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ABSTRACT OF THE DISSERTATION

Kolmogorov Information and VLSI Lower Bounds

by

Robert R. Cuykendall
Doctor of Philosophy in Engineering
University of California, Los Angeles, 1984
Professor Sheila A. Greibach, Co-Chair

Professor Jack W. Carlyle, Co~Chair

By using a source encoding result, lower bounds for the VLSI
complexity of approximately computing certain uniform sets of finite
functions f are related directly to the Kolmogorov information
measure Kw(f). This leads to a hierarchy of infinite sequences

of finite functions that are increasingly amodular, which cannot be
reasonably approximated by (any VLSI-efficient) modular functions.
A result on the size of programs admitting speedups provides
convincing evidence that practically all computations are amodular.
Examples are constructed and limitations shown to the computing
power of self-modifying programs, and to the reduction in VLSI
complexity afforded by probabilistic algorithms or approximation
circuits, The resuits suggest a modification to the extended
parallel computation thesis in terms of the information measure

K, . Using the analogy between multiple-input arrival schedules
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in VLSI and off-line Turing machines, an intuitively appealing
information-theoretic argument is presented that on-line Turing
machine reversal speedup is possible if and only if reversal growth
rate is strictly greater thamn order log,n*c on input of length n
for some fixed constant ¢. This leads to a characterizationm of
speedable and nonspeedable sets in terms of Km relativized to

G(‘)

, and to a counection between algorithmic information

K¢ and information~content as measured by various index sets., An

extension of this result with K¢ relativized to U(n)
there is a structural connection between the l-degrees and algorithmic
information. It is also shown that VLSI lower bounds provide absolute
lower bouhds for a class of software interconnectivity metrics. Some
open problems and their impact are identified, and a direction is
suggested, based on recent experimental tests of the Bell inequality,

for future work in defining a physical computation model which may be

strictly more powerful than VLSI at quantum limits.
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1. INTRODUCTION

1.1 Background

Historically, the accepted position on what is effectively
computable has been to adopt Church's thesis, viz. effectively
computable equals recursive (or Turing computable, or any of the
many other equivalent notioms). More recently with the advent of
computational complexity theory, it has been suggested that many
recursive functions are far too difficult to compute to be
considered effectively computable in any feasible way. The
generally accepted view here has been to place a polynomial (or at
worst exponential) upper bound on the computation times of recursive
functions. The remaining recursive futllctions are then considered
intractable - even for inputs of small size their computation would
probably take too long using the fastest computer imaginable (if

subject to the causality limitations imposed by the speed of light).

During the last half dozen years, results about what c¢an and cannot
be practically computed have had a major influence on computer
science. Research on feasible computations has progressed very
rapidly, and has revealed deep structural relations, achieved by
efficient reductions, between different classes of computations

[Hartmanis 1978]. One of the primary aims of the science of



computing is to recognize and quantify exchange relations among
parameters of computation which reflect the real cost of computing.
Such computational tradeoffs state a relationship between the
inherent complexity of a function to be computed, and the cost of
performing the computations. Research aimed at understanding the
inherent complexity of computational problems has generally been
based on measures which reflect such computational costs as the
number of arithmetic or logical operations (time of computationm),
switching elements (circuit size) or storage registers (amount of

memory) required.

Examination of many common computations shows that even with current
algorithms there is an enormous amount of parallelism available to
be exploited, and that the inherently sequential steps (built-in
data dependencies for arithmetic or logical operations) can often be
made small in number. Computations in which the inputs and outputs
are partitioned among a number of processors must in general
transfer information between the processors. Recent work in
distributed computations has shown this data movement to be far more
limiting to speed than data dependency [Abelson 1980, Gentleman
1978]. 1In some computations the processors spend significantly more
time waiting for information to be transferred than in p;rforming
actual computation. Even in the relatively straightforward

situation of memoryless processors arranged in highly structured



architectures, data movement rather than arithmetic operations is
often the limiting factor in determining the performance of parallel
computations. For more general distributed processing architectures
involving arbitrary network interconnections, the situation is

correspondingly more transmission dependent.

Information transfer can be regarded as a measure of inherent
modularity: a computation is inherently amodular if any way qf
partitioning the computation demands highly interacting parts. This
amodularity entails an area-time tradeoff for VLSI circuits. In
VLSI chips the computation is distributed over the chip, and the
various processing elements must communicate via wires whose area is
usually as large (up to a constant) as the area of the layout [Yao
1981]. Such is the case in computing the discrete Fourier
transform, integer multiplication, permutation, matrix
multiplication, sorting and in fact for any computation involving
the notion of shifting or tramsitivity [Vuillemin 1980]). This
state of affairs is independent of circuit intercomnection pattern
and holds for all VLSI layouts, including non-deterministic layouts
if they could be built [Lipton-Sedgewick 1981]. Thus at one extreme
VLSI technology will allow conventional architectures to be
implemented as smaller, faster and cheaper machines through more
sophisticated interconnections of machine components. At the other

extreme, hierarchic VLSI architectures have been proposed that are



radical departures from the von Neumann (sequential) architecture
[Backus 1978, Mage 1979, Wilner 1578]. While dramatic improvements
in the performance of integrated structures can be achieved by such
hierarchical organization, a penalty is always paid in the area

required for wires.

1.2 Approach and New Results

The information-theoretic approach taken in the present work is
described in section 2. We begin with definitions in section 2.1
introducing the concept of the intrinsic descriptive complexity

K¢ of a finite object based on the early work of Kolmogorov and
Solomonoff, and briefly review in section 2.2 its recent use in
obtaining lower bounds on &ynamic complexity measures such as
running time. An earlier application of descriptive complexity to
the probleﬁ of formulating inequalities involving the computational

parameters space and time in serial computing structures is sketched

in section 2.3.

We begin section 2.4 with a review of concepts and techniques for
deriving lower bounds for VLSI computations. Using a source
encoding result due to T. Fine we show in Theorem 1 that there
exists an infinite seqﬁence of sets M of binary functions such that

each Mn contains at least one function f not in C, where C is the



set of reasonably programmable binary functions in the semnse that
there exists a program P which yields an approximation £'¢8(f) to £,
that P run in time no longer than t, and that IPI < Y{Kw(f)] for
all pre-assigned recursive 1, vy and §, y-increasing and § such that
for some € < 1 and each binary function geM , 8(g) contains no more

than 2%'8! binary functions.

Next we relate lower bounds on the VLSI complexity of approximately
computing certain uniform sets of finite bin#ry functions f directly
to their information content Kw(f). We show in Theorem 2 an
infinite sequence of sets Mn of binary_functions such that each Mn
contains at least one function f which cannot be computed or
approximated within 8§(f) by any VLSI circuit in less than AT2
(equivalently AZT) > alh(£)] or AT2 (equivalently AzT) > ﬂ[h(Kw)}’
for all recursive h, and recursive § such that for some € < 1 and
each binary function geM , &§(g) contains no more than 25 '8! binary

functions.

An interpretation of Theorem 2 suggests a hierarchy theorem
(Theorem 3) in which we show the existence of infinite sequences of
finite functions f of increasing degree of amodularity which cannot
be reasonably approximated to within §(£) by (VLSI-efficient)
modular functions. We show in Corollary 1 that if all sufficiently

large Mn contain at least one function f£f not in C, then every



(reasonably accurate) computation allowing arbitrary inputs over
2% 4,4 inherently amodular. Using a result due to J. Helm

and P, Young on the size of programs admitting speédups, Theorem &
(in which we show that Theorem 1 extends to all sufficently large
Mn if the Helm-Young result extends to all sufficiently large
operators R) provides convincing evidence that practically all

computations are amodular.

In section 2.5 naturally occurring examples are.constructed, and
several complexity-theoretic properties are identified which can
evidently lead to the difficult-to-compute sequences in

Theorems 1 - 3, e.g., the property of being retraceable, speedable,
having an arbitrarily low accessible information rate, or
computation consisting of an infinite set of easily proved theorems

that takes arbitrarily long to recognize.

We apply these theorems in section 3 to show limitations to the
computing power of self-modifying programs, and to the reduction in
VLSI complexity afforded by stochastic algorithms of either Rabin or
Karp type, or by approximation circuits as defined by Pippenger. 1In
section 4.1 we use Theorem 1 to show limitations in terms of K¢

on the efficient simulation of Turing machine space and reversal.

In Theorems 5 and 6 we show there are infinitely many finite

functions f with polynomially bounded (respectively t—bounded)



space and reversal such that parallel computation takes unbounded
hardware or time in terms of information content Kﬂ(f) if f runs

in polynomial time (respectively t(1P!1) time, T any recursive
function) or takes longer than any recursive function of input
length 1Pl. These theorems suggest a modification to the

extended parallel compﬁtation thesis of Cook and Dymound in terms of
the information measure K¢'

Using the analogy between multiple—input arrival schedules in VLSI
and off-line Turing machine computation, an intuitively appealing
information-theoretic argument is presented in Theorem 7 that
on-line Turing machine reversal speedup is possible if and only if
reversal growth rate is strictly greater than order log,n+c on
input of length n for some fixed constant ¢ independent of n. This
provides an intuition behind the extended parallel computation
thesis which leads in section 4.2 to a characterization of speedable

and nonspeedable sets in terms of K relativized to ﬂ(‘) (Theorem 8),

]

and to a connection in section 4.3 between the algorithmic measure

Kw and information content with respect to the l-degrees as measured

by the index set FIN (Theorem 9). An extension of Theorem 9, with

G(n)

KW relativized to , establishes a general structural comnection

between the l-degrees and algorithmic information (Theorem 10).

Section 5 provides evidence that the approach herein with respect to



a number of different information measures, including the Shannon
entropy, is measure-independent. It is shown in Theorem 11

(section 6) that VLSI lower bounds are in fact lower bounds for a
class of software interconnectivity metrics which arise in a natural
way from the VLSI implementation of programs, and hence provide a
method for assessing the validity of software complexity metrics.
Thus differences arising between VLSI and software measures should
asymptotically disappear as programs for deriving circuits become
more common. Earlier versions of this material have appeared in

[Cuykendall 1982a, 1982b, 1982c, 1984a].

In section 7 we discuss some open problems and propose a direction
for future work in defining a physical computation model which m;y
avoid some of the limitations shown in our Theorems 1-6. Our
proposal, inspired by recent experimental tests of the Bell
inequality, suggests that transmissions which violate separability
might sustain a computation and thus establish a physically defined

complexity class strictly more powerful than VLSI at quantum limits.

1.3 Order Notation

We use the following asymptotic function order notatiom:

Let f, g be functions defined on the set of natural numbers.



f(n) = 0(g(n))

f(n) = g{g(n))

f(n) = 8(g(n))

f(n) is order at most g(n) if and only if
there are constants ¢ > 0 and n, > 0 such

that £(n) < e¢g(n) for all n > n,.

f(n) is order at least g(n) if and only if
there are constants ¢ > 0 and n, > 0 such

that £f(n) > cg(n) for all n > n,.

f(n) is order exactly g(n) if and only if

f(n) = 0(g(n)) and f(n) = a{g(n)).



2. APPROACH

2.1 Kolmogorov Information

As a consequence of the work of [Kolmogorov 1965] and [Solomonoff
1964], a notion of the intrinsic (static) descriptive complexity of
a finite object has been developed. Intuitively, descriptional
complexity is defined 2s the minimum number of binary signs
containing sufficient information about a given object for its
recovery (decoding). This definition depends essentially on the
method of decoding. Thus, some computers are easier to program than
othets, or equivalently some programming languages (description
schemes) are more efficient than others. However, the existence of
a universal Turing-Post machine, or optimal programming language
(which simulates running a program on another computer when it is
given a description of that computer together with its program) is
known from recursion theory (or computability theory), and an
invariant definition of the descriptive complexity of an object can

therefore be given.

We consider two related measures of information content introduced
by [Rolmogorov 1965], Let s denote a finite binary string and let x
denote an infinite binary sequence. The first n bits of x are

s n . . . th .
written as x ', X (sometimes written x(n)) is the n bit of x

10



and 2(8) is the length of s. We also write x" to denote an

arbitrary finite string of length n.

Definition. A programming language ¢ is a partial recursive

function on the finite strings,
* *

¢: (0,1} —={0,1} .
Definition. p is a ¢-program for s iff o(p) = s.
Intuitively, programming languages (computers) are thought of as
mappings from programs to their outputs. The value ¢(p) is the
binary string output by the computer ¢ when it is given the
program p. If ¢(p) is undefined, this means that running the

program p on ¢ produces an unending computation with no output.

Definition. The Kolmogorov information in x" relative to the

programming language ¢ 18
K¢(xn) = min (2(p): Ip o(p) = x")
= » ptherwise.

Definition. ¢ is an optimal programming language iff

11



Vo 3¢ Vs [K¢(S) 5-K¢(B) +cl.

The existence of optimal programming languages is well known
[Rogers 1967}. Such languages Vv have the property that for any
programming language 9, there is a constant ¢ (which depends on ®)
such that the shortest programs relative to ¥ never exceed the
shortest programs relative to p by more than ¢, independent of the
string s being programmed. Thus, $ is as succinct a relative
description scheme as any. Therefore, we define the Kolmogorov
information measure simply as Kw. RKolmogorov information content
is often equivalently referred to as algorithmic informatiom content,
program-size complexity, Kolmogorov complexity or descriptive
complexity, and inputs {programs) p for which Kt(p).i 1p!

are called incompressible.

It has also been found useful to study programs which are given, as
a separate input, the length of the desired output, where no charge
is made for the length of this second input.

Definition. The Kolmogorov conditional information in x" is

Kw(xnln) = min {2(p):3p ¥(p,n) = x"}

= » otherwise,

12



The two measures express a slightly different quality of the
sequence x" in assessing its information content. The quantity
Kw(xn) gives the minimm length of programs for x" which must
contain, in addition to the distribution of 1's and 0's in x“, also
information concerning the length n. The integer n can generally be
expected to use about length log,n of the binary program p for

x". On the other hand, the quantity Kw(xnln) gives the minimum
length of a program which need not contain information on the length
n, but which only determines the distribution of 1l's and.O's in

x". This distinction is dramatic at the low-information end of

the scale where the information needed to determine the distribution

is less than log,n.

2.2 Time Lower Boundé

Recent developments in the study of the structure of feasible
computations have established close links between what can and
cannot be proven about running times of algorithms, and the problem
of establishing sharp time bounds for one~tape Turing machine
computations (separation of complexity classes) [Hértmanis 1977,
DeMillo-Lipton 1979]. ‘Thus, the inability to prove running times
for algorithms is related to the existence of gaps in the hierarchy
of complexity classes. (It is shown in [Hartmanis 1977] that the
Gap Theorem for resource bounded computations [Borodin 1972] can

hold only for non—constructively defined computational complexity

13



classes.) [Chaitin 1976b] has shown complexity gaps exist in both
the Kolmogorov-Solomonoff descriptional complexity and the process
complexity measure of Schnorr. Thus, one expects similar

difficulties with such measures.

Nevertheless, the static descriptional complexity of inmputs to
algorithms can be used to obtain lower bounds on dynamic
computational complexity, such as running time. While most
algorithms treat numbers (eg. to be sorted) as something atomic, in
the sense that whole numbers can be compared or transported, it is
not allowed to break the binary representation of numbers into parts
and to perform computations with the fragments of the numbers.
Analysis in terms of the Kolmogorov information measure at least

partially removes this restriction.

Lower bounds on inherent worst-case computational complexity are
typically easy to conjecture but hard to prove. One reason is the
difficulty in finding sufficiently hard inputs for each different
algorithm. The worst case for one algorithm might be expedited as a
special case by another. Thus, if we can find inputs not
susceptible to handling as special cases, then we might be able to

convert out intuitions to proofs more easily.

One way to handle an input efficiently as a special case is to find

a much smaller description of the same input. We can prevent this

14



sort of specizl handling if inputs are provided which are already
suitably incompressible. The work of Kolmogorov and Solomonoff
shows how to make this precise, and that suitably incompressible
streams of input data are abundant. The incompressibility forces
simulators to use a lot of space, and hence to spend a lot of time
retrieving distant information. The information-theoretic approach
also serves as a rigorous, yet natural, tool equivalent to vague
intuitions already in limited use. In this sense, its value is
analogous to that of non-standard analysis. These potentially
valuable intuitions have not been cultivated much in the past,
because conversion to rigorous proofs seemed so difficult, The new
approach is to look at a particular sequence which is random in the
rigorous, domain-independent sense that it is incompressible. Tﬁe
effect is to remove complicated and obscuring domain dependent
counting from such proofs, and instead simply to cite the result of
the one simple counting argument which shows that there are

incompressible strings.

[Paul 1979] used the information-theoretic approach to obtain
restricted lower bounds on the time complexity of sorting. [Paul,
Seiferas and Simon 1980] used the techmique to obtain nonlinear
lower bounds on the time complexity of simulating abstract storage
units on-line. Improved lower bounds on sorting and simplified

error estimations for probabilistic algorithms have been attained in

15



[Reisch-Schnitger 1982] by analysis in terms of Kolmogorov

information.

2.3 Space-Time Lower Bounds

[savage 1973] and tCuykendall 1973] independently proposed that a
measure of the descriptional complexity of functions be applied to
the problem of formulating inequalities invelving computational
parameters, leading to lower bounds on the tradeoff between storage
and time on serial computing structures. The procedure employed to
derive computational inequalities is as follows. Assaume that z
function f is computed by a serial computer with S bits of storage
in T cycles. Then the T cycles can be simulated on a l-tape
universal Turing machine ¥, and the simulation program will be no
shorter than the descriptional complexity of f. Once a good upper
bound to the length of the simulation program has been derived, an
inequality involving parameters of computation such as S, T and the
Kw complexity of f can be established. The role of the l-tape
Turing machine in this process is that of a canonical framework to

which computations on a serial computer can be translated for the

purpose of deriving computational inequalities.

Combinational measures Cb(f), which count the number of steps in a
circuit C using straight line algorithms relative to some basis

operations b (no branching or looping, equivalent to a switching

16



circuit) to compute £, are in general less constraining to the trade

region, i.e.

K*(f) <k, cb(f) log cb(f) + k,

for constants k,, k, independent of f, as shown in

[savage 1973].

2.4 VLSI Lower Bounds

Background and Notation

In order to compute a family of functions in which the inputs and
outputs are distributed among a number of processors, information
must in general be transferred between the processors. The role of
such internal communication requirements in contributing to the
inherent complexity of computational problems is still poorly
understood. In distributed systems it can be expensive both in time
and hardware to send information between processors, and in some
computations the processors spend significantly more time waiting
for information to be transferred than in performing actual
computation. In VLSI chips the computation is distributed over the
chip, and the various processing elements must communicate via

wires. These wires generally occupy more space than the processors

17



themselves, and can therefore be a more significant factor in

determining cost and performance [Mead-Rem 1979].

The information transfer required in a distributed computation is
defined to be the smallest number I such that, for any values of the
inputs, the computation can be accomplished with a total of at most
T units of information transferred between the processors. In
general, the information transfer can be regarded as a measure of
the inherent modularity of the function being computed. Finding a
configuration for whicﬂ the inputs or outputs are evenly
distributed, but which requires small information transfer, is a way
of modularizing the computation. If this is not possible, we say
that the function is inherently amodular. In other words, any
partitioning of the computational process demands highly interacting
parts. This (information transfer) amodularity leads to an

area-time tradeoff for VLSI circuits.

The basic model of VLSI computation allows great gemerality. It
allows features which certainly are not even contemplated in the
near future. There are three main components: the boolean function
£ which is to be computed, a synchronous circuit C that computes f,
and a VLSI layout V that realizes C. We assume that C is a network
of wires attached to each other and to gates. The gates of C can be
"and", “or" or "not" gates of arbitrary fan—in and fan-out. Such a

circuit, which may have feedback, computes f provided there is an

18



input~output schedule that describes how the inputs and outputs of f
are mapped onto the input and output wires of C. It is assumed that
each input arrives once and each output leaves once. (The
motivation for this is that otherwise we would be allowing the

circuit "free" memory.)

Definition. An input—output schedule is where-oblivious
(when-oblivious) provided where {when) the inputs arrive and the

outputs leave is independent of the values of the data.

(Note that of the two types of schedules the first is the more
common since when inputs arrive often depends on both when and what
particular addresses are generated, whereas scheduled inputs to a

processor typically go to fixed locationms.)

Definition [Lipton-Sedgewick 1981]. A VLSI layout V is a

(A, u,, uy)-layout of the sequential circuit C if there is a map

that assigns to each gate g (wire w) of C a closed connected region of

the plane g* (w*) so that

(1) if w is an input or output wire of gate g, then g* intersects

w*, and

(2) for each A x \ square S of the plane,

19



(a) at most p, gates g map to regions g* that

intersect 8, and

(b) at most u, wires w map to regions w* that

intersect S.

It is further assumed that all of the g* and w* lie in a convex

region R, the region of the layout.

No assumption is made about the location of eircuit inputs or
outputs or how they are assigned to gates, but we do require that
circuits use all their inputs. Condition (1) simply forces
electrical connections to map to topological connections (the
converse is not true because multiple layers are allowed).
Condition (2) is a direct result of the limits of VLSI fabrication.
It ensures that any such S (e.g., a transistor) can only "see" a

fixed number of gates and wires, and therefore limits the number of

layers that can be used at the same point to yu, + p,.

The first technique [Thompson 1979] used to prove lower bounds for
VLSI layouts involved a cut theorem relating layout area A and time
T to the information flow across a line (the biséction—width) which
divides the layout into two parts. The layout area A for a function
f is defined as the area of the smallest region R containing a VLSI

layout V of a network C of gates and interconnecting wires which

20



computes f in time T under a fixed scaling. Scaling refers to the
minimum feature asize A of the implementing technology, taken as
2

either the narrowest channel (wire) width or the area A of

the smalleést transistor. The idea is roughly as follows.

Draw a line which divides the layout into two parts, with about half
of the inputs n to the circuit in each part. Some restrictions
about the geometry of the layout and the nature of the inputs are
needed to ensure that this can be done. If the line cuts through
about w wires (the line could also cut through gates, a complication
which must be handled carefully), then with some assumptions about
the geometry of the layout and the line, it is possible to show that
A > n(wz). Furthermore, the value w can be thought of as a

bound on the information that can flow across the boundary., If the
total amount of information that must flow across the boundary
during the entire computation is I, then the time taken must satisfy
T > I/w. This leads immediately to the bound AT > Q(Iz).

The proofs for specific problems are completed by showing that

I > @(n) for any division of the circuit that puts half the inputs

on either side of the dividing line.

This line of reasoning is similar to the crossing sequence arguments
introduced by [Hennie 1965,1966] for one-tape Turing machine

2
computations. Proving lower bounds for AT is reduced to

constructing appropriate sets of input assignments. The "planarity"
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(layer) restriction of VLSI is roughly analogous to the one-tape
restriction for Turing m;chines. The lower bound proofs are not
jidentical however, because for VLSI the result must be proved for
any possible division of the inputs into two equal parts, while for
Turing machines a single division is inherent in the problem. Thus,
while some computations may be hard for one-tape Turing machines,
say requiring time at least n(nz), there may be a VLSI layout for
the computation with AT at most O(n). The reason for this
difference is clear: for some partitions a great de;l of

information must flow while for others very little is needed.

A fundamentally different approach [Leighton 1981} uses crossing
number and wire area arguments to find lower bounds on the layout
area and maximum édge length of a variety of computationally useful
networks. The crossing number of a graph is the minimum number of
pairs of edges which must cross in any planar drawing of the graph.
The wire area of a graph is the minimum amount of wire which is
needed to lay out the graph in the VLSI model. Clearly the crossing
number and wire area are lower bounds on the layout area of any

graph. It is shown that
2
flw ) <c+N<W<A

for any N—node graph with bisection-width w, crossing number c, wire

area W and layout area A, This implies that every lower bound
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technique for the bisection~width of a graph is also a lower bound
technique for its crossing number and wire area. Thus nothing is
lost by concentrating instead on finding good lower bounds for the
crossing number and wire area of a graph. In fact, improved lower
bounds are shown for certain separators. (An N-node graph has an
f(N)-separator if it can be partitioned into two equal-sized
subgraphs G, and G, such that at most f(N) edges link G, to G,,

and both G, and G, have f(N/2)-separators.)

One can also relate AT2 to a notion of boolean circuit complexity.,

A boolean circuit is an acyclic directed graph such that each vertex

has fan-in zero or two, the predecessors of each vertex are ordered,

and corresponding to each vertex v of fan-in two is a binary boolean

operation bv' With each vertex of the circuit we associate 2

boolean function which the vertex computes, defined as follows.

With each of the k vertices v, of fan—in zero (inputs) we

associate a variable L and an identity function

fv'(xi) = x;. With each vertex w of fan-in two having predecessors
i

u, v we associate the function f_ = bw(fu’fv)° The circuit computes

the set of functions asscciated with its vertices of fan—-out zero

(outputs). For example, we can have arbitrary fan-out and allow the

constants {true, false} as inputs., By associating true with 'l' and

false with '0', we think of every boolean circuit as realizing a

function f£:(0,1}" —e{0,1}.
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The size of a circuit C is defined as the number of interior
vertices or logic gates (ie. noninput nodes), and the depth of C is
the length of the longest path in C. It is common to encode a
circuit C as a string in {0,1}*. This can be done in a
straightforward way; e.g. topologically order the network, give
addresses to each of the vertices, and then give the circuit as a
sequence of instructions. Clearly every circuit of size C(f) can be

encoded into a 0,1 string of length at most polynomial in C(f).

Any boolean circuit can be converted into a planar circuit by the
following steps. First embed the circuit in the plane, allowing
edges to cross if necessary. Next, replace each pair of crossing
edges by the crossover circuit shown in Figure 1. It follows that
any lower bound on the size of planar circuits which compute a
certain function f is also a lower bound on the total number of
vertices and edge crossings in any planar representation of a
non-planar circuit which computes the function f. In fact, it is
shown in [Savage 1981] that planar circuit comple%ity (size) is no
larger than quadratic in the standard circuit complexity, and that
for most boolean functions (actually binary functions) standard and

planar circuit complexity measures have about the same value.
Any VLSI layout can be simulated by a boolean planar circuit, the

only difficulty being that the layout may use feedback, and this is

not allowed in the planar circuit. Moreover, if P(f) denotes the
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Figure 1. elimination of a crossover by use of
"exclusive or'" gates

size of the smallest planar boolean circuit for f, then AT2>9[P(f)I
for when and where oblivious layouts of area A and time T '
[Lipton-Sedgewick 1981]. Thus, the P(f)} results obtained in
[Lipton-Tarjan 1980] by the efficient application of
divide-and-conquer to problems on planar graphs can be used to get

2
lower bounds on AT .

A slightly more general result appears in [Savage 1981], that for
all functions £:{0,1)"—~={0,1}™ both AT > a[P(f)] and

AT > ?[{P{f)] for when and where oblivious layouts when the chip
algorithm not only allows input variables to be read multiple times,
but can read input multiple times at more than one place on the
chip. It is also noted that there is a connection between the

second inequality and lower bounds to space and time for
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uniprocessor machines. Namely, the separability analysis used by
[Grigoriev 1976] can be extended to the VLSI model to obtain lower
bounds to AzT, and thus all previous bounds obtained with that
method [e.g., Savage-Swamy 1979] apply here. We therefore have a
variety of techniques for obtaining lower bounds on combinational
circuit measures which can be used to establish lower bounds on the
VLSI measures AzT and ATQ. However, in general these results are
weaker than those obtained by crossing sequence techniques, and
therefore also weaker than those obtained by either wire—area or

crossing—number arguments.

New Results

An extension of the ideas used to derive lower bounds from minimal
input programs (sections 2.2 and 2.3) can be applied to determine
further constraints on the area~time tradeoff relation for VLSI
circuits. The concept of partitioning a computation among several
processors is extended to partitioning a reasonably incompressible
input program, representing several partial computations, among the
processors in such a way that the information transfer required
between processors (effectively, running time) is related directly
to the program size. This leads to a new technique for establishing

lower bounds on area—-time tradeoffs for VLSI.
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The concern in information theory with only average program
(codeword) length has obscured the problem of the efficient coding
(optimal programming) of individual message sequences. A theorem
due to T. Fine demonstrates that any code that can be realistically
decoded must, for many sources, assign incredibly long (exceeding
Y[K¢]) programs P to some (not very many) messages relative to the
minimum possible (incompressible) codeword length Kw. This
limitation seems to be fundamentally unavoidable even under very
weak assumptions concerning the definition of a running time bound,
the concept of a neighborhood set of a sequence, and the degree y to

which the length of a program approaches its minimal value K The

‘i}.
concern with individual messages is formulated and treated within
the framework of algorithmic information theory, rather tham with

respect to sources for which a relative frequency characterization

of uncertainty is assumed.

The ability to compress binary data in the form of a binary
sequence, for example, requires a compression (encoding) function E
and a reconstruction {decoding) function ¥. If 1SI denotes the
length of the data sequence S, it is hoped that 1E(S)| tends to be
less than 1S1 at least for those sequences in a finite message
source M. The fundamental difficulty of data compression dealt with
concerns ¢ rather than E, the properties of the decoder rather than
those of the encoder. The nature of the conflict is such that for

many message sets (equivalently, classes of booclean functions) it is
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practically impossible to decode some efficiently encoded sequences
{(incompressible or nearly incompressible input programs) from either
probabilistic, non—probabilistic or unknown sources. There is a
similar conflict between the degree to which a sequence is
compressed, and the difficulty of doing so. Details of this
argument are analogous to the first problem. Furthermore, the
results remain valid even when the coding requirements are relaxed
so that the decoder need reconstruct only a reasonable approximation

to the encoded sequence.

Specifically, if 1(S8) is the running-time bound on computational
effort of decoder (receiver—computer) ¥ accepting codeword
(program) P for message S, and Y[Kw(s)] is the upper bound to
acceptable codeword length IP1 when the shortest codeword for S has
length KW(S), then for many message sources M there exist messages

SeM such that

1) if encoder satisfies y, then decoder violates Tt

2) if decoder satisfies T, then encoder violates v.
These Fonclusious seem to be fundamentally unavoidable, and remain
valid even when the decoder is allowed to reconstruct only an

approximation S' in a neighborhood 8(S) of S. Compatibility of

these results with those of information theory is that detailed
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properties of coding systems for individual messages, and not
engemble average properties, are analyzed. In a sense, concepts of
Kolmogorov [Chaitin 1974, 1975] increase resolving power of
information theory for looking at individual sequences, and thus

reveal obstacles to uniformly good coding systems.

For the case where the receiver (computer) has no description of the
message source although the transmitter (encoding program) may have
a complete description, which is the case of interest in the present

application, it is shown in [Fine 1975] that:

Theorem. If v, vy and § are recursive functions, y increasing and §

such that for some £ < 1 each sequence S has a neighborhood § (S)

. s £181
containing no more than 2 sequences, then

where M= {S:18t = n}
Ixi is the smallest integer > x
C = (5:AP)u(P)ed(S),p (PI< ©(8),1P1< y[R (S)]} is
the set of reasonably compressible source sequences in
the sense that P yield a reasonabie approximation
$'¢8(S) to S, that P run in time no longer than T,
and that it is moderately efficient in that for some

pre—assigned function v, IPI < let]’ vhere KW is the
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length of the most efficient possible codeword

Vv is a p.r. function which can be thought of as any ome
of countably infinitely many universal Turing machines
using the encoding function E

Py is the running time of P on ¥ and is defined iff

¥ halts

Kﬂ(s) = min {IP1:9y(P)=S}, the descriptive

complexity of S

The above result thus shows that there is an infinite sequence
{Mly(k)/1~el} such that each Hl?(k)/l-sl contains at least one
sequence E(k) not in C. This conclusion can be extended to other
sequences of subsets of {0;1}*, but it is not known whether it
extends to all sufficiently large Mn . {Based on the program-size
vs speedup result announced for certain functions f in [Helm-Young
1971], we conjecture it does extend to all sufficiently large

message sources Mn,'but the specification of n would be

noneffective.)

There is a close connection between the theory of information

transmission over a channel and complexity of computing. The above
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result of Fine can be extended to binary functions which leads to

the following theorem.

Definition. M = {f:1f1=n} and C = (£:(AP)Y(P)ed(f), pv(f) < t(f),
iP1 < T[K¢(f)]} is the set of reasonably programmable binary
functions in the sense that there exists a program P which yields an
approximation £f'eS(f) to £, that P run in time no longer than T, and
that IPI < y[K¢(f)] for all pre—assigned recursive T, y and §,
y~increasing and § such that for some € < 1 and each binary function

. | . .
geMn, §(g) contains no more than 2® g! binary functions.

Theorem 1. There is an infinite sequence of sets Hn of binary
functions such that each Hn contains at least one function £ not

in C.

Proof. The table of an arbitrary binary function E:fhgg_zm, where
z = {0,1}, can be regarded as a binary sequence Sean for some
message source Hmn by concatenating the n rows of length m
comprising the table. The encoding E(S) is then a program P for
computing £ on (universal Turing machine) ¥. By the previous
theorem there is an infinite sequence {Mly(k)ll—el} such

that each M contains at least one binary functiom f(k) =

1v(k)/1-¢1

f not in C.

31






result of Fine can be extended to binary functions which leads to

the following theorem.

Definition. Moo= {£:1£1=n} and € = {£:(IP)¢(P)ecd(E), pt(f) < w(f),
1Pl < T[Kv(f)]} is the set of reasonably programmable binary
functions in the sense that there exists a program P which yields an
approximation £'eS(f) to f, that P run in time no longer than r, and
that iP1 < YlKﬁ(f)] for all pre-assigned recursive 1, v and §,
y~increasing and § such that for some € < 1 and each binary function

. . .
geMn, §(g) contains no more than Zelg binary functions.

Theorem 1. There is an infinite sequence of sets Mn of binary
functions such that each Mn contains at least one function f not

in C.

" Proof. The table of an arbitrary binary function £::0 —=3™, where
T = {0,1}, can be regarded as a binary sequence Sean for some
message source an by concatenating the n rows of length m
comprising the table. The encoding E{S) is then a program P for
computing f on (universal Turing machine) %. By the previous

theorem there is an infinite sequence {M } such

1y(k)/1-et
that each M, (1) /1-) Contains at least one binary function (k) =

f not in C.
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[The restriction to binary functions in the theorem is clearly
unnecessary, as any finite function of natural numbers into natural

numbers can be transformed into an equivalent function f over I*,]

From the known connections between Turing machine time and circuit
size, and between Turing machine space and circuit depth

[Borodin 1977), together with the previous observations relating
circuit complexity and VLSI measures A'T (ATZ) to P(f), we obtain

the next result.

Theorem 2. There is an infinite sequence of sets Mn of binary
functions such that each LS contains at least one function f which
cannot be computed or approximated within §(f) by any VLSI circuit
in less than ATz (equivalently AZT) > a[h(£f)] or AT (equivalently
AzT) > n[h(KW)]' for all recursive h, and recursive § such that for
some ¢ < 1 and each binary function geM §(g) contains no more than

2® '8! binary functions.

Proof. By Theorem 1 we know there exists at least one f not in C
for each Mn. Thus either f violates the allowed running time Tt on
¥, or it violates the allowed program—size bound Y[K¢] for £ on

v. If T is exceeded for any recursive 1, then since a t(n) time
bounded Turing machine simulated on n bits by a boolean circuit
requires 6[t{n)logt(n)) gates [Pippenger-Fisher 1979, Schnorr 1976],

and any planar circuit requires at least this number of gates, the
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result follows with h = [tlogt] = P(f). If on the other hand v is
exceeded so that any program for f takes more than Y[Kw(f)] tape
squares to read into storage (for example, on an off-line machine
with a two-way read only input tape), more than Y[K¢(f)] time steps
on ¥ are required just to read the input tape. This leads to
precisely the same argument as before, and thus the result is
established. Note that the entire input tape must be read in the
computation of f, since by Theorem 1 the necessary length IPI of any
program for f exceeds y[K¢(f)] if running time is to remain less
than t(f), and any lesser input in computing f will violate 1. If a
model of computation is assumed whereby the input is already on a
working tape, either the above argument or one relating Turing
machine space polynomially to planmar circuit depth [Borodin 1977}
leads to the stated result. (A result requiring the layout area A
of any VLSI circuit performing binary multiplication be proportional
to the total number of bits input to the chip appears in [Brent-Kung
1980] and is extended in [Baudet 1981] to functions corresponding
roughly to shifting or transitive operations which depend on all

their inputs.)

The connection pointed out earlier between on-chip information flow
and inherent modularity of functions ignores the problem of input,
and instead assumes each processor already has its roughly equally
divided share of inputs in memory. Given enocugh input, no

interaction among the processors would in theory be required,
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regardless of the function being computed. Account for program
length muat therefore be taken in defining the concept of
modularity. Intuitively, we think of a computation being modular if
the total time it takes can be arbitrarily reduced by partitioning
among a large enough number of processors. Total time in practice
obviously iﬁcludes the time required to transfer program bits into
the various processor memories. Thus, modularity relates to all
processor interactions, not just to on-chip flows. Using this
global notion of processor interaction in measuring inherent
modularity of computations, we can show that finite functions abound
that are highly amodular. Moreover, such functions cannot be

reasonably approximated by modular functions.

Definition., If a function (computation) f requires a program

inefficiency (redundancy) v, i.e.

IPl = y[Kw(f')],
for £ to run within time t{1P1) on v, then f has amodularity degree
h = max(y,t), the greater growth rate. If h is polynomial or less,

f is modular. Otherwise f is amodular.

Theorem 3 (Hierarchy Theorem). There is an infinite sequence of

finite functions f of arbitrarily increasing degree of amodularity
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which cannot be approximated to within reasonable §(f) by functions

f' having an amodularity degree lower in the sequence.

"Proof. Theorem 1 establishes the existence of infinite sequences of
finite functions that take longer than t time to compute on ¢, or
require input longer than ’(Kw)‘ Such sequences exist for each pair
(t,vY) where t is recursive and y is recursive—increasing. If ¢
satisfies t, then the input violates y. The polynomial relation
between Turing machine space and circuit depth [Borodin 1977] thus
requires chip interaction > Y(K¢) to within a polynomial
factor. The degree of amodularity therefore grows as v if 1 is
small. If on the other hand the input satisfies y, then ¢ violates
t. For complexity bounds @(log n) on input of length n, it is wéll
known [Dymond-Cook 1980] that sequential space and reversal are both
(logt), and that reversal is polynomially related to aggregate
depth (parallel time on combinational circuits which can re-use
their gates). Thus, either the space-circuit depth or
reversal-aggregate depth relation requires chip interaction
>logt to within a polynomial factor. For the pair (t,v) we then
have at least one (actually many) infinite sequence of functioms f
having degree of amodularity greater than v or logr (to within a
polynomial factor). By successivg}y choosing faster growing t and vy
we obtain infinite sequences of functions with arbitrarily
increasing degrees of amodularity. As ¢ is required to compute (in

Theorem 1) only an approximation f' to f, subject to constraints on

35



the reasonableness of the approximation, we can replace each f by
any f' within the § neighborhood obtaining f' sequences instead of f
sequences. Clearly f' has the same degree of amodularity as f,
since the running time for any such f' approximating f exceeds t or
¢ requires more than Y(K#) bits to execute f', completing the

proof.

Actually, the situation may be much worse. Theorem 3 establishes
only the sparse existence of functions which are increasingly
amodular, namely one such f for approximately each y(n) with n > n,.

(n) aﬂd 2Y(n+l)

Thus, the distance between A can be very large,
and in fact becomes arbitrarily large with ever increasing y. The
high-density existence of such functions, say one for each y(n,)+k,
k=,, , ++. would seem to have serious implications for very
large scale computations, e.g. solving weather prediction
equations. The next two results provide conditions for a

high-density hierarchy theorem.

Corollary 1. 1If all sufficiently large M, contain at least one
function f not in C, then every (reasonably accurate) computation

allowing arbitrary inputs over 2" g inherently amodular.
Proof. If the conclusion of Theorem 1 extends to all sufficiently

large Mn, then by the above proof In, such that there is at least

one f satisfying Theorem 3 for each integer n > n,. A computation
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which allows all inputs over " includes such an f as a partial
computation if n > n,, and is therefore itself amodular even when

only approximated to within 8.

There is strong evidence that the condition of Corollary 1 holds,
Note that Theorem 1 implies that in order to stay within any given
recursive running time bound t, the program P for computing some f
in M_ must grow more rapidly as a function of Kw(f) than any
computable vy, And since Kw(f') > yv(2,) where n is the smallest
integer >v(2,)/1-¢, IP1 must grow faster than any computable
function of n. Now as we decrease T, the function f begins to look
like a function that has an almost everywhere speedup (section 4.2)
at the expense of an ever larger program. Moreover, the faster
program cannot be effectively determined from the given program, nor

can we effectively compute from which point on the speedup started.

Such behavior is shown in [HelmYoung 1971] to arise for certain
operator speedups R(Tj)(n) < ri(n) a.e. (ordinary speedups

by recursive functions r(n, rj(n)) < ri(n) a.e, are a restricted
form of operator) and is conjectured to hold for all sufficiently
large operators on the basis that it should be more difficult to
bound the size of programs effecting large speedups than those
bounding smaller speedups. A slightly stronger result appears in

[Constable=Hartmanis 1971] and independently in [Meyer—Fischer
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1972], the question of extension to all total effective operators R

remaining open.

Theorem 4. If the Helm-Young Theorem [1971] extends to all
sufficiently large operators R, then Theorem l extends to all

sufficiently large Mn.

Proof. Helm-Young prove that for every recursive function r there
is an effective operator R only slightly larger than r, and a total

recursive function f which has R—speedup

but for which the size of the program necessary to effect the
speedup increases more rapidly than any recursive bound. If their

result holds for any operator R sufficiently large that
R(t)(n) > r(n+l),

then f requires such programs for all running times T < Tj'

If the size of a program necessary to effect an R-speedup cannot be
effectively bounded for some R-speedable feHn"Q, then ¥y3dn, such
that its initial segments fn of length n > n, require programs Pn of
size an|> T[Kv(fn)]’ where v computes f therefore fn within

time Tj(n), and Theorem 1 holds for all TZFj and all sufficiently
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large M . 1If this behavior arises for all sufficiently large R,
then Theorem 1 holds additionally for all tgyj and sufficiently

large Mn.

In view of the fact that most simple (non—composite) functions
already have been shown to have time-efficient layouts only when
wire area is nearly as large as the chip, it would not have been
completely unexpected to find that running time (or VLSI circuit
area) for arbitrary composite functions would exceed polynomial or
simple exponential limits. For example, in [Lipton-Sedgewick 1981]
it 1s shown that certain n—input functions which are easy to compute
become difficult under union or composition if each input arrives
once and each output leaves once. If inputs are allowed to arrive
multiple times (i.e., at many different times during the
computation), this result does not hold, but if we do not allow free
boundary (off chip)-memory, the on—chip storage area will
correspondingly increase. However, the probable abundance of

well-defined functions which exceed any recursive bound on the

area=time product is unexpected.

[Blum 1967] gave an axiomatic characterization of some of the
properties which should be possessed by a measure of computational
complexity and established the existence of speedable functions -
computable functions which fail to possessoptimal programs in a

particularly strong sense. Recursion theorists tend to like such

39



functions, and computer scientists tend to consider such functions
somewhat pathological. It is shown in [Altom 1976] that such
pathology is rampant: there is a great diversity of behavior among
the collections of run~times of different functions which do not
possess optimal programs, where such diversity is gauged by certain
algebraic criteria which have computational significance. Roughly
speaking, these algebraic criteria concern the ways in which various
functions can be intermixed to satisfy requirements that certsgin
functions can or cannot be computed more easily than certain other

functions.

2.5 Examples

In general; one is interested in finding an efficient algorithm for
soclving a problem, where the notion of efficiency may involve a
variety of (perhaps yet unknown) computing resources. Here though,
we are concerned with the single resource time. The time
requirements of an algorithm are usually expressed in terms of a
single variable, the aize of a problem instance, which is intended
to reflect the amount of input data needed to describe the
instance. This is intuitively appealing because one would expect
the relative difficulty of problem instances to vary roughly with
their size. The size of a problem instance is often measured in an

informal way, so if time requirements are to be compared in a
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precise way, care must be taken to define instance size in a uniform

manner.

The description of a problem instance provided as input to a
computer can be viewed as a single finite string of symbols, chosen
from a finite fixed alphabet, Although there are many different
ways in which instances of a given problem might be described, it is
assumed that each problem has associated with it a fixed encoding
scheme E which maps problem instances into the strings describing
them. The input length for an instance I of a problem x is

defined to be the number of symbols n in the description E(I)
obtained from the encoding scheme for v, and it is this number n

that is used as the formal measure of instance size.

The time complexity for an algorithm, defined as the largest amount
of time needed by the algorithm to solve for each input length
1IE(1)! an instance 1 of that length, thus depends upon the
particular encoding scheme chosen. However, the standard encoding
schemes used in practice always seem to differ at most polynomially
from one another, so that any algorithm having polynomial time
complexity under one of these encodings will have polynomial
complexity under all the others. As it is difficult to imagine an
encoding scheme for a naturally occurring problem that differs more
than polynomially from the standard ones, there has been general

agreement as to what constitutes a reasonable encoding scheme.
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Although what is meant by reasonable cannot be completely
{satisfactorily) formalized, the gemerally accepted meaning includes
the notions of conciseness and decodability. The intent of
conciseness is that instances of a problem should be described with
the natural brevity that would be used in actually specifying those
instances for a computer, without any unnatural padding of the
input, as such padding might expand the input length so drastically
that an exponential time algorithm would be artificially converted
to an algorithm with only polynomial complexity. The intent of
decodability is that, given any particular component of an arbitrary
instance, a polynomial time algorithm can be .specified for decoding
a description of that component from any given encoded instance. In
other words, for a problem to be considered realistically defined
(encoded), the solution which satisfies the problem parameter values
specified in each‘instance must itself not be so extensive that it
cannot be described with an expression having length bounded by a

polynomial function of the input length.

A naturally occurring (ie. the diagonal process is not employed)
example which comes very close to the kind of function Theorem 1
predicts is the determination of the characteristic sequence XA of

*
the set of busy beaver numbers first studied by [Rado 1962ab]. By

modifying the idea of what constitutes an acceptable program for

computing the initial segments of this sequence, the desired example
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of a discontinuous program—time trade is obtained. It is shown in

[Daley 1976] that the set A, which is defined by
ned, <=>3m.n = max {@i(1)|¢i(1)+ and u(i) < m}

[where @i(l) is the computation time of program i on initial tape
input 1, @i(l) + means that program i (in the standard numbering
for Turing machines) on input 1 is defined (halts) and pu(i) is the
program-size measure for {@i}, the length of the standard binary
encoding of the integer i] has initial characteristic sequence
segments x computable in time O(nlog,n) by very short programs
Kw(xnln), i.e. with extremely low minimal-program complexity. 1In
fact Kw(xnln) grows more slowly as a function of n than every
partial recursive function (equivalently, the running time as a
function of m grows faster almost everywhere than every partial
recursive function). It is also shown there is an algorithm which
given an initial segment x" finds a minimal-program (to within a

constant) for x".

Intuitively, we can compute XAim) for all m<n, given n, if we can
determine all members of A, which are <n. Corresponding to each
member of A, there is a program whose running time is that member.
Thus to compute all members <n of A, we need only encode into a

program all the programs corresponding to the members <n of A,.

Both the size and number of these programs must, as a function of n,
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grow more slowly than every partial recursive fqnction. Furthermore,
by their very nature the running times of all these programs are less
than n. Thus we see that A, consists of numbers which admit very
short descriptions and which are easily obtainable from these

descriptions.

However, these programs Kw(xnln) do not constitute a reasonable
encoding scheme for computing the characteristic sequence
of the set of busy beaver numbers, This is evident, since XA* (the

solution) grows in length directly with n by definition while

K¢(xnln) grows arbitrarily slowly as a function of n, the initial
segments xo of Xa, of length n are not describable in length (or

time) polynomially related to input length Kw(xnln). So while the
programs Kw(xnln) are certainly concise by their very nature, they
are not in general decodable. Thus for encoding-independent
uniformity with other results and concepts in complexity theory, the
program for determining XA* must.include for each problem instance a
technique for describing the desired solution within the polynomial
limitation. In general, such a technique must be capable of
describing place values in a sequence of length n, and therefore
must in essence encode i for all i <n. To compute x" and describe
the result by any such program P, its length IP1 must therefore grow
more rapidly than every partial recursive function of Kw(x“!n) as n

grows.
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The related programs for computing Ne(n), defined as the number of
n-state binary Turing machines that halt, do not grow unreasonably
fast but have running times which grow faster than any computable

function of n. In particular [Rado 1962ab] observed that
1 < N_(n) < N(n) = [4(n+1)]20

where N(n) is the number of all possible n-state (binary) Turing
machines*. If N(s,n) denotes the number of n-state Turing
machines which halt after exactly s shifts, the computation can be
readily programmed as follows. Informally, one finds the value of
N(s,n) by running each one of the n—-state binary Turing machines,
whose number is N(n), persisting through not more than the given‘
number s of shifts and noting the number of those that stop after

exactly s shifts. Thus
8
G(s,n) =2 N(i,n)
i=1 -

is the number of n-state binary Turing machines that stop after not

more than s shifts, so

*i,e., the number of distinct instructions governing overprint (2),
shift (2) and state transfer (n states plus halt) for 0's and 1's is
[4(n+1)]1? for n possible states
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G(s,n) ﬁpe(n).

The smallest value of s for which G(s,n) = Ne(n) is s = t, where
teA, is defined as the largest running time among all n-state binary
Turing machines. Since program—-size u(i) is at most linearly
related to number of states n, it follows from the previous example
that t grows faster than every partial recursive function, and so

obviously does tN(n), the running time of Ne(n).

It should be noted that the set A, of busy beaver numbers is
retraceable [Rogers 1967] as shown in [Daley 1976], and it is
evidently this property that leads to the discontinuous trade

between program—-size and computing time in the above examples.

Definition (Dekker, Myhill, Tennenbaum). A is retraceable if (3
partial recursive ¥) ¥x [x € A => [¥(x) is defined; ¥(x) = x if x is
the smallest member of A; and $(x) = the next smaller member of A if

x is not the smallest member of All.

Other examples of retraceable sets (trees of numbers) have similarly
been proposed which can have short programs, but which are
arbitrarily difficult to compute [Chaitin 1970]. Thus

retraceability seems to be one property that can lead to the kind of
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result in Theorem 1. That there are other properties that can

similarly lead to the result is seen below.

The question whether for a function f with r—speedup (section 4.2)
there must exist a recursive function which bounds the size of
program necessary to effect the speedup was originally posed in
[Blum 1971]. A negative answer for effective operators slightly
larger than r appears in [Helm-Young 1971] where it is shown that
functions f exist which have the property that if we are given any
program P for computing the function and want to pass to a program
P' which computes the function much more efficiently, then we can
only do so at the expense of obtaining a much larger program. In
fact, the function which describes the necessary increase in the
size of the more efficient program P'muat grow more rapidly than any
recursive function. The functions f have speedup, but not only can
one not effectively find the programs P' which admit the speedup,
aven if one could, their complexity must increase in such a way that
their size becomes totally unrealistic. It is thus evident that the
speedup property is also related to Theorem 1 in the sense that
certain speedable functions [Blum-Marques 1973] exhibit the
discontinuous trade between their program—-size and computation time
predicted by the theorem. That the programs for such functiouns are
non-effective is of course already implied by Theorem l. The
connection between speedable functions and Theorem 1 is explored

further in section 4.2.
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Theorem 1 also suggests the following interpretation. It is very
likely there are infinite sequences of finite functions £, which can

be solved in polynomial time tK, only by distributing the inputs

¥
among an ever larger (unbounded) number th of hardware units, each
accepting an amount of information Kt (£) j_Kv(f), the total

i
information content of f. The model is then equivalent to the

YK -state nondeterministic computation of £, using time polynomial

¥

in Kﬁ’ where f cannot be solved in time less than polynomial in

YKt deterministically. (A similar interpretation holds for Theorem

1, where v is any time complexity-class.)

In particular, if running time v must be no larger than polynomial
in 1P1, then by Theorem 1 3fsMn which requires 1Pt > T(Kt) for
any recursive y. This is depicted in Figure 2, where program P

input is parsed into subprograms each having length Kﬁ f'Kt° Now
1
each K¢ is the shortest program for some partial computationm of £
i

which runs in time polynomial in Kﬁ, due to the assumption that 1
is polynomial in IP! and ¢ is a deterministic (universal) Turing
machine. Assuming that the solution to f is describable in length

polynomial in K , the computation is equivalent to a nondeterministic

‘.’
search by the pieces K, for the relevant solution parts to f.

1

If all K¢| subprograms cutput independent descriptive solution data
i

having finite length, the total solution length would exceed a

polynomial in K Thus the role of the guessing module (Figure 3)

"l
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o COMPUTER

Figure 2. deterministic computation of f

is to select the length of each K, and to simultaneously center

¥,

i

attention on just those K$ that produce partial output (whose total
i

output is a solution to f). Since f can be programmed in length Kw,

the collection of K¢ producing partial output will by definition be
i
K$ in length (to within a constant). The collection will therefore

consist of a finite number of subprograms K¢ each running in time

i
polynomial in Kw, and therefore collectively in time polynomial in

TK¢ nondeterministically. Related obgervations appear in

{Berman—-Hartmanis 1977, Kannan 1981].

Clearly an exciting result would be to discover a natural instance

of such a problem. The search for such a sequence of f would
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Il

IK%I GUESSING MODULE

=

Figure 3. YK,-state nondeterministic computation of
f: guessing module prints all solution ocutputs
from R, parts (for all i) on tape to left of
i

program Ky; Ky then "checks" the answer.

w COMPUTER

evidently lie at the extreme end of a progression of sets with ever
diminishing input information rate, namely those of minimum
accessible information rate [Yao 1982]. This provides an intuition
that complexity classes defined in terms of information that can be
accessed through a feasible computation may differ sharply from
those associated with certain traditional encoding schemes. In a
sense there is of course a practical preference for measures of
accessible information in terms of KW' On the other hand K¢ is not

effectively computable, whereas standard encoding schemes E for f

can easily be defined and 1E{(f)! effectively determined,
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It is well known [Hartmanis 1978]) that any proef procedure for a
mathematical theory (e.g. Peano arithmetic) will have easily
recognizable infinite sets T of trivially true theorems such that
the length of their shortest proofs in the given formalism will grow
faster than any given recursive function (of the length n of the
theorems to be proved), and such sets can be effectively found.

Even in the first order theory of addition of natural numbers
(Pressburger arithmetic), there exist infinite sets T of theorems
which are recognizable as true in polynomial time by some Turing

machine ¢, but ¢ uses at least (nondeterministic) time

n
T{n) > qu q>e

for every element of T [Fischer—Rabin 1974]. It is evident from
these remarks that our f-sequence in some sense lies at the opposite
end of the spectrum from T. Thus f may be thought of as an infinite

set YK, of easy theorems K, that takes arbitrarily long to

Y. b,
i i
recognize, but each member of f can be proved in polynomial time.
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3. APPLICATIONS

3.1 Self-Modifying Programs

Even though all finite functions are necessarily recursive, not all
finite functions are tractable = some require too much time to
compute relative to their size. [Others require too large a program
(as is the case with the finite subfunctions of a random function)
relative to their size, so that most of the computation is
essentially table lookup, i.e. there is little actual computation
involved.] Self-modifying programs have been proposed as a way out
of this dilemma. For example, presuming that the time limit for
tractable computations is polynomial, suppose that f is a recursive
function whose computation time only infrequently exceeds the
polynomial limit, Given some program P for £, if P encounters one
of those exceptional values, P can finish the computation and modify
itself (thereby obtaining a new program P') so as to remember that
difficult value and compute it the next time by table look-up.
Through a formal argument it can be shown that every (possible
infinite) recursive sequence is learnmable in a certain sense (and so
are some nonrecursive recursively enumerable sequences, but not all)

[Schnorr-Fuchs 1975].
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It is a result of Theorem 1 that one is unable in general to bound
the length such new learned programs will require. This remains
valid even when we relax our programming requirements so that it
need only be possible to reconstruct reasonable approximations on
the exceptional values encoded. Furthermore, Theorem 3 (Corollary
1) and Theorem 4 imply that the density of computations exceeding
polynomial limits and thus requiring program modification may be so

great that the time required for modifying is not feasible.

3.2 Probabilistic Algorithms

In the analysis of algorithms (programs) it is customary to draw a
distinction between the worst case and expected time behavior of an
algorithm [Karp 1976, Garey-Johnson 1979]. This distinction is
prompted by the fact that for certain problems, while an algorithm
may require an inordinately long time to arrive at a solution for
the least favorable instances of the problem, on the average the
required time is appreciably shorter. From a practical point of
view, when many instances of a problem have to be solved, the

average behavior is the more significant measurement of an algorithm,

This approach presupposes the existence of a known probability
distribution on the space of all instances of the problem in
question. Thus, for example, expected time of sorting algorithms is

studied under the assumption that all n! permutations of the n
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numbers to be sorted are equally likely. For many important
computational problems we are on shaky ground in assuming a
particular distribution on the space of instances of a problem. The
relative frequency of the instance of the problem may be changing
with time in an unpredictable and unmanageable way. The sample of
instances actually appearing in a given application is often
statistically biased in a manner not conforming to the assumptions

made in the analysis of our algorithm.

An interesting recent innovation in algorithm design is the
inclusion of stochastic moves and the allowance for an ¢ probability
of error [Rabin 1976]. This represents a radically different
apprcach and methodology for the study of probabilistic algorithms.
Nothing is assumed about the distribution of the instances of the
problem to be solved., Instead, randommness is incorporated directly
into the algorithm. For an instance I of size n the randomness may
take the form of choosing at random an integer 1 < b < n, or chosing
at random m integers b,, b,, ..., bﬁ all smaller than n. An
algorithm is then constructed involving a random step r so that for
every instance I of the problem the expected computation time will
be brief. 1In this approach randomness is not in the occurrence of

the instances I, but is introduced into the algorithm itself.

Let I be a computational problem, i.e., a collection of

computational tasks I each of which is called an instance of I. For
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example, the sorting problem is the collecton of all n—-tuples (for
all n) of real numbers I = (x,, ..., xn). For a given

instance I the task is to produce a permutation p such that
xp(,).i . E-xp(n)' When studying the complexity of a problem X
we associate with the instances Icll a size 1Il. The choice of the
particular measure used to define size is not unique, and usually
depends on the particular aspect of complexity under investigatiom.
Generally speaking, the size 11l is related to the amount of
memory space used to store the input (the quantity of information
required to specify I) or to natural parameters of specific
problems, e.g., the number of vertices in a graph. A probabilistic

algorithm for I is defined as follows:

Let Icl be an instance of T, 111 = n, At certain junctures in
the solution of I randomly choose a number 1 < b < n. Denote

by bi the ith

number chosen and denote by r = (bl’ veey bm) the
sequence. With the exception of the act of choosing the bi’
the algorithm proceeds completely deterministically. For

simplicity it is assumed that all sequences r are equally

likely.

An algorithm solves I in expected time £(n) if for every Iell such
that 1I| = n the algorithm solves I in expected time < f(n).
Expected time is defined as the average of all solution times of I

by the algorithm for all possible choice asequences r. A
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probabilistic algorithm which for some instances Iell and choices r
may produce an incorrect solution is said to solve I with confidence
greater than l-¢ if for every Iell the probability that it will produce
an incorrect sclution is smaller than ¢, for ¢ > 0. 1In

other words, for every instance I the relative frequency of the
choice sequences r that lead to an incorrect solution is smaller

than ¢.

In the foregoing version of a probabilistic algorithm it has been
tacitly assumed that the algorithm always terminates for every
choice r. However, within the spirit of probabilistic computing,
the definition can be extended to allow the sequences of choices

r = (b,, b,, ...) to occasionally become infinite. If the
probability p(I,m) of r becoming longer than m tends to zero rapidly
enough, then the computation will terminate with probability 1 and
still have short expected time. Other modifications and refinements
are possible, again portraying the intuitive concept of
probabilistic computation. For example, random choices from domains
other than the set of natural numbers may be allowed, or one might
consider different probability distributions on the choices

[Chaitin-Schwartz 1978].
In view of the area~time exchange in VLSI the question naturally

arises as to the possibility of saving a substantial amount of wire

area or time by deliberately allowing some imprecision in
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computation procedures. In other words, if each on-chip processor
is given a random number generator, can the value of an arbitrary
function f be determined with much less information exchanged? Such
a computational model is then equivalent to implementing a parallel
probabilistic algorithm. [Yao 1979] shows that the probabilistic
2-way communication complexity (i.e., the expected number of bits
transferred between two processors cooperatively computing an
arbitrary boolean function f on the worst input) decreases at most
logarithmically over the deterministic l-way communication model
when 0<e<,/,. (The result in [Simon 1981] relating probabilistic
and deterministic tape complexities of Turing machines limits the
power of probabilistic algorithms for a single processor.) Theorem
2, which always requires at least an approximate solution as opp;sed
to allowing an arbitrarily incorrect solution less than half the
time (0<e<,/,), shows there are computations f for which the

VLSI complexity AT  or A'T exceeds alh{£)] or n[h(Kw(f))] for

any recursive h. The reduction in VLSI complexity that can be
achieved using parallel probabilistic algorithms is therefore
clearly inadequate for those f having an h greater than
exponential, Furthermore, Theorem 3 (Corollary 1) and Theorem &
strongly imply that the demnsity of computations f having such an h
@ay be quite high, limiting the effective use of the probabilistic

approach in reducing VLSI complexities.
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3.3 Approximation Circuits

The notion of a boolean function may be generalized to that of &
partially specified boolean function, whose value need not be
specified for every combination of values of its arguments. A
partially specified n—function may be described by a table with 2"
entries, in which X's (representing unspecified boolean values) are

allowed as well as 1's and 0's.

There is an intimate connection between rate of transmission over a
channel and the (circuit) complexity of approximate computation.
Circuit-size lower bounds deal with maximum complexity over a class
of functions (with a firm bound on the allowed error) while the
related problem deals with average transmission and distortion
rates, These averages are taken over both the distribution of the
input and over the (probabilistic) transformation of input into
output. For example, a typical procedure in rate-distortion theory
regards a source sequence as a string of symbols, parses this string
into substrings, and separately encodes each substring for
transmission over the channel. An analagous procedure for
complexity theory regards the table of a function as a string of
symbols which can be parsed into substrings corresponding to
subfunctions of the given function. These sub—functions can then be

used to construct efficient circuits.
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In conventional rate-distortion theory, the source string is divided
into fixed-length blocks for encoding. If the source is ergodic,
the sequence statistics for these blocks will approximate the
ensemble statistics for the source., 1In this way, blocks whose
statistics are similar to those of the source may be encoded
efficently by random coding, while blocks whose statistics are much
different from those of the source occur so infrequently that they
can be dealt with by brute force (that is, encoded very
inefficiently) without significantly degrading the average
transmission or distortion rate. An adaptation of rate-distortion
theory that does not rely on ergodicity {which ensures that
fluctuations in blocks of moderate length are small), but rather on
the hypothesis that after a certain prescribed number of symbols
(possibly an excessive number) all fluctuations will have evened
out, divides the éource string into variable~length blocks, all of
which can be encoded efficiently by random (circuit) covering. In
effect, such an adaptation allocates quotas of complexity and
distortion among the subfunctions of a given function. Thus,
averaging over the input is replaced by an apportionment, while
averaging over the transformation of input into output is replaced

by random covering.
Utilizing these underlying connections to information theory,

[Pippenger 1977] proved the following result: the complexity (ie.,

number of gates) of approximately computing a partially specified
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n-argument boolean function in whose table a fraction d of the
entries are unspecified and a fraction p of the specified entries

are 1's with errors allowed in a fraction not more than e of the
specified entries, is less by the factor R(d,p,e) = (1-d) [H(p)-H(e)],

where

H(z) = =-zlog,z - (1-z)log,(1-2)

is the binary entropy function, than the complexity of exactly
computing an arbitrary fully specified boolean function.
Intuitively this factor is the minimum mutual information between a
partially specified boolean random input variable F encoded for
transmission over an arbitrary discrete memoryless channel with

fully specified random variable G output, when F has the distribution
X |d
F 1 |p(1-d)

0 | (1-p)(1-d)

and the distortion D(F,G) < e(l-d), where D is defined as the

expectation of
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The expectation is of course » if either of the «'s has positive
probability. The behavior of the factor R(d,p,e) is shown in

Figures 4 and 5 below.

This result holds with 0 < d < 1, 0 < p <1 and e < min{p,1-p}.
Note that if e > min {p, 1l-p} every partially specified function can
be approximated at sufficiently many (at least half) of its inputs

by a consgtant function.

We are primarily interested in the behavior of R(d,p,e} at about

p = ,/,, since almost all binary input sequences (programs) of
length 2™ will have about 2" ! 1's, these representing the

inputs of generally higher information content. Significant
departures from p = ,/, imply input programs of low information.

(It can be seen from Figure 4 that R(d,p,e) drops exponentially as p
departs to either side of the value ,/,.) Examination of Figures 6
and 7 reveals the difference in (worst case) circuit complexity for

the approximate computation problem when the positions of the errors

61



Figure 4, behavior of R(d,p,e) with d = 0 and e fixed

Figure 5. behavior of R(d,p,e) with d = 0 and p fixed

1-d
H(z)j
1-H{e)
0 . - 0 .
0 Z = ] 0 d,e—e 1

Figure 6. binary entropy function H

Figure 7. comparison of l-d and 1-H(e)
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are fixed rather than free. Thus circuit size drops linearly as (1-d)
for fixed errors (unspecified input positions}, while since

1-H(e) has slope -» at e = 0, the first few errors allow a dramatic
(exponential) drop in circuit complexity if their positions are free

rather than fixed, and if p is near ,/,.

That 1-H{e) drops to 0 at d, e = ,/, while 1-d does not reach 0
until d = 1, corresponds to the fact that any function can be
approximated at one-half its inputs by a constant functiom, but an
n—-function specified at one-half its inputs might be an arbitrary

(n=1) function.

Since replication of boolean approximation circuits leads to VLSI

circuits for approximating binary functions, and as Theorem 2 allows
some error in computing, there would seem to be limitations on what
can really be achieved through such reduction factors R(d,p,e}. 1In

fact it is shown in [Pearl 1976] that

[H(p)-H(e)] = R, *c
when e<p<,/,. From the proof of Theorem 2, it is seen that
Theorem 1 implies the existence of planar circuit complexities P(f)

for binary £ which grow as YK,k for any recursive y. The same

]

holds for boolean functions f as a special case of Theorem 1. It is
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evident that circuit reduction by factors close to the order

YK, as opposed to ¥, are required in general to bring problems

v b
within feasible VLSI computing bounds.
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4, FEASIBLE VLSI COMPUTATIONS AND SPEEDUP

4.1 Information Theoretic Parallel Computation Thesis

1
It is widely believed that the feasible sets (e.g., time = n°( ),

space = log n°(1)) for sequential computers form a subclass of

P (the set of problems computable in time polynomial in their

input length). The belief that parallel algorithms which use a
non-polynomial amount of hardware are as impractical as algorithms
which require non-polynomial time, suggests that the feasible sets
for parallel machines may also be a subclass of P, because
polynomial hardware running for polynomial time can be simulated by

a polynomial-time sequential (Turing) computationm.

There has developed a substantial body of evidence showing that
sequential Turing machine space can be simulated efficiently by
parallel time - this relationship is called the parallel computation
thesis, However, these simulations do not constrain the hardware
used by the parallel machine, and in fact use an expomential (in the
Turing machine space) amount of hardware. The thesis thus
guarantees a fast parallelization if the original space is small,
but does not bound the hardware required to achieve this in any

way. Like Church's thesis, this thesis cannot be proved or
disproved, because it relates an intuitive concept (parzllel

computation) to a mathematically precise one (Turing machines).
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[Dymond=Cook 1980] have conjectured that no such bound on hardware
is posaible in general when transforming space to parallel time.
However, they suggest that if the reversal used in the original
Turing computation is small, then a fast parallel computation will
use only polynomially more hardware than the original computation

uses space (extended parallel computation thesis).

The following twe theorems suggest an even further restriction on
the subclass of P may be needed to characterize the feasible sets
for parallel machines. Thus, beyond requiring both the space and
reversal to be small (say polynomial in the logarithm of the input
length), Theorem 6 requires that space and reversal under Turing
computation be bounded in terms of (rate of growth of) the

information K¢ contained in the input.

Theorem 5. There are infinitely many finite functions f with
polynomially bounded space and reversal such that parallel
computation takes more hardware or time than any computable function
of information content Kw(f) if £ runs in polynomial time, or f
takes longer to compute than any recursive function of its program

length 1PI.

Proof. Sequential time Tt (or total operation) is not less than

linear in space or reversal, nor greater than linear in their
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product [Hartmanis 1968]. By Theorem 1 there is an infinite

sequence of finite functions which

1) run in polynomial time only by having programs longer than

any computable function of information content K¢(f) or
2) have short programs with arbitrarily large running times.

Here T{IP1) in Theorem 1 is taken to be an arbitrary polynomial
function. Then (1) implies that even when the space-reversal
product is polynomial in !Pt, the space (hardware) required for
program input, or the reversal (parallel time [Hong 1980]) required
to read the program on ¥, is not feasible when viewed in terms of
Kw(f). Likewise (2) implies that if the program for f is any
shorter than in (1), the space - reversal product will become
arbitrarily large in IPi, thus in Kw(f), since

tPI E.Kw(f) by definition. Therefore, even when the

product of space and reversal is polynomially small, parallel
computation of f will either take too long in terms of K¢(f) or
take too much hardware in terms of Kw(f), or both for infinitely

many f.

A more general result actually follows from Theorem 1, allowing

arbitrarily small bounds on space and reversal. Of special interest
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here would be those T which are less than polynomial in the

logarithm of input length.

Theorem 6. There are infinitely many finite functions f with
T-bounded space and reversal such that parallel computation takes
unbounded hardware or time in terms of information content Kw(f)
if £ runs in t(I1PI) time, T any recursive function, or takes

longer than any recursive function of input length IP!,

Proof. In Theorem 1, T may be any pre—assigned recursive
function, so the previous proof actually establishes the more

general result stated here.

In the proof of the result in [Fine 1975] 2 message source M is
reasonably comﬁressible (i.e., has relatively short programs and
running times) if and only if, for all SeM, Kw(s) < y(¢) where ¥
is any recursive—increasing function, and ¢ is a2 constant which
depends on 1, § and v, but is independent of M. In other words,
the low information—content problems S (here in the sense of
program—-size) are guaranteed to have programs of reasonable length
for any fixed running time bound, and as such are efficient with
respect to input (hardware) required. On the other hand, higher
information—content problems require programs much longer than their
information~content to run within the allowed time bound, and

include many whose programs grow arbitrarily long. These programs
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clearly contain large amounts of redundant information, which may be
interpreted as multiple arrivals of certain of the inputs. Viewed in
this manner, Theorems 1 and 6 imply that while all low information—
content problems are guaranteed a feasible fast parallelization
under the extended parallel computation thesis, and while some high
information-content problems having low reversal (parallel time)
with not too many multiple arrivals of input are similarly
guaranteed, there are many finite functions f that, for a fixed
bound on running time, require far too many multiple input arrivals

to be simulated efficiently with parallel hardware.

Some results previously reported in the literature motivate the next
theorem which provides additional intuition behind the extended

parallel computation thesis:

1) [Hartmanis 1968] that for slowly growing (<logiP!) reversal
the speedup theorem does not hold for on-line Turing machine
computations (there is linear speedup for all inputs if

£

reversal grows faster than IPI!'+  for g >0, a result due

to Blum strengthened to €!P! by [Fischer 1968])

2) [Fischer 1968] that off-line Turing machines always have linear

speedup property for all reversal growth rates
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3) [Lipton-Sedgewick 1980] that if inputs are allowed to arrive
multiple times (free memory) the VLSI complexity of simple
n-input, n—output functions remains unchanged, while the
complexity of combining such simple functions may drop

significantly

The probiem of finding an F(n), for input of length n, such that for
all nondecreasing functions growing faster than F(n) an on-line
reversal speedup is possible and for all functions growing more
slowly than F(n) no reversal reduction is possible was posed in
[Fischer 1968). [Hartmanis 1968] showed that when reversal R(n) is

any constant function, or when R(n) is a certain function
R(n) = min {Nin < (G(N)+1)(2N+1)}

(where G(N) is not too different from 2') which grows

approximately as fast as log,n, then no speedup is possible.

Theorem 7. An on-line Turing machine ¢ has linear speedup
property iff reversal R(n) >6[log,n+c] on input of length n

for some fixed constant ¢ independent of n.
Proof. Using a theorem due to Meyer [Loveland 1969], [Chaitin

1976b] has shown that an infinite binary string is recursive iff

Jc¥n the complexity Kv(xn) of its initial segments of length n
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is < ec+log,n. Intuitively, an on-ling reversal growth rate

< 8[log,n + ¢] thus implies that reversals are not being

used generally for multiple (backup) looks at any fractional amount
of input (i.e., en for 0 < e < 1), while growth rates

>0[log,n+c] clearly allow this possibility, and by analogy to

off-line computation can be sped up by an arbitrary constant factor.

Intuitively then, the extended parallel computation thesis
guarantees a practical fast VLSI parallelization only for Turing
machine computations which cannot be sped up if inputs arrive only
once, while if multiple arrivals are allowed the thesis guarantees a
fast VLSI computation for linearly speedable computations with
reversal < log,n+c. Such computatioms may roughly correspond

to complicated functions formed from simple functions through union,
composition and/or alphabet change. The analogy between
multiple-input arrival schedules in VLSI and off-line Turing

machines was independently recognized in [Redem=Zorat 1981].

4.2 Ew Characterization of Speedup

The interpretations in sections 2.4, 2.5 and 4.1 relating several of
the present results to the speedup property indicate there may be a
quantitative relationship involving K$ which characterizes the

speedable or nonspeedable sets. Our notation will be primarily that

of [Rogers 1967] and [Blum 1967].
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Definition. Let s be the ith partial recursive function of
one variable in a standard Godel numbering of p.r. functions. A
family ¢,, ¢,, ... of functions of one variable is called a

Blum measure on computation providing

1) domain (oi) = domain (¢i), and

2) the predicate [Gi(x) = m] is recursive in i, x and m.
Definition. An r.e. set A is speedable if for all i such that
Wi = A = domain LH and for all recursive functions h there
exists j such that Wj = A, and

3%x[0; (x)>h(x,2;(x))].

Furthermore, A is effectively speedable if j can be recursively

computed from i and an index for h.

Intuitively, if A is speedable then for every program i for A and
every recursive fumction h there is another program j for A which is
an h—-speedup of the first infinitely often, where j in an h-speedup

of i on argument x if

oi(x)>h (x,Qj(x)).
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Definition. An r.e. set A is nonspeedable if there is a recursive

h and an e such that We = A and
Vi [wi = A = oe(x) 5_h(x,oi(x)) a.e.].

The notation and basic assumption for relative recursiveness is the
followihg. For any set X, ¢§, mf, mf, ees.s denotes a standard
Godel numbering of all the partial recursive functions from integers
into integers relativized to X. For all integers i and x, ¢§(x)

is a computation that proceeds algorithmically except that from time
to time the computing agent may be required to obtain an answer to a
question of the form "is n in X?". The answers to these questions
are correctly and automatically supplied by some externmal device
(usually referred to as an oracle for X), and obcaining an answer to

one of these questions counts as a single step in the overall

computation.

Definition. For each i, W? = domain (m?). For any

set X,
X'= {xlwi(x) is defined} = { x| x ¢ Wi}

is called the jump or completion of X. Iterations of the jump are

indicated by
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")

x(2+0) - [x@]'

(n) is called the nth jump of X.

where X
Let F be the set of all total functions and predicates. We say two
members of F are equivalent if each is recursive in the other, which
defines an equivalence relation. The equivalence classes are called
T-degrees of unsolvability, or Turing degrees. Roughly speaking,
two functions or predicates are equivalent if they are equally
difficult to calculate. Thus the degree of a function or predicate
is a measure of the difficulty of calculating it. Let a,b, ...

dencte Turing degrees. For any degree a, a'

is the uniquely
determined degree of A', where A is any set in a. a' is called
the jump or completion of a. a < b means that a is

recursive in b and b is not recursive in a. 0 denotes the
recursive degree, i.e., the degree of all recursive sets. It
includes @ (the empty set) and w (the well-ordered set of all
integers) as members and is the smallest degree. 0' is the degree
of the halting problem ¢'. A procedure is recursive in 0'

(i.e., recursive in @') if it is effective except for requiring
the solution to certain individual and explicit instances of the

halting problem, that is to questions that ask whether a certain

specified and effectively recognizable kind of event occurs at
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least once in the course of a certain effective computation. The
intuitive significance of a' is parallel to that of 0'. A

procedure is recursive in a' (i.e., in A') if it is effective

except for requiring the solution to individual instances of the
(relativized) halting problem for procedures recursive in A, where A

is some given set in a.

Finally, we will need the following generalizations of Kolmogorov

information to functions and sets:
Definition. The number of bits of information needed to specify a
program p for the partial function ¢ relative to a set X of

natural numbers is

Kt(@IX) = min{!(p):aptx(p) = 9}

= » potherwise.

Definition. The information in a set A of numbers relative to

another set X of numbers is defined by
K¢(AIX) = Kv(lx[if xeA then 1 else 011X}

where Church's lambda notation Ax[-x-] is used to denote the

partial function of x whose value is [-x-].

75



Definition. The number of bits of information needed to specify a
program p, relative to a set X of numbers, for the first n bits of

the characteristic sequence for a set A of numbers is

Kw(Alx)n = min {z(p):aptx(p) =
»x[if xecA then 1 else 0] for
Oixf__n-l}

= o gtherwise,

We use the following index set notation:

FIN = {ilWj is finite} = INF
Hy = {itwWjAA # @}
Theorem 8, If A is an r.e. set

a) A is speedable iff HcVn[Kw(A'IG')n >
log,n+c.Kw(ﬁ'lA')n < log ,n+c]
b) A is nonspeedable if HcVnK‘b(A'IG')n < log,n+c
c) A is nonspeedable iff EcVnKt(HKIU')n < log,n+c
Proof. Using a theorem due to A. Meyer, [Chaitin 1976b] has shown
that an infinite binary string is recursive iff 3¢Vn the complexity

Kw(xn) of its initial segments of length n is < log,n+c.
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Furthermore, an r.e. set A £ a is speedable iff a' > 0', and is
nonspeedable iff Hr is recursive in @' [Soare 1977]. And in
[Marques 1975) it is shown there are nonspeedable sets in every r.e.

degree, so in particular a' < 0' is sufficient for A ¢ a to be

nonspeedable, but not necessary.

Results in [Young 1977] suggest both that the speedup phenomenon of
Blum is highly complicated, and that its intuitive implications are
not easily summarized. For example, by the standard speedup
theorem, optimal programs may not exist. But even when optimal
programs exist for a function, we may be unable to find them if we
start with a program which is not provably equivalent to an optimal
program. And for every program which is either optimal or nearl}
optimal, there is an effective procedure to find a nearly optimal
program coﬁputing the same function which cannot be proved to be
nearly optimal. In fact, some functions which do have (nearly)
optimal computational methods, have no programs which compute the
function which can be proved near optimal, Consequently, the
existence of speedup among provably equivalent programs is
independent of the function computed and depends only on the
representation of the program defining the function. Related

results appear in [Hartmanis-Hopcroft 1976, Hartmanis 1978, 1980].

77



4.3 1-Degrees and K

L]

An iterated operation analogous in some respects to the jump
operation can be defined which plays a role with respect to the
1-degrees (degrees of unsolvability with respect to one-one
reducibility) similar to that of the jump operation with respect to

the Turing degrees.

Definition. Let {oi:ieu be an acceptable numbering of the
partial recursive functions, and for every i let Wi be the domain

of ¢:s Forn >, let

A<o> = A

ASY> = ({1W; A AR} = HE

ASI*I> = (510 AASRO30) = HiTns

A" {s called the nth weak jump of A.

Definition. The set A is one-one reducible to B, which is written
A <, B iff there exists a one-one recursive function g, such
that for all x

xeA <=> g(x)eB.

The set A is one-one equivalent to B, written A =B iff A < B

and B < ,A.
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The weak jump of a set is "weak" because it does not necessarily
result in a set as high in the Turing degrees as the full jump of
the set. The information an r.e. set A contains with respect to the
Turing degrees can be measured by considering, for various values of

n, the nth jump of A. The set A is said to be lown if A(n)

(n)

has the same Turing degree as G(n), and highn if A has the same

ﬁ(n"'l)

Turing degree as . The information content of an r.e. set
can also be measured with respect to the l-degrees by considering

the various nth weak jumps of A. Thus an r.e. set A is weak

¢<n> <n> — <n+l>

low_ if A= N and weak highn if A7 =, . However,

n
a set which is lown with respect to l-degrees is not necessarily
lown with respect to Turing degrees, and a set which is highn

with respect to Turing degrees is not necessarily highn with

respect to l-degrees.

There is a strong connection between the computational complexity of
a set and its information content as measured by various index

sets. It is intuitively appealing to suppose that if one is given
an appropriate measure of the information content of a computable
set, then the more information the set contains the more difficult
the set should be to compute. Some evidence exists that this

intuitive notion is accurate.

In [Bennison 1979] it is shown that computable sets having fastest

programs modulo some recursive function (nonspeedable, nonlevelable
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and those with bounded complexity sequences) have low information
content, while hard—-to~compute sets (roughly those having an
effective procedure for finding programs that are faster by any
recursive amount than any program claiming to be fastest) have high

levels of information-content as measured by various index sets.

In particular, it is shown that the non-speedable sets are exactly
2
those r.e. sets A whose weak double jump A“"” has the same l1-degree
2
as G< >, and that the effectively speedable sets are exactly those

. <> <>
r.e. sets A whose weak jump A has the same l-degree as ¢ .

<i>_ <8

. > .
That the r.e. sets A for which A~ "= ¢ (one-to-one equivalent to

the halting problem) are the recursive sets, and those for which

<> <ts
AT T=,0

are the creative sets (i.e., r.e. complete), had
previously appeared in the literature. By Theorem 8 we can
therefore establish a connection between the algorithmic information

measure K1|J and information content with reapect to the l-degrees asg

measured by the index set FIN (the finite sets).

Theorem 9., If A is an r.e. set

<> _ BT IAL
a) A ~ = |FIN => 3cVn[K¢(A 18')" > log n+c.
2

K (@' 1a")" < log n+c]
v 2
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<?> _ . 1, ges0
b) A ~ = FIN if acVnKt(A 19')" < log n+e
1 2

2 1
¢) A5 = FIN iff JeVaR, (A 718" < log n+c
1 2

Proof. It is shown in [Hartmanis-Lewis 1971] that for all n,

< . . <2
@ =¢ n>. So in particular FIN = § ? where
1 1

6<*> . {iuwiw(" # ¢} and

FIN = {iawi is finitel.

From {Bennison 1979] we know that the effectively speedable sets A

are characterized by

and the nonspeedable sets A are characterized by

%> _ . <i>
A = 1ﬂ

Thus the effectively speedable sets A are those where
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Statements (b) and (c) now follow directly from Theorem 8, and since

effectively speedable => speedable, so does statement (a).

Note that for A = ¢

[
L}

{ilwiA?S g} = ¢

4
[

{iuwiaﬁ 4 gy =g

A i a0 4 gy = <7

s v e 0

<n> {iIWiA0<n-’> #_ﬂ}

€
[}

<n—1>

:IG

gtn)

gso that both the effectively speedable as well as the nonspeedable A

are evidently very different from w.

It appears that the information a set contains with respect to the
Turing degrees corresponds in a weaker fashion to the set's
computational complexity than does its information content with

respect to the l-degrees. For example, if A < ;, B then B
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nongpeedable implies A nonspeedable, and A effectively speedable
implies B effectively speedable, whereas A recursive in B yields

neither implication.

The inequality deg(f) < deg(g) for Turing degrees expresses the
relative information between f and g (in the sense that if one knows
g then one can compute f), As such, it is a qualitative sort of
information. Algorithmic information content, on the other hand,
measures gquantitative differences between f and g. While a close
connection has been hoped, no strong correlatiop between
program—size and degrees of unsolvability other than 0 has been

found. Theorem 8 shows there is a weak correlation between Kw

and Turing reducibility among degrees. A related result was
reported in the abstract [Chaitin 1972]. Theorem 9, however,

implies there is a strong correlation between Kw and the

. . . . . <n>
l1-degrees, ie. between the algorithmic information in A o

(n)

relative to @ and the information measured with respect to

the l-degrees.

Theorem 10. If A is an r.e. set different than u,

A = gt ifEIthKw(A<n>IG<n>)t < log, t+c.

Proof. EthKv(A<n>lﬂ<n>)t < log,t+c implies A < 8" by the

<n+; >

T

<o, > [Rogers 1967].

STA<n>' < .9

Meyer-Chaitin result and A

If A is an r.e. set different from w then for all n > 1,
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<n> <n> <n+
ﬂn n<gnl>

< ,A <, [Bennison 1979].

So we have A

<n+, > <, >
R | 1“ and thus A

<oty > o gk, >
1 -
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5. MEASURE INDEPENDENCE

A number of different measures of program size (descriptive)
complexity have been introduced [Chaitin 1977)., All measures define
the complexity of a finite atring to be the length of a shortest
program which prints the string., The measurés differ in essentially
two ways: the first is in the programming language used, and the
second is that in some measures the programs are given additional
information to help print the string. Unfortunately, these measures
each have unique properties. The reasons for this are, in general,
not well understood and there is disagreement as to which is most

appropriate to use in different situations.

An example of one such property is oscillation. It has been showm
that unrestricted descriptive complexity measures oscillate
{Martin-Lof 1971]. Specifically, it can be shown that while most
strings are of high (or maximal) complexity, arbitrarily deep
complexity drops occur in their initial segments. These can be
regarded as the results of partial computations in computing a
function £f. A related property is the length of a complexity
oscillation, defined as the number of consecutive initial segments
where complexities are low., It is easy to see that we can find
arbitrarily loug oscillations if we go far enough out. A
sufficiently long run of 0's will do. The question is: are we

guaranteed to find long oscillations relatively near the beginning
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of the sequence? It can be shown that all sequences have long
oscillations near the beginning. The idea behind this is fairly
simple. Given x, recursively select from it a very sparse
subsequence y. It is known that'y has complexity oscillations. The
original sequence x inherits these oscillations, and they now become
the desired long oscillations due to the sparseness in our choice of
v. It should be noted that this result holds for both absolute and
conditional descriptive complexities of objects. Additional,

somewhat surprising properties of various measures appear in [Kamae

1973, Chaitin 1976a].

We seek a unified approach to lower bounds for all the measures. As
a step in this direction, it is noted that similarities between
several complexity measures have been established. Specifically,
equivalence can be shown among some pairs of measures to within an
additive constant independent of the length of input string. For
example, the conditional Chaitin complexity H(x!n) and the
conditional Kolmogorov-Solomonoff complexity measure Kw(xln) are
roughly the same [Katseff-Sipser 1978]; the Schnorr process
complexity KF(x) defined in terms of a universal directed process
P (a more restrictive definition of complexity which does not
oscillate) and the Kolmogorov complexity do not differ very much
[Sehnorr 1973, Schnorr-Fuchs 1975, Zvonkin=Levin 1970]. Likewise,
the monotonic operator complexity [Levin 1973] which is similar in

nature to the process complexity of Schnorr, nearly equals
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Kw(x). And the Loveland uniform measure K(x:n) almost equals

K‘b(x-ln) [Loveland 1969].

Closely related is the work of Shannon in which the complexity of a
class of objects x (a random variable which can take on n values) is
defined in terms of the probability distribution over that class. The
individual complexity measures of Kolmogorov-Solomonoff and Chaitin
have associated with them universal coding schemes. A universal
encoding can be shown {Leung-Cover 1975] that has an expected codeword
length with respect to any probability distribution on the set of
possible outcomes, which is‘within a constant of the Shannon entropy
H(x), interpreted as the minimal expected length of the description of
x, establishing a tie between the individual complexity measure Of
Kolmogorov=-Solomonoff and the average complexity measure of Shannon.
The intuition behind the entropy H is so compelling that it would be
disconcerting if H did not figure prominently in a description of the
most efficieﬁt coding with respect to other less comstrained coding

schemes,

From these collective resulta, it appears that the connection between
the descriptive complexity of a function f and the cost of computing f
is a general one, independent to large degree of the particular
descriptive measure employed to characterize f. In other words, the

limitations on resources derived for various structures in computing a
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function f remain essentially unchanged by substitution of a variety

of information measures of the descriptive complexity of f.

In complexity theory one is concerned with categorizing functions or
sets according to their relative difficulty of computation. The
phrase "difficult to compute” may take on different meanings depending
on which criteria (complexity theoretic properties) one uses to define
what it means for a function or set to be hard to compute. In
general, however, such criteria should yield the same classes of
functions or sets regardless of the underlying complexity measure (in
the sense of [Blum 1967}), e.g. tape, time, information, energy,

etc. In other words, such criteria should be measure-independent.

For a property to have a récursion theoretic characterizafion it must
be measure independent, for a recursion theoretic property is by its
very nature measure-independent., It had been conjectured that there
might exist some algorithm for determining whether or not a given
complexity theoretic property is measure-independent. It is shown in
[Bennison 1980] that measure-independence is undecidable, but that
there is an effective procedure for finding a recursion theoretic
characterization for any complexity theoretic property that is known

in advance to be measure-independent.
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6. SOFTWARE METRICS AND VLST LOWER BOUNDS

One of the major concerms in the construction of software
computational structures is the controlled introduction of
complexity. The design of software systems has typically been based
on purely qualitative guidelines, such as module independence or
information hiding. However, recent interest in software quality
assurance has motivated research efforts to develop and validate
quantitative metrics to measure the complexity of software
computational structures. If the measurement can be made from the
specifications generated during the design phase, the system
designer could use the metric evaluation in selecting between
alternative designs or in altering poorly structured system
components before a sizeable investment is made in the
implementation of these components. In addition, quantitative
metrics permit tradeoffs in the allocation of critical project

resources, e.g. scheduling and cost vs. quality.

Much of the recent work in software engineering has explicitly
recognized a fundamental relationship between complexity and
software quality. Reducing costs and increasing quality are
compatible goals that can be achisved when the complexity of the
software is properly controlled. For example, the use of structured
desipgn methodologies allow the controlled introduction of complexity
through levels of abstraction, virtual machines or layered

hierarchies, By establishing an ordered discipline during the
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design phase, these techniques have had significant impact on the
production of higher quality, lower cost software. The common
principle shared by these design methodologies is the careful

structuring of the connections among the components of a system.

Research in software metrics can generally be divided into two
categories: lexical metrics and connectivity metrics. The lexical
metrics focus on the individual system components (subprograms,
modules and procedures) and require a detailed knowledge of their
internal mechanisms. Examples are metrics derived from counts of
operators and operands, graph measures related to the count of the
number of branch points in a program, and measures of software
reliability factors based on the occurrence of various statement
types. The common principle in these methods is the counting of
lexical tokens without specific regard for the structure created by
those tokens. The lexical measures are easy to calculate, and have
been surprisingly robust in evaluating reliability aspects of

computational structures comprised largely of independent modules.

Connectivity metrics, on the other hand, attempt to measure the
degree of interaction between components of amodular computational
structures. Examples of this type of metric are inter—level metrics
[Yin-Winchester 1978], which observe the information flow across
major levels in large hierarchic structures; semantic entropy
measures {Alexander 1974], based on the idea that the connection

between components is determined by their shared assumptions; the
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partitioning formula of [Belady-Evangelisti 1981] derived from
circuit clustering considerations in laying out chip designs; and
the fan-in/fan-out technique of [Kafura-Henry 1981] which observes
all communication patterns within a structure, rather than just

those across level boundaries.

One of central problems in VLSI is the determination of the minimum
amount of area required to lay out a network on a chip. In VLSI
chips the computation is distributed over the chip, and the vérious
processing elements must communicate via wires. These wires
generally occupy more space than the computational elements
themselves, and have become the principal factor in determining cost
and performance. The relationship between communication
requirements and complexity of computational structures has received
much attention lately. Information transfer can be regarded as a
measure of inherent modularity: a computation is inherently amodular
if any way of partitioning the computation demands highly
interacting parts. This amodularity entails tradeoffs among
critical resources such as chip area, computation time and energy

dissipation in circuits.

A number of metrics have appeared in the literature for measuring
VLSI laycut complexity. The bisection-width technique initially
developed in [Thompson 1979] observes the necessary flow of
information between two sides of an arbitrary partition of a circuit

into nearly equal parts. [Hong—Kung 1981] on the other hand obtain

91



lower bound results corresponding to the limitations due to the 1/0
requirements of VLSI circuits, based on the computation graphs of
specific operations. [Baudet 1981] accounts only for the memory
required by a circuit in order to encode the input that has already
been read before the output has been released completely, while
[Brent-Kung 1980] account for memory as well as information
transfer. [Vuillemin 1980]'s measure accounts for information
transfer and the period of computations in pipelined chips.
[Chazelle - Monier 1981]'s metric assumes the time for propagating
information is linearly proportional to distance, rather than a
constant, and accounts for information transfer., They alsoc consider
a more restrictive metric tailored to NMOS technology which
additionally assumes the current density of electrical power
supplied through wires to a circuit is bounded by a constant.
[Leighton 1981] uses crossing number and wire area arguments to find

lower bounds on layout area and maximum edge length (length of the

longest wire in any layout of a network on a chip).

A fair degree of similarity appears between the software metrics and
the VLSI measures. Whereas the development of software metrics was
primarily driven by reliability concerns, the driving force behind
the VLSI measures was interest in determining lower bounds on the
difficulty of parallel computation. Under appropriate mappings
[Cuykendall 1982ab], the VLSI measures provide some degree of

insight into assessing the validity of measures of software design

92



complexity on an absolute rather than relative scale [Chapin 19797,

as shown by the following theorem.

Theorem 11. If f is a recursive function, then every lower bound
for the VLSI measure A'I‘2 of £ is also a lower bound for the
software metric [hz:p(mn)]2 of any program P which computes £,
where procedures p of P have fan—in m, fan—out n and h is an upper
bound on the run time of procedure code. Furthermore,

[h}ip(mn)]2 arises nafurally as a measure of program

interconnectivity.

Proof. If procedure p has fan-in m (the number of local flows

into p plus the number of data structures from which p retrieves
information) and fan-out n (the number of local flows emanating from
p plus the number of data structures which p updates), the number of
distinct information paths connecting p to its environment is mn.
The interconnections among components of P are its procedures. If f
is computed by a VLSI circuit with bisection-width w and area A,
then A = Q(wz). The bisection-width w is the minimum
interconnection (ie, number of wires), for all possible VLSI
circuits which implement programs P computing f, across the cut
boundary dividing the circuit inputs equally. Each wire connects

two gates in the implementation, one on either side of the cut.
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Since each such wire represents an environmental path between

components of the implemented P for at least one procedure pe P,

Zp (mn) > w

2y ()] = atw®)

and every lower bound technique for the bisection-width of a graph
is also a lower bound technique for both the software metric
[z:p(mn)]2 and layout area A. If the total amount of information
that must flow across the bisection boundary during the entire
coﬁputation is I, then the time taken must satisfy T>I/w.

Thus a measure which arises naturally within this model is

ATz = Q(Iz). If h is an upper bound on the total time

information is transferred among components of P, then every lower
bound for the VLSI measure of difficulty AT2 of £ is also a lower
bound for the software interconnectivity metric [th(mn)lz which

arises in a natural way from the VLSI implementation of P.

Both software and VLSI metrics permit evaluation of computational
structure and useful trades in critical resources to be made early
in the design phase. As the use of high-level languages [Hoare
1978, Rem, et al 1983, Snepscheut 1983] for designing chips
increases, combined with the possibility of larger integration and
bigger chips, the asymptotic properties of these metrics will become

indistinguishable.
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7. CONCLUSION

7.1 Open Problems

The results described in this work reveal some fundamental
connections between Kolmogorov information and complexity theoretic
properties of computation. These connections can have serious
implications about the feasibility of large scale parallel

computation.

It was shown in Theorem 3 that there is an infinite hierarchy of
finite functions f of arbitrarily increasing degree of amodularity
which cannot be approximated to within reasonable §{f) by functions
f' having an amodularity degree lower in the hierarchy. However,
our theorem establishes only the sparse existence of functions which
are increasingly amodular, namely one such f for approximately each
y(n) with n > n,. Thus, the distance between 70 ana

27(n+1) can be very large, and in fact becomes arbitrarily

large with ever increasing y. The high-density existence of such
functions projected in Corollary 1, say one for each yv(n,)+k,

k=,,; «+- (which would seem to have serious implications for

very large scale computations such as weather prediction), depends on
whether the Helm-Young Theorem extends to all sufficiently large
operators R, as shown in Theorem 4. Their result is conjectured to
hold for all sufficiently large operators on the basis that it should

be more difficult to bound the size of programs effecting large speedups
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than those bounding smaller speedups. A slightly stronger result
appears in [Constable-Hartmanis 1971} and independently in
[Meyer-Fischer 1972], the question of extension to all total

effective operators R remaining open.

In view of the area-time exchange inherent in VLSI models of
computation, the question naturally arises whether a physical
computational process exists which is strictly more powerful than
VLSI at quantum limits. If such a model can be defined and
constructed, some of the limitations shown in_out Theorems 1

through 6 can be avoided.

There has been much discussion in the literature recently about the
physical limitations of the computation process and information
transfer. For example, the mathematical existence of quantum
mechanical models of Turing machines that dissipate no energy has
been shown in [Benioff 1982}. For such models, limits on
computation speed which normally arise from energy dissipation
considerations are not present. One can in principle at least
inc;ease the computation speed by increasing the average system
energy without introducing state degradation and energy
dissipation. Whether or not such models can actually be physically

constructed is, however, an open question.
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7.2 New Directions

The modern theory of high—speed computation is based on the idea of
a binary switch. In order to carry out a computation, individual
bits of data are stored as switch positions, transmitted to interact
with other switches storing data and the resulting switch positions
stored. A very large number of these switching steps are required
even in simple computations. In VLSI the role of the binary switch
is carried out by the transistor, wires (substrate channels) are

used to transmit stored data and gates perform the interactions.

The result of integrated circuit evolution is that we are
approaching systems with significantly higher degrees of
parallelism. As VLSI approaches element sizes at the quantum limit,
circuit performance will depend primarily on internal transmission
line delays due to length, resistance and capacitance considerations
of interconnecting wires. This will be true as long as the
computation carried out by the circuit requires transmission of
causal information, and channel rates do not exceed the speed of
light. That is, during the computation either signals are required
which are intended to cause another event independent of the source
event, or signals are required which are intended to carry
information between two events having a common cause, where
propagation of such signals is limited to the speed of light.

Significantly, recent theoretical developments in quantum theory
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predict that under some circumstances this limit is exceeded for

signals of the second kind.

The traditional common-sense interpretation of nature is founded on
three premises which are widely assumed to be self-evident. One is
realism: that regularities in observed phenomenon are caused by
some physical reality (i.e., properties) that exists independently
of human observers. The second premise allows the free use of
inductive inference, thus enabling valid conclusions to be drawn
from consistent observations. The third premise is known as
Einstein separability (or Einstein locality): that no influence of
any kind can propagate faster than the speed of light. Any theory
that incorporates them is called a local realistic theory. An
argument derived from these premises leads to an explicit prediction
of the outcome of a class of experiments in the physics of
elementary particles. The experiments are concerned with
correlations between distant events and with the causes of those
correlations. Quantum theory can also be employed to calculate the
results of these experiments. Surprisingly, the two predictions
differ sharply, and so either the local realistic theories or
quantum mechanics must be wrong [d'Espagnat 1978, Clauser - Shimony

1978].

In particular, local realistic theories predict a relation called

the Bell inequality will be obeyed, whereas quantum mechanics
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predicts a violation of the inequality [Bell 1964, Clauser - Horne
1974]. The relation, involving the spin of pairs of particles
defined by components along three axes in space which need not be at
right angles to one another, imposes a limit on the extent of
correlation that can be expected when different spin components of
mutually distant particles are measured, and this limit is expressed
in the form of an inequality. Quantum theory predicts that for some
choices of axes the limit will be exceeded. Recent experiments
provide strong evidence that not only is the inequality violated,
but it is violated in precisely the way predicted by quantum
mechanics, Figure 8 shows the results of the proton experiment
carried out in 1976 by M. Lamehi-Rachti and W. Mittig of the Saclay
Nuclear Research Center in France, The negative correlation
between the values of different spin components is given as a
function of the angle between the settings of two spin-measuring

instruments.

A well established but nonetheless surprising property of protons
(and many other particles) is that no matter what axis is chosen for
a measurement of a spin component, the result can take on only one
of two values, for example + and -. A correlation of -1 would
therefore indicate that the components invariably had opposite
values. The Bell inequality states that the correlation at any
angle must be on or above the diagonal line. Five experiments to
date have resulted in violation of the inequality and in agreement

with quantum mechanics. Four of these did not directly measure spin
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experiment testing the foundations
of microphysics

100



components, but instead measured the polarization of photons, which
ig the property of a photon that corresponds to the spin of a
material particle. The violation of the Bell inequality implies
that at least one of the three premises of local realistic theories
must be in error. Einstein separability is considered the most

plausible candidate.

The mechanism of the distant-correlation experiments leading to the
inferred instantaneous linkages between events may be employe& to
define a thought experiment for testing whether complexity of
computation based on violation of separability differs significantly
from the VLSI model complexity at quantum limits [Cuykendall

1984b]. 1In such a computation the role of the binary switch is
carried out by measuring the spin components of certain elementary
particles along three arbitrary space axes A, B and C, [An
equivalent model may be formulated by measuring polarizatiom
components of photons along any three directions in space, or by
measuring any other three stable properties A, B and C of certain
elementary particles or entities, each of which can take on only one
of two values (e.g., + and -).] Whether or not such an experiment
can actually be constructed and carried out remains an open and

beckoning question.
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