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ABSTRACT OF THE DISSERTATION

Pattern Recognition approach and Array Processing
for Distributed Source Identification
in Water Pollution Systems
by
Yoshitaka Shibata

Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor Walter J. Karplus, Chair

The research described in this dissertation is directed to the development
of a methodology for the identification of input functions in distributed parameter
systems and more specifically of pollution sources in water pollution systems. Two
major challenging problem areas, i.e., river pollution systems and aquifer
pollution systems, are discussed as examples. Conventional identification methods
such as the regularization method among others have several crucial drawbacks.
In particular they need restricted assumptions on poilution sources and involve a
large mount of computation time. In order to overcome these difficulties, a
pattern recognition approach including feature extraction and signal processing is
introduced. Coherence functions and the normalized correlation function are

employed as feature vectors to extract the original pollut?—on pattern from the



measurement data with the presence of high-level noise. Conventional
identification methods are then employed to specify the extracted pollution
sources more precisely. The entire identification procedure is executed by a
host/peripheral array processor to improve computational speed. In particular,
performance evaluation of the partial differential equations, the calculation of the
feature vectors, the calculation of the conventional identification method of the
identification process, are performed using DEC VAX-11/750 and CSPI Mini-
Map array processor. The Monte Carlo method is introduced and executed to
solve the partial differential equations. In order to demonstrate t.hé verification of
the entire identification procedure, several numerical examples are analyzed with
the aid of simulations. Evaluations of the identification procedure are made by

varying the noise level of the measurement data.



CHAPTER 1
Introduction

1.1 Background

Environmental pollution has recently become one of the important
problems menacing the survival of human beings, animals and plants in many
parts of the world. Water pollution problems in rivers, lakes and aquifers are no
exception as the dependency on water for municipal, industrial and agricultural
necds increases rapidly in urban areas. A vast of body of rescarch in the
modeling and analysis of water pollution systems in many countries has been
made possible by advancements in science and technology. In particular,
mathematical modeling and computer simulation techniques have been improved
significantly by the development of large scale and high-speed computers. As a
result, parameter identification and state estimation problems for the development
of the mathematical models of water pollution systems have been discussed in the

literature more and more frequently.

However, there have been relatively few studies of the modeling of the
locations and intensities of pollution sources in water resources systems. This
problem is significant especially for environmental control agencies attempting to

supervise and predict environmental conditions.



In general, there are major difficulties involved in the identification of

distributed pollution sources in environmental systems.

1)

@

)

4)

(5)

©

Distributed pollution sources to be identified generally vary in space and

time.

General nature of pollution sources are at best only approximately known,
therefore, they must be inferred using physical insight.

Since epvironmental pollution systems are generally modelled by partial
differential equations (PDE’s), a large amount of computations are
involved. Therefore, the selection of computing bardware facilities as well
as algorithms and software must be carefully considered.

From the mathematical point of view, pollution source identification
problems in environmental systems are equivalent to the determination of
input functions in distributed parameter systems, and are generally non-
well posed inverse problems.

The system observations involve measurements of certain system variables
at a relatively small number of measuring stations and relatively

infrequently in time, i.c. the observational data are generally very sparse.
The observations are subject to substantial measurement error.

S.Ikeda and et al. [IkMS74] [IkMS77] [IkMS78) proposed a possible

approach which employs the conventional identification method, (i.e., the

regularization method introduced by A.N. Tihonov [Tiho63]) in order to solve



identification problems of pollution sources in river pollution systems. Although
this approach gave satisfactory numerical results, several restrictive assumptions
were involved as discussed in Chapter 3.

In order to overcome those limitations and difficulties, pattern recognition
methods [Karp72] are introduced in this dissertation. There are already several
studies [Simu75] [Simu76] [Apen79] in which pattern recognition techniques,
including clustering and region-growing, have been found to be very useful in
providing an adequate mathematical model of the aquifer quantity problems for
which sufficient information is pot available to implement conventional
identification methods. In the classification of another application of pattern
recognition methods, the identification of distributed pollution sources is
discussed. Basically, the pattern recognition approach involves the following

major steps:

1) Pattern generation

2) Feature selection and extraction
3) Classification

4) Performance evaluation

On the first stage of the pattern recognition, several classes of patterns as possible
model to be identified are designed and generated. It is the function of the
pattern recognition system to determine from the observations to which of these
classes the pollution sources under study actually belongs. For example several

poliution sources locations might be nominated or their time patterns are briefly



predicted. These preliminary knowledges could direct to the pattern generation.
Onthcsecondstep,thefcaturcsaresc}ectedfortheabilitytomhanoethc
similarities the output generated by the input pollution sources of the same
pattern class, while ephancing the differences between the output gencrated by
the input pollution sources of the different pattern classes. These features must
be inherent in the measurement noise. On the third step, dusiﬁmﬁm involves
the making of the decision as to which of the subclassified pattern is the closest to
the original pollution sources. Discriminant function is introduced to execute the
decision making. Finally the performance evaluation of the selected pattern
including parameter adjustment of it is executed using computer simulation and

conventional identification methods.

The entire identification procedure is computer intensive and involves a
large mount of computation. Conventional sequential computers are inefficient
and expensive for the entire identification procedure where relatively simple
operations, such as additions and multiplications, need to be performed very large
step of data clements. Array processor systems, which are combined with host
computer are very suitable for this king of problem because they can enhance the
performance of the host computer through the extensive parallelism and/or
pipelining. Therefore the entire identification process can be carried out with

very high speed at a modest cost.



1.2. Objectives of the dissertation

The following aspects of pattern recognition approaches to water pollution

source identification are treated :

M

)

&)

(4)

)

(6)

@)

(8)

The study of the mathematical formulation models of surface water
ground-water pollution systems, in which measurement stations provide

observational data.

The augmentation of the regularization method and several alternative
conventional methods.

The establishment of the limitations and difficulties of the conventional
methods.

The introduction of the pattern recognition approaches.

The introduction of time and space scparation approaches for pollution

sources.

The formulation of cross-correlation functions and/or their spectra (Fourier

transforms) in pattern sclection and feature extraction.

The exploitation of the computational advantages of the Monte Carlo
method.

The implementation and evaluation of array processors in order to improve

computational efficiency.



1.3. Contents of the Dissertation

Chapter.2 opens with the formulation of mathematical models of both river
pollution systems and ground-water pollution systems. Next, their observation
systems over actual cnvironments are described. Then, the identification
problems of pollution sources of each system from measurement data are
formulated. Finally, the general structure of the pollution sources to be identified
are discussed by introducing separable functions of time and space.

Chapter.3 describes several approaches to the identification of pollution
sources by conventional identification methods including the regularization
method, the cross-validation method, the least- square method, the Kalman filter
and the dynamic programming. Identification procedures for each method are
derived and their advantages and disadvantages are discussed. Finally, the
substantial difficulties and limitations common to all the conventional

identification methods are summarized.

Chapter.4 introduces pattern recognition as a methodology for system
identification in order to complement the conventional identification methods
rather than replace them. General description of pattern recognition approaches
and applications for pollution sources identification are formulated at each step.
Finally, general of critcria to evaluate the performance of pattern recognition
approaches are discussed.

Chapter.5 constitutes an introduction to the numerical implementations of

the Monte Carlo methods for the solution of partial differential equations at the



feature gencration stage in pattern recognition methods. Finite difference
equations to formulate the Monte Carlo method are derived by discretizing the
original partial differential equations. Then the computer algorithms are
formulated to execute the entire process of the Monte Carlo method. Finally the
computational errors contained in the algorithm are characterized.

Chapter.6 organizes the entire identification procedures and combines the
pattern recognition approaches with possible conventional identification methods
to determine the unknown pollution sources. First the pattern recognition
approaches discussed in Chapter 4 are employed to characterize an intermediate
structure of pollution sources. Then various function identification or parameter

identification methods discussed in Chapter 3 are applied.

Chapter.7 is devoted to a discussion of the numerical implementation for
the entire proposed identification process including the pattern recognition
approach as well as the conventional identification methods using high-speed
array processors. Particular attention is focussed upon implementations by
peripheral array processors, which are connected to a general purpose computer
and can perform high-speed computations at a modest cost. Scveral identification
tasks are executed both using a conventional computer, the VAX-11/750 and a
combination of the VAX-11/750 and a peripheral array processor, the Mini-Map.
Performance evaluations of the host-plus-peripheral array processor used for

source identification are presented.



In Chapter.8, several numerical examples are presented to evaluate the
entire identification process formulated in the preceding chapters. The first
several numerical examples involve distributed pollution sources in river pollution
in which the pollution sources are identified from BOD and DO. The second set
of examples deals with point pollution sources in both river pollution and aquifer
pollution systems. The computational results are evaluated by studying the
manner in which the proposed identification process is capable of identifying the
original pollution sources in the presence of increasing levels of measurement

noise.

Chapter 9 includes a discussion and an evaluation of the proposed
identification approach, summarizes accomplishments from the research and

suggests future studies.

Finally, the appendices ocontain several derivations of theoretical

formulations and array processor programs.



CHAPTER 2.
Mathematical Models of Water Pollution Systems

2.1 Introduoction

This chapter opens with the formulation of mathematical models of both
river pollution systems and ground-water pollution systems. Next, their
observation systems over actual environments are described. _Then, the
identification problems of pollution sources of each system from measurement
data are formulated. Finally, the general structure of the pollution sources to be
identified arc discussed by introducing separable functions of time and space.

2.2 Mathematical Modeling and Problem Statement
2.2.1 Mathematical Modeling

Generally, environmental systems such as water pollution systems, ‘air
pollution systems and thermal pollution systems are distributed parameter systems
governed by natural physical laws. Their dynamics are characterized by parabolic
partial differential equations based on the balance equation as follows [ApKa82]
{Karp80] [Simu75] ;



a(x,r,u,c)-‘;—l:

2 ax [Eau(x ¢ “,C) + aj(x t,u,0)u)
j=19%) jm1

+ Ebj(x ‘:“,C) + b(x,t,u,c)u + F(x,1) -

=1 (2.2-1)
with initial conditions
u(x,tg) = uglx) xeD
(2.2-2)
and boundary conditions

Si(x,u ‘:‘-‘) + fo(x,u,t,0)u = ux,t) xedD
(2.2:3)

where
N : dimensionality in Euclidian space
i u : pollution concentration indices
t : belongs to the product domain D x [#,,T]
F(x,t) : internal pollution sources inputs
u, :boundary inputs
J14f> : functions

a,a;,a;,b;,b,c : distributed field parameters

The left-hand side of equation (2.2-1) represents the changes in the amount of the
pollutant index in time. The first term of the right-hand side indicates the
diffusion part, the second expresses the convection or transport part, the third
represents the chemical or biochemical reaction, and the last part characterizes

10



internal pollution sources. The field parameters and pollution sources must be
provided as explicit functions or as pumerical values in order to solve the
mathematical model (2.2-1) analytically or numerically.

2.2.2 Observation systems

The pollutants are observed by measuring facilities distributed over fields.
Because of physical and economic reasons, actual observations are executed in a
discrete time-sampling manner at finitc number of measuring locations. The
observed data are subjected to measurement noise and errors so that the

observation data are formulated as follows :

U (x;ty) = Hu(x;,t;) + ny) fori=1.2,..M and j=1,2,...,L.
(2.2-4)

Where
u,, : measurement data,
H : transfer coefficients,
n; : measurement noise and error,
M : the number of measurement stations, and

L : the number of measurement data.

2.2.3 Problem statement

Since pollution originates from pollutant sources, it is important to
determine pollution source locations and the time variant intensities in order to

predict and control current and future pollution conditions. Unfortunately, the

11



direct observation and determination of pollution sources very difficult.
Therefore, pollution sources must be indirectly identified from measurement data
and the mathematical model. Two steps of identification process are considered ;

(1) first the identification of field parameters from measurement data so as to

include them in the mathematical model.

(2) the identification of input pollution sources from measurement data and

the mathematical model developed in step 1.

So far, most of the identification researches have focused on the first problem. In
particular, pattern recognition approaches have succeeded in attaining the
satisfactory results concerned in the modeling of of aquifer dynamics [Simu75])
[SiKa75] and in ground-water pollution systems [Apen79] [ApKa82]. In our
research, identification problems of the field parameters, which are assumed to be
known, are not discussed. Rather the identification of distributed pollution
sources F(x,t) as input functions will be investigated. The identification problems

of pollution sources can be formulated as follows.

Problem

Determine the unknown pollution sources F(x,t) from the observation data
U (x;,1;) in the (2.2-4) and the mathematical model (2.2-1), the initial condition
(2.2-2) and the boundary condition (2.2-3).

12



2.3 River Pollution Systems

Mathematical models of water quality systems are usually expressed by
parabolic partial differential equations (PDE’s) based on the mass balance
equation. In the surface water quality systems comprised of rivers flowing
through industrial areas where each factory is a potential pollution source, the
biochemical oxygen demand (BOD) and the dissolved oxygen (DO) concentration
are employed as pollutant indices [Rina79] {Sted81] {Ikeda76] ;

N
—= ] Eb——-ku+F(xt)
,§1 s L2 "31- T ax, (2.3-1)
av N
— = [ b2 - (v-v,) — ku
*  j=19% 21 'j 2 Tox, T (2.3-2)

where
N : dimensionality
u(x,t) : biochemical oxygen demand (BOD) (ML™3)
v(x,t) : dissolved oxygen (DO) (ML™?)
v, :dissolved oxygen saturation (ML™3)
k :BOD decay coefficient (777)
k. :deoxygenation coefficient (777) —
k; :re-acration coefficient (T~%)
ay :dispersion cocfficient (L777)
b, :velocity of the flow (L77")
F(x,t) : pollution sources to be identified (ML™37"?)

with initial conditions



u(x,0) = ug(x) xeD

(2.3-3)
v(x,0) = vo{x)

(2.3-9)

and boundary conditions

u(x,,t) = up(x) x,edD

(2.3-5)
v(xp,t) = vp(x) |

(2.3-6)

In practical applications, it is possible to make reasonable simplifications
and approximations of the general mathematical models (2.3-1) and (2.3-2)
without losing any substantial characteristics of the actual river being observed.
In most cases, for example, the width and/or the depth of the river are relatively
small compared with the length along the river, consequently the dimensionality
can be reduced from three to one or two. In other cases, based on physical and
geometrical situations, some part of the field parameters can be regarded as
time-invariant, homogeneous or constant so that the complexities of the
mathematical model can be reduced. The most frequently employed models to
date are summarized in Table.2.1. In our research, the diffusion model is

examined.

14



Table.2.1 TYPICAL RIVER POLLUTION MODELS

Model Type Model Name Characteristics |
Young & Beck | Continuously stirred | [YoBe?d]
Tank Type du;
& =B 141~ B+ R(u;,f)
Strecter & Phelps | Steady Flow | [stn2s)
+
a: R(u,x)
O’Connor ‘ Flow changes with space | [C'cons7)
Transport Type P
—= -b(x)—'*'R(u,x)
at
O Connor & Ditoro | Flow changes with time | [O0’<Di70]
ou ou
— i — —-+
Dobbins | Diffusion | [Dobbsd)
Diffusion Type
Qu _ _gju___bau +R(u,x,t)
a ax2 @
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Monitoring stations are assumed to be located at a finite number of
locations x; , for i=1,...,M. At these pollution index BOD and/or DO in the
presence of noise and measurement error can be directly observed at selected
times ;. Therefore, the measured data can be expressed as

Uy (x;,0) = u(x;pty) + e(ty)

vm(xh‘j) = V(xi!!j) + wi(‘j)

(2.3-7)

(2.3-8)
for i=1,2, ... ,M and j=1,2, ...,L where ¢{r;) and w,(t;) are measurement noise

and errors. Thus, the identification problems of pollution sources can be

formulated as follows:

Problem

Determine the input function F(x,t) in (2.3-1) from the measurement data
Uup(x;,t)) in (2.3-7) or vu(x;,t) in (2.3-8) and the initial conditions (2.3-3) and
(2.3-4) as well as the boundary conditions (2.3-5) and (2.3-6).

2.4 Ground-Water Pollution Systems

-

The general mathematical mode! of ground-water pollution systems would
involve a complete physical-chemical dumpuon including the movement of the
ground-water as well as chemical reactions among the materials [NeFag80]
{Ande79). From the hydrological point of view, however, many cases of ground-
water pollution problems usually deal with a simplified subclass of the general
problem by assuming that nmo chemical reactions occur [Khan79] [Kban80]

16



[Pere72). In order to characterize the dynamic phepomena of ground-water
pollution systems, the md-wam flow equation which describes water
movement in an aquifer‘ and the dispersion equation which describes the
movement of dissolved chemical materials in ground-water are solved
simultaneously [NeFa80] [Ande79] [MeFag0].

The mathematical model for simulating ground-water flow is based on a water
balance equation as

ah
4. K. + 0 :
El ox; [.-21 "5’ (2.4-1)

with initial conditions

h(x,tg) = ho(x) xeD
(2.4-2)

and boundary conditions

h(xy,f) = hy(f)  xe€dD
(2.4-3)

where
b : hydraulic head (L)
Q : volume flow rate (T"})
K : hydraulic conductivity tensor (LT™})
S : specific storage (L™1)

The dispersion equation is based on a mass balance equation as

s _ & 2 ey - 2
AL R TR (244

with initial conditions
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c(x,0) = cg{x) xeD '
(2.4-5)

and boundary conditions
c(xy,t) = cp(t) x,€dD
(2.4-6)
where the velocities are calculated using the Darcy equation as
o= Ky ok -
o o (2.47)

where
C : material concentration (ML™3)
D : cocfficient of dispersion (L7"!)
F : concentration of the source or sink fluid (ML™37"7)
n : effective porosity (dimensionless)
v;: seepage velocity or pore velocity (LT~ D)

In many cases, two dimensional mathematical models which deal with
dynamic phenomena in the borizontal plane are widely employed because the
movement in the vertical direction can generally be neglected {KoBr74] [HeLa77]
[BGST82]. Two dimensional models, furthermore, are classified into two types,
areal model and profile model. Areal model deals with horizontal slice of the
surface. This model is useful when it is necessary to consider the effects of
distributed sources and are well suited to problems which use of a regional rather
than a local scale. Many applications for actual environments have employed
areal model [BrPi73] [Koni77] [KoBr74]. Profile model, on the other hand,
simulates flow through a vertically oriented slice of the surface. In sluding the

movement of pollutants from a point source where it is necessary to determine the

18



vertical extent of the pollutants plume, it is often advisable to use a profile model
[Robi78] [Pick77] [PiCh78]).

Observations of material concentrations are made directly from
observation wells at monitoring stations at a finite number of locations where the
pollution concentrations can be observed at selected time in the presence of noise
and error. Therefore, measured data can be expressed as follow ;

cm(xiyisty) = ¢ (xi:)'i"j) + e(1) (2.4-8)

fori=1,...,M and j=1,2...,L where ¢,(1;) are measurement noise and error.

Problem

Determine the pollution sources F(x,y,t) from measured data cm(Xis¥int)),
mathematical models (2.4-1), (2.4-4) and (2.4-7) and initia! conditions (2.4-10)
and (2.4-5) as well as boundary conditions (2.4-3) and (2.4-6).

2.5 Mathematical Expressions of Pollution Sources

Generally, pollution sources in actual environmental systems vary in time
and in location. Therefore, they must be expressed mathematically as a function
of time and spacc. The most common and suitable expression is to employ a
separable form of the input source as follows :

for a single source,
F(x,) = y(r)g(x)
(2.5-1)
for multiple sources,
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Fe)= S8

i=1 (2.5-2)
This assumption of separability has a physical justification because g;(x) can be
regarded as the spatial profile reflecting the location and the nominal intensity of
a poliution source, while y,(r) exhibits the time variation of pollutant discharge
intensity from sources. On occasion pollution patterns on different fields can be
classified based on a priori knowledge of their time-pattern or their locations. In
a typical situation of river pollution systems, for example, factories, located at x;
along the river through the industrial area, arc regarded as point pollution source
fi(t) with cycles of daily, weekly, monthly, scasonally or yearly periods. Entire
pollution sources, therefore, can be expressed as

F(x ) = S{adl—x)lyid)
=1 (2.5-3)

i=]

X
= 2,8(x—x,)f,;
2,80« x Vi(e) 254

In an agricultural situation [Shen79)], for example, spatial pollution caused by
chemicals distributed over agricultural fields penetrate into the river. The entire
pollution field can be expressed as

F(x,1) = g(x)y(9) (2.5-5)

Some pollution sources are regarded as being constant in time, others might be
considered as a time variant distributed function. In these cases, the mathematical

expession of the pollution sources can be simplified. In our research, the



identification problems of point and distributed pollution source are scparetely
formulated in the following chapter.
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CHAPTER 3
Conventional Identification Method

3.1 Introduction

This chapter describes several approaches to the identification of pollution
sources by conventional identification methods including the regularization
method, the cross-validation metbod, the least- square method, the Kalman filter
and the dynamic programming. Identification procedures for each method are
derived and their advantages and disadvantages are discussed. Finally, the
substantial difficulties and limitations common to all the conventional
identification methods are summarized.

3.2 General Parameter Optimization Methods

The approaches most often used in systems identification, involve
parameter optimization methods fEykh63], [Eykh73] and [Beke70], and require
an explicit understanding of the mathematical structures of distributed poltution
sources as input function F(x,t) of space and time. The parameters of the
assumed pollution source function F(x,t) are then modxﬁed so as to minimize the
difference between the response of the mathematical model based using on
assumed F(x,t) and the response observed from the actual physical system.
These methods work only if the starting model structure is reasonably acculate

2
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description of the actual pollution sources as presented in Fig.3.1. In attempting
to apply these methods, the following difficultics are encountered.

(1) There is no evaluation of validity of the structure of pollution sources
weather or not it is sufficiently-close to the original physical pollution

sources.
(2) Observations from physical system are corrupted by noise.

For these reason, the attaining of 8 minimum in a criterion function cannot be

taken with confidence as an indication of the validity of pollution sources.

3.3, Regularization Method

S.Ikeda at al. {IkMS74], [IkMS77], [IkMS78] attempted the identification
of pollution sources in river pollution systems using the method of regularization
which was originally introduced by A.N. Tihonov [Tiho63], [Tiho65]. This
method basically reduced the identification problem to the solution of the
Fredholm equation as follows: Suppose that there is a river pollution system
whose pollution index BOD is expressed by the one-dimensional parabolic partial

differential equation as :

du 3% du
= aZE - b=~ hu + F(x,t
ot ax? ax () (3.3-1)

with initial condition

u(0,)) = 0
(3.3-2)



and boundary conditions

u(xe,t) =0
(3.3-3)
and observation is taken at x=c
z(f) = u(c,t) ¢ €(0,T) (c € R : fixed)
_ (3.3-9)

where all field parameters are constant. The pollution source as an input function

F(x,t) is assumed to be expressed as separable function in time and space as ;

F(x,) = g(x)f(1). .
(3.3-5)
Furthermore, the time function f(t) is assumed to be known and g(x) is unknown.
Therefore, the problem to identify the F(xz,t) can be redgccd to the identification
of g(x) from the observation z(t) by solving the equation of the first kind :

e

z(t) = U(t=r,c x)dxdt
® .(I; _J; (#=7,c.x)f(1)g(x) 536

where U(t,x,y) is the fundamental solution of the (3-1) given by

Utery) = 2\/_ { ek P [— “] } (3.3-7)

Eqn. (3.3-6) is equivalent to the Fredholm equation

+
() = [ K(x)8(x)dx
= (3.3-8)

where the kernel equation is expressed by

K(x,t) = j‘ U(t—,c,x)f(7)dr.
0 (3.3-9)

The optimization problem is to find that g(x) which minimize the functional J,



T -
Jy= J{z(0) - J UGt—,cx)f(x)g(x)dr V.
2 e (3.3-10)

Since this problem is not well-posed, the optimization process might well diverge
computationally. Thus the regularization method was introduced to stabilize the
problem by introducing an extra term so that
T +w -
Jo = f{ z(2) - J'K(x,t)g(x)dt Vdt + a Igz(x)dx
0 S — (3.3-11)
By solving the Euler equation associated with (3.3-11), the optimal g(x) for J,
can easily obtained. That is, for the optimal g,, the Euler equation can be

satisfied ;
+oT T
[ fE(xOK(t,5)dig(s)ds — JK(x,0)z(s)dt + ag(x)? =0
-=0 0 _ (3.3-12)
By finite difference approximation of (3.3-12), we can obtain
(KK + ol )g, = K’z
(3.3-13)
Where N
K = (K;) = (K(iat,jAx))
(3.3-14)
g = (g7) = (g(iAx))
| (3.3-15)
z = (z;) = (z(iAx))
(3.3-16)

Eqn. (3.3-13) can be solved easily by any of several oumerical techniques such as
the Gauss elimination method [Wait79], [Rice73], Gauss-Seidel iteration method
or Jacobi iteration method [Rice73]. Although this method gave satisfactory

numerical results, the following restrictive essumptions were involved :



69

)

®)

4

)

(6)

It was assumed that the input function F(x,t) to be identified can be
scparated into g(x) and f(t). Furthermore either g(x) or f(t) was assumed
to be known in advance. Therefore, the identification problem was to
determine either the function g(x) or f(t). However, generally both g(x)
and f(t) must be identified.

A least square errors term was employed as an evaluation function,
T +oe -
Jo = J12(0) - [ K(x.g(x)dx Pt + a [ g¥(x)dx
0 - -

and the optimal g(x) that minimizes the function J, was determinedd.
However the optimal value g(x) depends strongly on the parameter a, and
unfortunately there is no general procedure to determine the 1-:-:ost suitable
value of a.

The numerical applications were only implemented for a simple model,
namely, a onec-dimensional lincar, homogeneous field and a single

pollution source.

It proved quite difficult to find the fundamental solution U(x,y,t) for
complicated mathematical models, higher dimension and complicated
boundary.

The computation time for the solution of the algebraic equation (3.3-13)

became very large with increasing time and space discriterization.

Measurement error and noise were not considered.



3.4 Formulation of Functional Optimization Problems

In order to overcome the difficulties and the limitations inherent in the
regularization method, the possibilities of several alternative conveniional
approaches, discussed in the following sections, are considered below. Consider
the reformulation of the optimization problem by using the finite difference
approximation of the function of space : -

ugs1(x) = A(x)ug(x+Ax) + B(x)uy(x) + C(x)uy(x—Ax) + s'(Jr)fk(Jr)l\(r3 1)

For discrete space points x, = kAx, Eqn (3.4-1) can be written as a vector

expression
"‘k+1(0)
ug+1(4x)
up+1(24x)
441 (NAX)|
rBoAO ‘ ’uk(o) ‘ (0 ]
c.B:iA u(Ax) :EA)X)
CBA, up(24x) 2(24x)
= + ka‘
t ' (3.4-2)
CyBy| a(NAX)]  Lg(NAx),
or simply,
Ui+1 = AU + Gf;
(3.4-3)

where the state vector U, is defined :



Uk = [uk(o)vuk(&)v-"‘k(NAx)]T ’
(3.4-4)

and the gain vector G to be identified is defined as :
G = [ £(0), g(Ax), g(2Ax), - -- ,g(NAX) I
(3.4-5)
and the known scalar time function f; as
Ji = [ At
(3.4-6)
- and the known coefficient matrix A as :
By Ag
C, B8 A
C; B; A,
A=
(3.47)
Cy By,

By applying the same discreterization procedure, the measurement equation can
be also expressed by a vector expression

Zk = CUk-i-nk
(3.4-8)
where the measurement vector, Z, is :
Z; = [2e(tm1)s2e(Emd)s- - 2]
(3.49

The terms x,, ,x,, ,..,X,, indicate the measurement locations, C is the coefficient
matrix and », is the observation noise and error vector. Next, we define the

discrete type of the error functional J instead of (3.3-11) such that

J = 3 (Z-CUY(Z,—CUy) + oGTG
k=1 (3.4-10)

Therefore, the identification problem can be reformulated as follow :



Problem Statement

Given the system equation with known initial condition Uy

Ui+ = AU, + Gf;

(3.4-11)
the observation equation
Yt = CUk
(3.4-12)
and measurement data from the actual environment
Zk = Yt+nt,
(3.4-13)
Find the optimal estimate value G to minimize the error functional J
7 = 2 @-CUYT(Z~CU) + aGTG
k1 , (3.4-14)

3.5 Cross-Validation Methods

In order to determine the best a without any a priori knowledge of the
generating mechanism for- the measurement data, the cross-validation method
[Ston74] [Geis75] [Wahb75] is introduced in this section. At first, any non-
pegative value of « is sclected. Next the U(i,a) and the G(i,a) which satisfics
the system Eqn. (3.4-11) and which minimizes the error function E(i,a)

Eee) = == 3 [@-cunlf@-cuy)
k=1k#i (3.5-1)

is calculated for i=1,...n. That is, U(i,a) is the solution to the system Eqn. (3.4-
11) with point U; and Z; removed from the data set. Then let O(a) be defined as



0(a) = L 3@~ Ul,0)7(Z-Ui,0)] /
=] (3.5-2)

Finally, the optimal a , namely a,,, that minimize the Q(a) is be determined.
The curve U(k,a,,) and G(i,a,) are the optimal solutions for U and G. In order
to clearly understand this method, an identification algorithm is described in more
detail.

Step 1 Read in parametric data, such as A, C, Uy, N, n, and measurement data
Z(i) for i=1,...,n.

Step 2 Specify initial positive starting value a.

Step 3 Set index i to 1 where i is the number of computations when the a is fixed

at some value.
Step 4 Find the G(i) which minimizes Eqn.(3.5-1)
Step 5 Calculate and accumulate QO(a).

Step 6 Check whether the counteris i= n. If / # n, add T'to i and go back to
Step 3. If i=n, then go to the next step.

Stop 7 Check whether O(a) is at the minimum point with a .

Stop 8 By using the a,,,, find the optimal G(e,,) and print all calculated values.
END

This cross-validation method possesses the following advantages over the
regularization method :
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@

(3)

The difficulties in the regularization method to obtain the optimal a can
be overcome by using the cross-validation.

The noise and error terms of the observed data can be taken into
consideration by modefying a and by evaluating the sensitivity error
function E(i,a).

The general case of identification problem where the field parameters are a
function of time and space can be formulated by finite difference

discreterization.

- The cross-validation method has the following disadvantages :

M

@)

The time function f(t) must be known.

Since Gfi,a) must be recalculated for different a, the computation time
increases as the number of observed data and the number of space points
increases even though the entire algorithm includes vector and matrix

calculations which are quite simple in structure.

3.6 Least Square Method

It was pointed out in the previous section that identification problems

(3.3-7) through (3.3-10) are usually inverse problem and not well-posed.
Therefore sequential calculation methods which do not involve the matrix

inversion are desired. To this end, a sequential type of the least square method is
introduced in this section.
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Initially the system equation (3.4-1) is transformed to an equation which

does not include the state vector U, as follows :

For k=1,
Y, = CU, = C(AUy+Gf().
For k=2,

Y, = CU; = C(AU +Gf;) = CA%Uy+CAGfo+CGf,.

For k=k
Yy = CU, = C(AU;1+Gfy-1)
=CA*U+CAY1Gf o+ CAY"2Gf, + -« - + +CGfy-y-
For convenience, the initial condition is contained in Y, so that

Y, m Y, — CA*U,.

Therefore,
Y, = C@AF Yo+ AR + AV + - "' If—1)G
= X,G
where
Xp= CA Yo+ AFf + - +1fiy)

Using Eqn.(3.6-7), the error function J'can be written as

-

(3.6-1)

(3.6-2)

(3.6-3)

(3.64)

(3.6-5)

(3-6-6)

(3.67)



7 = 32 - X%6)'(Z - X:G)- |
i= (3.6-8)

In order to find the optimal value G(n), that minimizes the error function J, the

following condition must be satisfied :

3 _o uG=560).
G (3.69)
From this condition, we obtain

-ai - " _ T + T & =
G El{ 2X;Zy + 2X,X,G(n)} = 0. (3.610)

That is,

(SxIx)6m) = 3 (x7z).
k=1 k=1 (3.6-11)

Moreover, we define

P(n) = [ XIX,)7L -
k=1 (3.6-12)

By using these equations, the following sequential algorithm of the least square
method to find the optimal estimate value of G(n) can be finally derived ( see

Appendix A).

G(n+1) = Gn) + K()[Z(n+1) - X(n+1)G(n)]

(3.6-13)
P(n+1) = P(n) — K(n)X(n+1)P(n)
(3.6-14)
K(n) = P(MXT(r+1)[X(n+)P(r)XT(n+1) + 171 |
(3.6-15)

The many advantages of the least square method include :

35



Read Input Data
Measurement Data

!

Initial Guess
G(0) ard P(0)

i

k=0

Eaa

{

Calculate
X(k+1)

¥

Calculate and print
Glk+1) = G(k} + K(K)[Z{k+1) - XTk+1)G(4)]
Plk+1) = P(k) - K{K)X{k+1)P(k)
Kk} = P(OXT(k+ 1) ATk+1)P(KXTk+1) + 2

k <- k+1

Yes
(e )

Fig.3.3 Identification by The Least Square Method




(1) This method has very simple sequential calculation involving the
simultaneous solutions of Eqn.(3.6-13) through (3.6-15). Only the initial
values of G(0) and P(0), which arc selected for the identity matrix as
starting values must be specified.

(2) There is no need to determine a. Therefore the computation time is

reduced.

(3) The computer algorithm is vector and matrix oriented so modern computer
architecture such as array processors can be used to advantage.
However, as in the method described previousely,

(1)  This method also requires a priori knowledge of time function f(r).

3.7 Kalman Filtering Method

In the previous section, the sequential least square method was derived
for the optimal G . In this section, not only the optimal estimate value of G but
also {J; are derived by Kalman Filtering [KoPh76} [BoGr78]. By this approach,
modeling errors by finite difference approximation as well as the random the
behavior of pollution sources are taken into consideration. For convenience, we
regard the parameter value g; as a new vector u,(i) for i=N+1,N+2, .. 2N
defined as :



ru,,(N+1). 2(0) |
wov+2)|  [FA

_ |san -
i ) (3.7-1)
“(2¥) | [gvas)]
Therefore, Eqn.(3.4-1) can be written as a vector expression for each discrete
point as follows :
[ we1(0) | u(0) |

ue+1(1) (1)

() [A(") | F (")] u(N)

- = - 4 == —_
e (N+1) o | 1 ]||«WN+D (3.7-2)
uk+1(N+ 2) u‘.(N+ 2)
_ g 1(2V) J _ 45(2N) |
where O is zero matrix, and / is unity matrix. The vector Eqn. (3.7-2) can be
expressed more simply as :
U(k+1) = @k)U(k)
(3.7-3)
where
U(k) = [uk(o)!ut(l)"-"“k(m rul:(N+ 1)7“&(N+2)s--’“k(m1rs
(3.74)
(B, Ag
C, B, A
C: B; A

A(k) =

Cy By



(3.7-5)

I
S

FiE) = Ji
(3.7-6)

l fi]
We include in the model a term DE(k) which represents unknown random inputs
and/or modeling errors by finite difference approximation so that

Uk+1) = ®R)UK) + DE(k)
(3.7-7)

The mecasurement data are Z;,Z,,..,Z;. Therefore, the system measurement

equation takes the form

Z(k) = HU(E) + m(®) 579)

where m(k) is measurement errors and H is the coefficient matrix. Assume that

g(k) and (k) are random Gaussian noise with the mean and covariance such that

E[£()] = E[n(k)] = 0,

(3.7-9)
E[¢(R)E()] = RYy,
(3.7-10)
E[a()M'()] = OB
(3.7-11)
and
E[t(k)n(N]1 =0  forall'k,
(3.7-12)

The Kalman filter equations are, therefore, expressed as follows : Let J(k[k) be
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the optimal estimate of U(k), given the measurements data

Y(k) = [Z(0),Z(1), - - - .Z(K)]
(3.7-13)

Let the covariance of the estimation error be defined as

E{[U(k) - DRINIUE) — DRI} = P(kiK)
(3.7-14)

Where E{ } represents the conditional expectation. Then the optimal filter is
given by the Kalman formulation :

U(k+ijk+1) = OE)DU (k) + K(k+1)[Z(k+1) — c¢(k)ff(k;k)(]3 ;
-1

K(k+1) = P(k+1k)CT[CP(k+1{)HT + R]™!

(3.7-16)
P(k+1k) = ®k)P(kIK)AK)T + DODT
(3.7-17)
P(k+1jk+1)=P(k+1jk)-P(k+1k)CT[CP(k+ 1|k)CT+R]"1CP(f3+ 71|{2)
with initial conditions .
P(1/0) = A(0)P(0/0)A(0) + DQDT
(3.7-19)

This algorithm has several impotant advantages :

(1) Not only the optimal estimate value of the G(k) but also the state value
U(k) can be calculated sequentially on the basis of initial values.

(2) Not only the randomness of measurement data but also the randomness of
G(k) as well as finite difference approximation errors can be taken into

consideration. -

(3) There is no need to calculate a, as in the regularization method and the
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cross-validation method.

(4) Furthermore, time variant coefficients of system equations can be permitted to
be included in the algorithm.
On the other hand, from the computational point of view,

(1) The vector and matrix size of the algorithm are twice and four times that
of the least-square method, respectively. Therefore, the computation time
will become more and more significant as the vector size increases even

though the algorithm is a relating simple method.

(2) Again, the time function f(t) must be known in advance.

3.8 Dynamic Programming Method

So far the identification problems of the pollution lecation function g(x)
were described while assuming that the time function f(¢r) was known in advance.
In this section, an identification problem of the time functions f,(¢) is discussed
while assuming the space function®g;(x)’s are known. This problem can be solved
by employing the dynamic programming method which is based on the principle
of the optimality of control theory. In order to comform to the dynamic
programming method, the problem statement formulated in the section 3.3 must
be modified.

Suppose that the function g;(x)’s which represent the pollution point source
locations are known and their time function f(r)’'s are unknown so that the
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pollution sources F(x,t) can be expressed as ;

Fa) = Se@fi
=1 (3.8-1)

L
= Zb(x—xh}fi(t).
i=] (3.8-2)
where x,'s, the known pollution source locations, are assumed to be expressed as

the multiple number of the discrete space interval Ax so that

x,=iAx for 1SisL<N
— (3.83)

where L : the pumbes of the pollution source locations

N : the number of the discrete space points

N must be larger than L because the number of the pollution point sources are
restrected on space. The vector equation (3.4-3) can be modified using the
equation (3.8-2) and (3.8-3) as follow :

Up+y = AU, + GF,,

(3.8-4)
where
fi(l,Ax)
fi(l,Ax)
=] 3.8-5)
4 (I Ax) ¢

where the matrix G is determined by the pollution locations. Furthermore the
controllability and observability with the equation (3.8-4) is assumed to be
satisfied in order to be able to determine the F, by the dynamic programming.
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Therefore, the problems tatement can be changed as follows :

Problem Statement —

Given the state equation

Uk+1 = AU, + GF‘:, -

(3.8-6)
the output equation
Yk = CU;,
(3.8-7)
and the observation system
. Zk = CUk + Ri,
(3.8-8)
find the optimal time function F; that minimize the cost function
J = (Zy—CUY)'(Zy—CUy)
N=1 r r
+ S {Z-CU) (Z—CUY) + (FiRF)}
i=1 : (3.8-9)

This .problem can be regarded as a t:rackiﬁg problem to find the optimal
contro] F; that follows the desired function Z; while minimizing the control cost.
By the principle of the optimality, the optimal control F; can be derived from the
following iterative equation. Let vs assume Jy_, to be the cost function needed to

go from the N—k™ stage to the N stage as

IN-t N = @Zn-k—CUn—p)T(Zy-1—CUn-1)

+ FaiRFy-g + Iy-pe1 y (3.8-10)

with



Ivn = (Zy=CUy)T(Zy—CUy)

(3.8-11)
The optimal control Fy_; must satisfy the condition.
a.IN_,‘ N -0
aFy_, (3.8-12)

From this condition and the state vector equation (3.8-6), the following iterative
equations for the optimal control values £, can be derived ( sce Appendix B).

F(N—k) = K(N-k)[Z(N+k—1)-CAUN-k)]

(3.8-13)
K(N-k) = [R+BTCTP(k-1)CB]~'CTBTP(k-1)
(3.8-14)
P(k) = P(k-1)-P(k-1)CB[R+BTcTP(k-1)CB]'BTCTP(k-1)
(3.8-15)
and -
P(0) = I.
(3.8-16)

This equations can be calculated iteratively as indicated in Fig.3.4. First, the P(1)
can be calculated using (3.8-15) with the initial condition (3.8-16). Then K(N-1)
can calculated using (3.8-14) and P(1). The calculated K(N-1) is stored. For
k=2, P(2) is calculated, and K(N-2) etc. This calculation is continued until k=N.
Next the optimal time function F can be calculated using the stored K(N-k) and
the state vector equation (3.8-6). This method has the following advantages : .

(1) Multiple time functions which do not have periodical time pattern can be
identified.

(2) The computer aigorithm is simple.

45



Read Input Data
Measurement Data

!

k=

Calculate

K(N-k) = [R+BTCTP{k-1)CBI1 CTBTP(t-1)

'

Calculate . =  Pi=
P{k-1)-Pk-1)CB{R+BTCTP(k-1)CB-\ BTCTP{k-1)

| k <- k+1

Calculate and Print
FUN-k) = RUN-k)[ Z{ N+ k-1)-CALIN-H)|

l

o - ——

Calculate

U(N-k)

k <-k-1-

Fig.3.5 Identification by Dynamic Programming

“©




However,

(1)  Since the matrix K(N-k) must be stored. A lot of data memory are
required. In particular, memory requirement becomes critical as the
number of pollution locations L and the number of the time step N , N,

increases.

(2) There is no general method to find the optimal weighting matrix.
Therefore, the cross-validation method must be combined with this
method.

(3)  The pollution source locations must be known in advance.

3.9 Limitation of Conventional Methods

To model river pollution systems, several conventional methods are
possible for the identification of pollution souces. The advantages and
disadvantages of each method are discussed above. Improvements over the
regularization method can also be effected. However, two major problems which

are common to all of the conventional methods remain.

First, cither the time function f(t) or the space function g(t), must be
known in advance. However, this assumption is usually unrealistic because in
most cases the time function is not known, and the space function g(t) also cannot
be determined in advance particularly when there are multiple pollution sources.
In another words, both g(x) and f(t) which are both component of F(x,t) must be
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identified simulatenously from measurement data. From this point, conventional
identification methods are severely Limited. It should be noted, bowever, that if
one or both of f(t) and g(x) are precisely or cven briefly determined in some way,
conventional methods can be applied.

The second difficulty is that in all conventional methods computational
burden increses sharply when there is an increase in the the number of space

discreterization points, the number of measurement stations and the number of

time steps.



CHAPTER 4
Pattern Recognition Approach

4.1 Introduction

This chapter introduces pattern recognition as a methodology for system
identification in order to complement the conventional identification methods
rather than replace them. General description of pattern recognition approaches
and applications for pollution sources identification are formulated at each step.
Finally, general of criteria to evaluate the performence of pattern recognition
appproaches are discussed.

4.2 Definitions

Generally speaking, a pattern recognition system is 8 mechanism designed
to use input data {z;,z,, - --,z,} to classify an object into subclasses
{$1,S2, - - - ,S,} by means of extracting features {vy,,y;, - --,y;} which
characterize the subclass S;. Its mechanism consists of four major steps or
functional operations as shown-in Fig.4.1. The sensor first observes a set of
measurement data characterizing systems or objects to be classified. Next the
observed data are conditioned in the preprocessor so as to enhance the observed

signals and so as to reduce the effect of observation noise. Then the feature
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extractor calculates the feature vector y by performing suitable transformations of
the observed data {z;}. The feature transformation is derived so as to enhance the
similarities of objects belonging to the same class while enhancing the difference
of objects belonging to different classes. Finally, the classifier places the objects
into a pattern class §;. The classifier usually makes decision by using a
discriminant function d(v) such that §; is selected when

di(y) > di{y) fori#j
(4.2-1)

where d, is the i-th discriminant function.

4.2.1 Sensors

In order to enhance the validity of the pattern recognition method, it is
desirable to obtain the number of measurement data of high quality. Since in
water pollution studies, observations are usually restricted to a limited number of
measurement poits and to discrete time intervals (or discrete sampling) for

practical reasons, the next two major problems must be carefully considered.
(1) The locations of measurement stations,
(2) Sampling interval or sampling frequency.

The first problem arises from the fact that since continuous measuring sensors in
space are physically impossble, a finite number observations must be made at
optimal measuring locations so as to obtain as much imformation about systems
as possible. This kind of problem is termed as an optimal sensor location
problem. It can be proved that in linear distributed systems the optimal sensor
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Jocation can be determined for a finite number of sensor [Culc76] [AmBm77]
[NaMi80]. However, it is quite difficult to determine the optimal locations for
more general situations. In our rescarch, the locations of the measurements are

assumed to be specified and their optimal locations are not discussed.

The second problem, sampling frequency (or interval ) is also important in
the design and aenalysis of water pollution systems. Until recently because the
resources available for observation were limited. However, the resources available
for the observation of the environment have increased i: recent years and the
determination of the optimal utilization of these resources becomes of practical
significance. The cost of operat.ing monitoring network is likewise related to the
sampling frequency. In another words, if sampling is done too often, data
obtained are redundant and expensive, and on the other hand, if sampling is done
too infrequently, some variable informations is lost. Therefore,the sampling
frequency must be optimized in order to achieve realistic simulations. Some
criteria to evaluate the optimal frequency are based on standard deviation of the
measurement data. If standard deviation is larger, then more frequent samples
obtained. Our research concerned with identification problems after collecting
the observed data. the sampling problem therefore falls outside the scope of our

research.

4.3 Pattern Recognition Systems for Pollution Sources Identification

The pattern recognition systems discussed in the previous section can be

applied for identification of input function as pollution sources shown in Fig.4.2.
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First subclasses S; of the input patterns F,(x,t) equivalent to the pollution sources
are generated by considering a priori knowledge of the physical system under
consideration. Using the Fi(x,f), a mathematical model cquivalent to the actual
pollution system is solved to obtain the output u;(x;,f) at x; which are equivalent
the measurement locations. On the other hand, observed data z(x;) from the
physical system which contains .unknown pollution sources are introduced to the
pattern recognition system. Afterwords, the measurement data z(x;,f) and the
output response u,(x;,f) from the the mathematical model are processed in the
feature extractor to generate feature vectors which characterize similarities and
differences between both outputs. Finally decision making for all input pattern is
done using discriminant function at the stage of classification which subclass the

actual pollution sources belong to.

4.4 Pattern Generation

The first step in the design of any pattern recognition scheme is the
designation of the pattern to be recognized. Each pattern generated is to
correspond to a particular solution of the mathematical model for given input
function. These patterns represent as subclasses of general pollution sources.
Hence in this context pattern generation is equivalent to subclassing the pollution
sources. The subclassing of a system S is results in a partitioning such that union
of these subclasses contains S. There is usually some a priori information
available from physical and engineering considerations to bound the class S. In

some cases the a priori information is sufficient to constrain S to pollution sources



which have the same mathematical expression as the actual pollution sources.
Hence the identification problem of pollution sources is completely solved by
conventional methods. However, frequently S contains many different structural
subclasses S; which contain different pollution source pattern and different source
locations. Therefore, a particular S; must be selected from a set {§,,5,,...,5,} €S.
Thissclectionismadcdirectlyorindirectlyofﬂ:ebasisofthcsystcmobscrvaﬁon
{z(x; )} and mathematical model.

4.4.1 Subclass Generation

Subclasses S; of the class of the pollution sources S described by eqn (2.5-
1) can be generated by

(1)  selecting one or more possible pollution source locations x; so that space

function can be subclassified as follows ;

gi(x) = 8(x~x,) forxgsx =x
(4.41)

(2) setting the time pattern function f; with periodical components f; so that
time function can be subclassified as follows :

1) = f1:0)
(4.4-2)

Type (1) is preferred when it is possible to classify the source locations roughly
into a finite number of selected sources, although they can not be exactly
specified. Some of these might not be problem or can be neglected, while one or

more locations are suspected to be dominant pollution sources. In this case,
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subclasses S; are generated as follows :
Let the nominated pollution source locations be {x;,x;,....x,}. A reduced

subclasses of pollution-sources S; can be described as

S; : F{x,0) = 8(x—x,)fi(t) (4.4-3)

Type (2) is the case when the pollution sources can be characterized by periodic
time pattern, such as daily, weekly, monthly, seasonal, or annual patterns. In this
case the subclasses can generated as follows :

Let the periodic time functions with period be fr;. A reduced subclasses of

pollution sources §; can be described as

S; : Fi(x,8) = gi(x)fr(t)
(4.4-4)

Since the periodic function can be expressed as Fourier series [OtEn78] [BePi71],
Eqn. (4.4-4) can be alternatively described as

S Fin) = g1 + 3 (acos(hun)+ bysin(kon)}
k=]

= 21 + S acos(hor+ )
k=1 (4.4-5)

This kind of subclassing is very useful because the subclasses lead directly to the

feature extraction, as will discussed in subsequent section.
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4.4.2 Partitioning of S

In has been mentioned that the class of pollution sources S is partitioned

into L subclasses such that ; -
s, = 5
‘ - —1
i=1 (4.4-6)

The partitioning of S is most effective for classification if subclasses §; are
generated such that the objective Sy belongs to only one subclass ;. If objective
Sy belongs to all the §;, then the utility of classification is reduced. For this
reason, the subclass should be generated so that S; are a disjoint as possible.

4.5 Feature Selection and Extraction

The second stage of a pattern recognition system design includes the
sclection of features and the derivation and implementation of extractors for
those features. This is commonly referred to as the feature extraction problem.
" In general, feature extraction is the most difficult problem in the design of a
pattern recognition system. A survey of the literature on feature extraction

indicates [Levi69] :

(1) No genéral theory exists to indicate how to select features which are

relevant to a particular problem.

(2) Design of feature extractors is often heuristic employing many ad hoc

strategies.
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However. the following general remarks can be made concerning the feature
extraction problem. In reference to feature selection, features are usually selected
oni the basis of their ability to enhance similarities of elements of the same class
while enhancing the differences of elements of classes. No matter how good a
features is in reference to its ability to discriminate between classes, it is of little

utility if it cannot be extracted from measurement data.

For a general pattern recognition system the type of features extracted
depends greatly on the form of the input. The data from the actual environment
are transformed and preprocessed. Therefore, all features, in the context of the
research described here, are of the mathematical transformations of
measurcments. Mathematical features are extracted by transformations, G, which

map measurement data {z;} contained in a measurement space Z into a feature
space Y, i.c,

Y = G()
(4.5-1)

where v is a feature vector that is characteristic of some pattern. These
transformations are derived utilizing some mathematical property of a subclass
which allows it to be discriminated from other subclasses.

4.5.1 Feature Vectors from Correlation

It has been shown that the utilization of the correlation of systems input
and output as features in pattern recognition to characterize non-linear discrete

systems [SaHo74], and to classify the observed systems according to the order of
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the ordinary differential equation governing the system [THig74], are very
successful. Correlation technique utilized in the literature can be applied in our
rescarch. The procedure to calculate correlation as features is as follows :

(1) First the subclass of poliution source Fi(x,f) is generated. Using the

F(x,t), the mathematical medel is calculated in order to obtain the output

u(x;,t;) at x; which are equivalent to the measuring locations.

(2) Then the auto-correlation A,(x;) of u(x;f;) is calculated [OtEn78]
[BePi71].

Ats) = 3y ) (452

The auto-correlation A,(x;) of the observed data z(x;,t;) is also calculated.

) AP
Az(xj) = -N-kgl[z (Ijttk)] (4.5-3)

(3) Then cross-correlation function between the calculated response u(x;,t;)
and the observed response z(x;,t;) is calculated as follows :

C(Ij,”) = %'-gllz(xj,'t)“(xj!‘k-i-n)] (4 5_4)

The normalized cross-correlation function is then calculated as follows :

(x n) - C(Xj,ﬂ)
PR T VAGAR) (4.5-5)

Step (1) through (3) are repeated for all the subclasses §; and for the

different measurement locations.
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(4) The feature vectors y; for each subclass §; are organized by taking the
cross-correlation or normalized cross-correlation such as

Yi = [C(Ipﬂ)-c(xz»ﬂ),---,C(I..J')]
(4.5-6)

Y = [p(x, ),p(x2,1),... !p(xm )]
.57

One of major advantage of utilizing correlations as feature is that they are
invariant to any uncorrelated noise added to the observation. Another
advantage is that the implementation of correlations can be casily done by signal
processing with high-speed special purpose device. The disadvantage of the
technique is that many correlations for ecach subclasses are required.
Consequently, a great deal of computation is required. However, in a pattern
recognition approach for source characterization, it may be possible to
discriminate between subclasses on the basis of just a few correlations.

4.5.2 Feature Vector from Power Spectra

o

Features can be also derived from power spectra function, as they arise in
typical signal processing, by transforming the time series data into the frequency
domain. In the literature [GoFr74] [ToGo74), power spectra functions are
employed as feature vectors in a pattern recognition system to characterize
nuclear reactor component sureillance. Power specta function can be applied for
the identification of pollution sources. The procedure to generate power spectra is
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eY

()

(3)

)

&)

First the numerical solution u(x,t) over the region under comsideration
based on the nominated pollution source F(x,r) belonging to subclass §;, is
calculated.

The output response u(x;,t;) at (x;,%;), equivalent to the measuring location

and sample time respectively, is extracted.

Then the output response u(x;,t) is transformed into frequency domain
U(x;4f). This transformation is usually executed by Fast Fourier Transform

(FFT) algorithm.

The response z(xf;) observed from the physical system is also

transformed into frequency domain Z(x;,f) using the FFT.

Next the power spectra functions B, (x;,f) and B,(x;.f)

B, = 3 10CNP

(4.5-8)
=1
B.(x;.f) = P B(‘tj’nlz (4.5-9)
and the cross power spectra function B,;(x;.f) of both responses
=1y
Culxpf) = pU xNZ(x) (4.5-10)

are calculated by ordinary signal processing such as, window-functioning,
smoothing and averaging as shown in Fig.4.4, where P indicates the
resolution band of sampling, [|. means frequency average or unsemble

average and U'(xjf) cxpresses conjugate complex number of U(x;.f). At
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the same time, the normalized cross power spectra function, the coherence
function r(x;,f), is also calculated as follows [OtEn78) [BePi71] ;

I Cu(lef) F
B, (xi B (=) (4.5-11)

r (Ij-f) =

Step (1) through (S5) are repeated for all the subclasses S; and for all

different measurement locations.

(6)  The feature vectors v for each subclass S, are organized by taking the cross

spectra function as follows ;
Y= [lcu:(xhnlsru(xbf)lv--’Icuz(xuuf)[l
* (4.5-13)
or
h [r(xhn’r(th)s"-vr(xmﬁ]'
(4.5-14)

The extraction of features from power spectra function has the advantage that the
time function of the original function of the pollution sources can directly lead to
the frequencies which are partitioned into subclasses S; by Fourier expansion. In
another words, features expressed as the frequency component, fr, belonging to
the subclass Sy, has also same frequency component as that of the original
pollution sources. Therefore, a larger value of the feature clement at some

frequency, fr, can be regarded as evidence of original time pattern.
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4.6 Classification

After extracting a set of features, task of classification is executed.
Classification involves the making of the decision as to which of the specified
pollution source patterns most nearly characterizes the original sources under
concideration. This problem canbe approached in a variety ways such as

(1) linear and non-linear discriminant functions,

(2)  clustering,

(3) nearest-neighbor classification,

(4) stochastic approximation.

In particular, lincar discriminant functions are attractive for following reasons;

(1) In some situations the weighting functions can be derived directly from

considerations of the results of feature extraction.
(2) The training procedures for these types of classifiers are well documented.

Therefore, in our research, linear discriminant functions are employed. In

feature extraction, a feature vector vy for a subclass of S can be obtained as :

Y= [71372' ... ’Yn-llr
(4.6-1)

With the inclusion of the residue subclass the feature vector of (4.6-1) becomes

the augmented vector

Ya = [71!12) RN | —lillr
A " (4.62)



The feature vector (4.6-2) indicates a point in n-dimensional space. If this point
lies in a region in the n-dimensional space belonging to the i-th subclass, it is
classified as S;. Mathematically, the determination of region in the n-dimensional
space in which the feature point lies is done linearly with a projection of the
feature vector (4.6-2) onto a set of hyperplanes.

di(Y4) = WYa (4.63)

wi = [wi,wh,...,wl,...,wi]
(4.6-9)

where w' is the weight vector or hyperplane corresponding to the i-th subclass. A
weight threshold w! is chosen for the residue subclass.

w£=w,‘,+wi

(4.6-5)

where w is the weight threshold that would be set if the residue subclass did not
contain the element Sy,(test fails), and where w! is an added threshold to avoid
misclassifications. Utilizing the preceding discriminant functions the decision rule
is

5 if di(vs) > di(va) %]
(4.6-5)

and

di(v4) > 0
(4.66)

otherwise the residue class is indicated.

The inequality (4.6-S) decides which of the non-residue subclasses §; is likely to
contain the distributed system description Sy. If the discriminant function
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evaluation also overcomes a threshold w!, as represented by inequality (4.6-6),
then a classification to §; is made. Otherwise a classification to § residue is made.
This latter classification implies that either Sy is not a member of any non residue
S; or that the test fails. The design of a classifier entails a determination of the
numerical values of w' and w!. The condition under which the features are
extracted (e.g. small errors in the feature extraction) may allow a heuristic setting
of the numerical values of w} and wl. However, in most actual situations w| and
w! must be determined through training in order to attain an optimal performance

of the pattern recognition system.
Training the classifier encompasses the following steps:

(1)  Assemble a training set {y,5°} = {y!,5';¥%,5%...5¥%,5%} of k sample feature
vectors, where ' and §° denote respectively the feature vector and the

label or classification information of the i-th sample feature vector.

(2)  Select a functional J, which, when minimized, yields the numerical values

of wi and w!.
(3)' Select an optimization algorithm to minimize J, .
The first of the above steps entails :

(1)  Select the clements of a subclass w' and simulate these elements with
normalized parameter values.

(2) Record the observations of this simulation (which correspond in time and
space to actual measurement data taken from the distributed system being
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modelled) and add noise to the observations.

(3)  Apply the feature extraction transform to obtain the y’s.

(4) Repeat the above steps fori = 1, ..., n.

Assembling the training set is the biggest computational effort involved in
the pattern recognition approach.
The primary reason for this is that during the training set generation, the system
equation cannot be dissociated from the boundary conditions and the initial
conditions even though the feature extractor may not need this information. For
a typical casc many simulations may be needed. Duda and Hart [DuHa72] listed
several functions, J,(w), and corresponding minimization algorithms that can be
employed in training. Each functional and minimization algorithm has inherent
dvantages and disadvantages which appl to any optimization process and do not
relate directly to the problems at hand. In the course of this research a functional
of the form

L w)=3w )2
:z:' ! (4.6-7)

where vy, are the misclassified feature vectors, is employed. The main advantage
of this functional form is that an unique minimum exists and that the typical
minimization algorithms are gradient type algorithms. That is, they are
algorithms of the form

wit*! = [wl* — BD. VI (Iw
[w] [w]* — D VI, (W] (4.68)

where [w]* is the k-th estimate of the weight vector, &, is the step size and D, is a



positive definite matrix. The gradient of the functional is
VLD = S

ow (4.69)

Since a classification to the residue subclass is always considered a correct
classification ( i.e. if the reside subclass contains the element Sy, the test fails),
then in essence J,(w) can be minimized to zero with classifications to the residue
subclass to climinate errors. Therefore, the object of the training is not only to
minimize the misclassifications but also unnecessary classifications to the residue
subclass. Thus the optimization process is first minimized over w} , ... , w).Then
the threshold w! is adjusted so as to eliminate any misclassifications contributing

to the residue of J,(w).

4.7 Performance Evaluation

Once the subclass most near to the original pollution source has been
found, a computer simulation of the pollution system is implemented for
performance evaluation. After characterizing the pollution sources F(x,t), the
conventional identification methods are employed to specify the parameter values
of g(t) and f(t}. The performance of the pattern recognition system is evaluated
by comparing the simulated output based on the selected pollution pattern F(x,t)
with the measured data from actual system. I the selected pollution source is not
satisfied, then the entire pattern recognition procedure is repeated and optimized
using conventional identification methods. Performance evaluations including the
conventional identification methods will be discussed in the chapter 8 more in



detail.



CHAPTER §
The Monte Carlo Method

5.1 Introduction

This chapter constitutes an introduction to the numerical implementations
of the Monte Carlo methods for the solution of partial differential equations at
the feature generation stage in pattern recognition methods. Finite difference
equations to formulate the Monte Carlo method are derived by discretizing the
original partial differential equations. Then the computer algorithms are
formulated to execute the entire process of the Monte Carlg_ method. Finally the
computational errors contained in the algorithm are characterized.

5.2 Monte Carlo Method for Part{al Differential Equations

Since water quality problems are characterized by partial differential
equations, it takes much computation time to calculate the solutions based on the
subclass of input functions F(x,t). In the course of the classification procedure,
the model PDE’s have to be solved repeatedly for the many possible patterns
F(x,t) in order to produce the calculated data at the measurement locations.
Usually, standard numerical methods such as finite difference methods [VeKa81],
finite clement methods [Zien71] [DeAb72] or the method of characteristics
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[BrPi73] [ReSu70] for solutions of PDE,s are employed. Those methods need to
calculate the solution u(x,t) over the entire region even though only the a set of

solutions (x,7) at the x; equivalent to the measuring stations are required.

By contrary, as an alternative approach to the solution of PDE’s, the
Monte Carlo method [Waso51} [MeYe54] [King51] [Klah60] which is based on
probability theory is employed to calculate the solutions u(x;,t} at only the x;
equivalent to the measuring stations. As an example, let us consider a simple two
dimensional elliptic partial differential equation which describes a steady state

aquifer flow system

ac
ax

a % + 3%
¥ ax? a’ayz

with boundary condition

oc
=0 (xy)eD
ay (5.2-1)

+ b5, + b,

c(xp,ys) = V(xpoys)  (xp.ys) € 9D.
(5.2:2)

It is assumed that the solution c(xy,y;) within D is required. The solution is

carried out in the following steps :

(1) The original partial differential equation (5.2-1) is approximated by the
finite difference method so that the domain D is discretized into regular

grid points at which the difference equation is derived as follows :

c(x,y) = Pic(x+Ax,y) + Px(x—Ax,y) + Px(xy+8y) + Px(x.y-éyg 3

where



()

P = 1(::2 L)

P2 = (sz),

p3 = (—aL —’-).

Ps= (f‘;).
A=(:;‘;+:‘;2+:;+_:L)’

and the following equation is also satisfied :

p1tpatp3tps = 1.

(5.2-4)

(5.2-5)

(5.2-6)

(5.2-7)

(5.2-8)

(5.2-9)

This finite difference equation can be regarded as a stochastic process with

transition probabilities p; through p,.

A series of random walks ( based on a random number gemerator )

starting from location (x;,y;), Which corresponds to the location of the

measuring station are taken. The direction of cach step of the random

walks is determined by the random number £ which is a member of 2

uniform distribution from O to 1 and by the transition probabilities p,

through p, which are characterize by the stochastic equation shown in step

1, such that



€)

“)
)

(3 Direction

0=§=p, (x,y) = (x+Ax,y)

p;<55p1+pz (x,y) - (x—Ax,y)

p1+p2<tE=p,;+py+tp; | (x,y) = (x,y+Ay)

p1t+p2tp3<ésl (x,y) - (x,y—Ay)

Each random walk is continued until it arrives at some point (x,,y;) on the
boundary aD.

When a random walk arrives at some point on the boundary, then the
boundary value V(x,,y;) on this point is recorded and accumulated.

Steps (1) through (3) are repeated for a large number of iterations N.

The average of the accumulated boundary values yields an approximate

solution u(x;,y;) such as

8(11 ,yl) -~ "'i-zlv(xb-J’b) (5_2_10)

The Monte Carlo approach is computationally attractive because

(1)

()

solutions for the entire space are not needed. In another words,
ealmlauons are required for only a few points equivalent to the mcasunng

1 locations, and

The random walks are independent of each other for different series of

solutions and for different locations, so that concurrent calculations are
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possible, and

(3) as shown below residual randomness in the computed solutions may be
suppressed further when correlation functions and power spectra are
calculated.

The Monte Carlo method has been most useful for the solution of two
dimensional problems governed by Laplace’s and Poisson’s equations with
Dirichlet boundary conditions [WasoS1] [LallS4] [Shre66]. However, this method
is equally applicable to parabolic partial differential equations [King51] [Shre66].
A generalized Monte Carlo method can be combined with the solution of a
parabolic differential equations which describes a general pollution system

ou _ X o1& au &, du
—=2>—|2a~——+tau|l+ by — t+bhu+F
at jgl ax; ;-21 Vox, ] 1§1 Tz, (5.2-11)
with initial condition
u(x,tg) = uy(x) xeD
(5.2-12)
and boundary condition
u(xy,t) = uy(r) x, €D
(5.2.13)

The above procedure must be modified as follows :

(1) I the field parameters a;,a,,b; and b arc functions of space x and t, their
transition probabilities are functions of x and t. Therefore, transition
probabilities must be calculated for the entire region within the boundary.
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(2) I the input function F exists, the values of the F at (x,t) at each step of
the random walk falls must be accumulated.

—

(3) Because of the term % each random walk must take the initial condition
into consideration. In another words, a random walk must be stopped

when it arrived at either the boundary or the initial condition t=0.

5.3 The Monte Carlo Method for River Pollution Systems

In order to derive the computer algorithm of the Monte Carlo method for
the river pollution problem characterized by the one-dimensional partial

differential equation
du _ % du
— ——— — — — +
5% 8 Py b(x) rrlai F(x,t) forxeD 53)
where u(x,t) is the BOD, with initia] condition
u(x,tq) = ug(x) for xeD
(5.3-2)
and boundary condition
u(xy,t) = uy(t) for xeaD,
(5.3-3)

Finite difference approximations arc employed to obtain the difference equation
as follows :

u(xt+AN—u(xy) . wlxt+Bx,r)—2ulxf)+u(z—Ax,)
At @ dx?

u(x,t)—u(x—Ax,1)
Ax

- b{x) - cu(x,t) + F(x,)
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(5.3-4)
Here, we define u(x,f)=u,(x) where ¢+=k*DELTAt. Therefore, Eqn. (5.3-4) can
be expressed as:

llt+1(1) = [—A—;Z_]Am*(x+h) + [sz +J")' Amk(x—A.t)

1 _2a _ bx) _ |
+ Ar sz Ax 4 ]Atuk(x) + AtFk(I) (5-3-5)
Moreover, Eqn. (5.3-5) can simply be expressed
Uy41(x) = D {p1(X)upx+A8x) + pa(x)uy(x—Ax) + pa(x)u(x)}
-+ AtFt(x)
(5.3-6)
where
D=—A—iz—A:+ 7:72“*-%1(?_ At + [%—ﬁ——%—c]m
=1 - cAt
(5.3-7)
And, p;(x),p(x) and ps(x) are expressed
1 ’ a
= —|-25]a
PO =D \Mz] ‘ (5.3-8)
- _1. a_ _u]
) = 11 _ 2a _ blx) _ ]A



And where

pi(x) + pa(x) + pa(x) = 1
(5.3-11)

Therefore, equation (5.3-6) can be regarded as a stochastic process with transition
probabilities (5.3-8) through (5.3-10). Based on the stochastic equation (5.3-7)
and the transition probabilities (5.3-8) through (5.3-10), the computer algorithm

can be devéloped as follows :

Supposec the solution #(x;,7x) at x=/Ax and #=KAt is required.

0)

1

2)

3)

Calculate the transition probabilities p,(x), po(x) and pi(x) at all x in the

area under consideration and store in a table.

Set the time step index k at K. Set the space step index i at I so that
x=IAx. Set the resister Z to 0.

Generate the sequence of random number, § which is distributed from 0 to
1.

Start a random walk from point x as determined by

P1(x),po(x),p3(x) and §, and proceed to the neighboring grid point
according to the following table



£ i k Direction

Ostsp, i-i+1 | k<k—1 | (x,0)=(x+Ax,t—Ar)

p1<tspi+py | i~i—1 | k=k—1 | (z,8)~(x—A&x,t—-Ar1)

p1+pa<t=1 | i-i k-k=1 | (x,0)~(x,0—Ar)

and accumulate the input function value AtF;(x) in resister Z.

4

Z <ooee AFy(1)DED

If the random walk arrives at a boundary point x; for k > 0, then the
boundary potential () is accumulated.

If the random walk is found to be an internal node for k = 0, then the
initial value uy(x) is accumulated. —

Z <-- Ug)p
Continue the process (steps<2 to 4) for a large number of iterations N.

Calculate the average value of N trials and print it. This result is the

approximate solution.

~ L
u(xig) = 5

The enﬁreprowss(l)through(ﬁ)mﬁberepcated for different times t = Kdt.
This process can be also applied for two or three dimensional river pollution



systems by only changing transition probabilities.

§.4 The Monte Carlo Method for Aquifer Systems

The Monte Carlo method can be also applied to aquifer systems. Let us
consider the two-dimensional parabolic partial differential equation.

oh _ o[, an), o[, an
LI ) N o 1. - B
5ot T [K‘ ax] ax [K’ ay] 0G1)

(5.4-1)
with initial condition —
h(x,y,ta) = holx.y)
(5.4-2)
and boundary condition
| h(xb:yb,t) = hb(‘)
- (5.4-3)

By the finite difference method, Eqn. (5.4-1) is approximated as a difference

equation
s 1(x,y) = p1(x.y)he(x+Ax,y) +polx,y)h(x— Ax,y)
+p3(x.y)hp(x,y +Ay) +po(x,y) A (x,y — AY)
+polx. 3 h(x,y)+ A0, (x,y)
(5.4-4)
where
o At
pi(xy) = szxxi-h (5.45)



and_-

At
px.y) = z;z-Kx-Ax

(5.4-6)
At -
pi(x.y) = —3K,4a
AyZ y+38y (5 4_7)
Pa(xy) = —=K
4\~ - +Ay o
Ay2 7" (5.4-8)
potp1tpatPitpPs =1
(5.4-9)

Equation (5.44) can be regarded as a stochastic process with transition

probabilities pq through p4. Therefore, based on Eqn.(5.4-4) through (5.4-9), the

computer algorithm can be developed similar to that of the river pollution

problem.

Suppose the solution k(x;,y;,T) at x=7Ax,y=JAy and +=T=KAt is required.

0)

1

2)

3)

First calculate the transition probabilities p; through p, at all x,y in the

domain D under consideration and store it in a table.

Set the time step index k to K. Set the space step indices (i,j) to (I,J) so
that x=/Ax and y=JAy. Set the resister Z to 0.

Generate the sequence of random numbers § which distributed uniformly
from 0 to 1.

Start a random walk from the point x,y such that the direction of the first
step is determined by
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£ Lj X Direction
R

0=t=p, | G)-G+1J) | Bk—1 | (y.0)=(x+Ax,y,e= A1)

p1<ESp12 ('J)"(i-laj) k-k—1 (x,y,r)-(x—A.t,y,t-—At)

p1a<Espyy | ()=(i+1) | k=k-1 (x,y,0)=(x,y+Ay,t— Af)

p13<Es=pyq | (i)-(j=1) | k~k-1 (x,y,8)~(x,y+4y,t—At)

pra<tst | (@)-0J) | k=k-1 (x,y,8)~(x,y,t—Af)

where

Pa=pP1t P2

(5.4-10)
pa=prtpP2tp3 -
(5.4-11)
pa=pP1+t P TPyt Py
(5.4-12)

and accumulate the input function value AtQ,(x,y) in resister Z.

Z <----- A1Q(x,y)

4) if the random walks arrives at a boundary point (x;,y;) for k > 0, the
boundary potential () is accumulated.
If the random walk arrives at a initial point (x,y) for k = 0, then the
initial value ho(x,y) is accumulated.



Z <o h5,3)
5) Continue the process (steps 2 to 4) for a large number of iterations N.

6) Calculate the average value of N trials and print it. This result is the

approximate solution at x=x; ,y=y; and =1,
~ Z
u(xpy,0g) = N -

The entire process (1) through (6) can be repeated for different time t=KAt. This
process can be applied for both aquifer flow problems and quality problems with
two or three dimensional equations

5.5 Errors in the Monte Carlo Method

There are several errors involve in the Monte Carlo method. In particular
the following four sources of errors are significant [Shih74] [Thudé65] [Shre67] to
analyze the accuracy of the solution of partial differential equations.

(1) Local truncation error : E,
(2) Statistical error : E,
(3) Random number error : E,

(4) Grosserror : E,



The local truncation error, E;, is caused by the finite difference
approximation of the original partial differential equations. Since E; is equivalent
to the truncation error which involves in the finite difference method, the error
can be analytically evaluated. In general E; can be reduced by decreasing the
space step size Ax and time step size At.

Statistical error, E,, is due to the fact that the number of random walk
trials, N, are finite. Since the Monte Carlo method is based on the low of
probability, a large number of random walks should be taken in order to obtain
the solutions of partial differential equations. E, for the finite number of trials
can be evaluated by using the central limit theory as follows:

Let Z; ( equivalent to the value in the resister Z for i trial ) be random variables

with the expected value

(5.5-1)
and variance
Var[Z] = b?
(5.5-2)

As discussed in Sec. (5.2), the solution u(x,y) at (x,,y;) of the two dimensional
partial differential equation in Eqn.(5.41) by the Monte Carlo Method is given
by

1 XN
u(xy) = 5 2Z
Nia (5.5-3)

By the central limit theorem of the-theory of probability, the distribution of
u(xy,y,) for large number of N can be approximately expressed by Gaussian
distribution with the expected value



Efu(xy,y)] = m
(5.5-4)

and variance
bl
Varlu(xy, )] = 0% = ==
i (5.5-5)
Therefore, by applying the rule of "Three Sigma” to the distribution of u(x;,y;),
the following equation is obtained.
P{m-30 < u(x;,y;) < m+3a} = 0.997

(5.5-6)
By substituting Eqn.(5.5-5) into Eqn.(5.5-6), the following equation is obtained.

3 3,
P{m--\—-/_h—’ < u(xy,yy) < m+ \/ﬁ} 0.997 (5.5.7
Eqn. (5.5-7) can be rewritten as follow :
—mle22 = '
P{lu(x,,y1)—m|< \/}Tr} 0.997 (5.58)

Eqgn. (5.5-8) means that the probability that the absolute value of the statistical
error, E,, is smaller than 3b/VN is almost 1. In another words, E, can be
restricted by both b and N as follows :
3b

E, = e - ml < T 659
In general, it is impossible to exactly calculate the variance b” because it depends
on the transition probabilities, the boundary regions and the values. However
upperboundofthevaﬁancecanbeawmximatelymﬁictedbyselecﬁngthe
maximum possible value of Z;, max|Z;], although this is not best tight bound.
Therefore, upper bound of the statistical error of the solution by the Monte Carlo
method can be restricted as follows :



max|Z|
E,<3
$ SN (5.5-10)

It is noted E, cannot be so much improved even the number of the trials N is

increased because of deviation of V.

Random number error, E, is originated by the non-uniform distribution or
biased ditribution of ramdom number which is generated by ramdom number
generater of computer subroutine. This kind of error can be avoided by changing
the seed of ramdom number generater after enough number of generation or
selecting the different randum number generater. It is important to evaluate the
statistical nature of the generated random number in order to confirm whether

the distribution of the generated random number is uniform and unbiased.

Gross error, E,, is essential error of the Monte Carlo method which uses
the finite step size of random walks and the restricted directions ( i.e., four
neighbourhood grid points ). This kind of error can be reduced by selecting the
smaller value of the step size and/or high order finite difference approximation of
the original equation. On the other band, the computation time increases as the
number of grid points is incresed.

5.6 Numerical Implementations —

In this section, numerical implementation of the Monte Carlo method to
solve the parial differential equation for the two-dimensional steady state aquifer
flow system and the one-diemnsional river pollution system is presented. The



solutions by the Monte Carlo method are compared with the solutions by the

finite difference method with convergence and computation speed.

5.6.1 Two-Dimentional Aquifer flow Systems

In order to demonstrate the implementation of the Monte Carlo method
for the solution of the aquifer flow system, the follwing simple two-dimensional

steady state equation in Eqn. (5.2-1) is employed.

o%u ﬁ ou du

— + +b—+b—=0 ) eD
Gy axz a.\’ ay2 * ax y ay (I y) € (5.6.1)
with the boundary region
0=x=x13x, 0sy=<y,
(5.6-2)
boundary condition
u(x,y,) =10 for0=sx=ux,
(5.6-3)

otherwise u(x,y) = 0.0

As the numerical values of the parameters, the boundary region and the space
step size, the following dada are employed :

a, = 0.35
= 0.30 (5.64)
AR (5.6-5)
b, = 0.25
(5.6-6)
b, = 0.10
(5.67)
Xp = 2-0
(5.6-8)



Yp = 2.0
(5.6-9)

(5.6-10)
From Eqa. (5.2-3), the finite difference equation can be expressed as follows :

Ax = Ay = 0.05

u(x,y) = 0.35u(x+Ax,y) + 0.3u(x—Ax,y) + 0.25x(x,y+Ay) +_0.1u_(1,€5—£¥)

It is assumed that the solution u(0.3,0.3) is required. The solution u(0.3,0.3) is
calculated by both the Monte Carlo method and the Jacobi method which is
classified as iterative finite difference method. The solution by the Jacobi method

is as follows :

l‘(i"'1)(,_."‘,)==0_35.,(1)(,;+A.z,y)+0.3u(')(1:—Ax,‘)v)+().?.5u(i)(1:,y+Ay)-i-O.llt(')(.t,y--Ay) )
(5.6-12)

with the initial starting value

#O(xy)=0 for0sx=sx, 0sysy,
(5.6-13)

Fig.5.6.1 presents the solution u(0.3,0.3) by the Monte Carlo method and Jacobi
method for changing the number of random trials, M, and the number of
iteration, I. The solution by the Monte Carlo method gives rough solution for
relative small number of radom trails ( more than 200 trials). On the other hand,
the solution by the Jacobi method needsmore than 1000 iteration to give the same
accuracy as the Monte Carlo method. However, the Jacobi method converge at
more than 2000 while the Monte Carlo method need more than 10000 random
trials. Fig.5.6.2 presents the computation time for the calculations of u(d.3,0.3)
in Fig.5.6.1 by both methods. Obviousely, the Monte Carlo method is about ten
time faster than the Jacobi method for the same number of iterations. As results,
the Monte Carlo method can calcuaite rough solutions with high speed. As
reference, Fig.5.6.3 presents the computation time for the solutions of the three-
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dimensional aquifer flow equation by the both methods. In this calculation, the
parameter values and boundary region and boundary values are the same as in
case of the two-dimensional case. It is obviouse that the computation time by the
Monte Carlo method is only twice as the time for two-dimensional eqation,
whress, the computation time by the Jacobi method extremely increases compared
with in the case of the two-dimeasional equation. Therefore, the Monte Carlo
method is more powerful for the calculations of high-dimensional partial
differential equations.

5.6.2 One Dimentional River Pollution System

The numerical values for one dimensional river pollution system is

assumed as follows :
du _ 3 ou
L g - b(x)— —cu+ F(x,t) forxeD for x D
at x> ax (5.6-14)
with initial condition
u(x,tg) = ug(x) for xeD
(5.6-15)
and boundary condition
u(xy,t) = wy(t) for xedD, -
(5.6-16)

Finite difference approximations are employed to obtain the difference equation

as follows :

u(x t+AN—u(x,t) . :+Ax,t)-2u(x,t)+u(x?-Ax,t)
At
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- B(x) “(x")—';%-h"l — Cu(x,‘) + F(x(’st.)6-17)

Here, we define u(x,t)=u;(x) where t = k*Ar. Therefore,

up+1(x) = D {p1(x)up(x+4x) + Pz(x)“t(x‘h) + pa(x)u(x)}

+ AtF I:(I ,‘)
(5.6-18)
The numerical values of the system are assumed as follows :
a =05
(5.6-19
b=0.5 )
(5.6-20)
c=01
(5.6-21)
F(x) = sin(x)
(5.6-22)
ug{x) = 0.0
(5.6-23)
u,, = 0.0
(5.6-24)
Uy, = 0.0 -
(5.6-25)
The step size and the boundary region are
Ax = 0.17
5.6-
Ar = 0.02 (5.626)
(5.6-27)
The time and the space regions are
0=t=s200 O0sx@0n
(5.6-28)

'I‘herefore,thcnumberofthcspaecstep,N,andthcnumberofthetimcstep,K

arc

(5.6-29)



K = 500

(5.6-30)
It is assumed to solve the solution u(x,,,T) where
X, =157 T =10.0
(5.6-31)
Using these numerical values, the transition probabilities are as follows :
p; = 0.10152
(5.6-32)
px = 0.13342
- (5.6-33)
Px= 0.76606
(5.6-34)

As the random number generation, the conguentional multiply method was
employed because of its simplicty and fast generation. The computational results
are presented in Fig.5.6.3 which shows the solution w(1.5m,10.0) by both the
finite difference method and the Monte Carlo method for different number of
random walk trials, M. From the computational stability condition of the explicit

finite difference method, the time step size must be satisfied :
1 _
a b
4 _ .2 _ 5.6-3
reRay ki (5.6-35)

This condition is also required for the Monte Carlo method in order that the all

Ar <

the transition probabilities P; for i=1 to 3 are

P, < 1.0 fori=1,3 |
(5.6-36)

It can be secen that the solution by the Monte Carlo method graduateley
approaches to the solution by the explicit finite difference method as the number
of random walk trials, M is increaed. The relative error for the solution by the
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finite difference method can be attained within 1.0 % for more than 100 random
walk trials. Fig.5.6.4 presents the CPU time of the VAX-11/750 for calcultions of
the solution of the ¥(1.57,10.0) by both the explicit finite difference method and
the Monte Carlo method. In order to calculate the solution ¥(1.5w,10.0) by the
finite difference method, the finite difference calculation must be executed not
only for all the grid points x; (0 < x; < 4.0 ) but also for all the time steps
(0 < ¢ <10.0). In the Monte Carlo method, on the other hand, the solution
u(1.57,10.0), which is independent to the other grid points and other time steps,
can be directly calculated. Fig.5.6.5 presents the solutions of u(1.5mw,r) for each
time. For the transient period, the solutions by the Monte Carlo method are
almost same to the solution by the finite differece method, on the other hand, for
a steady state, the solutions behave like Gaussxa.n distribution with the mean

which is equivalent to the solution by the finite difference method.
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CHAPTER 6
The Entire Identification Process

6.1 Introduction

This chapter organizes the entire identification procedures and combines
the pattern recognition approach with possible conventional identification methods
to determine the unknown poliution sources. First the pattern recognition
approachr discussed in Chapter 4 is employed to characterize an intermediate
structure of pollution sources. Then various function identification or parameter

identification methods discussed in Chapter 3 are applied.

6.2 Combination of Pattern Recognition and Conventional Methods

Using the pattern recognition approach, the mathematical structure of
pollution source can be characterized. In addition, in order to identify the
pollution sources more exactly, various conventional identification methods can be
used to advantage. Therefore, the entire identification method can be a
combination of the pattern recognition method and the conventional methods such
as the least square method, the cross-validation, the Kalman filtering or the

dynamic programming method etc.



The first step of a total identification of pollution sources is to decide

whether the pollution sources can be regarded as a finite number of point sources

such as
Fr=38G-2)/(0)
i=1 (6.2-1)
or distributed source type such as
F(x,0)=g(x)f(1).
(6.2-2)

This classification is based on on a priori knowledge of the actual situation such

as :

1) pollutant area, namely, whether it is an industrial area or an agricultural

area or a town area, etc.,
2)  the number of suspected pollution sources,

3) predicted pollution pattern, i.c., daily pattern, weekly pattern, monthly
pattern, seasonly pattern, etc.

Next, the pattern recognition approach is introduced to characterize the pollution
sources by an intermediate structure. Suitable subclasses of pollution sources are
then generated. For example, for distributed sources, time patterns with an
explicit periodity of f(t) might be nominated. Alternatively, for point sources, the
locations of pollution sources arc nominated by considering the actual
environment. Then features are extracted in order to enhance the similarities and
differences between the original pollution sources F,cr(x,t) and the generated

pollution subclasses F;(x,r). Next, the discriminant function d; is formulated, and
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a decision is made as to which subclass of the generated pollution source is the
most close to the original pollution source. In this way, the intermediate pollution
structure is characterized. After characterizing the pollution source structure, the
specific pollution sources are determined by specifying their functions or their
parameters using suitable conventional identification methods. Finally, the
evaluation of the entire identification procedure is carried out by implementing
simulation using the mathematical model. The total identification procedure is
indicated in Fig.6.1. In the following sections, the entire identification processes

for each type of pollution source is discussed.

6.3 Entire Identification for Distributed Pollution Sources

In this section, it is assumed that the pollution sources to be identified can
be regarded as the distributed type of pollution sources, expressed as

F(x,) = g(x)f(1)

(6.3-1)
where both the space function g(x) and the time function f(t) are assumed to be
unknown. As one basic approach to the total identification procedure, the time
pattern function f(t) in explicit form is first determined while the space function
g(x) is assigned any non-zero value ; then the space function g(x) in implicit form
is found by the conventional identification methods.
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Identification of
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Identification of
Time function f{{)
by Conventional Approach

Evaluation

Fig.6.1 The Entire Ideatification Process




6.3.1 Case 1 : River Pollution System with BOD Measurement

Let us consider the river pollution system which is discussed in section 3.2
and characterized by the one-dimensional parabolic partial differential equation

with BOD index u(x,f)
au :i'; - b 3L -~ au + g0 (6.3-2)

where a and ¢ are assumed to be constant, and b(x) is a function of x,

the initial condition
u(x,0) = ugy(x)
(6.3-3)
and the boundary conditions
u(xgf) = iy, (2)
(6.3-4)
l‘(xf!‘) = “x,(‘)' (6.3'5)

The BOD measurement data can be obtained from actual measuring stations at

X, With measurement noise

2(xpsty) = U(Xmpsti) + B(¥mpty) for j=1,...M
(6.3-6)

where M is the number of measuring stations. Now the problem is to identify the
unknown pollution source F(x,t)=g(x)f(t) from the BOD measurement data
(6.3-6), using the mathematical model (6.3-2), the initial condition (6.3-3) and
the boundary conditions (6.3-4) (6.3-5). The basic approach to this problem is to
identify first the time function f(t) by the pattern recognition approach and then
1 identify the space function g(x) by conventional identification methods as
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presented in Fig.6.1.

The first step of the pattern recognition approach is to generate the
subclasses S; of the time pattern f;(r). Possible pollution time pattern functions are

nominated

S: f{=1+ é{A,,eosnmt + B, sinnwr}

n=] (6.3-7)
or
=1+ }‘_‘,{a,,eos(nmt + ¢,)} w=2_1r
A=l T (6.3-8)

The basic period T of the time pattern is generated based on a priori knowledge,
such as daily, weekly or seasonal patterns. If the pollution source can be
regarded as having a daily time pattern, the basic period T is taken as 1 day.

Therefore, the nominated pollution pattern can be expressed as a summation of
multiple basic frequency components, -23'1,1, as in Eqn.(6.3-7) or (6.3-8). It is
noted that there is an important relationship between the S; below :

SICSZC f et CS‘C ‘e CS,
(6.3-9)

Therefore as increasing the index "i" of subclass §;, the generated time pattern f;
can close to the original time function f,r. Depending upon the generated time
pattern, Eqn. (6.3-1) is solved numerically by the finite difference or the finite
clement method in conjunction with the Monte Carlo method. The calculated
solutions u;(x, %) Which are equivalent to the measurement location data are
stored as output data. In this case, the space function g(x) can be simply replaced

by a non-zero value, because resulting feature vectors are not affected by g(x).
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The term g(x) can be identified later by the conventional identification methods.

The second step is to select these features which can serve to enhance the
similarities and differences between the original time function f,cr(f) and the
generated subclass of the time pattern fi(r). As suggested in Section 4.4, the
correlation function or the coberence function can be employed to advantage.
Here, the normalized correlation function is used as an example. Before
calculating the output u,-(x,,,j,t), the parameter values a; and ¢; must be specified
as initial starting values. Then these parameter valucs are optimized in order to
maximize the features. This procedure is readily executed by conventional
parameter optimization approaches, such as the steepest decent method, the
Newton-Raphson method, the Gauss-Newton method, the eonjugﬁtc direction
method, etc. After the determination of the optimal parameter values ¢; and ¢;
the feature vector v,(x,,) based on the subclass S; is obtained-as follows :

Vi = [cflam)cilam). - - - €ikEm)1] (6.3-10)

The next step is to calculate the discriminant function d(y,). Here, we can
employ the lincar discriminant function which was introduced in Section 4.4 such

as
d(y) = Wyl
(6.3-11)
where the weighting vector W is
1 1 1
W= == ...,
[*“ M M ] (6.3-12)

where M is the number of measurement stations. The weighting vector W is
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somewhat hueristic, but quite reasonable because the calculated feature elements
are equally weighted, summed, and subtracted from the threshold values e.
Thus, if

d(y;) > 0,
(6.3-13)

S, is sufficient to describe the original time function £,r(f), i.c. to determine the
optimal time function f;(#)=fopr(t)=ficr(t). Otherwise, the other subclasses S
for (i-i+1) are tried until Eqn. (6.3-13) is satisfied.

Once the time function has been identified by the—'pattcm recognition
approach, the next step is to determine the space function g(x). At this stage
several conventional identification methods can be employed as discussed in
Chapter 3. Here as an example, the least square method is employed to
determine the nodal vector G of the space function of g(x). In order to formulate
the least square method, a state vector equation which is derived from the
original equation (6.3-1) by discretizing the space coordinate x into a finite
number of the discrete points jAx for j=1,..,N, is derived as described in Section

3.6. The vector equation can be written as

Ur+1 = AU, +Gfy

(6.3-14)
The output equation is
Yk = CU;
(6.3-15)
and the measurement equation is
Zy =Y, +nm
(6.3-16)

where matrix A is the transition matrix determined by the field- parameters
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a,b(x),c. C is the output matrix determined by the measurement locations x,,. G

represents unknown space function vectors to be identified

G = [3(0),8(Ax),8(2A%),...,s(NAX)]T -

(6.3-17)
and f; = fo(t;) is the optimal time function that was determined by the pattern
recognition approach. The space function vector G can be determined by
minimizing the cost function

& T
J=3W~Z)' (M~ 2Zy)
k=1 . (6.3-18)

As shown in Chapter 3, the least square methods can give the optimal value of G
by calculating the following sequential expressions

G(r+1) = G(n) + K(n)[Z(n+1) — X(n+1)G(n)]

(6.3-19)
P(n+1) = P(n) — K(n)X(n+1)P(n)

(6.3-20)
K(n) = P(n)xr(u+1)[X(n+1)P(n)XT(n+1) + I]_1

(6.3-21)

with iitial starting values G (0) and P(0). As indicated in Eqn. (3.3-36),

X(a+1) = C(AYo + A"y + .. + If,)

(6.3-22)

However, X(n) can alternatively be calculated by the state vector equations

S(n+1) = AS(r) + If(n) - 6325

X(n) = CS(n) 6324

By calculating the sequential algorithm of the least square method from (6.3-19)
through (C with initial starting values G(0) and P(0), the optimal space function
value G can obtained. As a result, the entire identification procedure can be
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summarized in Fig.6.2. -

6.3.2 Case 2 : Pollution Identification from DO Measurement Data

In this section, the entire identification procedure of a distributed pollution
source identification using dissolved oxygen (DO) measurement data is derived.
It is recognized that since DO measurement data have less measurement noise
and since sampling and measurement are easier than in the case of the BOD, a
higher accuracy of the identified function can be expected. On the other, the
identification of pollution sources from DO measurement makes it necessary to
calculate both the BOD and DO equations simultaneously since the pollution
source F(x,t) affects the BOD index, but does not affect directly the DO index.
'IheDOequaﬁoncanbecxprasedas

oV _ _Q_z_[ - gv _ - - -
a Yo b@) 5 — Ky = v) ~ K (6.3-25)
with initial condition
v(x,0) = vo{x)
(6.3-26)
and boundary conditions
v(xg,t) = v, (1)
(6.3-27)
v(xp,t) = 0 (6.3-28)

The DO measurement data from the environment can be expressed as
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|

Patterp Generation
S: 1+ '}_J:lancos( nwt+Go)

&-

Calculation of System Equation
.%.‘t‘._ = a.gil_‘. - b(:)-g%+ cu + f{)

I

Calculation of Correlation function
c(:,,.j)

y

Determination of Parameters
&, ¢i

Extraction of Feature Vector
qi = [e(zZm1), 6{ Zm2),-.. e(ZmAd)]

¥

Discriminant Funection —
dy) = W4 t+—1+1

] .
< Is the discriminant function /\No

dvi) > 07

Yes l Determination of A#)

e

Determination of Space Function
g(x) by the least Square Method

G(n+1) = G(n} + K(n)|Z[n+1) - X{n+1)G(n)]
P(n+1) = P(n) ~ K{n)X{n+1)P(n)
K(n) = P(n)XT(n+1)[X{n+1)A{n)XTn+1) + ]2

{ Determination of gz)

Evaluation

Fig.6.2 Distributed Pollution Source Identification from BOD Data
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w xmj’tk) = V(xmp‘k) + f(xm,.tg) for j=1,...M
(6.3-29)

where M is the number of measurement stations. The problem is to identify the
distributed pollution source F(x,t)=g(x)f(t) from the DO measurement data with
the aid of the two mathematical models Eqn.(6.3-1) and Eqn. (6.3-25) along with
their initial conditions and boundary conditions. The basic identification
procedure is same as that for the BOD except that

1) the BOD equation (6.3-1) and the DO equations (6.3-25) must be solved

simultaneously to calculate the v(x,,;) equivalent to the measurement

data at the pattern generation step, and

2) the state vector equation must contain both the BOD state vector as well

as the DO state vector when applying the least square method.

The first step of the pattern recognition approach is to generate the
subclass §; of time patterns. Possible pollution time pattern functions f,(¢) are
nominated in the general form of Eqn.(6.3-7) or (6.3-8). Based on the generated
time pattern fi(¢) with g(x) taken as 1, the outputs Vi(xm,sti) are calculated and
stored. Next the features ( the correlation function or the coherence function )
are s«rjlected. The feature vectors v; are formulated by optimizing the parameter
values a; and ¢; in Eqn. (6.3-8). Then the linear discriminant function d/(y) is
calculated. Thus, if d,(y) > O, then S, is sufficient to describe the original time
function fycr(f). Otherwise, another subclass S; for (i-i+1) is tried until Eqn.
(6.3-13) is satisfied.
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Once the time function has been identified by the pattern recognition
approach, it is necessary to determine the space function g(x). In order to
formulate the least square method, a state vector equation, which includes both
the BOD state and the DO state must be derived. Since the BOD state equation
has already been derived in the proceeding section, only the DO state equation is
formulated below. For simplicity, we define a new DO index v(x,t}=v,—v(x,1),
so that Egn. (6.3-25) can be replaced by

v _ 8 b(x)%:— -Kyv— Ku

a Yo (6.3-30)

The new DO equation is discretized by the finite difference method so that

v(zt+A1) — v(x,t)
At

ﬁv(x+A.t,r) - 2v(x,))+v(x—-Ax,1)
Ax?

v(x,0)—v(x=Ax,t) _ Ev(x,0) + Ka(x,r)
Ax (6.3-31)

- b(x)

v(x,t+At)make = pi(x)v(x+Ax,t) + pa(x)v(x,¢)

+ pa(x)v(x—Ax,r)+ArKu(x,t)
(6.3-32)

For x=iAx and r=kAt, Eqn. (6.3-32) can be written as
Vi+1(0) = p1(@vy(i+ 1) +p()v () +pa(v(i—1)+AK u(i)
(6.3-33)
Where the coefficients p,(i),p,(¢) and p4(i) are defined as :
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alt

py(i) = A 6334)
N = |1 _ 2aAt _ bli)At _
pAi) {1 A2 Ax KA'} (6.335)
) = {aA: _ b(i)At}
PO~ (ad ™ Tas (6.3-36)
Equation (6.3-33) can be expressed by the state vector equation as
| Vl+1 = AVt + RU&
(6.3-37)
where
Vi = [vi(0),vi(Ax),v,(2Ax),...,v, (NAX)]T
(6.3-38)
p2(0) p1(0)
p3(1) pa(1) py(D)
4 - px(2) pA2) py(2)
(6.3-39)
L P3(N) pZ(N)_
Y. &
AK,
AKX,
R =
(6.3-40)
Ak, |

Therefore, the new DO equation and the BOD equation are calculated

simultaneocusly as
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Ui+r = AU + Gfy (6.341)

Vk-i-l = AV, + RU; (6 3-42)

Then these two equations arc merged into one vector equation

Visy =AVi + Gfi

(6.3-44)
The DO measurement data can likewise be expressed as
m-loc][] +&
: Vi (6.3-45)
or
W, =CVi+ &
(6.3-46)
The term X which is referred to in Eqn.(6.3-23) can be expressed as
S'(n+1) = A'S(n) + If(n)
(6.3-47)
X'(n) = C'S(n)
(6.3-48)

Therefore, the formulation of the least square algorithm from DO measurement

is the same as for BOD measurement i.c. :

G'(a+1) = G (n) + K (n)[W(n+1) - X'(n+1)G'(n))

(6.3-49)
P'(n+1) = P'(r+1)—K'(n)X (n+1)P'(n) o

(6.3-50)
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K'(n+1) = P(mXT[X'(n+1)P (X T(n+1) + 1]}
(6.3-51)

with initial guessed values G'(0) and P'(0). By carrying out the scquential
algorithm of the least square method from Eqn.(6.3-47) through (6.3-51) with the
initial starting values, the optimal space function value G  can be obtained. The

eatire identification procedure is summarized in Fig.6.3.

6.3.3. Case 3 : Pollution Identification in Aquifer Pollution Systems

In this section, the entire identification procedure of aquifer pollution
systems with a distributed pollution source is derived. The mathematical
expression of a one-dimensional aquifer pollution systems can be characterized by
the three equations, i.c., the ground water flow equation :

0 éh, _ . 3h
ax(Kax)_sat +o

(6.3-52)
with initial conditions
h(x,tg) = ho(x) xeD -
(6.3-53)
and boundary conditions
R(xg,1) = -
(x0st) = h,(2) (63-54)
h(xp,1) = h.(t) xedD
(6.3-55)

where
h : hydraulic head -
Q : volume flow rate : constant

K : hydraulic conductivity tensor : a function of x
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Fig.6.3 Distributed Pollution Source Identification from DO Data
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S : specific storage : constant

the dispersion equation
dc é . dc d Q
— = —D=)- —(») - + F(x,0)
ot ox' ox ox n (6 3. 56)
with initial conditions
c¢(x,0) = c(x) =xeD
(6.3-57)
and boundary conditions
C(Io,t) = cxo(t)
(6.3-58)
c(xpt) = c (1) x9x,€3D -
S 4 (6.3-59)
and the Darcy equation
_ K oh
Y = —— -
n ox (6.3-60)
where
¢ : pollutant concentration

D : coefficient of dispersion : constant

n : effective porosity (dimensionless)

F = g(x)f(t) : pollution source source or sink fluid
Observations of pollutant concentration are made directly at observation wells at
a finite number of locations where the pollution concentrations can be observed at
selected times in the presence of noise and error. Therefore, measured data can

be expressed as :
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2(xp ty) = (amat) + e(Xppts)
(6.3-61)

for j=1,...,M where e(x,,,!;) are measurement noise and error.

Now the identification problem is to determine the pollution sources
F(x,t)=g(x)f(t) from measured data z(x,,,t;) and the mathematical models. The
basic procedure of the entire identification of aguifer pollution source is same in
the case of the river pollution syst®ms except that

1) the ground water flow equation and the dispersion equation as well as
Darcy’s velocity equation must be solved to calculate the potlutant

concentration ¢(x,,%;) equivalent to the measurement data at the step of

pattern generation, and

2) the state vector equation must contain both the flow equation and

dispersion equation in order to permit conventional identification.

Fist step of pattern recognition approach is to generate the subclasses S; of time
pattern. Possible pollution time pattern functions fi(t) are nominated in the
general form (6.3-7) or (6.3-8). Based on the generated time pattern fi(¢) and
replacing the g(x) by 1, the outputs c;(x,,.1;) are calculated and stored. Next, the
features using the correlation function or the coherence function are selected and
the feature vectors y; are formulated by optimizing the parameter \;;lua a; and
é;. Then the linear discriminant function d(y;). is calculated. Thus, if
d{v) > 0, §; is sufficient describe the-original time function fy7{f). Otherwise,
the other subclasses S; for (i~i+1) ares tried until Eqn. (6.3-13) is satisfied. The
final step is to determine the space function g(x). In order to formulate the least
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g -

square method, a state vector equation is derived from the ground water flow

equation (6.3-52) and the dispersion equation (6.3-56) as well as Darcy’s equation

(6.3-60). By discreterizing the space coordinate x into finite number of the

discrete points jAx, the aquifer flow equation is derived as :

h(x,t+AD=p (x)h(x+Ax,1) + py(x)h(x,t) + py(x)h(x—Ax,t) + AQ

where
pix) = -ﬁ‘;x(ﬂo.sm
pAx)=1- S:::z [K(x+0.5Ax) + K(x —- O.SAx)]
pa(x) = S:‘tzx(x-o.sm
The dispersion equation is,
c(x,t+Ar) = gi(x)e(x+Ax,0) + go(x)c(x,t)
+ gy(x)c(x—Ax,r) + Aeg(x)f(r)
where

g1(x0) = f—;z‘—o(no.SAx)

gaxt) = 1 - -:—Ig[o(ﬁo.sm + Dz - 0.541)]
- %v(x—Ax,r)

(5,8 = f;‘z-p(x-o.su) + f—;v(x-u,r)
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(6.3-63)

(6.3-64)

(6.3-65)

(6.3-66)

(6.3-67)
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(6.3-69)

And Darcy’s velocity is

v(xt+Af) = -;i—x[h(xux,z) - h(x,t)] 6370

For x=jAx and t=kAt, these equation can be merged into a state vector equation

as
Ci+1 = ACy + Gfy
(6.3-71)
where
C; = [c2(0),cx(Ax),....c;(NAX)]T
(6.3-72)
G = [2(0).8(Ax),... (WA -
(6.3-73)
fr = f(kAY)
(6.3-74)
Box Cox 1
Arx Bix Cip
Ay By C
AGH) = 2k P25 Cag
(6.3-75)
i Anyx Byl
where
Al',l = Q3(’l(iA1,kAt),iAI,kAt)
| (6.3-76)
Bi,k = qZ(h(l'AI,kA‘),I.AI,kA!)
(6.3-7
C,"k = qi(h(l'AI,kAt),le,kA‘)
(6.3-78)

The output vector equation can be expressed as
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Yk = HCk
(6.3-79)

The measurement vector equation can be written as

Zk= Yk+"t (63-80)

The space function vector G can be determined by minimiring the cost function J,

J = i (¥, - Z)' (¥, - Z,)
i=1 (6.3-81)

As derived in chapter 3, the least square method can give the optimal value of G

by calculating the sequential equation

G(n+1) = G(n) + K(n)[Z(n+1) — X(n+1)G(n)]

(6.3-82)
P(n+1) = P(n) — K(n)X(n+1)P(n)

(6.3-83)
K(n) = P()XT(n+1)[X(n+ 1)P(m)XT(n+1) + 1]"!

. (6.3-84)
with initial starting values G(0) and P(0). As indicated above, X(n+1) can be
expressed as

S(n+1) = A(n)S(n) + If(n)

(6.3-85)
X(n+1) = HS(n+1)

(6.3-86)

By executing the sequential algorithm of the least square method from (6.3-81)
- through (6.3-85) with initial starting values, the optimal space function value G
can obtained. The entire identification procedure is summarized in fig.6.4.
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6.4 Entire Identification for Point Pollution Sources

In this section, we consider the case that the pollution sources to be

identified are considered to b point type pollution sources which are expressed as

F(x,) = ﬁ 8(x=x)f (1)

n=1 (6.4-1)
where the pollution locations ;,,' and the time functions f,(f) are assumed to be
unknown As the basic approach of the total identification procedure, first, the
pollution source locations x, are dctcxminefl by the pattern recognition
| approaches, then the time function fi(r) are determined by the conventional

identification method, particularly, the dynamic programming method.

6.4.1 Case 4 : Point Source Identification from BOD measurements

Let us consider again the one-dimensional river pollution system with
BOD index which is characterized by Eqn. (6.3-1) to (6.3-4). The identification
problem is to determine the pollution source F(x,f) which is expressed by
Eqn.(6.4-1), ( i.e., by their space and their time functions ) from BOD data using
the mathematical model Eqn.(6.3-1) to (6.3-4).

In the first step of the pattern recognition approaches, the pollutant area x
( € D) is classified into nominated pollution source locations x; as subclasses §;.
At some of these nominated source locations x;, the pollution sources actually
may be injecting pollutants into the r‘iver ; at others locations there may be no

actual sources. The purpose of the pattern recognition approach is to determine



the actual pollution source locations x,cr from the gencrated locations x,. The

mathematical expression of pollution sources along the river is

F(x,t) = 8(x — x,)fi(0)

= f() fori=1,..1
(6.4-2)

where I is the number of nominated pollution sources. The next step is to select
the features. Although there are several feature expressions, one of the most
suitable possibilities is to use an accumulated value of the source intensity

equivalent to the time function fi(0) as

y
a; = [f)d
o

(6.4-3)
or using a discrete time expression
L=1
a; = 3 filt)
k=0 (6.4-4)

where [¢9,t/] is some measuring period and L is the number of measuremen: data.
In fact, for all x;, if fi(r) > 0, x, is an actual pollution location. If £f;(f) = O then
x, is pot an actual pollution source location. However, the magnitude of the
injected pollution source depends on the total pollution over some period [¢0,%/]
rather than upon the pollution intensity at some instant of time. In another
words, the responsible pollution sources can be determined by evaluating the
integrated pollution time history f(r) using expressed by Eqn. (6.4-3) or (6.4-4).
Then a; can be derived from the subclass of suspected location x, and the
measurement data z(x,,,¢;). Instead of the (6.3-1), the BOD vector equation

which is equivalent to Eqn. (6.3-14) is employed as follows :



Uk+1 = AUk + BF&

(6.4-5)
where
Fy = [0S 210, f i), S (0))T
(6.4-6)
and the matrix B is determined by the nominated pollution source location x,.
The output equation is
Yl = CU&
(6.4-7)
and the measurement equation is
Zk = Yt -+ n,
(6.4-8)
Initially both sides of Eqn.(6.4-5) are summed from k=0 to L-1 so that
Lilu LiIAU + LEIBF
k+1 = k k
k=0 * k=0 i=( (6.4-9)
or
L-1 L-1 L=t
EUk + UL - U0=A2Ut+BEFk
k=0 k=0 k=0 (6.4-10)
This equation can be rewritten as
L=1 L=1—
SUi=( -4 (U-U)+ (U -A)BIF,
k=0 k=0 (6.4-11)
Similarly, the output equation (6.4-2) can be summed as
L=1 L-1 *
2 =C3IU,
k=0 k=0 (6.4-12)

Substituting Eqn. (6.4-12) into Eqn.(6.4-11), we obtain



L-1 L=1
SY,=C{~-A)(Ug— U +CU - A)BY Fy
k=0 k=0

L-1
=D+ GZF&
k=0

where we define

D = C( - A)"}(Up — Up)
G=C(—-A)'B

L-1
Therefore, 3, F; can be written as :

k=0
rL-l N
> f1(t) _
k=0
L-1
> 0

L-1 k=0

Fk = L-.l. .

+=0 Sl -
k=0
|

- [G6I"6T(S ¥, - D] *
k=0

By taking mean operation on Eqn. (6.4-8), we obtain

1 Lilz
— =
L o L

(6.4-13)

(6.4-14)

(6.4-15)

(6.4-16)

(6.4-17)

(6.4-18)

(6.4-19)

If the measurement noise n; has zero mean, the second term of the right side can

be eliminated.
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-1 L=
24= 2V,
k=0 k=0

Therefore, using Eqn.(6.4-20), Eqn.(6.4-18) can be expressed as

-1 ]
S hHn)
k=m0

L-1

o | 2 %)

ar k=0

. Lilfi(‘t)

k=0

- 6761 6T[S 2, - D]

k=0

(6.4-20)

(6.4-21)

Using Eqn.(6.4-21), the feature a; can be calculated from the BOD measurement

data. This kind of feature vector, based on the accumulated observation data, is

particularly advantageous because

1) the measurement noise term can essentially be neglected,

2) the calculation of the feature vector by Eqn. (6.4-21) is very simple, and

3) the calculations are suitable for vector or parallel processors.

After calculating the feature vector, the discriminant function is formulated

s0 as to make a decision whether or not the generated subclass of pollution

locations is one of the actual source location. This decision making can be carried
out by evaluating the linear discriminant function with some threshold value e

because

1)  the original partial differential equation is approximated by a finite
difference methods so that the truncation error of the numerical calculation



of the the vector equation (6.4-5) must be compensated by some bias, and

2) measurement data from the actual environment are involved. The noise
signal do not have an non-zero mean value, so that, the noise bias cannot

be neglected.

Therefore, specifying a threshold value for the linear discriminant function d is
quite reasonable. Then the decision making is carried out according to :

d(v;) = WyT
(6.422)
Yi = [d,-,—ll
| (6.4-23)
1
W= [=,-
[l (6.4-24)

The feature vectors Eqn. (6.4-21) and the discriminant functions Eqn. (6.4-22)
are calculated for all nominated pollution locations, and the actual pollution
source locations are thereby extracted by the decision rule in Eqn. (4.6-5). Once
the pollution locations are determined, their time patterns f,(¢) are determined by
conventional methods such as dynamic programming as follows :

Problem Statement

Given the state equation

Upsy = AU, + BF,, (6,425

the output equation

Yk = CUk, -
(6.4-26)



and the observation system

Zt = CUk + n,
(6.4-27)
find the optimal time functions F, that minimize the cost function
J = (2, - CU)T(z, - CUp)
L=1 r ,
+ 3 {(Z—CULY (Zi—CUy) + (FiRF)}
im1 (6.4-28)

where R is weighting matrix. From the dynamic programming method, the

following iterative equations concerning with the optimal control values F; can be

derived as indicated in Appendix B.
F(L-k) = KL-B)[Z(L+k-1)-CAUL-k)]
(6.4-29)
K(L-k) = [R+BTCTP(k-1)CB]~'CTBTP(k-1)
(6.4-30)
P(k) = P(k-1)—P(k-1)CB[R+BTCTP(k—1)CB]'BTCTP(k-1)
(6.4-31)
and
P(0) = L. '
(6.4-32)

These equations can be calculated iteratively as indicated in Fig 3.5. First, the
term P(1) is calculated using (6.4-31) with the initial condition (6.4-32). Then
K(L-1) is calculated using (6.4-30) and P(1). The calculated K(L-1) is stored.
For k=2, P(2) is calculated, then K(L-2) is stored, and so on. This calculation is
continued until k=L. Next the optimal time function F; is calculated using the
stored K(L-k) and the state vector equation (6.4-25). The entire identification
procedure is illustrated in Fig.6.5.
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6.4.2. Case 5 ;: Point Source Identification from DO measurement

In this section, the entire identification of point sources from the DO
measurement is formulated. The basic procedure of the identification is almost
the same as in the case of BOD measurement data except that both the BOD and
the DO indices must be included as state vectors. First the nominated pollution

source locations x, are genmerated as subclass S;. Then the feature a; is

formulated as

L=1
@ = 2/ (6.4-31)

In order to formulate a;, the state vector concerned with the BOD and DO

indices are rewritten from Eqn. (6.3-43) as :

bl - B
- k
Vier] R AJ{We| 1O (6.4-32)
or simply,
Visi = AVisy + BF,
(6.4-33)
where the F, is same as in Eqn.(6.4-6) and B’ is determined by x,. The

measurement equation is

Wi = C'Vk‘+1 + &

(6.4-34)
Using the same procedure from (6.4-9) through (6.4-21), the feature vector can
be derived as
L1
(@)= ZF,

k=0
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(6.4-35)
I P At .
=[G"GT'G [T W, - D]
k=0 (6.4-36)

where

G=CI-ATS
(6.4-37)

D'=Cl-ATY(Vo-Vp)
(6.4-38)
After calculating the feature vector a;, the discriminant function d(y)) is
formulated as in Eqn. (6.4-27). Then decision making is carried out to determine
whether d(v;) > 0 or not. If so, the nominated location x; can be regarded as one
of the actual pollution source locations x,cr. Otherwise the nominated location x;,
is discarded. This process is tried for all of the nominated locations x;, for

i=1,..1. In this way, the actual pollution source locations are all determined.
Once the pollution locations are determined, their time pattern f(r) must

be determined. This can be carried out by the dynamic programming method as

introduced in the previous section as :

F(L=k) = K(L-k)[W({L+k-1) — CAV'(L-k)]

(6.4-39)
K(L-k)=[R +B'CPG-1)CB}IC'BP(R-1)

(6.4-40)
P(k) = P(k-1)~P(k—1)C'B'[R+BC'P(k-1)C'B"'B"C P(k-1)

(6.4-41)

and

P(0) = I.

(6.4-42)
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These equations can be calculated iteratively as presented in Fig.3.5. The entire
identification procedure is iltustrated in Fig.6.6.

6.4.3 Case 6 : Point Source Identification in Aquifer Pollution Systems

In this section, the entire identification of point pollution sources in aquifer
pollution systems is formulated. The basic procedure is almost the same as for
river pollution systems except that the state vector to formulate the features and

the dynamic programming method contain the time varying transition matrix A,.

Again let us consider the one-dimensional aquifer pollution system which is
characterized by Eqn. (6.3-52) to (6.3-61). First the nominated pollution source

locations x, are generated as subclass §;. Then the feature o, is formulated such

that

L-1
%= ZA (6.4-43)

In order to formulate «;, the state vector concerned with the pollutant
concentration Eqn. (6.4-5) is taken as :

Ci+1 = ACy + BFy

(6.4-44)
The measurement equation from (6.3-42) is
Z, =HCy + &
(6.4-45)
L-1
Since this vector equation is a time varying, the direct formulation of 3 F; is
k=0

impossible. However, by taking the average of the transition matrix A,, the same
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equation as in the proceeding section can be derived approximately as

L=1
a; = 2 Fk
S (6.4-46)

- (67667 S % - D]
= (6.447)

where

G = H[l - A]"'B
(6.4-48)

D = H[I - A]"{(Cop-Cy)
(6.4-49)

where A represents the mean value of A,. After calculating the feature, the
discriminant function d(y;) is formulated as in Eqn. (6.4-27). Then decision
making is carried out to determine whether d(y;) > 0 or not. If so, the
nominated locations x, can be regarded as one of the actual pollution source
locations x,y. Otherwise the nominated location x; is discarded. This process is
tried for all of the nominated location x;, for i=1,..1. Thereby, the actual
pollution source locations are all determined. Then their time patterns fi(s) arc
determined by dynamic programming as introduced in the previous section as :

F(L—k) = K(L-k)[Z(L+k~1) — HA(L-k)C(L=k)]

(6.4-50)
K(L—k) = [R + BTHTP(k—1)HB]‘HTBTP(k-1)
(6.4-51)
P(k) = P(k-1) — P(k—1)HB[R + BTHTP (k- 1)HB]™'BTHTP(k-1)
(6.4-52)

and



P(0) = 1.
(6.4-53)

These equations can be solved iteratively. The entire identification procedure is

illustrated in Fig.6.7.
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CHAPTER 7
Computer Implementation Using A Peripheral Array Processor

7.1 Introduction

This chapter is devoted to a discussion of the numerical implementation for
the entire proposed identification process including the pattern recognition
approach as well as the conventional identification methods using high-speed
array processors. Particular attention is focused upon implementations by
peripheral array processors, which are connected to a general purpose computer
and can perform high-speed computations at a modest cost. Several identification
tasks are executed both using a conventional computer, the VAX-11/750 * and a
combination of the VAX-11/750 and a peripheral array processor, the Mini-Map
**_ Performance evaluations of the host-plus-peripheral array processor used for

source identification are presented.

7.2 Numerical implementation by peripheral array processors
i

The implementation of the identification process including the pattern
recognition approach and the conventional identification methods employ highly

*VAX-11/750 is a trade mark of DEC Inc.
**Mini-Map is a trade mark of CSPI Inc.



computation intensive algorithms. High speed is needed for :
1) for the solution of the partial differential equations,

2) for signal processing, including the determination of the correlation and

the coherence function in the course of feature selection and extraction,

3) for functional optimization or parameter identification using ‘conventional
identification methods.

It has long been recognized that conventional sequential computers are inefficient
and expensive where relatively simple operations, such as additions and
multiplications, need to be performed on very large sets of data elements. Recent
development in computer architectures has led to special purpose processors
which are basically different from conventional computers. So called
supercomputers, or vector processors as well as peripheral array processors,
belong to this category. Supercomputers, such as the STAR-100 and CRAY-1,
were tirlcvcloped to solve partial differential equations. Such supercomputers have
a very high speed, but they are very expensive. Peripheral array processors, on
the other hand, have been primarily developed for signal processing applications.
Modern peripheral array processors can provide very high data throughput at a
modest cost [Karp77] [Karp80] [Karp8l]). Array processors geperally were
designed as a peripheral device for conventional host computers and enhance the
performance of the host computer in specific numerical computing tasks through
extensive parallelism and/or pipelining. They include arithmetic sections
containing at least one adder and one multiplier capable of operating in parallel.
Peripheral array processors are very attractive for the implementation of full
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identification algorithms because they combine advantageous features of :
1) vector processors which excel in solving partial differential equations and

2)  digital signal processors which process time series data by FFT or another
signal processing algorithms.

Therefore, by using the peripheral array processors connected to a general
purpose host computer, the implementation of our identification problems can be
carried out at a higher speed than by conventional computers and at relatively

modest cost.

7.3 The Peripheral Array Processor : Mini-Map

Over fifteen companies market peripheral array processors, each with
unique architectures and facilities. The Mini-Map array processor developed by
CSP!I Inc. is a peripheral array processor designed to be used with a variety of
host computers including the Digital Equipment Co. VAX series. The host
computer controls the Mini-Map by providing the Mini-Map with program and
data through the UNIBUS, by starting the operation of the Mini-Map, and by
retrieving the results as presented in Fig.7.1. The host computer and the Mini-
Map can run in parallel when suitably synchronized. The host computer and the
Mini-Map can communicate with cach other by means of a "shared memory
window”, a block of 8K bytes within the Mini-Map physical memory as presented
in Fig.7.2, amsible to the host computer.



VAX-11/750 Mini-Map

CPU
. IPU
] e 1T ¢
UNIBUS 1MB/sec.
UNIBUS <‘
Controller |\ Memory
MULTIBUS|———a] ﬂ L[
Controller 1 Disk
APU

Fig.7.1 VAX-11/750 and Mini-Map Array Processor
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Fig.7.2 Data Communication Between VAX-11/750 and Mini-Map
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The Mini-Map arithmetic unit consists of two processors : the Integer
Processor Unit (IPU) and the Arithmetic Processor Unit (APU) as shown in
Fig.7.3. The IPU performs the address calculations as well as data control by
sending data to the Input Queue (IQ) for the AFU, and by returning the results
from the Output Queue (OQ) to the memory. The APU performs the arithmetic
calculation on the data stream from the IQ and sends the results to the OQ. The
IPU and APU run in parallel in synchronism. The internal architecture of the
APU consists of a pipelined multiplier and a pipelined adder, running in parallel
as presented in Fig.7.4. The architecture of the Mini-Map favors vector
operations. The actual programming by microcode or assembly language is very
difficult because of the complexity of the operations and their synchronization.
For this reason, a very useful Scientific Subroutine Library (SSL), in which typical
vector-matrix operations and many signal processing operations have been pre-
programmed, is provided. By combining the SSL and user-written programs, the
computational speed can be improved without an excessive programming effort.

7.4 Array Processors for Partial Differential Equations

Partial differential equations are usually solved numerically with the aid of
finite differential methods or finite element methods. In the finite difference
method, the original partial differential equation is approximated by a set of finite
difference equations, one for each grid points. For example, in the river pollution
system, the original equation (6.3-1) is approximated by the explicit finite

difference equation.
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Fig.7.4 The APU and Queue of Mini-Map Array Processor
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u(x,t+Ar) = A(X)u(x+Ax,r) + B(x)u(z,f) + C(x)u(x—Ax,) + Atx(x()_}fg;)l)

This algebraic system is solved easily and directly on the Mini-Map because it
contains only vector multiplications and additions, where the length of the vector
is equal to the number of internal grid points in the x domain. By contrast, the
Mini-Map is not efficient for implicit schemes, such as

u(x,t—-A1) = A(@)u(x+Ax,1) + B(x)u(x,t) + C(x)u(x~Ax,t) + A1g(x)f(£)
(7.7-2)

In this case a tridiagonal system of algebraic equations must be solved recursively
at each time level, which requires considerable computation time. On the other
band, Eqn.(7.7-2) is computationally stable, while in Eqn.(7.7-1), Ar is
constrained by the stability criterion.

7.5 Array Processors for Feature Vector Calculations

In the determination of the pattern recognition feature vectors, correlation
or coherence functions are calculated for each generated subclass pattern. These
calculations involve the FFT. Since array processors are particularly well suited
for the calculation of the FFT, the feature vectors can be realized with a small
programming effort. The Mini-Map has a specific subroutine for FFT
computation, for the correlation and for convolution. By using these subroutines

as well as user-created subroutines, feature vectors can be easily calculated.
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7.6 Array Processors for Conventionsl Identification

The conventional identification methods which were discussed in Chapter 3
are employed to determine the specific parameter values or functional values of
the pollution sources. These methods, such as the least square method, the
Kalman filtering and the dynamic programming usually entail vector and matrix
calculations. For example, the least square method can be expressed as

G(n+1) = G(n) + K(n)[Z(n+1)-X(n+1)G(n)]

(7.6-1)
P(n+1) = P(n) — K(r)X(n)P(n)

(7.6-2)
K(n) = P(n)Xr(n+1)[X(u+1)P(n)XT(n+1) + 1]

(7.6-3)

These equations contain only matrix and vector calculations ; therefore vector
processing is efficient for these calculation, especially when the number of the
discrete points and the measurement data are relatively large.

7.8 Numerical Implementation by Array processor

In this section, numerical implementations of the entire identification of
pollution source are discussed. If particular, the main calculation of the entire
identification procedure including : calculation of partial differential equations,
calculation of feature vectors and calculation of copvcntional identification
methods. The computational speed of the Mini-Map-VAX-11/750 combination is
compared with the time required to solve the same problem using only the VAX-
11/750.
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7.8.1 Calculations of Partial Differential Equations

In this section, numerical solutions for partial differential equations
including, the BOD equation, the DO equation and the aquifer quality equation,
are calculated by the finite difference method.

BOD System Equation

The one dimensional BOD system equation is expressed as follows :

LU aiz—u- - b(x)-gf- —cu + F(x,0)

ot ax2

Then explicit finite difference method is employed to obtain the finite difference

(7.8-1)

equation :
u(x,t+Ar) = A(x)u(x+Ax,t) + B(x)u(x,t) + C(x)u(x—Ax,t) +($tg(.3,r)
.8-2
where
() = 9Bt
e | (1.8-3)
1 _ 2abt _ b(x)Ar _
B(x)=1 A2 e cAt (154
2aAt | b(x)At
@) = +
® =4t T (7.8-5)
The following parameter value are assumed :
= 0.5
b(x) = 0.25(sin(x)+1.0) (7:86)
(7.8-7)
c=0.1
(7.8-8)
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F(x,t) = sin(x)+1.0

(7.8-9)
with the initial condition
U(x,00 =0
- (7.8-10)
and the boundary conditions
U@,) =0
(7.8-11)
U(IN,I) =0 *
(7.8-12)
and simulation domain and step size,
Ax = 0.02%w
(7.8-13)
At = 0.001
(7.8-14)
Xy = NAx (N=5 - 5(1))
(7.8-15)
ty = KAt (K=5-1000)
(7.8-15)

The implementation of the algorithm on the host/peripheral system involves the

following steps:

1. Initialization : input data including the ficld parameters, input functions,
initial condition and boundary conditions are read from the host computer

into the array processor.

2. Calculation of the coefficients A(x), B(X), and C(x).

3. Calculation of U(x,t) in Eqn.(7.8-1).

4. Output: the solution values are transmitted from the Mini-Map to the
VAX-11/750
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For purpose of comparison, the eatire algorithm was also implemented on the
VAX-11/750. Computational Result 1 is presented in Table.7.8.1 which shows
the computation time in seconds required by the Mini-Map and VAX-11/750
respectively using 100 steps in the time domain and a number of steps in the
space domain ranging from 5 to 500. In Table.7.8.1, the number of space steps is
maintained constant at 100 while the number of steps in the time domain is varied
from 5 to 1000. The final column in last table presents the acceleration achieved
by using the Mini-Map. The FORTRAN program for the MCL program for the
Mini-Map are provided in the Appendix E. As can be seen, the computational
time using a combination of the VAX-11/750-Mini-Map is about ten times faster
than usinf only the VAX-11/750.

DO System Equation -

The one dimensional system equation is expressed :

v _ N -y -
o = %o T P ROV~ ke (7.8-2-16)

By the explicit finite difference method, the following finite difference equation is
obtained

Vie1 = ARV (x+Ax) + B(x)vi(x) + C(x)vi(x—Ax) — Atk u(x)
(7.8-17)

In order to calculate the DO index, both the DO equation and the BOD equaﬁon
must be solved simultaneously. Therefore, the total number of diﬁerenc:
equations becomes as twice large as in the case of the BOD index. The other

numerical conditions for the entire calculations are the same as in the case of the
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Table.7.8.1 Computational Evaluation of River Pollution System
with BOD index by The Array Processor, Mini-Map

Computational Result 1
K N Mini-Map | VAX-11/750 Speed ratio
(No.) | (No.) (sec.) (sec.) (VAX/Mini-Map)

5 0.0321 0.0802 2.50

10 0.0321 0.1250 3.8

20 0.0321 0.2226 6.93

30 0.0625 0.3164 5.06

40 0.0625 0.3984 6.37

50 0.0625 0.5000 8.00

60 0.0703 0.6054 8.61

100 70 0.0703 0.6835 9.72

80 0.0703 0.7851 11.17

90 0.0780 0.8671 11.12

100 0.0780 0.9765 12.52

200 0.1406 1.969 14.00

300 0.1953 2.828 14.48

400 0.2500 kWK ) 14.92

500 0.3203 4.664 14.56

Computational Result 2
K N Mini-Map | VAX-11/750 Speed ratio
(No.) { (No.) (sec.) (sec.) (VAX/Mini-Map)

5 0.0079 0.0468 591
10 0.0102 0.0923 9.09
20 0.0217 0.1859 8.53
30 0.0281 0.3008 10.70
40 0.0312 0.3789 12.10
50 0.0391 0.5112 13.10
60 0.0539 0.6094 11.31
70 100 0.0645 0.6448 10.00
80 0.0703 0.7773 11.06
90 0.0800 0.9028 11.29
100 0.0780 0.9765 12.52
200 0.1678 2.0195 12.03
300 0.2578 2.9414 11.40
400 0.3516 3.8008 10.81
500 0.4258 4.7353 11.12
1000 0.8523 9.6230 11.30




BOD index. The computational results are presented in Table.7.8.2.

Aquifer Pollution System

The two dimensional aquifer pollution system is characterized by the

following equations :

The aquifer flow equation is
dh _ 3 Shl 8 Shi_ -
5ot " [x,(x,y) ax) T oy [K’(x’y) ay ] ¢ (8.41)
The aquifer quality system is
dc _ 9 dc Sc
a ax (D’(x’y") ax] * [D’(x’y't) 3)']
_a -2 =2
Py (v,(x,)'.t)C] ay [Vy(x,y,t)t.‘) + n * F(x,y,t) (8-4-2)
The Darcy equations are
_ K.(x)y) an
V_,(x,y,‘) - b ax (8.4‘3)
v (x t) = —-L—-K (x,y) ﬂ |
¥y 1Y b ay (8.4'4)
The diffusion coefficients are
D,(x,y,1) = e (x.y:1) (8.4-5)
Dy(x,y,8) = e,v,(x.y,) (8'4-6)

where ¢,,e, are dispersion coefficients. Assume the numerical values for these

parameters
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Table.?.8.2 Computational Evaluation of River Pollution System
with DO index by The Array Processor, Mini-Map

Computational Result 3
K N Mini-Map | VAX-11/750 Speed ratio
{No.) | (No.) (sec.) (sec.) (VAX/Mini-Map)
5 0.0685 0.1718 2.51
10 0.0703 0.2188 3.1
20 0.0801 0.3906 4.88
30 0.0898 0.6094 6.7
40 0.1044 0.7969 7.63
50 0.1172 0.9921 8.47
60 0.1289 1.1641 9.03
100 70 0.1406 1.4023 9.97
80 0.1482 1.5664 11.14
90 0.1602 1.7469 10.90
100 0.1718 1.9414 11.30
200 0.2813 4.2695 15.17
300 0.3984 6.4609 16.21
400 0.5117 8.7500 17.10
500 0.6172 10.9571 17.75
Computstional Result 4
K N Mini-Map | VAX-11/750 Speed ratio
(No.) | (No.) (sec.) {sec.) | (VAX/Mini-Map)

5 0.0146 0.1016 591
10 0.0195 0.1992 9.09
20 0.0313 0.3398 8.53
30 0.0468 0.6016 10.70
40 0.0703 0.7852 12.10
50 0.0898 1.0117 13.10
60 0.1054 1.2073 11.31
70 100 0.1210 1.4180 10.00
80 0.1328 1.5859 11.06
90 0.1602 1.8203 11.29
100 0.1679 1.9414 12.52
200 0.3398 3.9336 12.03
300 0.5117 5.9726 11.40
400 0.6785 |- 7.91719 10.81
500 0.8398 9.6230 11.45
| 1000 1.6875 19.725 11.68
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K (x,y) = K,(x,y) = 31000.0 — 2.25(x+y)

S = 0.015
e, =e¢, =300
Q = 500.0

and initial condition |
h(x,y,0) = 200.0 x,ye D
c(x,y,00) =00 =x,ye D
and boundary conditions
h(xy,y,,t) = 200.0 x,,y, €dD
c(xp,y5t) =0
where the space region ,D, is
0=x=10000.0 0=y= 10000.0
and time region, T, is

0=t = 2000.0

(8.4-T)
(8.4-8)
(8.4-9)
(8.4-10)

(8.4-11)
(8.4-12)

(8.4-13)
(8.4-14)

(8.7-15)

(8.4-16)

For numerical computations the following space step size and time step size are

specified:
Ax = Ay = 500.0
Atr=20.0

(8.4-17)
(8.4-18)

To solve these partial differential equations, the explicit finite difference

approximation method is employed.
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Tabie.7.8.4 Computational Evalustion of Aquifer Pollution System

by Array Processor, Mini-Map
Computational Result §
K N Mini-Map | VAX-11/750 Speed ratio
{No.) | (No.) (sec.) {sec.) (VAX/Mini-Map}
5x5 1.602 4.218 2.63
6x6 1.930 6.406 3.32
77 2.270 8.887 3N
Bx8 2.609 11.242 4.31
100 9x9 2.972 14.813 4.98
10x10 3.332 18.140 5.4
20x20 7.359 64.348 8.74
30x30 12.14} 127.01 10.46
40x40 | 17.668 228.04 12.91
Computational Result 6
K N Mini-Map | VAX-11/750 Speed ratio
No.) | (No.) (sec) |  (sec) | (VAX/Mini-Map)
5 0.371 1.960 5.28
10 0.738 4.738 6.42
20 1.468 11.168 7.61
30 2.20; gégg 7.75
40 2.94 . 8.34
so | 2220 | 3679 30.332 8.25
60 4.422 36.520 8.41
80 5.891 49.563 8.44
100 7.359 64.348 8.74
500 36.80 349.47 9.50




In this section, feature vectors are calculated by the array processor system
using coherence function. Assume BOD mecasurement data u,(x,,f) in a river
pollution system which were observed at four measuring stations. The sampling
interval is AT, and the total number of the measurement data at each measuring
station is k=N, so that the total observation time is NAr. As presented in Section
4.4, the following steps are involved for the calculations of the coherence

functions :

1)  tapering by window function

2)  FFT transform

3) normalization

4) ensemble averaging or frequency averaging

The above steps must be executed to calculate the power spectra density and
cross-power of for all measurement data for the different measuring locations.
Furthermore, the same procedure must be executed for the calculation BOD
u(x,,.t:), which is equivalent to the measurement stations generated by the
subclassified pollution source P;. As numerical data, the calculated BOD data in
Sec.7.8.2 are employed. In order to evaluate the computational performance of
the array processor system, the number of the measurement data N is changed
from 16 to 1024 while the number of measuring stations is kept at 4. The
computational results are presented in Table.7.8.5. As can be seen from the
results, the array processor system is significantly faster in In particular, a speed
up of more than twenty is realized for N greater than 60.
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Table.7.8.5 Computational Evaluation of Feature Vector Calculations

by The Array Processor, Mini-Map
Computational Result 7
I N Mini-Map | VAX-11/750 Speed ratio
(No.) (No.) (sec.) (sec.) (VAX/Mini-Map)

9-16 0.008 0.161 13.75
17-32 0.015 0.277 18.47
33-64 0.026 0.519 19.96
4 65-128 0.050 1.078 21.56
129-256 0.106 2.160 20.38
253-512 0.206 4.839 23.49
513-1024 0.416 10.801 25.96




Caiculation of The Least Square Method

In this section, as one of the conventional method for the identification of
space function, the least square method is implemented on the array processor

system. The least square method is formulated in the following :

G(n+1) = G(n) + K(M)[Z(n+1) - X(r+1)G(n)]

(7.8-19)
P(n+1) = P(n) — K(n)X(n+1)P(n)
(7.8-20)
K@) = P(XT(n+ D)[X(n+1)P(a)X T (n+1) + 1]7!
(7.8-21)
X(n+1) = C(A"o + A"l + .. + Ify)
(6.3-22)
or
S(n+1) = AS(n) + If(n)
(6.3-23)
n) = CS
X(n) (n) 6.320)
with the initial values
G(0) = 0.0
© (6.3-25)
P(0) =1
(6.3-26)
5(0) = 0
(6.3-27)
where

P(n) :NxN matrix,
K(n) :Mx M matrix,
A :N x N matrix,

C :M x N matrix,



S(n) :Nx N matrix,
X(n) :Mx N matrix,
| : N x N matrix,
G(n) :Nx1 vector,
- Z{n) :Mx1 vector,
f(n) : scalar time function,
N : the number of the space step,

M : the number of the measurement stations,

These equations are calculated simultaneously until ¢ = AKX to solve the space
function G(n+1) with initial starting values G(0) and P(0). For numerical

implementation, the following data and parameter values are assumed :

N=5-40
(7.8-30)
K = 5-500 -
(7.8-31)
M=4
(7.8-32)
G = [0,0,....,0]
. . (7.8-33)
1 L]
1
P(n) =
(7.8-34)
1]

The computational results are presented in Table.7.8.6. It is clear that array
processor can execute the least square method about thirty times faster than the
host computer. Therefore it can be inferred that numerical implementations by
the array processor will achieve similar specd-ups for the other conventional
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Table.7.8.6 Computationsl Evaluation of Conventional Identification

by The Array Processor, Mini-Map
Computational Resuit 8
K N Mini-Map | VAX-11/750 Speed ratio
(No.) | (No.) (sec.) {sec.) (VAX/Mini-Map)
5 0.5780 4.2187 7.2987
6 0.5780 5.2891 9.1506
7 0.6875 6.7185 9.9724
8 0.6875 8.9179 12.9M
100 9 0.8359 10.871 13.777
10 0.7891 13.410 16.427
20 1.6484 53.730 32.595
30 3.1719 140.03 44.146
40 6.2830 296.39 47.171
Computational Result 9
K N Mini-Map | VAX-11/750 Speed ratio
(No.) | (No.) (sec.) (sec.) (VAX/Mini-Map)
5 0.0703 2.6328 37.451
10 0.1484 5.3008 35.719
20 0.3203 10.660 33.282
30 0.4844 16.141 33.321
40 0.6484 21.332 32.899
50 0.8203 26.699 32.548
60 0.9844 32.109 32.618
70 20 1.1563 37.481 32.414
80 1.3203 43.031 32.592
90 1.4766 48.339 32.732
100 1.6406 53.472 32.593
200 3.3125 107.45 32.593
300 4.9688 161.57 32.517
400 6.6625 215.92 32.411
500 9.0380 293.57 32.480




methods because these entail the same matrix-vector calculations.
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CHAPTER 8
Simulation and Analysis

8.1 Introduction

In this chapter, several numerical examples are presented to evaluate the
entire identification process formulated in the preceding chapters. The first
several numerical examples involve distributed pollution sources in river pollution
in which the pollution sources are identified from BOD and DO. The second set
of examples deals with point pollution sources in both river pollution and aquifer
pollution systems. The computational results are evaluated by studying the
manner in which the proposed identification process is capable of identifying the
original pollution sources in the presence of increasing levels of measurcment

noise.

8.2 Example 1

In this section, a distributed pollution source in a river pollution system is
identified from BOD measurement data. The river under study is assumed to
flow from an upstream lake through an industrial region and eventually into the

& ‘

sea. The pollutant concentration u(x,t) of BOD is given by:
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du _ %
Su _ 0u

at ax?

-b(x):—: —cu + F(x,0)

(8.2-1)

where a is the dispersion coefficient (assumed constant) ,- b(x) is the flow velocity

(assumed to be a function of the width of the river) and, c is the decay coefficient

(assumed constant). Pollutant sources, F(x,t) are located at unknown points

along the banks of the river. BOD data are obtained by sampling the river water

at four measuring locations. Assume the following numerical values for the

parameters:
a=0.5
b=0.25( sin(x)+1.0)
c=0.1

and initial condition

u(x,00=0 xygsx=x

and boundary conditions
u(xq,0)=0
u(xs,1)=0
where

O0sx=7n, 0=st=256

(8.2-2)
(8.2-3)
(8.2-4)

(8.2-5)

(8.2-6)
(8.2-7)

(8.2-8)

The measurement data of BOD are obtained at four stations within the region

under consideration and involve measurement noise as follows :

U (X st) = 8(Z 1) +e1(1) &t X, =037
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U (Tpyys?) = u(Xp o8} +e5(1) at x, =0.57

(8.2-10)
u,,,(xm,t) = u(x,,,,,t)+e3(r) at x,,.=0.7m

(8.2-11)
U (X s8) = u(xm,t)+e4(r) at x, =0.%%

(8.2-12)

where ¢,(t) for i=1,4 are measurement noise.

Objective
To identify the distributed pollution sources F(x,t} from measurement data (8.2-
9) to (8.2-12) as well as the mathematical model (8.2-1) to (8.2-10).

For numerical computations the following space step size and time step size are
specified:

Ax = 0.1w

At = 0.1

(8.2-13)

(8.2-14)
To solve the parabolic partial differential equation, the following two methods are

employed separately and their pattern recognition results are compared with each
other.

(1) Finite Difference method (explicit method).
(2) Monte Carlo method (50 random walks per time step).
Pattern of Pollution Sources F(x,t)

The distributed pollution sources F(x,t) are functions of time and spacc and can
be generally expressed as :
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F(x,1) = g(x)y(¢)
| (8.2-15)
By taking advantage of a priori knowledge of pollution sources, that is, the
locations of factories or their daily or monthly or yearly operation patterns, etc.,
explicit subclasses of F(x,t) can specified as the nominated pollution patterns.

For example, the following five subclasses might be gencrated from a priori

information :
P1: Fyxg)=(sin(w)+1.0 )sin(z) w=2%
3.2 (8.2-16)

P2 : Fi(x,0)=sin*(wf)sin(x)

(8.2-17)
P3 : Fyx,t)=sin(x)

(8.2-18)
P4 : F4(x,t)=( TRI(wf) )sin(x)

(8.2-19)
PS5 : Fy(x,0)=( sin(wf)+1.0)

(8.2-20)

where the function TRI(wf) is a triangular function with a period 1/3.2 and a
maximum value of 1.0 at t=1/6.4. The pattern recognition approach is used to

determine which of these subclasses the pollution sources resemble most closely.

Feature Vector Extraction
In order to extract the feature of the subclasses, coherence functions ri(x;.f) are
employed as the elements of the feature vectors ;.

| Cj(xmaf) ?
0 1.0
Bm(x,,/)B (X, f) = rilim) = (8.2-:21)

rmaf) =

where

Bm(x,,.f) : power spectra density function of measurement data uy(x,,,?)
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Bj(x,.f) : power spectra density function of the solution uj(x,,.f) based on the
subclass F j(x ,t)

Ci(xm,of) : cross spectra density function between u;(x,,,,5) and u,(xy,.f)
i ( =4) : the number of the measurement station
j ( =5) : the number of the subclass of F(x,7)

Note that if the measurement data u,(x,.f) are quite similar to the calculated
output u;(x,,,r) based on one of the subclasses Fj(x,f), the coherence function
ri(xmf) approaches 1.0, while if they are quite different, the coherence function

approaches 0. The feature vectors can be expressed as:

V) = [rfCom )7l o) oma) | (22)

Classification

The classification process involves making a decision as to which pollution
pattern among the subclasses is most close to the actual pollution sources. A
discriminant function based on the feature vector, together with a suitable

—

threshold, is used to that end.

d(v)) = W]
(v)) = W $223)

14
4 El /) (8.2-24)

where
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-1 111
W""[4, 4’ 4!4] (8.2.5)

Simulation Results

For simulation purposes, "measurement data” at the four BOD measurement
locations were generated by solving Eqn.(8.2-2), using for F(x,t) which is
identical to subclass P;, Eqn.(8.2-2), with added Gaussian noise with zero mean

and standard deviation o = 0.1. These data are presented in Table 8.2.1.

Next these measurecment data were transformed into frequency domain

data u_(x.f), and their power spectra were calculated using conventional signal

processing techniques involving:

1) tapering by window functions
2)  Fourier transform by FFT

3) calibration for truncation

4) smoothing and averaging

The power spectra are presented in Table 8.2.2. Note that in each case there are
only one or two frequency components with substantial amplitudes, while all
other frequency components are negligible. The nop-negligible frequency
components therefore constitute useful feature vectors.

To test the classification procedure, solutions at the four measuring points
based on each of the five subclasses of input functions, were calculated using both
the finite difference method and the Monte Carlo method. The resulting
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solutions u(x,,t) were transformed into the frequency domain using the FFT.
Finally, feature vectors y, were calculated using Eqn.(8.2-21) and the
discriminant functions according to Eqn.(8.2-22). These computational results
are presented in Table 8.2.1 to 8.2.3.

It can be seen that the value of the discriminant function d(gamma;, based
on the subclass P;, which is the same as the input function of the measurement
data, is almost 1.0 for both cases, while the value of the discriminant function for
subclasses P,, P3, and P4 is very small, especially for f = 0.313. It can be
concluded that the feature vector can extract the original input function by
considering the values of the discriminant function even when measurement data
are corrupted by measurement noise. However, the discriminant function based
on subclass P is also nearly equal to 1.0, even though P, contains the space
functions sin(x), while Ps does not. Additional processing is therefore required
to resolve this conflict. As discussed in Chapter 6, this conflict can be resolved by
identifying the space function g(x) using the conventional identification after
having identified the time function f(t).

Fig.8.2.1 shows the discriminant function of the pattern subclass P; under
different noise levels. From this result, it is recognized that the proposal pattern
recognition method using the coherence function as the feature vectors is

consistent even in the presence of a high level of noise.
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Table 8.2.1 Measurement Data of BOD

Time

2ai8iE8

.70

1.10
1.20
1.30
1.40
1.50
1.60
1.70
1.80
1.90
2.00
2.10
2.20
2.30
2.40
2.50
2.60
2.70
2.80
2.90
3.00
3.10
3.20

Umi(x,,t

.00000
-.06837
.12984
.24895
23116
.55846
.58433
.71495
46224
54207
.66104
82871
1.08080
71317
.83123
92521
78763
.85815
1.00183
1.24178
1.09468
1.17943
1.26096
1.24369
1.24621
1.44435
1.45212
1.55319
1.33082
1.37192
1.43067
1.48419

1.62831

Um!x;lt! I Um!xa?t) Um(x4,1)
.14044 .01681 .18805
27414 13714 .06653
17292 .21014 .06199
.43267 .31748 -.00542
42695 15273 .06560
66985 56732 -.01199
817717 .48912 .19413
.80098 .63335 22780
.87090 57039 23134
.85548 .87939 .33950
93568 91973 .35089
85653 .85739 35456

1.10326 1.08942 .38330

1.24830 95779 27574

1.20580 1.18857 .50928

1.40927 1.04599 .34653

1.37364 1.13288 55769

1.38885 1.16371 .58895

1.43656 1.23719 .38548

1.52861 1.48446 34686

1.80422 1.32773 .50419

1.55279 1.39403 52162

1.70517 1.47923 55274

1.76079 1.65599 .82600

1.59432 1.69279 .65015

1.91876 1.53748 .69082

1.93545 1.74557 70211

2.09776 1.87607 79277

2.16524 1.77545 .66055

2.27401 1.97905 72727

2.12177 1.83952 .83706

2.16612 | 2.02369 78590
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Table 8.2.2 Power Spectra Density of Measurement Data

2242e+01
.1282e+00
.1193e-01
.2608e-02
.3161e-02
.1050e-01
.2841e-02
.4426e-03
.4607e-02
4641e-03
.2970e-02
.1138e-02
.3895¢-03
5472e-02
.2354e-02
3640e-03

9049¢-05

Bm(x1.f)

Bm‘x3!£! I Bm!x:ag

.4450e+01
.2160e+00
.2129¢-01
.2161e-01
.1296e-01
.2534e-03
.1758e-02
.8582e-03
.5166e-03
.2058e-02
.4633e-03
.6937e-03
2554¢-02
.1180e-02
1972e-02
.3083e-02
.2263¢-02

.3506e+01
.2002¢+00
.3034e-01
.8339¢-02
.5270e-02
.3381e-02
.2236¢-02
.4317e-04
.4196¢-02
.5061e-02
.1024e-02
.3147¢-03
.4389¢-03
.3487e-02
1747e-02
.4828e-02
.4113e-02

Bm!xé!n

.5591e+00
.3713¢-01
.8880e-02
.6638e-03
.2746¢-02
.1080e-02
.1778¢-03
.5259¢-03
.3056e-03
.1170e-02
.1135e-02
.3880e-03
797703
.2962¢-03
.6448¢-03
.9588e-03

.8220e-04
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Table.8.2.3 Feature Vectors and Discriminant Function

1) Soulution by Finite Difference method ( explicit method )

| subclass | f Az ) | Peof) | Paap | xaf) | dy)
p .0 .9997 .9999 .9999 .9998 | .9999
1 313 | 9929 .9976 .9929 9751 | .9896
p .0 .5866 5794 .5744 5743 | 5711
2 313 | .5613 5561 .5613 .5610 | .5599
P .0 .6950 .6854 .6864 6852 | .6880
3 313 | .5056 5124 .5188 5162 | .5140
p 0 .5709 .5658 .5654 5640 | .5665
4 313 | 0791 .0822 .0718 0707 | .0759
p .0 .9997 .9998 .9998 9969 | .9990
5 313 | 9929 9976 .9976 9710 | .9891
2) Solution by Monte Carlo method
subclass f ﬁxl N3] ﬂng! ﬂx;ﬂ fzs-tg,_! ) | d(yp)
p 0 .9965 .9980 .9984 9942 | .9968
1 313 | .9654 .9905 .9587 .8451 | .9399
p .0 .4830 .4859 .4886 .4878 .4863
2 313 | .4542 4742 .4746 4640 | 4725
p .0 .6813 6791 .6759 .6742 | .6776
3 313 | .3519 4557 4137 4090 | .4076
P, .0 6562 .6765 .6811 6816 | .6738
313 | .0584 1192 .0973 0926 | .0918
P, .0 .9965 9972 .9989 9968 | .9973
313 | 9625 .9914 .9597 .8704 | .9460
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8.3 Example 2

In this section, a distributed pollution source in a river pollution system is
identified from DO measurement. The distributed pollution source to be
identified is more general in that the time function f(t) of the pollution source
F(x,t) is only assumed to be Foufier series. As formulated in Section 6.3, first,
the time function f(t) is identified by the pattern recognition approach. Then, the
space function g(t) is identified by the least square method. In order for the
pattern recognition approach to be applied to more general situations, Fourier
series with a basic frequency of w are employed to describe the distributed
pollution source. Again, coherence functions are employed as the elements of the
feature vectors. The mathematical model with BOD index is :

ou _ w3 _
rrie aa " b(x) prgial + F(x,t) B3
The mathematical model with DO index :
v _ 3 g -
vl aa = b(x) o K. (v, - v)+ Ku 6.32)
Assume the following conditions and numerical values for the parameters:
a = 0.01 -
(8.3-3)
b = 0.25( sin(nx/x)+1.0)
(8.3-4)
c=01 (8.35)
8.3
X =0.1
(8.3-6)
Kd = 0.5
(8.3-7)
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v, = 5.0

(8.3-8)
and initial conditions
u(x0) =0 xysx=sux
(8.3-9)
v(x,0) = v,
(8.3-10)
and boundary conditions
u(xg,t) =0 0=t
(8.3-11)
u(xf,t) =0
(8.3-12)
v(xg,t) = v,
(8.3-13)
v(xp,t) = v,
(8.3-14)
where
0=x<40 O0=tr=<256
(8.3-15)

The other conditions are assumed to be the same as in Section 8.2. The
measurement data of DO are obtained as four stations within the region under

consideration and involve measurement noise as follows :

2(Xpstt) = V() + €1(8) X, = 1.0

(8.3-16)

2(Xypott) = V(Xmpti) + €x(ty) at x,, = 2.0
(8.3-17)

2(Xpyts) = V(X te) + e3(ty) at x,, = 3.0
(8.3-18)
(X tr) = V(Emotr) + e4(t) at xy, = 3.5 ©.319)

where ¢,(r;) for i=1,4 are measurement noise.
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Objective
To identify the distributed pollution source F(x,t) from the measurement data
(8.3-16) to (8.3-19) as well as the mathematical model (8.3-1) to (8.3-14).

First of all, let us identify the time pattern of the pollution source. For numerical

computations the following space and time step sizes are specified :

Ax = 0.1 -
(8.3-20)

(8.3-21)
To solve the two partial differential equations, Eqn.(8.3-1) and (8.3-2), the

At = 0.1

explicit finite difference method is employed.

Pattern of pollution source F(x,t)
The distributed pollution source F(x,t) which is function of time and space can be

generated as

F(x,t) = g(x)f(2) |

(8.3-22)
As discussed in Section 6.3, first, the time function f(t) is identified by the pattern
recognition. Then, the space function g(x) is identified by conventiopal
identification approach. Therefore, only subclasses of the time function f(t) are
generated for the pattern recognition approach. By taking advantage of a priori
knowledge of the pollution source, daily, seasonally or yearly patterns can be
assumed. For example, the following subclasses, which are expressed by Fourier
series, might be generated from a priori information as :

Po: f1(t) = aq (8.3-23)
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Py fit) = ag + ajcos(wt + &)

| ~  (8.3-24)
Py : fit) = ag + aycos(wt + &y) + ayxos(Ruwt + $o)
(8.3-25)
P,: f[(t) =ag+ ia,cos(imr + ¢))
i=1 (8.3-26)

where m(=2%), or T (=basic time pattern period) can be roughly estimated by a
priori information or posteriori measurement data behaver.

Feature Vector Extraction

In order to extract the feature of the subclasses, coherence function ri(x,,.f) are

employed as the clements of the feature vectors vy;.

rf(x,,,‘,f) = lm I2

Bm(x\/)B(Xm,qf) (8.3-28)
where
Bm_(x:‘ﬁ : power spectra density function of measurement data z(x,, )
B(xn,of) : power spectra density function of the solution v(x, ,f) based

on the subclass F(x,r)

C{(Xm,\f) : cross spectra density function between v (x,,,,f) and z(x,,?)
i(=4) : the number of the measurement station
j(=n) : the number of the subclass of F(x,r)
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The feature vectors can be easily expressed as:

Ui G RACRUE GO () (8329

Classification

The classification process involves making a decision as to which pollution
pattcrin among the subclasses is most close to the actual pollution sources. A
discriminant function based on the feature vector, together with a suitable
threshold, is used to that end.

d(y;) = Wy
g o (8.3-30)
=lér2(xm..f)
4.5 (8.3-31)
where
111 1
W = [ T 2 a2 4 ]
4°4° 4" 4 (8.3-32)
Simulstion Results

For simulation purposes, "measurement data” at the four DO measurement
locations were generated by solving Eqn.(8.3-1) and (8.3-2), using for F(x,t)
which is identical to the subclass P; which contains the following numerical data :

Fp(x,8) = 8oc(X)faci(1)

= 2.0sin(wx/x;) | 1.0+ cos(we+ %-) +0.5cos(2wt + %)+0.25co:(3«n)
- (8.3-33)

with added Gaussian noise with zero mean and standard deviation ¢ = 0.1.
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These data are presented in Table 8.3.1.

Next, these measurement data were transformed into frequency domain
data v,(x,.f), and their power spectra were calculated using conventional signal
processing techniques involving : tapering by window functions, Fourier transform
by FFT, calibration for truncation, and smoothing and averaging. The power
spectra are presented in Table 8.3.2. Note that there are only four frequency
components with substantial amplitudes, while all other frequency components are

negligible.

To test the classification procedure, solutions at the four measuring points
based on each of the subclasses of input functions were calculated using the finite
difference method. The resulting solutions v,(x;,t) were transformed into tﬁe
frequency domain using the FFI. Finally, feature vectors y; were calculated
using Eqn.(8.3-28) and the discriminant functions are calculated according to
Eqn.(8.3-31). These computational results are presented in Table 8.3.3. For

cach subclass P;, their parameter values a;, ¢; are optimized so that the
4

summation of the discriminant functions, 3,d;(y;) have maximum values. This
i=1

optimization problem was executed by the univariate searching method [Fox71).

The optimized parameters for each subclass are presented in Table.8.3.4. Since

———

there is a relation between subclasses P; such that
PCP,CP,..CP,C..CP,

(8.3-34)
the discriminant functions d; also have a relation such that
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Table 8.3.1 Measurement Data of DO

ssssssssssk

Vm!x!!t!

5.00000
4.84034
4.94971
4.98301
4.88507
5.13642
5.09122
5.15465
4.83841
4.85754
4.91818
5.02934
5.22654
4.80558
4.87201
4.91620
4.73089
4.75576
4.85574
5.05365
4.86573
4.91040
4.95214
4.89496
4.85717
5.01439
4.98048
5.03903
4.771325
4.77002
4.78362
4.79140

4.88960

Vm(xs,t) | Vm (x1,8) VM(IA_.JL
5.00000 | 5.00000 i 5.00000
5.03925 | 4.94436 | 5.17203
5.07066 | 4.98918 | 5.02436
486721 | 4.98444 | 4.99121
.5.02589 | 5.01173 | 4.89227
4.92114 | 4.76620 | 4.93046
5.06797 | 5.09955 | 4.81875
5.12273 | 4.94037 | 4.99008
5.01573 | 5.00404 | 4.98826
499780 | 4.86100 | 4.95581
4.89655 | 5.09034 | 5.02747
4.89245 | 5.05133 | 5.00187
4.73038 | 4.91001 | 4.96809
4.89559 { 5.06350 | 4.95901
496074 | 4.85403 | 4.81339
4.84033 | 5.00796 | 5.00879
4.96816 | 4.78979 | 4.80799
4.85934 | 4.80252 | 4.98128
4.80373 | 4.76065 | 4.97491
4.78268 | 4.76274 | 4.73398
4.80754 | 4.93964 | 4.65795
5.01691 | 4.71314 | 477771
4.69957 | 4.70986 | 4.75716
4.78581 | 4.72523 | 4.74967
4.77458 | 4.83151 | 4.9834
4.54018 | 4.79686 | 4.76699
4.79532 | 4.56881 | 4.76574
4.74109 | 4.70258 | 4.73356
4.83066 | 4.75690 | 4.77897
4.82345 | 4.57T799 | 4.59953
4.85556 | 4.70106 | 4.61689
4.62491 | 4.47873 | 4.67507
4.58952 | 4.57798 | 4.57004
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Table 8.3.2 Power Spectra Density of Measurement Data

Frequ

3125

.6250

9375
1.2500
1.5625
1.8750
2.1875
2.5000
2.8125
3.1250
3.4375
3.7500
4.0625
4.3750
4.6875

5.0000

Bm(x
.1326339¢+02
.5055708¢+00
.5873273e-01
.1028304e-01
.6513150e-02
.7095356e-02
.3697958e-02
.2653246e-02
.3157692¢-02
.1500197e-02
.2370585e-02
.2037616¢-02
.2165662¢-02
.2672509e-02
.2189758e-02
.2389260e-02
.1362975e-02

Bm(x

.1588817e+02
.9136800¢+00
.1474542¢+00
.3515814¢-01
.2291196¢-01
.9694351e-02
.9044702e-02
.7316845e-02
.5559013¢-02
.5623172e-02
.3698822¢-02
3713295¢-02
.4701524¢-02
.2476008¢-02
-4565815¢-02
.4328977e-02
.4754798¢-02

Bm(x

.1472964e+ 03
.4716505¢+ 00
.1253791e+00
.3322197¢-01

.2197842¢-01 -
.1665511e-01

.1079138e-01
.6225013¢-02
.8563926¢-02
.8022639¢-02
.5290414¢-02
.4285173¢-02
.4246833¢-02
.4372450e-02
4577229¢-02
.5067400e-02
.6085012e-02

Bm(x

.1 2e+03
.2167033e+00
.9020714¢-01
.2793627¢-01
.1417530e-01
.1383096¢-01
.6399042¢-02
.6276168e-02
.7284626e-02
.5594852¢-02
.390176%¢-02
.3009835¢e-02
.2780752e-02
.3788869¢-02
.2170503e-02
.4327997¢-02
.2258275e-02
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Table.8.3.3 Feature Vectors and Discriminant Functioa

subclass | f | r(xnf) | ) | P(xmf) | Pz ) | dly)
.0 99528 | .99670 | .99776 .99820 | .99699

p 313 | .11989 | .23166 | .40575 68318 | .36012
0 626 | .50637 | .69231 | .85388 .89465 | .73680
939 | .s8103 | .83555 | .9337 .92906 | .81985

.0 99959 | .99989 | .99992 99992 | .99983

p 313 | 99831 | .99909 | .99907 .99699 | .99836
1 626 | .50797 | .70495 | .86809 91360 | .74865
939 | .58295 | .83306 | .95028 96416 | .83261

.0 99978 | 99998 | .99999 | .99999 | .99994

P 313 | 99800 | .99915 | .99871 99662 | .99812
2 626 | 99411 | 99381 | .99738 | .9884S | .99344
939 | .58330 | .83230 | .95193 96918 | .83418

0 99978 | 99996 | .99998 .99999 | .99993

p 313 | 99789 | 99912 | .99862 | .99644 | .99802
3 626 ] .99390 | .99393 | .99729 98840 | .99338
939 ! 97686 | .99338 | .99091 .98055 | .98767

0 99978 | .99996 | .99998 99999 | .99993

p 313 ] .99789 | .99912 | .99862 99644 | .99802
4 626 | .99390 | .99393 | .99729 98840 | .99338
939 | 97686 | .99338 | .99091 98955 | .98767
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Py

Tabile.8.3.4 The Optimal Parameters for Each Subclass

2 faer = 1.0 + 1.0cos(wit+0.785398)
+ 0.5cos(2nt+1.5707963) + 0.25¢cos(3we+0.0)
t fo= 1.0
: f1 = 1.0 + 1.0300cos(we+0.8654)

: f2 = 1.0 + 1.0300cos(wt+0.8654) + 0.5033cos(2wt+1.5748)

: f3y= 1.0 + 1.0300cos{wt+0.8654) + 0.5033cos(2wt+1.5748)

+ 0.2810cos(3we+0.0335)

: f4 = 1.0 + 1.0300cos{wt+0.8654) + 0.5033cos(2we+1.5748)

+ 0.2810cos(3wt+0.0335) + 0.0060cos(4wt+0.0020)
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dl = dz = d3....s dn = 1.0
(8.3-35)

Therefore, as the index i is increased, the discriminant function d; increases until
the subclass P4 (which is equivalent to the original time pattern f,.(1)) is reached.
After reaching P, that is for P, ( for n>4), the discriminant function becomes
almost constant and does not improve the value of the discriminant function as
presented in Fig.8.3.2. This means that P is sufficient to describe the original
time function f,.(f). Thus the time function of the original pollution source
function can be identified. The time functions for each subclass are presented in
Fig.8.3.1. It is found that the P, is almost identical to the original time function

Saci()

Once the time function is determined, the space function g(x) of the
pollution source is identified. As shown in Section 6.3, the space function can be
identified by the least square method which is based on the iterative equations
formulated in Eqn.(6.4-29) through (6.4-32). The computational results of g(x)
for different noise levels are shown in Fig.8.3.2. As can be seen from Fig.8.3.2,
the original space function can be identified clearly in a presence of high noise

levels. .

8.4 Example 3

In this section, distributed pollution sources in aquifer pollution systems
are identified from measurement data. Tbe aquifer under study is assumed to be

located near the surface where pollutants are injected by some factories. The
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Fig.8.3.1 The Time Functions for Each Subclass
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M : Measurement Stations at
(1500,1500),(1500,4500),(2500,2500),(3500,1500),(3500,4500)
Q : Aquifer Pumping with rate = 500
S : Storage Coefficient = 0.015
n : Porosity = 0.3
8x=5y=500
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location and intensity of the pollution source to be identified is assumed to be
unknown. The aquifer pollution system near the surface under ground is
characterized by the following two dimensional equations :

The aquifer flow equation is

ah _ 3 ), 2 ) _
Yo T o [K‘(x’y) ax] " % [K’(x’y)ay (8.41)

where h(x,y,t) is the hydraulic head, K, (x.y).K,(x,y) is the conductivity
(assumed to be a function of x and y), S is the specific storage ( assumed to be
constant ), and Q is volume flow ( assumed to be constant ). The aqﬁifcr quality

system is

- -g’-[ L) ] [,(x.y.:) ]

- _[,(x,y !)c) - —[ (x,y,)c) + ‘EQ' + F(x.y,1)
(8.4-2)

where c(x,y,t) is the pollutant concentration, D(x,y,t) is the diffusion coefficient (
assumed to be a function of space and time ), n is porosity (assumed to be a
constant ), and F(x,y,t) is the pollution source to be identified.

The Darcy equations are
Kx(on') oh
V(X y) = — 77—
x b ax (8.4-3)
K (x,
b oy (8.4-4)
The diffusion coefficients are '

186



Dx(x-y ,t) = exvx(x:y £)

D,(x,y,) = e,v,(x.y,0)

where e,,e, are dispersion cocfficients. Assume numerical values

parameters as :

K. (x,y) = K,(x,y) = 31000.0 — 2.25(x+y)

S = 0.015
e; = ¢, = 50.0 .
Q = 500.0

and initial condition
h(x,y,0) = 2000 x,yeD
¢(x,y,00=00 =x,yeD

and boundary conditions
h(xy.yp,t) = 200.0 x;,y, €dD
c(xp.ypst) = 0

where the space region ,D,' is
0=x=<5000 O0=y= 5000

and time region, T, is

0s:t=<20000 ¢teT

(8.4-5)
(8.4-6)

for these

(8.47)
(8.4-8)
(8.4-9)
(8.4-10)

(8.4-11)
(8.412)

(8.4-13)
(8.4-14)

(8.7-15)

- (8.4-16)

The measurement data are obtained at five stations, within the boundary of the

region under consideration, and involve measurement noise as follows :
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H 1/ lt) = C( »Y, .l‘) + e]‘(‘) for itlyzs-"!s
CompsYmofe) = € (oY k @417

where e,{t) for i=1,5 are measurement noise.

Objective
To identify the distributed pollution sources F(x,y,t) from measurement data.
The entire identification procedure is indicated in Section 6.3.3. For pumerical

computations the following space and time step sizes are specified :

Ax = Ay = 500.0
Atr=20.0

(8.4-18)

(8.4-19)
To solve the partial differential equations, the explicit finite difference

approximation method is employed.

Pattern of Pollution Sources F(x,y,t)
The distributed pollution sources F(x,y,t) are functions of time and space and can

be expressed generally as :

F(x,y,1) = g(x,y)f(2) (8.4-20)

By taking advantage of a priori knowledge of pollution sources, that is, the
locations of factories or their daily or monthly or yearly operation patterns, etc.,
explicit subclasses of F(x,y,t) can specified as the nominated pollution patterns.
For example, the following five subclasses might be generated from a priori
information :

P,: Fyx,) = s(x.y){( ag + iam(imrw.- )}

im1 (8.4-21)
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Feature Vector Extraction

In order to extract the feature of the subclasses, coherence functions r(x,, ,¥m,.f)

are employed as the elements of the feature vectors v;.

| € (X Yms) P
Bm(xp Y S)B (X s¥mpf) (8.2-22)

rjz(xm,’ym‘ﬁ =

where

Bm(x,,,ym,f) : power spectra density function of measurement data Z(Xp,sYm,of)

B(xy,,subm,,f) : power spectra density function of the solution cj(ii,submi,t)

based on the subclass F(z,y,f)
C(xm,>Ym,sf) : cTOSS spectra density function between ¢;(x,,, .Y, f) a0d 2(Xp,¥m,:)
i ( =5) : the number of the measurement station

j ( =n) : the number of the subclass of F;(z,y,r)
The feature vectors can be easily expressed as:

¥ = [ 77y Y )7 Eomys Yo T S Ymys )57 o YT (FimgpYmea) | 6.423)
Classification

The classification process involves making a decision as to which pollution pattern
among the subclasses is most close to the actual pollution sources. A discriminant
function based on the feature vector, together with a suitable threshold, is used to

that end.
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(8.2-24)
1 5
= < r2( ImS)

5 271 Cmom (8.2-:25)

where
1 111
W= [ T' ' ' ]

Simulation Results

For simulation purposes, "measurement data” at the five measurement locations
were generated by solving Eqn.(8.4-1) through (8.4-2), using for F(x,y,t) a
transient identical to subclass P; which is expressed by

F(x,y,8) = sin(wx/20000)sin(7wy/20000)sin>(r£/320)
(8.427)

and added Gaussian noise with zero mean and standard deviation o = 0.1.

These data are presented in Table 8.4.1.

Next these measurement data were transformed into frequency domain
data z,(xp,.¥msf), and their power spectra were calculated using conventional
signal processing techniques involving: tapering by window functions, Fourier
transform by FFT, calibration for truncation smoothing and averaging, the power
spectra are presented in Table 8.4.2.

To test the classification procedure, solutions at the five measuring points
based on each of the five subclasses of input functions, were calculated using both
the finite difference method. The resulting solutions c;(x,.ym.t) Were
transformed into the frequency domain using the FFT. Fipally, feature vectors
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Table 8.4.1 Measurement Data of Aquifer Pollutants

Time | z(tmYmst) | 2@Em Ympst) | 2@Emp¥mpt) | 2EmoYmot) | 2(Fm;sYm,ot)
.00 .00000 .00000 00000 .000000 .00000
.05 83532 34671 25182 1.40188 33206
.10 2.17257 31907 34695 2.34705 30922
.15 3.03628 31091 205833 3.18419 44665
20 | 351773 .44354 22868 | 3.25420 33237
25 3.84090 35850 37688 3.22482 52990
30 3.63805 .19886 23141 2.96447 36907
35 3.17465 21184 .08492 2.81640 .17540
40 2.76972 13098 .12889 2.59169 30030
.45 2.53522 11816 26473 2.21006 48308
50 1.99113 .11913 15115 1.77474 A7179
55 | 207176 .13562 .04399 1.75372 .10996
.60 1.56507 07747 05055 1.58878 22128
.65 1.24871 17416 -.01047 1.15550 -.06352
.70 1.22627 .00268 .14336 98959 .03925
75 94819 14031 18257 83192 00022
.80 75158 -.00499 02174 89369 -.13747
85 80376 24439 -.04560 .64851 .10799
90 67370 -.02732 -.02628 70364 06149
95 .74942 -.01440 00839 .73089 .15467

1.00 99045 JA7111 -.17559 81367 05526
1.05 87604 .08960 -.10066 .70876 22071
1.10 70211 04255 01112 50045 .16601
1.15 61737 .05970 -.08420 56063 -.03673
1.20 19971 -.07478 .19456 30698 -.06676
1.28 .04821 -.01135 -.09616 04369 .05012
1.30 -.03401 05233 -.04842 02802 06328
1.35 08737 .11394 .06357 09146 -.05867
1.40 .14843 .12858 .18138 .08011 05253
1.45 63277 -.00066 07565 56812 12751
1.50 | 1.33006 24193 .20567 1.35503 07903
1.55 2.07693 .11339 36493 2.14354 23078
1.60 | 2.85543 40324 21776 | 2.63654 .40262
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Table 8.4.2 Power Spectra Density of Measurement Data

Frequ BM(ImLJml.f)
000 | .163723e+01
.625 | .403482e+00

1.250 | .109900e+00
1.875 | .367536e-01
2.500 | .241095¢-01
3,125 | .141106e-01
3.750 | .768899e-02
4.375 | .285319¢-02
5.000 | .129248e02
5.625 | .117645¢-02
6.250 | .180117e-02
6.875 | .391251e-02
7.500 | .303287e-02
8.125 | .266530e-02
8.750 | .240209e-02
9.375 | .999845e-03
10.00 .282463e-03

Bm (%, Ympf)

118769¢-01
285676e-02
.146066e-02
,548892¢-03
645715¢-03
287364603
484182603
88776104
728366004
.115902¢-03
.1921026-03
.126545¢-03
.187923e-03
.360196¢-03
.149460e-03
.495459¢-03
.8457586.04

B (X, Y o)

-104825¢-01
.368023e-02
.753928e-03
.379635¢-03
32297203
.267599¢-03
.201049e-03
.298273e-03
.768498e-04
24281703
.341892e-03
543017e-04
.264130e-03
147285¢-03
13311303
.139833e-03
29547103

Bm(xp, Vmof)

.137971e+01
.349520e+00
.946544¢-01
.320423¢-01
.184053¢-01
.114986e-01
556541e-02
251022602
.150714e-02
604663003
.153849e-02
.258026e-02
273074e-02
202787e-02
.152652e-02
.535298¢-03
.401852e-03

Bm(x,\Ym,f)

.191031e-01
.404966e-02
.255083¢-02
.523805¢-03
.342726e-03
22082503
.205033e-03
.496061e-03
.183690e-03
.101708e-03
.364662¢-03
.21675%¢-03
.109342e-03
.353010e-03
.150661e-03
.208554e-03
.238025e-03
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based on the coherence vy; were calculated using Eqn.(8.4-21) and the
discriminant functions were calculated according to Eqn.(8.4-22). These
computational results are presented in Table 8.4.3. For each subclass P;, their
parameter values of a;, ¢, are optimized so as the summation of the discriminant

s
functions, \d;(y;) have maximum values. The optimized parameters for each
i=1

subclass are presented in Table.8.4.4. As the number of i is increased, the
discriminant function d; increases until the subclass P; which is equivalent to the
original time pattern f, (7). Beyond P;, that is, for P, (for n=4) the
discriminant function becomes almost constant. This means that P is sufficient to
describe the original time function f,(f). Thus the time function of the original
pollution source function can be identified. The time functions for each subclass
are presented in Fig.8.4.1. It is found that the P; is almost identical to the

original time function f,,(t).

Once the time function is determined, the space function g(x,y)} of the
pollution source is identified. As derived in Section 6.4, the space function can be
identified by the least square method which is based on the iterative equations
formulated in Eqn.(6.4-29) through (6.4-32). The computational results of g(x)
for different noise levels are shown in Fig.8.4.2. As can be seen from Fig.8.4.2,
the original space function can be identified clearly in a presence of high noise
levels.
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Table.8.4.3 Feature Vectors and Discriminant Function

subclass | | Pl d) | Plada)) | Plagad) | Plrayed) | Pravad) | diy)

.000 .99967 98568 9m11 99966 99068 .99096

625 10717 59597 53530 .10500 .35847 43038

Py 1.250 08134 58222 15878 07273 21231 22147
1.875 02177 38330 07285 02627 25317 15147

2.500 82626 30950 .26685 55561 07934 43551

.000 99984 .98560 97913 99980 .99071 99101

625 99990 97280 98268 99979 98635 98831

Py 1.250 07988 .64309 17602 07230 21518 23729
1.875 02109 40479 07421 02597 25189 .15559

2.500 82509 31365 26597 69487 07820 43556

000 99988 98557 9M14 99984 99072 99103

625 99987 97282 98267 99983 98631 98831

P 1.250 59888 96745 .B6368 99897 95614 95703
1.875 02058 46501 08280 02575 25515 16986

2.500 82410 32858 .26820 69423 07817 43866

0.000 99992 98556 97915 99988 99073 99105

625 99977 97282 98266 .99984 98629 98828

Py 1.250 99862 96747 86380 99909 95623 95704
1.875 99741 81275 84580 98980 .86013 90118

2.500 82427 37106 28527 69428 08393 45178

.000 .99993 98555 97915 99989 99073 99105

625 99976 97282 98266 99983 98628 .98828

Py 1.250 99858 96747 86381 99909 95624 95704
1.825 99724 81274 .B4585 .99006 .86000 90118

2.500 96980 59563 92623 97981 .85909 .86611
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Teble.8.4.4 The Optimal Parametérs for Each Snbolzcy

Pyt ¢ far = 1.0 + 1.0cos(wt—0.785398)
+ 0.5¢cos(2wt~0.785398) + 0.20cos(3wt+0.0)

Po : fo = 1.0
Py ¢ f1 = 1.0 + 0.7200cos{wt—0.84482)
P, : f3 = 1.0 + 0.7200cos(wt—0.84482) + 0.370cos(2ws—0.83940)

P; : f3 = 1.0 + 0.7200cos(wt—0,84482) + 0.370cos(2wt~0.83940)
+ 0.2740cos(3w¢+0.0705)

P4 @ fo = 1.0 + 0.7200cos(ws—0.84482) + 0.370cos(2we—0.83940)
+ 0.2740cos(3wt+0.0705) + 0.0330cos(4wt+0.140)
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£r) Fig.8.4.1 The Time Functions for Each Subclass
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Fig.8.4.2 Identification of the Space Functlon

by the Least Square Method
The Original Space Function

1 2 3 4 5 6 7 8 9 10
000 000 000 .000 000 000 .000 .000 .000 .000
000 954 1816 2.500 2.938 3.090 2938 2500 1816 954
000 1.816 3.454 4755 S5.590 S.877 5.590 4755 3.454 1816
000 2.500 4755 6.545 7.694 8.090 7.694 6.545 4.755 2.500
000 2938 5590 7.694 9.045 9.510 9.045 7.694 5.590 2.938
000 3.090 5877 8090 9.510 10.000 9.510 8.090 5.877 3.0902
000 2938 5550 7.694 9.045 9.510 9.045 7.694 5.590 2.9389
000 2500 4.755 6.545 7.694 8090 7.694 6.545 4755 2.5000
000 1.816 3.454 4755 5590 5877 5590 4.755 3.454 18164
000 .954 1816 2.500 2938 3.090 2938 2500 1.816 .954

The Caiculated Space Function
1 2 3 4 5 6 7 8 9 10

546 1.016 1957 2.577 2.850 2.828 2.382 2.167 1.641 1.076 |

168 1.374 2632 3.524 3969 4.010 3744 3212 2460 1.601

275 1858 3.596 4914 S5.634 5752 5507 4885 3.832 2500

415 2.424 4748 6.650 7757 7.787 7.563 6.947 S5.619 3.681

479 2756 5361 7.999 9.819 9.144 8.811 8261 7.030 4.476

208 2300 4.721 6781 8.009 8.095 7.877 7.245 5.880 3.796

092 1811 3.789 5.449 6442 6.651 6289 5388 4.085 2578

198 1.554 3.235 4,789 5780 6.040 S5.575 4.248 2904 1.740

437 1482 2884 4.508 5742 6265 6.653 3953 2393 1.345

851 1.715 3.114 4589 5565 5764 5105 3.506 2126 1.174
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8.5 Example 4

In this section, point pollution sources in river pollution systems are

identified from the BOD measurement data. The pollutant concentration u(x,t)

of BOD is given by:
ou _ dw ., du _
o a-——-azz b(x)—ax cu + F(x,1)

(8.5-1)
BOD data are obtained by sampling the river water at four locations. Assume

numerical values for the parameters:

a=0.01
(8.5-2)
b=0.25( sin(4mx/xp)+1.0 )
(8.5-3)
¢c=0.1
(8.5-4)
and initial condition
u(x,0)=0 xgsx=ux
(8.5-5)
and boundary conditions
u(xq,t)=0
(8.5-6)
u(xf,t) =0
(8.5-7)
where

0=sx=s20, 0=:¢=<100

The measurement data of BOD are obtained at four stations within the region

under consideration and involve measurement noise as follows :

2(Xp1st) =u(xn1, ) +e1(fy) af x,1=0.4

198



(8.5-8)
2(Xp2,ti) = U(Zm2:te) T e2(ts) ot xy2=0.8

(8.5-9)

2(Xp3,t) =4 (Xm3sti) T E3(t) AT Xp3=12
(8.5-10)

2 (xm4"k) = u(“mb‘k) +¢4(‘k) at X4~ 1.4
(8.5-11)

where ¢,(¢) for i=1,4 arc measurement noise.

Objective
To identify the distributed pollution sources F(x,t) from measurement data as
well as the mathematical model. For numerical computations the following space

step size and time step size are specified:

Ax = 0.10r 0.2
(8.5-12)

(8.5-13)
To solve the parabolic partial differential equation, the explicit finite difference

At = 0.1

method is employed. For simulation, the following pollution sources were
assumed as actual sources to obtain the output data

casel : F(x,t) = 8(x—0.2)sin*(1/3.2)
(8.5-14)

case : F(x,1) = 8(x—0.2)sin%(w#/3.2) + 0.28(x—1.2)(1.0+stn(w1/3.2))
(8.5-15)

Then random Gaussian noise signal with O-mean and different standard

deviations where added to the output data to generate the measurement data.

First of all, let us identify the point pollution sources locations. Suppose

the nominated pollution locations, x, are
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x,=0.2, x,=0.8, =12, =14

(8.5-16)
Therefore, the coefficient matrix B in Eqn.(6.4-5) for Ax= 0.1 is
B = () {51,2=b2.s=bs.1z=b4,u= 1.0
= i = . =
J other wise b; ;=0.0 (8.5-17)
Since the measurement locations are
Im-u. xﬂl:-o.l. xm:-l.z. x,,“=1.6, (8. 5-18)
the output matrix C in Eqn.(6.4-7) can be expressed as
{c1,4=f-‘2,s=°'3,12=¢4,16= 1.0
C = (ip) = \other wisec; ;= 0.0 (8.5-19)

100
On the other hand, the measurement data are accumulated from 7, to t, as 3 Z;.
- k=0

00
By using these matrices A, B, C and bzt, the feature vectors a; can be
k=0

calculated as follows :

(@) = [6761"'67 3 2,
k=0 (8.5-20)

where

G = C[I-A]"B
(8.5-20)

The simulation results are shown in Table.8.5.2 to 8.5.4. It is apparent from the
simulation results that the feature vector a; based on the locations x; has a larger
value, which is close to the theoretical value. The other feature values a; to a,
are all negative small values which are also close to the theoretical value, zero.
The differences between the calculated values and theoretical values are due to
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Table.8.5.2 Point Sol_lree 1dentification from th BOD Measurement Data

Case 1 : Single Pollution Source at x,,, = 0.2
The number of discrete point N=20 ( Ax= 0.1)

Nominated source locations
x =02(H=2)
x, =0.8 (l,b=8)

x5, =12 (13 = 12)
x, =1.6 ( Iy = 16)

1

Computational Results
feature | noise | calculated | theoretical
vector | level value vaule__
a(x;) 67.5080 64.0000
a(x;) 0 -0.77414 0
a(x;3) -0.81959 0
a(x;s) -0.57833 0
a(x;) 67.1670 64.0000
a(xp) 0.2 1.6623 0
a(x;) ) -3.5419 0
a.(xu) - 1.4293 0
alx;) 66.6570 64.0000
a(x;) 0.5 5.3171 0
G(IB) ) -7.6255 0
a(x;s) 2.7058 0
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Table.8.5.3 Point Source Identification from th BOD Measurement Data

Case 2 : Single Pollution Source at x,., = 0.2
The number of discrete point N=10 ( Ax= 0.2)

Nominated source locations
x =02(4=2)
x,=08(1,=8)
x,=1.2(1 =12)
X, =1.6 ( ’4 = 16)

Computational Results 2
feature | noise | calculated | theoretical
vector | level value vaule
a(x;) 67.3140 64.0000
a(xs) 0 -0.40614 0
a(x;3) 0.64727 0
a(x;s) -0.41042 0
G(Ijl) 66.8940 64.0000
a(x;) 0.2 2.40T7 0
0(113) ) -37839 0
a(x;y) 0.90757 0
alx;) 66.2630 | 64.0000
a(xp) 0.5 6.6283 0
a(x;s) ’ -8.4888 0
a(x;y) 2.3305 0
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the following calculation errors :
(1)  error due to calculation of inverse matrix [/-A]™
(2) error due to calculation of inverse matrix [GTG]™!

As measurement data include increasing levels of random noise, the feature a;
become somewhat worse than in the noise free case because the summation of
noise components do not have zero-mean so that the meas—t;rement data have a
noise bias. Fig.8.5.1 presents the changes of the feature vectors for each
pollution location when the noise -blas on the measurement increases. Therefore,
this bias must be considered in the discriminant function as a threshold, e.
Table.8.5.2 presents the case in which the step size is half of the previous case
i.e. Ax= 0.2. The result is almost same as for the case of Ax=0.1. In another
words, the accuracy of the feature vector does not improve because the
calculations of inverse matrix [/ — A]~! introducing error as the dimension of the
matrix A is increasing. Table.8.5.3 shows the second case in which two point
pollution sources exist at x; and x;. Obviously, the feature vector can extract the
actual pollution source locations even though there are the multiple point sources.
It appears that the pattern recognition approach can be used to identify the point

source locations even in the presence of high levels of measurement noise.

Once the pollution source locations are determined, their time pattern or
time history must be identified. By the dynamic programming, the time pattern (
F(k)=[ f1(k)f2(k) ] ) can be calculated based on the iterative equations from
Eqn.(6.4-29) to (6.4-32). The computational results of f,(k).fo(k) are shown in



Table.8.5.4 Point Source Identification from th BOD Measurement Data

Case 1 : Multiple Pollution Sources at x,, = 0.2, 1.2
The number of discrete point N=20 ( Ax= 0.1)

Nominated source locations
x;l =0.2 ( 11 = 2)
x, =0.8 (1, =8)
Xy =1.2 ( 13 = 12)
x, =1.6 (14 = 16)

Computsational Results 3
feature | noise | calculated | theoretical
vector | level value vaule
a(xy) 67.5080 64.0000
a(xp) 0 0.77415 0
a(x;s) 27.1150 25.0000
O.(IH) -0.81807 0
a(x;) 67.1670 64.0000
C!(I;z) 0.2 1.6623 0
a(xg,) ) 27.9660 25.0000
a(xm) -3.5404 0
a(xn) 66.6570 64.0000
a(x;n) 0.5 5.3171 0
a(x;s) ) 29.2420 25.0000
a(x;q) -7.6239 0




Fig.8.5.4 and Fig.8.5.5 for different noise levels. When there is no measurement
noise, both time functions can be completely determined without error by
substituting the weighting matrix R=0. As the measurcment poise increases, the
identification of both time functions become progressively worse, even though the
weighting matrix R is optimized. This is because the time functions f,(k) and
fz(k) are input function for the system equation, and even large changes in the
input do not result large changes in the output. Similarly, even small changes in
the output must be the result of large changes in the input. As a result the
dynamic programmiing method for identification of time function is very sensitive
to measurement noise. Therefore if the measurement noise level is appreciable,
the dynamic programming method is not accurate. However, rough time
functions can be identified. Thus multiple pollution sources in river pollution
system can be identified by first identifying the pollution source locations by
pattern recognition, and then by identifying their time functions by the dynamic

programming method.

8.6 Example 5

In this section, point pollution sources in river pollution system are
identified from DO measurement data. Besides Eqn.(8.5-1), the DO equation is
needed to formulate identification procedure as follows :

P _ o ) gy, - ) + K

a ot (8.6-1)

Assume numerical values for the parameters:
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a=0.01
b=0.25( .rin(‘hrxle) +1.0)
c=0.1

K,=0.1
Kd=0.5

v,=5.0
and initial condition

v(x,0)=V, xgsSx=x
and boundary conditions

v(xg,1)=V,

u(xs,t)=V,

(8.6-2)
(8.6-3)
(8.6-4)

(8.6-5)
(8.6:6)

(8.67)

(8.6-8)

(8.6-9)
(8.6-10)

The other conditions are assumed to be the same as in Section 8.5. The

measurement data of BOD are obtained at four stations within the region under

considerations and involve measurement noise as foliows :

z(x,,“,tk)=v(x,,,1,r,)+¢1(tk) at x, =0.4
2Ky ti) = V(Xmppti) H €2(ty) at x,,,=0.8
2(Xp s ) =V (Xmpt) TE3(8) @ 3y =1.2
2 o) =V(5m fi)+€4(t)) G =14

i
where e,(¢) for i=1,4 are measurement noise.

(8.6-11)
(8.6-12)
(8.6-13)
(8.6-14)



Objective
To identify the distributed pollution sources F(x,t) from the DO measurement
data as well as the mathematical model.

First of all, let us identify the point pollution source locations. The
transition matrix A’ can be calculated from Eqn.(6.3-38), (6.3-39) and (6.4-32).
Suppose the nominated pollution locations, x; to be :

1,l=0.2, x,z=0.8, Ih=1.0, I“=1.4
(8.6-15)

Therefore, the coefficient matrix B' in Eqn.(6.4-33) for Ax= 0.1 is same as the
matrix B in the previous section.

, b; '2=b2’3= bg'm,-_- b4'14 =1.0
B = (b1y) = \ other wise b, ; =0.0

(8.6-16)
Since the measurement Jocations are
Xm =0'4! xm1=0'81 =1.2 xm‘=1.4.
l - (8.6:17)
Therefore, the output matrix C' in Eqn.(6.4-34) can be expressed as
¢ = () {‘-‘1.23=‘-'2m=0329=cus=1.0
= G = . =
J other wise c; ;=0.0 8.618)

100
Also, the measurement data are accumulated from #; to t, as > W;. By using
k=0

’ » ’ lm ’
these matrices A ,B ,C and > W,, the feature vectors a; can be calculated as
k=0

follows :
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(a) = 67GT6" S W, B
k=0 (8.6-19)

where

G =C-AT'8
(8.6-20)
The simulation results are shown in Tables 8.6.2. to 8.6.4. The simulation resuits

show that the feature vector o, based on the locations x; can be used to extract
the actual point source location, but accuracy is worse than in the case of BOD.
This is due to the fact that the size of the matrix A',B'C’ becomes twice as large
as in the case of BOD, so that the error in calculating the inverse matrix is
increased. Therefore, the identification procedure using DO measurements
requires more accurate calculations. The determination of the time functions by
dynamic programming is shown in Fig.8.6.3 and Fig.8.6.4. In this case, the
identification is also very sensitive to measurement noise as is true in the case of
BOD. Therefore, the measurement data should be observed with minimum noise.
As a result, identification of point pollution sources from DO measurement data
is more difficult than from the BOD.

8.7 Example 6

In this section, point pollution sources in aquifer pollution systems are
identified from the measurcment data. The aquifer under study is assumed to
exist near the ground surface where the pollutants are injected from factories.
Thclocaﬁonsandintensiﬁuofthepoﬂuﬁonmmmumedmixmknown.
The poliution system is characterized by quantity and quality models. The
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Table.8.6.2 Point Source Identification from the DO Measurement Data

Case 2 : Single Pollution Source at x,, = 0.2
The number of discrete point N=20 ( Ax= 0.1)

Nominated source locations

x, =02 = 2)
x, =08 (1= 8)
Xy =12 ( 13 = 12)
x,=1.6(ly= 16)

Computational Results 1
feature | noise | calculated | theoretical
vector | level value vaule

#
a(x;) 61.1090 64.0000
a(xp) 0 0.94530 0
0(1‘13) -4.0085 0
a(x;) -.27263 0
alx;y) 59.2410 64.0000
a(xp) 0.2 1.8768 0
a(xp) ) -5.0628 0
a(x;4) -6.9707 0
G.(In) 56.4380 64.0000
a(xp) 0.5 3.2741 0
a(x;) ) -1.8670 0
G(Im) -2.1516 0
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Table.8.6.3 Point Source Identification from the DO Measurement Data

Case 2 : Multiple Pollution Sources at x,.,, = 0.2,1.2
The number of discrete point N=20 ( Ax= 0.1)

Nominated source locations
1';1 =0.2 ( 11 = 2)
Xy =0.8 ( lz = 8)
x, =12 (15 = 12)
x, =1.6 (I, = 16)

Computational Results 2
feature | noise | calculated | theoretical
vector { level value vaule
a(.!n) 61.20300 64.0000
a(xp) 0 6.3393 0
a(x;) 34.7370 25.0000
a(xm) 0.17145 0
a(xn) 59.3350 64.0000
a(xp) 0.2 -2.7190 0
a(x;s) : 44.0520 25.0000
a(x;s) -0.79824 0
a(xu) 56.5320 64.0000
a(xp) 0.5 -16.339 0
a(x;) ) 58.0280 25.0000
a(x;q) -2.2352 0
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aquifer flow equation is

d dh| _ ok
K(x) ax] = §— +

ax o

ot (8.7-1)
where h(x,t) is the hydraulic head, K(x) is the conductivity (assumed to be a
function of space), S is the specific storage ( assumed to be constant ), Q is
volume flow ( assumed to be constant ). The aquifer quality system is expressed
by

2. 2 (o) - Zltwie) + L + e o
where c(x,t) is material concentration, D(x,t) is the diffusion coefficient (
assumed to be a function of space and time ), n is porosity (assumed to be a
constant ), and F(x,t) is the pollution source to be identified. The Darcy
equation is

ey = KG) 3
™ (8.7-3)

Assume the numerical values for these parameters

K(x) = 31000.0 — 2.25x

(8.7-4)
S = 0.015
(8.7-5)
Q = 500.0
(8.7-6)
and initial condition

o 300 31000
h(x,0) = 200.0 o.zsl"“[smoo-z.zsx
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(8.7-7)

c(x,0) = 0.0
(8.7-8)
and boundary conditions
k(0,t) = 200.0
(8.7-9)
ah(xt,t) -0
ax (8.7-10)
c(0,) = 0.0
(8.7-11)
ac(xi,t) -0
ax (8.7-12)
where the region is
0=<x=10000.0 O =x= 2000.0
' (8.7-13)

The measurement data are obtained at four stations, within the boundary of the

region under consideration, and involve measurement noise as follows :

2(xp1st) = c(Xm1ti) + €1(f) af 2y =1000.0

(8.7-14)

Z(Xp2stp) = C(Imz-?t) + ex(fy) at x,,=3000.0 (8.7-15)

2(Xpsle) = c(paoty) + €3(ty) ar x,3=5000.0 (8.7 16)
2(Xpast) = c(mastt) T 4(tr) at 254=7000.0 __ .

(8.7-17)

where e,(z) for i=1,4 are measurement noise.
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Objective

To identify the distributed pollution sources F(x,t) from measurement data. The
entire identification procedure is indicated as in Section 6.4.3. For numerical
computations the following space step size and time step size are specified:

Ax = 500.0

At=20.0

(8.7-18)

(8.7-19)
To solve these partial differential equations, the explicit finite difference

approximation method method is employed. For simulation, the following
pollution sources were assumed as actual sources to obtain the output data

F(x,t) = 3(x—2000.0)sin?(w/320)
(8.7-20)

Then random gaussian noise signals with 0-mean and different standard deviation
where added to the output data to generate the "measurement data”. Let us first
identify the point pollution source locations. Suppose the nominated pollution

locations, x; are:

x,1=2(ll), x;:=4w0, x;,=6(ll), x,‘=8(ll)

| (8.7-21)
Therefore, the coefficient matrix B in Eqn.(6.4-5) for Ax=>500 is
B =) {51.4 = byg = b312 = bs16= 1.0
= i = =
) = | otherwise b;; = 0.0 ®.722)
Since the measurement locations are
Xp,=1000, x,,=3000, x, =5000 x, =7000.
1 Ty Emy Ty (8.7-23)

Therefore, the output matrix C in Eqn.(6.4-7) can be expressed as
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€12 = €36 = €310 = €434 = 1.0

C = = { —
() = | other wisec;; = 0.0 (8.7-23)

100
The measurement data are accumulated from f; to # as 3 Z;. By using the
k=0

100
matrices A,B,C and Y Z,, the feature vectors a; can be calculated as follows :
; =0

(@) = [GTG]_IGT%OZJ:
k=0 (8.7-24)
where

G=Cll-Al"'B
(8.7-25)
The simulation results are shown' in Table.8.7.2. and Table.8.7.3. The results

show the feature vector based on the location x;, can extract the actual point
source location, increasing levels of measurement noise, but the accuracy is worse
than in the case of river pollution system. This is due to the fact that the
transition matrix A is time variant so that an averaged transition matrix, A was
employed instead of A to derive the feature vector a;. Therefore, the accuracy of
the entire identification depends on the aquifer flow dynamics. The determination
of the time functions by dynamic programming is shown in Fig.8.7.1. The time
function of the pollution sources can be identified in the noise free case, even
though the pollution system equation is time variant, but the solution is very

sensitive to measurement noise.
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Table.8.7.2 Point Source Identification of Aquifer Pollution System

Case 1 : Single Pollution Source at x,;; = 4000.0
The number of discrete point N=20 ( Ax= 500.0)

Nominated source locations

X =2000.0 ( 11 = 2)
Xi, =4000.0 ( 12 = 8)
X, =6000.0 ( I3 = 12)
X, =8000.0 ( 14 = 16)

Computational Results 1
feature | noise | calculated | theoretical
vector | level value vaule
a(xu) -0.00474 0
a(xs) 0 11.18500 9.6577
a(x;) 0.24307 0
a(x;4) -0.10745 0
G(Xn) 0.77603 0
a(x;) 0.2 10.27800 9.6577
a(x;) ) 0.60630 0

| alx -0.16558 0
C(xu) 1.94721 0
alxp) 0.5 8.91730 9.6577
Cl(.!n) : 1.15120 0
tl'.(lm) -0.25276 0




Table.8.7.3 Point Source Identification of Aquifer Pollution System

Case 1 : Multiple Pollution Sources at x,,, = 2000.0, 6000.0
Thbe number of discrete point N=20 ( Ax= 500.0)

~ Nominated source locations
 x, =2000.0 (4 =2)

Xi, =m.0(12= 8)

x;, =6000.0 ( I3 = 12)

Xl =8000.0 ( l4 = 16)

Computational Results
feature | noise | calculated | theoretical
vector | level value vaule
Cl(xu) 10.16600 9.6557
a(xp) 0 0.22029 0
a(x;3) 12.17000 11.9390
a(xs) 1.79810 0
a(x;) 10.94700 9.6577
a(xp) 0.2 -0.68678 0
a(x;s) ) 12.53300 11.9390
a(x;s) -1,74000 0
G.(Xu) 12.11800 9.6557
a(xp) 0.5 -2.04740 0.0
0.(113) ) 13.07800 11.9390
a(xg) 1.65280 0
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CHAPTER 9

9.1 Scope and Objectives

The research described in this dissertation is directed to the development
of a new technique for the identification of input functions in distributed
parameter systems and more specifically of pollution sources in water pollution
systems. Two major challenging problem areas, river pollution systems and
aquifer pollution systems are discussed as 'exampla. In general, there are major
difficulties involved in the identification of distributed pollution sources in
environmental systems. 'Ihe followings are the principal sources of difficulty:

(1) Distributed pollution sources to be identified generally vary in space and
time.
(2)  The general nature of pollution sources are at best only approximately

known, therefore, they must be inferred using physical insight.

(3) Since environmental pollution systems are generally modeled by partial
differential equations (PDE’s), a large amount of computations are
involved. Therefore, the selection of computing hardware facilities as well
as algonthms and software must be carefully considered.

(4 From the mathematical point of view, pollution source identification
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problems in environmental systems are equivalent to the determination of
input functions in distributed parameter systems, and are generally non-
well posed inverse problems.

(5) The system observations involve measurements of certain system variables
at a relatively small number of measuring stations and relatively

infrequently in time, i.e. the observational data are generally very sparse.
(6) The observations are subject to substantial measurement error.

In order to cope with the above difficulties, the mathematical models of both river
pollution systems and aquifer pollution systems and their pollution source
identification problems are first precisely formulated in Chapter 2. Among these
formulations, the pollution sources to be identified are classified into the point
pollution source type and the distributed pollution source type using separable
functions of space and time variables.

In Chapter 3, an investigation of the possibilities of the conventional
identification' methods for the identification problems formulated in Chapter 2 is
made. Several typical approaches including the regularization method, the cross-
validation, the least square method, the Kalman filtering and the dynamic
programming, are employed for the identification of distributed pollution sources
in rivers which are characterized by the one-dimensional partial differential
equation. For each approach, the difficulties and restrictions on the execution of
the entire identification procedure are analyzed.



In order to complement the conventional identification methods, rather
than to replace them, the pattern recognition approach, involving pattern
generation, feature extraction, classification and evaluation-introduced introduced
in Chapter 4. In the pattern generation step, which entails the partitioning of the
general’ pollution source into subsets, the time pattern and the pollution source
locations can be regarded as the generated subclass pollution pattern. As feature
vectors, which enhance the similarities of clements of the same class while
enhancing the differences of the elements of classes, the coherence functions and
the normalized correlation functions are employed. In the classification steps, a
linear discriminant function which consists of an equal weight vector is employed

for simplicity. Performance evaluation is carried out with the aid of simulations.

The entire identification process for river pollution systems with both BOD
and DO index and aquifer pollution systems, which are classified into the
distributed pollution sources and point pollution sources, is formulated. in
Chapter 6. In the case of the distributed pollution sources, first, the time pattern
ofthepouuﬁonsourceisidcnﬁﬁedbypattcrnrecogniﬁon.nenthcspace
function is identified by conventional identification, specifically, the least square
method. In the case of point pollution sources, the pollution source locations are

Inordertoimprovetheeompumﬁonalspeedoftheenﬁreidenﬁﬁaﬁon
.prowdure,theMonteCarlome;hodisusedasanaltemaﬁvsofnumeﬁml
method for the solution of the partial differential equations, and the peripheral



array processor system is introduced as a new implementation tool of the entire

identification procedure.

In Chapter 5, the computational algorithms of the Monte Carlo method for
the one-dimensional river pollution systems with both BOD and DO and for two-
d:mensmnal aquifer ‘pollution systems are formulated. The several ‘numerica.l
examples are employed to compare with the computational speed and aécuracy of
solutions by the finite difference equation and by the Monte Carlo method.

In Chapter 7, the implementations of the entire identification procedure
using the peripheral array processor, which is connected to the general purpose
computer, are precisely formulated. Performance evaluations of the solution of
the partial differential equations, the calculation of the feature vectors, the
calculation of the conventional identification methods of the identification process,
are performed using the VAX-11/750 and the Mini-Map array processor.

In chapter 8, in order to demonstrate the verification of the entire
identification procedure formulated in Chapter 9, several numerical exampies
including one-dimensional river pollution systems and two-dimensional aquifer
pollution systems are analyzed w'i'th the aid of simulations. Evaluations of the
identification procedure for both distributed pollution sources identification and
point pollution source identification are made by varying the noise level of the

measurement data.



9.2 Principal Conclusions

The main purpose of the research described in this dissertation is to
demonstrate how pollution sources can be identified using a methodology based
on the pattern recognition approach which was introduced by Karplus
[Karp 72], and how the entire identification procedure can be executed
efficiently aid of array processors. There are already several studies in which the
pattern recognition techniques have been found to be very useful in the
mathematical modeling aquifer quantity and quality systems for which sufficient
information is not available to implement conventional identification methods. As
another application area of the pattern recognition, the problem of identifying the

pollution sources in water pollution systems is investigated in our research.

The introduction of a separable function of space and time for the pollution
source, not only has a physical justification, but also makes it possible to classify
identification problems into distributed pollution source and point source
identification. This is convenient for the entirs identification
process to be implemented precisely because the time function and the space
function can be determined by combining the pattern recognition approach and
conventional methods. However, in the case in which the pollution sources are
moving or for multiple distributed source types, scparability cannot be directly
applied. Therefore more general structures should be assumed for the pollution

sourcecs



Using Fourier series to express the time function has a big advantage in
that the subclasses of the pollution time pattern can be automatically generated,
so that the pattern recognition process automatically approaches the actual time
pattern progressively as the number of Fourier series terms is increased.
However, in the case that the time function of the pollution source behaves in a
random manner (i.e. there is no periodic time pattern ) the pattern recognition
approach is relatively ineffective.

Coberence functions and normalized correlation functions as feature
vectors have significant attraction in that their feature extraction abilities are
inherent even in the presence of high measurement noise. Furthermore, their
computations are highly computer intensive so that FFT and signal processing
techniques can be used. It should be noted that relatively large number of
measurement are required to obtain statistical data for both the coherence

function in the presence of measuring noise.

In point pollution source identification, the locations of the pollution
mﬁumheextmctedroughly&om a priori nominated pollution sources by
the pattern recognition approach even when the measurement data are
corrupted by high noise level ( i.c., large noise variance ) with zero mean. The
calaﬂatedfeamreveammsigniﬁmtbemmethdrvaluareprmntdirecﬂy
the total amount of pollution discharged from the nominated poilution locations
during a measuring period, no matter how the time functions of these sources
behave.



The conventional identification methods are still useful and can be
employed after the determination gf either the time function or the space function
by the pattern recognition method.

The computer algorithm for the entire pattern recognition approach
including the solution of the partial differential equations and the tuning of the
parameters, a; and ¢; of the generated subclass patterns, are highly computation
intensive. Array processor systems are particularly attractive in that the
computation time can be improved with one order of magnitude over the host
machine as the number of the space steps is increased. Furthermore, the
identification process can be programmed and executed easily by using the
scientific subroutines which are supplied by the manufacture.

The Monte Carlo method for the solution of partial differential equations
is useful to obtain the rough solutions at several specific locations with relatively
high speed.

The entire identification process formulated in this research can be applied
to the other problems, such as, lake pollution systems, bay pollution systems,or
air pollution systems as long as their mathematical models are well formulated

and measurement data are available.

9.3 Specific Accomplishments



The accomplishments of the research described in this dissertation are

summarized as fol.lbws :

1)

@

®

4)

&)

(6)

An investigation of the mathematical modeling of river pollution systems
and aquifer pollution systems and the identification of pollution sources
from measurement data, has been conducted.

It has been shown that the conventional identification methods have
weakness and difficulties in coping with identification of pollution sources

from the measurement data.

The pattern recognition approach was introduced to overcome some of the
difficulties of conventional identification methods.

Various methods for employing feature vectors and pattern recognition to
extract original pollution source pattern were shown. The correlation
function and the coherence function are particularly useful as feature
vecforsbecguseoftheirinvarianceintheprmceofaddiﬁve

measurement noise.

It has been shown that feature extraction from power spectra functions or
cobherence functions has the advantages that the time function of the
originalpoﬂuﬁon.soureepatternennbeuseddirecﬂytoobtainthe'
frequencies which are partitioned into subclasses.

It has been shown that the Monte Carlo method is suitable for solving the
partial differential equations, because solutions for only a few points (
corresponding to the measuring stations ) are required.
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(7) The entire identification procedure has been demonstrated by using a
variety of combinations of the pattern recognition and of conventional
identification methods.

(8) Performance cvaluations of the entire identification process have been

made for both the simulated river pollution systems and the simulated
aquifer pollution systems. |

9) It has been shown that array processors can carry out the entire
identification procedure at high speed and at relatively modest cost when

combined with conventional computers.

9.4 Suggestions for Future Research

The main purpose of the research discussed in this dissertation was to develop a
methodology and implementations to overcome the difficulties with conventional
methods summarized in Chapter 1. According to the results of the
implementations and performance cvaluations of the proposed identification
procedure, this goal has been achieved. In order to improve the proposed
identification procedure, the following topics should be investigated.

9.4.1 High-Order Finite Difference Approximation

In order to approximate the original partial differential equations, we
employed the second central difference to approximate for second order partial

derivative terms. As a result, the transition matrix, A, for the state vector
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equations is tridiagonal. In order to obtain a higher accuracy in the feature
calculation and conventional identification and in order to reduce the truncation
error, higher-order finite difference approximation may be desirable particularly
for the case in which there are multiple-point pollution sources and the distances
" between them are short, or the case in which there are multiple measuring
stations which are not located homogeneously and some of the stations are close
to each other. In these cases, point pollution source identification is difficult to
carry out because the calculation of inverse matrix, [/ — A]™" is computationally
diverging. Thercfore, a high-order approxima'tion is desirable. By employing
high-order approximations, the following advantages can be expected :

(1) Numerical solutions of the mathematical equations will be more accurate,

(2) The accuracy of the conventional identification can be improved; as a
result, more accurate source identification can be possible.

~ On the other hand,

(1) the calculation time increases when high-order finite approximations are
employed.

9.4.2 Identifications with unknown field parameters

In our research, all the field parameters were assumed to be known.
However, in many practical situations, pollution source identification must be
executed with unknown field parameters. This makes the problem more difficult
because :
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(1) the input pollution sources are unknown.
(2) The mathematical model is partly unknown.
(3) The measurement data available are corrupted by measurement noise.

Therefore, there is no deterministic information available. For this case, the field
parameters must first be identified by injecting tracers from particular upstream
location. Then the pollution source can be identified from the measurement data.

9.4.3 Pollution Source Identification with Unknown Initial Conditions and
Boundary Conditions

In the example included in Chapter 8, pollution source identification was
demonstrated with known initial and boundary conditions. In some practical
situations, these conditions might not be known so that the pollution source
identification must be implemented with unknown initial and boundary
conditions. Perhaps the initial state can be represented approximately by
measurement data near the boundary area. Another possible way is to identify
boththemmalandthebmmdaryeondmonsbyregardmgbothcondmonsas

pollution sourccs.

9.4.4 Optimal Measuremeat Locations for Ideatification

In our research, the number of measurement stations was assumed to be
fixed in advance. From the identification view point it is desirable to locate as

many of the measurement stations as possible near the pollution sources so as to
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attain a greater accuracy in the entire identification procedure. However, from
the economic point of view, measuring stations could be very costly so that the |
number of the measuring stations should be minimized. Therefore, the locations
of measuring stations should be optimized so as to obtain optimally accurate
identifications. It is thus necessary to evaluate the locations of the measurement
stations. One of possibility for cvaluatit;n is to consider a sensitivity function
such as :

S5(xm,) = a‘i—'{( b Ctmof) = 4(m,sf) Vo8 (9.4-1)

so that the optimal measuring stations can be found by maximizing the sensitivity

function.

9.4.5 Syntactic Pattern Recognition Approaches

The pattern recognition method which was introduced in this rescarch is a
statistical approach. Alternatively, syntactic pattern recognition approaches are
possible. This is done by constructing the feature vector from the difference
between the two succeeding measurement data. This method has already been
employed for the prediction of the aquifer quantity in the annual volume problem
[UmUR78] {UmUn80].



APPENDIX A
The Least Square Method

Problem statement

Given the systm equation with initial condition Uy

Urs1 = AU +Gf;

(A1)
the observation equation
Yk = CUk
(A-2)
and actual measurement data Z; such that
Z, =Y, +W;
(A-3)
find the optimal estimate value G to minimize the error function J such that
n
J = 3 (& CU) (&~ CUY)
k=1 (A-3-1)

At first, the system equation (A-1) is transformed into the equation which
includes Y; instesd of U;. When k=1,

Y, =CU = C(AUG+Gfo)
(A-4)

When k=2,

Y, = CU; = C(AU;+Gfy) = CA2+CAGfo+CGf,
' ' (A-5)



. When k=k-1,

Y, =CU; = C(AUk-ﬁ._&-O

= CAUg+CA*1Gf+A*"2Gf 1+ - - - +CAGf;—+CGfy—

(A-7)
Therefore,
Yy = (CA¥ fo+CAF 21+ - - - +CAfp-2+Cfi-1)C
- XgG
(A-8)
where
X = CAk-lf0+CM"2+ s+« +CAfp-2+Cfp-1
(A-9)
Using the eqn (A-9), the error function J can be written as
I= 3 Z~Y) (ZeYo)
i=1 (A-10)
= 3 (Z:—-X:G)7 (2, X,G)
k=1 (A-11)

In order to find the optimal estimate value of G(n), that minimize the error
function J,

3 _o at G(n)

aG (A-12)

must satisfied. From this condition, we have

aJ & .
3 _ S (-x]z,+2x[X6(n)} = 0
3G El{ 1z, +2x]X,G (n)} A13)

That is,



(3 X[X)G(n) = {'\':l(xrzt)

k=1

Moreover, we define that

P(n) = [ XX,

k=1

and

Q(n) = EXIZI‘

k=1

Therefore, the optimal estimate value G(n) can be expressed as

G(n)=P(n)Q(n)
At the same procedure, for k=n+1
G(n+1) = P(n+1)Q(n+1)

Then we consider the P(n+1). By definition of the (A-15),

P-i(n+1) = S XX,
k=]

] |
= k}:.xl’xwxzﬂx,.ﬂ
-]

= P l(n)+XT(n+1)X(n+1)

By inversing the (A-21), we can obtain

(A-19)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

(A-21)

P(n+1) = P(n)—-P(n)XT(n+1)[X(n+ DP(n)XT(n+1)+1]" X (n+1)P (l?A 2)



= P(n) P(n)X7(r+1)K(n)X(n+1)P(n)

(A-23)
Where we define
K(n) = [X(n+ 1)P(m)xT(n+1)+1]"!
(A-24)
and I is identity matrix.
Next, we consider the G(n+1). By definition of the (A-18),
G(n+1) = P(n+1)Q(n+1)
(A-25)
= P(n+1}{Q(n)+XT(n+1)Z(n+1)}
(A-26)

By substituting the (A-23) into the (A-26), we can obtain

é(n+ 1) = (P(n)
G(n+1) = {P(n)—-P@)XT (n+ DK (r)X (n+ DP(M)HQ(n)+XT(n+ 1)Z(n+( H -
= P(n)Q(n)+P(n)XT(n+1)Z(n+1)

—P(n)XT(n+ DK ()X (n+ )P (R)(Q(R)+XT(n+1)Z(n+1))

(A-28)
= G(n)+P(MXT(n+ 1)K~ (n)Z(n+1)
- (A-29)
—P(MXTR(r)x(n+1)P(n)(Q(n)+XT(n+1)Z(n+1))
G(n)+P ()X (n+1)K(n)(X(n+1)P(n)XT(n+1)+1)Z(n+1)
—P(n)XT (n+DE(MX(r+ 1P (r)(Q(n)+XT (n+1)Z(n+1))
(A-30)
= G(n)+P()XT(n+1)K(n+1)Z(n+1)
(A-31)



-P(n)XT(n+1)K(n)X(n+1)P(n)Q(n)

= G(n)+P(MXT(n+1)K(r)(Z(r+1)=X(n+1)G(n))
(A-32)

As a consequence, we could derive the Least-Square algorithm to identify the
otimal estimate of G(n+1) aas follows ;

G(n+1) = G(n)+P(A)XT(n+ 1)K ()Z(n+1)-X(r+1)GWV))

(A-33)
p(n+1) = P(n)P()XTX(n+1)K(n)X(n+1)P(n)

(A-34)
K(n) = [X(»+1)P(n)XT(n+1)+1]"?

(A-35)

Those equation can be calcuated b giving th initial estimate values G(0) and P(0).
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APPENDIX B

Tl;e Dynamic Programming
Let us be the model equation
Ups1 = AUg + BiF,y,
. (B-1)
the output equation
Yy = CeUs
(B-2)
the observation equation
Zy =Y + my,
(B-3)

then find the optimal input function F* to minimize the cost function such that

J= -;-(z,, - CUYTH(Z, - CUy)

1N=1 T
+ 5 3@ - cuy'e@ - CUy + FIRFy
k=0 (B-4)
Let us assume Jy_; be the cost function needed to go from the N—k™ stage to the
N™ stage as

1
I N = '2'(ZN-k"CUN—t)TQ(ZN-t-CUN-t) + In-k+1 N B9)

with



1
Iy = 5(2v — CUNR(Zy - CUy)
At first, we consider the case for k=1. From Eqn. (B-5)

1
IN-1N = E(ZN-1-CUN-z)rQ(ZN-l‘CUN-1)

+ -;-Fﬁ_ WRFy_y + ‘;—(ZN"CUN)H(ZN_CUN) ®B7)

The minimum cost, Jy—1 v is a function of Uy-; and Fy_ ,

In-1n = min{Jy—y p{Un-1,Fn-1)}
N=-1,N N-1 N=14'N=1 (B-8)

Now Uy is related to Fy_; by Eqn. (B-1) so that

. o1
IN-1N = mm{i(zn-fCUN—ﬂrQ(zN-l‘CUN-1)
+ -I—F},' RF
2 - N—1

1
+ E[(ZN—CAUN-I_CBFN-l)rH(ZN"CAUN-l-CBFN—I)]} ®9)

In order to minimize the Jy..; y with respect to the Uy—; , The next condition

must be satisfied.

dFN-1 (B-10) -

Evaluating the indicated partial derivertive gives

Fy-1 = [R + (CB)’HCB]™(CB)H[Zy- CAUy-/]
(B-11)

= Ky-1En-1
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Ky-1 = [R + (CB)THCB]™Y{(CB)'H

For convinience, we define

(B-12)
Ey-, = Zy — CAUy-,

(B-13)
H= Po

(B-14)

Substituting Eqn. (B-12) into Eqn. (B-9), the minimum cost can be expressed as

1
IN-1N = 'E(ZN-I—CUN-I)TQ(ZN-I-CUN-I)

+

1

'i'FﬁqRFN-x

1

5[(ZN-CAUN_1-CBFN_I)TPO(ZN—GQUN_l—CBFN_i)
(B-15)

1

'E(ZN—I_C Un-1)70(Zy-1~CUy-1)

1

E(KN— 1EN=-1)TR(Ky-1EN-1)

1 N

‘z‘[(EN-l‘CBKN- 1En=1)TPo(Kn-1—CBKy—1Exn-1]

1

'Z'(ZN-I"'CUN-—l)rQ(zN—l"'CUN-I)

1
§E§-1(xp-1RKN- VEN-1

-%-[{(I-CBKN- I)EN— I}TP(]{(I—CBKN- I)EN— 1}]
®17)



1

"2"(ZN-1-CUN-I)TQ(ZN-I-CUN-I)
1

+ §E§-1(K§— 1RRN-1)EN-1

+ L[~ CBEy- )Pl ~CBEy-DIEN-1

%—(ZN_1-CUN-1)TQ(ZN-1"CUN-1)

1
+ gaﬁ-ltxﬁ-lm-ﬁ(I—cnxu-l)’Po(t-CBKN-l)IEN-l

Where the second term of Eqa. (B-19)

Kf—\RKy—1+ (I~ CBKy-1)"Po(I~ CBKy-1)
= by 1RKy—+{Pg— (CBEN-1)Po)(I~CBKy-—1)
= Kf- 1Ry, + P — PoCBKy-1
— (CBEy-1)TPo+(CBRy-1)"Po(CBEy-1)
= Py — P(CBKy-1 — (CBKy-1)"Pg
+ x[,(ft + BTCTPCB)KN—1
= Py — PoCBKy-1 —(CBKy-1)"Po
+ Kf_(R+BTCTPCB)(R+BTCTPCB)~'BTCTP,

= Po(I—CBKy_1)

(B-18)

(B-19)

(B-20)

(B-21)

B-22)

(B-23)

(B-24)

(B-25)



= Po(I-CB[R+BTCTPCB]~'BTCTP,)

. (B-26)
We define Eqn. (B-25) as P,
P, = Py—PCB{R+BTCTPCB]~'BTCTP,
(B-27)
Therefore, we can get the next equation
1
Iv-18 = 5 (@n-1~CUy-1)"Q(Zy-1~CUy-y)
1
+ "2'55-1”051\:-1
(B-28)
Finally, we can get the next three iterative equations :
Fy-3 = Ky-1[Zy — CAUy_1]
(B-29)
P, = Py — PCB[R+BTCTPCB]™1BTCTP,
(B-30)
Ky—y = [R+BTCcTP,cBI™'BTCTP,
(B-31)
For k=2, by the same procedure, we can get the those three equations :
Fy—3 = Ry—3[Zy-y — CAUy_)]
| (B32)
P, = P; - P,CB[R+BTcTP,CB]'BTCTP,
(B-33)

As a summury of the procedure, we can finnay get the next general equations :

Fy-i = Ky—i[Zy_i+1 = CAUy_;]

(B-34)
Py = Py—y — Py CB[R+BTCTP;,_,CB]"'BTCTP,_,
_ (B-35)
K, = [R + BTCTPy_,CBI"TBTCTPy_,
(B-36)
Po = H
(B-37)



APPENDIX C

Let consider state vector equation with the BOD index,u; whose space

function is epxpress by G as it nodal vector value

ui(n+1) = Auy(n) + Gy(n)
(C-1)

The output equation at measuring station x,, is

uy(xp,m) = Cluy(n) (C-2)

For convinience, the initial condition is assumed to be 0. Applying z-transform
for Eqn.(C-1) and (C-2), the next two equations are obtained

2Uy(z) = AU4(2) + Gy(2)

Us(mp3) = CTUIGtm2) e
pLE HLEALE (c4)
Substituting Eqn.(C-3) into (C-4), the following equation is obtained :
U = CIT(2)G
1(%m,2) (2)Gy(2) ©5)
where we define
T(z) = (d - A)"!
(C-6)
Since z = ¢~/2%/AT, Egn.(C-5) can be expressed with Fourier series such as
U = C{T()G
1Gmf) = CITNGY() ©

On the other hand, let consider the state vector equation with the BOD, ¥, whose
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space function is R ( = the unit vector ) as its nodal expression :

ua(n+1) = Auy(n) + Ry(n)
(C-8)
The output equation is
»n) = CT
U2 (Xm,s) uz(n) ©9)
By applying the same procedure from Eqn.(C-3) to (C-7), the following equation

is obtained :

Un(xmaf) = CITORY() (C.10)

Next, we consider the coherence function 74(x,,.f) between the output Uy (X, )

and the measurement data i, (xy,,f)-

_ | C1m P
riGEm) = By (¥m,f)B1(5m,f) (C-11)
_ _lemtnecy P '
BalcIT(NGY (NI (C-12)
___1CmP
Bu(xms NIy P (C-13)

On the other hand, the coherence function ry(x,,.f) between the output ux(m,,?)

and the mearement data uy(x,.f)-

_ | Com P
R WYX (C-14)
_ I Cm.Wcz‘ F
" Bal CTRY(N P | (C-15)



__ lomb
Bu(xm N y(D P (C-16)

Therefore,

fx(xm,-f) = "2(xm,-ﬂ (C 17)

Thercfore, the coherence function gives the same values for the different space
function expressed by nodal values. As a result, the space function g(x) can be

. replaced by simply 1.
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Appandix D

PROGRAM HBOD

THIS IS A MAIN PROGRAM FOR HOST MACOMPUTER

TO CALCULATE THE ONE DIMENSIONAL PARTIAL

g{’FggEN'I_'IAL EQUATION IN THE RIVER POLLUTION
S

REAL VAL1,VAL2,VAL3,TO, TIME,OTIME, T

REAL PI,DX,DT,A,C.W

REAL P1,P2.P3

REAL X,B

REAL BOD, F (499) ,FF (499) ,ES

REAL OUT1 (101) ,0UT2 (101) ,0UT3(101) ,0UT4 (101)

INTEGER*2 PLUN, ILUN,OLUN
INTECER*2 WIPHY%Z}
INTEGER*2 N KTIME.I.J

COMMON /WINDOW/ VALZ (499) ,VAL3 (499) ,ES (499) ,BOD(501),
. VAL1,N,KTIME

DATA PLUN, ILUN,OLUN /3,5,7/
DATA MMPHYS /4096,0/

OPEN (UNIT=PLUN,NAME='MBOD.QL',
* TYPE='OLD' s-READONLY)

OPENMM (O, PLUN, MMPHYS, IERR)
IF (IERR.NE.O) STOP

PI1=3.1415926

N=100 ‘
DX=0.02*PI

DT=0.001

KTIME=100

A=0.01

c=0.1

P1=A*DT/DX/DX

CALL RPOKE (VAL1,P1)
TYPE 40,N

FORMAT(1H , ' N = ',I5)

DO 5 I=1,N-1

X= (FLOAT (I) -0.5) *DX
B=0.25* (1.0+SIN(X))
P2=P1+B*DT/DX
P3=1.0~(Pl+P2§-C*DT
F (J)=DT* (SIN(X) +1.0)




($1Q]

a0 aan

a0

a0

CALL RPOKE (VAL2Z
CALL RPOKE (VAL3
5 CONTINUE

DO 10 I=1,N+1
CALL RPOKE (BOD (
10 CONTINUE

T0=0.0

20,30 1

CALL Rpo& (ES(I

20 CONTINUE
TO=SECNDS (TO)

99 CALL STRTMM(O,I
IF (IERR.NE.O) S

1).P2
I).P3

1),0.0)

) .EE(I))

ERR)
TOP

CALL WAITMM(IERR)
IF (IERR.NE.O) STOP

TIME=SECNDS (TO)

TYPE 300, TIME
300 FORMAT (1H .///.
* E12

' COMPUTATION TIME =

6, ' (SEC)‘)

CALL CLOSMM(IERR)

IF (IERR.NE.O) S

STOP
END

TOP

’
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PROGRAM MBOD

THIS IS A MCL PROGRAM FOR MINI-MAP'TO CALCULATE
ONE DIMENSIONAL PARTIAL DIFFERENTIAL EQUATION
IN THE RIVER POLLUTION SYSTEM

REAL VAL1,VAL2,VAL3,BOD,FS
REAL P2,P3,BBOD
REAL 01,02,03,04

INTEGER N,KTIME, K
COMMON /ACOM/ VALZ (499) ,VAL3 (499) ,FS (499) ,BOD (501) ,
* 1.N,KTIME

COMMON /BCOM/ Pz 499; ,P3 499; ,BBOD (501) ,
01 (100 03 (100) , 04 (100)

99 K=1

100 CALL VMUL{PZSI:N-l;.l.O,'BOD 1:N-1),0.0,VAL2(1:N-1),0.0
P3(1:N- BOD (2

CALL VMUL ,0.0,VAL3(1:N-1),0.0

CALL VSMAZ{BBOD 2: N} ,1.0,P2(1:N-1),1.0,P3(1:N-1),0.0)

CALL VSMA2 (BBOD (2 VAL1,BOD(3:N+1),1.0,ES(1:N-1),
* 1.0, BBOD(Z N),0.0)

CALIL VMOV (BOD (2:N),BBOD(2:N))

K=K+1 -

IF (K.LT.KTIME+1) GO TO 100

PAUSE

GO TO 9%

STOP

END

3
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Appendix E

PROGRAM HDO

THIS IS MAIN PROGRAM FOR HOST COMPUTER

TO CALCULATE THE DO INDEX OF

ONE-DIMENSIONAL PARTIAL DIFFERENTIAL EQUATION
IN THE RIVER POLLUTION SYSTEM WITH DO INDEX

REAL VAL1,VAL2,VAL3,VAL4,VALS,TO, TIME, OTIME, T
REAL PI,DX,DT,A,C,W,CR.CD

REAL P1,P2,P3,P4,P5

REAL X,B

REAL BOD,DO,F (1001) ,EE,FS

REAL OUT1 (101),0UT2 (101) ,0UT3(101) ,OUT4 (101)

INTEGER*2 PLUN, ILUN, OLUN
INTEGER*2 MMPHYS
INTEGER*2 N,KTIME,I,J

COMMON /WINDOW/ VALZ (501),VAL3(501) ,FF (501),
VAL1,VAL4,VALS,N,KTIME

DATA PLUN, ILUN,OLUN / 3,5,7 /
DATA MMPHYS / 4096 /

,OPEN (UNIT=PLUN, NAME='MDO QL'
TYPE='OLD" ,READONLY)

CALL OPENMM (O,PLUN,MMPHYS, IERR)
IF (IERR.NE.O) STOP

TYPE #,' ====---=--===eeccacmcocccneeomemoeeoo
TYPE *,' --- -
TYPE *,' --- TYPE IN THE NUMBER OF DATA -

-

TYPE *
TYPE *
ACCEPT *, KTIME

- m e kol o AR AR MR Em Sm Am Am A R A M A WA WM AR YR EN SR m e M e R e e e e

P1=3.1415926
DX=0.02*P1
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Q000 OO0

Q00

10

99

DT=0.001
A=Q.5
C=0.1
CR=C
CD=C.1
VS=0.5

P1=A*DT/DX/DX

CALL RPOKE (VAL1,P1)
TYPE 40,N

FORMAT(1H , ' N = ',I5)

DO 5 I=1,N-1

X= (FLOAT (I) -0. 5) *DX
B=0.25* (1.0+SIN(X))
P2=P1+B*DT/DX

P3=1.0- (P1+P2) -C*DT

F (I)=DT* (SIN(X)+1.0)
CALL RPOKE VALZiI P2
CALL RPOKE (VAL3(I).P3
CONTINUE

P4=DT*CR*VS
PS=-DT*CD

CALL RPOKE (VAL4, P4
CALL RPOKE (VALS,PS

MMPHYS=12288

CALL SETMMR (MMPHYS, IEER)
IF (IERR.NE.O) STOP 'FAIL SET'

DO 10 I=1,6N+1

CALL RPOKE (FF (I),E(I))
CALL RPOKE (VAL2(I),0.0
CALL RPOKE (VAL3 I}.S.O
CONTINUE

TO=0.0

TO SECNDS (TO)
CALL STRTMM (O, IERR)
IF (IERR.NE.O) STOP

CALL WAITMM(IERR)
IF (IERR.NE.O) STOP



aaa O

a0

TIME=SECNDS (TO)

300 FORMAT(1H ,///. ' COMPUTATION TIME = ', E1l2.6,

t

TYPE 300 TIME
CALL CLOSMM(IERR)
IF (IERR.NE.O) STOP

STOP
END

(SEC)'.///)
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PROGRAM MDO

THIS PROGRAM IS FOR MCL PROGRAM FOR MINI-MAP TO
CALCULATE THE DO INDEX IN THE ONE DIMENSIONAL
PARTIAL DIFFERENTIAL

EQUATION IN THE RIVER PCLLUTION SYSTEM

REAL VAL1,VAL2, VAL3,VAL4, VALS

REAL P2,P3,P4,P5,B0OD,BBOD,DO,DDO,ES.F
REAL 01,02,03,04

INTEGER N,KTIME.K

COMMON / ACOM / VAL2(S01) ,VAL3 (501} ,F (501),

* VAL1,VAL4.VAL5,N, KTIME

COMMON / BCOM / BOD(501) ,DO(501) .ES (501)

COMMON / CCOM / P2 (501),P3(501) ,P4(501) .

* P5 {501} ., BBOD (501) , DDO (501)

. ,01 (100) , 02 (100) .03 (100) , 04 (100)

I

99 K=1
100 CALL VMUL(PZ(I N-1),1.0,BOD(1:N-1),

0.0,VAL2(1:N-1),0.0)
VHUL(P3(1N1)10 D(2:N ),
oowu.a( 1:N-1),0.0)
VMUL (P4 (1 N-l)lODO(lNl)
0.0,VAL2(1:N-1),0.0)
VMUL (P5 (1:N-1),1.0,D0 (2:N ),
OOVALZ(INI)OO)

CALI..
CALL
CALL
CALL VSMA2 (BBOD(2:N),1.0,P2(1:N-1),
1.0,P3(1:N-1),0.0)
CALL VSMA3 (BBOD(Z N) ,VAL1,BBOD (3:N+1),
1.0,FS(1:N-1),1.0,BBOD(2:N.0.0)
CALL VSMAZ(DDO 2 N 1 0,P4(1:N-1),
1.0,P5(1:N-1),0.0)
CALL VSMA3 (DDO (z N), VAL1 DDO(3 N+1),
VALS, BBOD (2:N) , VAL4,DDO (2:N) ,0.0)
CALL
CALL

VMOV BODiZ:N ,BBODiZ: ”
VMOV (DO : :

K=K+1
IF (K.LT.KTIME+1) GO TO 100
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Appendix E

PROGRAM MGRA

INTEGER*2 IPRINT KTIME,M,N.X,I,J.L
INTEGER*2 ILUN,PLUN, OLUN, MMPHYS

REAL PI,ALPHA,DT,DX,Al,A2,B,S,EFRATE,RECHG,P
REAL AMP,K1,K2,KR1,KR2,ST1,ST3

REAL R1 (10, 10).R2(10,10) ,R3(10, 10) ,R4(10,10)
REAL RO(10.10).RR1 (10, 10) ,RR3(10, 10)

REAL T1,T2.T3,T4,TO

REAL W,Q,WR (10, 10) ,QR(10,10) .H.C

REAL VX,VY,D

REAL TEMP1,TEMP2

REAL TO,TIME,TTIME,CTIME,TE1l, TER1, TE2, TER2, HIGH
REAL TER,DDCHX,DDT,PP,HHIGH

COMMON/ /WINDOW/ DT,DX,P,GIHIGH, K1,K2,TE2,
*T1 (10, 10) , T2 (10, 10) , T3 (10, 10) , T4 (10, 10) .
*TO (10, 10) . ST1 (10, 10) ST3 (10, 10) ,W (10, 10) ,Q(10,10),
*VX {10, 10) . XV¥ {10, 10) , TEMP1 (10, 10) , TEP2(10,10) ,
+D(10,10).C(12,12) ,H(12.12) ,N,K KTIMEC

DATE PLUN, ILUN,OLUN /3,5,7/
DATE MMPHYS /4096/

OPEN (UNIT=PLUN, NAME='MGRAD.PL',
* TYPE='OLD' ,READONLY)

CALL OPENMM (O, PLUNMMMPHYS, IERR)
IF (IERR.NE.O) STOP °'MM NOT AVAILABLE'

PI=3.1415926
DDX=500.0
DDT=0.02
PP=0.3
AMP=100.0
§=0.015
HHIGH=100.0
Al1=2.25
A2=1.0
B=31000.0
FRATE=200000.0



5001
5002
S003
5004
5005
5006
5007
5008
S009
5010

RECHY=80000.0

KTIME=20
M=10
N=10

TYPE 5000,N,N
TYPE 5001,PI
TYPE 5002,DDX
TYPE 5003,DDT
TYPE 5004, PP
TYPE 5005,HHIGH
TYPE 5006,3
TYPE 5007, AMP
TYPE 5008, FRATE
TYPE 5009,RECHG
TYPE 5010,KTIME

FORMAT (1H .. 'THE NUMBER OF GRID POINT=',I3,'X',I3,/)
FORMAT (1H , 'PI =',F10.7,/)

FORMAT (1H . 'GRID SIZE = ', F10.5,' (ET) './
FORMAT (1H . 'TIME STEP sIZE = ',F10.5,' (‘DAY }'./)
FORMAT {1H , 'POROCITY = ',F10.5./)

FORMAT {1H . 'LAYER OF AQUIFER = ',F10.2,' ( FT )'./)
FORMAT {1H . 'STORAGE COEFFICIENT = ',F10.5,/)

FORMAT {1H . 'POLLUTION SOURCE=',F10.5,'( PPM/DAY)',/
FORMAT (1H . 'POMPING RATE=',F10,0,' ( ET**2/DAY )',/
FORMAT (1H . 'RECHArGE RATE=',F10.0,'( ET**2/DAY )'./
FORMAT (1H , 'THE NUMBER OF DATE =',I15,///)

TER1=DDT/DDX/DDX/S
TER2=PI*4.0/KTIME

CALL RPOKE (DT,DDT
CALL RPOKE (DX, DDX
CALL RPOKE (P,PP)

CALL RPOKE (HIGH, HHIGH)

I=1,N

=1,N

J)=B- (A1*I+A2* (J+0.5)) *DDX

J)=B- (A1*I+A2* (J-0.5)) *DDX

J)=B- (A1* (I+0.5) +A2*J) *DDX

J)=B- (A1*(I-0.5 +A2*J *DDX

CALL RPOKE (ST1(I. ;

CALL RPOKE (ST3(I.J

R1(I.J)=TER1*R1(¥.J

R2(I.J)=TER1*R2(I.J
J}=TER1*R3(I.J
J)=TER1*R4(I.J
J)=1.0-R1(I,J)-R2(I.J)-R3(I,J)-R4(I1.J)



CALL RPOKE(T2(I,J).R2(I.J
CALL RPOKE (T1(I,J) . R1(I1.J
CALL RPOKE (T3(I,J).R3(I,J
CALL RPOKE (T4(I.J).R4(I.J
CALL RPOKE (TO(I,J).RO(I.,J
CONTINUE

CONTINUE

TYPE 1000
FORMAT (1H , 'TRANSMISSIVITU ( FT**2/DAY )')

DO 14 I=1,N

TYPE 2000, (RPEeK (ST1(I,L)),L=1,M
FORMAT (1H , 10E7.0)

CONTI

DO 20 I=1,N
DO 21 J=1.N
I J)=0.0
ofL. J —AMP*SIN(PI*(I 0.5) /N) *SIN(PI* (J-0.5) /N)

[
o
az
[
»
o X
H
(.u

H!

DO 40 I=1,N+2
DO 41 J=1,N+2

CALL RPOKE (H(I.,J),200.0)
CALL RPOKE (C{I.J).0.0)
CONTINUE

CONTINUE

TYPE 4000

FORMAT (1H , 'INITIAL CONDITION OF AQUIFER ( PPM )')
TYPE 8000, 0.0

FORMAT (1H ,' TIME = ',F10.5)
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DO 71 I=2,N+1
TYPE 4001, (RPEEK(C(I.L)).L=2,M+1)

71 CCONTINUE

elg!

aa

K=1

TO=0.0

100 TER=TER2*FLOAT (KER
CALL RPOKE (TE2, TER)

START MINI-MAP

TO=SECNDS (TO)

CALL STRTMM(O.IERR)

IF (IERR.NE.O) STOP 'FAILED START'

CALL WAITMM(IERR)
IF (IERR.NE.O) STOP 'FAILED WAITMM'

* QTIME=SECNDS (T0)
TO=OTIME
TIME=DDT*K
TYPE 8000,TIME =
DO 60 I=2.N+1
TYPE 4001, (RPEEK (H(I,L)).L=2,M+1
TYPE 4001, (RPEEK(C(I.L)) L2=,M+1

60 CONTINUE

Qa0

K=K+1
IF (K.LT.KTIME+1) GO TO 100

TYPE 4002,0TIME

4001 FORMAT (1H ,10E7.2)
4002 FORMAT (1H ., 'COMPUTATION TIME=',F10.5.' ( SEC )')

CALL. CLOSMM(IIERR
IF (IERR.NE.O) STOP ' CLOSE FAILED'

STOP
END
PROGRAM MGRAD

INTEGER I,K,KTIME,N

REAL DX.DT,K1,K2,P,TE2, HIGH,HI
REAL T1,T2,T3,T4.TO

REAL ST1,ST3

REAL W,Q

REAL H,HH

REAL TTT1,TTT2,TTT3,TTT4,TTTO
REAL TEMP1, TEMP2 .
REAL VX,VY,VAX,VAY,D
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C
C *+++ RESET DATA

*T1(10,10

REAL DD1,DD2.DD3,DD4,DDC

REAL C,CC
REAL 2

COMMON /ACOM/ DT,DX,P,HIGH,K1,K2,TE2,
0,1@) . T3(10,10),T4(10,10),

(10, 10) . ST3 (10, 10) ,W(10,10).Q(10,10),
'VY (10, 10) , TEMP1 (10, 10) , TEMP2 (10, 10) ,
(12.12) ,H(12.1
COMMON /BCOM/ TTT1(10,10
*TTT4 (10, 10) , TTTO (10, 10) ,
*VAX (10, 10) , VAY (10, 10)
COMMON  /CCON/ DO1 (10, 10)

70 (10, 10
*VX (10,10
*D (10, 10)

,C

K2=K1/DX

LT2(1
.ST1

L2 X X |

2) ,N.K,KTIME |
), TTT2(10,10) , TTT3(10.10),

,DD2 (10, 10) ,bD3 (10, 10) ,
+DD4 (10,10) ,DDO(10, 10) .HH(12,12) ,CC(12.12) .HI,Z.K1.1

I=1
98 CALL VMOV (HH(I,1:N+2) H(I,1:N+2
CALL VMOV (CC(I.,1:N+2) ,C(I,1:N+2

Ct++ CALCULATION OF AQUIFER HEAD QUANTITY ( FT/DAY ) ***

C .

C I=1

C 100 CALL VSMA1 (TT1(I.1:N),TE1,Ti(I.1:N),O.

C CALL VSMA1 (TT2(I.1:N),TE1.T2(I.1:N),O.

c CALL VSMAL (TT3(I.1:N).TE1.T3(I,1:N),O.

c CALL VSMA1 (TT4(I,1:N),TE1,T4(I,1:N).O.

o CALL VSMA1 (ST1(I.1:N),TE3,T1(I.1:N),O.

o CALL VSMA1 (ST3(I,1:N),TE3,T3(I,1:N),O.

o CALL VSMA3(TTO(I,1:N),-1.,TT1(I.1:N),-1.,

C *TT2(I,1:N),~-1.,TP3(I,1:N),0.) -

cc: CALL VSMA2(TTO(I,1:N),-1.,TT4(I.1:N),1.,TTO(I,1:N),O.

C CALL VSMA1 (W(I,1:N),TE1,W(I,1:N),O.)

o CALL VSMA1{Q(I.1:N).DT.Q(I.1:N),O.)

o I=I+1

g IF(I.LT.N+1) GO TO 100

99 I=
101 CALL VMUL (TTT1(I,1:N},1.,H(I+1,3:N+2),0.,T1(I,1:N},O.

CALL VMUL(TTT2(I.1:N).1..H(I+1,1:N }.0.,T2(I.1:N}),O.
CALL VMUL (TTT3(I.1:N),1. H{I+2,62:N+1).0.,T3(I,1:N).O.
CALL VMUL (TTT4(I,1:N).1., (I 2:N+1).0..T4(I,1:N).O.
CALL VMUL (TTTO(I.1:N).1.,H(I+1,2:N+1),0.,TO(I,1:N),O.

I=I+1

IF (I.LT>N+3) GO TO 98



QOO0 0

O o0a0an

CALL VSMA3 (HH(I+1,2:N+1),1.,TTT1(I,1:N),1.,TTT2(I.1:N),
*1.0.'1‘T‘1‘3(I,1:N},0.)

CALL, VSMA3 (HH(I+1,2:N+1),1.,TTT4(I,1:N),1.,TTTO(I,1:N),
*1.0,HH(I+1,2:N+1),0.

CALL VSMA2 (HH(I+1,2:N+1),1.,W(I,1:N).1.,

*HH (I+1,2:N+1),0.)

I=I+1 |
IF(I.LT.N+1) GO TO 101

I=1 :

102 cI:ALL VMOV (H{I+1,2:N+1) JHH(I+1,2:N+1))
=I+1
IF (I.LT.N+1) GO TO 102

CALL VMOV (H(1:N+2,1) HH(1:N+2,2))
CALL VMOV (H(1:N+2,N+2) HH(1:N+2,N+1))
CALL VMOV (H(1,1:N+2),iH(2,1:N+2))
CALL VMOV (H(N+2,1:N+2) HH(N+1,1:N+2))

s+%+ CALCULATION OF AQUIFER QUALITY ( PPM/DAY )

I=1 :
103 CALL VSMA2 (TEMP1(I,1:N),1.0,
YH(I+1,3:N+2),Z,H(I+1,2:N+1),0.)
CALL VMUL (VX (I.1:N),HI,ST1(I,1:N),O0.,
*TEMP1 (I,1:N),0.)
CALL VSMA2 (TEMP2(I,1:N),1.0,
*H(I+2,2:N+1),Z, H(I+1,62:N+1),0.)
CALL VMUL (VY(I.1:N) HI,ST3(I,1:N),O.,

*TEMP2(I,1:N),0.)

CALL VAB(VAX(I,1:N),1.,VX(I,1:N),O.

CALL VAB(VAY(I.1:N).1.,6VY(I,1:N),O.

CALL VTHR (VX(I.1:N},0.01,VAX(I,1:N

CALL VTHR (VY (I.1:N),0.01,VAY(I,1:N

CALL VMG (D(I,1:N),VX(I,1:N),VY(I,1:N))

CALI VSMA2 (DD1(I,1:N),K2,D(I,1:N) K1,VX(I.1:N),O.
CALL VSMA2(DD2(I,1:N),K2.D{I,1:N},K1,VX(I,1:N),O.
CALL VSMA2(DD3(I.1:N).K2,D(I,1:N).K1,VY(I,1:N),O.
CALL VSMA2(DD4(I<1:N).K2,D(I,1:N) K1,VvY(I,1:N),O.
CALL VSMA3{DDO(I.1:N),Z,DD1(I,1:N),
*Z,DD2(I,1:N),Z,DD3(I,1:N),1.)

CALL VSMA2(DDO)I,1:N),Z,DD4(I,1:N),1.,DDO(I,1:N),0.)
CALL VML (DD1(I,1:N),C(I+1,3:N+2

CALL VML (DD2(I.1:N).C(I+1,1:N

CALL VML (DD3({I,1:N),C(I+2,2:N+1
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CALL VML (DD4(I,1:N).C(I ,2:N+1}
CALL VML (DDO(I.1:N).C(I+1,2:N+1

CALL VSMA3(CC(I+1.2:N+1).1.0,DDl(I,1:N),1.0,DD2(I,1:N),
+1.0,DD3(I,1:N),0.0)

CALL VSMA3(CC(I+1.2:N+1).1.0,DD4(I,1:N),l.O,DDO(I.I:N).
*1.0,CC(I+1,2:N+1),0.0)

CALL VSMAZ{CC(I+1,62:N+1),TE2,Q(I<1:N),1.0,
*CC(I+1,2:N+1),0.0)

I=I+1
IF (I.LT.N+1) GO TO 103 -

I=1

110 cmi.LIVMOV(C(1+1,z:N+1) ,CC(I+1,2:N+1))
I=I~+
IF (I.LT.N+1) GO TO 110
CALL VMOV (C(1:N+2,1),CC(1:N+2,2))
CALL VMOV{C(1:N+2,N+2),CC(1:N+2,N+1))
CALL VMOV (C(1,1:N+2),CC(2,1:N+2))
CALL VMOV (C(N+2,1:N*2),CC(N+1,1:N+2))

PAUSE
GO TO 99

STOP
END
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Appendix G

THIS IS MAIN PROGRAM FOR HOST COMPUTER
TO CALCULATE FEATURE VECTORS IN RIVER
POLLUTION SYSTEMS
REAL T,Y(4.2048),X(4,2048) -
REAL U
REAL TIME
REAL UN, UL
INTECER*2 PLUN, ILUN, OLUN
INTEGER*2 MMPHYS (2),IERR,N,L,I,NTIME, K, KNP, MEASU
COMMON /WINDOW/ U(2048)
DATA PLUN, ILUN,OLUN /3,5,7/
DATA MMPHYS /4096,0/
OPEN (UNIT=PLUN,6NAME='FEAT.QL',
* TYPE='OLD' ,READONLY)
CALL OPENMM (O, PLUN,MMPHYS, IERR)
IF (IERR.NE.Q) STCP
TYPE #,' =--c---c----csccemmmmmmmcceomemm oo '
TYPE *,' --- \ ---
TYPE *,' --- TYPE IN NUMBER OF DATA ---
. TYPE *,' --- ---
TYPE *,' =-==c--c----eeccccemmoommmmamm oo '
ACCEPT *,N
TYPE #,' ------es-oceeo-mceecmenoomooomemoe '
TYPE *,' --- ---
TYPE *,' --- TYPE IN THE NUMBER ---
TYPE *,' --- OF ITERATIONS ---t
TYPE *,' =c--ecocccccscccemmmemem e e e e !
ACCEPT *,NTIME
TYPE *,' -=ccre----eemccecomcceccennoaoaoos '
TYPE *,' --- :
TYPE *,' --- TYPE IN THE NUMBER OF THE ---'
TYPE *,' ---  MEASUREMENT STATIONS ---
TYPE *,' --- ---
TYPE *,' ~--c-cc-cmmmmmemm—semecmcmemoomoooo '
ACCEPT *, L
NP=N/L
DO 5 I=1,N
READ (23,1000) T. (Y(K,I), K=1, MEASU
READ (24,1000) T, (X(K,I).k=1,MEASU
1000 FORMAT (1H ,E12.6)
5 CONTINUE
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99

10

25

24

300
30

200

UN=N

UL=L

CALL RPOKE (U(l) ,UN
CALL RPOKE

J=1

TO=0.0

MMPHYS (1)=12288

MMPHYS (2) =0

CALL SETMMR (MMPHYS, IERR)

IF (IERR.NE.O) STOP 'MAPPIN FAIL'

DO 10 I=1,N

CALL RPOKE { 5: Y (1,1))

CALL RPOKE (U(I+1024).X(1.1))
CONTINUE

DO 24 K=2,MEASU
TIME=SECNDS (TO)

CALL STRTMM (O. IEER)
IF (IEER,NE.O) STOP 'MIN-MAP COULD NOT STARTED'

DO 25 I=1,N

CALL RPOKE SU I).Y(K.I))
CALL RPOKE I+1024) x(x 1))
CONTINUE

CALL WAITMM(IERR

)
IF (IERR.NE.O) STOP 'MINI-MAP HUNG DURING PROCESSING'

TO=SECNDS (TIME)
CONTINUE

J=J+1
IF (J.LT.NTIME+1) GO TO 99
TO=TO/NTIME

MMPHYS (1) =4096

TYPE *, 'COMPUTATION FINISH '

DO 30 K=1,NP

TYPE 300,K,RPEEX (U (K+200)) ,RPEEK (U (K+400)) .
. RPEEX (U K+6OO . RPEEK (U (X+800
FORMAT (1H ,I5,4E15.5

CONTINUE

TYPE 200, TO
FORMAT (13 ./, 'COMPUTATION TIME=',E12.6,'(SEC)')
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CALL CLOSMM (IERR) '
IF (IERR.NE.O) STOP 'CLOSE FAIL

STOP
END
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PROGRAM FEAT

THIS PROGRAM IS A MCL PROGRAM FOR MINI-MAP
TO CALCULATE THE FEATURE VECTORS
IN THE RIVER POLLUTION SYSTEMS

REAL D,U,CW,V

REAL A,B,UY,UX

REAL Y,X,PY,PX,PXY

REAL AVPY,AVPX,AVPXYR,AVPXYI,AVC

INTEGER N,NPOW,N1,6N2,N3,L,J M
INTEGER K.L2,1

COMMON /COM/ D (2048)
COMMON /ACOM/ U (2048)
COMMON /A1COM/ UY (2048
COMMON /A2COM/ UX (2048
COMMON /BCOM/ CW (2048)
COMMON /CCOM/ V(2048
COMMON /DCOM/ Y (2048
COMMON /ECOM/ X (2048
COMMON /FCOM/ PY (2048
COMMON /GCOM/ PX (2048
COMMON /HCOM/ PXY (2048)

COMMON /ICOM/ AVPY (2048

COMMON /JCOM/ AVPX (2048

COMMON /KCOM/ AVPXYR (2048)

COMMON /LCOM/ AVC (2048)

COMMON 7MCOM/ A,B,NPOW,N1,N2,N3,J,K.L2,I.M
COMMON /NCOM/ AVPXYI (2048)

CALL SEX2 N D 1
CALL SFX2(L

A=1.0/N
N1=N/2
N2=N+N1
N3=N*2
B=1.0/L
L2=L*2
I=N/L

CALL SSIN2(A,1.0,A)
CALLVCOSRCN(INS 2),0.0,1.0,A)
CALL VMOV{CW‘Z :N1:2), CW (N2+1: N3 2
CALL VMOV (CW(N1+2:N3:2), CW(l N2:2

1 CALL VMOV (UY (1:N3:2),U(1:N:1))
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100

88

CALL VMOV (UX (1

CALL FCFOO(Y
*V(1:N3:2),CW
CALL FCEOO (X
*V(1:N3:2),CW

CALL VPOW (PY
CALL VMSQ (PY
CALL VMSQ {PX
CALL VPOW (PX

K=1
J=(K-1) *L
*2

CALL RSUM(AVPY

CALL RSUM(AVPX (K

K=K+1

[Wrytiryinyiy

K
CALL RSUM AVPXéR;
CALL RSUM(AVPXYI (K

:N3:2) ,U(1025:N+1024:1)}

:N3:2),0,UY(1:N3:2},
:N3:2))
:N3:2 jO,UX(l:NB:Z),

N3 z ,0.0)
Y(2: N3 2;
X(2:N3:2

1 N3 2) 0.0)

,Y(1:N3:2),0.0,X(1:N3:2))

O

LPY(J+1:J+4L:1 B

PX(J+1:J+L:1

K LJPXY (M+1: M+L2 12
,PXY (M+2 :M+L2: 2)

B

IF (K.LT.I+1) GO TO 100

CALL VMSQ (AVC (1
CALL VDVX (AVC
CALL VDVX (AVC

CALL VMOV (D(201:

PAUSE
GO TO 1

END

1:1:1
1:1:1

:1:1) ,AVPXYR(1:1:1) ,AVPXYI (1:1:1))
AVPY(1:1:1
JAVPX(1:1:1

1))

1+200:1) ,AVC(1:
[ ]
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