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ABSTRACT OF THE DISSERTATION

A mathematical model of the growth and distribution

of Dendrasteaer excentricus

by

J. Stanley Warford
Doctor of Philosophy in Engineering
University of California, Los Angeles, 1984

Professor J. Carlyle, Chair

A mathematical model is constructed to describe the

growth dynamics of a low density population of Dendraster

gxcentricus (common name, sand dollar) in the Pt. Mugu,

California, lagoon. The model integrates the effects of
recruitment, growth, and mortality into a single system
based on Leslie matrix theory. The goal is to estimate
the values of the controlling parameters in the ecological
system from a time sequence of histograms of measured size
data. A squared error fit criterion is defined over the
time sequence and a nonlinear least Squares method is
employed to estimate the parameter values,.

A computer implementation of both the model and the
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ninimizacion algorithm is dresented. This svstem
identificaticn studv indicates, on the Yasis of hest model

fit to the data, that zrowch 5¢ Jendraster may occur in

taree age specific Stages with a uistinct growth rate for
2ach stage, in contrast to previous studies which indicarte
two growth stages for this species. Quantitative
estimates for growth rates, survival probabilities, and
fecundity are reported. The model is also extended to
account for the effects of immigration into the system.
Spatial variations at the data collection site are
investigated.

The methodology employed in this study is unique in
that the various components of the system--growth,
recruitment, and mortality--are integrated into a single
model. The identification is performed system~wide with
all of the components in place. This technique allows the
growth curves to be estimated directly from the time
sequence of size histograms. The methodology should be of
general value in biological modeling since the size of an

organism is invariably easier to measure than its age.



1, Iacroduction

This dissertation describes a mathemarical model of
a4 biological system. It is based on data taken 1in an
ecological research Project directed by Professors Stephen
D. Davis and Joseph B. Williams in the Natural Science
Division at Pepperdine University, where this author also

teaches.

1.1 The location

The data were collected at the Point Mugu Naval Test
Center. The site is pPristine since access to the area by
the general public is prohibited. The objective of the

research is to describe the growth dynamics of Dendraster

gxcentricus, commonly known as sand dollar, in the eastern

arm of Point Mugu Lagoon.

The lagoon is bounded on the north by a Salicornia

marsh and on the south by a barrier beach as shown in
Figure 1.1-1. The mouth of the lagoon is on the far west
end of the eastern arm.

In the winter of 1976, nine sampling stations were
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established ac 100 meter incervals along :he lagoon.
After some preliminarvy data were taxken ©0n assess :tne
viability of the project, a2 systematic data zathering
procedure was established beginning in April, 1977 (i.e. 4-
77). Data was taken at monthly intervals from 4~77 to l-
78,

In February of 1978 Southern California received

record breaking rains. As a result the entire Dendraster

population was annihilated. Some sporadic data was taken
the following few years, but the population was extremely
low compared to previous levels.

In 1982 the population began to re-establish itself
Data are now available following the established data
taking procedure for 8-81, 10-81, 12-81, 2-82, and the six
month period from 7-82 to 1-83. The recent severe storm
in 2-83 characterized by high tides and massive debris in
the lagoon has again annihilated the population.

It should be mentioned that this Dendraster

population under study is probably not typical of the
species. In the protected outer coast region shown in
Figure 1.1-1 is a population of much greater density than
that found in the lagoon. It is a more common habitat for

Dendraster than is the lagoon.

The data taken on Dendraster as reported in the

literature generally falls into one of two categories:

field data and laboratory data. Field data are desirable



vecause it is a description »f rhe "real world". 3ut some

data are diffizulz. if not impossible, :o 2btain in the
field. 4 laboratory eavironment allows such data -o he
taken under repeatabilie and controlled conditions. The

price to be paid, however, is the inability to duplicate
exactly the environmental conditions in the field. In
that sense the laboratory envioronment is not a typical
one,

The data reported here can perhaps best be described
as lying midway between these two extremes. The
conditions in the lagoon are mild enough that an
extensive, systematic data gathering procedure isg
possible. The level of detail in thisg data would be
practically impossible to obtain in cuter coast habitats.
So it is more "real" than laboratory data since it isg
truly field data. But it is less "real" than it would be

if taken in an outer coast population.

1.2 The sampling procedure

Samples were taken during low tide. Water depth was
always less than about one meter to facilitate sampling.

An individual sample was taken with an open ended box
with metal sides as shown in Figure 1.2-1. The sides are

2
each 250 mm in length, forming a square of area 0.0625 m°.
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They extend below a wooden frame :tg a depth of {30 am.

The box is inserted into tie sand. The sand isg then
removed to a depth of about 200 aq and sifted through a
wire screen, also shown in the figure, with a mesh 3pacing
of 2 mm.

A recording is made of each Dendraster filtered out.

The Dendraster shell is called its '"test'. The test

length is recorded as the diameter Passing through the
anal pore and the madraporite as shown in Figure 1.2-2.
Measured test lengths are from 3 mm to about 75 mm. A
notation is also made as to whether the individual is
alive or dead.

Two workers were required to sample the entire
lagoon. They started at the barrier beach side of station
1. Each worker took a random digit between 1 and 9 from a
table of random numbers. The random digits determined the
number of paces each worker took along the barrier beach
in opposite directions.

Both workers took their first individual sample at
mean tide level. After recording the data and discarding
the samples behind them, they took 5 paces into the lagoon

toward the Salicornia marsh. At that location they took

another sample. They continued sampling at 3 pace
intervals until the lagoon had been crossed.
An additional termination condition that was

established early in the project was that the total number
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of individual samples faken he at least 15, This was =o
insure a large =nough sample 3ize 2ven in the case 21 a
narrow constriction 1n tpe lagoon. It was rarely
invoked.

Figure 1.2-3 summarizes the sampling procedure.

1.3 The data set

Appendix 6.1 is a listing of the raw data for the
recent month of 9-82, Prevailing currents had caused the
mouth of the lagoon to migrate eastward making sampling
of stations 1 through 5 impossible. For comparison, the
data for the pre-rain month of 7-77 is also listed.

Each line of data in the file represents a
measurement of the test length of a single individual. It
consists of four integers whose meaning is, in order,

* the station number

* the sample number

* the test length in millimeters

* a code indicating if the individual is dead or alive
The data are sorted by station number, and within a given
station by sample number.

The sample numbers are arbitrarily assigned when the
data are entered with the text editor. They do not

indicate the order in which the data was taken as the



Program Sample Lagoon
SN = | {SN i3 :zhe Station number.!
repeat
Nl := random digit between | ang 4
N2 := another random number between 1 and 9

3eginning at Station number SN, one worker takes N1
Paces along the barrier beach in gne direction, and
another worker takes N2 paces along the barrier beach
in the other direction. Both workers start at the
Mean tide level,

repeat
Take an individgal sample,
Take 5 paces toward the Salicornia marsh.
until (The number of individual Samples taken >= 13)
and (The lagoon has been crossed)

SN := SN + 1

until (SN > 9)
end Sample Lagoon

Figure 1.2-3, Algorithmic description of sampling procedure.



“orkers crossed tae lagoon toward the Salicornia marsn.

A skip in the sample number indicates that ao iadividuais
were found in the samples that are not listed. For
example, in the data of 9-32 rhe fact that the first
sample number in station 6 is 13 impiies that samples 1
through 12 contained no individuals. Similarly. samples
1 through 9 in station 7 were empty,

The data for the ten month Pre-rain period are shown
in histogram form in Figure 1.3-1. 1In this time sequence
of histograms the first month is the upper left plot and
the second month is to the right of it (not below it).
This convention of displaying a time sequence of
distributions is used throughout this dissertation. When
the entire time sequence is shown on one page, each
distribution must be rather small. To reduce clutter in
the diagrams, the axes will often not be labeled.

The vertical axis is density (individuals per square
meter). The horizontal axis is divided into bins of S mm,
so that the first bin represents individuals from zero to
5 mm in length, the second bin represents individuals 5 to
10 mm, etc. The data in Figure 1.3-1 are integrated over
all the stations in the lagoon.

Several interesting features are evident. First, the
distribution is often bimodal. Hence, there is often a
"generation gap" between the small presumably young group

and the large presumably old group.
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Second, with tige “he veaks 3 :the distribution shife
to the right. Hence, oAvysical growth ig eavidens in che
distribution.

Third, in some months the peak on the right appears
to decrease. Hence, mertality of individuals is evident
in the distribution. .

Fourth, in the last three months recruitment of small
individuals has occured, presumably through spawning.
Hence reproduction is evident in the distribution.
Recruitment very likely does not involve progeny of adults
in the lagoon. The long larval Period guarantees that
MOSt new recruits will have been born elsewhere.

Figure 1.3-2 is a breakdown of the same data by
station number. Because of the smaller sample size the
pattern is more erratie than the integrated pattern for
all the stations in Figure 1.3-1. Also notice the
difference in scale on each figure.

The data for the recent six-month period igs shown in
Figure 1.3-3. The time interval between distributions is
one month, except for the time interval between the
penultimate and the last distribution which is two
months. The same trends can be seen in the recent data,
but it appears a bit flore sporadic compared to the 1977

data.

12
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l.4+ Statement of the oroblam

This section is divided into two parts. The first

part is a review of the previous literature on Dendraster

excentricus. The second part is a statement of the

problem to be solved. Section 2.4 restates the problem in
more mathematical detail after the theory is developed in

Sections 2.1 to 2.3.

Previous literature on Dendraster excentricus

MacGinitie and MacGinitie [MacG68] describe some of

their observations of Dendraster excentricus on the North

American west coast. They report densities as high as 67
individuals per square yard at Morro Bay and 468
individuals per square yard at Corona Del Mar, and state
that these are maximum populations. However, they give
no spatial or temporal variations in population density.

Merrill and Hobson [Merr70] observed the behavior,
distribution, and biotic relationships along the Pacific
coast of California and Baja California, Mexico. Their
study covered the period 1963 to 1968, during which they
logged over 250 hours in underwater observation.

They subjectively classified four separate habitats

that the sand dollar occupies:

22



3t

say
tidal channel

* protected outer coast

* exposed outer coast

They found that the bahavior of the sand dollars
varied between the populations in the different
habitats. Where there are small currents, as in a
sheltered bay, sand dollars live in shallow water, ara

relatively mobile, and feed on deposited material on the

bottom'where they lie flat, Where there are moderate
currents, as in tidal channels and protected areasg of the
outer coast, they are more Stationary, burrow partially in
the sand in an inclined position, and feed Primarily on
suspended material. Where there are large currents in the
exposed outer coast they are usually buried,

Merrill and Hobson give several density figures. In
three bay populations they report the proportion of the
total population as a function of depth and of disposition
(i.e. whether still, moving, buried, etc) [Merr70, Table
2]. They also report the mean length as a function of
depth in an outer coast population [Merr70, Figure 8], and
give some maximum and average densities in samples fron
all four habitat types [Merr70, Table 3]. In [Merr70,
Figure 9] are two size distributions as a function of
depth for a population at Zuma Beach, a protected outer

coast habitat. One distribution was taken during calm

23



seas and the other was raken arter a storm, Merrill and
dobson did not include g1 temporal study toncentrating on
the population growth confined to only one site.

Merrill and Hobson State that juveniles are far more
widespread than adults, but age distributions are not
g8iven explicitely,.

Birkeland and Chia [Birk71] studied two populations

of Dendraster excentricus at Alki Point, Seattle, in

different habitats. The northern Alki poepulation lived
in a smooth beach of deep sand. The southern lived in
sand between cobbles over a hard clay bottom which lies 2
to 10 cm below. Thig difference in habitat affected the
size distribution, growth rate, and abundance of each
population. The northern Alki population has a lower
population density, less recruitment, a lower rate of
growth of young, higher growth of adults, and a larger
mean adult size than the southern population.

Birkeland and Chia sampled the populations with a l
m2 frame place on the beach at low tide. The sand within
the frame was sifred through a screen to retrieve the
individuals. They considered both size structure, as
measured by length of test, and age structure, as measured
by growth rings. The experimental procedure for counting
growth rings is somewhat involved. The sample must be
dried in an oven for several days, sanded, and treated to

make the growth rings visible. The growth rings are

24



3enerally believed to pe annual.

Size distributions given as a Nistogram with number
of individuals in size class as a function of test
length, are shown at four separate times over the span of
a year [Birk71l, Figure 4]. These data are for small
inﬁividuals. Also shown is the change in the
distribution over a 6-month period for adults as well asg
juveniles [Birk71, Figure 87,

Birkeland and Chia also determined the growth rate as
total test length asg a function of age in years [Birk71,
Figure 6]. This is an interesting relationship. It ig
roughly linear from birth to about 4 or 5 years, at which
time it abruptly flattens. The mortality rate is very
high at 8 or 9 years for both age groups. Birkeland and
Chia concluded that death is Batural, i.e. senescence,

Timko wrote her PhD thesis here at UCLA on high

density aggregation in Dendraster excentricus [Timk75].

Her data were taken mostly from Zuma Beach, a protected
outer coast population, although other habitats were
included for comparison.

She determined the age distribution by ring count and
shows a two year trend at Zuma Beach (three measurements),
2 one year trend at Morro Bay (two measurements), and a
one year trend at Newport Harbor (two measurements)
[Timk75, Figures 1-6 to 1-8]. The measurements are annual

and are given as histograms with percent of samples as a

25



function of age class. Thev show 2ssentially that rhe
population is not sctable. The distributions have a
tendency to maintain their shape, shifting one vear to rhe
right with each annual measurement. Timko attributes thisg
behavior to cannabalism of the adults on their larvae, a
phenomenon she was able to demonstrate in the lab.
Presumably, when the older generations begin to die out
more recruitment is possible which produces a baby boom.
This new generation then cannibalizes its larvae during
the next cycle.

Timko determined growth rates displayed as test
length as a function of age [Timk75, Figure 2-6]. The
curves were very similar in shape to those of Birkeland
and Chia although the parameters (slopes and intercepts)
differed significantly. She also investigated the
relationships between test diameter, test height, and dry
weight.

Included in Timko's thesis are investigations of
behavioral responses related to aggregation and inclined
posture, reproductive biology, and consideration of
hydrodynamic flow as it relates to feeding and diet. Also
included is a density dependent age structure model which
will be discussed later.

Dendraster excentricus spawn annually. They spew

their eggs and sperm into the sea water where

fertilization takes place. When one very ripe individual

26



releases his reproductive material it acts as a trigger
for others to release ctheirs.

Timko measured the spawning index (the abilitvy to
release eggs) over a one vear period at approximately

monthly intervals. It peaked sharply in mid-July.

The problem

The objective of this research is to model the growth

and distribution of the specific population of Dendraster

excentricus described in the previous sections. The
problem is interesting for two reasons.

First, the quality of the raw data is high for this
type of study with this particular species. The monthly
determination of the size distribution of the population
contains more detailed information than is available in
previously published literature.

Second, the basic modeling approach is different from
the approach normally used in biological models. In fact,
the approach is motivated by the existence of the data.
This dissertation investigates the problem from a system
identification point of view. Namely, the question is:
can a mathematical model be constructed with a minimum
number of parameters, which can be optimallyldetermined to

produce a good fit to the field data?

27



The common dpproach inp populacion modeling is g
Aypothesize g mathematical relation and then investigate
1ts properties. ANy use of field data is usually handled
in one of two ways,

* Some of the Parameters in the initial mathematical

relation are estimated from field data.

* When the mathematical Properties have been
determined any trends in the result are compared
with comparable trends in the field data.

In contrast to the common approach, the purpose of
this model is to first integrate the effects of
recruitment, growth, and mortality jinto g single systen,
and then to use the resulting mathematical model to
estimate the values of the controlling Parameters from the
time sequence of histograms. The study includes a System
identification of the parameters using the computational

technique described inp Chapter 3,

28



2. The gzeneral mathematical model

This chapter presents the general mathematical
features of the models used to describe the system. It
combines two distinct components into ane System, naﬁely
Leslie matrix theory and bilinear growth models. Both
components are common in the literature [Key£f68, Birk71,
Timk75]. Their combination into a single system, however,

is apparently unique to this study,

2.1 Leslie matrix theory

The Leslie matrix model (Lesl45] predicts the age
Structure of a population of animals after a unit period
of time given

* a matrix whose elements represent age-specific

fecundity and mortality, and

* the age structure at the pPresent time,

In matrix notation the model can be written as
A a(t) = a(t+l)

In this equation

29



population's age Structure at time t., The element a(i,t)
is the number of females alive inp the age group i to i+l

at time t. The column vector

T a(0,t+1)
- a(l,t+l)
a(t+l) a .
La(n,t+l) J
Tépresents the age structure at time t+l., The (n+l) x

(n+l) matrix

rf[o;acc)l £[1:a(e)] ... £ln-1;3(¢)] £{nsa(t)] ]
p[O;S(t)] 0 .. 0 0
A = 0 pll;a(e)] ... 0 0
. o 0 . pln-l;a(e)] 0 |

i1s a quantity which describes the transition of the
population vector during one increment of tinme, The
elements f[i;a(t)], i=0,1, ..., n, f[i;g(t)] >= 0,
describe the fecundity of the species. Specifically,

f[i;E(t)] Tépresents the average number of daughters who

30



will be alive at tinme t+l, born in the intervail T ota o+l
Lo 2acn female who was in the dge Jroup i to i+l a2t :tige
2. The elements p[i;i(c)}, i=9, L, ..., a-1, shera 0
p[i;g(t)] {= 1, represent the probability that a female
aged between i and i+! ar time t will be alive ar time t+1l
in the age group i+l to i+2,

For human Populations a time interval of 5 years is

typical [Hopp76] with 16 age classes (n = 15). 1In that

case

a(0,t) = number of people with ages a, 0 < a ¢ 5

a(l,t) = number of people with ages a, 5 ¢ a < 10

a(l3,t) = number of people with ages a, 75 ¢ a ¢ 80

Hence the total Population having ages greater than 80 is
ignored.

As the notation indicates, the elements of the Leslie
matrix in general depend on the current population
distribution E(t). That is, the fecundities and the
survival probabilities are density dependent, Phenomena
like overcrowding and competition for food resources
affect the functional dependency.

The theory of population growth under the assumption
of constant fecundities and survival probabilities is
well developed [Lesl45, 48], [Keyf68, 71]. Given the

initial age distribution a(0), the evolution of the
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population can be described by
- - n -
a{m) = 4 a(m-1) = .. = A7 ard)

The problem is therefore to determine the characteristics
of A™ as n increases,

Renewal theory can be invoked in several ways., OQOne
way 1s to reduce the vector equation to a scalar equation
and obtain a renewal equation which recursively describes
the dynamics of the birth rate of the Population as a
whole. It can be shown [Fell68] that for certain valuyes
of £{i] and p[i] the Population is not viable and the
birth rate approaches zero. If the population is viable
the birth rate itself increases roughly at a constant
rate,

It is also Possible to apply renewal theory directly
to the full Leslie model [Les145, 48], [Keyf68, 71]. The
spectral decomposition of A can be used to analyze the
powers of A. A is called "honest" if it has a unique
strictly maximum positive real eigenvalue, e. In such a
case, for large m the population vector grows at a
geometric rate, e, but the distribution between the age
classes remains fixeq.

The theory of population growth with densicy
dependent fecundities and survival probabilities has been
developed primarily for lonage-specific models. In these

models the Leslie matrix is 1 x 1 and the scalar element
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a(t) is denoted N(t) for the population as a whole. Time
is usually considered a contiauous independent variable,
rather than a discrete one as in the Leslie matrix. The

dynamics are then described by the differential equation

a8Ce) L eencey)

dt

Hence, the population growth rate, dN/dt, is some
function, f, of the population at time t. In the
Malthusian model f is a constant times N(t), and the per
capita rate of growth is density independent,

The well known logistic equation (May73] models the

system by selecting f to be rN¥(l1 - N/K), so that

d—gt(:il = rN(e)[1 - N(t)/K],

where the parameter r is a measure of the intrinsic per
capita growth rate, and K is called the total carrying
capacity of the environment. The solution is the familijiar
sigmoid population growth curve [Else81], so called
because it is shaped like the letter "s". When N << K
the slope of N(t) is rN(t). As N(t) approaches K the
slope of N(t) approaches zero. The function N(t)
flattens out and N = K is the stable equilibrium
population.

An interesting variation on this theme is the
introduction of a time lag T built into the regulatory

mechanism [May73}.
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d—g—‘t—) = tNCO[1 - N(: - Ty/R),

This model would Nave application, for @xample, in g
System in which herbivores 8raze upon vegetation, which
takes time T to recover. This equation has been
investigated extensively in the mathematics literature.
If rT < 1/(2m) the assymptotic solution is stable at N =
K. But if rT > 1/(2m®) the solution is unstable and
oscillates. Nicholson performed some classic laboratory
experiments [Nich54] with the Australian sheep-blowfly,

Lucilia cuprina, in which the time delay T was equal to

the time for a larva to mature into an adult. His
experimental data showed the oscillation which is in good
agreement with the model (May73].

So the theory is well developed for the age-specific,
density independent, Leslie model. It is also well h
developed for the nonage~specific density dependent
logistic based model, The theory is not as well developed
for age-specific density dependent models. Indeed, the
mathematical complexity of such models precludes many
general statements. Instead, most studies of such systems
are done numerically., For example, Leslie hasg
investigated the oscillations which result from
considering both age-specific density dependence and time
lag features in the matrix model [Lesl1S59],

Timko uses the Leslie matrix as the basis for several

models. One model incorporates larviphagy (cannabalism of

34



larvae by parents) by introducing rhe foilowing
4ssumptions

* Each adult is fepresented as the center of a

foraging Space,

* The size of the foraging space doubles with each

year increase inp age,

* Larvae settle uniformly and all those within the

foraging space of an adult are eateqp,
This has the result of making the fecundities density
dependent. The model was investigated by iterating from
an initial age vector of 10 newly settled animals and wasg
found to have an oscillating behavior, Four age classes
were used (n = 4), Presumably to check the moedel in a
simple case to determine gross behavior,

Another model contained 13 age classes, with the
elements of A estimated from the age class datg Previously
described. This model incorporated 1arviphagy by
experimentally trying to determine the foraging Space
under laboratory conditions. An additional complication
arises from the tendency of individuals to be spatially
clumped together on the ocean floor. 4 fertilization
coefficient was also taken from field data and used in the
calculation of the fecundity elements of the A matrix,.

This second model was tested two ways., With an
initial age distribution of 100 settled females and 100

settled males the model predicted severe oscillations.
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The SUrvivorsnip curves were changed accordinglv {(rhe
algoritahm for determination of the new survivorship zuyrve
was not given by Timko) in an efIort to stabilize the
System. Another test of the model was to use the

measured age distribution for the Zuma Beach Pepulation

years' measured data. The one Year prediction was roughly
comparable to the data, but the two year predicion was
substantially different. No overall figure of merit for

closeness of fit was given.

2.2 Seasonal recruitment in the Leslie model

This section presents the practical considerations
involved in constructiong the Leslie based model for
computer simulation. It shows how to exploit the
additional Structure which seasonal recruitment imposes on
the model. The second part shows how the original Leslie
Parameters are ralated to the parameters of the reduced
dimensionality formulation, and how this formulation

relates to the models of Chapter 4.

Structure of the model}
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This part iliustrates the problem bdv a speciiic
sxample. >uppose data is taken on a quartarly hasis wnich
implies a time increment of three months. If the maximum
age of the species is four years then the dimension of
Leslie matrix is 16 x 16. The matrix is shown in Figure
2.2-1 where £{i], i = 0, 1, ..., 15 are the quarterly age
specific fecundities (density independent) and p[i], i =
0, 1, ..., 14 are the quarterly age specific survival
probabilities (also density independent). All entries not
shown are zero. The dotted lines indicate the yearly
boundaries.

Seasonal recruitment to the population implies that
there is only one nonzero fecundity each year. For
example, if recruitment to the population occurs during
the fourth quarter, then only £[3], £[7], £{11], and f[15]
will be nonzero in our example. The corresponding Leslie
matrix is shown in Figure 2.2-2.

Now consider the time sequence of a general
population with the matrix of Figure 2.2-2, Figure 2.2-3
shows the time sequence for three quarters under the
agssumption of an initial distribution column vector with
no zero entries.

The important point to notice in Figure 2.2-3 is that
recruitment to the population occurs every quarter of the
calendar. Hence it is not seasonal. It is what you might

call "age-annual". The fact that only £([3], £[7], £[11],
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and £{13] are nonzero means that reproduction can onlvy
occur in rhe fourth quarter of an individual’ s age, 1.=2.
the quarter just before her birthdate. It does not
necessarily imply that recruitment will only occur in the
fourth calendar guarter.

If seasonal recruitment occurs only during the fourth
calendar quarter (as opposed to the age quarter) an
additional assumption in the mathematical model is
necessary. Namely, three fourths of the entries in the
initial age distribution column vector must be zero.
Figure 2.2-4 shows the appropriate initial age
distribution vector and its time sequence with the Leslie
matrix of Figure 2.2-2. Recruitment to the population now
occurs not at t = 1, 2, 3 but only at t = 4.

Since the structure of the distribution vector is the
same at t = 4 as it was at t = 0, the temporal behavior
is repetitive. Recruitment to the population will only
take place at time t = k where k mod 4 = O, that is,

every calendar quarter.

Reducing the dimensionality

In this research, data was taken monthly,
Furthermore, the age of the species can be as high as 8

years. The full Leslie matrix with the structure of
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Figure 2.2-2 is taus 96 X 96. There are 3 aonzero

Zecundities £l11], e(23), ..., £{95], and 95 nonzeraqg
survival probabilities p{O], pll], -+» p{94]. In the
Leslie matrix alone there are 8 + 95 = 103 parameters.

This is clearly too large for a Practical optimization
effort with current computer technology.

The number of Parameters can be reduced by the
assumption that the survival probabilities within a given
yearly age class are equal. This isg a reasonable
assumption. It says that, all things else being equal, an
individual 4 years and 7 months old has the same
probability of Surviving to be 4 years and 8 months old,
as an individual 4 years and 10 months old has of
Surviving to be 4 years and 11 months old. In other
words, all individuals in the 4 year age class have equal
survival probabilitieg to the next month.

Similarly, all 5 year olds have equal survival
probabilities to the following month. But this is not
necessarily the same survival probability as the one for 4
Year olds.

The equivalent assumption in our quarterly example is

that
p{0] = p[l] = p[2] = p(3]
plé4] = p(5] = p[6] = pl7]
pl8] = p(9] = p[10] = p{l1]
p{12] = p[13] = p[14]
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Considering the time incrament to be annual instead
of quarterly, we can now define the (primed) corresponding

2nnual quantities to be such that the product

£7(0] E'({1] f£'[2] £'03] al0]
p'(0] af4]
p'(1] a[8]
p'[2] 0.0 all12]
represents the transition from t = 0 to t = 4 ip Figure

2.2-4, Equating coefficients of ali] in the components

of the resulting distribution vector gives

p'[0] = p[3] pl[2] p[1] p(0] = (p[o])?
p'[1] = p[7] p[6] p[S] pl4] = (p[4a])?
p'[2] = p[11] p[10] p[9] p[8] = (p[8])*

for the annual survival probabilities, and

£'00] = £{3] p[2] p[1] p{0] = £{3] (p[o])3
E'01) = £[71 p(6] p[S] pl[s] = £[7] (p(4])3
£'02] = £[11] p[10] p[9] p[8] = £[11] (p[8])3
£'03] = £[15] p[14] p[13] p{12] = £{15] (p[12])3

for the annual fecundities,

So the annual survival probability is simply the
product of the four corresponding quarterly
probabilities. The annual fecundity is the product of the
corresponding quarterly fecundity and the three

"preceeding" survival probabilities. This result is to be
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eXpected. For @xample., in srder for g WO year old =g
produce offspring as rerlected by £'[1] above. she nust
first survive through the first, second, and third
quarters of her second year. These survival probabilities
are precisely p(4], p[5], and p{6].

In this example the original 16 x 16 quarterly matrix
with seasonal recruitment has been reduced to an
equivalent 4 x 4 anpual matrix. Note that the assumption
of equal survival Probabilities withip yearly age classes
is not required for the reduction, The only requirement
is seasonal recruitment.

The models used in this research make the assumption
of equal survival probabilities within a yearly age
class. The surv1val probabilities and fecundities are
stored in reduced dlmensionality data structures whose
dimensions correspond to an annual time increment.,
However, the data is monthly and so is the time increment
in the simulations, Consequently. the values reported for
survival probabilities and fecundities will usually be the
monthly ones, not the annual ones. This ig in spite of
the fact that recruitment to the population is annual,

The way this is implemented in the program is to
carry a single integer in the range 0,.11 along with the
reduced dimensionality data structure. The integer
represents the calendar month within the year. In effect

it specifies which set of rows in the full vector,
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correésponding to Figure 2.2-4, are nonzero. . The only
tiff{erence is rhat in Figure Z.2-4 oJne out of 4 rows are
nonzero. In the actual vector one out >f 12 rows are
nonzero.

The three transitions t = J to I, t =1 to 2, and t =
2 to 3 in Figure 2.2-4 produce N0 recruitment teo the
population. But the trangition t = 3 to t = 4 does,
Hence, in the reduced dimensionality Sstructure there are
tWwo separate ways to generate the population for the
following month.

The program uses the calendar month integer to detect
whether or not the transition is during a recruitment
moenth. If it ig a recruitment month it calculates the
Next age distribution from the current age distribution,
the fecundity row of the Leslie matrix, and the off
diagonal survival probability elements. If it is not a
recruitment month it uUses only the current age
distribution and the survival probability elements,

A tacit @ssumption in the model described thus far is
38 closed system. That is, recruitment, when it occurs, is
related to the current age vector through the fecundity
elements in the Leslie matrix. This assumption is
questionable.

The lagoon is open to the outer coast through its
mouth on the west end. Planktonic larvae fron the

protected outer coast population should be able to migrate
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into the system. The model should therefore perhans bhe
Yiewed as a local sample of the whole prpulation. The
resulting fecundity values, even though they produce a
good fit to the data, may not characterize thosge females
in the environment of the lagoon.

In Chapter 4 we will see that the other parametersg
are in fact not sinsitive to the fecundity estimates,
Furthermore, we will show a method whereby immigration of

a8 more general nature can be included in the model,

2.3 The growth model

This section describes the assumptions made on the
characteristics of the growth component which isg
incorporated into the model. Some preliminary models were
constructed which included both the seasonal Leslie
Component and the growth component in order to observe the

general bahavior of the System.

Bilinear growth, zero variance

The fundamentai problem with any modeling effort is
that quantities which are relatively easy to measure

depend on quantities which are relatively difficult to
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measure. In this modelling effort the quan£ity which is
directly measureable is the size distribution of the
population. It depends on the underlying age
distribution whose evolution in time depends on the
elements of the Leslie matrix, namely the age-~-specific
fecundities and survival probabilities. These quantities
are extremely difficult, if pnot impossible, to measure
directly in the field.

Furthermore, they describe the evolution of the age
distribution, not the size distribution. Their effect on
the size distribution depends on the size versus age
relationship for the particular species.

The literature Supports the hypothesis that the size

versus age relationship for Dendraster falls roughly into

tWo stages--a juvenile stage characterized by rapid
growth, followed by a mature stage characterized by slow
growth, Figure 2.3-1 [Birk71] and Figure 2.3-2 [Timk75]

show some data taken from Dendraster pPopulations in the

Northwest and Southwest United States, respectively, It
motivates the two stage growth model shown in Figure 2.3-
3. Four parameters describe the growth characteristicg--
the slope and intercept for juveniles and the slope and
intercept for mature individuals.

A model was constructed incorporating the two Stage
growth relationship and the Leslie matrix with constant

elements. It assumed seasonal recruitment as described in
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the previous secrion. The inirial ige distribution wasg
chosen rto he uniformly distributed juveniles as shown in
Figure 2.3-4 (a). The other parameters were chosen
arbitrarily just ro get a feel for the behavior of the
model.

Simulation$ of the evolution of the size distribution
are shown in Figure 2.3-4 for a three year sequence and
for a nine year sequence. It ig interesting to compare
the behavior of thisg System with the four features lisgted
for the observed data in Section 1.3,

First, the observed sgize distribution from the field
data was bimodal. This system evolves to a bimodal
distribution even when started from an initial uniform
distribution of Juveniles,

Second, the observed data showed Physical growth
which was manifested by a shift of the distribution to the
right. This system also shows physical growth in the same
way.

Third, the observed data indicated mortality by a
general decrease in the area under the distribution with
time. The survival probabilities in the Leslie matrix
produce the same behavior in thig system,

Fourth, the observed data showed annual recruitment
to the population. The seasonal recruitment modifications

to the Leslie theory again produce similar behavior here,
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4t

Model

Scale:

Horizontal - Test length in mm. Bin size is 5 am
with first 5in 0 to 5 mm. Total number af bins
is 20,

Vertical -~ Full scale is 8.0 for (b) and 25.0 for

(c).

assumptions:
Two stage linear growth curve with zero variance,
Annual spawning during one month (month 12).

Density independent Leslie 8ge matrix with one year
increments.

Parameter valuyes:

*

*

(0.0 0.0 0.0 3.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 ]
0.5

Leslie age structure matrix (25 parameters):

0.6
0.7

0.3 0.0 |

Initial age distribution (13 parameters):

{1.01.01.01.00.00.00.00.00.0 0.0 0.0 0.0 0.0 ]

%*

Total

Growth factors (4 parameters):

Juvenile slope 1.0 nm/month
Juvenile intercept 10.0 am
Mature slope 0.1 mm/month
Mature intercept 55.0 mm

number of parameters:
42

(a) Parameter values.

Figure 2.3-4. A zero variance simulation.
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Two Stage linear 3rowthn, finite Variance

The question is how to incorporate the finite

variance intog the model, Perhaps the mOoSt theoretically

One problem with using the normal density ig that it
is computationally €Xpensive. Ag shown in Figure 2.3-5
for the finite variance case, the number of individyals

Per square meter (i.e. the density of the Population) ip

ib
Dli,3] = N[j] / f(xsm{j],s) dx
(i-1)b

= N[j] { F(ib;m[j],s) - F((i-l)b;m[j],s) ]

where
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E(xsm{jl,s)

ee. m[jl

Figure 2.3-5. Normal distribution, finite variance.
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N[j) = the number of individuals per square nerer
in age class j from the Leslie macrix

b = the histogram bin size

m{j] = the mean size for age class j

from the bilinear growth curve

S5 = the variance
1 1 X - m Z
f£(x5m,8) = ——m—u0 exp |-
\2mr 2 s

X
F(x;m,s) = jr f(x;m,s) dx
- oo

The age structure matrix gives a certain density of
individuals N{j] at a specific age corresponding to age
class j. The growth component of the model transforms
that age to a mean size, m[j]. The total number of
individuals in bin i is then obtained by summing D[i, j]
over all j. Hence the computation requires evaluating the
error function over all bins for all age classes for every
month of the Simulation, which is very time consuming.

There is also a theoretical problem with the normal
distribution in this setting. The normal distribution has
infinite tails, Negative size is, of course, biologically
impossible, but it is implied because of this
characteristic. The problem is especially acute for small
individuals.

One approach to the problem of finite variance is to
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approximate the normal distribution by a computationally
simpler one. It 1s known that the uniform distribution,
when convolved with itself, produces a triangular
distribution., Furthermore, the triangular distribution,
when convolved with itself, produces a piecewise
quadratic distribution. Continuing the self convolution
produces a sequence of distributions which approach the
normal distribution. Hence there is a sense in which the
uniform distribution is an approximation to the normal
distribution, and the triangular distribution is yet a
better approximation.

Use of the uniform or the triangular distribution
instead of the normal distribution therefore solves two
problems. First, these distributions are computationally
much less expensive. Second, They have finite tails and
hence do not imply negative size as the normal
distribution does. However, there is still a question of
defining the probability distribution for small
individuals when the mean of the distribution is smaller
than the range.

Figure 2.3-6 shows one technique for modifying the
distribution for small individuals. In part (a) the range
is defined as the length between the mean and the smallest
value of the size for which the density is nonzero. In
part (b), when the mean is less than the range, part of

the distribution is lost on the negative side of the size
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Figure 2.3-6. Modification of probability distribution
for small individuals,
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axis. If it were simply reintroduced into the clipped
distribution by an appropriate scaling factor, the mean of
the distribution would be changed. Specifically, it would
be increased because of a shift of the area from the left
tail toward the right.

Rather than change the mean, the algorithm can change
the range for small individuals. If the mean is less than
the range, the range is set to equal the mean as shown in
part (c). So instead of increasing the mean, the variance
is decreased to accomodate small individuals. Figure 2.3-
7 shows the decreased variance for small individuals.

Figure 2.3-8 shows the effect that the assumption of
a finite variance has on the size distribution. The size
distribution at the top of the figure is the beginning of
the fourth year from the simulation of Figure 2.3-4. It
assumes zero variance in the growth relationship.

The distribution in the center of Figure 2.3-8 show
the effect of the uniform distribution assumption. The
uniform distribution £(x;m[j],s) is shown on the left.
D[i,j] was calculated and summed over all age classes j
for each bin i. The resulting size distribution is
plotted for a standard deviation (i.e. square root of the
variance) of 2.0 mm and 5.0 mm. As expected the effect is
to "smear" the originmal distribution, lowering the peaks
and raising the adjacent valleys. The gaps between the

histograms are eliminated. The larger the variance the
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Figure 2,3-7, Decreased variance for small individualg,
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greater cthe leveling =ffect.

The distributions at the bottom of Figure 2.3-34 show
rhe effeact of the triangular distribucion assumption.

The triangular distribution is plotted with a variance
equal to that of the uniform distribution directly above
it. An equal variance implies a gréater range for the
triangular distribution. The corresponding size
distributions for standard deviations of 2.0 and 5.0 mm
are shown to the right.

It is instructive to compare the size distributions
under these two finite variance assumptions. First, when
the deviation is 2.0 mm the size distribution under the
uniform assumption is virtually indistinguishable from the
size distribution under the triangular assumption.

Second, when the standard deviation is 5.0 mm the
size distributions are similar only for large
individuals. For small individuals the distribution under
the triangular assumption shows a more pronounced peak
than the distribution under a uniform assumption. This
is explained by the fact that the range of the triangular
distribution is greater than the range of the uniform
distribution. The algorithm for modifying the
distribution for small individuals (Figure 2.3-6)
therefore comes into play to a greater extent under the
triangular assumption.

The conclusion to be drawn from the above
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nbservations is that the uniform distribution is a
reasonable assumption cto make in simulating the temporal
evolution of the system. It is computationally less
expensive than the triangular distribution, but produces
identical results for standard deviations on the order of
2.0 mm. For standard deviations on the order of 5.0 mm
the results are different only for small individuals.
Since the range for the uniform distribution is smaller
than the range for the triangular distribution, the
modifications for small individuals are not as severe with
the uniform distribution.

The models presented in the remainder of this
dissertation all assume finite variance with the uniform
distribution assumption. Figure 2.3-9 assumes the same
parameter values as Figure 2.3-4 except for the uniform
distribution assumption with a 5.0 mm standard deviation.

Another assumption made in the model is that the
fecundity is density independent. A density dependent
fecundity is not identifiable in this system because
recruitment occurs only once with this field data. The
value of the estimated fecundity is one data point of the
density dependent fecundity relationship, at the
particular density value of the system at the time of

recruitment.
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2.4 Restatement of the problem

A quantitative comparison of the model with field
data requires the formal definition of a scalar error
function. The model produces a time series of size
distributions which should match, as closly as pessible,
the time series of size distributions obtained from the
field data. The error function is a measure of the
magnitude of the deviation of the simulation from the
measured data.

Several error functions are possible. The one
selected in this study is the squared error criterion.
For data spanning M months with N bins in each histogram
the error is defined as

2. (y[5.3] - y'[1,9D°

1,]
where y[i,]j] is the measured value of the population
density in the i th size bin in the j th month and
y'[i,j] is the simulated value. The sum on j is over all
M months in which data were taken. The sum on i is over
all N bins in the histogram.

Figure 2,4-1 shows the definition of the squared
error. The solid lines represent field data. The dotted
lines represent simulated data. The simulated data were

produced with specific values for the parameters. The
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parameters included the elements in the Leslie matrix.
the inicial age distribuction, and the slope and intercept
of the juvenile and mature growth lines.

A more detailed statement of the problem is now
possible. The task is

* to construct a model containing two components, the

Leslie matrix and the bilinear growth assumption
common in the literature,

* to minimize the squared error in the parameter

space, and

* to use the values of the parameters which minimized

the error as estimates of the "true" physical
values in the system.

These first two chapters have essentially already
presented the first step. The second and third steps
characterize the system identification approach to
modeling.

To show how this modeling approach contrasts with the
standard methodology we compare it with Perron's work on
the growth, fecundity, and mortality of the tropical

marine gastropod Conus pennaceus [Perr83].

Perron marked off a 50 x 25 meter quadrat and
collected samples once every two weeks by snorkeling over
the study site at midtide. He measured the shell length
of each snail and also marked it with a numbered tag. The

mark-recapture data gave him a field measurement of the
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size versus age relationship. It was curve fitted to the

von Bertalanffy 3growth equation

e—t/T

L(t) = Lo(l - u )

L is the shell length, t is the individual's age in years,
and LO' u, and T are parameters whose values are
determined by the curve fitting routine.

Perron described the system with a 22 month time
sequence of 11 bimonthly size~frequency histograms. His
data were similar in many respects to those described in
Section 1.3. Annual recruitment, growth, and mortality
are all features of the patterns. The von Bertalanffy
equation was then used to convert the size-frequency
histograms into age-frequency plots by solving the growth
equation for age t, given the shell length L.

A regression of the transformed data produced a

single survivorship curve for the entire population
N(t) = e~ ¥F©

where N(t) is proportional to the number of survivors, t
is the cohort age, and v is a parameter determined by the
curve fitting routine. Assuming an exponential
survivorship curve is equivalent to assuming age and
density independent survival probabilities p[i], since
p[i] = N(t + 1)/N(t) = e~V, a constant.

Perron also collected data on the size-specific
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fecundities of Conus bennaceus females by determining the

realtionship between female size and clutch size. and by
estimating the number of clutches produced per female per
year., The survivorship and fecundity schedules were then
combined in standard 1life table form for the species,

How does the modeling approach of this dissertation
compare with the standard methodology exemplified by
Perron's work? The objective in each case is the
estimation of parameter values which charaéterize the
biological system. The tool used to obtain the estimate
in a standard analysis is regression, i.e, curve fitting.
The regression is usually either linear, or a simple
exponential, logarithmic, or polynomial fit so that
standard software packages can be used. But the
underlying statistical basis of regression is the
minimization of the squared error between the data and the
curve. So the standard methodology and the modeling
approach of this dissertation have the common idea of
estimation via minimization of the squared error.

The difference is in the application of the idea. 1In
the standard methodology each individual component of the
System is analyzed separately. Hence, in both the Perron
and Timko studies a curve fit was done on the size vs age
relationship, one component of the system. In the Perron
study, the results of the curve fit were used to transform

the size data to age data. Then another curve fit was

74



done to obtain the value of a parameter describing the
mortality component orf the svstem.

The modeling approach of this dissertation is to
combine all three components of the system - growth,
fecundity, and mortality - into a single mathematical
model, and then to minimize the squared error on the
entire system. The minimization is done system wide, with
the links between the individual components in place.

There are several interesting ramifications to this
approach. One is that the growth characteristics of the
species will be inferred directly from the time sequence
of the size histograms. In the Perron study the growth
characteristics were inferred from mark-recapture data.

In the Timko study thay were inferred by the ring count
method. No such ancillary data is required in this study.
Another ramification is that the validity of the

model can be agsessed by direct comparison with the raw
field data. When a mathematical model of the entire
system is constructed, it produces a time sequence of size
histograms. But that is precisely the format of the raw
data. As we will see in Chapter 4 when we examine
specific models, a direct comparison of the simulated
output with the field data can sometimes give a visual

clue as to how the structure of the model can be improved.
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2. The minimization alzorichnm

theory is germain to the prohlenm. The second section
outlines the numerical theory behind the minimization
algorithm. The thirgd section presents the implementation

of the algorithm in a program.

in biological modeling. I could find no reference in the
literature on Leslie matrix theory in a Systems
identification context. When the Leslie matrix is 1 x 1,
the problem reduces to the scalar Malthusian model. In
this case a logarithmic transformation of the data
simplifies the System identification problem.

One of the problems with the models considered in
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this dissertation is that nonlinearities abound. In a
linear system, even with constraints, cost minimizing
algorithms are well developed. But in the models
considered here, the size versus age relationship is
highly nonlinear (although it is piecewise linear). So
there is not much mathematical theory which can be applied
to the identification problem.

It would be good to know just how much theory can be
applied to the system identification problem of Leslie
matrix models in the simpleét case. It turns out that
even in the Malthusian model where there is only one age
class, that of the population as a whole, and where the
field data are observations on the number in the
population and not on physical size, the optimizing
solution is nonlinear. This result can be stated in the
following theorem.

Theorem. Suppose a population obeys the Malthusian
rate equation with an initial unknown population of a, and
an unknown rate A. If n+l consecutive observations are
made starting with an observation on the population, a, at
time t = O, then the identification of the two parameters
a, and A with a least squares error criterion requires the
solution of a 3n-2 degree polynomial,

Proof. Take the population at time i to be

a., i=0,1, ..., n
i

and the two parameters to be estimated as ag» the
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population at time t = 0, and A, the 1 x 1 Leslie matrix.

Then the Malthusian rare 2quation

ai+l = 4 a,, i =0, 1, , n
has solution
i ,
a, = A ag, i=20,1, , 0
Denote the n+l observations by
ris i=20,1, s+ N
The error in the i th observation is then ry - a,.

The problem is to determine the a5 and the A which

minimize the squared error

2 2 i 2
To(r, :

i=0

ihe~19
~~
La ]
i
w
[
']

i

This is done by setting the partial derivative of the
squared error with respect to each parameter to zero,
Setting the partial derivative of the squared error with

respect to 2, to zero, and then solving for a, yields

no
AT r.
2. = i=z-0 +
0 ‘Z‘ 421
120

Setting the partial derivative of the squared error with

respect to A to zero, and then solving for a, yields
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These two expressions for ay can be equated giving an

equation involving only the rate, A.

S L ,2i-1) % 2 R
(iZo ; ri) (121 A )-(iZO * )(121 ! i)

Writing the i=0 term explicitly yields, for the left hand

side of this equation

n n .
rO Z i AZi—l + Z A21+J-1 r, ,
i=l i, 3=l ]
and, for the right hand side
n . n -
i A1-1 r, 4 E ] A21+J-1 .
i=1 i,3j=1 ]

Rearranging terms then gives the equation for A as

n

=]
N
I
|
o
= |
[
|
p—

. 2i+j-
(i-j) A ivj-1 '
i, j=l J

The first term in the polynomial is zero for i = j.
So the maximum degree is at i = n, j = n-1. The

corresponding power of A is
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2i + j -1 =2n +(n -1) =1 = 3 - 2

So the estimate of 1 to minimize the error is the root of
a 3n-2 degree polynomial. The initial population is then
given by either of the expressions for ay after A4 has
been determined. End proof.

For example, just three observations of the system,
Ty rl, and Lqs requires the solution of the fourth degree

polynomial

3

(—rl) A4 + (—r2+2r0) AT + (-2r2+r0) A + (-rl) = Q

Figure 3.1-1 gives the coefficients of the powers of A for

the cases n = 1, 2, 3, 4, 5, and 10.

So in a system described by the Malthusian model
where just 33 consecutive observations are made on the
population, identification of the system requires the
solution of a 100 th degree polynomial. The standard way
of simplifying this problem is to minimize the square of
the difference between the logarithms of the observations

and the model. Defining the cost to be minimized as

o 2 ° i 2
} (Inr, - 1n a )° = } (Inr. - 1n A" a,)
i=1 1 1 120 t 0

and then setting the partial derivative of the cost with

respect to a, equal to zero yields
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n o= |

Power |

of A | Coefficient of A
1 1(rQ)
0 -1(rl)

n = 2

Power

of A Coefficient of A
4 1(rl)
3 -1{(r2) + 2(r0Q)
1 -2(r2) + 1(r)
0 -1(rl)

n = 3

Power

of A Coefficient of A
7 1(r2)
6 -1{r3) + 2(rl)
5 3(rQ)
4 =2{r3) + 1(rl)
3 =1{r2) + 2(r0)
2 -3(r3)
1 -2(r2) + 1(r0)
0 =1(rl)

Figure 3.1-1. Coefficients of the powers of A for system
identification of the Malthusian model.
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Power
of A Coefficient of A
10 I{(r3)
9 -i(r4) + 2(r2)
8 3(rl)
7 -2(rd4) + 1(r2) + 4(rQ)
6 -1{(r3) + 2(rl)
5 -3(rd4) + 3(r0)
4 =-2(r3) + 1(rl)
3 -4(rd) + =1(r2) + 2(r0)
2 -3{r3)
1 -2(r2) + 1(r0)
0 -1(rl)
n =5
Power
of A Coefficient of A
13 1(ré4)
12 -1{(rs5) + 2(r3)
11 3(r2)
10 ~2(r5) + 1(r3) + 4(rl)
9 -1{(r4) + 2(r2) + 5(rQ)
8 =-3(rs) + 3(rl)
7 -2{(r4) + 1(r2) + 4(r0)
6 -4(r5) + -1{(r3) + 2(rl)
5 =-3(rd4) + 3(r0)
4 -5(rs5) + =2(r3) + 1{rl)
3 -4(rd4) + -=1(r2) + 2(r0)
2 -3(r3)
1 «2(r2) + 1(r0)
0 -1(rl)

Figure 3.1-1.
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n = 10

Power
of A Coafficient of 4

28 1{r 9)

27 -1{r10) + 2(r 8)

26 3{r 7)

25 -2(rl0) + 1(r 8) + 4(r 6)

24 -1(r 9) + 2(r 7) + 5(r 5)

23 -3(rl0) + 3(r 8) + 6(r 4)

22 -2(r 9) + 1(r 7)Y +4 4(r 5) + 7(r 3)

21 =4(rl0) + =-1(r 8) + 2(r 6) + S(r 4) + B(r 2)

20 ~3(r 9) + 3I(r 3) + 6(r 3) + 9(r 1)

19 -5(rl10) + =2(r 8) + 1(r 6) + 4(r 4) + 7(r 2)
+ 10(r Q)

18 -4(r 9) + =l{(r 7) + 2(r 5) + S5(r 3) + 8(r 1)

17 -6(r10) + ~3(r 8) + 3(r 4) + 6(r 2) + 9(r 0)

16 -5(r 9) + =2(r 7) + 1{(r 3) + 4(r 3) + 7(r 1)

15 -7(rl0) + -4(r 8) + =-1(r 6) + 2(r 4) + 5¢r 2)
+ 8(r Q)

14 -6(r 9) + =3(r 7) + 3(r 3) + 6(r 1)

13 -8(rl0) + -5(r 8) + -2(r 6) + 1{(r 4) + 4(r 2)
+ 7(r Q)

12 =-7(r 9) + =4(r 7) + =-1(r 5) + 2(r 3) + S(r 1)

11 -9(rl0) + -6(r 8) + =-=3(r 6) + 3(r 2) + 6(r 0)

10 -8(r 9) + =5(r 7) + =2(r 5) + 1(r 3) + 4(r 1)

9 -10(rl0) + -7(r 8) + =-4(r 6) + I(r &) + 2(r 2)
+ 5(r Q)

8 -9(r 9) + =6(r 7) + <=3(r 5) + 3(r 1)

7 -8(r 8) + -=5(r 6) + =2(r 4) + 1(r 2) + 4(r Q)

6 -7(r 7)Y + =4(r 5) + -1l(r 3) + 2(r 1)

5 -6(r 6) + =3(r 4) + 3{(r 0)

4 -5(r 5) + <=2(r 3) + 1(r 1)

3 -4(r 4) + =1(r 2) + 2(r 0)

2 ~-3(r 3)

1 -2(r 2) + 1(r Q)

0 -1(r 1)

Figure 3.1-1.
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—ﬂﬁ%iil— In A + n 1n a. =

0 1n r,

O 1

i~ D

1

while setting the partial derivative of the cost with

respect to A to zero yields

a(n+l)(2n+l) In A4 + —aln+l) ln a, = 7 i lnr
5 2 0= .1 ]

Solving these equations for A and ay vields

: z E E
1n A = ilnr., - 1n r.
n{n-1) n+l iso i 150 i
6 2n+1 b 1
ln a, = ] lnr, - Jiln r,
0 n{n-1) [ 3 igo i i&o 1]

These are simply the linear regression equations for the
slope and intercept, respectively, fof the logarithm of
the data with i as the independent variable.

The next step would be to extend this investigation
of the theory to the nonscalar Leslie model. That task
appears difficult at best. The structure of both A and ag
would need to be considered. For b age classes there are
b fecundities, b-1 survival probabilities, and b elements
in the 85 vector for a total of 3b-1 regression equations
instead of just two. An additional difficulty in this
study is the inclusion of the growth component of the
model.

Because of these complications we cannot hope to find

a closed form solution to the minimization problem. It
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must be determined numerically., The procedﬁre used for
this system, in contrast to the Malthusian model above,
does not require a logarithmic transformation of the data
to simplify the problem. On the contrary, such a
transformation would be computationally more expensive.

The algorithm minimizes the squared error directly.

3.2 Nonlinear minimization theory

This section outlines the theory behind the
minimization algorithm. To state the basic problem we
define the following quantities.

n = the number of parameters to be estimated, i.e. the
dimensionality of the parameter space.

m = the number of data points. In this study the number
of months times the number of bins in the histogram

for each month, or 10 x 15 = 130.

X = a column n-vector in the parameter space.
fi(x) = the i th error. It corresponds to the error at a

single bin given by y - y' in Figure 2.4-1,

m
F(x) = z [fi(x)]z, the cost to be minimized.
i=l
<
x = the value o0f x which minimizes F(x}.

The general form of n-dimensional minimization

algorithms is given in Figure 3.2-1. It is an iterative
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begin Minimization
e
-«

Zstablish x,, a current estimate of <«
while the conditions for convergence are not satisfied do
begin

Compute a nonzero unit n-vector 4 the direction of the
search.

rd

Compute a positive scalar d s the step length, such that
the correction vector is Py = quk' and

F(xk + pk) < F(xk).

Update the estimate by setting

Xiepl 7% X+ P> and

k := k + 1

end

Report X, @3 the parameter vector which minimizes F.

end Minimization.

Figure 3.2-1. The general minimization algorithm,
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procedure. Various methods are available which differ in
the way they compute p» and s. In that computation, some
methods assume only that F{x) is a scalar function of the
vector x. However, it is generally recognized [Gill81]
that if F({x) is a sum of squares of residuals, as in this
modeling problem, then more efficient methods are possible
which take this structure of F into account. An algorithm
of that type was chosen for this problem.

The algorithm is a modification of the hybrid method
for nonlinear equations proposed by Powell [Powe70Q0]. It
is a combination of the steepest descent method and the
Gauss-Newton method.

The steepest descent method is based on the Taylor-

series expansion about Xy

; T
F(x, + p) 2 F + gr»p,

where Fk is an abbreviation for F(xk), and 81 is an

abbreviation for g(xk) which is the gradient of F at Xy

- -

F

3F_
Bxl

g(x) = .

3F
X
— 3 n -
T signifies the transpose of a vector or a matrix. Then

Py is selected as the direction along which F decreases

most rapidly local to x , namely, Py = -8 - Since 8y P =
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- (gksk) = —Hgkﬂz must be less than zero we are Zuaranteed
progress at each iteration. Although global convergence
for this method can be proved [Flet80}, its convergence
near the minimum is only linear, and its performance can
be extremely inefficient.

Newton's method is based on a quadratic model of the

function to be minimized. Keeping one more term in the

Taylor-series expansion of F,

. 1T
F(xk + p) = Fk + 8 P + 3P ka

Gk is an abbreviation for G(xk), the n x n symmetric

Hessian matrix,

- .2 2
aF 2 F
2 * 9x,9x
R 1°%n
G{x) = . -
32 3°F
d 1 xn 3x2

'
£
|

Then Py is selected as the p which minimizes 8, b + %pTka.

Specifically, Py satisfies the linear system

CxPr = -8y

The Py which is the solution to this linear equation is
called the Newton direction. Newton's method has the
advantage of quadratic convergence compared to the linear

convergence of the steepest descent method. But it has
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the disadvantage of requiring the Hessian, i.e. the second
deravitive of F, at each poiat. Alsoc it fails for some
situations where the quadratic model is a poor
approximation to F outside a small neighbourhood of the
current point.

The Gauss-Newton method uses the formula for Pr given
by the Newton method, but takes into account the fact
that F(x) has a sum of squares structure. Denote the

m x n Jacobian matrix of £(x) by J(x),

Ji(x) = =53

3
Then the gradient and Hessian are given [Gill81] by

g(x) = 23(x)TE(x)
T m
G(x) = 2J(x)"J(x) + 2 ] £.(x)G, (x)
i=l 1 1
where Gi(x) is the Hessian of fi(x). The method

approximates G(x) by the first order term, ZJ(x)TJ(x).

The linear system for determining p therefore becomes
T T
(e di Iy = =t

where the subscripts denote quantities evaluated at X, -
This method has the advantage of requiring only the
Jacobian, i.e. the first derivative of F, at each point.

The method given by Powell is based on the
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too large, then the displacement is biased towards the
Steepest descent direction of F(x).

The actual correction step is determined by
maintaining a4 positive scalar step length, 4, which ig
compared with the magnitudes of the predicted Steps in the
Gauss-Newton and the Steepest descent directions. Let Pen
and Pgp be the predicted steps in the Gauss-Newton and in
the steepest descent methods respectively. The algorithnm

for determining the actual step, p, at each iteration is

then given in Figure 3.2-2,

is calculateq. In this method the derivatives of fi(x)
are approximated numerically, since analytical
€xpressions for the derivativeg are impossible tg obtain,
Under these circumstances Powell's method for determining
the interpolation is computationally more efficient than
the Levenberg—Marquardt method.

The maximum step length, d, ig recomputed at each
iteration. The idea is to Raintain the Step length large

enough so that significant Progress is made toward
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Compute the maximum step size, 4

it Ipoyt < d then

P = Poy
else if fpgpt < d then
p = tpoy + (1 = t)poy
such that |p| = d
else

p = d(pSD/"pSDﬂ)

(a) The update algorithm,

“Pen
(b) The interpolation step.

Figure 3.2-2. Powell's hybrid method.
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%

convergence to x;, but not so large that the search
becomes unstable because oI the neglect of the higher
order terms in the Taylor-series expansion of F(xk).

The actual strategy for computing d follows the
recommentation of Powell [Powe70]. The predicted value of
F(x + p) is compared with the actual value of F(x + p).

If the predictions are good and if F(x + p) is
significantly less than F(x), then d increases. Otherwise
d may remain unchanged or decrease by a factor of 2. The
method is rather complex and includes a "damping" effect
to avoid an inefficient oscillatory behavior in d.

The one major difference between the algorithm used
here and the one given by Powell is that Powell's method
was designed for solving simultaneous nonlinear equations.
That is, in his formulation m = n, and the system to be

solved is
fi(xl, Xoy «ney xn) = 0, i=1, 2, ..., n.
Hence the Jacobian matrix, J, is square. 1In particular
the gradient is given by
T
8 = 2Jp &y

as before, but the Gauss-Newton formula for determining

the correction step P is
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which has solution

Each iteration therefore requires both J and J_l for the
computation of the steepest descent step and the Gauss-
Newton step.

Computing the inverse of an n x n matrix requires
O(n3) operations. Powell's method begins by computing J
numerically with finite difference formulas and then
inverting it. Subsequent iterations reduce execution time
by storing the values of J and J—l and applying updates

to them based on the information obtained at fi(x +

k
pk). The update formulas require only O(nz)'operations
and hence produce huge savings in execution time. The
savings come about not only because of the lower order in
the number of operations, but also because of the savings
of the additional n function evaluations (i.e. model
simulations) which would be necessary for the finite
difference determination of J. These methods are
generally known as Quasi-Newton approximations [Gill81].

Denote the difference in fi evaluated at the old and

the updated points as

¥.

i = fi(x + p) - fi(x), i=1, 2, ..., n,

and the inverse of the Jacobian matrix as H = J~
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* #
the formulas for the updated matricies J and 1 3iven by

Powell are hased on

2
T+ {y = Spypt/ipi?

[
]

oo
I}

i1+ (p - HY)pTH/(pTﬁy}

It is possible for singularities to occur with these
L)

update formulas, so sometimes only part of the full

corrections are applied to force nonsingularity. The

formulas are parameterized by u as

b
J =J + u(y - Jp)pT/upu2

T
% 2 H 4 o . (p_- Hy)p'H :
u(p Hy) + (1 - u)py

*®
If the denominator in B is too small, as determined by
2
| (oTHy)| < 0.11py

then u = 0.8 is used; otherwise u = 1. The smaller value
of v was determined emperically by Powell,

In this investigation m < n. Hence the update
method given by Powell was modified as follows. The

differences are now an m-vector.

¥,

; = fi(x + p) =~ fi(x), i=1, 2, ..., m.

The matricies J and H are stored and updated on each

iteration, where H now is the n x m matrix
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H= (gipy-LyT

ke
=~

The update formulas for J and H* look identical to the
update formulas for the m = n case. The difference is in
the definition of H.

For this modification to be feasible we need to show
that some of the properties of the update formulas in the
M =10 case still apply in the n > n case. The most
important Property is that the update formulas preserve

the relationship between P and y. Namely, since

I
(Jp)i = .Z J..p.

is the predicted change in fi’ then we want the new

*
Jacobian J tgq satisfy
*
Jp=y

Since ¥ is the actual change in fi‘ Right multiplying

E
the unparameterized update formuls for J by p produces

T
* -
Jp:(J+‘(‘Y :?ID)D)
P
=Jp +y - Jp

=7

Similarly, right multiplying the unparameterized update
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*
formula for H by v produces

, T
o« [ . L2 -Tﬂv)pti)
(p Hy)

Hy + p - Hy

i

=P

So the proper relationship between p and y is maintained
by the unparameterized update formulas.

A second property maintained by the update formulas
is the proper relationship between J and H. With this

definition of H we have

HI = (JTy~ 13Ty

= I

the n x n identity. The parameterized version of the
update formulas maintains this relationship. It can be

shown by multiplying the update formulas.

T
g " - H-+6: - (p - Hy)p H 2) X
u(p Hy) + (1 - u) oy

(J + u(y - Jp)pT/ IIPIIZ)

where ... indicates some tedious but straightforward
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algebra which will not be reproduced here.
The modification to Powell's method is thus feasible

theoretically. It also worked well when implementced with

this particular model.

3.3 The implementation

This section is divided into two parts. The first
part is a description of the computer programs designed
to solve the problem. The second part gives some

observations about software for mathematical modeling.

Program description

The mathematical models were implemented in Pascal.
Appendix 6.2 is an example program listing. The bulk of
the program is divided into two parts, the mathematical

model of the Dendraster system and the nonlinear least

squares algorithm. The mathematical model in the program
listing is for the bilinear growth system described in
Section 4.1.

Figure 3.3-1 is a list of all the subprograms, i.e.
procedures and functions, in the program. It shows the

nesting level of each subprogram by level number and by
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Level
number Subprogram

program MinLeslie
procedure GetMinOptions
procedure GetModelParams
procedure GetRealData
procedure GetPrintOptions
procedure GetX
procedure GetF
procedure GetSqF
procedure GetItrStatus
procedure GetNewJ
procedure GetNewJInv
procedure GetSteplen
procedure GetStepType
procedure FromXVector
procedure ToXVector
procedure FromFVector
procedure ToFVector
procedure CalcSizeDistr
procedure StepMonth
procedure Simulate
procedure Evaluate
procedure FileFinal
procedure Minimize
procedure Invert
function Norm
procedure GaussElinm
procedure Solve
procedure InitGlobalConstants
procedure SwapN
procedure SwapM
procedure Negate
function Min
function Max
function Min3
procedure ATransposeA
procedure MultNxNxM

UJthJLn)LAJ(.A)La.)h)bdJ-"-P-nF“LONNNNNNNNNN@WMWLAW&)WNN{QNH

Figure 3.3-1. The subprogram scope structure,
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Level
number

Subprogram

WWLWWLWWLWLWLWWWWWWWWLWWWWWW

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure
precedure
procedure
procedure
procedure
procedure
procedure

PrianthN

PrintM

PrintNxN
PrintMxN
PrintNxM
PrintIteration
PrintFinal
UpdateJacobian
CalcDirections
CalcSteepestMin
CalcDelta
UpdateOrthogDir
DirlUpdate
UpdateX
TakeStep
DoFirstTime
DoComputeNewJ
DoNormal
DoStepLenUpdate
DoStepDirl

Figure 3.,3-1.
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indentation. For example, procedure GetX is declared
within procedure GetPrintOptions, and cannot be called
directly by a statement in the main program, MinLeslie.

Figure 3.3-2 is a description of the subprogram
calling sequence. For example, program MinLeslie calls
procedures GetRealData, GetModelParams, ToXVector,
GetMinOptions, GetPrintOptions, Minimize, and FileFinal.
Procedure Minimize in turn calls procedures
InitGlobalConstants, Evaluate, PrintIteration, etc.

The following correspondences are made between the
variables declared at line 695 and the quantities
discussed in the previous section. Jacobian and
JInverse are J and H respectively. StpDir, NwtDir, and
Delta are Psp Pgn: and p. NwtCoef is the parameter t in
the interpolatigu step of Figure 3.2-2, StpCoef is a
factor times (l-t) in the same figure. Rather than
maintain the maximum step size, d, the program maintains
its square in SqMaxStepSize.

The minimization routine begins at line 660. Because
of the number of procedures defined by this routine,
however, its first executable statement is at line 1608.
The while loop at line 1619 is the while loop in Figure
3.2-1 of the general minimization algorithm. Its
termination is controlled by the value of an enumerated
variable which indicates the status of the loop. The

variable, LoopStatus, is declared at line 696, and its
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program MinlLeslie
procedure GetRealData
procedure GetModelParams
procedure ToXVector
procedure GetMinOptions
procedure GetPrintOptions

procedure
procedure
procedure
procedure
procedure
procedure
procedure
procedure

procedure
procedure
proced
proced

GetX

GetF

GetSqF
GetItrStatus
GetNewl]
GetNewJInv
GetStepLen
GetStepType

procedure Minimize

InitGlobalConstants
Evaluate

ure FromXVector

ure Simulate

procedure CalcSizeDistr

pro

proced
procedure
procedure
procedure
procedure
procedure
procedure

cedure StepMonth

ure ToFVector
PrintIteration
DoFirstTime
DoComputeNewJ *
DoNormal *
DoStepLenUpdate *
DoStepDirl *

procedure FileFinal
procedure FromXVector
procedure FromFVector

* Note: An asterisk indicates the procedure contains

additional procedure calls listed below.

Figure 3.3-2. The subprogram calling sequence.
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procedure DoCompuceNewJ
procedure PrintMxN
procedure ATransposeA
procedure Invert
function Norm
procedure GaussElinm
procedure Solve
procedure MultNxNxM
procedure PrintNxM

procedure DoNormal
procedure UpdateJacobian
procedure TakeStep *

procedure DoStepLenUpdate
function Min3
function Min
procedure SwapN
procedure SwapM
procedure Negate
function Max
procedure UpdateJacobian
procedure TakeStep *

procedure DoStepDirl
procedure SwapN
procedure SwapM
procedure Negate
procedure DirlUpdate

procedure TakeStep
procedure CalcDirections
procedure UpdateOrthogDir
procedure UpdateX
procedure CalcSteepestMin
procedure CalcDelta
procedure DirlUpdate
procedure UpdateOrthogDir
procedure UpdateX

Figure 3.3-2. (continued)
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type is declared at line 675. The terminatiocn conditions
are those suggested by Powell [Powe70].

The program executes the update algorithm of Figure
3.2-2 in procedure TakeStep on lines 1402 to 1471.

One feature of the implementation not mentioned in
the previous section is the technique of avoiding linear
dependence in the directions Py that are generated by
successive iterations of the algorithm. To show the
desirability of this technique, let q be any vector
orthogonal to p so that qu = 0, Then, right multiplying

the update formula by q gives

(y - Jp)qu

IIPII2

J*q = Jq +
= Jq .

So the results of applying both the old and the new
Jacobian approximations to any vector that is orthogonal
to p are the same.

If J happens to be updated by a set of vectors p that
are linearly dependent, then there will exist a vector g
such that Jq is the same for all Jacobian approximations.
But the true value of Jq will probably change with the
update, since the nonlinearity of the model causes the
true value of J to change with x.

Special directions are therefore introduced into the
correction vector if necessary, so that successive vectors

p span the full space of the parameters. The variables
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SpanCount and OrthogDir are maintained for this purpose.
Details of the method are given oy Powell [Powe70].
Procedures UpdateOrthogDir and DirlUpdate contain rhe

implementation.

Software for mathematical modeling

The overwhelming majority of software for mumerical
work is still written in Fortran, one of the oldest
programming languages available. This is not surprising
considering that the major design goal of the language
was execution efficiency [Back81].

Fortran gets its execution efficiency by mirroring
the physical machine as closly as possible. For example,
the flow of control constructs are simple. The GOTO
Statement translates directly into a machine BRANCH
statement. Also the data structuring facilities are
essentially restricted to arrays, which is a mirror of
indexed addressing on the machine. (Or is indexed
addressing a mirror of the array?)

In contrast, the algorithm described here was
implemented in Pascal. This is surprising considering
that one of the major design goals of the language was
that it be well suited for teaching programming as a

systematic discipline, with fundamental concepts clearly
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and naturally reflected by the language [Wirt71].
Execution efficiency was not its primary goal.

Based on my experience with this project, I believe
that neither Fortran nor Pascal is an ideal language for
numerical software. The reasons for coming to this
conclusion are outlined in the remainder of this section,
along with a suggestion for further research in numerical
software.

The problem with Fortran for this project was its
limited data structuring facilities. For example,
consider the single variable in the main program which
contains the values for all the parameters in the model.
It is called ModelPerams and is declared on line 74 to be
of type ModPrmType. In the type section of line 51
ModPrmType has three components: -

* a component containing the initial age

distribution, InitAgeDistr,

* a component containing the growth parameters,

GrowthParams, and

* a componont containing the elements of the Leslie

matrix, RepMat.

Each of these components are further subdivided inte
smaller, possibly nonhomogeneous parts. For example,
InitAgeDistr contains not only an array of the initial age
distribution, but also an indication of the actual

calendar month and year for purposes of matching simulated
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data with field data,

The ability in Pascal to structure rhe modeling data
this way had several ramifications. It made the program
more self-documenting, Specifically it was e4asy to see
which procedures operated on which components of the data
structure.

But more importantly, it saved time in program
modification. In the course of the study many variations
on the model were constructed. Some were retained, others
rejected. But each variation required program
modification and testing. When the structure of a
component was modified, only those procedures which
operated on that component needed to be altered.

The assumption in the tradeoff is that my time is
more valuable than the computer execution time. But I do
not believe that execution speed is the main cause of
Pascal's unsuitability for numerical work. As time goes
on more efficient optimizing compilers for Pascal will be
developed. And if execution speed is of primary
importance the program can always be written with a
minimum number of procedure calls and a4 maximum amount of
unstructured global data. Better Yet, the proverbial 103
of the program which is responsible for 90% of the
execution time can be written in assembler,

The real weakness of Pascal for numerical software

is identical to the weakness enunciated in a critique of
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the language by Kernighan [Xern81]. Here are some of h4is
criticisms which also applied in this project.

The size of an array is part of its type. Kernighan
considers this to be the "biggest single problem with
Pascal". It was a problem here in that general purpose
routings for matrix manipulations could not be written.

To change the size of the array you must recompile with
the new type (at least using the Level 0 standard without
conformant array parameters [IEEE83]).

There is no separate compilation. Software
development would have been more efficient if the
minimization algorithm were separately compiled. Changing
the model would then only involve recompiling and linking
the model software. i

Related program components must be kept separate. A
big hindrance to readability is the fact that the first
executable statement of procedure Minimize is separated
by a thousand lines from the declaration of the procedure
and its parameters and variables.

There are no static variables. A static variable,
called an "own" variable in Algol terminology is one that
is private to some routine and retains its value from one
call of the routine to the next. If a Pascal procedure
needs to remember a value from one call to the next, the

variable must be global to the procedure. It is therefore

visible to other procedures unnecessarily. An extreme
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example in this project is the variable containing the
field data. It had to be declared and input in the main
program, even though it logically belonged in procedure
Evaluate where the fi were calculated. Many variables
were also declared in procedure Minimize which should
have been declared at a lower level if static variables
were available,

From a mathematical modeling point of view, Pascal's
strength is its strong typing and data structuring
facilities. But its weakness, as evidenced by the
problems listed above, is that numerical routines which
are portable and easy to use are difficult to design.

Fortran also has its problems with the user interface
to numerical routines, Communication via COMMON is
unstructured and consequently error prone. The lack of
type checking in parameter lists at compile time is a
familiar source of error. Moré has recently pointed out
[Moré82) the desirability of "reverse communication" in
nonlinear optimization software, i.e. providing the
minimization routine as a subroutine which the user calls
instead of as a main program for which the user supplies
the subroutine. He points out that if the optimization
software has a standard interface then this cannot be done
in Fortran.

It would appear that two languages which are becoming

commercially available are inherently better suited for
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mathematical modeling and numerical software than eirher
Fortran or Pascal, namely Modula-2 and Ada. Both of these
languages incorporate the data structuring and data typing
features of Pascal which are important in modeling. And
both are designed expressly for the purpose of
establishing a library of reusable modules with a well
defined user interface.

In particular, Modula-2 would solve all of the
specific problems listed above. Arrays of variable length
can be passed as parameters. Related program components
can be physically grouped together. Static variables can
be initialized and retained only in the modules which use
them.

In Modula-2 separate compilation is encouraged, even
to the extent that the user interface to the module can be
compiled independently of the implementation of the
module. Wirth calls this facility "separate compilation"
in contrast to the "independent compilation" of Fortran
[Wirt83]. 1In the separate compilation of Modula-2 the
linker provides full type checking. If the interface part
is modified and recompiled, and the user routine is then
executed later, the linker can determine that the user's
routine is working with an outdated version of the
interface. The implementation part of the routine,
however, can be updated and recompiled independently of

the user's code.
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Of course, Modula-2 and Ada are so new that virtually
1o numerical software written in them exists vet., Given
Fortran's huge scientific and engineering applications
base any numerical software will be a loeng time coming.
But based on the experience with this project, it seems
that these more recent languages would be inherently
better suited for the maintenance of a library of
numerical software. Further research to test this

conjecture is required.
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4. The specific models

This chapter presents the results of the modeling
study. Each section describes the structure of a specific
model, and reports the estimated values of the parameters
obtained by the nonlinear least squares algorithm

described in Chapter 3.

4.1 Bilinear growth

This model assumes bilinear growth as shown in
Figure 2.3-3 with the additional assumption of finite
variance as shown in Figure 2.3-7. The size distribution
at a given age is assumed uniform. The four parameters
in the growth component of the model are the slope and
intercept of the juvenile growth line, and the slope and
intercept of the mature growth line.

The population is divided into eight yearly age
classes. Each month the population is determined by
multiplying the Leslie matrix by the eight element age
vector of the previous month. The initial age vector is

unknown. Each element of the initial age vector is

111



therefore a parameter in the system identification
nroblem.

In this model the elements of the Lesiie matrix have
very simple properties. The survival probabilities are
assumed to be both age and density independent,
Furthermore, a distinct functional form for the age-
specific fecundity is assumed, namely that'one and two
year olds do not spawn, and that the fecundity of all
older females is both age and density independent.
Hence, two parameters are associated with the Leslie
matrix--the survival probability and the fecundity.

So there are a total of fourteen parameters in the
nonlinear least squares problem.

* 2, juvenile slope and intercept

* 2, mature slope and intercept

* 8, initial age distribution

* 1, survival probability

* 1, fecundity
The field data for this part of the study was that of
Figure 1.3-1, the data for the entire lagoon. With 15 5
mm bins in each month, and with 10 months, the total
number of data points to fit is (15)(10) = 150. The
Jacobian J of Section 3.2 is therefore a 150 x 14 matrix.

One other model parameter remains, the variance of
the size for a given age. The nonlinear least squares

problem was solved with this parameter fixed. Ten
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different COmpuUter runs were made with the-standard
deviation of the uniform distribution at 1.0, 2.0, 3.9,
4.0, 5.0, 5.0, 7.0, 8.0, 9.0, and i0.0 mm.

The results for 1.0, 3.0, 5.0, and 7.0 mm are shown
in Figure 4.1-1. The field data are Superimposed on the
model results for eage of visual comparison. There ig ga
marked difference between part (a) which assumed a
standard deviation of only 1.0 mm, and parts (b), (c¢), and
(d) which assumed a larger spread. The Peaks in the
model histogram of part (a) are sharp and have Pronounced
gaps between them. Ag eéxpected, these gaps are filled in
when a higher variance is assumed.

A cursory comparison of part (a) with the other parts
would indicate that the fit for the 1.0 nnm standard
deviation is not ags good. This is indeed the case as
shown in Figure 4.1-2 which displays the squared error for
all ten computer runs, along with the corresponding
minimum least Squares values of the four most interesting
(biologically speaking) parameters. The minimum squared
érror was at a standard deviation of 3.0 mm. It was only
slightly higher at 4.0, 5.0, 6.0, 7.0, and 8.0 mm, but it
was substantially higher at 1.0, 2.0, 9.0, and 10.0 am.

Part (a) of Figure 4.1-2 shows the survival
probability for each computer run. It wasg very close to
0.99 in each case.

Part (b) shows the fecundity value from the Leslie
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(a) Standard deviation = 1.0 mm.

Figure 4,1-1, The bilinear growth model.
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(b) Standard deviaticn = 3,0 mm.

Figure 4,1-1., (continued)
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{c}) Standard deviation = 5.0 am,

Figure 4,1-1, (continued)
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(d) Standard deviaticn = 7.0 mm.

Figure 4.1-1. (continued)
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(a) Monthly survival probability.

Figure 4,1-2, The effect of growth variance on the bilinear
model parameters.
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Figure 4.1-2, (continued)
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Mature growth rate (mm/month)
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(¢) Mature growth rate.

Figure 4,1-2, (continued)
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Juvenile growth rate (mm/month)
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(d) Juvenile growth rate.

Figure 4,1-2, (continued)
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matrix. Its average value over the computer runs at 3.0,
4.0, 3.0, 6.0, 7.0, and 3.0 mm is 0.20 offspring who
survive tc the first age class per individual. Assuming a
50/50 ratio of male to female in the population, the
fecundity is 0.40 offspring who survive to the first age
class per female.

Part (c) shows the growth rate for mature
individuals. Its value for the 3.0 mm computer run was
significantly higher than for the 4.0, 5.0, 6.0, 7.0, and
8.0 mm runs. Its average value over the 4.0 through 8.0
mm runs is 0.31 mm/month.

Part (d) shows the growth rate for juveniles. As
with the mature growth rate, its value for the 3.0 aom run
was significantly different from the 4.0 through 8.0 om
runs. Its average over the latter group is 1.03 mm/month.

A sensitivity analysis was performed on these four
parameters. It was done numerically by fixing the values
of all the parameters at their least squares values, then
computing the squared error when the parameter in question
was varied over a range of +20%. The sensitivity
analysis was performed with the optimal values from the
5.0 mm computer run.

Figure 4.1-3 (a) shows the sensitivity analysis for
the survival probability and the fecundity parameters.

The model is very sensitive to changes in the survival

probability. A decrease of 157 in that parameter value
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Figure 4.1-3, Parameter sensitivity in the bilinear
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will more than double the squared error. However the
model appears to be very insensitive to the fecundity
value,

A moment's reflection shows why. The fecundity value
is responsible for the recruitment during the eighth month
of the simulation. During that month and the remaining
two months only the first three bins in the histogram are
affected by the juveniles that are recruited into the
population as a result of that fecundity value. That is a
total of 9 bins out of 150 bins on which the squared error
is calculated. Since only 6% of the bins are affected by
the parameter value, the squared error must be relatively
insensitive to its value. We will return to the question
of assessing the significance of the fecundity in a later
section.

Figure 4.1-3 (b) shows the sensitivity of the model
to the growth rates. They lie between the two extremes of
the survival probability and the fecundity of part (a),
with the model being more sensitive to the juvenile growth
rate than to the mature growth rate.

Figure 4.1-4 shows the estimated growth curves for
each of the ten computer runs. They were plotted from the
optimal values of the slope and intercept of the juvenile
and mature growth lines. The curves for the extreme
values of the standard deviation lie outside the grouping

of the 3.0 through 9.0 mm curves, The transition from
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juvenile growth rate to mature growth rate is between 3
and 4 years of age.

An attempt was made to find the optimal value of
variance of the uniform size distribution. The variance
was included as a fifteenth parameter in the minimization
routine. The attempt was not successful. The problem is
that there are many local minima to which the algorithm
will converge depending on the specific starting values of
the parameters. This is not surprising considering the
range of almost equal values of the squared error as a
function of standard deviation as shown in Figure 4.1-2.
This is not such a critical problem in the estimation of
the parameters since Figure 4.1-2 shows the estimated
values to be fairly independent of the assumed standard

deviation within the range of 4.0 to 7.0 mm.

4.2 Spline growth fit

Section 2.4 noted the possibility of assessing the
the validity of the model by direct comparison with the
field data. The spline fit growth model was motivated by
such a comparison.

In figure 4.1-1, based on the bilinear growth
assumption, the major peak on the right which consists of

older individuvals is pretty well matched with the model.
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But the major peak on the laft is not so well matEhed.
For these younger individuals, the best the model can do
is overestimate the number of larger individuals in the
early months of the simulation, and underestimate the
number of larger individuals in the later months, OCn the
sequence of histograms the peak from the field data
gradually "overtakes" the peak from the model.

So to improve the structure of the model we need a
way to let the younger individuals grow at a faster rate
without affecting the rate of growth of either the
juveniles or the adults. The bilinear growth model
contained four growth parameters, juvenile slope and
intercept and mature slope and intercept. The spline fit
model adds one more degree of freedom in the growth
component of the model.

The idea is to use the method of cubic splines
[Vand83] to give the size versus age relationship a
curvilinear nature. Five degrees of freedom were obtained
by placing five spline knots at equally spaced intervals
of age from 0 to 8 years. That is, the knots were at the
O, 2, 4, 6, and 8 year points. The size value of each
knot was allowed to vary as a parameter in the
minimization. Sizes between the knots were then given by
the interpolating cubic polynomial. Hopefully, adding a
degree of freedom will produce a better overall fit of the

model to the field data.
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The additional assumption of finite variance as shown
in Figure 2.3-7 was made. The only difference is thart
the growth relationship is now curvilinear instead of
piecewise linear. The size distribution at a given age 1is
again assumed uniform. All other aspects of the model
are unchanged from the bilinear model.

The Jacobian J of Section 3.2 is now a 150 x 15
matrix. The nonlinear least squares problem was solved
with the growth variance parameter fixed. Ten different
computer runsg were made with the standard deviation of the
uniform distribution at 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
8.0, 9.0, and 10.0 mm.

The lowest squared error océurred at a standard
deviation of 4.0 mm. The results for that case are shown
in Figure 4.2-1. The inclusion of an extra degree of
freedom in the growth component of the model is having the
desired effect. In months 5 through 10 the large peak on
the left tracks the field data much more closely without
affecting the good fit of the more mature individuals.

Figure 4.2-2 displays the squared error for five of
the ten computer runs, along with the corresponding
minimum least squares values of the survival probability
and the fecundity. The scale is identical to that of
Figure 4.1-2 for ease of comparison. The value of the
minimum squared error is 0.34 compared with 0.40 in the

binliear model.
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Part (a) of Figure 4.1-2 shows the survival
probability. It was again very close to 0.99 in each
case.

Part (b) shows the fecundity value from the Leslie
matrix. Its value at 4.0 mm is 0.29 offspring who survive
to the first age class per individual. Assuming a 50/50
ratio of male to female in the population, the fecundity
is 0.58 offspring who survive to the first age class per
female.

A sensitivity analysis was performed on the Leslie
parameters and the growth parameters at 4.0 mm standard
deviation. Figure 4.2-3 (a) shows the same behavior
of the sensitivity to the survival probability and the
fecundity as in the bilinear model.

Part (b) of the figure shows the sensitivity to the
spline knot values. The squared error is not as
sensitive to the knot values at the endpoints (curves a
and e in Figure 4.2-3 (b)) as it is to the knot values at
the interior points. That is to be expected since the
interior knots are in the "middle of the data" and
therefore affect the fit to a greater degree than the end
knots.

Figure 4.2-4 shows the estimated growth curves for
five of the ten computer runs. They were plotted from the
optimal values of the spline knots and show the cubic

polynomials of the fit.
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The software which generated the spline fit growth
curve was implemented in a general way so that n equally
spaced spline knots could be placed between ages O and 8
years. In addition to the 5 spline case, computer runs
were made with 6, 7, 8, 9, and 10 equally spaced splines.

The results were less than satisfactory for two
reasons. First, one would expect the minimum squared
error to decrease as the number of degrees of freedom in
the model increases. Although this was generally true it
did not always hold. Sometimes by adding an extra spline
the minimum squared error actually increased, albeit
slightly.

Another problem was the physically unrealistic shape
of the estimated growth curves. As splines are added they

create wiggles that are an artifact of the model.

4.3 Trilinear growth

The trilinear growth model was motivated by the
problem of the unrealistic characteristics of the growth
curves produced by the spline fit models.

The idea is to increase the number of degrees of
freedom in the growth component, not by increasing the
number of splines in a curvilinear fit, but by increasing

the number of segments in a piecewise linear fit.
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Six degrees of freedom in the growth component were
obtained by assuming that growth occurs in three stages -
juvenile, midlife, and mature - with a slope and intercept
for the line at each stage.

The additional assumption of finite variance as shown
in Figure 2.3-7 was made. The only difference is that the
growth relationship is now trilinear instead of bilinear.
The size distribution at a given age is again assumed
uniform. All other aspects of the model are unchanged
from the bilinear model.

The Jacobian J of Section 3.2 is a 150 x 16 matrix.
The nonlinear least squares problem was solved with the
growth variance parameter fixed. Ten different computer
runs were made with the sténdard deviation of the uniform
distribution at 1.0, 2,0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0,
9.0, and 10.0 mm.

As before, the lowest squared error occurred at a
standard deviation of 4.0 mm. The results for that case
are shown in Figure 4.3-1, Now the model tracks the field
data exceptionally well compared with the previous models.
In particular, both major peaks are accounted for by the
model throughout the simulation.

Figure 4.3-2 displays the squared error for five of
the ten computer runs, along with the corresponding
minimum least squares values of the survival probability,

the fecundity, and the growth rates. The scale is
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identical to that of Figures 4.1-2 and 4.2-2 for ease of
comparison. The value of the minimum squared error is
0.15 compared with G.34 in the spline fit model and 0.40
in the bilinear model.

Part (a) of Figure 4.3-2 shows the survival
probability for each computer run., TIts value is 0.975 in
the best (4.0 mm) fit case.

Part (b) shows the fecundity value from the Leslie
matrix. Its value at 4.0 mm is 0.27 offspring who survive
to the first age class per individual. Assuming a 50/50
ratio of male to female in the population, the fecundity
is 0.54 offspring who survive to the first age class per
female.

Part (c) shows the growth rate for mature
individuals. Its value for the 4.0 mm computer run is
0.41 mm/month.

Part (d) shows the growth rate for midlife
individuals. Its value for the 4.0 mm computer run is
2.70 om/month.

Part (e) shows the growth rate for juveniles. Its
value is 0.98 mm/month, higher than mature individuals but
much less that midlife individuals.

The sensitivity analysis is shown in Figure 4.3-3.
The model shows the usual sensitivity to the survival
probability and insensitivity to the fecundity. Also note

that the model is least sensitive to the juvenile growth
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rate compared to the other rates.
Figure 4.3-4 shows the estimated growth curves for
five of the ten computer runs. The midlife stage isg

between 1 and 2 vears.

4.4 Age specific survival probabilities

Another improvement in the structure of the model is
possible by relaxing the assumption that the survival
probabilities are age independent. In this variation of
the model the single age independent survival probability
parameter is replaced by a set of parameters which are the
age specific survival probabilities.

A straightforward implementation of this idea would
be to replace the age independent survival probability
with the seven separate off-diagonal elements of the
Leslie matrix. In keeping with the goal of using a
minimum number of parameters in the model, however, we
elect to replace the age independent parameter with only

four parameters as shown in the table below.
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Age class Survival

(years) probability
0 p [1]
1 p [1]
2 p [3]
3 p [3]
4 p [5]
5 p [3]
6 p [7]
7 p (7]

The assumption of finite variance as shown in Figure
2.3-7 is made. The growth relationship is assumed to be
trilinear. The size distribution at a given age is again
assumed uniform., The 19 parameters of the model are

* 2, juvenile slope and intercept

* 2, midlife slope and intercept

* 2, mature slope and intercept

8, initial age distribution
* 4, survival probabilities

* 1, fecundity

The Jacobian J of Section 3.2 is a 150 x 19 matrix.
The nonlinear least squares problem was solved with the
growth vériance parameter fixed. Seven different computer
runs were made with the standard deviation of the uniform
distribution at 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, and 8.0 nm.

The lowest squared error occurred at a standard
deviation of 5.0 mm. The results for that case are shown

in Figure 4.4-1. A detailed visual comparison of this
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figure with Figure 4.3-1 shows a noticeable-improvement in
the fit. In fact the squared error in this model is 137
iess than the squared error in the age independent
survival probability model of Figure 4,3-1.

Figure 4.4-2 displays the squared error for five of
the seven computer runs, along with the corresponding
minimum least squares values of the fecundity and the
growth rates. The scale is identical to that of Figures
4.1-2, 4,2-2, and 4.3-2 for ease of comparison.

Part (a) of Figure 4.4-2 shows the fecundity value
from the Leslie matrix. 1Its value at 5.0 mm is 0.26
offspring who survive to the first age class per
individual. Assuming a 50/50 ratio of male to female in
the population, the fecundity is 0.52 offspring who
survive to the first age class per female.

Part (b) shows the growth rate for mature
individuals. Its value for the 5.0 mm computer run is
0.38 mm/month.

Part (c) shows the growth rate for midlife
individuals. Its value for the 5.0 mm computer run is
2.80 mm/month,

Part (d) shows the growth rate for juveniles. Its
value is 0.95 mm/month, again higher than mature
individuals but much less that midlife individuals.

The sensitivity analysis is shown in Figure 4.4-3,

Since the effect of the single age independent survival
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Figure 4.4-3, Parameter sensitivity in the age specific
survival probability model.
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probability is now shared by p([l], pl3], p(5], and p{7].
the model is not as sensitive to each of these four
parameters as it was to the single parameter as shown in
Figure 4.3-3 (a). The model shows the usual insensitivity
to the fecundity. As before, it is least sensitive to the
juvenile growth rate compared to the other rates.

The sensitivity is a measure of how rapidly the
squared error increases as a given parameter deviates from
its estimated value. If the sensitivity is high, as it is
for the midlife growth rate, we have confidence in the
estimated value, since a small deviation from that value
increases the squared error a great deal. But what if the
sensitivity is low, as it is for the fecundity? We have
seen that the reason for its low sensivity is that the
fecundity only has an effect on a few of the 150 bins in
the simulation. Do we therefore have less confidence in
the estimation of the fecundity value?

One approach to the problem of estimating the
accuracy of the computed parameter values is to use
nonparametric statistics. These methods have the
advantage of being free from normal distribution theory,
but at the cost of a stiff computational requirement.

The method chosen here is the jackknife procedure
(Efro79]. Suppose we have an estimate, £, of a parameter,
r, based on n observations. A common measure of accuracy

of the estimate is the standard deviation,
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f- A 2
s=VE[(r-I‘) I,
the root mean square difference of #, based on the n data
points, from r. The Jackknife estimate & of s involves
recomputing the estimate f(i) on the set of data points
obtained by deleting the ith data point from the original

data set. The estimate of s is then

A n - l n A A 2
] =¢ - i=1(r(i) - )

The question in this study is "what constitutes a

data point?". At the finest granularity, an individual
bin in the 150 bins of the time sequence of histograms is
a data point. But 150 computer runs to obtain an estimate
of the accuracy is out of the question. Instead we choose
to define a data point, for purposes of the jackknife
procedure, as the histogram for a single month,.

Ten additional computer runs were made, deleting, in
turn, the size histogram for one month from the field
data. Figure 4.4-4 shows the results. In all cases the
estimate of the accuracy is less than 3% of the estimate
of the parameter value. There appears to be no
correlation between the sensitivity of the parameter value
and the jackknife estimate of accuracy,

Figure 4.4-5 shows the estimated growth curves for

five of the ten computer runs. They are remarkably
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consistent regardless of the assumed variance of the
growth distribution. The midlife stage is between 1.3 and

2 years.

4.3 Spatial variations

The age specific survival probability model of the

previous section is successful in estimating the model
parameters of the system comprising the entire lagoon.
The data can also be examined by station number as shown
in Figure 1.3-2. The purpose of this section is to apply
the previous model to the data as a function of position
in the lagoon,

The data in Figure 1.3-2 shows rather severe
fluctuations due to the small sample size compared with
the sample size of the lagoon as a whole. To increase the
sample size the stations were gr&uped into the pairs (2,
3), (4, 5), (6, 7), and (8, 9). The age specific survival
probability model was used to fit each of the four data
sets assuming a standard deviation of 0.5 mm in the size
versus agerrelationship. Figure 4.5-1 shows the results.
The vertical axis is 0.8 individuals per square meter full
scale for stations (2, 3) and (4, 5), compared with 0.4
full scale for stations (6, 7), (8, 9), and for all the

data presented previously for the lagoon as a whole.
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(a) Stations 2, 3

Figure 4.5-1. Spatial variations in groups of two
consecutive stations.
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Figure 4.5-1., (continued)
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A grouping of four stations was also made with (2, 3,
4, 3 and (6, 7, 8, 9). These results are shown in Figure
4.5-2. A summary of the estimated parameter values, along
with the results for the entire lagoon from the previous
section is given in Figure 4.5-3. The survival
probabilities have been converted to their equivalent
annual values. The yearly survival probability py is

related to the corresponding monthly probability Pn by
12

PY = Py -

The fit to the model is consistently worse for those
stations on the west end of the lagoon. The squared error
for the nonlinear fit for stations (2, 3, 4, 53) is more
than four times the squared error for stations (6, 7, 8,
9). This contrast of the fit to the model may be an
indication of the instability of the environment on the
west end compared to the east end.

The fecundity also shows a consistent trend as a
function of position in the lagoon. It is about ten times
greater at the west end of the lagoon compared to the
east end. This is consistent with the observation made
in Section 2.2 that the planktonic larvae migrate into the
lagoon from the protected outer coast population, since
the mouth of the lagoon is at the west end. These
fecundity values, therefore, may not characterize those

females in the environment of the lagoon.

The survival probabilities show no consistent trend
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Figure 4.5-2. Spatial variations in groups of four
consecutive stations.
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(b) Stations 6, 7, B, 9
Figure 4.5-2, (continued)
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in their spatial variations.

The juvenile growth rate appears to be about 203
greater at the east end compared to the west end, as does
the mature growth rate. There is no such discernable

trend for the midlife growth rate.

4.6 Immigration

All of the models discussed so far were applied to
the 1977 data. This section describes the application of
the models to the 1982 data.

Figure 4.6-1 shows the age specific survival
probability model applied to the more recent data. As in
Section 4.4, the model contained 19 parameters. The five
months of field data are for 7-82, 8-82, 9-82, 10-82, and
12-82. There is a one month gap between the penultimate
and the final month during which no data was taken. The
number of data points to fit is 15 bins per month times 35
months. The Jacobian in the nonlinear least squares
algorithm is 75 x 19,

In this time sequence, recruitment to the population
showed up in the model during the last month. The
calendar month for recruitment to the population is in
fact unchanged from the previous models. Notice, however,
that during the second month of the time sequence a peak
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Field data

v Model

(2]

Figure 4.6-1. The model without immigration for the
1982 data.
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of voung individuals appears in the population. It is
speculated that sometimes with the right combination of
high tides and turbulent ocean conditions, waves wash over
the barrier beach and carry some individuals from the high
density proctected outer coast population.

A tacit assumption in all of the previous models was
a closed system. Neither immigration or emmigration was
considered. If there is evidence of immigration from the
field data the model can be modified accordingly.

Recall from Section 2.1 that the evolution of the

population is described by
A a(t) = a(t+l).

We can modify the basic model to include immigration by

adding an immigration vector I(t). The modified model is

now
A a(e) + I(e) = a(e+l).

The immigration vector is conceptually easy to add to
the mathematical model. But it has serious ramifications
to the system identification problem. If the immigration
is measureable as a separate component, it can simply be
added in at the appropriate time in the simulation without
changing the parameter space of the model. In this case,
however, the immigration is inferred from the field data.

To include it we must change the parameter space.
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In the model I(t) is assumed to be zero except for
the second month of the simulation. In that month the 8
components of the vector, one for each age class, are
added to the population. Each one of these components
becomes an additional parameter in the parameter space of
the nonlinear least squares problem. There are now a
total of 27 parameters.

* 2, juvenile slope and intercept

* 2, midlife slope and intercept

* 2, mature slope and intercept

* 8, initial age distribution

* 8, immigration vector during second month

* 4, survival probabilities

* 1, fecundity

The Jacobian is a 75 x 27 matrix. The resulting
nonlinear least squares problem was solved as shown in
Figure 4.6-2. The improvement to the fit occurs primarily
in the first two months of the simulation. The following
table compares the two models. The survival probabilities

are annualized.
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Without With
immigration immigration

Squared error 0.0580 0.0441
Fecundity 0.802 0.882
p [1] 0.636 0.201
p (3] 0.142 0.141
p [5] 0.995 0.311
p [7] 0.862 0.806
Juvenile rate 0.722 0.789
Midlife rate 2.845 2.832
Mature rate 0.389 0.419
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—— Field data

Figure 4,6-2, The model with immigration for the
1982 data,

177



5. Conclusions

The goal of this dissertation was to construct a
mathematical model which describes the growth dynamics of

the Dengraster eéxcentricus population in the Pt. Mugu

lagoon. The specific function of the model was to
estimate the values of the controlling parameters in the
ecological system from a time sequence of ten monthly size
histograms. The model was in fact successful in
estimating these values,.

Figure 5.1-1 summarizes the estimated values., The
original intent was to model the growth function as
bilinear with age, as is common in the literature with
this species. The modeling effort with this field data,
however, indicates that the growth function is better
described by a trilinear relationship. A reduction in the
squared error by more than a factor of two is obtained
with the trilinear assumption.

The model was also used to investigate the spatial
variations of the controlling parameters along the length
of the lagoon. The fecundity increased markedly from the
east to the west end of the lagoon. The juvenile growth
rate and the mature growth rate decreased somewhat from

east to west.
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Model

Trilinear ASSP

Bilinear Spline

Number of

parameters 14 15 16 19

Squared

error 0.385 0.337 0.149 0.129

Fecundity 0.202 0.293 0.269 0.258

Annualized 0.780

survival 0.912 0.978 0.742 0.776

probability 0.987
0.837

Juvenile

rate 0.910 na 0.975 0.948

Midlife

rate na na 2.699 2.800

Mature

rate 0.405 na 0.411 0.377

* Note: Age specific survival probability model

Figure 5.1-1.

A summary of the four models.

179



The model was also modified to take into account the
possibility of immigration from outside the system. A
recent time sequence of five monthly size histograms from
the lagoon was successfully fit to the immigration model.
The growth rates were essentially the same as those
determined from the data of the ten month sequence five
years earlier. The fecundity, however, was substantially
greater,

Just as important as the specific parameter values
estimated for this system, if not more so, is the
methodology developed in this dissertation for the
identification of the system. One thing we do not have in
the literature is a shortage of biological and ecological
models, many of them quite complex. We may even have more
models and analyses of models than we have field data!
What we do not have enough of, I believe, is the
application of the models to the field data. Many
practitioners simply do not take advantage of the wealth
of theory which has been developed by the modelers.

It is a thesis of this work that one of the best uses
to which a particular ?athematical model of a biological
system can be put, is as a tool in the estimation of
physical quantities. This is the whole idea behind linear
regression, a common tool for simple linear models, It

should be the idea behind our more complicated nonlinear

models as well.
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The methodology employed in this study differed from
the standard methodology in that the various components of
the system - growth, recruitment, and mortality - were
combined into a single system. The identification was
performed system wide with all of the components in place.
The contribution of this dissertation is the different way
in which the theory was applied to the field data.

Two advantages accrued from this approach. First,
the growth curves were estimated directly from the time
sequence of the size histograms. This method of
extracting the growth curves is apparently unique to this
study. It should be of general value in biological
modeling since the size of an organism is invariably
easier to measure than its age. Hence, time sequences of
size histograms are cheaper to obtain than time sequences
of age distributions.

The second advantage to the system wide approach is
that the model simulates the field data directly. A
visual comparison of the model with the field data can
often give a visual clue as to how the structure of the
model can be improved. That is precisely what happened in
this study with the growth curves.

There is much room for further research here. For
example, this model assumed that the elements of the
Leslie matrix were density independent. A density

dependent fecundity is not identifiable in this system
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because recruitment occurs only once with tﬁis field
data., The value of the estimated fecundity is one data
peint of the density dependent fecundity relationship, at
the particular density value of the system at the time of
recruitment. It would be interesting to apply the
identification techniques developed here to sets of data
which exhibit the cyclic property characteristic of

density dependent systems.
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6. Appendix

6.1 Raw data examples

The following listing is the raw data for the month

station number

sample number
test length (mm)
f-‘O = alive, 1 = dead

5 20 511 6 22 11 0 712290 721 23
6 13 27 O 6 22 12 ¢ 713310 Y7 21 42
6 14 9 0 6 22 20 0 713 31 0 7 21 38
6 15 81 6 23 90 714 29 0 7 21 28
6 16 11 O 6 23 10 0 7 15 370 7 21 30
6 17 24 0 6 23 13 0 716 31 0 7 21 5
6 17 11 O 6 23 13 0 717 41 0 8 6 22
6 17 7 0 6 23 14 0 717 45 0 8 6 15
6 18 17 0 6 24 90 718 70 8 615
6 19 60 7 10 340 7 18 48 0 8 6 17
619 90 7 10 43 0 718 41 0 8 6 9
6 20 10 0 711 28 0 719 31 0 8 6 10
6 20 10 O 711 28 0 719 70 8 718
6 20 40 7 11 34 0 7 20 28 0 8 719
6 20 50 7 11 34 0 7 21 40 0 8 715
6 21 50 711 60 721 350 8 8 42
6 21 60 711 6 0 7 21 30 0 8 8 43
6 21 60 711 70 721 290 8 8 40
6 21 70 711 70 721 29 0 8 8 38
6 21 990 7 12 34 0 721 34 0 8§ 811
6 21 32 O 712230 7 21 280 8 8 10
6 21 70 712 36 0 721 24 0 8 9 39
6 21 8 0 7 0 721 25 0 8 9 34

12 38
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6.2 Program listing example
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Pascal Compiler IV.1 Page 1

program MinLeslie (input, output);

const
NMax = 1l4; (Maximum number of parameters)
MMax = 150; {Max number of data points})
MaxBin = 15; (Max number of histogram bins)
BinSize = 5.0; {(In millimeters)
MaxYear = 8; {Maximum age class in years]
MaxYearMl = 7; {MaxYear - 1)
MaxMonths = 10; (Max number of months simulated)
FirstYear = 77:
ThisYear = 82;

type
ArcN array [1..NMax] of real;

ArrNxN array [l..NMax, 1..NMax] of real:
ArrMxN array {1..MMax, 1..NMax] of real;
ArrNxM = array [l1..NMax, 1..MMax] of real:
PrOptionType = (

ArrM = array [l..MMax] of real;

B o = e e e e e
OV ~OWMEWRFOWE U &~ WP

XTrace,
FTrace,
21 SqFTrace,
22 ItrStatusTrace,
23 NewJITrace,
24 NewJInvTrace,
25 StepLenTrace,
26 StepTypeTrace);
27 PrSetType = set of PrOptionType;
28 MonthRange = 1..12;
29 YearRange = FirstYear..ThisYear;
30 RepMatType =
31 record
32 Fecundity : real;
33 ProbSurvive : real
34 end;
35 PopType =
36 record
37 RecruMonth : MonthRange;
38 CurrMonth : MonthRange;
39 CurrYear : YearRange;
40 AgeDistr : array [l..MaxYear] of real
41 end;
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Pascal Compiler IV.1

42
43
4é
45
46
47
48
49
50
51
52
33
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

var

Page 2
GrowthType =
record
JuvSlope real;
JuvIntercept real:
MatureSlope real;
Maturelntercept real;
HalfRange real
end;
ModPrmType =
record

InitAgeDistr : PopType:
GrowthParams : GrowthType;
RepMat t RepMatType

end;

SizeArray = array [1l.

.MaxBin] of real;:

ListOfSizeDistr = array [l..MaxMonths] of

record

Month : MonthRange;

Year : YearRange:

Size : SizeArray

end;
X : ArrN; {Vector of parameter values)
F : ArrM; (Vector of errors)
SqF $. real; {Squared error}
DeltaX : real; {Finite difference interval)
MaxDist : real; {Max distance to optimum)
Acc : real; {Desired accuracy})
MaxCalls : integer;
PrintOptions : PrSetType:
M ¢ integer;
ModelParams : ModPrumType;
RealData ¢t ListQfSizeDistr;
SimData : ListQfSizeDistr;
NumMonths : integer;

192



Pascal Compiler IV.1 Page

78

79 procedure GetMinOptions ¢

80 var DeltaX : real:

81 var MaxDist : real:

82 var Acc : real;

83 var MaxCalls : integer);
84 var

85 Response : char;

86 begin

87 write ('Default minimization values? (y or n):
a8 read (Response);

89 writeln;

90 if Response in ['y','Y'] then
91 begin

92 DeltaX := 0.001:

g3 ' MaxDist := 10.0;

94 Acc := 0.001

g5 end

96 else

97 begin

98 write ("Delta X: ');

99 readln (DeltaX);
100 write ('Maximum distance to minimum: '):
101 readln (MaxDist);

102 write ('Accuracy: ');
103 readln (Acc)
104 end;

105 write ('Maximum calls:

106 readln (MaxCalls)

107 end:

193

"}



Pascal Compiler IV.1 Page 4

108
109 procedure GetModeiParams (var ModelParams :ModPrmType);
110 var

111 Data 1 text:

112 I : integer;

113 StandardDev : real;

114 FileName : string;

115 begin

116 writeln;

117 write ('File of initial model parameters? ');
118 readln (FileName);

119 FileName := concat (FileName, '.TEXT'):
120 reset (Data, FileName):

121 with ModelParams do

122 _ begin

123 with RepMat do

124 begin

125 read (Data, Fecundity);

126 readln (Data):

127 read (Data, ProbSurvive);

128 end;

129 with InitAgeDistr do

130 begin

131 read (Data, RecruMonth);

132 for T :=2 1 to MaxYear do

133 read (Data, AgeDistr [I])

134 end;

135 with GrowthParams do

136 ~ begin

137 read (Data, JuvSlope, JuvIntercept,
138 MatureSlope, MaturelIntercept, StandardDev):
139 HalfRange := StandardDev * sqrt (12) / 2.0
140 end

141 end;

142 close (Data)

143 end;
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144

145 procedure GetRealData (

146 var NumMonths : integer

147 var RealData : ListOfSizeDistr);
148 var

149 Data T text:

150 FileName : string;

151 I, J : integer;

152 begin

153 writeln;

154 write ('File of real data? ');
155 readln (FileName):

156 FileName := concat (FileName, '.TEXT');
157 reset (Data, FileName);

158 read (Data, NumMonths):

159 for I := 1 to NumMonths do

160 with RealData [I] do

161 begin

162 read (Data, Month, Year):
163 for J := 1 to MaxBin do
164 read (Data, Size [J])
165 end;

166 close (Data)

167 end;
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168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

205
206
207
208
209
210
211
212
213
214
215
216

procedure GetPrintOptions (var PrintOptions :PrSetType);
var
Response : char;

procedure GetX;

begin

write ('Trace X? ');

read (Response);

writeln;

if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [XTrace]
end;

procedure GetF;
begin
write ('Trace F? ');
read (Response);
writeln;
if Response in ['Y', 'y'] then
PrintOptions := PrintQOptions + [FTrace]
end;

procedure GetSqF;
begin
write ('Trace "error? ');
read (Response);
writeln;
if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [SqFTrace]
end;

procedure GetItrStatus;
begin
write ('Trace IterStatus? ');
read (Response);
writeln;
if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [ItrStatusTrace]
end;

procedure GetNewlJ;
begin
write ('Trace new Jacobian? ');
read (Response);
writeln;
if Response in ['Y', 'y'] then

PrintOptions := PrintOptions + [NewJTrace]

end;
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217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243

procedure GetNewdInv;

begin
write ('Trace new inverse Jacobian? ');:
read (Response);
writeln;
if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [NewJInvTrace]
end;

procedure GetSteplen;

begin
write ('Trace maximum step length? ');
read (Response);
writeln:
if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [StepLenTrace]
end;

procedure GetStepType:

begin
write ('Trace type of step? '):
read (Response):
writeln;
if Response in ['Y', 'y'] then
PrintOptions := PrintOptions + [StepTypeTrace]
end;
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244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

begin {GetPrintQOptions}
PrintOptions := [];
write ('Trace? (y or n): ')
read (Response);
writeln:
if Response in {'y', 'Y'] then
begin
write ('Default trace? (y or n): ');
read (Response);
writeln;
if Response in ['y', 'Y'] then
PrintQOptions := [XTrace, SqFTrace,
ItrStatusTrace, StepLenTrace, StepTypeTrace]
else
begin
GetX:
GetF;
GetSqF;
GetItrStatus;
GetNewlJ;
GetNewJInv;
GetSteplen;
GetStepType
end
end
end;
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272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

procedure FromXVector (

& o — —

var ModelParam : ModPrmType;

X : ArrN):

This procedure converts the Model 5 parameters
from their logical structure into the vector X
for the minimization routine. Performs )
scaling on the parameters JuvIntercept and |}
MaturelIntercept. |}

I : integer;

begin
with ModelParam do

begin
with InitAgeDistr do
for I := 1 to MaxYear do
AgeDistr [I] := abs (X [I]):
with GrowthParams do
begin
JuvSlope := X [9];:
JuvIntercept := 100.0 * X [10];
MatureSlope := X [11];
MatureIntercept := 100.0 * X [12]
end;
with RepMat do
begin
Fecundity := abs (X [13]);
ProbSurvive := X [14]
end
end

end;
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307
308
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314
315
316
317
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319
320
321
322
323
324
325
326
327
328
329
330
331
332

procedure ToXVector (

< —

ModelParam : ModPrmType;

var X : ArTN);

This procedure converts the Model 5 parameters
from the X vector into their logical structure
for the simulation routine. Performs the )
inverse scaling of FromXVector. |}

I : integer;

begin
with ModelParam do

begin
with InitAgeDistr do
for I := 1 to MaxYear do
X [I] := AgeDistr [I];
with GrowthParams do
begin
X [9] := JuvSlope;
X [10] := 0.01 * JuvIntercept;
X [11] := MatureSlope;
X [12] := 0.01 * Maturelntercept
end;
with RepMat do
begin
X [13] := Fecundity;
X [l4] := ProbSurvive
end
end

end:;

200

)
}



Pascal Compiler IV.l Page 11

333
334
335
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337
338
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343
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346
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352
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355
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358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373

procedure FromFVector (

var SimData : ListQfSizeDistr;

RealData : ListOfSizeDistr;
F : ArrM);
( This procedure recovers the simulated data, }

{ SimData, from RealData and the error vector F.
var
I, J, K : integer;
begin
K 1= 1;
for I := 1 to NumMonths do
for J := 1 to MaxBin do
begin
SimData [I].Size [J] :=
F [K] + RealData [I].Size [J];
K :=« K +# 1
end
end;

procedure ToFVector (

var SimData : ListOfSizeDistr;
var RealData : ListOfSizeDistr;
var F : ArrcM);
This procedure calculates the error vector, |} _
F, as the difference between the real data }
and the simulated data. |}
SimData and RealData are called by reference }
for purposes of efficiency. }
ar
I, J, K : integer;
begin
K = 1:
for I := 1 to NumMonths do
for J := 1 to MaxBin do
begin
F [{K] :=
SimData [I].Size [J] - RealData [I].Size [J];
K := K +1
end

€ e

end:
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374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397

procedure CalcSizeDistr ¢

& —

CurrentAgeDist : PopType;
GrowthParams GrowthType;
var SizeDistr SizeArray);

This procedure calculates the size distribution

from the current age distribution and the
growth parameters. |}

I : integer;
BEinNum t integer;
BNum ¢ integer;
MonthlyAge : integer;
LowBin ! integer;
LBin ¢ integer;
HighBin : integer;
HBin : integer;
InverseRange : real;
BinFraction : real;
HRange : real;
DeltaMonth : integer;
JuvSize : real:
MatureSize : real;
Size t+ real;
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398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435

begin
for I := 1 to MaxBin do
SizeDistr [I] := 0.0;
with CurrentAgeDistr, GrowthParams do
begin
if CurrMonth < RecruMonth then
sDeltaMonth := CurrMonth - RecruMonth + 12
alse
DeltaMonth := CurrMonth - RecruMonth;
for I := 1 to MaxYear do
begin
MonthlyAge := DeltaMonth + 12 * (I - 1);
JuvSize :=
JuvSlope * MonthlyAge + JuvIntercept;
MatureSize :=
MatureSlope * MonthlyAge + Maturelntercept:
(WRITELN ('MonthlyAge = ', MonthlyAge);}
{(WRITE ('JuvSize = ', JuvSize :10:5);:)
{WRITELN (' MatureSize = ', MatureSize :10:5);}
if MatureSize > JuvSize then
Size := JuvSize
elsge
Size := MatureSize:
if Size > HalfRange then
HRange := HalfRange
else
HRange := Size;
{(WRITE ('Size = ', Size :10:3):}
{WRITELN (' HRange = ', HRange :10:3);)
InverseRange := 1.0 / (2.0 * HRange);
BinFraction := BinSize * InverseRange;
LowBin :=
trunc ((Size - HRange) / BinSize) + 1:
HighBin :=
trunc ((Size + HRange) / BinSize) + 1;
{WRITE ('LowBin = ', LowBin);}
{WRITELN (' HighBin =« ', HighBin);]}
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437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

459
460

461
462
463
464
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466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

if LowBin = HighBin then

begin
if LowBin > MaxBin then
LowBin := MaxBin;
SizeDistr [LowBin] :=
SizeDistr [LowBin)]) + AgeDistr [I]:
end

else

begin
if LowBin > MaxBin then
LBin := MaxBin
else
LBin := LowBin;
{WRITE ('LBin = ', LBin):}
SizeDistr [LBin] := SizeDistr [LBin] +
AgeDistr [I] * InverseRange *
(LowBin * BinSize - Size + HRange);
(WRITELN (' SizeDistr [LBin] = ',)}
{SizeDistr [LBin] :10:3);}
for BinNum :=
(LowBin + 1) te (HighBin - 1) do
begin
if BinNum > MaxBin then
BNum := MaxBin
else
BNum := BinNum;
(WRITE ('BNum = ', BNum);}
SizeDistr [BNum] := SizeDistr [BNum] +
AgeDistr [I] * BinFraction:
{(WRITELN (' SizeDistr [BNum] = ',}
{SizeDistr [BNum] :10:3))
end:
if HighBin > MaxBin then
HBin := MaxBin
else
HBin := HighBin;
{WRITE ('HBin = ', HBin):}
SizeDistr [HBin] := SizeDistr [HBin] +
AgeDistr [I] * InverseRange *
(Size + HRange - (HighBin - 1) * BinSize):
[WRITELN (' SizeDistr [HBIN] = ',
{SizeDistr [HBIN] :10:3)}
end

end {for)}

end {with};

end:
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484
485
486
487
488
489
490
491
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495
496
497
498
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500
501
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503
504
505
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507
508
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511
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514
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516
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519
320
521
522
523
524
325
526
527
528
529
530

procedure StepMonth (

CurrentAgeDistr : PopType;

RepMat : RepMatType;

var NextAgeDistr : PopType);

*¥%k Model 5 *%*

This procedure steps the simulation through |}
one month. If it is a recruitment month it ]
calculates the next age distribution from )

the current age distribution, the fecundicy ]
row of the Leslie matrix, and the off diagonal )
uniform survival probability. If it is not |}

a recruitment month it usges only the diagonal }
survival probabilities. )

K e e " e ——y

ar
Temp : real;
I ¢ integer;
begin

NextAgeDistr := CurrentAgeDistr;
if CurrentAgeDistr.CurrMonth = 12 then
begin
NextAgeDistr.CurrMonth := 1;
NextAgeDistr.CurrYear :=
CurrentAgeDistr.CurrYear + 1
end
else
NextAgeDistr.CurrMonth tm
CurrentAgeDistr.CurrMonth + 1;
with RepMat do
begin
if NextAgeDistr.CurrMonth =
NextAgeDistr.RecruMonth then
begin
Temp := 0.0;
for I := 3 to MaxYear do
Temp := Temp +
Fecundity * CurrentAgeDistr.AgeDistr [I]:
NextAgeDistr.AgeDistr [1] := Temp;
for I := 2 to MaxYear do
NextAgeDistr.AgeDistr [I] :=
CurrentAgeDistr.AgeDistr [I-1] * ProbSurvive
end
else
for I := 1 to MaxYear do
NextAgeDistr.AgeDistr [I] :=
CurrentAgeDistr.AgeDistr [I] * ProbSurvive
end
end;
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532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
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554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

procedure Simulate (

NumMonths : integer;
RealData : ListQfSizeDistr:
ModelParams : ModPrmType;
var SimData : ListQOfSizeDistr):
This procedure simulates the Dendraster system
through NumMonths months. It calculates )
SimData from the model parameters. RealData )}
is only used to supply the month and year }
the real data was acquired. Values of the }
real data are not used. )}

ar

G e —

CurrentAgeDistr : PopType;
NextAgeDistr t PopType;
I : integer;
begin
writeln;

CurrentAgeDistr := ModelParams.InitAgeDistr;
I :=1;
SimData [I].Month := RealData [I].Month;
SimData [I].Year := RealData [I].Year:
CalcSizeDistr (CurrentAgeDistr,
ModelParams.GrowthParams, SimData [I).Size);
I 1= 2;
while I <= NumMonths do
begin
StepMonth (CurrentAgeDistr,
ModelParams.RepMat, NextAgeDistr);
CurrentAgeDistr := NextAgeDistr;
if (CurrentAgeDistr.CurrMonth =
RealData [I].Month) and
(CurrentAgeDistr.CurrYear =
RealData [I].Year) then
begin
SimData [I].Month := RealData [I].Month;
SimData [I].Year := RealData {[I].Year;
CalcSizeDistr (CurrentAgeDistr,
ModelParams.GrowthParams, SimData [I].Size);
I := I +1
end
end
end;
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574

575 procedure Evaluate (var F : ArrM; X : ArrN);

576 ( This procedure is called by the minimization }
577 { procedure. It calculates the error vector F )
578 { from the vector of parameters, X. )

579 begin

580 FromXVector (ModelParams, s

581 Simulate (NumMonths, RealData, ModelParams, SimData);
582 ToFVector (SimData, RealData, F)

583 end;

584
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385
586 procedure FileFinal (X : ArrN; F : ArrM: SqF : real);
587 var

588 Data ! text:

589 Response : char:

590 Title : string;

391 FileName : string; '
392 I, J : integer;

593 StandardDev : real;

594 { This procedure files the final results for }
585 { plotting and documentation. }

596 begin

597 write ('File final results? (y or n): ');
598 read (Response);

599 writeln;

600 if Response in ['Y', 'y'] then

601 begin

602 FromFVector (SimData, RealData, F):

603 FromXVector (ModelParams, X);

604 writeln ('Title for documentation? ');
605 readln (Title);

606 write ('Name of output file? ');

607 readln {(FileName):

608 FileName := concat (FileName, '.TEXT'):
609 rewrite (Data, FileName);

610 writeln (Data, NumMonths);

611 for I := 1 to NumMonths do

612 with SimData [I] do

613 begin

614 writeln (Data, Month :4, Year :4):
615 for J := 1 to MaxBin do

616 begin

617 write (Data, Size [J] :13);

618 if (J mod 6 = 0) then

619 writeln (Data)

620 ' end;

621 writeln (Data)

622 end;

623 writeln (Data);

624 writeln (Data, 'Squared error = ', SqF :15);
625 writeln (Data, Title):
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626

627 with ModelParams do

628 begin

629 with RepMat do

630 begin

631 writeln (Data, Fecundity :13:5);
632 writeln (Data, ProbSurvive :13:5)
633 end:

634 with InitAgeDistr do

635 begin

636 writeln (Data, RecruMonth);

637 for I :a 1 to MaxYear do

638 begin

639 write (Data, AgeDistr (I} :13:5);
640 if (I mod 6 = Q) then

641 writeln (Data)

642 end;

643 writeln (Data)

644 end;

645 with GrowthParams do

646 begin

647 StandardDev := HalfRange * 2.0 / sqrt (12);
648 writeln (Data, JuvSlope :13:5);

649 writeln (Data, JuvIntercept :13:5);
650 writeln (Data, MatureSlope :13:5);
651 writeln (Data, Maturelntercept :13:53);
652 writeln (Data, StandardDev :13:3)
653 end

654 end:;

655 close (Data, lock)

656 end {if}

657 end;

658
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660
661
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676
677
678
679
680
681
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683
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685
686
687
688

procedure Minimize (

N, M : integer;

var X : ArrN; {Vector of parameter values]

var F : ArrM; {Vector of errors)

var SqF : real; {Squared error}

XStepSize : real; (Finite difference interval)

MaxDist : real; {Maximum distance to optimum)
Accuracy : real;

MaxCalls : integer;

PrintOptions : PrSetType);

This procedure minimizes the two-norm of )
the vector of errors, F, over the parameter )
space X. ]

ype

ArrNInt = array [l1..NMax] of integer;

LoopStsType = (
Continue,
MinPredicted,
ToleranceMet,
HighResiduals,
TestNumCalls,
TooManyCalls);

IterStsType = (
FirstTime,
ComputeNewJ,
Normal,
StepLenlUpdate,
StepDirl,
MinNear);
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689

690 { In the following mnemonics Sq denotes the }
691 { square of a quantity, either the square of )
692 { a scalar or the two-norm of a vector. Dot ]
693 { denotes the dot or scalar product of two )
694 { wvectors. ]

695 var

696 LoopStatus : LoopStsType; (main loop status)
697 IterStatus : IterStsType; (Type of iteration)
698 Jacobian : ArcMxN:

699 JInverse ¢ ArrNxM; {H, Inverse of Jacobian}
700 014X : ArrN: {0ld parameter values)
701 01dF : ArrM; {01d error values)

702 EstF : ArrM; (Estimate of F}

703 01dSqF : real; {Square of 01dF}

704 EstSqF : real; - (Square of EstF}

705 SpanCount ¢t ArrNInt; {(C vector)

706 OrthogDir : ArtNxN; (D vector of directions]
707 NumCalls : integer; {Number of simulations)
708 StuckHighCount : integer;

709 SqXStepSize : real; {Square of XStepSize}
710 SqMaxDist : real; {Square of MaxDist})

711 SqMaxStepSize : real;

712 StepIncrFactor : real; {Step increment factor)
713 StepIndex : integer;

714 StpDir : ArrN; (Steepest descent direction})
715 NwtDir : ArrN; {Gauss-Newton direction)
716 Delta : ArrN; {(Update to X vector}

717 SqStpDir : real; (Square of StpDir)

718 SqNwtDir : real; (Square of NwtDir)

719 NwtDotStp : teal; {NwetDir * StpDir)

720 SqDelta : real; [Square of Delta}

721 SqDeltadth : real; (SqDelta / 4.0}

722 DeltaDotDl : real; {Delta * OrthogDir [1]}
723 NwtCoef : real; {Coefficient of NwtDir}
724 StpCoef : real; (Coefficient of StpDir]
725 ~ TwoMu : real;

726 SqMuStpDir : real;

727 J : integer:

728 { Global constants )}

729 NxNIdentity : ArrNxN;

730 InitSpanCountVector : ArrNInt;

211



Pascal Compiler IV.1 Page 22

731
732
733
734
735
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755
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757
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763
764
765
766
767
768
769
770
771

proced

(

(
{
{
{
(
o

on

var

functi

(

ure Invert (var A :ArrNxN; N :integer);

This procedure inverts the N x N matrix A )
using Gaussian elimination with partial |}
pivoting. If the matrix A is nearly singular
it sets A equal to the identity matrix and )
issues a warning. If the matrix is ill- |}
conditioned it only issues awarning. )

st

Epsilon = 1,0E-15;

CondLimit = 1.QE6;

I, J, K : integer;
Sub : ArrNInt;
Index ¢ integer;
LargestCoeff : real:
Temp : real;
Pivot : real;

B, C : ArrNxN:
NormC : realy
CondNum : real;
Singular : boolean;
on Norm (var A :ArrNxN; N :integer) :real;

Computes the maximum row-sum norm of a matrix.

var

beg
Tem
for

Nor
end

I, J tinteger;

RowSum :real;

Temp ireal;

in

p := 0.,0;

I := 1 to N do

begin

RowSum := 0.0:

for J := 1 to N do
RowSum := RowSum + abs (A [I, J]):

if Temp < RowSum then
Temp := RowSum

end;

m := Temp

-
1]
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800
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811
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814
815
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817
818
819
820

procedure GaussElim;
{ Gaussian elimination with partial pivoting. )
{ Sub is a permutation vector to keep track of
([ the row exchanges in the pivot. )
begin
for I := 1 to N do
Sub {I] := I;
K 1= 1;
Singular := false;
while (K <= N - 1) and not Singular do
begin
LargestCoeff :a 0.0;
for T := K to N do
begin
Temp := abs (C [Sub [I], K1);
if LargestCoeff < Temp then
begin
LargestCoeff := Temp;
Index := I
end
end;
if LargestCoeff = 0.0 then
Singular := true
else
begin
J := Sub [K];
Sub [K] := Sub {Index];
Sub [Index] := J;
Pivot := C {Sub [K]}, K];
if abs (Pivot) < Epsilon then
Singular := true
else
begin
for I := K+ 1 to N do
begin
C [Sub {I], K] := -C [Sub {I], K] /
Pivot;
for J := K + 1 to N do
C [Sub [I], J} :=C [Sub [I], J] +
C [Sub [I], K] * C [Sub [K], J]
end;
K := K+ 1
end
end
end;
if abs (C [Sub[N], N]) < Epsilon then
Singular := true
end;
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821

822 procedure Solve;

823 { Solve the upper triangular system with the )
824 ( columns of the identity matrix. |}

825 begin

826 B := NxNIdentity;

827 for J := 1 to N do

828 begin

829 for XK := 1 to N - 1 do

830 for I := K + 1 to N do

831 B [Sub [I], J] := B [Sub [I], J] +
832 C [Sub [I], K] * B [Sub [K], J);

833 A [N, J] := B [Sub {N], J] / C [Sub [N], N]:
834 for K := N - 1 downteo 1 do

835 begin

836 : A [K, J] := B [Sub [K], J]:

837 for I := K + 1 to N do

838 A [K, J] := A [K, J] -

839 C [Sub [K], I] * A [I, J];

840 A [K, J] := A [K, J} / C [Sub {K], K]
841 end

842 end

8413 end;

844

845 begin {Invert}

B4bH C := A _

847 NormC := Norm (C, N);

848 GaussElim;

849 if not Singular then

850 begin

851 Solve;

852 CondNum := NormC * Norm (A, N):

853 if CondNum > CondLimit then

854 begin

855 writeln (

856 'Ill-condition detected in procedure Iavert.');
857 writeln ('Condition number = ', CondNum)
858 end

859 end

860 else

861 begin

862 writeln ¢

863 ‘Singularity detected in procedure Invert.');
864 A := NxNIdentity

865 end

866 end [{Invert);:

867
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868

869 procedure InitGlobalConstants (N :integer);:
870 ( This procedure initializes the global
871 { constants. )

872 var

873 I, J : integer;

874 begin

875 for I := 1 to N do

876 begin

877 for J := 1 to N do

878 NxNIdentity [I, J] := 0.0;

879 NxNIdentity [I, I] := 1.0:

880 InitSpanCountVector {I} :a N - I + 1
881 end

882 end:

883

884 procedure SwapN (var A, B :ArrN);
885 var

886 Temp :ArcN;
887 begin

888 Temp := A;

889 A := B;

890 B := Temp

891 end;

892

893 procedure SwapM (var A, B tArrM);
894 var

865 Temp :ArrM;
896 begin

897 Temp := A;

898 A := B

899 B := Temp

900 end;

901

902 procedure Negate (var A :ArrM; M tinteger);
903 var

904 I tinteger;

905 begin

906 for I :=1 to M do
307 A [I] := -A [I]
908 end:
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910
911
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913
914
915
916
917
918
919
820
921
922
923
5924
925
926
927
928
929
930
931
932
933
934

function Min (A,
begin
if A ¢ B then
Min := A
else
Min := B
end;

begin
if A > B then
Max := A
else
Max := B
end;

begin
if A ¢ B then
B := A
if B ¢ C then
Min3d := B
else
Min3 := C
end;

B

treal)

function Max (A, B :real)

216
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treal;

:real;

function Min3 (A, B, C :real) :real;
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976
977
978
979

procedure ATransposed (

@ s oy

var A :ArrMxN;
var B sArrNxN;
N, M :integer);
This procedure multiplies the transpose of

the MxN matrix A by itself, givin. the square

NxN matrix B. )
A 1s called by reference for efficiency.

ar
I, J, K : integer;
Temp : real;
begin

for I :=2 1 to N do

for J :a 1 to N do
begin
Temp := 0.0;
for X 1= 1 to M do
Temp := Temp + A [K, I] * A [K, J]:
B [I, J] := Temp
end

end;

procedure MultNxNxM (

& a —

var A ¢ ArrNzxN;

var B : ArrMxN:

var C : ArrNxM;

N, M : integer);

This procedure multiplies the NxN matrix A
by the transpose of the MxN matrix B, )
giving the NxM matrix C. A and B )

are called by reference for efficiency. )

ar
I, J, X : integer;
Temp : real;
begin

for I :a 1 to N do

for J =1 to M do
begin
Temp := 0.0;
for K := 1 to N do
Temp := Temp + A [I, K] * B [J, K];
C [I, J] := Temp
end

end;
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980
981 procedure TrintN (var 4 :ArrN; N :integer);
982 var

683 I : integer;

984 begin

885 for I := 1 to N do
986 begin

987 if I mod S = 1 then
988 begin

989 writeln;

990 write (I :4)
9491 end;

992 write (A [IT :12)
963 end;

994 writeln

995 end;

996

997 procedure PrintM (var A :ArrM; M :integer);
998 var

999 I : integer;

1000 begin

1001 for I :=1 to M do
1002 begin

1003 if I mod 5 = 1 then
1004 begin

1005 writeln;

1006 write (I :4)
1007 end;

1008 write (A [I] :12)
1009 end;

1010 writeln

1011 end;

1012

1013 procedure PrintNxN (var A :ArrNxN; N :integer);
1014 var

1015 I, J : integer;

1016 begin

1017 for I =1 to N do

1018 begin

1019 for J := 1 to N do

1020 begin

1021 if J mod 5 = 1 then
1022 begin

1023 writeln:

1024 write (I :4, J :4)
1025 end;

1026 write (A [I, J] :12)
1027 end;

1028 writeln

1029 end

1030 end;

218



Pascal Compiler IV.1 Page 29

1031
1032 procedure PrintMxN (var A tArrMxN; N, M :integer);
1033 var

1034 I, J : integer;

1035 begin

1036 for I := 1 to M do

1037 begin

1038 for J := 1 to N do

1039 begin

1040 if J mod 5 = 1 then
1041 begin

1042 writeln;

1043 write (I :4, J :4)
1044 end:

1045 write (A {I, J] :12)
1046 end:

1047 writeln

1048 end

1049 end;

1050

1051 procedure PrintNxM (var A :ArrNxM; N, M :integer);
1052 var

1053 I, J : integer;

1054 begin

1055 for I := 1 to N do

1056 begin

1057 for J = 1 to M do

1058 begin

1059 if J mod 5 = 1 then
1060 begin

1061 writeln:

1062 write (I :4, J :4)
1063 end;

1064 write (A [I, J] :12)
1065 end;

1066 writeln

1067 ‘ end

1068 end:
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1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119

procedure Printlteration

NumCalls : integer;
var X : ArrN;:
var F 1 ArrM;
SqF : real;
N, M : integer;
PrintOptions : PrSetType);
begin
if PrintOptions <> [] then
begin
writeln;
writeln ('Call number: ', NumCalls :6);
if XTrace in PrintOptions then
begin

write ('X values:');
PrintN (X, N)
end;
if FTrace in PrintOptions then
begin
write ('F values:'):
PrintM (F, M)

end:
if SqFTrace in PrintQOptions then
writeln ('Squared error: ', SqF .12),

if SteplLenTrace in PrintOptions then
if SqMaxStepSize < 0.0 then
writeln (
‘Maximum step length not yet computed')

else
writeln ('Maximum step length: ',
sqrt (SqMaxStepSize) :12)
end
end;

procedure PrintFinal (
NumCalls : integer;

var X t ArrN;

var F : ArrM;

SqF : real;

N, M : integer);
begin
writeln;

writeln ('Call number: ', NumCalls :6);
write ('X values:');

PrintN (X, N):

{write ('F values:');}

{PrintM (F, M);}

writeln ('Squared error: ', SqF :12)
end;
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1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159

procedure UpdateJacobian:

var
Delta : ArrN; {X - 01dX}
Gamma : ArrM; {F - 01dF)
DelMinusHGam : ArrN; {Delta - H * Gamma)
GamMinusJDel : ArrM; {Gamma - Jacobian ¥ Delta])
DelTH : ArrM; ({Delta transpose * H)
DelTHGam : real; {DelTH * Gamma)
Temp : real;
SqDelta : real;
Alpha : real;
JFactor : real;
DeltaCoef : Teal:
HFactor : real:
HCoef : real;
I, J ! integer;
begin

SqDelta := 0,0;
for I := 1 to N do
begin
Delta [I] := X [I] - 01dX [I];
SqDelta := SqDelta + sqr (Delta [I]);
end;
for J := 1 to M do
Gamma [J] := F [J] - O1ldF [J]:
for I := 1 to N do
begin
Temp := Delta [I];
for J :« 1 to M do
Temp := Temp - JInverse [I, J] * Gamma [J]:
DelMinusHGam [I] := Temp
end;
for J := 1 to M do
begin
Temp := Gamma [J];
for I := 1 to N do
Temp := Temp - Jacobian [J, I] * Delta [I]:
GamMinusJDel {J] := Temp
end;
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1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191

DelTHG
for J
beg
Tem
for

Del

am := 0.0;
t= 1 to M do
in
p := 0.0;:
I :=1 to N do

Temp := Temp + Delta [I] * JInverse [I, J];

THGam := DelTHGam + Temp * Gamma [J];

DelTH [J] := Temp

end
if abs
Alp
else
Alp
JFacto
HFacto
(Alpha
for I
beg
HCo
for

end
for J
beg
Del
for

end
end;

(DelTHGam) >= 0.1 * SqDelta then
ha := 1.0

ha := 0.8;
r := Alpha / SqDelta;
r := Alpha /
* DelTHGam + (1.0 - Alpha) * SqDelta);
= 1 to N do
in
ef := HFactor * DelMinusHGam [I];
J =1 to M do
JInverse [I, J] :=
Jinverse [I, J] + HCoef * DelTH [J]
:= 1 to M do
in
taCoef := JFactor * GamMinusJDel [J];
I := 1 to N do
Jacobian [J, I] :=
Jacobian [J, I] + DeltaCoef * Delta [I];
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1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

Page

procedure CalcDirections;
{ This procedure calculates the Newton }
{ direction and the steepest descent direction.

var

TempN : real;
TempS : real;
I, J : integer;

begin

SqNwtDir := 0.0;:
SqStpDhir := 0.0;
NwtDotStp := 0.0;
for I := 1 to N do

begin

TempN := 0.0;
TempS := 0.0;
for J := 1 to M do

begin

TempN := TempN - JInverse

(I, J] * QldF [J];

TempS := TempS - 01dF [J] * Jacobian [J, I]

end;

SqNwtDir := SqNwtDir + sqr (TempN);
SqStpDir := SqStpDir + sqr (TempS);
NwtDotStp := NwtDotStp + TempN * TempS;

NwtDir [I]
StpDir [I]
end

end;

:= TempN:
= Temp$S
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1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238

procedure CalcSteepestMin;

{ This procedure predicts the displacement to the
{ the minimum along the steepest descent direction.

var
Temp
I, J
begin
TwoMu :=
for I :=
begin
Temp
for J

Temp := Temp + Jacobian {I, J] * StpDdir [J];

TwoMu
end:
TwoMu :=

SqMuStpDir := sqr (TwoMu) * SqStpDir

end;

real;
integer;

0.0;:
1 to M do

t= 0.0;
:t= 1 to N do

t= TwoMu + sqr (Temp)

SqStpDir / TwoMu;
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1239

1240 procedure CalcDelta;

1241 var

1242 I : integer;

1243 begin

1244 SgDelta := 0.0;

1245 DeltaDotDl := 0.0:

1246 for I := 1 to N do

1247 begin

1248 Delta [I] :=

1249 StpCoef * StpDir [I] + NwtCoef * NwtDir [I];
1250 SqDelta := SqDelta + sqr (Delta [I]);
1251 DeltaDotD}l :=

1252 DeltaDotDl + OrthogDir {1, I] * Delta [I]
1253 end;

1254 SqDelta4th := 0.25 * SqDelta

1235 end;
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1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300

procedure UpdateQOrthog
{ This procedure e
{ 1in terms of thos
{ and updates the

var
DeltaDotDir
SqDeltaDotDir :
Sigma :
TempDir :
SqAlpha :
Temp :
S, W s
IsJ,K H

begin

for I := 1 to N do
begin

Temp := 0.0;
for J := 1 to N
Temp := Temp
DeltaDotDir [I]
end;
{ Assert: IterSta
SqDeltaDotDir := Q.
K := N;
for I := 1 to N -1
case IterStatus
Normal:
begin

Page 36

Dir;

xpresses the new direction |}
e of the direction matrix, |}
counts. |}

ArrN;
real;
ArrN:
ArrN;
real;
real;
real:
integer;

do
+ Delta [J] * OrthogDir [I, J];
:a Temp;

tus = Normal |}
'

do
of

SqDeltaDotDir :=
SqDeltaDotDir + sqr (DeltaDotDir [I]):
if SqDeltaDotDir < SqDeltaé4th then

SpanCount
else
begin

[I] := SpanCount [I] + 1

IterStatus := StepLenUpdate;

K := I;
SpanCount
end
end;
StepLenUpdate:
SpanCount {I}
end {casel};
SpanCount [N] := 1;

[I] := SpanCount (I + 1] + 1

:= SpanCount [I + 1] + 1

IterStatus := StepLenUpdate;
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1301

1302 ( Make K the first direction }

1303 if K > 1 then

1304 hegin

1305 Temp := DeltaDotDir [K];

1306 TempDir := OrthogDir [K];

1307 for I := K downto 2 do

1308 begin

1309 DeltaDotDir [I] := DeltaDotDir {I - 1];
1310 OrthogDir [I] := OrthogDir [I - 1]

1311 end;

1312 DeltaDotDir [1] := Temp;

1313 OrthogDir [1] := TempDir

1314 end;

1315 for I := 1 to N do

i316 Sigma [I] := 0.0;

1317 SqAlpha := sqr (DeltaDotDir [1]);

1318 for I :a 2 to N do

1319 begin

1320 S := sqrt (

1321 SqAlpha * (SqAlpha + sqr (DeltaDotDir {I])));:
1322 W := SqAlpha / S;

1323 S := DeltaDotDir [I] / S;

1324 for J :t= 1 to N do

1325 begin

1326 Sigma [J] := Sigma [J] +

1327 DeltaDotDir [I - 1] * Orthogbhir (I -1, J];
1328 OrthogDlir [I - 1, J] :=

1329 ) W * OrthogDir [I, J] - S * Sigma [J]
1330 end;

1331 SqAlpha := SqAlpha + sqr (DeltaDotDir [I])
1332 end;

1333 Temp := 1.0 / sqrt (SqDelta);

1334 for I := 1 to N do

1335 OrthogDir [N, I] := Delta (I] * Temp

1336 end:
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1337
1338 procedure DirlUpdate;

1339 { This procedure updates X when Delta is too )
1340 { independent of OrthogDir [1], i.e. when )
1341 ( they are separated by more than "60 degrees". )
1342 { It does not use Delta to update X. Instead }
1343 ( it uses a multiple of OrthogDlir [1] to }
1344 { update X. |}

1345 var

1346 TempDir : ArrN;

1347 I : integer;

1348 begin

1349 for I := 1 to N do

1350 X {I] :=

1351 01dX [I] + XStepSize * OrthogDlir [1, I];

1352 TempDir := OrthogDir [1];

1353 for I := 1 to N - 1 do

1354 begin

1355 OrthogDir [I] := OrthogDir [I + 1];

1356 SpanCount {I] := SpanCount [I + 1] + 1

1357 end;

1358 OrthogDir [N] := TempDir;

1359 SpanCount [N] := 1

1360 end;
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1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380

procedure UpdateX;

( This procedure updates
{ and estimates the next
var

I, J integer;
begin
EstSqF := 0.0;
for I 12 1 to M do
begin
EstF [I] := OldF [1];
for J := 1 to N do
EstF [I] :=

EstF [I] + Jacobian

EstSqF := EstSqF + sqr
end;
for I := 1 to N do

end;
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the vector X by Delta

residual vector F.

{I, J] * Delta [J];
(EstF [I])

X [I] := 01dX [I] + Delta [I]

)
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1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420

1421

1422
1423
1424
1425

procedure TakeStep; )
{ This procedure decides which type of step )

{ to
begin

take. }

CalcDirections;
if sqr (01dSqF) > 4.0 * SqMaxDist * SqStpDir then

if

IterStatus = ComputeNewJ then
IterStatus := MinNear

else

else

begin

StuckHighCount := 0;

X := 01dX;

StepIndex := 1;

X [StepIndex) := X [StepIndex] + XStepSize;
IterStatus := ComputeNewJ

end

begin
IterStatus := Normal;

{
if

SqMaxStepSize was initialized to -1.0. )}
(SqMaxStepSize > 0.0) and
(SqMaxStepSize > SqNwtDir) then
begin
{ Take the step in the Gauss-Newton )
{ direction. )}
Delta := NwtDir;
SqDelta := SqNwtDir;
SqDelta4th := 0.25 * SqDelta:
SqMaxStepSize := Max (SqNwtDir, SqXStepSize):
StepIncrFactor := 1,0;
if SqNwtDir >= SqXStepSize then
begin
if StepTypeTrace in PrintOptions then
writeln ('Gauss-Newton step');
UpdateOrthogDir
end
else
begin
if StepTypeTrace in PrintOptions then
writeln ('Direction 1 step');
IterStatus := StepDirl
end;
UpdateX
end
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1426

1427 else

1428 begin

1429 CalcSteepestMin;

1430 if SqMaxStepSize <= 0.0 then

1431 SqMaxStepSize := Max (SqXStepSize,

1432 Min (SqMaxDist, SqMuStpDir));

1433 if SqMuStpDir > SqMaxStepSize then

1434 begin

1435 { Take the step in the steepest |}

1436 { descent direction. }

1437 if StepTypeTrace in PrintOptions then
1438 writeln ('Steepest descent step');
1439 NwtCoef := 0.0;

1440 StpCoef :=

1441 TwoMu * sqrt (SqMaxStepSize / SqMuStpDir)
1442 end

1443 else

1444 begin

1445 { Interpolate between steepest descent }
1446 { direction and Newton direction. }
1447 NwtDotStp := NwtDotStp * TwoMu:

1448 {WRITELN ( 'NwtDotStp = ', NwtDotStp);)
1449 {WRITELN ('SqNwtDir = ', SqNwtDir);)
1450 (WRITELN ('SqMuStpDir = ', SqMuStpDir);}
1451 NwtCoef := (SqMaxStepSize - SqMuStpDir) /
1452 (NweDotStp - SqMuStpDir + sqrt (

1453 sqr (NwtDotStp - SqMaxStepSize) +

1454 (SqNwtDir - SqMaxStepSize) *

1455 (SqMaxStepSize - SqMuStpDir)));

1456 StpCoef := TwoMu * (1.0 - NwtCoef):

1457 if StepTypeTrace in PrintOptions then
1458 writeln (

1459 'Interpolation step--Newton direction a',
1460 NwtCoef * 100.0 :6:1, 'Z')

1461 _ end;

1462 CalcDelta:

1463 if (SpanCount [1] >= 2 * N) and

1464 (sqr (DeltaDotDl) < SqDelta4th) then
1465 DirlUpdate

1466 else

1467 begin

1468 UpdateOrthogDir;

1469 UpdateX

1470 end

1471 end

1472 end

1473 end; {TakeStep)
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1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486

procedure DoFirstTime;

{ This is the first iteration. )}

begin

if ItrStatusTrace in PrintQOptions then
writeln ('IterStatus = FirstTime'):

01dSqF := SqF;

01dX := X; ’

01dF := F;

Steplndex := 1;

X [StepIndex] := X [StepIndex] + XStepSize;

IterStatus := ComputeNewlJ

end;
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1487

1488 -

1489
1490
1491
1492
1493
1494
1495
1496
1497
1468
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525

procedure DoComputeNewJ;

{ This iteration is for computing a fresh |}
{ Jacobian with finite differences. ]

var
TempNxN : ArrNxN:
J : integer;
begin

if ItrStatusTrace in PrintOptions then
writeln ('IterStatus = ComputeNewl]');
for J :=1 to M do
Jacobian [J, StepIndex] :=
(F [J] - 01dF {J]) / XStepSize;
if StepIndex < N then
begin
X [StepIndex] := 0ldX [StepIndex];
StepIndex := StepIndex + 1;
X [StepIndex] := X [StepIndex] + XStepSize
end
else
begin
if NewJTrace in PrintOptions then
begin
write ('New Jacobian:');
PrintMxN (Jacobian, N, M)
end;
ATransposed (Jacobian, TempNxN, N, M):
Invert (TempNxN, N);
MultNxNxM (TempNxN, Jacobian, JInverse, N, M);
if NewJInvTrace in PrintOptions then
begin
write ( 'New inverse Jacobian:');
PrintNxM (JInverse, N, M)
end;
OrthogDir := NxNIdentity;
SpanCount := InitSpanCountVector;
TakeStep
end
end;
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1526

1527 procedure DoNormal;

1528 { This iteration is a normal one. )
1529 begin

1530 if ItrStatusTrace in PrintOptions then
1531 writeln ('IterStatus = Normal');
1532 UpdateJacobian;

1533 TakeStep

1534 end;
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1535
1336
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571

procedure DoStepLenlpdate; v
{ This iteration updates the step length. }
var
Diff : real;
SqLambda : real;
SqMu : real;
TempAbs : real;
TempSqr : real;
I ¢ integer;
begin

if ItrStatusTrace in PrintOptions then
writeln ('IterStatus = StepLenUpdate');
Diff := 0.9 * 01dSqF + 0.1 * EstSqF - SqF;
if Diff >= 0 then
begin
{ Increase step length )}
TempAbs := 0.0;
TempSqr := 0.0;
for I :t= 1 to M do
begin
TempAbs := TempAbs +
abs (F [I] * (F [I] - EstF [I]));
TenpSqr := TempSqr +
sqr (F [I] - EstF [I])
end;
SqLambda := 1.0 + Diff /
(TempAbs + sqrt (sqr (TempAbs) + Diff * TempSqr));
SqMu := Min3 (4.0, StepIncrFactor, SqLambda);
SqMaxStepSize :=
Min (SqMu * SqMaxStepSize, SqMaxDist);
StepIncrFactor := SqlLambda / SqMu;
01dSqF := SqF;
SwapN (X, 01dX);:
SwapM (F, 01dF);
Negate (EstF, M)
end
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1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589

else
begin
( Decrease step length |}
SqMaxStepSize :=
Max (0.25 * SqMaxStepSize ,
StepIncrFactor := 1.0;
if SqF < 01dSqF then
begin
01dSqF := SqF;
SwapN (X, 01dX)};
SwapM (F, OldF);
Negate (EstF, M)
end
end;
UpdateJacobiang
TakeStep
end {DoSteplLenUpdate);
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1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606

procedure DoStepDirl;
{ This iteration updates X in the direction
( of OrthogDlir [1]. }
begin
if ItrStatusTrace in PrintQOptions then
writeln ('IterStatus = StepDirl');
if SqF < 01dSqF then
begin
01dSqF := SqF;
SwapN (X, 014dX);
SwapM (F, 01dF);
Negate (EstF, M)
end;
DirlUpdate;
IterStatus := Normal
end;
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1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633

1634

1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652

begin {Minimize}
InitGlobalConstants (N);
NumCalls := Q:
StuckHighCount := N + 4;:
01dSqF := 0.0;
SqMaxStepSize := -1.0;
SqXStepSize := sqr (XStepSize);
SqMaxDist := sqr (MaxDist);
StepIncrFactor := 1.0;
IterStatus := FirstTime:
LoopStatus := Continue;
while LoopStatus = Continue do
begin
if TterStatus = MinNear then
LoopStatus := MinPredicted
else
begin
Evaluate (F, X);:
NumCalls := NumCalls + 1;
SqF := 0.0
for J := 1 to M do
SqF := SqF + sqr (F (J]):
if SqF <= Accuracy then
LoopStatus := ToleranceMet
else if IterStatus in
(FirstTime, ComputeNewJ, Normal] then
LoopStatus := TestNumCalls
{ Assert: )
{ TIterStatus in [StepLenUpdate, StepDirl]
else if SqF < 0ldSqF then
begin
StuckHighCount := N + 4;
LoopStatus := TestNumCalls
end
else if SqMaxStepSize < SqXStepSize then
LoopStatus := TestNumCalls
else
begin
StuckHighCount := StuckHighCount - I;
if StuckHighCount <= 0 then
LoopStatus := HighResiduals
else
LoopStatus := TestNumCalls
end
end;
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1£53

1654 if LoopStatus = TestNumCalls then
1655 if NumCalls > MaxCalls then
1656 LoopStatus := TooManyCalls
1657 else

1658 begin

1659 PrintIteration (

1660 NumCalls, X, F, SqF, N, M, PrintOptions);
1661 case IterStatus of

1662 FirgtTime:

1663 DoFirstTime;

1664 ComputeNewJ:

1665 DoComputeNewJ;

1666 Normal:

1667 DoNormal;

1668 SteplenlUpdate:

1669 . DoStepLenUpdate;

1670 StepDirl:

1671 DoStepDirl

1672 end [casel};

1673 LoopStatus := Continue
1674 end

1675 end {while);
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1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714

case LoopStatus of
MinPredicted:
begin
writeln ('Minimum predicted:');
X := 01dX:
F := 0ldF;
SqF := 01dSqF
end;
ToleranceMet:
writeln (
'"Error is less than specified tolerance:');
HighResiduals:
begin
if StuckHighCount = 0 then
writeln (
"Successive evaluations failed to reduce ',
'error:')
else {StuckHighCount < 0}
writeln (
'Successive evaluations with a new Jacobian '
"failed to decrease error:');
X := 01dX;
F := 01dF;
SqF := 01dSqF
end;
TooManyCalls:
begin
writeln ('Call limit exceeded:'):
if SqF >= 01dSqF then
begin
X := 01dX;
F := QOldF;
SqF := 01dSqF
end
end
end {case};
PrintFinal (NumCalls, X, F, SqF, N, M);
end {(Minimize};
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1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732

{ The main program. }

begin {Minleslie}

writeln ('Model 5 fit to data.'):

GetRealData (NumMonths, RealData):
GetModelParams (ModelParams):
ModelParams.InitAgeDistr.CurrMonth :=

RealData [1].Month;
ModelParams.InitAgeDistr.CurrYear :=

RealData [1].Year;

ToXVector (ModelParams, X):

GetMinOptions (DeltaX, MaxDist, Acc, MaxCallsg);
GetPrintOptions (PrintOptions);

M := NumMonths * MaxBin;

Minimize (14, M, X, F, SqF,

DeltaX, MaxDist, Acc, MaxCalls, PrintOptions);
FileFinal (X, F, SqF)

end.

End of Compilation.
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