transparently. That is, operations appear to be
local to the user’s operating system; in this mode SMS is acting as a guest layer
on the user’s operating system. The third is the case where a user uses FTSS
interactively to upload and download files without requiring any particular
features tailored to his operating environment. This case is distinguishable
from the first in the sense that in the latter the user wants numerous facilities

but does not wish to build them. For each of the cases above, however, each
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user requires an ‘‘environment” in FTSS. We will next describe how these

environments can be built and how they are used.

Initially, all users share a common environment, that which we refer to
as the operating system interface. This interface is written by the system build-
eré‘_;and performs the functions mentioned above. For each new user of the sys-
tem, a default environment must be established. Furthermore, a logon and
authentication procedure is required, as well as a logoff procedure. Let us deal
with new users first. A new user is added to the system by a system adminis-
trator (or someone suitably authorized) using an operating system program
that has been designed specifically for that purpose. There is a global directory
of all users managed by the directory management subsystem; each entry con-
tains information which identifies the user, specifies an authentication pro-
cedure (it may be a password or a key based on a public-key encryption sys-
tem), and points to the default environment of the user. Initially, the user’s
default environment is an instance of the operating system interface program.
That is, each user gets an individual copy of the interface. Once in this default
environment, the user may create other environments, as subsystems, using the
type-extension facilities of the kernel, and may install them in the global direc-

tory as future default environments.

The logon/authentication procedure always uses the default environ-
ment. A user logs on by sending a message to FTSS requesting a connection;
the message identifies the user. The global user directory is consulted to verify
the eligibility of the user and, if completed satisfactorily, the authentication
procedure is invoked. Authenticating a user requires care, especially when the

user is remote. The problem is to prevent users outside the protection domain
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of FTSS from masquerading as a user or tampering with a user’s messages. We
would propose an encryption-based scheme based on public and private keys;
each user is given a key and another key is kept in the global user directory.
Once a user is authenticated by providing his (encrypted) key, a virtual circuit
is established over which all communication takes place until he logs off. This
implies that all messages over the virtual circuit are encrypteé. The other alter-
native is simple, but less secure: give the user an unencrypfed password and
assume that the external commupbication system is secure. Capabilities are not

permitted outside the protection domain of FTSS!

Logoff is conceptually simple. When a user logs off, all the objects that
belong to the user must be preserved and the user’s environment must be des-
troyed. Destroying the environment is simple - we just kill the process. How-
ever, preserving the user's state so that the next time he logs on he can observe
the same state as when he logged off requires some form of object state preser-
vation. The way this is done, if it is done at all, depends on the semantics of
the uset’s environment - a user who creates his own environment is free to
make arbitrary decisions. The default environment writes all modified objects
back to the object store {in case the logoff is due to communication failure),
updates the user’s local directories, and updates any information necessary in a
state object associated with the user (all users are assumed to have one stored

in some standard place).

Recall that a user, once logged into the system, may change his default
environment by updating the entry in the global user directory which points to
the default environment. Once in the default environment, a user may create

and/or switch to new environments (user-supplied or publicly accessible)
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dynamically. The method of doing this uses two key kernel primitives: the
data abstraction facility and the type extension mechanism. The data abstrac-
tion facility allows the nesting of environments by treating each as a context of
the original environment. However, the context is more general in that the new
environment runs as a separate process. The type extension facility permits a
new environment to be created by defining the environment as an abstract

data type.

Now that we understand what a user environment is and how a user
establishes contact with it, let us go back to the main functions of the operat-
ing system which provides services for object, directory, and job management.
Object management is concerned with the management of objects in the object
store; it permits users to access objects that may be either public or private
and to perform a limited amount of management on them. Directory manage-
ment permits users to create and maintain directories of names referring to
objects or other directories. Job management is concerned with the manage-
ment of a job or a family of processes. If one were to express these three as a
hierarchy, then job management is needed for both object and directory
management, and directory management is needed for object management.
Directories are implemented as an abstract data type (a user-level subsystem)
since most users will want to use directories, even if they design their own
enviropments. Job and object management are implemented as programs since
they are generic. We will not discuss the actual functions implemented by each
of these management tasks; they may be assumed to be similar to those found
in any modern operating system. Instead what we will do is to illustrate the

object state of the operating system as each of these tasks execute from logon
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to logoff. In doing so, we will follow steps that would typically be taken by a
user. These steps are:
1. User logs on
9. User creates an object, makes additions to it and stores it in
the object store.
3. User reads an object already stored.
4. User creates a new environment and installs it as his new

default.
5. User logs off

We now present each step in more detail.
Logon

We assume that the system is currently executing a login process which
is always running, waiting for users to log in. This process must communicate
with the user and authenticate his access to the system; we will assume that
the user has used the system before and has established an authentication
mechanism. We now take a snapshot of a portion of the object state of the sys-
tem showing which objects are currently in use, and how they are connected to
form a capability graph during the authentication procedure. This is shown in
Fig. 3.7. If the user is authenticated, then the login process wﬂl invoke the
operating system interface and attach the user to it. The operating system
interface is invoked as a process independent of all other processes in the sys-
tem; with respect to the user, Fig. 3.8 shows the object state just after the
operating system is invoked. A command processor context is invoked and the
user is attached via a communication port; the command processor is waiting

for commands at this point. Logon is now complete.

Object creation, modification, and storage
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Figure 3.7: Snapshot of Login Authentication

We assume that the operating system provides commands to execute
each of these functions. Creating an object (let us assume it is a text object)
implies that the user’s current directory will be updated with the name of the
object once it is created. Objects are created by making an appropriate call to
the kernel; adding the name to the local directory implies calling the directory
subsystem. Since object creation involves no new contexts, we will defer show-
ing an object state diagram until the next step which is to add some text to
the object. There are two ways in which this can be done: the user can either
send the text as a message, or do it interactively using, say, a text editor. As
far as the object state is concerned, it makes no difference which method is
used (only the context would be different). We therefore assume that the user

is uploading information from his local processor. We also assume that the
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operating system interface supplies a command called “upload” which will
allow the user to add data to the designated object. Fig. 3.9 now shows the

object state. The order of the context objects from top to bottom indicates the

calling hierarchy.
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Figure 3.8: Object Update
We should point out that the structure shown is very simplistic; it does not
indicate all possible objects, just the ones of importance - the most important
thing is to note how various contexts are established, and their relationship to
one another. When a context terminates (via a D_ return()), control returns to
the previous context as they are stacied in the process object. When the object

is to be stored, the user invokes an appropriate ‘‘store” command and the
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object is written to the object store. The details of writing an object to the
object store is handled by the operating system interface via the

O _put_ object() kernel call - only a capability for the object is required.
Reading an Object

To read an object, we assume that the operating system interface ¢om-
mand processor provides a “read” command. The semantics of this read com-
mand is simple: it takes the name of the object from the user, looks it up in
the directory specified, retrieves a capability for the object and invokes a ker-
r;e!;primitive to get the data (this may involve more than one use of the kernel
primitive depending on how much of the file the user waﬁts to see). The data
which is read is transmitted to the user. The object state we would show is

exactly the same as in Fig 3.8 except that the upload context is replaced with a

“read’’ context.
Creating a new envsronment

A new environment is tantamount to a new copy of the operating sys-
tem which replaces the old. The data abstraction (subsystem) facility can be
used for this although, as we saw with the directory subsystem, it is not neces-
sary that the subsystem be used in this way. The new subsystem can be
invoked either on demand by a holder of a capability for it, or by default when
the user logs in - we shall assume the latter. Building an environmental subsys-
tem is exactly the same process as building any other subsystem - the user
creates a new abstract type and installs instruction objects that define opera-
tions on the type. It is normal for users to create a new environment when the

default environment does not meet their needs. To facilitate a new subsystem,
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the default operating system provides the tools that the user needs - a text edi-
tor for writing source code for the subsystem operations, a compiler for gen-
erating machine code, commands to put the machine code in instruction
objects, and a possibly interactive program for putting the subsystem together.
The snapshot of Fig. 3.10 shows the state of affairs just as the subsystem
builder is installing capabilities for instruction objects into the mew type

object.
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Figure 3.9: Snapshot During Subsystem Creation
Once the subsystem is built and the user has the capability for it, it can be
instailed in the global directory object by using an operating system installa-

tion program. The installation program simply installs the capability for the



subsystem object in the global directory object replacing the one which pointed

to the previous default environment.

Logoff

If we assume that the user is in his default environment, then logging off
causes the currént environment process (operating system or user subsystem)
to reinvoke the iogin process; it then kills itself. For example the operating sys-
tem process would invoke the login program as an independent process and
terminate the command processor context - this will cause the operating system

prc_jcms to die since there are no outstanding contexts.

Much of what we have discussed in this section is what we would imple-
ment; however, the mechanisms are sufficiently flexible that virtually no con-
straints are placed on what can be built. In appendix E we have provided
skeletons of operating system functions that further illustrate how the basic

primitives can be used to implement useful interfaces.
3.7 Summary

In this chapter we have reviewed architectural issues for the design of a
storage management system for a centralized storage system. The most impor-
tant issues are related to extensibility, security, and availability. We have
developed a software architecture for an SMS which is based on the object
model, and which uses capabilities both as a means of enforcing protection, and
as a naming mechanism. In chapter 8 we shall propose a hardware architecture
upon which this software architecture can be mapped -- an environment 1Which

provides support for high availability and security while, at the same time,
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enhancing the performance of the system.
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CHAPTER 4
SECURITY ISSUES

Information security in online storage systems is a means of preventing
the unauthorized disclosure of information. Several novell.schemes have been
proposed to deal with this problem. However, their primary limitation is the
amount of flexibility they impose in the implementation of arbitrary security
~ policies. In this chapter, we describe a mechanism for implementing arbitrary
security policies based on access controls. The mechanism uses the concept of
capability sealing in which a security policy is conceptually sealed within a
capability; there is very little restriction on what sort of information might be
sealed within a capability. The approach differs from other capability sealing
approaches in that it is applicable only to information storage objects, and in

the mechanism by which information is sealed in and extracted from a capabil-

ity.
4.1 Introduction

The issues of securily in programmed systems are well known. Security
regulates activity both internal and external to the programmed system. A

secure computer system depends upon:
1. controlled access to objects within the system,

2. reliable hardware components,
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3. prevention of threats perpetrated outside the system,

4. controlled disclosure of information within the system, and
5. controlled disclosure of information obtained by inference within the
system.

In FTSS, we are interested in providing security mechanisms that per-
mit a wide range of policies to be implemented by the user on objects stored in

the system.

Several techniques have been proposed for meeting the security require-
ments of operating systems, of which the capability mechanism appears to be
the most promising [Ekan79, Rede74, Glig79]. Similarly, several mechanisms
have been proposed for meeting the security requirements of files in informa-
_tion storage systems (as, for example, the use of access matrices, access control
lists, and so on) [Jone79]. The capability mechanism has also been used to a
limited extent in some extant systems (proposed or implemented) [Orga72}.
Applying security mechanisms via capabilities across the system {(although
desirable) leads to complications since it is necessary to implement these
mechanisms at kernel level, resulting in a kernel which is difficult to verify.
Access matrices and access control lists, while useful for implementing access
control policies on files (and therefore information storage objects) do not have
desirable semantics when applied to revocation; neither do they permit fine-
grained control over capability copies in a capability system. (See [Glig79] for a

discussion of capability copy and access review).

87



Because of the diverse security requirements of operating and storage
systems, several different security mechanisms bave been developed to satisfy
the requiremeﬁts of each part of the system. This has resulted in difficult inter-
faces between subsystems, often at the compromise of security. For example, in
Multics [Orga72] capabilities are used internally whereas access control lists are
used in files; thus two different access éontrol mechanisms are used and need to
bé verified. What is needed is a homogeneous integrated mechanism which can
be used in all parts of the system. The goal of this chapter is to provide the
basis of such an integrated mechanism that can be used to satisfy arbitrary

security policies.
4.1.1 Limiting the Scope

In this discussion, we are mainly interested in information security.! Its
implementation implies the implementation of various controls. 1t has been
argued that access controls, information flow controls, cryptographic controls,
and inference controls form a sufficient set of controls whereby a wide range of
useful security policies can be implemented [Denn82]. Our goal is to provide a
flexible enough mecharism that will permit the implementation of all (or a

sufficient subset) of these controls.

One aspect of information security that has received considerable atten-
tion is protection. Protection can be loosely defined as the enforcement of a
rule, or set of rules, that maintains order during the mapping from input to
output values of the set of algorithms that make up the programmed system
[Jone73]. The algorithms may be implemented in either hardware or software.

While the goals of protection vary markedly from one system to another, the

10ther authors has referred to this as data security).
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following are applicable to most systems:

1. concurrent users should be able to cooperate without unnecessarily

interfering with each other,

2. users should be able to store information permanently or semi-
permanently so that ii is inaccessible to others without authorization,

and

3. users should be protected from themselves: resources and powers a user
- employs while performing one task should not be available (for possible
misuse) when performing another task.
Because of the wide range of so called protection policies that can generally
result due to diverse systems or applications, it is best to provide the user with
protection mechanisms from which arbitrary (but useful) protection policies can
be developed. Protection mechanisms based on access controls have been
demonstrated to be quite useful as the basis of a protection system, especially
when coupled with the capability mechanism. We therefore provide for protec-
tion of information storage objects via the access control mechanisms applica-

ble to capabilities.

-

In the following discussion, all of our proposed security mechanisms are

based on some form of access control mechanism.
4.2 The Basic Mechanism

We propose a mechanism whereby secu'rity may be implemented to any
degree of effectiveness needed in the system. While the proposed mechanism

can be used in a very general sense on all capabilities in all parts of the system,
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our intent is to use it solely for the application of security policies to objects
stored semi-permanently in the system. In particular, we do not propose that
the mechanism be used on capabilities for objects that are dynamically created
and manipulated by the kernel (for example, process, device, and other kernel-
defined objects). By making this assumption, it is possible to remove much of
the mechanism from kernel space to user space; this is an important considera-
tion if the security of the kernel is to be verified. Also, by taking this approach,
the security of the mechanism need not be verified since its failure cannot sub-
vert the basic protection mechanism provided by the kernel (at worst a user
;an be res;i:ricted from accessing an object, but never given access to one for
which the appropriate rights are not present). The mechanism is built on top
of the basic capability mechanisms of the kernel, and makes use of the concept
of capability sealing. Generalized capability sealing was first proposed by Redell
[Rede74], where it was used to provide type extension and revocation in a
capability-based system. Here we use the methodology, extending it slightly in

a different direction, to provide the mechanisms needed to implement security

policies.
4.2.1 Capability Sealing

The idea of sealing a capability is analogous to putting a capability in a
boz. Conceptually, the box has no independent existence, acting more or less as
the “skin’’ of the capability. There may be several tyi)es of boxes, and there is
no restriction upon the number of boxes in which a capability might be
encased. Boxes are created from templates that are either predefined or defined
by the sealer of the capability. When a capability is sealed, the box acts as a

protection domain to which access can be gained only through the proper
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authorization. By providing access control policies to these boxes, we will show

that it is possible to create a mechanism with desirable properties.

A capability is sealed by providing a suitably authorized template for a
box. This is normally done by providing a capability for a type object which

defines the template. The following operation is illustrative of the concept:
CS — seal (C,CT)

Executing seal creates capability Cs by sealing capability Cin a box specified
by the template contained in type T, as authorized by the privilege of sealing

in _éapa.bility Cr. The following unseal operation reverses the process:
C + unsedl (Cs5 Cp

These operations require further explanation. However, before we do so, we
outline the goals of the mechanism. First of all, the mechanism must provide
the basis for arbitrary security policies. Second, it must provide for the selec-

tive and unconstrained revocation of rights. Third, it must provide for the

selective and unconstrained restriction! of rights. Fourth, it must not in any
way restrict the operations that can be performed on base (unsealed) capabili-

ties, save for some penalty in the execution performance of those operations.

It should come as no surprise that the action of sealing a capability in
different boxes can be used to implement arbitrary security policies. In effect,
what we are proposing is two levels of access control policies, both of which are

enforced by the system. The first is a policy for accessing the representation of

1Restriction and revocation have slightly different semantics. Revocation is the
removal of a right, whereas restriction is some constraint upon the use of a
right.
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capabilities, the second, a policy for accessing objects. It is appropriate to treat
them separately since capabilities are not objects. Let us now look at the pol

icy for accessing the representation of capabilities.

We begin with a base capability. A base capability typically consists of a
set of rights and a unique identifier or UID. A right is a privilege which permits
the possessor of the capability to perform some operation on an object to
which the capability points. To restrict an operation on an object, it is
sufficient to restrict the rights to to that operation in the capability which is
used to access the object. In order to establish a generalized mechanism for
rights manipulation in a capability-based system, it is important that the use
and interpretation of (at least some of) the rights be user-definable. This
approach has been used in a number of systems in which there are a set of
predefined (or kernel) rights and a set of user-definable (or awziliary) rights
[Wulf81]. A limitation of these schemes, however, is that the set of user-
definable rights is limited (usually based on the physical size of the capability,
in bits). A more general mechanism should put little restriction upon what sort
of “rights” can be defined by the user. Of course, this leads to the problem
that the size of a capability is now variable, a fact which must be accounted

for in the design of kernel mechanisms which manipulate capabilities.

The kernel rights are interpreted directly by the kernel and form the
basis of protection in the system. This is inviolate and vigorously enforced by
the kernel on all object accesses. The interpretation of these rights is system-
dependent. We will discuss some of their possible interpretation as the need
arises. All kernel operations on objects are done in terms of base capabilities.

If the kernel is presented with a sealed capability, an attempt will be made to
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unseal it to the base capability before it is used. As mentioned before, the
operation of sealing merely encapsulates (and insulates) the base capability in a

very special way.

[t is convenient to think of a capability as being a record, in the pro-
gramming language sense. When a capability is sealed, this is analogous to
adding another record to the record which represents the base capability. Note
that we use the notion of a record merely as a descriptive device and not as
suggestion for a possible implementation. Each time a capability is sealed, a
new record- is added to the existing set of records. Conversely, the unsealing of
a capability is analogous to the removal of a record from the set of records.
Clearly, it is not feasible to unseal a capability which is not sealed (i.e., there is
only a single record in the set). Since the order of sealing may not have a one
to one correspondence with the order of unsealing, it should be possible to ran-

domly access any record in the set. This can be done using any of several stan-

dard methods available to the implementor.! Using a simplistic programming

system, a sealed capability might be structured as follows:

base__capability = record
UID: integer pointer
system _ rights: bit vector
1 sealed _info: integer pointer
en

sealed _info == record
type__capability: capability
user _info: string
auxiliary _rights: bit vector
Zealed info: integer pomter
en

Thus, a sealed capability can be viewed as a linked list consisting of a base

10ne possibility is as a doubly linked list of records.
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capability at its head followed by none, one, or several information records that

describe the sealing operations.

It is perhaps easiest to view a sealed capability as an ordered set of
boxes, which we term prioritized sealing. This is, in fact, a two-dimensional
representation of the more general view that a sealed capability is a set of
nested boxes in which the outermost box represents the most recent sealing
operation. In terms of an ordered set, a sealed capability S is a one-dimensional
array of elements (boxes) s; 0<i<n such that s, represents the base capabil-
ity, and s, represents the most recent sealing operation. For simplicity, we
assume that the format of each box is identical, with the proviso that some of

the fields of the boxes are not used (null fields) when they are not needed.

It is the base capability that is always used by the storage management
kernel. The rest of the capability (the records indicating various sealing opera-
tions) is merely used to modify the rights in the base capability. Initially, a
base capability has all rights ON. From this point on, rights may be explicitly
restricted (via the restrict operation provided by the kernel), or implicitly via

various sealing operations. It should be noted that a right, once removed, can

never be reinstated in the base capability (except possibly by amplification!).

If we take the view that a sealed capability is an ordered set of boxes (or
an ordered list), then when the capability is unsealed, it is necessary to investi-
gate the information sealed in the capability for all boxes (list items) with a
higher priority than the one being unsealed. As the list of records is being

scanned, an attempt is made to match the capability of the type object

'Amplification is the addition of a right to a capability without an explicit
request from the holder.
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presented as part of the unseal operation with that sealed in the capability
itself. If no match can be made, an error status is returned. If a match is made,
then that record is unsealed using the type object, and immediately following
this, all other records of higher priority are automatically unsealed by the sys-
tem (without requiring an explicit capability for the defining type object).
Thus, if the ith box &; 1<i<n is to be unsealed, then a total of 7 -1 unsealing

operations are required to obtain the base capability.

The purpose of the tyi)e definition object is to define those operations
that are permissible on the object to which the base capability points. Funda-
mentally, there are no restrictions upon the type of operation that might be
imposed on the capability by the type object. In fact, the user _info field of
the capability permits arbitrary information to be stored in the capability
itself. The idea of recursively unsealing the capability is to allow each higher
priority sealant the opportunity to observe how the object being pointed to is

about to be used. This is accomplished through an interpretation of the

user _info and auxiliary _rights fields of the sealed capability.!
4.3 The Mechanism in Use

Consider the following scenario which illustrates how the basic mechan-
ism works: Fig. 4.1 shows a base capability that has been sealed twice. It has
first been sealed by user A and then by user B. We will assume that B has
7 defined an operation on a base object whose task is to make a copy of the

object, producing a new object and a base capability for it. In order for the

Tn principle, the auxiliary rights field is not required since it can be imagined
to be a subfield of the user info field; however, we distinguish between the
two in order to maintain semantic difference between what a type object
requires and what other information the user chooses to seal in the capability.
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Figure 4.1: Sealed Capability

operation to be successful, the rights to read and write the object are required
(we do not-assume the existence of an explicit copy right, although this is such
a common operation that one might indeed be desirable). In order for the copy
operation to proceed, B must (indirectly) provide the base capability to the
system. However, before this is done, the capability is recursively unsealed
based on the reverse order of sealing. Thus, A is effectively “consulted’” to see
if the operation requested by B is allowed to proceed. Note that, independent
of A, if the base capability has either read or write right missing, the operation
cannot proceed. Therefore, a simple optimization is to check the base capabil-
ity to see if the required rights are present before recursively unsealing the
capability. If both read and write rights are present in the base capability, then
it is possible that A might have placed some restriction on their use. For exam-
ple, A may have imposed some limit on the number of read and/or write opera-
tions that can be performed on the base object. Or, A may demand to know
the identity of the holder of the capability in order to allow the operation to
proceed. It is important to realize that the ability of one user to place restric-
tions upon the use of a (sealed) capability is handled on a capability-by-

capability basis. This permits very selective revocation or restriction of rights
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and permits the finest granularity of control in the system.

Given the mechanism just described, it is now possible to describe how
it can be used as a means to implement several security-related policies in the

system.
4.3.1 Protection

The use of capabilities and access rights as the basis of a protection
mechanism is well known [Jone73, Denn68, Lamp69]. The mechanism of capa-
bility sealing that we have proposed here in no way affects the use of capabili-
ties and the rights mechanism as the basis of a protection system. In fact, the
only reason we seal a capability is to provide an additional level of protection
by ensuring that the base capability cannot be used in arbitrary ways. We
therefore continue to assume that each capability contains a set of rights which
are enforced as part of the protection system, but which can be modified
through the actions of sealing and unsealing. The rights of the capability do

indeed become the basis of all security policies in the system.
4.3.2 Revocation

Revocation is the act of removing a right from a base capability that is
not in the possession of the ‘“‘owner”. There are several flavors to revocation,
depending upon the semantics of the application and its environment. How-
ever, it is generally agreed that revocation should, at least, have the following

properties:

1. It should take effect immediately.

97



2. It should be possible to revoke the various privileges in a capability

independently.

3. Revocation should require no global knowledge of capability propaga-

tion.

4. Any distributor of a capability should be able to revoke its privileges

(i.e., not just the “owner” of the object).

5. The users of capabilities should not need to distinguish between revoca-

~ - ble and non-revocable capabilities.
8. The cost of revocability should not be excessive.

There are two approaches to implementing revocation: By using
independent or dependent capabilities. In an independent capability scheme, a
special revoker capability is used to break the mapping between a capability
and the object to which it points. In the dependent capability approach, revo-
cation of a privilege from s capability implies the removal of that privilege
from all capabilities that are, in a sense, dependent on that capability. The
dependency relations between capabilities depends on how capabilities are
passed around in the system. The advantage of the independent capability
approach is that revocability, since it is enforced with a capability, is itself
revocable. It is not clear which approach is dominant since they both lead to
workable solutions. Redell [Rede74] describes a revocation method based on
dependent capabilities. Independent capabilities were used in the design of a
secure operating system by Neumann [Neum?7]. Our method of prioritized

capability sealing can be used to implement revocation schemes based on either
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independent or dependent capabilities. We illustrate next how the mechanism
can be used to implement a very general form of revocation based on depen-
dent capabilities while removing some of the limitations of previous implemen-

tations.

In our implementation, revocation is achieved through prioritized capa-
bility sealing. There are two novelties of the implementé.tion. First, there is no
explicit right of revocation; that is, any sealer of a capability has the right to
revoke privileges from that capability. If we assume that all users have the
right of sealing, then it can be concluded that all users have the ability to per-
form the action of revocation. Second, revocation can take place selectively on
a capability-by-capability basis, as well as globally for all capabilities. The
mechanism works in the following way: If a user wishes to revoke privileges in
a capability, he simply seals that capability in a box defined by a template con-
tained in a user-defined type object. Since the type object is user-defined, arbi-
trary policies can be dictated by the user to determine when a right might be
revoked. We saw one such policy in a previous example based on the operation
of copying an existing object. A concrete example is useful here to illustrate the

flexibility of the mechanisms.

Consider a user A who wishes to restrict the number of copies of an
object that may be made. A seals the capability in such a way that it main-
tains a count of each time a write operation is performed with the capability,
and passes it to user B. User B in turn makes a copy of the sealed capability
(without resealing it) and passes it on to a user C. If either B or C attempts to
use the capability, it will be unsealed to check for any restrictions that A

might have placed on the use of the capability. After A determines that an
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appropriate number of write operations have been performed, he then removes
write rights from the capability (forever). Note that the removal of write
rights from this capability does not affect similar rights in other capabilities
sealed by A. This is therefore illustrative of selective revocalion. Note also that
any capability which was derived from the one A passed to B will also
ef[ectiv;aly have write rights removed since, when they are used {and therefore
unsealed by A) write rights will be immediately removed. Thus whereas rights
are not removed immediately from all outstanding copies of capabilities, they
are effectively removed since any attempt to use them will result in immediate

rights revocation.

It has been stated that it should be possible to revoke rights from all
outstanding (dependent) capabilities and that this revocation should have
immediate effect. It should be noted that any capability from which rights can
be revoked must be sealed. If a user possesses a base capability, then ostensibly
that user has unrestricted use of the rights of that capability, and they are not
subject to revocability. While this may appear to be a limitation, this is not
necessarily so. It merely means that a user must plan for revocability (by seal-

ing) before passing on a copy of a capability.

In some implementations, a copy of each dependent capability is kept by
the owner of the capability. When the capability is to be used, this copy is
used to replace the original. Global revocation can then be accomplished simply
by removing the rights in the copies kept by the owner. In our scheme, it is not
necessary to maintain a copy of a capability since the rights of access are
automatically checked on each use of the capability. One may argue that recur-

sive unsealing on each access is inefficient. However, there are two things that
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should be considered. First, it is possible to perform optimizations at imple-
mentation time in the sense that once a capability is unsealed, the base capa-
bility can be kept in some readily accessible location so that it can be used
directly without the need for unsealing the original capability. Second, in light
of the possible utilization pattern for permanent and semi-permanent objects,
it does not appear that sealing and unsealing will occur frequently enough to

have a significant impact on system performance [Smit81].

4.4 Implementation Issues

As explained in section 4.2, capability sealing is implemented as a sub-
system in FTSS which presents a visible interface to users. In this section we

present more details of the implementation.
4.4.1 Kernel Support

The kernel provides direct support since the representation of a capabil-
ity must be modified by sealing and unsealing operations. Although the actual
base capability is not modified in sealing/unsealing, for security reasons, only
the (verified) kernel must be permitted to access the locations of an object
which contain capabilities; viz. the capability list. If user code could directly
access these locations for sealing/unsealing (even by a “‘trusted” process), secu-
rity could be subverted either by a malicious process or one that exhibited
unaccounted-for failure modes. In our implementation, the kernel manipulates
sealed capabilities by stripping sealed information from a capability and pass-
ing it to the rest of the security subsystem in user space via a predefined kernel
object. For example, if a (sealed) capability C is to be unsealed, the kernel

strips all sealed information from C and passes it to the security subsystem in
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user space along with a copy of the Base capability C;. The subsystem may
now freely manipulate this information, making the necessary calls to the ker-
nel to restrict rights if necessary. A similar situation takes place when C is to
be sealed; the subsystem collects all the information to be sealed with C, and
passes it to the kernel along with C;. The actual sealing is done by the kernel.

There are now a number of further details that must be explained.

First, the kernel must be able to distinguish between capabilities that
are sealed and those that are not. This is easily accomplished by using a special
flag in the capability which is set when sealed, and reset otherwise. Second, if
a sealed capability being used by the kernel is to be copied or in any way
transferred out of the kernel, its sealed version must be used. This implies that
the kernel must keep track of which of the capabilities currently being used in
kerne! operations are sealed. One way to do this is to put another flag in the
capability. Another is to keep a table in the kernel which can be searched each
time a capability is to be moved out of the kernel; this table simply maintains
the UID (or address) of active sealed capabilities. In view of the fact that seal-
ing is applicable only to capabilities pointing to objects that represent informa-
tion stored online in the storage part of the system, it is unlikely that there
will be a large number of such objects currently “open” at any one time.
Therefore a table search should not be prohibitively expensive. Of course, this
must be weighed against the cost of the extra bit in the base capability. There
is another case for the kernel table approach. If a copy of a capability which
has already been unsealed is presented to the kernel for sealing, an optimiza-
tion is immediately realized by searching the table of active capabilities. Thus,

repeated unsealing of the same capability is prevented. Of course, much of the
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same arguments apply to the case when capabilities are to be sealed.
The kernel assumes that sealed capabilities have the following structure:

- A base capability (with the sealed capability bit set
- An ordered list of capabilities for type objects whic
define the operations to be performed on the information
sealed with the capability, and
- An ordered list (in one-to-one correspondence with the
list of capabilities for type objects) of information
sealed with the capability. _
Each time the capability is (re)sealed, a capability for a type object and infor-
mation to ‘be interpreted by the type manager for the type object is added,
each to the corresponding list. Since the size of a sealed capability is
unbounded, it would be inefficient for the kernel to manipulate sealed capabili-
ties directly. Therefore, a sealed capability exists in one of two forms: the long
form as represented by the structure discussed above, and the shert form which
consists of just the base capability (the first element of the structure). When
the kernel is first presented with the long form of a sealed capability, it
preserves the ordered lists of type object capabilities and sealed information in
a table indexed by the UID of the base capability. From this point on, the ker-
nel always uses the short form. In order to keep things simple, we make the
decision that the only time a short form capability is converted to its long form
is when an object containing a short form capability is moved out of the server
and back into the storage system. This determination could be made by the
kernel. However, in order to minimize kernel code, it is moved into the OMS;
the OMS scans the capability list of any object to be written back to storage

and requests the kernel to convert any short form capability found back into

long form.
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A sealed capability is always presented to the kernel as a pair:
< [long,short] form capability, type object capability >

If only the long or short form capability is presented, an error is signalled. The
type object capability is needed by the SS to determine where in the ordered
list of sealed information to begin recursive unsealing, and also how to do it

(via the abstract type).

In summary, the kernel provides operations for sealing and unsealing
capabilities; and for converting long form into short form capabilities and vice
versa. The conversion mechanisms should present no problems for the reader,
based on the discussion above. Below, we outline the algorithms for sealing and

unsealing capabilities.
Algorithm 4.1: Sealing

* The seal operation is invoked by an external subsystem.

he following parameters are expected: A (possibly
sealed) capability C, a capability for a type definition
object Cr, and the information to be sealed in the
capability INFO[]. The operation returns the sealed
capability Cg. NOTE: Since external subsystems may
not manipulate capabilities, specifying a capability Cis
equivalent to specifying a capability for an object and an
index into the capability list of that object in which C
will be found; the returned capability Cg will be
stored in the same place. */

step 1: Check the sensibility of the parameters. If any
parameter not sensible, signal ERROR and stop.

{Assumption} Any errors in the following steps will lead to
a signal ERROR and the algorithm will be terminated.

step 2: If C is sealed and in short form, index
into the table of sealed capabilities using the UID (see step
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2 of Algorithm 4.2 below) and retrieve the Cr and
INF O] lists.

step 3: Append Cy to the (possibly empty) list of
capabilities for type definition objects:
LIST|{Cr, LIST[C{])-

step 4: Append INFO[] to the (possibly empty) list of
information for each sealer of the capability:
LIST{INFO], LIST[ INFO[J]]-

step 5: If C was originally in short form, update the
kernel table and reconvert C to short form.

step 6: Return Cg and stop.

Algorithm 4.2: Unsealing

( The unseal operation is performed automatically by the
ernel on any sealed capability to be used in an operation

on an object. The unseal operation is not performed when the
kernel performs an operation on a capability (such as “copy

a capability”). Unseal expects a sealed capability Cs

as a parameter. *

[Assumption: If there are any errors in each of the
ollowing steps, signal ERROR and stop.]

step 1: If the capability is in short form, go to step 8.

step 2: [Assumption: Cy is in long form, in which

case this is the first time it is being seen by the kernel.

We also assume that the kernel table for holding long form
capabilities has been properly initialized.] Use the UID of
the base capability in Cg as an index into the table.

step 3: Insert the list of type definition capabilities
LIST[C4] into the table as a LIFO list (stack) such that
the most recent sealer is at the head of the list (on top
of the stack). '

step 4: Repeat step 3 for the list of sealed information:
LIST{INFO[]}.

step 5: Convert Cg to short form.
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step 6: Create SYS SEAL object (for communication with
external subsystem].

step 7: Put Cp, C'r, and LIST[Cq|

in the capability-list part of SYS SEAL, where Cjp is

the base capability. Thus, the capability list of SYS _SEAL

is ordered as: LIST|[Cp, Cr, LIST[C]].

step 8: Put OP CODE and LIST[INFO m the data part of

SYS _SEAL as: LIST[OP _ CODE LIST{INFO[]]]. OP CODE is an
operation code for the operation current y being performed

by the kernel.

step 9: Signal external subsystem and pass it the capability
for SYS _SEAL. Wait for response, timing out if necessary.

The kernel may also provide other additional ‘‘utility” calls in support
of capability sealing. We will not cover them in detail; however, they might be
of importance in a real implementation. Such calls are: a call to remove infor-
mation sealed in a capability when it is no longer needed, thus reducing the
~size of sealed capabilities; and a call to review and change the information
sealed in the capability. One can imagine these additional calls being used, for
example, to seal temporal information in the capability which can be removed
or changed when the time period no longer applies. In the next section, we dis-
cuss how the user-level subsystem interfaces with the kernel for the important

aspect of capability unsealing.
4.4.2 User Level Support

The user space part of the Storage Subsystem (SS), which we shall hen-
ceforth call simply the SS, performs all operations on capabilities to be sealed
or unsealed except for those performed by the kernel. Specifically, SS performs

all review and manipulation of information sealed in capabilities. SS permits a
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user to seal (or reseal) any capability for an information storage object, or to
review information which has been sealed in a capability. Sealed information
may also be removed or changed via direct kernel calls. In this section, how-
ever, we will be concerned only with the unsealing mechanism, since it is the

most crucial to an understanding of the basic security mechanism.

The following program fragment is meant to illustrate how the SS r;u'ght
be encoded to interface with the equivalent kernel mechanism. To recap bi-iéﬂy,
when a capability is to be unsealed, the kernel gathers all information sealed in
the capability, puts them in a kernel-defined object, and signals the user-level
subsystem that an unsealing operation is required. The user-level subsystem
must now retrieve this information, perform the necessary unsealing (recur-
sively, if necessary) and return a capabﬂity to the kernel, with access rights
adjusted based on the unsealing operation, to be used in the operation in
which the kernel encountered the sealed capability. Here now is this program
fragment; it is written in a psuedo-programming language -- the reader should
find no difficulty in following the logic, perhaps helped by the copious com-
ments. In order for things to work, it is assumed that the SYS _SEAL object

passed from the kernel is organized as shown in Fig. 4.2.

Program 4.1: SS__Unseal
/* This program is invoked via an interrupt from the kernel
to a server process running on behalf of the SS. */
{ * Get number of items in sealed capability list. This is 2
ess than the number of capabilities in the capability list
of SYS__SEAL passed from the kernel. */

no_of _items = get _clist _length(sys_ seal) - 2
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Figure 4.2: Structure of the SYS_ SEAL Object
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/* Get the capability for the type object from slot 2 */
tdo__capa = get _capa(sys_seal,2)
/* Compare with each TDO capability in LIST{C{ */

slot index =0
for i=1 to no_of _items do

begin
if(compare _capa(tdo_capa, get _capa(sys_ seal, i+2)))
then begin
slot index == i+l
break
end
end

if (slot _index == 0) return(s_ abort(sys seal)) /* tell the
kernel to deny the request. No matching TDO. */

/* If we get here, we have a matching TDO capability */
/* Start recursive unsealing */

for i = slot index to no_ of _items do
begin - - =
infof] = get _ data{sys _sealslot index) /* §et data
indexed by slot number */
tdo__capa = get_capa(sys_ seal,i) /* get the TDO
capability Which sealéd this information */
op code = get data(sys _seal,1) /* get the ol)eration
— code from the first slot in the data part */
new _info[] = check_'mfo(tdo_capa,infoﬁ,op_code,status)

/* check _info is a type call to the abstract data type used
to seal the information in the capability. It returns new
information, if any, in new _info[}, and status in the
“status” variable. This stafis indicates to SS how the
rights in the capability should be modified */

check _status(status) /* checks the status returned
from check _info */
4 update() /* updates the base capability */
en

/* return the modified base capability in slot 1 of the
sys _seal object. The kernel will destroy sys _seal */

return(put _capa(sys_seal,base  capa, 1))
/* End of program */
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get _clist _length(), get_capa(), put__capa(), get_ data(), and compare() are

kernel calls that manipulate capabilities, as discussed in section 4.4.1.

4.5 Summary

In this chapter we have presented a mechanism whereby users can
implement their own security policies based on the concept of Capability Seal-
ing. The fact that the type of information that can be sealed in a capability is
unconstrained, gives great flexibility to the mechanism; this flexibility is often
very useful in the context of information storage. The mechanism permits a
wi_&e range of revocation strategies to be implemented, perhaps the most
important of which is the possibility of selective revocation whereby a sealer of
a capability can selectively revoke rights based on the usage of the capability.
Although not explicitly discussed, the mechanism also permits capability review
since it is possible for a user to store information about who has used, or is
about to use, a capability, or even who has outstanding capabilities for an
owned object — this is made possible by the abstract type mechanisms of the

object model.
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CHAPTER 5
AVAILABILITY ISSUES

The availability of information in a distributed processing system is
impacted by the system’s architecture, as well as the reliability of its com-
ponents. In-this chapter, we study the effect of system architecture and replica-
tion strategies on availability for a general class of distributed systems. We
start by studying a distributed system in our own operating environment con-
sisting of a number of VAX minicomputers connected in a local network, and
running the distributed operating system LOCUS. We then extend this study
to bus networks, and finally to general multi-connected topologies. Our pri-
mary goal is to get a feeling for the level of replication required in achieving
any given level of availability. We apply the results of this study to the imple-

mentation of FTSS in a later chapter.
5.1 Conceptual Framework

Availability is the long-term probability that a system is successful in
providing a specified level of service (completing an event under a constraint},
given that it was operating correctly at some prior “reference” time. Informa-
tion availability is specifically concerned with the probability that a specified

piece of information is available at some future time.

111



In distributed storage systems, the tendency is to replicate information
at different storage sites so that a site failure will not render it immediately
inaccessible. This procedure often leads to difficulty in keeping the replicates

mutually consistent when the network becomes partitioned [Parks2).

In this discussion, we view a distributed processing system to be a col
lection of computational nodes (or sites) interconnected by a relafively high-
speed communication subsystem facilitating information transfer among the
nodes. A computational node consists of a processing unit (or several such
units operating either independently or collectively), and to which is attached a
storage subsystem consisting of one or more storage devices. In our environ-
ment, the processing unit is a VAX, and the storage devices are one or more
high-capacity winchester SMD disk drives. We refer to a computational node
as a atorage site. Such a system is diagrammed in Fig. 1.1, which we repeat
here in Fig. 5.1 for completeness. This type of system architecture character-

izes a Local Computer Network (LCN) [Clar78].

From Fig. 5.1 it may be deduced that a storage site is a series (in the
probabilistic sense) connection of processors and storage devices, each being
viewed as an independent subsystem. This observation leads to an important
result. It is clear that the availability of any information at the storage site is
directly proportional to the series reliability of processors and storage devices
(assuming a simplex configuration). Put another way, information becomes
unavailable if either the processor subsystem fails (for any reason), or the com-
ponent of the storage system in which the information is stored fails. We
assume for the moment that repair of the affected component is not instan-

taneous or immediate.
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Figure 5.1: Distributed System of Storage Sites

5.2 Hardware Reliability versus Information Availability

We make the optimistic assumption that in a LCN, information is con-
sidered available as long as it is possible to access any single copy of the (possi-
bly replicated) information, regardless of the storage site at which the informa-

tion is stored. In view of our distributed system model, this is true if at least

one processor in the Storage Setl is operational and the storage device on which

the information is stored at that storage site is also operational.

1We define a Storage Set to be the set of storage sites at which information is
stored in a distributed processing system.
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5.3 Approaches to Achieving High Availability

Several approaches have been used for achieving high information avai-
lability in distributed processing systems. The first approach is what might
generally be called the “high reliability” approach. The objective is to make
the system hardware and software as reliable as possible either by adding some
form of redundancy to the storage site (fault-tolerance),! or by choosing com-
ponents which are extremely reliable (fault-avoidance). Information is not repli-
cated, and the availability is the same as the reliability of the storage site. The
fault-avoidance scenario requires that the hardware and software components
of the storage site be non-redundant and ultra-reliable; in general, this is a
costly approach (cost being defined in terms of the manufacturing and develop-
ment costs) since it is expensive to create non-redundant highly reliable
hardware and software. Furthermore, the system fails when any component
fails, directly leading to unavailability. The fault-tolerance scenario replicates
key hardware and software components so that failures can either be masked
(static fault-tolerance) or detected and corrective action taken (dynamic fault-

tolerance).

The second approach attempts to overcome some of the limitations of
the first approach by replicating information at a single storage site. Thus,
there is a higher probability that in the face of hardware and/or software
faults, at least one copy of the required information will be available. In this
scenario the hardware and software of the storage site may satisfy the require-
ments of the first approach, or they may be simplex, i.e., non-redundant. In
either case, information is replicated either on multiple storage devices or on

the same device, usually in such a way that each copy has an independent
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probability of failure barring catastrophic (non-recoverable) failures. We note
that in the serial arrangement of Fig. 5.1 the availability of information is still
heavily dependent upon the reliability of the processing subsystem, since if this
subsystem should fail, information stored in the storage subsystem would
become unavailable despite the fact that it is replicated. Therefore, the advan-
tage of this approach is that less reliable components can be used in imple-
menting the storage subsystem (equating with lower costs) while achieving 3
given level of availability. The disadvantage is that the processing subsystem
must still be highly reliable in order to attain availability goals. Another disad-
\:a.ntage isuthe need to maintain mutual consistency between the multiple

copies of the information.

The third approach replicates information, but instead of storing multi-
ple copies at a single storage site, each replicate is stored at a different storage
site. The idea is to increase availability by making sure that no single (or
perhaps multiple) site failure will result in unavailability, as long as it is physi-
cally possible to access the needed information from the site at which it is
stored. The primary advantage of this approach is that less reliable and there-
fore less costly components of processor and storage subsystems can be used in
attaining a given level of availability. The primary disadvantage is the need to
maintain mutual consistency among the copies, particularly in the event of par-
titions in the network. We point out here that in some distributed systems, it
is not possible to access copies of information at other sites, especially when the
sites are geographically far apart, or when there is some other physical barrier
that prevents access. In these situations, the only advantage of replication is to

permit “‘local’’ updates which must later be reconciled with the other copies for
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consistency when the network merges or, alternatively, to increase performance
by having a local copy of the information on hand. We will not assume the
latter need for replication; instead we assume that replication is a means to

increased availability.
5.4 An Information Availability Model

In this section we develop a model which permits us to derive quantita-
tive bounds on availability. The data for this model was obtained from a study

of failure logs of our local distributed system over a 8-month time period.

Costes et al. [Cost78], developed a stochastic availability model for main-
tained systems featuring hardware failures and design faults. They were able
to show both the transient and long-term effects on availability as a function of
hardware and software reliability. They did not consider periodic maintenance,
but assumed that repair would be performed on-demand until the system was
repaired. They were not considering a distributed processing environment
although they did take hardware redundancy into account. This was an exten-
sion of the work by [Lapr75] who considered the reliability and availability of

repairable structures.

Makam and Avizienis [Maka81) considered the reliability modeling of
repairable structures with and without periodic maintenance. They were able
to derive computational procedures for characterizing not only reliability, but
other life-cycle measures including availability. The results are applicable to a

wide-range of fault-tolerant systems.
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Raghavendra and Makam [Maka83] investigated the dynamic reliability
modeling of computer networks using a boolean algebraic approach. They show
that it is possible to obtain useful life-cycle measures in a computationally
tractable way without resorting to Markovian analysis as is normally done for

these cases.

All of the above techniques are applicable in our model, and we make
use of them where possible. Our goal is to obtain a deeper understanding of
availability in distributed processing systems, rather than inventing new com-

putational procedures.
5.4.1 Model Definition

We strive to make our model accurately reflect the operational behavior
of information in a distributed processing system. We view the system as
operating in two sets of states: operational states and failure states or, more
precisely, available states and unavailable states (with respect to information).
The available states have a one-to-ome correspondence with the operational
sites of the network that belong to the storage set for a given piece of informa-
tion. The unavailable states would then correspond with those sites in the
storage set from which information is unavailable. Thus, the set of available
and unavailable states represent but a subset of the states (or sites) of the net-
work; viz. those sites at which the information is stored. We assume that
there are no dependencies between sites that belong to a storage set and those
that do not. This allows us to reduce the state set of our model significantly

while still maintaining reasonable realism.
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We make the following assumptions in structuring our model: First,
information in a storage subsystem is semi-permanent and is never lost. The
characteristics of contemporary storage devices such as disks and tapes makes
this a reasonable assumption; the use of error-checking and correcting codes,
off-line backup, and so on makes this so. Therefore, information may be una-
vailable over some time period, but it will become available again at some later
time. Second, the hardware and software failure rates are Poisson processes
with constant failure rates. Third, the ratio of failure time to repair time is
very large; that is, the mean repair rate is much less than the mean failure
rate. Four_t_h, the network is repaired on both an on-demand and a periodic
baﬁis. These assumptions allow us to model the system as a semi-markov
renewal process with complete regeneration at each renewal epoch. The

mathematical principles involved are well known (see, for example, [Heym82]).

Fig. 5.2 shows the behavior graph or the markov state diagram for the
system. The operational states of the model are indexed by a parameter (a
positive integer) representing the number of operational sites in the storage set
from the viewpoint of, say, an application program. For example, the state
indexed with the parameter (n-2) indicates that of n storage sites containing a
copy of the information, n-2 are operational (that is, the information at two of
the n sites is unavailable due to an operating system crash, hardware failure, or

both). .

We choose to lump all the unavailable states into a single fail state no
matter what the ultimate cause of the unavailability. The transition between

the states characterize failure and repair operations in the following way:
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Figure 5.2: Markov State Diagram of Information Availability
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\;= Mean failure rate of a storage site, and is due to both hardware and

software [ailures.

p;= Mean failure rate resulting in total loss of availability from site ¢. This is
a function of whether or not the application has been or has
to be aborted due to the inability to continue the computa-

tion because the information at this site is unavailable.

©;= Mean on-demand repair rate at site i. This would characterize, for exam-
ple, the mean time to reboot the operating system at site ¢

after a crash.

Mean periodic repair rate from site f resulting in full regeneration of the

¥;

number of sites in the storage set for the application pro-

gram. -

We emphasize once again that we are considering fwo types of repair
policies: one due to on-demand maintenance, and the other due to periodic
maintenance. We feel that the inclusion of both policies in our model results in
a closer approximation to the operational characteristies of contemporary dis-

tributed processing systems.
5.4.1.1 Network System Operation

We perceive the LCN operating in a manner illustrated by the time
diagram in Fig. 5.3. We break up the time axis into periodic service intervals.
The system begins operation at t, in a full-configuration state (all storage sites
in the storage set available), and operates up to time ¢, where the first service

interval begins. During this time {¢; - {;), on-demand maintenance on
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hardware and/or software is permitted. We assume that on-demand mainte-
nance will not always be successful and some types of repairs will have to be
left for periodic maintenance which occurs at the start of the next service
interval. During this service interval the system may move about the states of

the markov model, except along the renewal transitions identified by ¥;.

At the start of each service interval, the system undergoes total regen-
eration (which we assume is always successful). The time to accomplish this is
identified by the random variable a. We assume that any failures that occur
during this renewal interval (indicated by the shaded area at the start of each
service interval) will be taken care of as a part of the system regeneration (if a
failure occurs while the service technician is on hand then it will be fixed

immediately).
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5.4.1.2 Hardware and Software Considerations

Hardware and software are characterized by stochastic processes
representing failures and repairs. We will assume that, as far as system reliabil-
ity is concerned, hardware and software failure mechanisms are independent
and can therefore be modeled as a series decomposition of failure probabilities
[Cost78]. We further assume that software is not fault-tolerant and any
failures due to software must be fixed either by on-demand maintenance

(reboot or reprogram) or periodic maintenance.

~ We model on-demand hardware and software maintenance in a similar
way to closed fault-tolerant systems with repair capability [Maka82a]. In such
systems, failed modules undergo repair in some repair facility and are brought
back into service when the repairs are completed; it is therefore possible to
compute life-cycle measures such as availability since the system can recover
from module failures. If the hardware or software fails and on-demand mainte-
nance is ineffective, then the system becomes unavailable until the next

renewal epoch.
5.4.2 Model Development

We use the computational procedures developed by [Maka82b| for the
analysis of fault-tolerant systems. In particular, we will use those procedures
developed for the reliability and life-cycle analysis of Periodically-Renewed
Closed Fault-Tolerant Systems, or PRC Systems for short, and repairable sys-
tems. The details of the mathematical analysis can be found in {Maka81] and
[Maka82b].
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In order to use the PRC methodology, we take a two-phased modeling
approach to the solution of the availability A(t) for a distributed system. In
the first phase, we model the hardware and software at each storage site as a
repairable system. In the second phase, we model information availability
directly for the distributed processing system as a periodically-renewed closed
fault-tolerant system with appropriate model parameters obtained from the
first phase. In the case where coverage is perfect [Bour89], this decomposition
" adds no errors to the model. When coverage is imperfect, a small error is intro-

duced depending upon the extent of coverage.
5.4.3 Reliability Estimation for Storage Sites

In the first phase the ARIES [Maka82b] reliability modeling tool is used
to establish a relationship between subsystem faﬂure rates and subsystem avai-
lability. It permits us to estimate reliability, availability, and other life-cycle

measures for the processor and storage subsystems at a storage site.
5.4.3.1 The Processor Subsystem

We model the processor subsystem at a storage site as a homogeneous
continuous-time finite-state markov process. The basic state diagram is shown
in Fig. 5.4. We choose not to differentiate between hardware and software
failure and repair processes in our model; that is, we are not concerned about
which event leads to processor failure since our primary goal is information
availability at the storage site. In the model, the state labeled A represents the
“normal” operating state of the processor subsystem; in this state we assume
that the system is operating in its prespecified manner and there are no

hardware.or software failures that will lead to information unavailability. The
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Figure 5.4: Markov State Diagram for the Processor Subsystem

states labeled SS and CF represent the safe-shutdown and crash-failure states
respectively. The SS state represents the case where the processor subsystem is
safely shutdown by' system administrators for either hardware or software
maintenance on an on-demand basis; transitions to this state are governed by a
failure process characterized by the transition rate ,, while transitions out of
the state is governed by a repair process with constant transition rate ¢. The
CF state represents information unavailability due to operating system crashes
or hardware failures for which automatic system recovery/restart is provided;
s represents the constant failure rate from the normal operating state, while §
represents the mean restart rate after a system crash. This simple model is
sufficient to gain some insight into the importance of the processor subsystem

at a storage site.

Fig. 5.5 shows a plot of reliability and availability for a processor subsys-
tem. A\,, and A\ represent the pumber of failures per time unit respectively, ¥

the number of repairs that can be accomplished per time unit, & the average

124



Reliabillty and Availabllity for the Processor Subsystem
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Figure 5.5: Plot of Reliability and Availability for the Processor Subsystem

number of restarts that can be performed per time unit, and m the number of
“repairmen’ that are available to perform repairs when necessary. The time
unit is an arbitrary value that can be interpreted as hours, days, weeks, mil-
lions of hours, ete., as a function of the processing environment. In our studies,

our time unit was based on a “‘day” (24 hours). Table 5.1 shows the ARIES

parameters used in the model. In Fig. 5.8 we show the effect of crash coverage'

(varying CY[1]) on information availability.

1Crash Coverage is the percentage of failures that lead to a safe system
shutdown.
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Notation Description Value
Type Subsystem Type 5
D Number of Degradations 0
] Initial Number of Spare Modules 0
Cs Coverage for recovery {rom 1
a spare module failure
)Y Failure rate of one active module 1
B Failure rate of one spare module 0
Y = (Ylol,..., Y|D+1}) Active Resource Vector Y[0]==1, Y{1]=0
CY = (CY[0],....CY|D+1]) | Coverage Vector for Active Modules CY{0]=1, CY{1]=0.2
M Number of repair facilities 1
) Repair rate per module 12
é Restart rate from the CF state 48
v Failure rate of one good module .001

in the S5 state

Table 5.1: ARIES Parameters for the Processor Subsystem

Effect of Crash Coverage on Availability
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Figure 5.8: Effect of Crash Coverage on Availability
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5.4.3.2 The Storage Subsystem

We model the storage subsystem in an analogous way to the processor
subsystem, in the sense that the markov state diagram remains the same. The
interpretation of the parameters is the same. A transition to the S5 state for
the storage subsystem occurs when a failure event tramnspires that results in
safe shutdown of the subsystem; we assume that in this situation data stored
in the subsystem is presewéd and is brought back on-line subject to the repair
rate ¥ (which we assume to be constant). A transition to the CF state occurs
when the subsystem fails in such a way that data is lost and must presumably
be restored from off-line devices such as tapes; the transition out of the state is
characterized by the parameter 5 representing an average restart rate {this rate
will, in general, be slower than ¢ if we pessimistically assume that a service

technician must be consulted to perform the necessary repairs}).

In Fig. 5.7 we show the reliability and availability for a typical storage
subsystem using parameters we have obtained from studying our local distri-
buted processing system. The interpretation of the parameters is similar to
that for the processor subsystem presented in the previous section. The
parameters were obtained by assuming that all information is stored on a single
storage device whose characteristics approximate those typically associated
with high-capacity rotating magnetic disk assemblies. For example, the failure
rate \ used in the model was obtained directly from published Mean Time
Between Failure (MTBF) data in the manufacturer’s data sheet for the disk
subsystem used in our distributed processing environment. As with the other
subsystems, we have assumed a basic time unit of one day. The ARIES param-

eters of interest are shown in Table 5.2.
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Reliability and Availability for the Storage Subsystem
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Figure 5.7: Plot of Reliability and Availability for the Storage Subsystem

B
Y = (Y[0},....Y[D+1]}
LY = (CY[0],...CY[D+1])
M

T ond

Active Resource Vector

Coverage Vector for Active Modules
Number of repair facilities

Repair rate per module

Restart rate from the CF state
Failure rate of one good module

in the SS state

Notation Description Value
Type Subsystem Type 5
D Number of Degradations 0
] Initial Number of Spare Modules 0
CS Coverage for recovery from 1
a spare module failure
b Failure rate of one active module 0.011111
Failure rate of one spare module 1}

Y[0j=1, Y{1]=0
CY{ol=1, CY[1]=0.25
1

24
0.0143
.001

Table 5.2: ARIES Parameters for the Storage Subsystem
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5.4.3.3 The Storage Site Subsystem

We now combine the models above (in series) to form a single subsystem
and investigate the reliability and availability under the various failure and
repair rate assumptions. Once again we use the ARIES modeling tool to obtain

results of interést.

Fig. 5.8 shows the time-dependent reliability and availability for a
storage site using the “baseline” processor and storage subsystems presented

previously...
5.4.4 Network Availability

There are several ways in which one can address the subject of Network
Availability. However, before we discuss them, we wish to reiterate that we are
considering availability only from the point of view of being able to access
information which has previously been stored in a secondary storage subsys-
tem. We are also careful to point out that unavailability should not be con-
fused with unrecoverability, although the latter certainly has some probability
of occurring (no matter how small); we have assumed in our prior analysis that
once information is stored in such a subsystem, it will not be lost. Finally,
when we speak of network availability, we only do so with respect to a given
application program; from this viewpoint we are therefore not considering all
possible storage sites in the network, rather, only those that participate in the

storage set of the application program.
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Reliability and Availability for a Storage Site
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Figure 5.8: Plot of Reliability and Availability for a Storage Site

5.4.4.1 Simple Topologies

The simplest way to approach network availability is to assume a very
simple interconnection structure for the network so that topological issues do
not have to be taken into account, then assume that all storage sites in the
storage set have identical configurations of hardware and software as well as
the same failure and repair characteristics. The type of assumption we are
making here is characterized by a class of network architectures often referred

to as Bus Topologies [Cham80]. We assume, for simplicity, that the bus in
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these topologies is perfectly reliable (it is easy to account for the
reliability /availability of the bus since a failure here generally leads to an n-
fold partition of the system, where n is the number of operational sites in the
storage set). Under these assumptions, it is possible to represent the availabil-
ity of the information as a simple polynomial in A(t), where A(t) is the time-
del;.endelfit availability of a storage site. For example, given a collection of
storage sites, the Network Availability Ag m(t) can be expressed as:

Aunl) = 5 [ " J - A Ayt iz

where n is the cardinality of the storage set and m is the minimum number of
sites that must be available in order for the network to be considered available.
If we assume that the arrival of failures is governed by a Poisson failure process
and the repair times are exponentially distributed, then the time-dependent

availability can be expressed as:

p AL+
At) = + ¢ k
(&) A+p A+ p (5.2)

where \ and p are failure and repair rates, respectively. Table 5.3 shows the
time-dependent availabilities for a network application program whose storage
set has a cardinality of 4 and using the computed availabilities for a baseline

storage site from section 5.4.3.3.

It is interesting to note from the figure the decrease in the availability as

the dependencies! among the sites increase. Availability is highest (as we would

suspect) when there are no site dependencies. It is also interesting to note the

ffere, dependency occurs if it is required that more than one copy of the
information exist at different storage sites.
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Time AvaﬂBaml:;eA( 1) At Agolt) Aga() Agqlt)
0 1 1 1 1 1
a.1 0.971926 0.090900379 | 0.90991336 | 0.99544625 0.892345
0.2 0.968247 0.999008083 | 0.99987499 | 099420355 | 0.87891
0.3 0.967021 0.999998817 | 0.99988 0.993758 0.874467
0.4 0.066481 0.999998737 | 0.9998531 0.9935563 0.872516
0.5 0.966145 0.990008686 | 0.9998487 0.9934295 0.8713
0.8 0.965872 0.099998643 | 0.999845 0.9933256 0.8703187
0.7 0.96562 0.0099986 | 0.0098416 | 0.993229 0.86941
0.8 0.965376 0.99999850 0.99983827 | 0.9931348 0.86853
0.9 0.965138 0.999098523 | 0.99983495 | 0.9930424 | 0.8676761
L0 0.064903 0.999908483 | 099083162 | 0.0929505 | 0.8668314

Table 5.3: Time-Dependent Availability for a Bus Network

r_elf'a',tively high levels of availability that can be obtained through replication at
independent storage sites, even when the storage site by itself is not particu-
larly available. It is not a panacea however, and we must be very careful about
over-replication because of the attendant problems of consistency among the
many replicates; furthermore, too much replication can actually lead to higher
levels of unavailability. While the latter is easy to show analytically using the
expressions above, we can do so through a very intuitive argument; for
instance, the more copies of information that we have, the higher the probabil-
ity that one copy will become unavailable - in such a situatiom, it may be
necessary to avoid updates (but not read access) to all but a single of the
remaining copies so that consistency can be restored later (the need to avoid

updates is, effectively, unavailability).

Equation 5.1 is quite general and can be used, for example, to determine
what level of site availability and replication factor is necessary in order to
meet a given network availability goal. It should be kept in mind, however,
that this is merely an approximation to the real state of affairs in contemporary

petworks. Our point is to provide some quantitative basis on which to discuss
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forthcoming events, and not to model the “real world” exactly.
5.4.4.2 Periodically Renewed Networks

We may also discuss network availability in terms of the availability of
storage sites as well as the fact that the network receives periodic maintenance.
We alluded in section 5.4.1 to this fact when we mentioned that in “real” net-
works it is common to have two types of repair policies -- one due to on-
demand and the other to periodic maintenance. So far we have modeled our
storage sites using strictly on-demand maintenance; we now extend the repair
poﬁcy at the network level by considering that a service technmician arrives
periodically and will restore the hardware and software of the entire network
to a working state (we are aware that in cases where storage sites are geograph-
ically distant this may not be possible in a single service interval; we simply
assume then that there is a repairman at each site which works in /nth the

time of a single repairman for an n-site network).

Before we are able to apply the PRC methodology, we are forced to
revise our model of section 5.4.1 to be compatible with the ARIES modeling
tool. This revised model is shown in Fig. 5.9. We have renamed the “fail” state
as a “safe shutdown” state since this more closely reflects the modus operandi
of contemporary networks (recall that we are dealing with a storage set which
is but a subset of the sites of the network; unavailability in the storage set
does not necessarily imply that the network has failed). We have also removed
the transitions indicated by the parameter ; under the assumption of periodie
renewal (once a site becomes unavailable, it remains so until the next renewal

epoch); however we compensate for this later in model execution by adjusting

133



Figure 5.9: Revised PRC Model
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the site failure rates so that the probability of a site failing during a service
interval is about the same as if it could be repaired and put back into service

as the parameter ; was meant to indicate.

Before we discuss our model results, we would like to say something
about the model parameters we have used. First, we are modeling what we con-
sider to be our baseline system; this is simply a network representing a storage
set of baseline storage sites. We have assumed a service interval length of 60
time units and a mean system checkout time A of .0417 time units (if the time
unit is daﬁ, this represents about 1 hour). There is a single repairman {or ser-
vice technician) who can service 12 storage sites per time unit. The system

operates in various configurations which we will detail later, but always with a

failure rate of 0.00087283 failures per time unit.! This allows us to find the
availability of the network in terms of the availability of the storage sites.
While this decomposition does not produce exact results for availability, we

find that they are acceptable (and realistic) in this discourse.

In Table 5.4 we show the effect of information replication on the net-
work availability. The table shows the steady-state availability that is achiev-
able depending upon the number of sites in the storage set. Once again we see
that very high levels of availability can be attained through replication. How-
ever, this is tempered somewhat both by the difficulties of maintaining con-
sistency as well as the storage costs for the n-1 replicates. We see {rom the

figure that unless one is seeking 100% availability, it is perhaps not necessary

IThis figure was obtained by treating the steady-state availability as the
reliability of the system and then computing M from the expression R=e™
when t == 60 time units (representing the reliability at the end of 1 service
interval).
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No. of Sites | Steady-State Availability |
1 0.786904
0.940952
0.981965
0.994157
0.998032
0.999319
0.999759
0.999914
0.999969
0.999988

L - L N -

—
(=2 - ]

Table 5.4: Steady-State Availability versus Replication Factor

to have more than two or three replicates at different sites (under our assumed

parametric constraints).

We have modeled the effect of site dependencies/failures on the availa-
bility of information using the PRC methodology by considering a 3-site
storage set. That is, information is replicated at five sites. We investigate the
effects of different failure partitions on overall steady-state availability under
the assumption that if a site is operational, the information stored at that site
is available; otherwise, it is unavailable. The results are shown in Fig. 5.10
where each curve indicates an N/M partition, N being the number of failed
sites and M the number of operational sites. The ARIES parameters of
interest used in the model is shown in Table 5.5. Table 5.6 shows some addi-
tional results of interest regarding the steady-state availabilities of the four
cases and the amount of time lost due to safe shutdowns (we assume that all
shutdowns are “safe” in the sense that a shutdown of one site does not affect
the availability of the other sites). Again we find that relatively high levels of
availability can be achieved even when only a few replicates are available; in
the case of only two copies available in a 5-site storage set, over 99% availabil-

ity is realized.
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Effect of Site Dependencies on Newwork Availablllity
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Figure 5.10: Effect of Site Dependencies on Network Availability

5.4.4.3 Complex Topologies

In the simple bus topologies we have assumed in the previous sections, it
‘was assumed that the communication system (or bus) was perfectly reliable. In
such networks, the notion of network partitioning has less significance than in a
network in which the storage sites are arbitrarily connected. In fact, if the bus
fails in a bus-topology network the network becomes m-partitioned, where m is
the number of operational sites in the storage set (that is, network information

availability is identical to information availability at a storage site). On the
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tw Y oeX

L£Y = (CY[9],...CY[D+1])
Z = (2{0),...,.2[D+1])

Coverage Vector for Active Modules
Computing Capacity Vector

Number of repair facilities
Repair rate per module

Restart rate from the CF state
Failure rate of one good module
in the 5S state

Periodic service interval

Mean system checkout duration

Notation Description Value

Type Subsystem Type 6

D Number of Degradations 3

S Initial Number of Spare Modules 0

cs Coverage for recovery from 1

a spare module failure
A Failure rate of one active module 0.00087283

Il Failure rate of one spare module 0
Y = (Y{0],....Y[D+1]) Active Resource Vector Y[0]=5, Y[1]=4
Y{2]=3, Y[3|=2

CY[0}=1, CY{1|=1
CY[2]=1, CY[3]=1
Z[0j=1, Z|1]=1
Z[2]e=1, Z{3]=1
1
12
12
.0001

60
0.0417

Table 5.5: ARIES Parameters for Site Dependencies

Partition | Steady-State | Lost time due to-
Availability safe shutdowns
1/4 0.999093 0.00040128
2/3 0.999682 0.0190772
3/2 0.991845 0.489312
4/1 0.879645 7.22131

Table 5.6: Steady-State Availabilities for Various PRC Partitions

other hand, in multi-connected topologies the network (from which the storage
set is a subnetwork) may become partitioned in arbitrary ways. Therefore, in
discussing information availability in multi-connected topologies, it is necessary

to take the topology of the network into account, as well as the availability of

the communication paths that interconnect the storage sites.

Consider Fig. 5.11, for example, which shows a typical multi-connected

computer network. The information at storage site 5 is available to the proces-
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Figure 5.11: Multi-Connected Computer Network

sor at site 1 via any one of three possible (not necessarily independent) paths,
namely, 2,25, 7,77, OF ;2375 Therefore, the information a.va.ila.bilityr with
respect to all possible site pairs in the storage set must take the network topol-

ogy into account.

A general procedure for computing network availability in terms of link
availabilities is discussed in [Maka83]. We make use of this procedure but
extend it slightly to include the availabilities of the storage sites. By treating
the connected subset of sites that make up the storage set as a subnetwork, we
are able to compute the information availability. Consider, for example, the
simple bridge subnetwork of Fig. 5.12 which we consider to represent the
storage set of an application program; in other words, there is one ‘‘master”
copy of information which is replicated at three other sites interconnected as
shown in the figure. We would like to get some feeling for the availability of
this information in terms of link and node (storage site) availabilities. We make

the pessimistic assumption that the availability reduces to the availability of a

139



Figure 5.12: Bridge Subnetwork of an Application Program

single storage site if the subnetwork becomes partitioned.!

To compute the subnetwork availability, we use the efficient algorithm
proposed by [Grna8l] as well as the procedure discussed in [Maka83] to obtain
a symbolic expression for the multiterminal availability of the network. We do
this by first computing the terminal-pair connectivity of every distinct node-
pair in the network (there are 6 such pairs), then we take the logical AND of
the resulting expressions (simplifying terms where possible} to obtain an

expression for the multiterminal connectivity. Finaily, we use the resulting

IThis assumption is justified if the nature of the information is such that it is
impossible to maintain consistency if copies in separate partitions are
independently updated. We therefore restrict updates to a single copy in some
partition.
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expression to obtain the muititerminal availability. The algebra involved is
rather laborious, but equation 5.3 shows the symbolic expression for availability

in terms of the link and node probabilities p; where

p; = Prlith link or node is operational]

MC = psP1PsPolp1P2Ps(L-Po)(1-p5) + P1Papapeps + P1P2P3P4(1-P5)
+ p1pops(1-p3)(1-py) + P1PaPePs(1-P3) + P1Popy(1-p3)(1-Ps5)
+ p1papaps(1-py) + p123P(1-Po)(1-ps) + P1P2psps(1-Py)
+ p1paps(1-P2)(1-p3) + P1P32aPs(1-p1) + Papaps(1-P2)(1-P1)

+ papaps(1-p1)(L-p)) + Popap(1-p1)(1-ps)|
(5.3)

where MC is the multiterminal connectivity. If we assume, for simplicity, that
all links have the same failure and repair rates and likewise for nodes (the rates
are different for links and nodes however), the time-dependent availability can

be expressed in the following simplified form:

A(t) = bY(40® - 11a* + 84°)

(5.4)
where
I S M S+ it
Mt Mtm (5.5)
and
. B A2t
e tue At (5.6)

where A\, and A, are the failure rates of links and nodes respectively, and u,

and p, are the repair rates of links and nodes respectively.
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In Table 5.7 we show the relationship between network steady-state

availability and the steady state availabilities for links and nodes.

Link Availability | Node Availability | Network Availability
1.0 099 - 0.960596
1.0 0.98 0.922368
1.0 0.97 0.885293
1.0 0.96 0.849347
1.0 0.95 0.841506
1.0 0.94 0.780749
1.0 0.93 0.748052
1.0 0.92 0.716393
1.0 091 0.88575
1.0 _0.90 0.6581
0.99 1.0 0.999796
0.98 1.0 0.999169
0.97 1.0 0.998099
0.96 1.0 0.996567
0.95 1.0 0.994555
0.94 1.0 0.99205
0.93 1.0 0.989037
0.92 1.0 0.98551
0.91 1.0 0.98145
0.90 1.0 0.97686

Table 5.7: Availability for Multi-Connected Topology

It is interesting to note that the network availability is more sensitive to node
availabilities than to link availabilities because of the redundancy of paths

between node pairs.
8.5 Discussion of Results

There are a number of significant results from this analysis. First, the
bundling of processor and storage, as is typical in most distributed systems,
does not contribute to high availability, primarily due to the unreliability of
the components. If processors and storage devices could be separated, higher
information availability could be achieved. Second, high levels of availability

can be achieved through replication, even with relatively unreliable com-
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ponents. The analysis shows that it is not really necessary to have more than
about two copies of any piece of information in order to get better than 98%
availability. One must be careful, however, since we reiterate that this analysis
makes assumptions which may not apply in all cases. Third, a periodically
renewed system with information replication in sites with independent failure
probabilities givjes very high levels of availability under both periodic and on-
demand maintenance. If the repair interval is reasonably short (depending on
the probability of failure of sites), replication is not required at more than two
sites. Finally, we observed that high availability can be achieved in a multi-
connected topology if the reliability of the nodes can be kept high with respect
to the link reliabilities; by storing information at multiple sites, there is a high
probability that information will be available for access because of the redun-

dant links.
5.6 Summary

In this chapter we investigated availability issues in distributed process-
ing systems by analyzing various models representing a broad cross section of
information storage strategies. The analysis was based, in part, on modeling
tools developed in our own environment, and on data collected from our local
distributed processing system over a six-month period. The significant conclu-
sion of this study is that a periodically renewed multi-connected system with
redundant interconnections between nodes and with on-demand maintenance,
when necessary, provides very high levels of availability in the face of unreli-
able components by replicating information sparsely at various nodes. We will
use these results in a later chapter when we propose a hardware architecture

(FTSS) to support highly available information-storage systems.
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CHAPTER 6
FAULT-TOLERANT STORAGE SYSTEM ARCHITECTURES

Contemporary distributed processing systems are requiring an increasing
amount of on-line storage in order to meet the processing needs of several
classes of users with varying storage requirements. In chapter 1 we developed
the need for specialized back-end storage subsystems to offload storage
management from the hosts, as well as providing an environment in which
storage and storage management can be optimized. In this chapter, we present
a class of fault-tolerant extensible architectures suitable for use in the design of
back-end storage subsystems for distributed processing systems. The architec-
tures are based on a modified symmetrical hierarchical tree system to which
topological additions have been made to provide fault-tolerance. We show that
such structures provide arbitrary extensibility, improved reliability, and employ
relatively simple routing algorithms. We concentrate on a representative of the
class and show how it can be applied to the design of Back-End Storage Net-
works (BSN). This representative serves as the basis for the implementation of

FTSS.
8.1 Introduction

As computer systems become more decentralized, there is a greater need
to share resources that are either too specialized or too costly to replicate. This

need has led to the development of specialized Back-End processing systems
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which provide functions that are in a sense optimized and that may be shared
by several users. Characteristic of such systems are Database Machines
[DeWi79, Bana79, Su79], Back-End Storage Networks [Thor80, Svob8l,
Ewin82], and multiprocessing systems such as X-Tree [Sequ79], Hypertree
[Good81], and MPP [Batc80]. When one examines these back-end processing
systems, it is surprising to note the lack of emphasis that has been placed on
system reliability as a part of the design methodology, particularly so in view of
the usually high cost and specialized nature of these systems. The application
of fault-tolerance, a proven design methodology for achieving high reliability
[AﬁTS], is noticeably lacking. In this chapter, we examine one approach to the
application of fault-tolerance to the design of BSN’s. We show that by making
modest assumptions about the frequency of failures and the mean time to
repair those failures, it is possible to design a reliable fault-tolerant tree archi-

tecture for a BSN.

The BSN is a shared storage system that permits high-speed information
transfer between a set of storage devices and host computers. Early BSN
approaches took advantage of the cost-sharing and optimizations that could be
achieved by pooling storage resources; the BSN simply performed high-speed
file transfers and did very little information processing. A recent trend in BSN
architectures is the ofi-loading of storage management functions from the host
computers to the BSN; in fact, the BSN represents an excellent opportunity to
bring processing to information (i.e. by processing information in situ) rather
than bringing information to the host processor, processing it, and returning it

to the storage system.
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BSIN’s provide several advantages over the alternative, which is to distri-
bute storage among participant sitesr in a shared network environment or indi-
vidually among users. First, they provide a means of off-loading information
processing and storage management from host processors allowing some reduc-
tion in the code size of host operating systems. Second, by considering the
BSN as a homogeneous system, it is possible to optimize information and
resource management in the system in ways which are either:very difficult or
not possible in distributed storage environments. Third, by taking advantage
of economies of scale, it is possible to reduce the overall cost of storage; this is
an_r important consideration since studies have shown that the increasing
operating costs far outweigh the reducing cost per bit of storage [Ewin82]. By
pooling and sharing resources, operating costs can be reduced. Fourth, the
BSN provides an environment in which information can be automatically
migrated and archived as a function of frequency of use. Fifth, information can
be incrementally backed up without involving host computers. Sixth, the
homogeneity of the BSN environment permits system designers to share data
between inhomogeneous hosts by having the BSN perform data transforma-
tions invisibly to hosts. (This introduces the larger issue of data compatibility
in information processing systems. By performing transformations on data
being passed between dissimilar hosts, the BSN provides at least one solution
to this issue.) Finally, the BSN provides a means whereby storage and data
management functions can be provided for hosts that do not inherently possess
such capabilities; this is particularly important in view of the current trend

towards diskless workstations.
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The remainder of the chapter is structured as follows: In section 2, we
discuss various extensible architectures and their suitability for use in BSN
design. In section 3, we present a fault-tolerant architecture based on hierarchi-
cal tree systems which appear promising for use in BSN's, and discuss various
properties of the architecture. In section 4, we perform a simple reliability
analysis of the resulting structure. Section § discusses the use of hierarchical
trees as BSN architectures by presenting one of several interpretations of the

use of links and nodes.
8.2 Architectural Considerations

There are two important factors that warrant considerable attention in
the design of BSN's: 1) the architecture should be very reliable at a reasonable
cost, in order to achieve high information availability and, 2) the architecture
should be extensible so that the system can take advantage of the cost benefits
associated with incremental growth. In this section, we discuss two promising

extensible architectures and their suitability for applications in BSN's.

There are several extensible topologies that warrant consideration for
applicability in BSN architectures. These include various forms of rings, buses,
stars, arrays, lattices, networks, and trees [Desp78]. However, of these, buses
and trees appear to be the most promising with respect to ease of extensibility

and application of fault-tolerance.
8.2.1 Extensible Topologies

We define an eztenaible topology as one in which new components, in
the case of Local Computer Networks (LCN) -- nodes, can be added to the

topology without destroying its fundamental properties. Two of the important
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requirements of any BSN are the abilities to incrementally increase the storage
capacity of the system and the capability of building new services out of exist-

ing ones [Wats80|.
8.2.1.1 Tree Topologies

The definition of ¢rees are well known (see, for example [Knut73})., They
are perha:ps the best example of incrementally extensible structures since it is
always possible to extend the tree through the addition of a single node or link,
unless it is necessary to maintain the “balance” of the tree. It is also relatively
strfé.ightforward to increase tl}e reliability of the tree through the addition of
extra links and nodes [Haye76, Ragh83]. In the case of binary trees, it has been
shown that simple routing algorithms can be developed to pass messages
between any pair of nodes in the tree {Desp78]. One potential difficulty with
the application of trees in the design of BSN's is that all communication
between the host and the BSN, or between the BSN and another subnetwork,
must take place via the root node, implying that this node could prove a
“bottleneck” to the performance of the system. It is interesting to point out
that simple analysis shows that in a full binary tree with every node communi-
cating to every other node, the root will not have the most traffic [Desp78].
However, this potential performance bottleneck certainly cannot obviate the
useful properties of tree structures with respect to incremental extensibility,
fault-tolerance, and simplified message routing. They therefore warrant serious

consideration for use as BSN architectures.
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6.2.1.2 Bus Topologies

Bus topologies are perhaps the most widely used of all extensible topolo-
gies. A bus is characterized as a high-bandwidth communication medium, of at
most a few hundred feet in length, to which devices that must communicate
are attached. As such, several other extensible topologies {most notably the
star and the ring) can be classified as special cases of bus topologies, depending
upon their physical configuration. Buses are arbitrarily extensible, limited only
by the available bandwidth. It is also relatively easy to increase its reliability
through redundancy, and the cost of most bus communication medium is
inherently low. The primary objection to our use of buses in BSN's is the fact
that all communication must occur over the bus; this can, at times, be detri-
mental especially when communication is preemptive. Despite this, they have

been particularly successful in BSN's.
6.3 A Highly Reliable Architezture for BSN's

We have chosen a tree topology as the starting-point of our investiga-
tion of reliable extensible topologies. In this section we investigate the proper-
ties of a class of hierarchical tree topologies which exhibit high reliability
through the use of redundancy via the addition of extra communication links
to a basic binary tree. We show that these tree topologies exhibit properties
which make them especially suitable for use in fault-tolerant BSN architec-

tures.
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8.3.1 Hierarchical Tree Systems

The theoretical framework for Hierarchical Trees has been laid out by a
number of researchers [Haye76, Kwan8l]. The model we use in this paper is
similar in many respects to the model developed by Hayes, and we borrow
liberally some of the definitions and concepts presented there. However,
whereas Hayes’ model is very general, we are attempting to solve a very specific
problem related to the design of BSN's. Therefore, where differences exist in
the modeling approaches, we point them out carefully.

Definition: A facility is any hardware or software component of a

system that can fail independently of the remaining facilities.

Facilities in our system are comprised of hardware components such as proces-
sors, device controllers, storage devices, storage media, and software com-
ponents such as executive and application programs. Each facility has access to
certain other facilities in the system which permits the representation of the

system by a graph.

Definition: A facility graph is an undirected graph G whose nodes
{z;} represent system facilities and whose edges represent com-
munication links between the facilities. G is a labeled facility
graph if a number ¢; is associated with each node z; of G; ¢; is

interpreted as the facility type of z,.

Definition: A hierarchical tree Tp, is a rooted tree such that all

nodes are grouped according to levels, the level of a node being
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the distance of this node from the root node z; (the only node at
level 0). p denotes the number of levels in T ,. For any node z; ;
in Tp,, §is the level of z;; and j is the index (2°<5<2E1) of
the node in level i. A node z is called a child of z if z is in level 4,
z is in level i+1, and z is adjacent to z. D denotes the set
{Do,Dy, . - . ,D, 5} where D; = {d,-!z.,di-'z..,,l,l ... d;ge ). Here
d; ; denotes the degree of z;;, that is, the number of children of
z; ;-

""" It is normal to associate a facility type ¢; with each level ¢ of Tp , such
that all nodes in level i are of typé t; and different levels may have different
facility types. In view of the trends in current mass storage technology, this is

not an unreasonable assumption.

Definition: A symmetric hierarchical iree is 3 hierarchical tree
Tp,in which every nonterminal node has degree d, that is, if we
write D = {dy,dy, . ..,d, g} for the case when d;o =454,
= d;g+1y = d; for each 4, then dg=dy="-"dyy=d In

other words, Tp , is a d-ary tree.

Hayes, and later Kwan and Toida, have studied the optimal design of
fault-tolerant symmetrical hierarchical trees. In the next section we show how
fault-tolerance can be applied to hierarchical tree systems, not in an optimal
sense, but in a way in which the desirable properties of the tree structure with

respect to extensibility and routing are preserved.
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6.3.2 Fault-Tolerant Hierarchical Tree Systems

The use of hierarchical tree systems and, in particular, symmetrical
hierarchical trees in the design of computing systems has been restricted to the
design of multiprocessor systems in which each node of the tree represents a
processing site or a site from which input or output (I/O) might take place.
Examples of these are the X-Tree multiprocessing system [Desp78, McCr80,
'Sequ79], and the Hypertree multiprocessing sjrstem [Good81}. Tree structures
have also been used, to s somewhat limited extent, in the design of computer
communication systems. As a result of this trend towards multiprocessing,
much of the work that has been dome in the application of fault-tolerance to
tree architectures has been constrained by the need to maintain the rigid tree
structure, even in the presence of failures. The optimal fault-tolerant symmetr-
ical hierarchical trees proposed by Hayes, for example, provide mechanisms by
which the tree structure is maintained in the presence of faults by switching in
“gpare” nodes and links to replace faulty facilities. The system is considered
unreliable or “failed” when no more spare nodes and links are available and
the tree structure can therefore no longer be maintained. Later work by
Raghavendra, ef al., show non-optimal schemes which improve reliability in the
presence of faulty nodes and links, but again under the constraint that the tree

structure must be maintained at all times [Ragh83].

The following definitions are useful in allowing us to say things about

our topology later:

Definition: A k-fault F in a system S is the removal of any k

nodes {z),2,, . . - ,z;} from S. All edges connected to these nodes
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are also removed. The resultant graph will be denoted by Sk,

Definition: A simplez system 5% is a non-redundant system that
cannot tolerate any faults. The corresponding graph is called the
simplez graph.

.
Definition: S is k-fault tolerant with respect to S0 if, for every k-
fault F in S, there is a vertex connected subgraph of F. §is

called a k-FT realization of VS°.

Notice that our definition of k-fault tolerance is much more liberal than
that in Hayes. Whereas in Hayes the resulting subgraph after a k-fault must be
isomorphic to 5% we require only that there be vertex (or node) connectivity in
the resulting subgraph. The result of this generalization is that we can provide
k-fault tolerance solely through the addition of extra links rather than extra
links and nodes (as we will illustrate in a later section). In a practical sense,
what we are saying is that it is not necessary to always maintain isomorphism
so long as the mean time to failure of a facility is much longer than the mean
time to repair of that facility. In terms of fault-tolerance jargon, we treat our
system as an open or repairable system -- thus, it is possible to allow some sys-
tem degradation during periods of outages (node failures). A temporary degra-
dation is acceptable as long as the availability of the complete tree remains

sufficiently high.

Our basic approach to maintaining high availability is to provide node
connectivity in the presence of failed nodes. This we do by providing addi-

tional links to the tree in such a way that the system can degrade gracefully.
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We make the assumption throughout this paper that links are bidirectional,
allowing information to move freely between nodes in any direction. We will
show that by using this approach, it is possible to design systems with as high
(or higher) reliability than when isomorphism is maintained. We should point
out that a similar approach is taken in X-Tree and Hypertree. In the next sec-
tion we present the basic topology of a fault-tolerant hierarchical tree system-

suitable for use in BSN architectures.

6.3.3 The Basic Topology

' The basic topology we are proposing is based on a 2-ary symmetric
hierarchical tree system in which additional bidirectional ‘“‘cross” links have
been placed to make the resulting topology 1-FT. This topology is shown in
Fig. 6.1. For this example, the basic topology is a Ty 4 hierarchical tree system.
The nodes have been labeled in accord with our definition of hierarchical tree
systems; at this time, we afford no special significance to the types of nodes
(i.e., facilities) that exist at each level. It can be readily seen that the tree is
essentially a complete (or full} binary tree to which extra links have been

added to improve reliability over the simplex graph.

The topology we have presented above can be generalized for any Ty,

system in the following way:

A pair of nodes (z; ;,%, ;) are connected if they satisfy any of the

following relationships when j3 >j:

ja =25, _ .
=2 +1 ) 2=ntl
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Figure 8.1: A T, ,, 1-FT Symmetrical Hierarchical Tree
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(6.1)

jo= g1 + 2 } Iﬁ-l even, and iy = iy
2 (6.2)

The 1-fault tolerance of the resulting topology is guaranteed by observing that
every node is reachable in the presence of any single node failure, except the

root node (the problem with the root node is dealt with later).

8.3.4 Properties of the Topology

We will now investigate several interesting properties of these 1-FT T,
topologies. We will denote topologies of the type we have defined above as
T, 1 topologies where the added term of 1 in the subscript indicates the k-

fault tolerance of the system.

Theorem: The number of links in a T,,, tree is bounded from
above by

p*14 g1 o
i -2 (6.3)

Proof: We know that a tree with n vertices has exactly n-1 links
(edges). Assume that the tree is full. Let N denote the number of
nodes in the tree. In general, N =2927*1 _1. Thus, there are
exactly 2 * ! -2 links in the tree, not counting the additional
cross links. We only need to find the number of additional links
in the tree to complete our proof. It is not hard to see that there
are exactly 2° ! additional links in each level of the tree for

i > 1 (there are no cross links in the first two levels of the tree)
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since every node in each level is connected to exactly one other

node in the same level via a cross link; thus the number of cross

links is exactly one half the number of nodes in each level, and

there are exactly 2' modes in each level. Therefore, the total

number of additional cross links is

’Z':' gi -1
§ =2
Q.E.D.

If the reliabilities of links are treated differently from the reliability of
nodes, that is, link and node failures are independent (although the failure of a
node implies the failure of all links connected to that node), then the number
of links in the topology becomes significant. A topology with a large number of
links is likely to be less reliable than one with a smaller number of links, all

else being equal.

Theorem: The maximum degree of any node in a Ty ,, tree is 3.

Proof: The proof begins by observing that the maximum degree of
any node in a binary (2-ary) tree is 2. The basic substructure of a
Ty, tree is a binary tree. It is therefore necessary and sufficient
to show that in a T,,, tree no node has more than one addi-
tional cross link associated with it. We note that nodes connected
by cross links are related by the expression

Jao=j +2 } lJ—zl even, and §; == iy
2 (6.4)

when j, > ;. It is clear that additional links are generated only
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between pairs of nodes in which the parent of the lower num-
bered node j; is represented by an even integer, and the nodes
are in the same level. This is the same as saying that cross links
are generated on the descendants of even-numbered nodes (for
the value of j;), and terminate on the descendants of odd-
numbered nodes. Thus for every node pair that satisfies the rela-

tion above, there is at most one link.

QED.

- From the point of view of node complexity, in terms of information
transfer and message routing, it is important to keep the number of connec-
tions per node as small as possible. This topology succeeds in this respect by
guaranteeing that no node will require more than four connections to communi-

cation channels.

Corollary: All terminal (leaf) nodes in a Ty, tree have degree 1.

Proof: Non-terminal nodes have no children (by definition) and
are connected to exactly one other node in the same level via a

cross link.
Q.ED.

Theorem: The diameter Dy (defined as the largest distance
between any node pair in terms of the number of links separating

them) of any T ,, tree is

i i <95
Dr=12i-5 i>s (65)
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Proof: The proof appears in Appendix A.

The diameter of any interconnection structure is an important metric in
determining the maximum distance a message or other body of information
must travel within the structure. While it may be very rare that this maximum
‘distance is utilized, it is nevertheless a useful bound. It is interesting to note
that the diameter of a full binary tree is 24, where ¢ is the number of levels in
the tree. Thus the trees we are proposing here represent an improvement over
a simplex tree. Clearly, it is advantageous to minimize the number of levels in

order to minimize the diameter.
8.3.5 Routing

The regularity of the T, ,, topologies suggest the existence of relatively
simple routing algorithms. While we are not able to present in-depth routing
algorithms for these topologies in this thesis, it is nevertheless interesting to
explore routing somewhat intuitively. As far as the basic binary tree is con-
cerned, routing is relatively straightforward [Knut73]. The only additional
complication concerns the use of cross links. Intuitively, a cross link should be
taken whenever it will reduce the number of hops between a source and desti-
nation node. The general rule we adopt is that a cross link is traversed when-
ever any two nodes along a path from source to destination belong to the same
Ty 4, substructure AND such a traversal will result in a smaller number of
hops than if it is not utilized. The algorithm can be made robust in the pres-
ence of node failures by traversing a cross link whenever a path from a source
to a destination node is blocked by a failed facility. We have been able to
develop a simple distributed routing algorithm based on these intuitive notions

which, while not optimal, will always choose a path between source and
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destination which minimizes the number of links traversed; this algorithm is

sketched in Appendix B.
8.3.8 Extensibility

Although tree structures are, in general, arbitrarily extensible, there are
only a finite number of ways in which new nodes can be added to T, ,, trees.

We discuss them here.
The Criterion for Eziensibility of T, trees is:

All non-terminal nodes of the tree must have degree at least two

and all terminal nodes must have degree one.

In meeting this criterion, none of the other properties of the tree should be
violated (for example, the connection property that determines when two nodes
are connected by a link). Fig. 8.2 shows some of the ways in which a T, tree
can be extended. Note that the criterion above requires that a minimum expan-
sion consist of two nodes that are connected by a cross link. It should also be
noted that the criterion permits the tree to be extended in an unbalanced way;
that is, some of the levels do not have their full complement of nodes {incom-
plete levels). The desirability (or undesirability) of extending the tree in this
way is a function of the resulting complexity of the routing algorithms used to
move information and messages between the nodes. Simple routing algorithms
will probably require that only the highest numbered level of the tree be

incomplete.
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Figure 8.2a: Two-Node Extension

Figure 8.2b: Four-Node Extension
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6.4 Fault-Tolerance and Reliability

In contemporary information processing systems, the use of fault-
tolerance to improve system reliability at lower costs than other alternatives is
well established [Avi78]. In this section we.examine, in a quantitative way, the
reliability improvements that are accrued as a result of our topology. As
pointed out previously, the topology was designed from the outset to be 1-FT.
However, it is possible that multiple failures can occur in different parts of the
tree without violating the reachability condition defined for k-fault tolerance.
We assume throughout the rest of this section that the failure rate of links is
negligible compared with nodes, thus only node failures are considered. Admit-
tedly, this is an optimistic assumption, but it is supported by the observation
that the links are bidirectional and link failures do not imply that a node is
unreachable; relatively simple reliability analysis of the topology is made possi-

ble by this assumption. .
8.4.1 Rellability Analysis

In performing reliability analysis of Ty, topologies, we consider the
topology as a fault-tolerant structure consisting of a series of homogeneous
subsystems S;, (f =01, ... ,p-1; k=12, ...,L) where i represents the level
of the tree (the i-th level) and & represents the number of subsystems in the -

th level. With a failure rate ), the reliability of a single node is

R=c¢™
(6.8)

In a simplex {non-redundant) binary tree with p levels, there are 2P - 1 nodes,
all of which must be operational for the system to be considered operational

(i.e., reliable). Therefore, the reliability of the non-redundant binary tree is
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Ry = R2’ -1
d (6.7)

In a Ty, tree, all levels except the first can tolerate node failures. The allow-
able number of failures per level, however, is determined by ¢ (the level
number) and the way in which the nodes are interconnected in that level. For
example, level 1 (the second level) can tolerate a single node failure while all
other higher-numbered levels can tolerate several node failures. To illustrate

the reliability of the topology, we consider several cases:

Case 1: Single node faslures

Under this assumption, any node except the root can fail. It can be

shown that the reliability of the T, ,, tree is given by:

Ry, =R¥"1+ (2 -29)R¥ (1 -R)
' (6.8)

since there are 3% - 2 nodes, each of whose failure can be tolerated.
Case 2: Double node failures

Under this assumption, we wish to characterize the reliability of the

topology for all double-node failures. If we do not consider the root node,

9p
there are [ 2 ] ways in which double-node failures can occur. However, not

all such failures will leave the non-failed nodes connected. If node failures occur
in different levels of the tree, clearly the structure remains connected, the only
exception being the case when a failure occurs in each of the two highest levels
of the tree. In this latter case, it can be shown that there are 2° -1 ways in
which such failures can lead to unreliability. There is one other case in which
double-node failures can lead to unreliability, and that is the case where two

failed nodes are in the same level AND they have the same parent node (the
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gi
leaf nodes being an exception). Out of the [2] possible double-node failures in

each level, exactly 9' are safe, the others leading to unreliability. Based on this

analysis, it is possible to characterize the double-node reliability as:

RR  =R¥ %+ (2 -2)R¥ "3(1-R) + kR¥ "Y1 - R)?

(8.9)
where

Case 3: Multiple node failures

We are able to go one step further in our reliability analysis by consider-
ing the more general case of multi-node failures. In order to do so, we break

up the system into a number of homogeneous subsystems.

We notice from Fig. 8.2 that in any level of the tree for { > 1, node
pairs are connected with cross links so that every four nodes starting from the
leftmost node in that level represents the lowest level of a T4, tree. Each of
these node groups forms an independent subsystem for the purpose of reliabil-
ity analysis. We will refer to these node groups generically as a Group Subsys-
tem or GS. The number of GS’s in each level of the tree is 2 -2 for i > 2 we
assume that the GS's are in series for reliability analysis since they must all
survive for level i to survive. The reliability of any GS except those in the

highest level of the tree (the leal nodes) is:
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Rgg = R* + 4R%(1 - R) = R%(4 - 3R)
(6.10)

Notice that only single-node failures are allowed; multiple-node failures make
the structure unreliable. There are cases in which a failure in a leaf node and a
node in the immediately preceding level can make a surviving leaf node
unreachable (this case occurs when both the parent and the connected sibling
of a leaf no;le fail). Since this is expected to occur in only a small number of
cases (especially if the number of levels is small), we choose to investigate the
reliability ﬁnder the single-failure assumption for leaf nodes in the same GS
{otherwise, we must assume that leaf nodes do not fail.) From a practical point
of view, it is possible to tolerate these failures by replicating information in leaf
nodes belonging to the same GS that are not siblings (i.e., connected by a cross
link), or by adding additional links between leaf nodes. Under these assump-

tions, Rgs,,, = Rgs. The reliability of level ¢ is therefore

20-9
HRGSg ,ifl<l<P"l
b1
Ry =|,p-3 Y
2* ““Res,, i i=p-1 (8.11)

Since all levels from i = 0,1,...,p - 1 must be operational for the tree system to

be operational, the system reliability is given by the expression:

R iti=0
R,, = |R(R* + 2R(1 - R)) it =1 6.12)
-1 .
R(R® + 2R(1 -R)) TL R; ;ili>2
t a2
.

We can compare the reliability of the T,,, system with the non-redundant

binary tree by evaluating the Reliability Improvement Factor (RIF) as:
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1-Rp
RIF = ——
1-R,, {6.13)
If we assume that the fault coverage ¢ (defined as the conditional probability
of successful detection of a fault, given that a fault has occurred) [Bour69) is

not perfect, then the system reliability is given by

4

R | iti=0
R',,, = |R(R* + 2¢R(1 - R)) s if § =1 614
) -1 6.14
R(R® + 2cR(1 -R)TL B; ;i > 2
] k -2
where Rgg is now expressed as:
R'GS = I‘l"l + 4CR3(1 -R)
(6.15)

As an example, we will perform a reliability analysis for a Tp 4, tree and
compare the results with the corresponding 4-level binary tree. We begin with
a study of the effect of node reliability on overall system reliability under the
assumptions that all nodes have the same failure rate and that coverage is per-
fect. In Fig. 6.3 we show the reliability of the system for the three cases dis-
cussed above, under the assumptions of perfect coverage and a failure rate
\ = 0.1 failures per unit time. The time unit may be assumed to be any value
convenient to the reader. A typical interpretation of time in this context would
be thousands of hours. In the figure we have also included the reliability of the
non-redundant 4-level binary tree as a means to compare the reliability
improvement. Table 8.1 shows the reliability of the T4, tree under the
assumptions above by levels in the tree - this is useful since it helps one to get
a feeling for the contribution of each level to reliability (or unreliability). We

also show in Table 6.2 the improvement in reliability of the T, ,, tree over the
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Figure 6.3: System rehablhty under different failure assumptions
coverage = 1

t R, R, Ry R, R
0.0 1 1 1 1 1
0.2 0.9801987 0.9996079 0.9970909 0.9954234 0.9730958
0.4 0.9607894 0.9984625 0.9912504 0.9825773 0.9343511
0.6 0.9417645 0.9966086 0.9811973 0.9627481 0.8865168
08 0.9231163 0.9940889 0.9680643 0.9371486 0.8325193
1.0 0.9048374 0.9909440 0.9523127 0.9068996 0.7743878

_pon-redundant binary tree in terms of the RIF. An important metric in deter-
mining the relative merits of one system over another in reliability analysis is
the Mission Time Improvement Factor or MTIF. This is the improvement in

mission time of one system over another for a given level of reliability. This we

Table 8.1: Reliability of a T4, Tree

show in Table 6.3.
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= 0.1 coverage =1
t R Rr RIF

0.0 1 1 0

0.2 0.9730958 0.7408182 9.63
0.4 0.9343511 0.5488116 6.87
06 0.8866168 0.4065697 5.23
0.8 0.8325193 0.3011942 4.17
1.0 0.7743878 0.2231302 3.44

Table 8.2: Reliability Improvement of Tp 4, Tree

= 0.1 ecoverage =1
Rel. Level Mission Time MTIF
0.9731 0.2 10.99
0.9344 0.4 8.791
- 0.8866 0.6 7.481
0.8325 08 6.547
0.7744 1.0 5.869

Table 6.3: Mission Time Improvement of T34,
over Non-Redundant Tree

Although it is desirable in some applications {most notably, VLSI sys-
tems) to have identical nodes in the tree structure, it is hardly likely that this
would be the case in the context of a BSN. We would probably expect, for
example, the root node to be well protected (low probability of failure) because
of its criticality in network operations. Furthermore, we would expect that
failure rates would decrease as the level in the tree increases based upon the
characteristics of contemporary mass storage devices, that is, we think of the
tree architecture as representing a hierarchy of storage devices with capacity
increasing with the level of the tree and speed of information handling decreas-
.'mg with increasing level. We have modeled just such a case for a Ty 4, tree

and the results are shown in Table 6.4.
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Level No. | Coverage A
1 1.0 .0001
2 1.0 o
3 0.98 001
4 0.95 .0001

Table 8.4a: Fault Coverage and Failure Rate at each Level

t R, R Ry Ry Rew RIF
0.0 1 1 1 1 1 0
0.2 0.99998 0.999996 0.9999838 0.9999919 0.9990518 103.01
0.4 0.99908 0.999984 0.9999671 0.9999839 0.9998951 94.51
06 0.99994 0.999904 0.9999499 0.9999759 0.9998301 87.207
108 0.99992 0.9999365 0.9999323 0.9999679 0.9997568 81.1
1.0 0.9999 0.999901 0.9999143 0.99995699 0.9996752 75.72

Table 6.4b: Ty, Tree with Different Failure Rates
and Coverages at each Level

6.4.2 Discussion of Results

Two things are immediately clear from our simple reliability analysis:
1) The T, 4, tree is more reliable than the corresponding 4-level binary tree for
all cases of interest, and 2) The redundant reliability is very semsitive to the

fault coverage present in each subsystem (or level of the tree in this case).

The relatively high levels of RIF that we have obtained attest to the
fact that fault-tolerance can also be applied to repasrable tree architectures
without resorting to the dynamic methods of sparing that are necessitated in

closed architectures {Haye76, Ragh83].

It is also clear that in order to achieve high reliability for general Ty, ,
topologies, it is necessary to balance the reliabilities in each level of the tree.
This suggests that, in particular, the nodes in the top two levels of the tree
should have a higher reliability than the other nodes in the tree since the

effects of failures there tend to be more pronounced. Such techniques as using
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dynamic redundancy on the root node of the tree are indeed viable, and should

be employed in practical applications.
8.5 Applying the Topology in BSN's

In applying Ty, trees to BSN's, we treat each node of the tree as a
Storage Site (SS); i.e., each SS is a facility. The SS’s are interconnected with
high-speed bidirectional communication paths represented by the links of the
tree. Each SS has a capacity which is the maximum amount of information
that can be stored there (independent of the number or storage characteristics
of _the physical devices at the SS), and a bandusdth which is the maximum rate
at which information can be accessed at the site. Each SS ﬁlight have a unique
capacity and a unique bandwidth (this we leave as an implementation issue.)
Communication links also have a bandwidth which is the maximum rate at
which information may be sent via the link. Each link can have a different
bandwidth. One convenient way to view the architecture (as discussed in Sec-
tion 6.4), is as a hierarchy of SS's such that all SS's in the same level have
similar storage characteristics (typically, the same storage bandwidth), but
which may be different from storage characteristics in other levels. For exam-
ple, we might consider the root node as a global controller for the entire BSN
which is heavily fault-protected through the application of dynamic redun-
dancy, the next level as representing high-speed buffers which are bandwidth-
matched to the network with which the BSN communicates, and so on, eventu-
ally extending down to the lowest level of the tree which would represent
bulk-storage (large capacity) sites for the dynamic archiving and de-archiving

of information.
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The salient feature of T, trees is the ability to tolerate single (and
some classes of multiple) node and link failures while maintaining node connec-
tivity. This is a particularly attractive feature in BSN’'s because it means that
a node or link failure will not cause information stored at a SS to become inac-
cessible. Clearly, in order to utilize this feature effectively, it is necessary to
replicate information in the BSN so that valid information exists in at least two
SS's with independent failure probabilities. This is required so that if a site
goes down, valid information will still be accessible from another site. The
llep_lication__fa.ctor is arbitrary; however, as shown in chapter 5, given contem-
pojary storage devices, replication at two sites with independent failure proba-
bilities (and assuming links have a significantly lower probability of failure

than storage sites) will result in acceptably high availability.

One appealing aspect of the topology in the context of a BSN is the fact
that if each SS is considered an independent entity (i.e., each SS consists of a
controlling processor with attached storage devices) which communicates with
other SS's via the interconnecting links, then it is possible to perform local
operations on information as well as inter- and intra-site information transfers;
thus, the global controller does not have to be involved {except for initializa-
tion of a request and possible coordination of activities in the system.) The
significance of this is that operations such as information migration, automatic
archiving, and information copying (involving simple site transfers) can occur
totally independently of activities in other parts of the architecture, and cer-
tainly without intervention of host processors; since no host transfers are
needed, the root node (and buffer nodes) are not involved except for possible

coordination by the root node.
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What we have shown in this section is one way in which the nodes and
links of Ty, trees can be used in a BSN; there are, of course, many other pos-
sible interpretations subject to the availability and type of storage devices,
implementation constraints, further application of fault-tolerance to links and
nodes, and so on. In chapter 7 we use a Ty 4, architecture as the basis of the

" hardware design of FTSS.
8.6 Summary

We have presented a general class of fault-tolerant architectures based
on ‘symmetrical hierarchical trees that are suitable for a wide range of applica-
tions which require reliability and ineremental extensibility. We have shown
how a particular member of this family of trees (Tg,p,1) might be applied in the
design of BSN's to satisfy given capacity, availability, and performance cop-

straints; we also performed simple reliability analysis of the topology to give an

indication of the reliability that a designer might expect from such a system.

The ability to arrange capacities and bandwidths as a function of need,
along with the ability to perform operations such as information migration,
automatic archiving, and inter-device transfers -- independently of host
machines and without using network bandwidth -- makes these fault-tolerant
topologies extremely attractive for use in BSN’s. Additionally, since fault-
tolerance is achieved in a totally static way (through the addition of extra links
alone), the implementation of such a system is much simpler than if dynamic

fault-tolerance was used throughout.

172



CHAPTER 7
THE OBJECT STORE: FAULT-TOLERANCE AND OTHER ISSUES
!
In the previous chapter we presented a class of fault-i:olerant architectures
which possess features which make them very suitable for application in back-
end networks. In this chapter we adopt this architecture as the framework on
which FTSS is built and present several mechanisms which take advantage of
its unique features. In particular, we extend those mechanisms discussed in
chapter 3 which deal with the location, representation, and management of

objects in the object store.
7.1 Mapping FTSS onto a Fault-Tolerant Tree Architecture

The hardware is organized as a tree of Storage Sites (SS) as shown by
the T,,, architecture in Fig. 7.1. Each SS is structured as a Site Processor
(SP), and one or more Storage Devices (SD). Each SS has a Capacity C which
defines the amount of information which may be stored at that site. The con-
straints on C is a function of the availability of SD’s, and on the required per-
formance of the system. The SS's are interconnected by bidirectional communi-
cation paths (or links) along which information may flow from site to site in a
controlled and efficient way. One may view this architecture as a network of
storage sites arranged as a tree, an_d possessing a distinguished site which is
known as the root site. For convenience, the SS’s may be identified by the level

in which they appear in the tree.
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Site Processor

O Storage Devices

Figure 7.1: Conceptual Hardware Architecture of FTSS

Although the T, ,, architecture suggests a natural hierarchy, one does
not always have to view it as such. In fact, if the communication links between
sites is short (tens of feet) and the bandwidth high (millions of bits per
second), it can be viewed as a special case of a distributed bus architecture --
this is especially true when all sites provide the same performance. We view the

FTSS architecture as being composed of three functional levels that constitute

3 hierarchy.}

1. The Top Level (TL) provides high speed random access cache memories

IThe reader should note that a hierarchy, in the classical sense of memory
hierarchies, is useful only if there is at least an order of magnitude difference in
performance and capacity between successive levels.
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for buffering object blocks. A processor is provided at this level to pro-
vide giobal management of the system, interfaces with host processors,
and support of user-defined subsystems. This is the highest bandwidth
portion of the system since all communication with the local network of

users is handled at this level.

2. The Intermediate Level (IL) comsists of high performance secondary
storage devices. Storage objects in use by the host processors on the
LAN are migrated to this fast storage. Since several hundred processors
- . may-share the services of FTSS, very fast response is needed at this

level.

3. The Bottom Level (BL) is the bulk storage level. Here information will
reside which is not actively in use. A very large store with a relatively
slow response time is anticipated.

The combination of the IL and BL will be referred to henceforth as the Inter-

network.
7.2 Object Representation

Every object in the Internetwork is represented as a triple:
< header,capability-list,data>
This is the same representation used in the kernel of the SMS except that the
header is different; the header maintains information on the state of the object
and other information useful in its maintenance. When the object is being
accessed by the kernel, the header is the information kept in the incore direc-
tory (ICDI); when it is in the Internetwork, it keeps enough of this information

so that the next time the object is activated, the incore header can simply be
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updated (there are certain invariants such as the UID and the type name of
the object which must be preserved from one activation to another). In addi-
tion, the Internetwork header contains some information which relates to the
state of the object there. Logically, every object in the Internetwork is
represented as a linear one-dimelllsional array of blocks; a header, capability
list, and data. However, its a.ctuaf representation on physical storage may not
correspond to this logical organization - much depends on the access charac-
teristics of the devices. For example, if moving head disks are used, blocks
might be arranged to minimize rotational latency and head seek times; if fixed
heéd disks are used, we might want the blocks to be stored consecutively so
that access time can be minimized (the same would be true for other serial

access devices such as tapes).
7.2.1 Object Representation in the IL

The IL is the set of storage sites which contain the representation of
objects either currently being accessed, or having recently been accessed. These
sites are designated a priori. Since the frequency of access is expected to be
relatively high and the devices relatively unstable, additional precautions need
to be taken to provide the high availability expected of the system. Based upon
our analysis of chapter 5, we maintain at least two copies of each object at all
times, each stored on a device with an independent failure probability. The
cost of replication is not expected to be excessive since only a small portion of

the object population is expected to be in the IL at any given time.
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7.2.2 Object Representation in the BL

The BL is the set of storage sites which provide high capacity and rela-
tively low performance compared with other sites. Here objects which are not
in use will reside. Like the IL, these sites are determined a priorl. Here we do
not expect the access rate to be high in view of the hierarchical nature of the
system. Our strategy for maintaining high availability at this level varies as a
function of the cost/bit of storage. If the cost/bit is low, replication is viable;
for example, if the storage medium is tape, the incremental cost of storing an
object of moderate size twice is relatively low. On the other hand, if disks are
being used, one may adopt the strategy of using a single disk to maintain
checksum sectors over corresponding sectors of a set of disks to achieve full
fault protection at a fractional increase in cost. For example, groups of four
disks might be backed up by a checksum disk providing a worst case slowdown
by a factor of four if one disk fails completely, but the capability to recon-

struct data and recover at an additional cost of only 25%.
7.2.3 Consistency

Whenever objects are replicated, there is an issue of consistency that
must be addressed. The idea of consistency has its roots in transactional data-
base systems where it was clearly realized that data validity in the presence of
software and/or hardware failures was crucial to the financial well-being of
online transaction processing systems. This requirement led to the foundation
of a theory of consistency which gave rise to the formal definitions of atomicity
and {ransactions [Gray78]. While these are useful paradigms, they are all

based on the premise that hardware and software are unreliable; that is, the
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instants at which they may fail are unpredictable. While this is true for all
implementable systems (assuming a finite amount of resources), given the
current state of the art, recent trends in the application of fault-tolerance to
the design of computing systems make the prediction of failures much less unc-
ertain. It has also been demonstrated that fault-tolerance can be applied in

cost-efective ways, while still producing relatively high performance.

The objective is that the components of a replicated object must satisfy
some constraints about the consistency of the information which is stored in
each of thém. Consistency theory has been applied to distributed databases
[Bérng0j, and to the design of transactional file systems [Dion80, Frid81].
There are two forms of consistency: one dealing with the external behavior of a
system, and the other with the internal behavior. The first is known as exfernal
consistency, and the latter as internal consistency. The strongest and most
popular form of external consistency is the requirement that all externally visi-

ble operations be atomic. An operation is atomic if it satisfies the properties of:

) Faslure atomicity. The operation is executed exactly once or not at all.

. Serializability. Its execution is serializable with respect to other atomic
actions.

. Correctness-preservation. Given a correct initial state, any serializable

execution of atomic actions results in a correct state.
Mutual consistency is the most popular form of internal consistency. It requires
that all operational components of t_he system occupy the same state. A more
common terminology is interactive consistency which requires that operational

components be mutually consistent, but that failed components may be
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inconsistent. Total conasistency, on the other hand, requires that even failed
components reflect s serializable ordering of operations. Whether a system
should exhibit interactive or total consistency is a function of the cost of imple-
menting each; in general, it is much more costly to implement systems that are
totally consistent, although they are much easier to recover from when total
failures occur. The advantage of designing- a fault-tolerant system that
guarantees cert#in failure properties with high probability, is that there are
tradeoffs that can be made between external and internal consistency. We take
the viewpoint that given reliable hardware and software mechanisms, there is
no need for state-based mutual consistency mechanisms for the internal state
of a replicated object. Instead, one can satisfy consistency requirements solely
from constraints on the operations and responses of the system. To put this
another way, we can afford to put a certain amount of trust in the internal
operations of replicated objects, with the knowledge that the system will per-
form correctly within its defined reliability goals..In the discussions that follow,
the internal consistency of an operation is implied if a favorable response to the
operation is received; otherwise, it is assumed that a failure has occurred and
an appropriate recovery action is invoked. Once again, we stress that this

viewpoint is reasonable only if incidences of unrecoverable failures are rela-

tively rare; that is, if the system is fault-tolerant.! If this is not the case, then
one has to resort to the complex protocols that are typical of distributed
storage systems [Birm84, Giff82, Thom?79, Alsb76]. Despite our relaxation on
internal consistency, we do, however, require that all operations on a replicated

object satisfy the external comsistency constraint that all such operations be

IThe system must, in fact, be a periodically renewed open fault-tolerant system
supporting high hardware and software availability.
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atomic.

The basic strategy adopted in FTSS is to replicate! objects, when neces-
sary, for high availability, and to apply fault-tolerance in such a way that the
notion of consistency is built énto the system, rather than on top of it. FTSS is
therefore unique in this respect, which serves to differentiate it from all extant
backend or file server systems. This feature of built-in consistency provides
high performance by allowing parallel operations on replicated objects in the
system. This parallelism provides better efficiency during access of replicated
objects, which is virtually independent of the replication factor used, for any

giv-en level of reliability.

Consistency is much less of a problem in FTSS than it is in distributed
storage systems because of the centralized nature of the system -- there is only
a single mechanism which accesses the representation of an object, regardless
of the number of users that may be concurrently accessing the object. The
problem in distributed storage systems is that there are several mechanisms
that can access different copies of the same object. In FTSS there are really
only two ways in which inconsistency can occur: 1) a faulty block write which
is not detected, and 2) a failure of a block after it has been written. The first
can be detected by reading the block just after it is written using self-checking
hardware, and the second by a simple encoding scheme such as block check-
sums. FTSS augments these mechanism by others which will be discussed

below.

1Given the current state of the art for storage devices, we have little choice.
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7.3 Loecation

Object blocks in the Internetwork are located using a 2-phase algorithm.
The first phase begins at kernel level and the second takes place at the site(s)
at which the object is stored. The kernel maintains a global directory object
(the GODI - see section 3.4) and each site maintains a local object directory
(the LODI). Location begins at kernel level when the requested block is not in
core. It begins by first searching the GODI to determine oh which site(s) the
object is stored, followed in the second phase by a search of the LODI to deter-
mine the location of the logical block of the object at the storage site. The
algorithm is independent of the fault-tolerance strategy used, although the
access mechanisms are not. The algorithm is presented below, and Fig. 7.2
illustrates the relationships between various parts of the object and the various

tables used in locating them.

Algorithm 7.1: Locating Object Blocks

1. If the capability for the object is active, go to step 3.

2. Use the UID in the capability to hash into the ICDI and check
to see if the object is active. If it is, change the capability
to active form by replacing the UID with the address of the
object header in the ICDI and go to step 4; else go to step 5.

3. We assume the capability is active and the UID part contains
the actual address of the object’s header in the ICDI. Access
the ICDL

4. Scan the incore block list to see if the block is in core. If
it is, stop; the block has been located.

5. The block is not in core. See if it is in the RAM buffer in
the TL. If it is, stop; the block is located.

8. We must locate the block in the Internetwork. Using the object’s
UID, hash into the incore GODI table to determine on which site(s)
the object is stored.

7. If the entry is not in the incore GODI table, get it and update
the table.

8. Get the site list from the GODI entry (which indicates on which
site(s) the object is currently stored.

181



9. Send a request to a site to locate the block
10. We assume the site receives the request correctly. Access the
LODI and locate the block. Stop; the block is now located.

Incore Header  Incore

in ICDI Block Lists
uD s_/ — il e
po . C-List Blocks
'\ - in Core
cm—— —— ]
: Data Blocks
_ - e ' | in Core

[(':'301)': Tsble LODI Table Physical Bloeks

RS

Figure 7.2: Object Block Location Hierarchy

There are s number of things worth pointing out about certain parts of
the algorithm. For example, at step 8 it is assumed that the address of the
incore GODI table is known; this is indeed the case - we may assume that the
kernel knows this address since at system boot time the GODI is one of the
objects initially loaded by the kerne_l. Rather than inserting this address into
the header of each active object, the kernel simply keeps it in a known place.

At step 7, in order to update the incore GOD! table, the kernel must know
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which logical block of the GODI contains the needed information so that it can
have it brought in; the way this is done is to send a request to the storage site
at which the GODI is stored (which the kernel knows since this location never
changes - the GODI is always kept in fast storage and is never migrated) along
with the UID of the object - at the site this is used as a key to index into the
GODI and the block is returned. Locating a block in the GODI is exactly the
same as locating a block in any other object; however, it is needed as a special

case in the more general block location algorithm.

- The performance of this algorithm is strongly influenced by the hit ratio
of ‘the ICDI and the RAM buffer. For good performance, these hit ratios should

be very high.
7.4 Accessing Object Blocks

In this section we describe algorithms for the two most interesting access

modes for objects in the Internetwork: write and read access.
7.4.1 Write/Update Access

As pointed out previously, replicated object components are identified
by their GODI entry. Also recall from previous discussions that objects in the
storage system are block-addressable, any further refinement is done by the
requesting subsystem. When an object is therefore to be accessed for write, it is
assumed that the block to be written has already been accessed (or allocated)
and is under control of the OMS. The significant part of the write algorithm is:
given a block to be written, write it atomically to all r replicates of the object.

In general, performing an atomic write to r replicates is a complex procedure,
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given the byzantine nature of the processors controlling each write [Lamp82).
However, since self-checking processors can be designed to be byzantine with
low probability (they have well defined failure modes), an atomic write can be
equivalenced by a guaranteed write by r self-checking processors. Under these
conditions, consensus is not required since writes are guaranteed at each site
independently. The atomicity of the wﬁte is accomplished by collecting write
responsés"from each site, each of which verifies that the write was completed

satisfactorily.

-~ While there are several possible ways to perform an atomic write at a
site {such as using shadow pages or multiple versions), the overriding concern is
the need to abort a write and restore the object to the state it had before the
write began. Related to this is the question: at what point should we change
the state of the object being modified? There are three possibilities. At each
block write, at the end of all writes (equivalent to closing a file), or at specific
“commit” points. The first does not permit atomic updates, so it is discarded.
The second is useful, but runs into problems if the object is kept open for a
very long time (as would be the case with a transaction log for example). The
third is the best approach since it permits read access to the object at various
points in its modification history. The selection of a commit point may either
be done under user control by explicitly making a commit request to the ker-
nel, or automatically by the kernel based upon some simple algorithm as a
function of the amount of information written to the object (this is similar in
spirit to the concept of ‘“checkpointing” a file as used by some text editing sys-
tems). In either case, it is the kernel that controls the commit actions, and not

the local site processors. The need for the kernel to know the state of all ver-
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sions is the real reason for not allowing local site commits -- at each commit
point the kernel must update the GODI with the version ID of this latest com-

mitted version.

“The two most popular techniques for allowing object state restoration
during atomic updates is the use of shadow pages [Edwa82] and multiple: ver-
sions {Svob8l1]. In the shadow page approach, modified pages are written to a
separate area of permanent storage; pointers to these and other unmodified
pages are maintained as a separate index until a commit point, at which time
the new index is used to replace the old. In order to make things work
correctly in the presence of failures, the old index is not removed until the
write of the new index is confirmed; at this time the space used by the old
pages can be reclaimed. In the multiple version approach, a new version of the
object is created when it is first opened for write, and at each succeeding com-
mit point. The new version is modified until a commit point is reached; at this
time, the new version is first written to storage, and the old version deleted.
The salient feature of the multi-version approach is that, whenever the object
is being modified, there are always two versions at the same site. To illustrate

the principles, consider Fig. 7.3.

A A+ A’ A+A’ A+A' A'"+A'+A A+A"

L] | {L i | 1 |

| i JJ | i | |

to to+a tl tl+a t2 t2+a
Ilme

Figure 7.3: Object Update Using Multiple Versions

Assume the existence of an object A. At time #j, A is accessed for write. At
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time #y+a A is copied to produce version A’. A is modified until time ¢; at
which point a commit operation is requested. At time f;+a A is written to
storage. At time !, A is copied to form A'’, and at time ly+a A’ is deleted. In
some systems, A’ is not deleted, giving rise to a set of versions which represent
the modification history arbitrarily far back in time; this method is proposed
by [Reed78] as a means of implementing concurrency control when used with
time stamps. This could be provided as an option in FTSS if its storage cost is

tolerable.

In terms of the amount of mechanisms needed to implement either of
the two schemes, there does not appear to be much of an advantage of one
over the other; in both cases it is necessary to maintain separate indexes that
point to modified and unmodified pages. The version technique has slightly
better recovery semantics in the presence of failures since it is only necessary to
detect the presence of more than one version of the object when recovery takes
place. In the shadow page technique, it is necessary to locate and free those
pages that have been modified - a task which might be difficult if the index
that pointed to these blocks were lost at the time of failure. We would there-
fore adopt the version technique for two reasons: a) it has better recovery
semantics and, b) it provides the option of using multiple versions as a means

of implementing concurrency control.

The write/update algorithm for object blocks may now be stated (The
kernel portion of the algorithm is presented in appendix D):
1. Kernel sends a write request to all sites (in parallel) at which a
replicate is stored.

9. Sites create a temporary version of the object to be modified and
responds to the kernel.
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3. Kernel sends block(s) to be written in parallel
to all storage sites.
4. SS writes blocks to current version of object.
5. Kernel sends commit message to all sites,
6. Sites commit by writing all modified pages of the current
version to storage and deleting the temporary version.
7. Sites respond with commit success plus a checksum of the new
current version of the object.
8. Kernel increments version ID of each replicate in the GODIL
9. If continue, then go to step 1; else, stop.
Note that the commit mentioned above is simply an indication that the writes
up to this point have been completed successfully; its semantics are much
simpler than that associated with transaction mechanisms which are assumed

to _éxist above this level.

In the algorithm presented above, there are several places where the
OMS must make a decision on the correct progress of the write operation. For
example, if at step 2 all sites do not respond to the write request within a rea-
sonable amount of time, the OMS might decide that the site is unreachable,
that is, failed. If repeated probes of the site indicate that the site is indeed
unreachable, the OMS could either abort the write or migrate a copy of the
object from an existing site to a new site (thereby preserving the availability
property of the system) and allow the write to continue. This issue of what
action is to be taken when a site fails is covered in more detail in a later sec-
tion. At step 7, after a commit request, each site responds with a success code
and a checksum of the version. Either all sites are in agreement, or some are
not. If some sites are not in agreement, the OMS must make a decision on
whether to abort the writes up to that point bjr rolling back to the temporary
version, or attempt to update the disagreeing version(s) and continue. This

depends upon the frequency of commits and possibly the size of the object (it
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might be less costly to rollback and redo the writes to a very large object than

to migrate a new copy).

The performance of the algorithm is greatly influenced by the amount of
parallelism that can be exploited. Since all block writes are done to indepen-
dent sites in parallel, the time to update a replicated object is not much more
fhan the time to update a non-replicated one. A performance boost is also
_gained by not requiring an acknowledgement from each site on every block
write; therefore, the kernel can send blocks as fast as permitted by the com-
munication subsystem and the ability to buffer blocks at the SS - up to the

commit point where a response is required.
7.4.2 Read Access

The external consistency of the read operation requires that when a read
operation is performed, either the read is successful or nothing is returned.
Unlike the write operation however, since the read operation is nondestructive,
it is only necessary to verify that the information returned is correct. The
internal consistency requirements of the read operation, given that the object is
replicated, determines the success or failure of the operation. In view of our
assumption about the failure properties of storage sites, and an additional
assumption of low-level etror checking and correction mechanisms at the block
level, it is possible to satisfy the external consistency constraint at the block

level without requiring majority consensus on each block read.

The strategy is as follows. Whenever an object block is to be read, the
kernel chooses a storage site from which to read the block that will result in

the best response time. If the block is read successfully (based on low-level
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checking mechanisms), then it is assumed to be read correctly. However, as an
aid in fault detection and as an optimization, the OMS interleaves the reading
of subsequent blocks, if any, between the replicates. Interleaving block reads
from different sites allows the reads to progress in parallel for the number of
sites on which replicates are stored. The performance of the algorithm can still
be improved by prefetching blocks; if the block access pattern is sequential,
then performance will definitely be improved — this may not be the case with
random block access however. If a block is read incorrectly from a site, then
an alternate site is chosen and a fault recovery routine is invoked (it is known

that the block was correctly written to begin with).

The success of this simple read algorithm depends heavily on two things.
First, the well defined failure properties of storage sites; if a site fails, it must
fail in such a way that any information sent from the site can be determined
correct {or incorrect) with high probability. Second, its failure latency must be
extremely short with respect to its mean utilization time. This will limit the

amount of corrupted information that is handled by the site.

The foliowing sequence of steps is illustrative of the sequence of opera-
tions that are likely to be performed in the system when a user requests infor-

mation to be read from an object stored in the Internetwork.

1. User sends read request for an object. :

2. Requtlast is processed by the LAN interface mechanisms in the
kernel.

3. Request is sent to the user’s process (or to a default service
process) running in the kernel.

4. Process makes call to kernel to access the object for which
a capability is presented.

5. Kernel determines if object is active by hashing UID into the
ICDI. If the object is not in core, use the UID to hash into the
GODI to locate the storage site(s) and go to step 13.
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8. Check the ICDI block list to see if the requested block is in
core. If it is not, go to step 1l.

7. Access the block.

8. Pass the address of the block to the requesting process.

9. Send the block to the user via the I/O interface.

10. Repeat steps 4 through 9 for as many blocks as the user has
requested and stop.

11. The block is not in core. Check to see if the block is in the
RAM buffer. If it is not go to step 13.

12. Read the block and return it to the kernel. Go to step 17.

13. Send a request to a storage site for the requested block.

14. Site receives message and decodes it.

15. Site locates block from LODI entry.

16. Site reads block and sends to kernel as a message.

17. Kernel I/O module receives block and passes address in
core to object module.

18. Kernel updates ICDI (and activates the capability for the

T object if this is the first block access). Go to step 7.

Again, the performance of this operation is strongly influenced by the hit ratios
of the RAM buffer and the ICDI. For good performance, these should be high.
The rate at which blocks can be returned to the user (assuming that the user
has requested more than a single block) is dependent on the LAN interfacing
the hosts to FTSS -- if it is being heavily utilized, then its throughput can be
seriously impaired (again assuming a CSMA-CD access mechanism). Of course,
the performance of FTSS itself will affect throughput, depending on the
pumber of concurrent accesses in effect. These and other performance issues

will be discussed in chapter 9.
7.6 Migration

It has been suggested by several authors that migration is a useful con-
cept for maintaining spatial and temporal efficiency in online storage systems.
There have been a number of recent gtudies performed, either to determine the
efficacy of file migration policies, or to develop file migration algorithms

[Lawr82, Smit81]. This thesis does not study either migration policies or
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algorithms. Instead, it provides a mechanism whereby arbitrary policies or
algorithms can be developed on a per-user basis. This mechanism is used by
the OMS to provide either spatial or temporal efficiency on a demand basis.
That is, when a file is accessed, it might be migrated if it is determined that a
better response time can be achieved if it is stored at a more “‘convenient” site.
Thé migration of one object might trigger the migration of another if, for
example, space for the first must be made available. A natural consequence of
migration is to automatically archive objects when they have not been refer-
enced for a predetermined petiod of time; a number of storage sites in FTSS

cou_id be designated as special archive sites for this purpose.

In FTSS, the basic migration mechanism is a site to site copy of a (possi-
bly replicated) object followed by its deletion after the copy has been success-
fully made. The external consistency constraint is that this operation must be
performed atomically. Below we outline an algorithm that achieves this. How-
ever, before we do this, let us reflect upon the semantics of migrating a repli-
cated object. It is indeed possible that an object could have a different replica-
tion factor after it is migrated. The rationale for this lies in the inherent relia-
bility of storage sites, storage media, or both. It is generally accepted, for
example, that magnetic tape or optical storage (write-once) media are much
more reliable than magnetic disks for the online storage of information. If
either tapes or optical disks are used at designated archive sites, we may be
willing to store a smaller number of copies there than when the object is stored
on disks. Thus, as an object migrates from a non-archive to an archive site, a
smaller number of copies are stored; when it migrates in the other direction, its

replication factor is increased accordingly. Another point of interest is: when a
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replicated object is migrated, should all its components be migrated? The
answer lies in the particular migration policy in effect. Clearly, if an object is
being archived, all its components should be migrated to archive sites. On the
other hand, if it is being migrated only for spatial efficiency, it might only be
necessary to migrate affected components. Recall our earlier discussion; each
component of a replicated object is treated independently by the storage sys-
tem -- only the OMS is aware of the structure of replicated objects. Therefore,
if a local decision has to be made about the migration of an object, this can be
done by the local site processors, informing the OMS only of their intention to

perform the migration.

From the above discussion, one might correctly conclude that the migra-
tion algorithm is two-phased. One phase involves the OMS which coordinates
global object migration, and the other involves the local site processors which
coordinate local object migrations. Whenever an object is to be migrated by
the OMS (either from an OMS or a user policy), the OMS simply initiates the
action for each source and destination site involved and waits for confirmation
from each site. The local site processors are totally responsible for coordinating
the transfers among themselves. Each site designated as the source of a
“migrant’’ object is given the destination site and the name of the object to be
migrated by the OMS. The local site, in turn, sends a message to the destina-
tion site informing it of the imminent migration and waits for an acknowledge-
ment. Once this acknowledgement is received, the source site starts sending file
blocks to the destination site (it is assumed that low-level communication pro-
tocols will ensure the correct delivery of each block, or report errors as neces-

sary). When all blocks have been received at the destination site and the object
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is stably stored, a final acknowledgement is sent to the source site. The source
site then informs the OMS of the success of the transfer, waits for a deletion
request from the OMS, and finally deletes the object. As a final note, if a local
site wishes to initiate a migration, it must coordinate with the OMS so that the
OMS can update its GODI structure on the location of the object when the
migration is complete. Notice that, unless the OMS is specifically waiting on
the migrant object to reach its .'destination, block accesses can continue since

the source copy is not deleted until the migration is complete.

- While there is very little data on object reference patterns and lifetimes
in local networks, studies of extant time sharing systems (see [Smit81] and
[Saty81]) seem to indicate that, if migration algorithms and policies are based
on the size and reference patterns of objects, then small and frequently
accessed objects (which tend to have short lifetimes) would tend to cluster near
the root of the FTSS architecture, while large infrequently accessed files would
tend to accumulate in the higher levels of the tree. We feel that this sort of
behavior will improve the temporal and spatial efficiency of FTSS; small fre-
quently accessed objects would be quickly accessed from the root, while large
objects would occupy higher capacity storage devices and be migrated much
less frequently. This behavior also justifies our choice of a tree architecture
since it forms a natural sort of hierarchy for objects based on their size and
access patterns. We feel that object access patterns and lifetimes in distributed

processing systems is a prime candidate for further research.
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7.8 Deletion

One of the side effects of capability-based systems is what has been
referred to as the lost object problem. This refers to the case where an object
exists in the system for which there is no capability. A related problem is the
case where there are two or more objects that are circularly referenced. The

problem is detecting these objects and deleting them.

The primary problem with capability-based systems is to determine
exactly when an object can be deleted. Once this problem is solved, deletion is
r;!zitively straightforward. In the case of FTSS, determining when an object
can be deleted is done in the SMS. Once this is determined, a message to delete
the object (or all components of a replicated object) is sent to the appropriate
storage sites. When the object has been successfully deleted, the GODI is

updated by removing the objects representative structure.

An object can be deleted by an explicit call to the kernel with a capabil-
ity containing the right to delete, regardless of how many capabilities are still:
pointing to it. Therefore, we might have a situation where several capabilities
are pointing to a nonexistent object. Clearly, it is desirable that when an
object is deleted, all capabilities that point to it should be deleted as well.
However, given the potentially large number of capabilities that can coexist,
any hope of associating pointers with a given object will result in utilization of
large amounts of storage; this situation is a direct result of the unconstrained
copying of capabilities. Since ‘capabilities can also be explicitly deleted, there
could arise a situation where there i3 an object to which no capability points.

Since capabilities are kept in objects, there is no convenient way to detect

194



these anomalous conditions except to periodically inspect all capabilities in all

objects in the system, tracking down their referents.

There are two established techniques for determining when an object
can be deleted. One is based on an ownership scheme, and the other is based on
reference counts. In an ownership scheme, the right of deletion is entrusted to
some holder of a capability with ownership rights. The primary difficulty of
this approach is its difficulty of implementation in a dynamic environment. It
could work in a system such as FTSS if the rate of object creation and dele-
tions is relatively low, and given the capability sealing mechanism described in
chapter 4. In fact, from an accounting point of view, the ownership scheme is
very attractive. A second difficulty is the dangling reference problem described
in the previous paragraph. In the reference count scheme, a positive integer is
associated with an object (called a reference count) which is incremented each
time a capability pointing to the object is created, and decremented each time
such a capability is destroyed. The object is marked for deletion whenever the
count is zero. The reference count scheme suffers from the drawback that it
cannot detect circularly referenced objects. In these cases it is normal to associ-
ate a parallel garbage collector to detect, among other things, circularly refer-
enced objects [Dijk78, Wulf81, Poll8l]. The details of parallel garbage collec-

tion are beyond the scope of this thesis.

In FTSS, we would choose a reference count scheme combined with
parallel garbage collection. While in a distributed storage system it is difficult
to implement reference count schgmes which permit recovery by moving
storage volumes from one site to another, this does not pose a problem in FTSS

because of its centralized nature. Furthermore, the automatic migration
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features would tend to collect unreachable or circularly reachable objects on
archive sites, and therefore out of the active portion of the system, at the
expense of the storage required to keep these objects indefinitely. However, it is

assumed that archive storage is cheap.
7.7 Recovery

The algorithms discussed previously in this chapter were presented in
what was assumed to be a fault-free environment. They gain their simplicity
a.nd high performance from an assumption that the underlying hardware and
softwa.re mechanisms are both highly reliable and highly available. In the next
chapter, we present the implementation details of a hardware architecture that
attempts to meet these requirements. The intent of this section is to first point
out the expected failure modes in FTSS, how they are detected, and how one

might recover from them.

A taxonomy of failures, errors, and faults has recently been proposed by
Avifienis and Kelly [Avi84]. We share their view that a failure occurs when a
user perceives that a resource has ceased to deliver the expected service, an
error occurs when some part of a resource assumes an unexpected state, and
the cause of the failure or error is a fault. Notice that a fault can cause an
error but no failure -- this is one of the goals of fault-tolerance. We assume, for
the sake of discussion, that faults are restricted to physical permanent or tran-
sient faults; we specifically do not consider design or specification faults in
either hardware or software. For the present time we also assume that the root
node of the architecture is perfectly reliable, but failures can occur elsewhere.

The class of failures that we are interested in are site, device, link, media, and
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host failures. We discuss each below.
7.7.1 Recovery Management

Recovery management in FTSS is hierarchical. At the level of the SMS,
there exists a Global Recovery Manager (GRM) which supervises all recovery
actions in the system. Below this is a set of Local Recovery Managers (LRM)

that perform local recovery when possible, reporting to the GRM when a

higher-level decision is necessitated. There is a LRM at each site in the system.!
When a fauit occurs at a site and is detected, local recovery will be attempted.
It ,.this is unsuccessful, then the GRM is informed. It is, however, possible that
a site could fail in such a way that it cannot report fa.ilufes to the GRM. In
such cases other sites must detect the failure and report to the GRM; this is

discussed in more detail below and in the next chapter.
7.7.2 Site Failures

The consequence of a site failure is the inaccessibility of information at
the site. This type of failure is normally detectable by failure to establish com-
munication with the site (the details are elided until the next chapter). The
normal way to avoid unavailability in this event is to ensure that the informa-
tion stored at the site is accessible elsewhere. This is the view taken in FTSS
where, by default, every object stored in the system has a replication factor of
at least two. Furthermore, two or more replicates of the same object are never

stored at the same site. Given this scenario, the action of recovery is to restore

IThe root node is special in the sense that although it implements the SMS,
and therefore the GRM, it will also perform local recovery among its
components before reporting unresolvable errors (failures) to the GRM. Of
course, it has to be designed in such a way that the probability of losing the
services of the GRM is acceptably small.
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the information at the site to an online status in a timely manner (we do not
want the information to be offline for too long since a failure of another site

during this time can lead to information availability).

There are two possibilities with respect to the information stored at the
failed site. 1) Some or all gf the information has been irretrievably lost, or
2) the site has been sa.fely.lshut down, preserving all the information stored
there up to the time of the failure (we assume that any object which was being
written at the time of the failure is in an inconsistent state). In either case, the
GRM must-decide on a recovery action once it is informed of the failure. There
are two attitudes that the GRM can take: 1) Do nothing in the knowledge that
the site will return to an online status shortly, or 2} take immediate action in
the knowledge that the site is not expected to return to an online status in the
expected time before a next site failure could occur. If we assume the first atti-
tude, then a suitable recovery action is to invalidate the copy of the object
stored at the failed site if other copies are updated (recall that any object copy
can be read). This is handled via the version mechanism of the write algorithm
discussed previously. Whenever an object copy is written and committed, the
OMS associates a version ID in the GODI structure with each replicate to indi-
cate the most recent version. Out of date versions are easily identified by com-
paring their version ID with the current version ID. When the site returns
online, the GRM updates out of date versions (after scanning the GODI) by
copying the new latest versions to the site. If we take the second attitude, then
a suitable recovery action is to either physically move storage volumes from the
failed site to a good site and then updating the GODI, or locate a copy of every

object stored at the failed site and make a new copy at a good site. Either solu-
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tion would be costly in terms of the time it would take in making new copies
and updating the local and global directories. Furthermore, the need to locate
a copy of each object when a site fails implies that either the site’s LODI must
be replicated, or the GODI must be searched to locate each object-pointer to
the failed site. Since the LODI is not an object under control of the SMS, its
replication would have to be handled strictly locally between the storage sites.
The goal, therefore, in FTSS is to design the system in such a wé;y that when
sites fail, the first attitude will predominate. If such is the case, searching the

GODI for affected objects is tolerable.
7.7.3 Device Failures

It is assumed that each storage site manages one or more devices, A dev-
ice failure, catastrophic or otherwise, renders all the information stored on the
device inaccessible. This condition is detected by mechanisms at the site and is
serviced by the LRM. Recovery is handled in a way similar to a site failure. If
the OMS tries to access an inaccessible object copy, it will receive a message
from the site to that effect. Again, the version mechanism would be used to
keep track of which copies have not been modified. The LRM may attempt
recovery by requesting an updated copy from another site (by sending an
appropriate message to the OMS), or it may simply wait until the device
returns online. The severity of any damage to the information stored on the
device will determine which action should be taken. In any case, the LRM is
responsible for maintaining the integrity of the good information at the site

when a failure is detected.
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7.7.4 Link Failures

A link failure implies that a site cannot communicate with its neighbor
over the affected link. Transient link failures are handled at the level of the
communRication protocols, a topic which is discussed more fully in the next
chapter. The FTSS architecture is designed in such a way that isolated per-
manent link failures should not result'in a node becoming unreachable. There
is no particular recovery action performed by the LRM except to update local
tables which indicate the site's connectivity; no messages are sent over the
failed link until it has been repaired. Thus, there is no automatic recovery

mechanism.
7.7.56 Media Failures

Media failures, whether transient or permanent, will affect a portion of
the information stored on a device. Transient media failures are detected using
any of several standard mechanisms such as block checksums; permanent
failures are detected by repeated errors when reading from the affected media.
The local recovery action in the case of permanent failures is to recopy the
object from another site by coordination through the OMS. For example, if a
media failure is detected, the LRM could send a message to the OMS request-
ing the name of a site on which a copy is stored. The LRM would then contact
the site requesting a copy of the object. This assumes that there is enough
capacity at the requesting site to store the object. If this is not the case, then
the GRM will request that a new copy of the object be created on another site.
The advantage of letting the local site processors coordinate intersite copies

among themselves is that it reduces communication overhead with the TL.
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There is one special case of media failure that requires attention. Infor-
mation which is stored locally at a site, such as the LODI and other informa-
tion that the processor needs to maintain the integrity of its local environs, are
not objects, and are therefore not under control of the SMS. This information
must be stored in a way such that media failures (bad blocks due to head
crashes on d'iskjé, or spontaneous delay) will not affect its availability. There are
two ways in ,wﬁich this information can be protected - both require that it be

replicated. The first is to replicate the information at another site, the second

is to stably store! it at the current site. The advantage of the first method is
thét the information is available if the entire site fails; this was discussed in
the previous section. Its main disadvantage is that we must now make every
effort to make sure that the replicates are consistent, or at least nearly so - if
blocks are propagated from the primary site to the replicates as each block is
modified and written to storage, then this condition can be achieved. However,
this is at the expense of some intersite communication bandwidth. The second
method has the advantages that if a media failure occurs, duplicate blocks can
be accessed more rapidly than if they had to be retrieved from another site. If
the local site fails, however, all the saved information is lost. In view of the
need for a mechanism that will both support site as well as media failures,

replication at another site appears to be the better choice.

1Using Lampson’s definition of stable storage amp79|, with the augmentation
that each replicated block be stored on a different device to guard against
catastrophic device failures.
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7.7.8 Host Failures

A host failure occurs whenever any fault external to FTSS occurs while
a service is being performed for a given host. This can include a host operating
system crash, host-FTSS communication failure, or a failure in the host
hardware. Such failures will not usually affect the consistency or availability of
information in FTSS, but any recovery action after such! failures should clean
up any partially completed actions. For example, if a host crashes while an
object is being written into FTSS, the effects of the write should either be
undone, or the host should be allowed to complete the writes when it recovers.
In general, different users will have different policies on what should be done
with partial reads and writes. Therefore, FTSS allows each user to specify a
recovery policy as a part of its subsystem definition. This policy is automati-

cally invoked by the GRM whenever host failures are detected.
7.8 Summary

In this chapter we have looked at several important mechanisms needed
to manage objects in FTSS. The way in which each is implemented, in terms of
the algorithms discussed, imposes requirements on the implementation of the
architecture. In the next chapter we propose an implementation scheme for
FTSS which permits these algorithms to meet their design assumptions. While
this is only one of several implementation approaches, we feel it is the right
approach, given current technology and the state of the art in fault-tolerant

design.
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CHAPTER 8
IMPLEMENTATION OF FTSS

In the previous chapters, we have looked at various issues relating to the
design of a centralized information storage system. In chapter 2 we presented a
basic system architecture which was based on the needs discussed in our intro-
ductory chapter. This ‘“strawman’ architecture gerved as a brassboard on
which we developed a software base (SMS) which meets many of the functional
requirements of the system. In the previous chapter we presented a conceptual
overview of the FTSS architecture which is based on the architecture
developed in chapter 8. We also developed a set of mechanisms needed to
manage information in the Internetwork which imposed constraints on the
implementation approach. In this chapter we review some of our decisions on
the architecture of the basic system and propose an implementation of the
FTSS architecture which offers better support for the SMS model while provid-
ing higher reliability, higher availability, and an improved level of performance.

8.1 Introduction

The need for a centralized storage system facility based on backend and
file server principles was established in chapter 1. In succeeding chapters, we
assumed this fact and looked at various issues relating to the implementation
of such a system; some were related to software, others to hardware. We also

established the importance of high reliability, high availability, and high
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performance of such a system, not only because of its potential utility by a
diverse community of users, but also because of its very architecture. In this
chapter we take a closer look at how one might implement the system in order

to meet its requirements.

As shown in chapter 5, high information availability can be achieved by
replicating information such that each replicate has an independent probability
of failure. In chapter 8, we showed the architecture of a storage system which
provides high reliability and arbitrary extensibility while permitting high infor-
mation availability. In chapter 2, we discussed the functional requirements of
the system and developed the basis of an object/capability-based storage
management software system which meets various system requirements. In
chapter 7 we discussed several mechanisms that imposed additional constraints
on the architecture. What we intend to do in this chapter is to bring together
all these mechanisms under a single hardware architecture. In so doing, we
extend the basic architecture presented in chapter 3 by providing features

which will enhance its reliability, availability, and performance.
8.2 The Basic System

The reader will recall from chapter 2 (see Fig. 3.1) that the basic system
consists of three functional blocks: a set of host processors, a storage system
made up of a server CPU and a set of storage devices, and a high-bandwidth
local network which interconnects the host processors with one another and
with the storage system. This system has several drawbacks which will lead to
unreliability, unavailability, and low performance. We explore these in the next

paragraphs.
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First we shall consider the local network. In the basic system, this local
petwork is assumed to be a simplex (that is, non-redundant) high-bandwidth
communication link of the ethernet class; approximately 10 million bits per
second data transfer rate, and based on the well known Carrier Sense Multiple
Access with Collision Detection (CSMA/CD) protocol [Metc80]. This “broad-
cast bus” is a bottleneck for two reasons. First, since the bus is not replicated,
a failure here will seriously disrupt communication between the system com-
ponents. Although ethernet systems are known to be quite reliable, with
respect to the communication medium, bus failures must still be considered in
the overall reliability of the system. Normally, the bus is interfaced with the
various components through NI's that are physically isolated from the bus, so
that they can be connected or disconnected (including disconnections due to
failures) without disrupting bus communications. A reliable design must con-
sider the consequences of failures either in the bus itself, or in the interfaces
that communicate with the system components. Second, since the bus
represents a simplex communication path, the bus bandwidth can be easily
exceeded if not carefully accounted for in the design. The fact that the host
processors must now perform most of their storage system 1/O over the bus, in
addition to normal host-to-host communication, puts additional requirements
on bus bandwidth. In a normal ethernet-type system, it has been observed that
even with a 10 MHz bandwidth, the average throughput is on the order of
2 MHz when the overhead of various layered communication protocols and the
network interfaces are taken into account [Pope8l]. From a performance point
of view, therefore, it is desirable to design ‘the local network so that it is
bandwidth-extensible as the demand for throughput increases, either due to a

larger number of host processors, or increased traffic with the storage system
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due to higher levels of system activity.

Next, we consider the storage system. In the basic system, it was
assumed that the server CPU was a simplex high-performance superminicom-
puter capable of implementing the SMS. There are several potential problems
with 2 simplex CPU (recall the discussion in chapter 1), not the least of which
is the f;ct that a failure here renders the étorage system useless. Such single-
point failure mechanisms are to be avoided at all costs. Although the SMS was
designed to be robust to failures (via the object model and the transaction
mephanism), hardware support is required in order to permit recovery when
such failure processes manifest themselves. A simplex CPU is not modular,
leading to great trepidation and expense when the system’s capabilities must
be improved. A proper design approach here is to modularize the server CPU
and take advantage of the cost benefits inherent in the use of low-cost off-the-

shelf components.

It was also assumed in the storage system that objects were stored on
rotating magnetic media (disks) that were each attached to a high-speed serial
bus via an intelligent interface processor, the bus also interfacing with the
server CPU. Thus, all communication between the server CPU and the disks
must take place over this (simplex) communication path. The arguments
presented above about the simplex bus for the local network also apply here.
While there was no logical reason to assume that the storage devices were dis-
tributed (they could easily have been assumed to be connected directly to the
server, as is currently done in such systems), we did anticipate the need for
extensibility in a manner which was somewhat independent of the server. Also,

we did not wish to complicate the design of the object manager in the SMS.
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We decided it would be best, in any extensible design, to offioad as much as
possible of the management mechanisms from the SMS and distribute it among
the devices themselves. The correctness of this decision is borne out in part by
the resulting simplicity of the object manager, and by the discussion of extensi-
ble storage in chapter 6. The primary problem with the basic storage system
architecture is the fact that the serial bus could become a bottleneck under
heavy usage. A good design approach is to take advantage of the usage pattern
associated with mass storage systems (see, for example [Smit81]) by building
the system as a hierarchy in which device speed decreases with the depth of
the hierart?hy, and information is automatically migrated within the hierarchy

as a function of object reference patterns.

There is not much that can be done to alleviate the problems associated
with host processors. In fact, we make no assumptions whatever about their
reliability or availability. They may fail, go offline, or exhibit any of the
idiosynerasies associated with simplex host processors. The very purpose of
FTSS is to provide the reliability for semi-permanently stored information
which is lacking in these systems. We are, however, prepared to make some
modest assumptions about communication interfaces between the host proces-
sors and the local network. For example, in the interestg of reliability, we can
insist that whatever reliability mechanism is used to increase the reliability of
the local network should be extended to the interface between the network and

the processor.

In the rest of this chapter we describe an implementation of FTSS

which attempts to solve the problems discussed above.
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8.3 FTSS Hardware

The FTSS hardware implementation is geared towards high reliability.
As discussed in the previous chapter, it is assumed that the Top Level
hardware is extremely reliable since it is crucial to the operation of the system.
Similarly, the Internetwork is assumed to have a certain level of reliability; the
site processors are assumed to be able to perform reads and writes correctly
and manage information stored locally at the site without external monitoring,
and it is assumed that the communication system between sites will deliver
messages without error with very high probability. In this section we propose

an implementation which will meet these requirements.
8.3.1 The Top Level

Logically, the TL is structured as a set of modules interconnected with a
Centralized or Short bus. These modules represent Processors (PM)’s,
Memories (MM)’s, Network Interfaces (NIM)'s, and Internetwork Interfaces
(IM)’s (see Fig. 8.1). The short bus logically consists of a Main Bus (MB) and a
high speed [/O Bus (IOB); each of these buses is made up of other buses, which
we will detail in a later section. The MB connects all modules, whereas the IOB
is not directly addressable by the PM's. As can be seen in the figure, there are
also connections (buses in their own right) between the NIM's and the (exter-
nal) network (to which the host processors are attached), and between the IM’s
and the Internetwork. This arrangement of modules and buses provides the

‘basis upon which the detailed architecture rests. Before we progress to these
details however, let us digress for a moment to briefly define the rationale for

this logical organization.
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Figure 8.1: Logical Organization of the Top Level

The short bus architecture was chosen because of the need for relatively
high performance at this level. It is anticipated that there will be a fair amount
of data traffic between the basic modules during a typical object access. Since
several such accesses are progressing concurrently, using the same data paths,
it is important to provide some parallelism of functions in order to obtain
higher throughput. The short bus meets these requirements by providing paral-
lel data paths over which the modules might communicate. If one remembers

that the Top Level implements the root of FTSS, it is immediately clear why

attention to performance must be given here.! Despite the use of parallel data
paths on the short bus, we still anticipate a bottleneck in performance if both
high-speed data traffic representing object blocks, and low speed communica-

tion representing message traffic between modules, must take place on the

Hf it is still unclear, consider that all data traffic into and out of FTSS must
traverse the root. :
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same bus. Therefore, we have partitioned the centralized bus into the MB
(which services intermodule communications), and the IOB (which services
high-speed block transfers between some of the modules). It is possible to take
this approach if one can maintain a logical separation between pure object
traffic and intermodule traffic. This is anticipated since it is expected that a
significant percentage of trafic on the buses will represent pure object
transfers (for example, a siigniﬁ‘caht amount of the time, a user simply wants to

read an object without performing any modifications on it).

- . The processing subsystem is implemented as a set of modules for a
number of reasons. First, modularization is a first step to extensibility -- an
important metric for FTSS. Each module is an independent computer. Second,
from a reliability viewpoint, this kind of modularization provides natural
fault-containment regions during system operations; by allowing faults to be
contained within the affected module, a higher level of reliability can be
achieved. Third, availability is enhanced since, if a module fails, it is possible
to isolate the failed module from the system and perform repairs on it without
unduly affecting the operation of other modules. Fourth, it allows one to prac-
tice the theory of isolation [Denn768]. By running processes in individual
modules, they are not only logically isolated from errors, but physically as well,
leading to an overall more secure system. There are additional benefits that
result from a physical context, such as better power distribution, better cooling
properties, and so on, which tend to reinforce our idea that modularization is

indeed a good way to proceed.
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The memory modules on the main bus represent a kigh-speed block-
addressable buffer memory for caching object blocks that have been recently
referenced. If this buffer is implemented using electronic components, as we
anticipate it will be, then one can imagine it as an electronic disk which pro-
vides a performance several orders of magnitude higher than a conventional
rotating media magnetic store {or, simply, a disk.stora.ge unit). At any given
instant of time, a subset of the total information content of the Internetwork is
available in the buffer. Note that it is a proper subset because of its volatility
in the presence of power failures. The need for this buffer is again related to
the anticipated performance bottlenecks of FTSS. By buffering blocks in this
way, it is hoped that, on the average, access requests for object blocks can be
satisfied from the buffer without requiring an additional access to the Internet-
work. By modularizing the buffer, its design becomes simpler, it is easily
extended as the need arises, and it presents better physical characteristics than
a large monolithic design. In addition, the reliability and availability reasons

given for the processor modules equally apply here.

The Network Interface Modules are modularized for two main reasons.

First, it is assumed that the external Local Area Network (LAN) is modularized

for reliability and availability reasons.! Therefore, there is at least one NIM for
each bus of the LAN. Second, we replicate since this is clearly a critical path in
the FTSS architecture. Failure to establish a line of communication with the
external LAN is the sort of disaster which FTSS is designed to combat in the
first place. We gain an additional benefit here since we can make use of the

fact that, given that there are several correctly operating NI's, one can perform

1To not assume this would put a fairly heavy responsibility on the reliability of
the LAN since an unrecoverable failure in the LAN would totally isolate FTSS.
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multiple simultaneous conversations with the LAN, thereby improving perfor-

mance.

Finally, the Internetwork Interfaces are modularized so that [ailures can
be isolated and quickly handled without disrupting system availability. These
modules provide the necessary lines of communication between the TL and the
Internetwork. They must respond quickly and accurately when called upon
and, above all, they must be there when required. Modularization, then, is -a.
primary contributor to high system availability. Since one is virtually forced to
use off-the-shelf components for device controllers, high reliability can only be

gained through redundancy -- the approach we take.
8.3.1.1 Baus Architecture

The FTSS TL bus architecture is driven by several factors:

. The need for an effective interprocess and intercomputer communication
mechanism.
) The need for low latency, both from end to end on the bus and process

to process via the bus.
° The need for high bus reliability and availability.

. The need for high bus utilization, even when the offered traffic is higher
than the bus bandwidth.

. The need for a low Bit Error Rate (BER) on the bus.

° The need for high throughput in order to support a large number of
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processes.

. The need for an effective communication mechanism with high-speed

1/0 devices.

In FTSS, the PM is structured in such a way that processors must communi-
cate émong themselves, and they must communicate with I/O devices occasion-
ally. This requires ihat the busing structure be able to support these two types
of communication concurrently and efficiently. There are two ways to solve
this problem. 1) Build a monolithic bus which supports both types of communi-
c—a.t_ion, and 2) build a distributed bus where a separate section of the bus is
dedicated for each kind of traffic. The first approach has the advantage that it
is easier to build; the second has the advantage that system performance is
improved since the bus can be optimized for each kind of traffic. FTSS takes
~ the second approach by providing a distributed bus with one section optimized
for low-speed traffic (interprocessor communication), and the other optimized

for high-speed data transfers (block to block).

The availability requirement is a crucial one with respect to bus archi-
tecture. It is very desirable that should a module or the bus itself fail, it be
possible to isolate the failed components and perform repairs, without affecting
the operational status of the system. For example, if it is determined that a pro-

cessor module has failed, it should be possible to remove the failed module,

repair it, and return it to service without disrupting system service.! There are
two possible solutions. First, the busing structure can be distributed with a

fine grain so that only a very small number of modules are connected to any

it is permissible to have a degraded mode of operation during the repair
interval, but service should not be totally disrupted.
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given section. Thus, when a module fails, the entire bus section can be isolated
and repairs performed. There are two main drawbacks to this scheme.ﬂl) In
order to permit alternate paths when failures occur, each bus section must be
connected to several others. Consider, for example, Fig. 8.2 which shows a dis-

tributed bus consisting of 3 each of processor, memory, and I/O buses.
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M: — sth Memory Bus
I/Oi — ith Input/Output Bus

Figure 8.2: A Fault-Tolerant Busing Structure Based on Distributed Buses

In order to provide a high degree of fauit-tolerance, all three buses in each
group must be connected to every bus in the other groups. In this case, every
bus is connected to 6 other buses for a total of total of 27 interbus connections.
Since connections are always a weak link in any design, this is not considered
to be a workable strategy, particularly if the number of bus sections is large.
Of course, one can compromise and reduce the number of connections at the
price of lower fault-tolerance capabilities. 2) Depending on the number of
modules assigned to each bus section, all modules assigned to a bus section are

inoperative when either a module or the bus fails. For example, if 2 processor
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modules are assigned to a processor bus, then a failure in one module requires

that both modules be taken offline to repair the failed moduie. Despite these

problems, this scheme is workable when the number of modules in the system

is small (and expected to remain small over the lifetime of the system). It has

been successfully employed in the design of the Pluribus system [Kats78].

The second solution is to provide a redundant busing structure so that

bus failures can be tolerated and attach modules to these redundant buses in

such a way that a defective module can be removed (and later replaced)

without leading to system downtime. The scheme is illustrated in Fig. 8.3.

BA

BA

BA

Replicated
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Figure 8.3: A Fault-Tolerant Bus Architecture Based on Monolithic Buses

The bus is replicated (but not distributed), and modules are attached to as

many buses as needed by using special bus adapters between the modules and

the buses. The bus adapters have the feature that they can be made to
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transmit or receive on any bus, and they may be disconnected transparently
from any bus without affect connections with another bus. The primary draw-
backs with this scheme are: 1) There is now a bus adapter in series with a
module; a bus adapter failure is effectively a module failure. Note that if a bus
adapter fails, it is possible to simply unplug the module and reattach it to the
network with a good adapter. 2) Bus adapters must not be permitted to fail in
ways which would prevent the use of all the good buses in the system (this is
largely a technological issue, but an important one nevertheless). This scheme
has been used in a number of designs, primarily with serial replicated buses,

and non-redundant parallel buses [Renn80, Ahujs3}.

The FTSS bus architecture consists of two buses: A parallel replicated
Main Bus which is optimized for interprocessor message traffic, and a parallel
replicated I/O Bus which is optimized for high-speed data traffic. The detailed

architecture of each bus is considered separately below.
8.3.1.1.1 The Main Bus Architecture

The FTSS main bus is a set of replicated component main buses. Each
component main bus is an independent busing structure which is physically
and electrically isolated from the other identical components. Every bus
adapter is connected with each component bus, and may use any of them to
establish communication with another adapter. A faulty bus is identified by a
bus adapter after repeated attempts to communicate over that bus is always
unsuccessful. Each bus adapter independently makes the decision whether a
bus is faulty or not since the problem might be in the bus adapter itself (this

prevents a faulty bus adapter from incorrectly preventing other good adapters
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from using a perfectly good bus).

Each component main bus is further divided into three independent
buses: A mesaage/data bus, a contention bus, and a control bus. All three
buses are synchronous, operating from a common bus clock that provides bus
siots during which transmissions take place. One of the salient properties of the
main bus is the fact that the end-to-end delay is much shorter than the time it
takes to transmit one bit of information; it is this property which makes cen-
tralized buses attractive since it is usually possible to provide high bus utiliza-
tion and short message delay, even when the offered load is very high with
respect to the bus bandwidth. The message/data bus is a parallel bus that
transmits n bits of information in onme bus cycle. A bus cycle corresponds
exactly with one bus clock cycle; however, several processor operations can be
performed in a typical bus cycle by using a muitiple-phase clock. The conten-
tion bus is used to resolve conflicts between modules that attempt to use the
bus during a bus cycle. A separate contention bus is useful here since it per-
mits contention to take place in parallel with message/data transfers. Modules
normally contend for the bus during a bus cycle for transmission during the
nezt bus cycle. Contention is guaranteed to be resolved in less than one bus
cycle for all modules connected to the bus, up to some limit imposed by the
physical characteristics of the bus. The control bus can be used for a variety of
functions. For example, it can serve as a message transmission path whereby
the bus adapters can communicate directly without using message bandwidth
on the message/data bus (there is no possibility of using the contention bus for
this purpose in our design). One critical use of the control bus is to assist in

low-level flow control for message packets sent over the message/data bus. An
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acknowledge (ACK) or negative acknowledge {NAK) signal can be sent over the
control bus from a receiving to a sending bus adapter in much less than a bus
cycle. Thus, a sending bus adapter can know if its packet was received
correctly by interrogating the control bus for a ACK/NAK before the bus
cycle is complete; if the packet was NAK’ed (a null response or an explicit
NAK), the module can contend for the bus and retransmit it again. The con-
trol bus is also useful for forcing module disconnections while a bus is being
repaired; this can be accomplished by broadcasting an appropriate message on

the control bus. The main bus architecture is now shown in Fig. 8.4.

BA
Message /[Data
Bus Contention
*1 Control
Message /Data
Bus Contention
#n Coatrol

Figure 8.4: FTSS Main Bus Architecture

One of the attributes of a short bus (as defined above) is the fact that
the media access efficiency is insensitive to the packet size used to transmit
information over the bus [Acam84]. This is in contrast with media access
schemes such as CSMA/CD and token passing where the media access
efficiency decreases with decreasing packet size. One can take advantage of this

by sending small packets over the bus in a pipelined manner. In fact, one can
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dynamically vary the packet size, sending small packets when necessary,
without affecting the bus utilization. While there is no upper limit on packet
size in a short bus, it is useful to impose some limit depending on the conten-
tion time, and the need to provide fairness for all users of the bus. In FTSS,
the upper bound on packet size is determined by the physical size of the
packet buffers in each bus adapter. This is kept reasonably small (in the range
of 1 to 2 kbytes). The minimum packet size is n, where n is the number of bits

that can be transmitted (in parallel) in one bus cycle.

- In order to keep the BER low, each word sent on the bus includes a
check byte (or checksum) which is sent concurrently with the data bits. The
check byte is computed and semt by the transmitting bus adapter; it is
independently computed and checked with the transmitted check byte by the
receiving bus adapter. If there were any errors that cannot be corrected, the
receiving bus adapter informs the transmitting bus adapter of this via a NAK
on the control bus. Packet framing is done in the bus adapters, or may option-
ally be done in the processors. However, each bus adapter has a unique address
on the bus. To allow very high bus utilization through pipelining, each word
transmitted in parallel on the bus contains the address of the receiving bus
adapter. This allows a very fine degree of multiplexing in support of multiple-
message transfers. Normally, two or more bus adapters would establish a vir-
tual circuit through some call-setup procedure. Once this circuit has been esta-
blished, packet transmissions may take place until the entire packet is
transmitted. Therefore, although several messages may be simultaneously
transmitted over the bus, each bus adapter can handle only a single message

transmission at a time.
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The bus architecture easily accommodates special operations such as
out-of-band signaling, remote initialization of processors, and a message broad-
cast (to all bus adapters) facility. Signaling can be handled by reserving bus
cyeles for special transmissions between requesting bus adapters via the control
bus. In a similar manner, a bus cycle (or any number of bus cycles) can be used
to transmit speciallbroadcast messages by ‘“‘setting up” the bus adapters via

the control bus.

8.3.1.1.2 The I/O Bus Architecture

Logica.lly, the IOB is a constituent of the centralized bus of FTSS Top
Lével. It is distinguished from the main bus because it is meant to handle a
different type of traffic at a much higher speed than can comfortably be accom-
modated by the main bus. The OB is designed to primarily support block data
traffic between the MM's, NIM’s and IM’s. The IOB is a synchronous back-
plane (bus) that provides addresses, data, and control signals for the attached
modules. In principle, it services the memory modules in the RAM Buffer (see
below). Modules in the NIM and IM sets may directly address RAM locations in
the Buffer during [/O transfers between them. Each module contends for the
bus during a bus cycle and, having captured it, holds it for the duration of the
transfer of a block before relinquishing it. Therefore, pipelining on the bus is
at the block level. Note that, to use the bus, each module must provide the
interface logic necessary to generate addresses, and buffer data from or onto
the bus as necessary. The bus is independently clocked (from the modules);
however, the clock is provided as part of the control bus on the IOB for inter-

face logic purposes.
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From an availability point of view, the survival of the IOB is not critical
to system operations. Should the IOB fail, modules may transfer their informa-
tion to the Ram Buffer more slowly by using the main bus (which is better pro-
tected). Since FTSS is a repairable system {(with a reasonably short repair
interval -- perhaps even on-demand maintenance), short periods of outages on
the IOB are tolerable. However, in order to provide error con}:rol, each word
(address or data) transferred on the bus is provided with redilndant bits for
error detection and correction. Interface logic is responsible for providing the
necessary check bits on each word; these are regenerated and checked by each
intérface that receives the word. Bus errors are reported to an error monitoring

process running in the PM’s, via the main bus.
8.3.1.2 Processor Modules

Each processor module is an independent self-checking computer. As an
aid to both efficiency and fault-tolerance, the modules are arranged in a two-

level hierarchy as shown in Fig. 8.5.

High-Level Modules

Main
Bus

—
O—

Low-Level Modules

Figure 8.5: Processor Module Hierarchy

The modules are arranged as a set of High Level Modules (HLM), and a set of
Low Level Modules (LLM). The HLM’s execute critical (or security-related) por-
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tions of the SSM, while the LLM’s execute non-critical sections. In terms of the
SMS model developed in chapter 3, the reader can imagine that the HLM's
implement the kernel and the LLM’s implement various user-level subsystems,
The PM’s communicate by using the communication facilities provided by the

main bus and the bus adapters.

As mentioned above, each PM is implemented as a self-checking com- .
puter with well-defined failure properties. In particular, they are designed so
that the PM can detect internal failures through data inconsistencies, and can
disable its outputs if it is unable to resolve these inconsistencies. Rennels
[Renn80| has shown that by using a few building blocks, easily implementable
in VLSI, it is possible to cost-effectively design a self-checking computer that
meets our needs, especially if one takes advantage of off-the-shelf microproces-
sors, memories, and other support devices. Each self-checking PM is configured
as shown in Fig. 8.8. The organization consists of duplexed processor units,
operated in lockstep, whose address and data paths are continuously compared
using morphic self-checking comparators. If an inconsistency is detected, a
program rollback is attempted. If this is unsuccessful, then the module decou-
ples its outputs via the bus adapter. Note that, should a processor be unable to
decouple its outputs, this can he done from another module by sending a
disconnect command to the bus adapter. Unlike Rennels’ SCCM, however, it is
not possible for a bus adapter to perform Direct Memory Access operations
with the PM. This is not a limitation since it is assumed that each PM contains
“bootstrap” routines programmed in ROM which can reload a correct processor

state should it become corrupted.
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Figure 8.6: Self-checking Processor Module
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In order to tolerate processor failures among the HLM's, each HLM
operates with a hot spare. The hot spare executes exactly the same program as
its counterpart; its outputs, however, are used only if the primary fails. Since
LLM'’s execute non-critical processes, it is sufficient to simply restart them on a

non-faulty processor when a processor fault affects the execution of a process.
8.3.1.3 RAM Buffer Modules

As previously explained, the RAM Buffer (RB) is largely a block address-
able memory that emulates a disk storage unit. Its primary purpose is to
i;nérove the performance of the system by acting as a cache for the most
recently referenced object blocks from the Internetwork. Logically, the RB is

structured as shown in Fig. 8.7.
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Figure 8.7: Logical Architecture of the RAM Buffer

As can be seen from the figure, the RB consists of a large randomly-accessible

memory array which is interfaced to the OB via addressing logic and bus
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buffers. The RB is actually a dual-ported memory since it can also be directly
addressed by the RB Control Processor (RBCP). All accesses to the RB must be
coordinated by the RBCP. It is interfaced to the rest of the system through
the main bus, in a similar manner to all the other modules that interface with

this bus. .

\

Sinée the RB emulates a disk storage unit, information stored in it is in
terms of those parameters that are normally associated with disk units. Infor-
mation is stored in blocks and are accessed as such. The information grain is
therefore the block. When data is to be written into, or read from the RB, it is
done so in blocks. The RBCP actually uses a small portion of the total memory
space for its own volatile storage needs, such as maintaining mapping tables for
object blocks. The IOB is a means whereby other system modules can rapidly
access information in the RB. It allows these modules to directly specify
memory locations under control of the RBCP -- this is in direct analogy with
the concept of Direct Memory Access (DMA). To illustrate how the IOB is
used, let us consider how object blocks are moved between the NIM's and the
RB. Recall that the NIM’s interface the TL with the external LAN. To make
things simple, we will assume that there is a single NIM, a single memory

module, and a single RBCP.

Normally, information is sent over the external LAN in packets. We will
assume that such a packet is much smaller than the size of a block in the RB.
Whenever a data transfer is to be initiated by an external host processor, a
message to that effect must first be transmitted to the TL -- this message
would be processed {in the PM's). As a part of this processing, the RBCP is

potified that an object transfer is about to commence and that space should be
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made available in the RB to hold the object blocks. The RBCP would make the
necessary arrangements, one of which would be to inform the NIM where in the
RB’s memory data space has been made available; that is, the address where
the first block {(and perhaps subsequent blocks) should be stored. Again this is
much the same principle used in DMA transfers where the DMA controller is
given the starting address in memory and the number of words to transfer. All
this “initialization” mechanism is handled by using the communication facili-
ties provided by the main bus; notably, messages and signals. Once initializa-
tion is complete, the RBCP signals the NIM to commence the transfers. As
f;ac'kets ar_l_-ive from the external LAN, they are packed into object blocks
(b\-lﬂ'ers in the NIM). When a block becomes full, it is written into the allocated
area of the RB directly by the NIM using the facilities of the 10B. As discussed
before, the IOB provides parallel address, data, and control buses which are
used to address locations in the RB and then to access data in these locations.
When the transfer is complete (or, alternatively, when the NIM needs more RB
blocks, the RBCP is signalled via the main bus. Notice that it is possible for
the NIM to communicate with the memory array and the RBCP simultane-
ously, since different buses are being used. Thus, as an optimization, the next

block setup can occur in parallel with the current block transfer over the IOB.

As explained in a previous section, the information in the RB is only a
subset of the information in the Internetwork. In particular, this means that if
information is lost from the RB because of its volatile nature (we assume con-
struction from fast semiconductor devices), it must be replaceable. To allow
this, we take the philosophy that any information written into the RB (which

represents an object block that is not considered temporary) must also be writ-
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ten into the Internetwork. Therefore, in the example above, whenever the NIM
write blocks to the RB, this block must also be written to the Internetwork. In
order for things to work correctly, information received by the NIM is not
ACK’ed until it has been written correctly into the internetwork. There are
two ways in which this can be done: 1) Since the IM is also incident on the
IOB, it could read blocks directly from the bus if it knew that the information
was destined to the RB. In this way, writing to the Internetwork is done tran-
sparently. The drawback of this approach is that the IM architecture 1s
unnecessarily complicated by the need for address decoding logic. 2) When all
i)lécks ha.vwe been transferred from the NIM to the RB, the RBCP can instruct
the IM to move the blocks into the Internetwork. Recall that an ACK is not
sent until all blocks have been transferred to the Internetwork. However, since
the transfer is done usually at a high data transfer rate, the delay should be
minimal. As an optimization, the RBCP can perform partial writes to the Inter-
network as the object‘blocks are being assembled; thus, if a failure in the RB

should occur, only a few blocks need to be retransmitted.

Transfers from the PM's to the RB are handled in a similar manner with
the RBCP coordinating block transfers into the RB. Note, however, that all
transfers between these two module sets take place over the main bus -- the
need for high speed data transfers between the PM's and the RB is much less

critical than between the RB and the other system modules.

From an availability point of view, it is desirable that the RB and RBCP
be available a high percentage of the the time since their presence impacts the
performance of the system. For this reason, it is important that failures here

be tolerable and do not lead to downtime. In order to prevent downtime due to
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failures in the RB, it is designed as a set of modules, each of which interfaces
to the IOB. Information is written into at least two modules so that any single
module failure will not result in unavailability. To make things straightfor-

ward, each module is shadowed by writing information in identical location in

both modules.! To protect against failures in the RBCP, it is also duplexed
with a hot spare both of which operate in parallel. The modular organization

is shown in Fig. 8.8. Notice that each RBCP can access any of the modules.
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Figure 8.8: Modular Organization of the RAM Buffer

8.3.1.4 Network Interface Modules

The reader should at this point have a fairly good idea of the operations
that are performed by the NIM's. To recap, there is one NIM per external bus
that takes place in information transfers (there may be others available in
“standby” mode should the active module fail). In this section we will provide

more details on the internal operations performed by a NIM.

INotice that this requires that there be an even number of modules configured
in the system (assuming no modules have failed).
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Internally, each NIM is logically structured as shown in Fig. 8.6. Each

NIM is a self-checking processing module, similar in design to those used as

PM’s but possessing less processing capability and less internal memory.! The
NIM architecture, however, possesses additional hardware in the form of
addressing logic and bus buffers for the IOB, and 1/O logic that interfaces the
NIM to the external LAN.

The NIM performs all packet management for information being
transferred into or out of the system. As packets are received, they are decoded
if they have been encrypted in some way to provide additional security,
checked for correctness, and the data in the message retained in memory
buffers. Outbound messages from various system modules are packetized by the
NIM and sent to their destination over the LAN. In addition to
encryption/decryption, the NIM may also perform a limited amount of infor-

mation manipulation, based upon the criticality of the operation.?

As explained in a previous section, the NIM is configurable from other
system modules. In particular, the NIM must be made aware of the destination
of a packet within the system for inbound packets, and in a similar key, it
must be made aware of the destination of outbound packets for the LAN.
Normally, this is done by establishing a virtual circuit between FTSS and an

external host. The NIM retains these virtual circuit addresses in internal tables

Ifor economy reasons, it is desirable to prevent duplication of effort. Therefore,
it is prudent to assume that the NIM’s and the PM’s share a common ancestry.

20One possible application of the NIM is in performing data conversions on
information being transferred into or out of the system. For example,
transiations from ASCII to EBCDIC characters, and vice versa, for text files
being transferred between inhomogeneous hosts.
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for its use, should problems arise elsewhere in the system. Apart from this, all
internal messagés between the system modules and the NIM’s must include a
destination address if the message is destined for the LAN. As explained previ-
ously, multiple block transfers cn be optimized by having the sending module
inform the NIM of the starting block and range of blocks to be transferred
from the RB. The NIM then uses the high speed IOB to perform this transfer

without involving the sending module.

From an availability point of view, the NIM's are replicated, but not by
the hot spare approach as used for several other modules. As long as there is at
least one NIM that can communicate with the LAN, the system can be con-
sidered available. FTSS acconiplishes this by replicating the external LAN and
providing one NIM for each LAN bus. If a NIM fails, since it is self-checking, it
can detect these failures and disconnect its appendages to the various buses.
Since each sending or receiving module maintains information on virtual cir-

cuits, the transfer may either be continued or restarted on another NIM.
8.3.1.5 Internetwork Interface Modules

Although we have not discussed the IM’s very much, they are neverthe-
less critical to the operation of FTSS. These interfaces form a ‘“‘gateway”
between the TL and the Internetwork. They are primarily device controllers
and serial I/O controllers that interface to head-per-track disks and the Site
Processors of the Internetwork, respectively (see the discussion on the Internet-
work architecture below). The IM’s communicate primarily with the RAM
Buffer subsystem, although they communicate with all other modules in the

system from time to time. For example, processes running on the PM’s might
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send messages into the Internetwork requesting that some operation be per-
formed. All message traffic is handled by the serial 1/O controllers. On the
other hand, the device controllers are responsible for rapidly moving object

blocks between the TL and the Internetwork.

The IM's are actually simple processing systems (based on 'microproces-
sor technology) which provide the basic functionality of the interface. Logi-
cally, the device controller module consists of a processor, a small amount of
processing and buffer memory, interface logic to the JOB and an interface to
the main bus (via a bus adapter). Messages destined to the device controller
module typically specify data to be written, and the object to which it belongs.
A directory mapping logical object block numbers to physical disk addresses is
maintained on the disk units, and is accessed by the module whenever data is
to be read or written. As mentioned previously, the module can be set up to
sccess multiple blocks which are stored directly in the RB. In a similar vein,
the module may directly access information from the RB which is to be stored

on the disks.

The serial /O module is similarly structured to the device controller
module. It consists of a simple processor, a small amount of processing and
buffer memory, a serial [/O interface to a similar interface in the Internetwork,
and an interface to the main bus. It does not interface with the IOB. All mes-
sages (that is, non-object transfers) between the TL and the Internetwork are
routed through these modules. The serial [/O data transfer speed is orders of
magnitude less than that of the main bus; therefore, messages are buffered
until they can be handled. The amount of buffer space provided is a function

of the expected message traffic between the two major subsystems.
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The device controller and the serial I/O controller modules are duplexed.
However, each performs independentiy of the other. If both modules (of each
type) are operating correctly, multiple transfers can be taking place simultane-

ously.
8.3.1.8 Other Modules

FTSS may use other modules connected to its main bus as the need
arises. For example, the PM’s, when involved in transaction processing, will
need to save their state in stable storage. Although FTSS is designed to be a
;eﬁable and highly available system (thereby obviating the need for stable
storage}, a small private disk unit aécessible to all processors via the main bus
would be appropriate. In another case, if the PM's are implemented with
demand paging hardware, swapping devices will be needed; these may be
attached directly to the PM, or directly to the main bus (an alternative is to do
demand paging via the RB/Internetwork combination). In either case, modules
that allow these devices to communicate across the bus would be required.
There is also the possibility that, for monitoring purposes, various devices such
as terminals, or printers will need to be attached to various portions of the sys-
tem; these may also require specialized modules. In short, the extensibility of
the architecture allows these devices to be added and easily integrated into the

system without perturbing system operation unduly.
8.3.2 The Internetwork

As explained in section 8.3.1, the Internetwork or BL of FTSS consists
of an interconnected set of SS’s organized as a hierarchical symmetrical 1-FT

tree. Each SS further consists of a SP and one or more storage devices. In this
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section, we expand upon the architectural concepts of the SS's and the net-
work which interconnects them. We also discuss various mechanisms used to

manage objects in the system.
8.3.2.1 Storage Site Architecture

Each SS stores and manages a {possibly overlapping) subset of the total-
ity of information in FTSS. In a later section we shall have more to say about
storage and object management; for now, we shall concentrate on the architec-
tural features necessary to implement SS's. While there are several ways in
:nliich thenlnternetwork can be physically designed, it is natural to use point-
to-point connections between S5's. The reasons for this are the same given in
chapter 6 on the extensibility of Ty, topologies, since FTSS is based on a
Ty 42 topology. If point-to-point connections are not used, it is very difficult to
extend the topology in an incremental way. The next decision which influences
the design of the SS's is the nature of the communication on these point-to-
point links. There are three alternatives: circuit, message, and packet switching.
Circunit switching has the maj:or disadvantage that it does not permit high-
speed statistical multiplexing of data, a condition which is useful when traffic is
bursty in nature. Furthermore, this lack of statistical multiplexing hinders the
establishment of multiple virtual connections between SS's. Message switching
has the disadvantage that it is not possible to effectively pipeline messages on
the links: this leads to a delay (the ezcess delay), which is proportional to the
message size, in excess of the situation where the sending and receiving sites
are directly connected {Acam84]. In view of the potentially large sizes of
objects (which would be transmitted as messages in FTSS), this delay would

seriously impact system performance when the affected sites are busy. Packet
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switching provides a solution to the disadvantages of circuit and message
switching systems. By breaking messages into smaller packets, the excess delay
is minimized (since it is proportional to packet size), and statistical muitiplex-
ing techniques can be employed to provide high link utilization. FTSS there-

fore uses packet switched communications on the intersite links.

In addition to providing storage for objects, each S5 must also act as a
packet switching communication node in the Internetwork. I;ackets destined
for other sites must be stored and forwarded (based on a pre-defined routing
algorithm); packets destined for the current site must be stored and inter-
preted (a packet can represent either data or a message}. The dual role of the
SS therefore implies fast access to locally-stored object data as well as fast
packet switching in order to meet performance goals. The logical architecture

of the SS is shown in Fig. 8.9.
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Figure 8.9: Logical Architecture of a Storage Site
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On the front-end are a set of input and output queues that buffer packets from
what is considered the logical network. On the back-end are a set of storage
devices. The SP is responsible for all information flow between the various
queues and the storage devices. In the next paragraphs we propose an architec-
ture for an SS. For cost/performance reasons, it is assumed that each SS in the

Internetwork has the same architecture.

The architectural model chosen for the SS is similar to that used by
[Acam84), and for much the same reasons. It is based on a short bus which
provides all the advantages of LAN-based architectures without the disadvan-
tages. As illustrated in Fig. 8.10, the architecture consists of a set of buses to
which various interface and special modules are attached.
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Figure 8.10: Storage Site Architecture

All data enters and exits the SS via the interface modules, each of which con-

tains bus contention logic and packet buffers, along with any functionality
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associated with the particular interface. The buses are clocked by a common
clock on a special clock module. The switch module traps all packets sent on
the transmit bus, translates addresses as necessary based on a distributed rout-
ing algorithm in the module, and rebroadcasts the packet on the broadcast bus
-- the packet is either destined for the Site Processor or one of the interface
modules. The SP, in addition to providing Internetwork management features
such as object management, fault-detection and isolation, system configuration,
and performance tracking, provides the necessary interface with the storage
devices. Note that in this organization, the storage devices must communicate
with the SP for all object transfers; in fact, one need not think of the SP as
béing a homogeneous processor, it can be distributed over several intelligent
modules, each dedicated to a specific task (for example, there can be an intelli-
gent interface for each storage device with the capability to provide a high-
bandwidth path directly to the appropriate interface module). However, in
order to keep the SS as simple as possible, we assume that the SP is a rela-

tively high-performance homogeneous processor.
This architectural model provides the following benefits:

) Various communication technologies can be used and mixed at the same
SS. For example, in those areas where extremely high bandwidth is
needed, fiber optics can be used. In less bandwidth-sensitive areas,
either coaxial cables or twisted wire pairs can be used. As one descends
the FTSS hierarchy {with increasing level numbers), there is less of a
need for high bandwidth -- those object frequently referenced will be at
the top of the hierarchy (near the root). Thus, one would want to use

fibers pear the root, and twisted wire pairs at the highest level of the
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hierarchy.

. Extensibility is supported since one can add interface modules to the
architecture relatively easily (as simple as plugging in a new module to a
backplane). In Ty, topologies, the number of interfaces to a SS is fixed
(the node connectivity). Thus there is a reasonable upper bound on the
number of slots that need to be provided for interface modules. There-
fore, despite arbitrary extensibility, the architecture of the SS need not

change.

° _' The short bus has the advantages of dynamic bandwidth allocation as a
function of need, the utilization of flexible contention algorithms, and a
simple media access scheme which permits perfect scheduling (no des-
tructive collisions or idle periods with packets awaiting transmission),

and small packet sizes (improving multiplexing).

) Better distributive properties due to geographical separation of nodes
because of the use of various communication technologies. Although
FTSS is logically centralized, SS’s do not have to be physically central-
ized; therefore, the ability to distribute sites (say, in a building) is an

important attribute of the system.
8.3.2.2 Internetwork Communications

All communications in the Internetwork is message-based. A message
consists of an uninterpreted string of bytes which can represent data or
control/status information. In this section, we describe the intersite communi-

cation protocol and give examples of its use.

237



Since FTSS operates as a packet switching system, it requires a protocol
that will provide reliable packet transmission from one site to another. The
protocol should prevent lost, out of sequence, or duplicate packets. Further-

more, the protocol should provide high performance by minimizing protocol

overhead.! Saltzer [Salt80] has proposed simple end-to-end protocols, and
Popek _;'[Pope81] has proposed the use of simple problem-oriented protocols,
both of which provide good performance m distributed systems. Understand-
ing this, FTSS implements a 4-layer protocol structure which is essentially the
first 4 layers of the International Standards Organizations’ (ISO) open systems
intérconnection (OSI) protocol. Specifically, the physical, data-link control, net-

work, and transport layers {Zimm80.

At the level of the transport layer, one site sends a 'message of arbitrary
length to another. There is no name service in FTSS; each site is known by its
unique site number, site numbers being assigned based on relative position in
the hierarchy, which is in turn based on the node numbering scheme for Ty,
trees. Each message contains a message header which identifies the destination
site, the sending site (if a response is desired), and the message type. To
minimize protocol overhead, FTSS depends upon the reliability of the com-
munication system; in particular, it depends upon the reliability mechanisms
implemented in the data-link control layer. Therefore, the philosophy adopted
is that there is no explicit response for a message — the information requested
is considered the response. However, an additional response-request field is
added to the message header for those site-messages that do require some sort

of confirmation. This response-request field can be used to implement a

114 was shown in the design of the Cambridge File Server {Dion80| that one of
the largest contributor to performance was a protocol with minimal overhead.
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transaction-message service when necessary. To do so, the message header con-
tains a Transaction ID (TID) feld which identifies the message uniquely (each
TID is generated uniquely at a site -- this along with the source site number is
sufficient to identify the transaction uniquely). The destination site maintains
a list of outstanding TID's, and if a message appears with one of these TID’s, it
is discarded. This mechanism both guarantees that a message is acknowledged,

and that its action is performed only once.

The network layer breaks messages into packets and routes each packet
to its appropriate destination. Each packet contains a packet header which has
the following information in it.

destination site number

source site number

list of sites visited
outbound link ID

sequence number

message ID
The list of sites visited is needed by the distributed routing algorithm (see
Appendix B) so that packets have a bounded number of hops in the Internet-
work. The outbound link ID is used to select the next outbound link in the SS
and is changed in each SS. The message ID identifies the message to which the
packet belongs; this is useful to distinguish packets that may have been
delayed in the network, arriving during a different message. The sequence
number is used to prevent against lost, delayed, or duplicate packets. Packets
_are sent out in sequence; a low-level acknowledgement is provided by the
data-link control layer which is passed on to this layer -- if a NAK is received,
or a timeout occurs, the packet is resent, otherwise the next packet is sent (if

repeated NAK’s are received, the layer sends a probe packet to the suspected
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site; if no response is received, the site is assumed down and a note is made of
it). Note that sending packets in sequence does not guarantee that they arrive
in sequence since it is possible for a SS to route consecutive packets on
different outbound links as a function of link availability. However, out-of-
sequence packets should be a rare occurrence given the point-to-point nature of
‘the links and the use of a low-level acknowledgement mechanism. Given this,
FTSS takes the simple approach of discarding any packet that arrives out of
sequence at a destination site. Flow control is implemented by using a sliding
window technique. This window indicates how many packets may be transmit-
ted before an acknowledgement is received; packets that are not acknowledged

during the window are resent (based on a retransmit timer at every site).

The data-link control layer is responsible for sending packets reliably
from site to site in the Internetwork. It frames each packet with enough infor-
mation that will allow the packet to be delivered to the destination site in a
reliable way, with high probability. Although there are several bit-oriented
data-link control procedures available, FTSS attempts to minimize the com-
munication overhead as much as possible so that a small number of frames
need to be sent between sites relative to the message being sent. FTSS pros-
cribes to a balanced, two-way simultaneous point-to-point bit-oriented control
procedure. An example of such a procedure is given in [Cari80]. Simplification
of the control procedures is possible because of the specialized nature of FTSS
— much of the mechanisms needed to support general network operations are
not needed. Appendix C suggests a data-link control procedure for use by

FTSS.
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The physical layer is concerned primarily with the electrical characteris-
tics of the transmission medium and the access protocols used to gain access to
the medium. Since FTSS is designed to support many types of transmission
media, depending upon the desired communication bandwidth, several types of
access protocols can be in effect. Since it is not expedient to cover all possible
access protocols, we will elide any further discussion of the physical layer. How-
ever, because of the portending importance of optical fiber transmission media,
especially in the areas of reliability and security, we strongly support the use of

fibers as a transmission medium throughout FTSS.

8.4 FTSS Software

In this section, we show how the SMS architecture discussed in

chapter 3 can be mapped onto the FTSS hardware.

The SMS executes on the TL hardware discussed in section 8.4.1.2, that
is, on the set of PM’s arranged as a two-level hierarchy of HLM's and LLM’s.
The HLM'’s execute the kernel of SMS, and the LLM's execute user-level
processes. In view of the distributed nature of the processor architecture, the
software architecture of SMS must be adjusted so that it can execute on these
distributed PM’s. Furthermore, the nature of the architecture of each PM, as
well as the modus operandi of the HLM's (for reliability reasons) imposes
further structure on the SMS. In the following sections we discuss these con-

straints and propose solutions to them.
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8.4.1 Distributed SMS Architecture

In the normal scheme of operations, kernel functions are executed in the
HLM’s and user-level processes in the LLM's. Therefore, an execution environ-
ment must be provided in the LLM’s by the HLM's in which processes can exe-
cute. When a user-level process is to be executed, the process image is loaded
into one or more LLM'’s (depem:iing on the criticality of the operation), its
addressability established, a.nd control passed to the LLM where execution
begins. As the process executes, kernel calls (including 1/O operations) are
packaged as messages and seat to the kernel in the HLM’'s where they are exe-
cuted and the results returned. This operating scenario requires a number of
things. First, it must be possible for the kernel to establish an execution
environment in an LLM. Since this is, in part, a kernel function, it requires
that a (small) part of the kernel be resident in each LLM. This Local Kernel
Component (LKC) serves as a “bootstrap” whereby server mechanisms can be
established for communication with the Main Kernel Component (MKC). In
order to avoid security breaches that might result because of corrupted LKC'’s,
it is recommended that the LKC be thoroughly tested and implemented in
microcode; this both prevents tampering as well as improving performance.
Second, there must be a way for the two kernel components to communicate.
This has already been implied from the first consideration. Note that the mes-
sage facility discussed in chapter 3 is primarily an interprocess communication
mechanism; in this case, we need a mechanism by which two kernel com-
ponents can communicate without involving processes, therefore a specialized
communication facility is built into both kernel components. Third, the kernel

must have a mechanism to choose an appropriate processor when a process
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must be created — this in fact is conceptually simple if processes are treated as
objects and placed under control of the scheduler. The logical architecture of

the distributed SMS is illustrated in Fig. 8.11.
8.4.2 Effect of FT on SMS Architecture

Apart from the need to be able to start more than one copy of a process
on a LLM (a decision which is left to the system implementor) and monitor
their progress, the hardware architecture of the PM’s for fault-toleraace pur-
poses impacts the SMS architecture in a minor way. In fact, there is more of
:;n_ impact on the style of programming than on the architecture itself. For
example, the kernel code must be written in such a way that rollback points
are provided for the eventuality of a PM failure. Since the HLM's operate in
duplex with a hot spare whose outputs are not used unless a failure occurs in
the primary, no special software modifications are necessary. In short, beyond
the need for the kernel interfaces, not much more needs to be done with the

basic software architecture presented in chapter 3.
8.5 Summary

In this chapter we have reviewed various hardware and software issues
that impact the design of FTSS. The need to provide a very reliable root for
the hierarchical tree system resulted in a distributed root architecture which
provides high availability through modularization. It is permissible to tolerate
sporadic failures, as long as the mean time to repair these failures is much less
than the mean time between failures. Rather than postulating a very reliable
design, FTSS takes advantage of the modularization concept and the fact that

the system is repairable to provide high availability. This is to be contrasted
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with a closed (that is, non-repairable) design where online repair is not possi-
ble. To make this work, great effort was made to ensure that the architecture
permits online repair without service disruption. We feel that if carefully con-
structed, this design achieves that goal. Beyond the need to distribute a small
component of the kernel which provides a message service for kernel calls from
LLM’s to HLM's, the hardware architecture imposes minimal constraints on the
software architecture. This, in part, tends to support our choice of an object-
based software architecture, which naturally lends itself to modularization --
each hardware component can indeed be considered an object in its own right,

and treated as such by the operating system.
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CHAPTER 9
PERFORMANCE ISSUES

/

In this chapter we discuss various aspects of the performance of FTSS
based on our implemeﬁtation of the previous chapter. We show how the perfor-
mance is affected by various system variables. We feel that the performance
can be adjusted to any reasonable upper bound based on available technology.
The results give a very good indication of the potential of storage systems such

as FTSS.
9.1 Introduction

The ultimate performance criterion of any centralized storage system
can be expressed in terms of the mean response time to a request from a user’s
perspective. For example, if the user is requesting data out of the system, it is
the mean time from the initiation of the request until the data arrives at the
host. Ideally, we would like this time to be commensurate with,or less than,
that which would be obtained if the user was accessing data from storage local

to the host.

In the following discussion, we limit the scope to only a consideration of
system bandwidth which is consumed by data (or file, if one prefers) traffic in
direct response to user requests. That is, we do not consider internal “house-

keeping”’ operations performed by the system.
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8.2 Bandwidth Considerations

In order to assess the performance of FTSS, one can think in terms of
available bandwidth. For example, since it is expected that the bandwidth of
the object store (the IL. and the BL) will be the critical factor in the system’s
performance {they are the siowest components), it is important that this
bandwidth not be exceeded. If we assume that there are two types of requests
prevalent in the system, one which v;ve call server requests primarily due to
users making requests for random blocks of an object, and file transfer requests
primarily due to users uploading and downloading information, then it is possi-
ble to express the bandwidth requirements of the system in terms of the reads
and writes implied by each type of request. If we assume that the bandwidth
of the object store is B blocks/sec, then the following should hold in the major-

ity of cases for good performance:

B> Sw+ FTw + FTr + (1 - HRRB)St
8.1

where S represents a server operation, F'T represents a file transfer operation, r
and w represent read and write operations, respectively, and HRRDB represents

the hit ratio of the RAM buffer.

In order to assess the impact of these components on the system
bandwidth, we have constructed a simulation model which permits a wide
range of alternatives to be explored. In the next and following sections, we
‘describe the simulation model, the exercising of the model, and the results

which were obtained.
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9.3 The Simulation Model

The model is constructed based on the block diagram of Fig. 9.1. Each
block in the diagram is modeled separately; the model therefore represents a
“gross’” view of the system’s operation. For example, no attempt is made to
account for the use of multiple processors in the processor block, or of multiple
storage devices in the IL and BL blocks. It is instead assumed that the proces-
sor or storage devices spend a certain amount of time processing a request,
independent of how this is actually done. Because of limitations in the model-
ing tool used, no attempt is made to distinguish between individual hosts in

the system - they are treated collectively in the “host’ block.

The active entities in the model are messages which either represent
control information or data. There are two types of control messages generated
by the hosts: namely, server (S-messages) and file control (FT-messages); these
are mapped into other control messages by the processor block. Data messages
typically represent information stored in objects and are assumed to be of a
fixed size. S- and FT-messages may vary in size (up ‘to the size of a block);

other control messages are assumed to be of fixed size.
9.3.1 Model Deseription

In this section we describe some of the key features of the model in
order to give the reader a favor of how it works. To begin with, each block in
‘the model has a unique address. Messages carry with them source and destina-
tion addresses, the message type (control or data), the request type (read or
write), the message mode (S or FT), the size (in bytes), and other control attri-

butes specific for the requirements of the simulator used (for example, we simu-
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late the number of blocks affected by a read or write request as a random vari-
able carried in the message itself - normally the amount of data to read in an
FT-message is determined by the size of the object in the object store). The
following algorithms describe the sequence of steps that occur in response to an

S- or FT-message.

Algorithm 9.1: S-message

1. Host generates an S-message

2. S-message is sent over the LAN to the Processor.

3. S-message is intercepted by the NIM and transmitted to
the Processor via the Main Bus.

4. Processor receives the message and checks to see if it is
data or a control message. In this case we assume it is
an S-message.

5. Processor determines if the object is in core. If it is,
go to step 7. Otherwise, the processor sends a message to
the RAM buffer to retrieve the GODI block. The processor
then suspends processing of the message until the block
is returned. When the block is returned, go to step 7.

6. The processor determines if the requested block of the
object is in core. If it is, go to step 8.

7. Send a control message to the RAM buffer requesting
the block of the object. The processor suspends
processing of the message until the block is returned.
When the block is returned, continue.

8. If the request was a read operation, the block returned
from step 7 (which is now data) is sent back to the host
via the Main Bus, NIM, and LAN. If it is a write
operation, the data sent by the host in the write request
is written to the object store.

The above algorithm treats S-messages in a manner which suggests interactive
use. This would correspond to the case where a remote host is using a subsys-
tem in FTSS to perform storage management functions; in this case, each S-
message then operates on a block of an object, either modifying the block and
writing it back, or requesting some data from the block. The model permits a

variable number of blocks to be affected by each S-message.
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Algorithm 9.2: FT-message

L. Host transmits an FT-message to the Processor via the LAN.

2. Message intercepted by the NIM and passed on to the Processor
via the Main Bus.

3. Processor determines the type of the control message. In this
case we assume it is an FT-message.

4. If the message is a read operation, go to step 5. Otherwise,
the processor sends a control message to the host instructing
it to begin the data transfer. A similar control message is
sent to the IL instructing it to receive the data sent by the
host. Stop..

5. The processor sends a control message to the IL to transfer the
blocks of the requested object directly to the host.

Notice that FT-messages once interpreted by the processor, do not again
involve the processor directly, except for possible error recovery (the model
does not deal with this event however). The processor sets up both the host

and the IL, and the transfer takes place independently.

The RAM buffer operates as a write-through cache for data blocks
flowing between the processor and the IL. When the processor writes to tﬁé 1L,
it in fact writes to the RAM buffer, which in turn passes the data to the IL.
Similarly, when data is read from the IL by the processor, the returned data is
written into the RAM buffer and then passed to the processor. Thus, there is
some probability that if locality effects hold true, the next block to be refer-
enced by the processor will be in the RAM buffer. All data blocks flowing
between the RAM buffer and the IL use the I/O Bus; control messages always
use the Main Bus. Thus, the Main Bus is used for both data and control mes-
sages, while the 1/O Bus is strictly for data messages. Notice that data mes-
sages in response to FT-messages take the general path: Host-LAN-I/O Bus-
IM-IL. This simplistic model provides us with enough functionality to at least

get an appreciation for the location of bottlenecks in the system's performance
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while maintaining some concept of realism.

Table 0.1 shows the variables that we have used in the model.

Variable Description
topg Interarrival time of server requests
ter Interarrival time of file transfer requests
it Processing time per byte at a NIM
tour Block access time at the RAM buffer
txprngr Kernel processing time per request
ty Block access time at the IL
ipr Block access time at the BL
tng Processing time per byte at the M
tun Block access time at a host following a write request
L AN Time to transfer one byte on the LAN
_ 3Y): Time to transfer one byte on the Main Bus
tiop Time to transfer one byte on the I/O Bus
PRW Ratio of reads to writes for S- and FT-messages
SMBS Message size {or S-messages in bytes
NBL Number of blocks affected by each FT-message
HRIO Hit ratio for incore objects
HRIB Hit ratio for incore blocks
HRRB Hit ratio for RAM buffer blocks
HRIL Hit ratio for IL objects

Table 9.1: Simulation Model Variables

9.4 Using the Model

To determine where the bottlenecks are in the system, we have assigned
values to the simulation variables which form a baseline from which we can say
more about the system'’s performance. The values were chosen in such a way
that the system provided what we consider to be an acceptable response time
without maximizing utilization of any resource (block in the model}. No
attempt was made to balance the utilization of resources. Once this baseline
was established, we selectively adjusted model variables, one at a time, to
determine its effect on the system response. From this we are able to postulate

where the bottlenecks are in the system, and offer suggestions on how they can
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be alleviated. The baseline values are shown in Table 9.2.

Variable Value Distribution
torr 10-100 Uniform
ter 500-600 | Uniform
thM .001-.016 Uniform
tpur 2-3 Uaiform
tKERNEL -1 Uniform
tr 20-30 Uniform
t BL 200-300 Uniform
tiv .001-.016 | Uniform
tyn 40-80 Uniform
tran .008 Constant
tup 018 Coastant
tiom 016 Constant
PRW 4/1 Discrete
SMBS 10-1024 Uniform
NBL 1-10 Uniform
HRIO ) Discrete
HRIB g Discrete
HRRB 9 Discrete
HRIL .95 Discrete

Table 9.2: Baseline Simulation Values

The result of running the model for 100000 units of simulated time is
shown in Table 9.3. The table shows mean queueing time at selected resources,
the percent of the resources utilized, and the mean response time to user

requests. For the queue and response time statistics, the 95% confidence inter-

val is also indicated as +n!. The response time is broken down into the mean
response time for a single block for all requests, for S-messages only, and for
FT-messages only - for both reads and writes. Additionally, we have shown the
mean response time for S-messages written to the RAM buffer; that is, the

mean time to write a block to the RAM buffer in response to an S-message.

;Tﬁle 05% confidence interval is shown in a similar way in the tables that
ollow.
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Queues
LAN | Main Bus IL 1/O Bus | RAM Buffer

3.61 1383 | 231 7.83 1.214
+0.193 | +0327 | +1.526 | +0.641 | +0.477

Percent of Resource Utilization
LAN | NIM | Kernel { RAM Buffer I BL | Main Bus | 1/JO Bus | IM | Hosts

218 | 218 1.9 6.3 39.3 | 149 71.6 25.9 13.1 t 169
Response Time
‘Read Write
Total | S-Msgs | FT-msgs | Total | S-Msgs | FT-msgs | S-Msgs to RAM
178.08 | 100.97 43.64 23543 | 159.32 70.07 103.41
| +13.85 | 4505 | +oss7 | +nise | 4106 | 135 +10.43

- - Table 9.3: Baseline Simulation Results

The results indicate that there is no significant queueing at any of the
resources. Blocks were queued at the IL for a mean time of 23.1 units of simu-
lated time. The Main Bus was the most heavily utilized resource (at 71.6%)
while the kernel was utilized the least (only 1.9%). Since the frequency of
requests is skewed towards S-messages, it is not surprising that the main bus is
relatively heavily utilized since it must handle both control and data messages.
Notice that the I/O bus is relatively lightly utilized since it handles only data
messages. In order to give some meaning to the response time statistics, we
assume an arbitrary (but convenient) time base of 100 microseconds. With this
time base, the speed of the LAN is on the order of 10Mbps (million bits per
second), the I/O and main buses are each 5 Mbps, and S-messages are sourced
at the rate of 100 to 1000 messages per second, uniformly distributed. Other
timing parameters can be interpreted similarly. Given this time base, the mean
response time for all read messages is 17.8 milliseconds per block; for S-

messages it is 10.097 milliseconds per block, and for FT-messages it is 4.364
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milliseconds per block. These numbers require some additional explanation.
The read response time is the mean time from the initiation of a message until
the requested block(s) is(are) returned to the user. Since FT requests are
passed off to the IL subsystem, the response time is largely the mean time it
takes a block to move from the IL to the requesting user - this accounts for the
relatively fast response of FT-messages. S-message responses generally take
longer because of the processing overhead in the kernel (there is a probability
that two block references may be required, and that both times the requested
block will have to be fetched out of the IL). The write response values are
s_imilarly in;erpreted. They are higher due to queueing effects at the IL and the
Mz;in Bus. The read response time is certainly the more important to the user
since it usually is inconsequential how long it takes to write a block, as long as
it is guaranteed to be written correctly, and a read is not performed immedi-

ately after a write.

For the time base given above, the level of activity in the system is
characteristic of about 150 hosts accessing the system simultaneously. We base
this on measurements taken on our local distributed processing system consist-
ing of 4 VAX-750's connected by a 10Mbps Ethernet and running the distri-
buted operating system LOCUS. The background load on the Ethernet is
about 30000 blocks per hour relative to file transfer operations. We have pro-
rated this to 50000 blocks per hour to account for FT operations which are not

an explicit part of our local operating environment, although there are some

operations which approximate this.! The next step is to vary individual param-

eters and observe their effect on response time.

1Gych as executing a load module which is not in a local file system. The entire
load module is transferred to the local site before execution commences.
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9.4.1 Varying LAN Bandwidth

We begin by determining the effect of LAN bandwidth on response time.
Table 9.4 shows the read and write response times to both types of messages as

the LAN bandwidth is modified.

Percent Response Time
tran | utilization

of LAN | Read | Write
008 213 i‘ig:gg f‘l?_;g_
009 24.8 ::_g.g::_ ﬁ’;fg _

- o1 276 :_.‘l.f“_ 223!9 o

01143 | 301 805 ﬁg:gs
om | %3 | Sow| e
016 442 g& o
SRR
0267 7.8 ;ﬁ:g" ;ﬁﬁ
o | wo | Smrs | s
o | w0 | 53 | sroes

Table 9.4: Efect of LAN Bandwidth on Response Time

Reasonable response times are achievable until the LAN utilization gets to
about 80%, after which it increases rather rapidly. Although the LAN is exter-
nal to FTSS, it is necessary to consider its contribution to performance since
bottlenecks here will affect the user's perception of FTSS response time.
Although this model clearly shows that a LAN bandwidth as low as 3Mbps
(tpan = .0267) would suffice, it also indicates that the model can support a
much higher offered traffic load. A 10Mbps CMSA-CD multi-channel bus is
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feasible using current technology; therefore, we will assume that the external
LAN bandwidth can be adjusted to meet the response time requirement of the
user. Notice that it is possible to assume other time bases that will result in
either a lower or a higher upper bound. However, given current technology, we
do not feel that speeds much higher than 100Mbps are cost-effective for gen-
eralized Local Area Networks.

9.4.2 Varying the IL Bandwidth

Next, we investigate the effect of the bandwidth of the IL on overall sys-
tem respot;se. We consider this to be a critical part of the system’s performance
siﬁce it is here that information is semi-permanently stored. Table 9.5 shows
the effect of IL bandwidth on response time, starting with the baseline system.
The results indicate that given this level of offered traffic, the IL must be able
to process a block read or write in 5 to 6 milliseconds in order to provide a
mean response time of about 40 milliseconds per block. This level of perfor-
mance is certainly within the capabilities of contemporary storage technology.
For example, a fixed head disk with a data transfer rate of 2 million bytes per
second can read or write a 1Kbyte block of data in 510 microseconds with an
average latency of 5 milliseconds for randomly addressable blocks. Notice that
in the case of FT-messages, which request an entire object, the mean time to
process a block is much less if the blocks are stored in such a way that rota-
tional latency can be minimized. One technique for improving the response
time for S-messages (which are assumed to access blocks randomly) is to pre-

fetch blocks to the RAM buffer in order to improve the RAM hit ratio.
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Percent Response Time

i utilization
A of IL Read Write
00 | 3 | yises | siis
30-35 | 52 ;ﬁ:ﬁg 2:’:3_3_;'5_
| we | e | s
o | o |
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Table 9.5: Effect of IL. Bandwidth on Response Time

9.4.3 Varying the Processor Bandwidth

The processor bandwidth has a pronounced effect on the response to S-
messages since some processing by the system is required on each block affected
by the message. In this simulation model we have restricted the number of
blocks affected by each S-message to 1, typical of users that treat FTSS as a
guest layer on their local operating systems. The processor bandwidth also
affects FT-messages, but to a much lower degree since it only needs to initiate
transfers between the hosts and the IL. In our model, we have chosen a certain
processing time in the baseline system which provides minimal queueing in the

processor block. We now investigate the effect of this processor bandwidth on
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response time. The results are shown in Table 9.6.

Percent Response Time
tKERNEL utilization
of KERNEL | Read | Write
178.08 | 235.43
0.1-1 1.9 41385 | +11.52
s 105 17452 | 237.23
: 41188 | +10.04
, 17077 | 23147
510 5.8 £069 | 4977
- 19841 | 238.74
10-16 832 12.5 +£9.93
\ 17191 | 26248
15-20 59.3 a.53 1023 |
2205 | 269.38
o , 20-25 76.5 41267 | +9.56
' 560.68 | 607.35
25-30 9.9 £2615 | 43543
358091 | 32382
30-35 9.3 145.11 | +221.96
8318.24 | 8308.61
35-40 100 369.1 | +£70474 |

Table 9.8: Effect of Processor Bandwidth on Response Time

From the results it might be concluded that a processing time of about 2.5 mil-
liseconds per block (given our time base of 100 microseconds) is needed to pro-
duce a block response time on the order of 50 milliseconds. To put this in per-
spective, if the processor executes one instruction per byte in each block (an
optimistic 'assumption), it would require a 0.5 Million Instruction Per Second
(MIPS) processor to be able to process a block in about 2.5 milliseconds. How-
ever, it is not the raw processing speed of the processor which is important -
rather, it is the ability to be able to process blocks from the processor queue at
the rate of about one block every 2.5 milliseconds. This level of performance is
possible through multiprocessing using a multi-server queueing discipline. This

approach has the advantage that much slower processors can be used, as long
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as there is a sufficient number of them to minimize the mean queueing delay.
This is the approach we proposed in chapter 8. Several microprocessors in the
1 MIPS regime could be used to implement the high- and low-level processor

modules suggested in chapter 8.
9.4.4 Varying the RAM Buffer Bandwidth

Under the assumption of a 0% hit ratio in our baseline system, the
RAM buffer can have a significant impact on the read response time of 5-
messages. Here we investigate the ramifications of buffer bandwidth on
r_esponse tiina. Although in the model we have placed no constraints on the
sizé of the buffer, we assume that if a block is to be displaced due to size limi-
tations, it is simply written over since the buffer is write-through. The results
of varying the buffer bandwidth is shown in Table 9.7. The results indicate
that one can tolerate a bandwidth of about 3 milliseconds per block while pro-
viding less than a 50 millisecond block response time. This level of performance
is roughly equivalent to accessing one 32-bit word every 10 microseconds -
easily achievable using current semiconductor technology. It does not appear

that the RAM buffer will present any significant performance obstacles.
9.4.6 Other Variables

We have varied many of the other variables listed in Table 9.1; we
report here on their impact on response time. The performance of the NIM is
upper-bounded by about 500 microseconds per byte to keep its utilization
about 90%. We would expect its performance to be somewhat close to that of
the LAN for good performance, and this appears to be the case. The i)erfor-

mance of the IM is less eritical, since it does not handle as much traffic as the
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Percent Response Time
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Table 8.7: Effect of RAM Buffer Bandwidth on Response Time

NIM and less processing per byte transferred is required. Skewing the offered
traffic so that FT-messages dominate S-messages tends to favor the perfor-
mance of the system since less processing overhead is required. We found that
acceptable response times (less than 50 milliseconds per block) are achievable if
the rate of generation of FT-messages approaches about 1 request every 15 mil-
liseconds, while holding the rate of S-messages at the baseline value. The
observed trend in extant local network architectures with file servers is that
about 70% of network traffic is related to file server activity [Shoc80]. There-
fore, a skew towards FT-messages is perhaps more inline with the real state of
affairs. However, the view that S-messages will dominate leads to an upper

bound in performance.
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We have also varied the four hit ratios indicated in Table 9.1 between
0.1 and 1. The most significant impact on response time was HRIL, the hit
ratio between the IL and the BL. Here, a hit ratio greater than 65% is required
in order to provide response times less than 50 milliseconds per block. None of
the other hit ratios proved to be very significant to performance, due no doubt
to the generous performance margins assumed in the baseline system (as evi-
denced by the low utilization of some of the resources). A better measure of the
impact of hit ratios would be observed if the utilization of the resources were
forced to be in the 70-85 percentile range. This was actually observed to be the

c;se, although we do not report on those results here.
9.5 Summary

In this chapter we have investigated some of the performance issues of
FTSS using simulation modeling.p Based on what we consider representative
data we have shown that FTSS can meet the performance requirements of a
large class of users in a local network environment representing a mix of file
transfer and server requests. Although our analysis was skewed towards server
requests, we think this represents a worst-case scenario, and therefore
represents an upper bound on performance. Cleatly, the results are not con-
clusive since many simplifying assumptions were made in the model. However,
the functionality of the model is close to that of a real implementation. In par-
ticular, we have not accounted for the internal housekeeping functions of FTSS
which will certainly consume resource bandwidth, thereby affecting perfor-
mance. Indications from other file server systems are that the level of house-
keeping is only a small percentage of the system’s operation. We have based

our response time requirement on about 50 milliseconds per block which is a
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figure we have measured in our own distributed environment. We feel comfort-
able with this level of performance given the class of processors we are using,
and our operating environment (VAX 750's and 780's and a typical research

environment supporting about 400 graduate students).
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CHAPTER 10
'CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEARCH

In this dissertation, we have developed a new approach to the design of
storage systems for use in distributed processing environments. In this chapter
we review some of the key concepts used in the approach, their applicability,
and their limitations. Finally, we discuss possible directions for further research

which will remove some of these limitations.

Our motivation to create FTSS grew out of our desperation for a reli-
able storage facility that could grow or shrink as the need demanded it, and
one that would not isolate our data because of continual operating system or
other non-storage related failures. Early in its conceptualization, it was recog-
nized that such a facility, if implemented with the “right” mechanisms could
provide much more than a simple repository for information. Indeed, it could
serve as the locus of information management in an environment where users
cither did not have such capabilities, or could not afford to implement them. It

was therefore our goal to provide such a facility.

Our first key concept was to centralize our storage system resources.
The primary motivation for this was to unbundle storage from the processors
that use this storage. A side-effect of this decision is that storage system
mechanisms become less complex because of the homogeneous nature of the

system, and less costly because one can take advantage of economies of scale
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by providing a common base on which all mechanisms are built.

Our second key concept was the use of a generalized data abstraction
mechanism, first introduced in chapter 2, upon which arbitrary storage
management or other user-derived polices can be built. While data abstraction
has been used in several programming languages and in a few operating sys-
tems, its application in storage systems ma.na.gemeﬁt is new. We feel that this
is the right approach since it supports the general notion of extensibility so

important to our goal.

Th; adoption of the object model is not a key concept, but is worth
rﬁentioning in this concluding chapter since it is the fundamental mechanism
on which security is built. The introduction of the mechanism of prioritized
capability sealing on top of the object model adds a new dimension to security
- granularity in storage systems, and permits arbitrary security policies to be

implemented.

The development of an extensible architecture to physically support the
storage management mechanisms and the information stored in the system was
fundamental to achieving our goal. The architecture provides a natural form of
redundancy which supports both high availability and high reliability. This is
unique in storage system architectures. We also feel that this was the right

approach.

The application of fault-tolerance and self-checking designs in the
hardware is a key concept since it permitted us to relax some of the constraints
on the internal consistency of replicated information, resulting in simpler and

therefore more efficient and less costly mechanisms. In addition, the use of
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redundancy in data paths and computing elements permits a higher level of
performance through concurrency. Most importantly, the application of fault-
tolerance is the only way in which the user can obtain a high degree of

confidence in a centralized storage facility.

FTSS is not w1thout limitations however. The most critical assessment is
the fact that it is a paper design. The logical next step therefore is its imple-
mentation. It is not necessary to implement all the features at once; some of
them may be retrofitted to existing local network systems to verify their appli-
cability. For example, the SMS could be retrofitted to an existing operating
system to handle the storage management functions. The next logical step
would be to unbundle storage from host machines on the network, thereby
creating the back-end structure of FTSS. The next step would be to extend
the backend structure into the fault-tolerant architecture discussed in
chapter 6. Finally, fault-tolerance can be added to the system to improve its
reliability. Of course, the ideal way to implement FTSS is to do so in a manner
which is independent of any particular host characteristic; that is, from

scratch, taking advantage of economies of scale and existing technology.

A further area of research is performance tuning. It has been suggested
that the overhead of the object paradigm can lead to poor performance. This
area needs more study to determine the access patterns of typical users, the
frequency with which they access data, and the types of requests that they
‘make. Information security in the system is slso a fruitful area for research,
particularly in the areas of data en_cryption which protects data which is out-
side the protection domain of the system. For example, when information is

transmitted to a host, or when, say, a disk is physically removed from the sys-
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tem.

Despite these obvious shortcomings, FTSS portends to be an important
contribution to the study of reliable online systems, especially in view of the

trend towards the decentralization of computing resources.
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APPENDIX A

Diameter of T; ,; Trees

Theorem: The diameter Dy (defined as the largest distance
between any node pair in terms of the number of links separating

them) of any T—“J tree is
£, 1<5
Dr=13i-35 i>s (A1)

Proof: The common assumptions we make in this proof is that a link is never
traversed twice, all links are operational, and the tree is complete. From an
investigation of the topology, it is easy to see that the largest distance between
two nodes occur when those nodes are in the highest level of the tree, and they
are in different halves of the tree. Consider, for example, the 4-level tree shown
in Fig. 6.2. The diameter is found when any node in the set {811} must com-
municate with any node in the set {12-15} (where we are using the j in z; ;).
Notice also that the path defining the diameter does not include the root node
(except possibly for nodes in the first three levels) - a cross-link is usually
traversed first. To characterize the diameter, we make use of a descriptive (and
somewhat functional) tool which we call a Recursive Structure (RS). ARSisa
T, 3, tree given by the first three levels of Fig. 6.2 (shown in the dashed lines).
If one examines the structure of Fig. 8.2, it can be seen that every node in a

level below level p-1, p>2 is the root node of an RS. Therefore, the bound on
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the number of RS’s is 2? -2 _] .- the number of nodes in the tree below level

p-l.

If one considers any two nodes in the tree, they either belong to the same RS,
or they have a chain of ancestor RS’s that end in a common root. Consider, for
example, nodes 5 and 13. They belong to different RS's whose common ances-
tral root is node 1. Similarly, node 1 is the common ancestral root of nodes 11

and 15.

Within any RS, the maximum number of link traversals to get from one node
to 'another“is 3 (for example, from node 5 to node 7 via the path 7-3-6-5), and
at_most 2 link traversals to exit the structure either through the root or via a
cross-link. The problem then of finding the diameter is equivalent to finding
the maximum number of link traversals between any two RS's. If one considers
the ‘“‘outermost” RS’s in the highest levels of the tree, p-3 traversals are
required to reach the third level of the tree, 1 traversal to switch from one half
to the other half of the tree, and another p-3 traversals to reach the leaf node.
Thus, for a tree with p levels, 2(p-3)+1 = 2p-5 traversals are required, for
p>5. If p<s, it is fairly easy to see that the diameter is p through exhaustive

analysis.

269



APPENDIX B
A Simple Distributed Routing Algorithm for T, ,; Trees

Much of the mechanism needed for deséribing the routing algorithm has
been developed in Appendix A. In particular, the notions of a Recursive Struc-
ture (RS), the number of RS's in a tree with p levels, the ancestral root of two
RS’s, and the number of link traversals in each RS. The algorithm is stated

below.

Algorithm: Routing in a T, ; tree.

Given: A source node numbered S and a destination node numbered D.
Step 1: If S = D stop. The trivial case.
Step 2: Find the ancestral root of S and D.

step 3:If S and D are in the same RS, then move directly from S to D and

stop.

step 4:If S and D are in adjacent RS’s (in the same level with an ancestral root
one level above), switch to the adjacent structure using a cross link,

move to the destination node, and stop.

step 5:Move UP the tree until a node is reached which is in the RS of the

ancestral node and switch to the adjacent RS using a cross-link.
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Step 6: Move DOWN the tree directly to the root node of the RS in which D

resides, move directly to D, and stop.

The algorithm as given above assumes that all links are operational, and
that each RS is complete. It does not depend upon the completeness of the
tree. Under these assumptions, it will traverse the minimum number of links
necessary to go from a source to a.l:destination node. Notice that this minimum
path is not necessarily unique. The algorithm can be made robust in the pres-
ence of link and/or node failures by making an arbitrary decision on which link
to ;raverseand continuing. However, in this case, it is needed to keep a list of

nodes previously visited in order to avoid cycles.
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APPENDIX C
FTSS Data Link Control Procedure

Frame Format: F.A,T,[INFO|,FCS F

F — Flag
- A — Site Address
T -+ Type Field
[INFO] — Optional Information Field
FCS — Frame Check Sequence

There are 2 frame types:
Information (I)

Control (C)

The individual fields in the frame are structured as follows:

Frame Field: 8 bits (01111110)
Address Field: 8 bits (allows 256 possible sites)
Type Field: 8 bits

Information |0 S |S{S|C/R{R|R

Control 1{L|L|L|C/R|R|{R

I

S-bits - send sequence number

R-bits - receive sequence number
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L-bits - control frame ID (8 possible)
C/R-bit - indicates whether the frame is a command or

a response
FCS Field: 16 bits - CRC based on CCITT V4.1 generator polynomial

zlﬁ+zlz+z\5+l
There are presently 4 control frames in the protocol.

- Probe: Determines status of the receiver on link. The INFO
field of the frame may contain additional information

on the type of probe being performed.

- Retransmit: Retransmit all I frames starting {rom a designated

point.

- Reset: Reset state variables. The frame may contain additonal
information for the receiver on which state variables are

to be reset.

- Info: General information. Transmits general status or control

information to the site at the other end.

273



APPENDIX D
OBJECT-LEVEL ALGORITHMS

Creation Algorithm
Function: O _create{capability, index):capability | signal

Parameters: capability must contain creation rights and must
- - point to a TDO. An object of the type of the TDO
' will be created.

1. If capability does not have creation rights, return signal.
2. Manufacture a capability for the new object

2.1 Allocate space for the capability (a structure)

2.2 Get a UID

9.3 Insert the UID in the capability

2.4 Insert access rights in the capability with all bits on

3. Allocate space for the object. Return the addresses of the

C-list and data part.

4. Update the ICDI (incore directory)

4.1 Allocate a structure representing the new object. This
structure maintains information on the object while it is
in core.

4.2 If no room in the ICDI (assumed static) passivate the least
referenced object (one with the lowest reference count)

4.3 Save the UID and set the object’s incore reference count
to 0.

4.4 Save the addresses of the C-list and data part in the
structure. This section of the structure maintains a list
of addresses of blocks of each part currently in core.

4.5 Save a byte count of the length of each part of the object.

4.6 Save the type of the object.

4.7 Replace the capabilities UID with the address of the
structure.

5. Return the capability to the caller. Store the capability
in the location specified by index.

Function: O _create__*{index):capability | signal

Parameters: index is the location in which the capability returned
is to be stored. '
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/* This algorithm is generic for a set of kernel calls that create
predefined kernel objects. The semantics are the same as the
previoys algorithm except there is an initialization step where
the kernel inserts capabilities and data (if any) into the

. newly-created object.

1. Manufacture of capability for the new object

2. Allocate space for the object

3. Initialize the object

4. Update the ICDI

5. Return the capability :

Algorithm for reading a block from the object store

A block is read from the object store in response to one
of the get*() kernel calls or directly by the kernel. There
are two cases:

1) The object is active
- The object is passive

Case 1:
* Since the object is active, there is already an entry for
it in the ICDI. We only need to read in the new block and
update the ICDI, possibly displacing a block if the buffer
. pool is exhausted (see the write algorithmy)
1. Allocate space to receive a block. If buffer pool full,
select the least frequently used object and free some
space.
2. Send a message to the object store for the block.
2.1 Call an I/O routine directly that sends messages
and pass it the appropriate parameters (strictly
internal to the kernel) - this includes the address
where the block is to be written.
3. Wait for an interrupt from the 1/O section when the block
comes back.
4, Update the ICDI with the address of the new block.

Case 2:
/* We must first update the ICDI with the incore header of
. the object being read.

1. Create an entry in the ICDI for the object
L1 Allocate a structure for the incore header
1.2 Update all local parameters (see the create algorithm)
1.3 Copy the structure into the directory

2. Repeat steps 1-4 from case 1 above.

Algorithm for writing objects
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/* This algorithm describes how objects are written from SMS into
the object store. There are 3 cases under which object blocks
are written.
1. Modified blocks are written to free up incore buffer
space,
2. Space is needed for a new object and the current object
is the least recently referenced, and
3. An explicit request is made to write the object back to the
object store.
The strategy we use is that the kernel performs all block writes,
but the OMS assists by making decisions about the location of the
object in the object store.
The first two cases are not visible outside the kernel. The last
is available as a kernel call.

*/
Case I: wrifing modified blocks

/* It is assumed that the kernel maintains a pool of blocks that
is shared by all incore objects. Blocks are written back to the

. object store as the pool becomes full

1. If the disks on which the object is stored has not been allocated,
get it and update the incore object header in the ICDI This is
true only if this is the first time the object is being written.

1.1 Pass the capability for the object to the OMS in user space.
This is done by placing the capability in a designated index
in a kernel-defined object for which the OMS has a capability,
and signalling the OMS which we assume is running as a server
process.

1.2 OMS gets the free list of all sites and determines which sites
are available.

1.3 OMS updates the GODI via a kernel call (OMS is given a
capability for the GODI at system initializtion). This call
triggers the kernel to write out the object.

2. lI:/Ic}difli)ed blocks are passed to the I/O module directly (in the
ernel).
3. Each block is encapsulated as a message and transmitted to the
object store.
4. The incore buffer pool is updated by putting written blocks onto
a free list.

Cases 2 and 3:
/* There is no difference between case 2 and 3, only the mechanism
. that triggers them

1. Repeat step 1 from case 1 above

9. Pass modified block pointed to by the ICDI to the I/O module.

3. Encapsulate as a message and send to object store.

4. Repeat steps 2 and 3 for each modified block in core for the
object.

5. Update the incore buffer list (freed blocks to free list)
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6. Remove the entry for this object from the ICDL
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APPENDIX E
EXAMPLES OF OPERATING SYSTEM PRIMITIVES

This appendix lists a set of services that illustrate how the basic system
primitives can be used to create higher-level operating system functions.
Table 1 lists these services and the subsystems and/or kernel modules that are

involved in their execution.

Operation Subeystems Kerne]l Modules
Run() PMS,OMS PM,OM,CM
Send() MS PMS PM,OM,CM
Receive() MS,PMS PM,OM,CM
submit() TS, PMS PM,0M,CM,DM
Make _Directory() OMS, PMS PM,OM,CM,IOM
List _ Directory() OMS PM3 PM,OM,CM,IOM
Get _Object() OMS,PMS PM,OM,CM,IOM
Put__Object() OMS PMS PM,OM,CM,IOM
Append() OMS,PMS,I0S | PM,OM,CM,IOM
Create() OMS ,PMS,10S | PM,OM,CM,IOM
Delete() OMS,PMS,I0S | PM,OM,CMIOM
Create _ Subsystem() OMS,PMS,I0S | PM,OM,CM,IOM,DM
Destroy _ Subsystem() OMS,PMS,108 | PM,OM,CM,IOM,DM
Modify _ Subsystem() OMS,PMS,10S { PM,OM,CM,JIOM,DM
Change _ Protection() SMS.,PMS PM,OM,CM
Create Protection Policy() | SMS PMS PM,OM.CM

Table 1: SMS Interface Operations
We now give a brief description of each service.

le(programq_name)

This service allows a user to execute the named program module.
program __name is a string
. -

{

(Search default user or public directories for program__ naine
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and return a capability for the program object)

(Create an execution environment for the program object
using the primitives of the kernel’s process module)

(Use the message system primitives to attach the processes
output to an output object)

(schedule the processes execution using the PMS)

}

and(user__na.me,message_object_name)

/ This service allows a user to send a message to another user.
It is a crude approximation of an electronic mail system.
user name is the string name of the user the message is being
sent To, and message object _name is the string name of the
object holding the body of the message. It is assumed that the
user has already created message _object _name.

N/

(Lookup user_name in a name list for which a publicly
accessible capability exists. Such a capability is made

available to a user when his default environment is

created, or anytime thereafter)

(Get a capability for the message _object by searching the

user's directory)

(Create a message by using the MS primitive M_create __ message()
using the capability for the message object) — -
(Connect with user _name’s port object using the

M _channel _ connect primitive)

}Send the message using M__send _ message)

Tear down the connection uUsing M _channel _ disconnect)

}
Rfceive(port __object,message __id,destination __obj ect)

This service receives message id from port _object and saves
it in destination object. This is the complement of send().
port _object and destination object are strings. message__id
1S an integer. - . -
*/
{
(Search the users current directory {or that specified) and
get the capabilities for the two objects)
(get the message from the port object using the primitive
M receive message from the MS. M _ receive_ message expects
the three parameters of Receive as capabilities and an
integer)
/* the user may view the message returned using the Get _ Object()
command */ . -

Sgbnﬁt(program__!ist)
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This service allows the user to submit a set of program modules

to be executed as a transaction. program_ list is a list of string
names representing the program modules. Submit’s may be nested
to some unspecified depth. For example, if a user wanted to create
a number of objects as a transaction, the following would suffice:
submit(create(ﬁlel),crea.te(ﬁlez),....,create(ﬁlen))

*/
{

/* The submit() itself is started as a top level transaction
using the transaction primitives of the TS and each member
member of the program _ list is started as a subtransaction,
The submit completes successfully only if each subtransaction

) ;:ommits successfully. :

}

Niltake_ directory(directory _name)

This setvice allows a user to create a new directory object
and link it into his directory structure. We assume a rooted-
tree structure.

* / ‘

{ .

(call the kernel to create an object and return a
capability for it)

(place the capability in the capability list of the current
directory at this level of the tree)

(associate directory _name with the capability by writing it
into the data part of the current directory object - thus
there is a one-to-one correspondence between the relative
position of the directory _name and the relative position
of the capability that points to the directory)

(r*eturn a success code to the user)

since directories are expected to be create quite often,
and since they might be large, Make _ directory might create
directories as special indexable objects which can be
searched rapidly. This creates an additional level of detail
since it is necessary to associate the index (object) with
the directory object. However, its implementation is
straightforward.
*/

}

List_directory(directory_name)

This service simply lists the entries in the specified directory

along with useful object parameters in some default format.
*directory_name is a string,.

f

(perform a linear or indexed search of the string name in
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the data part of the directory object and retrieve the
capability from the corresponding position in the C-list)
(with the capability returned from above, get information
about the object pointed to by the capability using the
kernel primitive O _info(})

(r%peat)the first two steps for each entry in the directory
object

(return suitably formatted results to the user)

}

P:lt_object(object_name,object_specs)
f This service allows a user to download an object to FTSS.
object name is the string name of the object and object _specs
is a listof parameters specifying the characteristics of the ™
object to be stored. object _specs will specify such things as
the users blocking factor, the type of data (text,binary,etc.),
_ and the amount of data to store.
;/
(create an object to Store the user's data and update the
user’s directory object)
(establish communication with the user’s host system using
the message system primitives and the communication f{acilities
between FTSS and the host - this is discussed in more detail
in a later chapter)
(get user blocks and pack them into FTSS blocks. As each FTSS
Block becomes full, write it to the object using the OM)
repeat the last step until all data is transferred)
write the object to the object store using the OMS)
tear down the connections established in the second step)

}
G*et _object(object __name,obj ect _specs)

This service allows a user to upload an object from FTSS.
object name is the string name of the object to be gotten,
and object specs is a list of specifications describing
how much of the object is to be gotten.
*/
{
/* the mechanisms are just the obverse of Put object
and will not be described further -
*/
}

Append{object name _ list,new object)

Create(object name) -

Delete(object ~name)

/* The three Services specified append a number of objects in
object name _list to form a new object new _object, creates
a new object with the string name object _name, and deletes
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an existing object with the string name object name. Normally
these operations are done within the hosts, butthey are
provided here for those hosts that wish to optimize their
performance by having the operations performed by FTSS
directly. Their details are elided since their semantics are
simple - Create and Delete simply retrieves the capability and
makes a direct call to the kernel's object manager. Append
simply retrieves the capabilities for the objects and copies

their contents into the destination object in the order

specified in the name list.

*/ !

Create subsystem(subsystem _name)
I - -

x
{/.

}

This service permits a user to define an abstract data
type which we call a subsystem. It is with this mechanism
that the user can create any environment desirable.

Create a new type object to represent the subsystem)
Create the instruction objects that define the operations

“of the new subsystem and initialize them)

(Install the capabilities for the instruction objects into
the type object)

(Install capabilities for other objects which will be
components of the type object)

(Return capabilities for the new subsystem to the caller)

D*estroy __subsystem(subsystem _ name)

With this service a user can destroy a subsystem which is no
longer needed. It is not much different from the Delete command
except that it takes care of any special cleanup operations
required.

*/

{
(delete the type object using the kernel primitive
O _ destroy)

) (remove the entry from the user’s directory)

N}I’odify __subsystem(subsystem _ name)

{/

This service allows a user to modify an existing subsystem
definition.

(Retrieve all capabilities from the existing type
object and save in a temporary object)

Destroy the subsystem)

Create a new subsystem object with the same name)
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(interactively permit the owner to install capabilities
from step 1 or new capabilities pointing to new
components into the new type object)
return all capabilities to the caller)
update the user’s directory)

}

C:eate_protection_policy(policy_object_name)

/ This service permits a user to define protection policies to
be applied individually or globally to owned objects. There can
be any number of such policies in effect simultaneously {but not
applied to the same obj ect). A protection policy is an abstract
type that determines how an object can be accessed. This is
based on the technique of capability sealing.

;/

- (Create an object to represent the protection policy -

this is a type definition object)

(Install capabilities for instruction objects and other
component objects into the object from the previous step -
the instruction objects define the policy)

{return capabilities for the policy object to the caller)
update the user’s directory)

}
C*hange _protection{policy _ object __name,object_name}

This service allows a user to install or change protection
over owned objects. A policy object is required (see

. Create _protection _ policy)

{

(get the capability for object _name from the user’s
directory) -

(seal this capability using the seal primitive from

the SES - sealing requires the capabilities for the
policy object and the object being protected as well
as the information to be sealed in the capability -
the reader is referred to chapter 4 for the details)
(return the (sealed) capability to the user's directory)
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