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CHAPTER 1
Introduction

Shared-channel communication systems have been developed and extensively studied
during the last decade, In such systems a broadcast communication channei is to be shared
among a group of geographically distributed stations each demanding access to the channel in a
random fashion. The most common shared-channel communication networks are: 1)
Satellite networks, in which ground stations communicate with each other by a radio channel
and by using a satellite as a repeater. 2) Packet radio networks, in which many stations com-
municate with each other by a ground radio channel. 3} Local ares networks, in which many
stations, geographically close to each other, use a cable communication media’ {like a coaxial
cable or a fiber optic cable) to communicate with each other.

The main issue in designing shared-channel networks is the design of access schemes. An
access acheme is a set of rules which determines for each station under which circumstances it is
allowed to transmit. The main goal of an access scheme is to efficiently control the stations'
transmissions. Two main approaches are commonly used to control access to the channel:

1. Random access schemes.

2. "Organized”, conflict free schemes.

In a scheme of the first type any station tries to acquire the channel without completely
coordinating its action with its neighbors. Such schemes include ALOHA {Abra70], Slotted-
ALOHA [Abra73] and CSMA (see, for example, [Klei76]). While the performance of these
schemes is very good for low traffic demand (immediate response} they tend to become poor at
times of high demand. This is because collisions are more likely to occur when many stations try
to access the channel simultaneously (a collision occurs if two or more stations transmit at the
same time).

"The distinction between radio networks to local area networks is not always very sharp. In
some cases a local area network may use a radio channe! as a communication media; in this case
the system may be considered both as a local area network and as a packet radio network,



In a scheme of the second type the system is "organized”. Only one station at a time is
permitted to transmit, so the access scheme is conflict (collision) free. Such schemes include
MSAP [Scho76| (token-ring), TDMA (see, for example, {Klei76}), EXPRESS-NET [Frat81] and
others. The performance of these schemes is good for heavy traffic and poor (due to a relatively
long response time) for light traffic.

In this work we study a special property of shared- channel communication networks,
namely, the self-synchronizing property. We take a clue from nature, in which we often observe
that a set of many randomly behaving particles may display a self organized global motion. Try-
ing to imitate this phenomenon, we look for these features in the behavior of shared-channel

communication networks.

The advantage of this behavior is twofold. First, if the system is self synchronizing, then
no external synchronization mechanism is required. Second, such a system should behave
efficiently both for heavy and light traffic: when the traffic is light, the station (as equivalent to
the indepeadent particle) obeys its own random demands, without conflicting with others. When
the traffic is heavy, the behavior of the stations becomes organized so that the number of
conflicts is minimized. In a3 sense, this behavior is a patural mixture of the two basic access
approaches: the random access approach at low load and the conflict free approach at heavy
load.

Synchronization effects have not been studied extensively in the context of shared-
channel communication networks. The complexity of the models (see a detailed discussion of
this issue in section 1.1) and the limitations of the available analysis tools have caused research-
ers to make simplifying assumptions which "hide” (or disregard) these features. The most com-
mon of these simplifying assumptions are: 1) Uniformity of the network structure. 2) Indepen-
dence of events. It is the absence of much previous study that makes this research important.
Features that were not studied before (or even were not observed!) may have a sigpificant impact
on the performance of communication systems. In general, aew access and routing schemes are
developed (and implemented) on the basis of understanding system behavior. Therefore, it is
important to know how close the existing models (and their analyses) are to the behavior of the
real system. Uncovering the synchronization effects in shared-channel communication networks
will contribute to a better understanding of the system behavior.

In fact, the tesults reported in this dissertation show that in many cases the predictions
of the simplifying-assumption models are misleading. For example, for some systems the simpli-
fying model predicts very poor performance at high loads; in contrast, this study shows that, due
to synchronized behavior, the same system performs almost perfectly at high loads.



We conclude that synchromization properties must be considered when shared-channel
communication networks are analyzed. Moreover, it is important to consider these features in the
design of shared-channel networks. It is also concluded that simplifying assumptions about uni-
formity of the structure and about independence of events may cause significantly wrong predic-
tions, and thus should be considered cautiously.

We choose to study the synchronization properties by the means of case studies. These
cases are shared-channel communication networks that possess synchronization properties. Since
each of these systems is an important topic for itself we study them in full detail, revealing,
through the research, the synchronization properties. A description of these case studies is given
in section 1.2.

1.1 Motivation, Difficulties and Solution Approaches

In contrast to the assumptions commonly used in the analysis of communication net-
works, namely independence of events and uniformity, the two properties inherently related to
synchronized systems are quite the opposite, namely:

1. Non-uniform structure.

2. Events which are statistically correlated to each other.

In a non-uniform structure some station may be distinguishable from the others. Ia contrast, in
a uniform structure jt is hard to distinguish one station from the others; this property is strongly
related to the claim that in a symmetric netwotk (no node identifiers) there is no distributed
deterministic way to elect a node [Gall79]. To contrast the uniformity property with synchroni-
zation note that the elements (stations) in synchronized systems are distinct from each other at a
given time (e.g., one transmits, the others are silent). For this reason we conjecture that syn-
chronization features are strongly related to non-uniform structures, and that it is very unlikely
to observe these features in uniform structures.

The second property (i.e., correlation) simply states that in a synchronized system the
events occurring at time ! are correlated to the events occcurring at time 7<t,

Not accidently, synchronization patterns have not been deeply studied in commuaication
networks. The reason is that both the non-uniformity property and the correlation property were
rarely represented in previous models. The common simplifying assumptions, namely, the
independence of events and the structure uniformity did not allow these properties to show up in
the models.



It should be clear that any of these "simplifying assumptions” is usuaily necessary for the
simplicity of the analysis in all the models where it is used. The limitation of queueing theory
and of other analysis tools do not allow us to easily analyze a system where the events are non-
independent {for example the reader can refer to {Yemi80| where a complete chapter deals with
the difficulties of solving two dimensional Markov-chains). So, for the sake of "elegant” analysis,
simplifying assumptions usually have to be made.

From the above discussion it is implied that our task of revealing synchronizing patterns
is not easy. In order to observe these properties we have to abandon some of the "good” assump-
tions, an action which will make the analysis difficult. For this reason we will not always be able
to achieve "elegant” results. Rather, in many of the cases where queueing theory tools will be
found to be too weak we may have to resort to some of the following means:

I. Apply some other relaxing assumption that still preserves the properties to be observed.

2. Apply approximation or simulation techniques.

We are aware of the lack of elegance of these techniques but consider them as the “price” that
has to be paid in order to better understand communication-network behavior.

Due to the difficulties in the analysis, for some of the systems to be analyzed it was
required to solve some basic problems in queueing theory. For this reason this dissertation con-
sists of two logical parts: The first part is a theoretical part and is devoted to the study of
several basic queueing systems. The second part deals with studying the synchronization feature
in several shared-channel communication networks. The gueueing theory results derived in the
first part are used in the second part where we analyze shared-channel commuunication networks.

1.2 The Case Studies

Three shared-channe} communication systems are considered in this work. The first sys-
tem is a one-hop * network where the access scheme used is exhaustive slotted ALOHA. Accord-
ing to this scheme, a station which successfully transmits a unit of information (called a packet}
will have the exclusive right to continue transmitting other packets without being interrupted by
the other stations. Only after this station ezhgusts its bufler, are the other stations allowed to
access the channel. This system can be thought of as "control syachronized” (in contrast to
naturally synchronized) since the exhaustive scheme implies that the stations take turns in their
transmissions so that the system is actually synchronized.

A one-hop network is a network where every station hears all the other stations. In contrast, a
multi-hop network is a system where a given station hears only some of the other stations, which
are called the neighbore of this station.



The second system is a directional tandem in a multi-hop radio environment where the
access scheme used is slotted ALOHA. The tandem is a basic structural component of any
muiti-hop radio network. Thus understanding the tandem behavior is very important for the
analysis of muiti-hop radio networks. This study reveals that at high loads the tandem network
tends to synchronize itself and thus to perform very efficiently [Yemi80}. This is in contrast to
the common belief that the performance of shared-chacnel networks significantly degrades at
high loads. The synchronization feature analyzed in this study may lead to the invention of
efficient access and routing schemes tailored for the multi-hop radio network.

The third and the last system is a very-fast-bus network. In this system all stations are
connected to a very fast bidirectional bus through which they communicate with each other. The
common belief about bus networks is that the performance of these systems under random access
schemes (like CSMA or CSMA/CD} degrades when the speed of transmission increases. Accord-
ing to this belief the performance of the CSMA access scheme will be very poor when imple-
mented on a very fast bus system. In contrast to this belief, our study reveals that in a very-fast
bus system with a high load, the system tends to syochronize itself. As a matter of fact we dis-
cover that the system throughput monotonically increases with the offered load and reaches a
value of 1 at very high load.

1.3 Structure of this Work and Summary of Results

As mentioned above this dissertation consists of two main parts: The first part, contain-
ing chapters 2, 3 and 4, deals with solving general problems in queueing theory. The second part,
containing chapters 5, 6 and 7, deals with the case studies discussed above. The solutions
derived in chapters 2, 3 and 4, are used in the analysis carried in chapter 5. Due to the nature
of this work the previous work related to each topic is separately reviewed in each of the
chapters.

1.3.1 Delay Analysis of a Queue with an Independent Starter (Chapter 2)

A single-server queueing system in which a start-up delay is incurred whenever an idle
period ends and a single-server queueing system in which the server takes vacation periods when
the system is idle are both analyzed in chapter 2. In all systems analyzed in this chapter the
start-up delays {or the vacation periods) are assumed to be random variables independent of the

system state.

The main result of this chapter states that the delay distribution in the queue with star-
ter is composed of the direct sum of two independent random variables: 1) The delay in the
equivalent queue without starter, called the original delay. 2) The additional delay suffered due to
the start-up delay. Using this decomposition property, it is easy to derive the distribution of the
delay suffered in the system with starter. This analysis is done for systems (both discrete and



continuous) where the interarrival times possess the memoryless property *. In the second part of
this chapter, using the decomposition approach, we analyze the M/G/1 system with vacation
periods. It is first shown that M/G/1 with vacations is just a special case of M/G/1 with starter,
so that the delay in M/G/1 with vacations can be easily found by using the formula for the
delay of M/G/1 with starter. Second, using geometric arguments it is explained why the addi-
tional delay in the vacation system is distributed as the residual life of the vacation period.

1.3.2 Delay Analysis of a Queue with a Non Independent Starter (Chapter 3)

Chapter 3 is a natural extension of the study done in chapter 2. Again, in this chapter,
we analyze the delay of a single server quene with a starter. However, in contrast to the systems
studied in chapter 2, here the stari-up delay is not assumed o be independent of the sysiem state.
Rather, it is assumed that the length of the start-up duration depends on the arrival process.

The analysis method used in this chapter is similar to the one used in chapter 2. Using
the decomposition property presented in chapter 2, it is relatively simple to analyze the delay in a
single server queue with a gon independent starter.

Two types of systems are analyzed: 1) A system where the start-up delay depends on
the amount of work (or the number of customers) arriving to the system at the beginning of the
start-up period. 2) A system where the start-up delay depends on the length of the idle period
preceding the start-up operation. As in chapter 2 the analysis is dooe for systems {both discrete
and coantinuous) where the interarrival periods possess the memoryless property.

For these systems we derive the expected value of the additional delay suffered in the
system. This value can be added to to the expected value of the original delay (which, for most
systems without a starter is easy to derive) to yield the expected value of the total delay in the
system with starter. In addition, in the cases where the original delay cannot be derived, the
expression for the expected value of the additional delay has its own importance if different star-
ters are compared to each other. It is shown that these results can be easily applied to systems
with bulk arrivals as well as for systems with single arrivals.

A deeper study is done on the M/G/1 system with a starter where the start-up delay
depends on the service time of the first customer (a customer arriving at an empty system). For
this system we derive the Laplace-Stieltjes transform (LST) of the total delay suffered in the sys-

tem.

‘The delay analysis of an M/G/! system with an independent starter has been done previously
using other analysis methods. Using the decomposition method we rederive this result.



The results of this analysis and the results reported in chapter 2 are applied in chapter 5
to the analysis of some exhaustive slotted ALOHA systems.

1.3.3 The Analysis of Random Polling Systems {Chapter 4)

In chapter 4 we analyze the behavior of random polling systems. The polling systems
considered consist of N stations, each of them equipped with an infinite buffer, and of a single
server who serves them in some order. In contrast to previcusly studied polling systems where
the order of service used by the server is periodic (and usually cyelic), in the systems considered
here the next station to be served after station i is determined by probabilistic means. More
specifically, according to the model considered in this chapter, after serving station i the server
will poll station j (j=1,2,---,N) with probability p.

The model considered here is a discrete time model where the service time of a customer
is assumed to be fixed and equal to the discrete time unit. The arrivals to each station are
assumed to be bulk arrivals with bulk size taken from an arbitrary distribution, and the size of
the bulk arriving at time ¢, independent of the size of the bulk arriving at time ¢, (for t,5L,).

Three service policies are considered in this chapter: 1) Ezhaustive policy. 2)
Gated policy. 3) Non ezhaustive policy. For all these service policies we derive a closed form
expression for the expected delay in the system when the stations are assumed to be symmetric.
For non symmetric systems we present a set of N linear equations that must be solved numeri-
cally to yield the expected value of the delay. Also derived in this chapter are relations for the
z-transforms of the cycle time and of the number of customers found in the system at polling
instants.

The results reported in this chapter are applied in chapter 5 in the analysis of exhaustive
ALOHA schemes.

1.3.4 An Analysls of the Exhaustive Slotted ALOHA System (Chapter 5)

In this chapter we study the queueing behavior of exhaustive slotted ALOHA, a method
which is used to control the transmission of /V stations in a one-hop environment. Our main goal
in this chapter is to derive the expected delay observed in this system. This is our first case
study.

For a two station system where the stations know that N=2 we derive a closed form
expression for the expected value of the system delay. This analysis is done partially by using
the queue with starter approach and the results detived in chapters 2 and 3, and partially by
using a Markov Chain approach.



For an N station system we derive a closed form expression approximating the expected
delay in a symmetric system under heavy load conditions. To derive this expression we emulate
the system by a random polling system and use the resuits derived in chapter 4.

For a two station system where the stations do not know that N==2 we use the two
results reported above: 1) The expression derived for the two station system (where the stations
know that N=2) is used as a low load approximation and as a lower bound. 2) The expression
derived for the N station system is used as a heavy load approximation. To approximate the
expected delay in the middle range of the load we use a linear combination of the two approxi-
mations. The values predicted by this approximation are compared to simulation results and
found to be very accurate.

1.3.5 Synchronisation properties in the Behavior of a Slotted ALOHA Tandem
(Chapter 8)

In chapter 6 we analyze the throughput of a slotted ALOHA directional tandem in a
multi-hop packet radio environment. This second case study considers a model consisting of N
stations each of which is equipped with an infinite buffer and each of which transmits to its
downstream neighbor. The access scheme used is symmetric slotted ALOHA according to which
a station whose buffer is not empty will transmit with probability p. Our point of departure is a
previously reported result [YemiSO] which states that when p=1 the tandem is fully synchron-
ized and the system throughput is 1/3, which is the maximum achievable throughput in a tan-
dem. We extend this result and show that for p <1 the system is "partially synchronized” and
derive an expression approximating the throughput (5) for high values of p. This expression is:

1
3. [2 _pMS)

For low values of p we approximate the throughput by the following expression:

Ul

s

5 = p(l-p)?

For the medium range of p we suggest an approximation to the system throughput by using a
linear combination of the two expressions given above. The approximations suggested are com-
pared to simulation results and are found to be very accurate for most practical tandems {tan-
dems which consist of less than 20 stations).

The results reported in this chapter show that when we account for synchronization the
tandem throughput monotopically increases with the transmission probability {p}. This is in
contrast to what could be implied from previous studies where the stations are assumed to
behave independently of each other (i.e., not accounting for synchronization}.



1.3.8 On the Behavior of a Very Fast Bidirectional Bus Network (Chapter 7)

In this chapter we study the behavior of the very fast bidirectional bus system {out third
case study). We assume that the system consists of NV stations located on a bidirectional bus and
analyze the system throughput for different transmission policies. A major assumption in this
analysis is that the bus is very fast, so that the time for a packet (one unit of transmitted infor-
mation) to propagate from one station to its neighbor is equal to or greater than the trapsmis-
sion time of the packet. This study is challenged by the results reported in previous studies
which predict that certain access schemes like CSMA (which uses the carrier sense mechanism)
will perform very poorly in this environment. In contrast to this prediction we show that due to
synchronization properties observed in this system, the system throughput is relatively high.

The first part of this chapter deals with the theotetical limitations of the system. In this
analysis we solve for the system capacity (defined to be the maximum achievable throughput
under a carefully selecied transmission schedule). A surprising result of this analysis states that
when the stations are not forced to obey the carrier sense rule the system capacity is approxi.
mately 2. More precisely, we show that the capacity (denoted by C) is bounded as follows:

2 . N
—— _—
2 C < min(2, 2 )

where N is the number of stations. On the other hand for a system where the carrier sense
mechanism is enforced we show that the system capacity is exactly 1.

The second part of this chapter, deals with the system throughput under stochastic
arrivals. For a system where carrier sense mecharism is not enforced it is shown that the system
throughput is identical to the throughput of the slotted ALOHA scheme when applied in a satel-
lite network (or in a one-hop radio network). According to this result the total throughput
(denoted by 5) in a fully symrﬁetric system is given by:

S = NG(1-G)¥!

where N is the number of stations and G is the offered load of each station. For a system where
the carrier sense mechanism is enforced we cannot derive a closed form expression for the
throughput. Rather, we introduce an approximation yielding a set of V-1 non-linear equations
which must be solved to give the system throughput. The results predicted by the approxima-
tion method are compared to simulation results and found to be accurate. The behavior observed
for this system is rather surprising: we see that the total system throughput monotonically
increases with the offered load, for every value of the offered load. This results from an interest-
ing synchronized behavior of the system, a behavior according to which the system becomes
more and more synchronized as the offered load increases. In contrast to what could be implied
from previous studies these results provide evidence that the very fast bus system is very stable
and does not need any artificial mechanisms to control its stability.



CHAPTER 2
A Queue with an Independent Starter: Delay Analysis

A queueing system in which a start-up delay is incurred whenever an idle period ends
and a queueing system in which the server takes vacation periods are both analyzed in this
chapter. In all systems analyzed in this chapter the start-up delays (or the vacation periods) are
assumed to be random variables independent of the system hehavior. It is shown that the delay
distribution in the queue with starter is composed of the direct sum of two independent vari-
ables: 1) The delay in the equivalent queue without starter. 2} The additional delay suffered due
to the starter presence. Using this decomposition property, it is easy to derive the distribution of
the delay suffered in the system with starter. This analysis is dune for systems (both discrete and
continuous systems) where the interarrival times possess the memoryless property. Using this
approach, we then analyze the M/G/1 system with vacation periods. It is first shown that the
M/G/1 with vacations is just a special case of the M/G/1 with sturter. so that the delay in the
M/G/1 with vacations can be easily found by using the formula for the detay of the M/G/1 with
starter. Second, using geometric arguments it is explained why the additional delay in the vaca-

tion system is distributed as the residual life of the vacation period.

2.1 Model and Previous Work

In the following we consider a queueing system with a “starter.” In such a system the
gerver is "turned off" whenever it becomes idle. When a customer arrives at an idle system, it
cannot be served immediately; rather, an additional {random) amount ol time is required to stast
the "cold” system before the new “first” customer can be served. The length of the period
required to start the system up. is assumed, in this chapter, to be a random variable independent
of the system behavior. Customers who arrive at a "hot” system (i.e. one with at least one custo-
mer either in service or in the queue) will join the queue and be served in turn as in a simple

queueing system.

The model for a queueing system with special consideration of a case where the server
becomes idle is not new. Miller [Mill64] analyzed the case where the server goes on a vacation
("rest period”) of random length whenever it becomes idle. He also considered a system where
the server behaves normally but the first customer arriving at an empty system has special ser-
vice time. Scholl [Scho76], and Scholl and Kleinrock [SchoB3] analyzed the "server with rest
periods,” using another approach. As a special case for rest periods, Scholl [Scho76] considered a
queueing system with a starter (or, in his words, "a system with initial set-up time”). In both
papers, the analysis is done on M/G/f1 queues. These types of systems were reported also by
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Cooper [Coop70], Heyman [Heym?77], Levy and Yechiali [Levy?5|, Shanthikumar [Shan80], Avi-
{tzhak Maxwell and Miller [Avi-65) and Van Der Duyn Schouten [Scho78).

The need for studying a gueue with atarter for slotted {i.e. discrete time) systems, and
the fact that previous studies analvzed only M/G/1 (i.e. continuous time) systems, motivated us
to study the queue with starter again. The emphasis in this chapter, is on developing a novel
approach to study this system. This approach will compare the delay suffered by a customer in
a usual queueing system versus the delay in a system with starter. Instead of deriving the delay
in the queue with starter directly. we find the additionai drlay suflered due to the presence of the
starter. Muoreover. we show that the additionai delay in the system with starter, is independent
of the delay in the system without starter. Using the independence property, it is then easy to
calculate the total delay in the system with stacter:  thir i mmply the direct aum of the delay in

the quene without starter and the additional delay roicuiated above,

The approach described above, is found to be very powerful in analyzing systems similar
to the queue with starter. ln chapter 3. using the same approach, we analyze a queueing system
with starter where the leagth of the start-up perind depende on the arrival process {unlike the
system analyzed here where the <tart-up time is independent of the arrival process). In chapter 4,
the results reported in this chapter {and in chapier 3} are used to derive the delay in an exhaus-
tive ALOH.\ ~ystem. The fact that the delay to the queae with starter can be calculated as the
{independent) sum of twy mdepeadent random variables, one of them representing the delay in
the queue without starter nnd the other representing the additional delay, makes the analysis in

those chapters relatively simple.

As stated above, in contrast to previous studies which analyvzed M/G/1 systems, the
emphasis here is on studying slotted systems. [n section 23 we analvze the delay in a slotted
queue with starter. In 1hus unalysis we derive the z-transform of the delay in this system. For the
sake of completeness. we use our approach to tederve (he delay in an M/G/1 queue with starter
and find agreement with Scholl’s results. In secuons 2.4 and 2.5 we study a system with vacation
periods. First, we show that a system with vacation perinds 1s just a special case of the queue
with starter. Thus, the delay in this system can be vasily fuund frum the delay of the queue with
starter {derived abovel, We then show that the delay of an M/G/1 with vacation periods i3
exactly of the sum of two independent random variables:

- the delay in an M/G/1 without vacation periods;
- additional delay distributed as the tesidual ife of the vacation period.

Lastly, it should be mentioned that some of this work {reported first o [Levy83]) has
been reported. in parallel, in two independently written papers. First. Fuhrmann [Fuhr83]
showed that the delay in the queue with vacation pertods consists of the sum of two independent
random variables:

- the delay in an M/G/1 without vacatwon periods;

- additional delay distributed as the residual life of the vacation period.

11



This result is identical to what we show in section 2.5. Nevertheless, the method used in
[Fuhr83] to prove this property is rather different from the method used in our analysis. Second,
Doshi [Dosh83| addressed the decomposition property in both the queue with starter and the
queue with vacations. The model used in that report is a continuous time model of a GI/G/1
queue. The emphasis in [Dosh83| is on studying the queue with vacation periods, while the
queue with starter is considered as a special case of the queue with vacation periods.

2.2 Notatlon, Definitlons and System Description

In the following we analyze our queueing system by means of the unfinished work in the
system. We define:
U(¢t) A unfinished work in the system at time
A remaining time required to empty the system of all customers present at time ¢,
We use the usual notation:

C, A the nth customer
7, B arrival time of C,.

t, & r,-r,, = interarrival time between C,_, and C,.

o
(=g

» = service time of C .

In figure 2.1a we plot the behavior of L'{t) versus { in a simple queueing system. This
system will be called system-A. As described in, [Klei75| U(t) can be viewed as the virtual wait-
ing time, i.e., if the service policy is first-come-first-served, the waiting time of customer C, is
U(r,) (all the work residing in queue when C, arrives). We also use the terms "busy period” and
"idle peticd” Lo represent durations iz which the server is busy or idle (respectively). The busy
period durations are denoted by Y, Y, Y,.. and the idle period durations are denoted hy

X, X Xy, o

We can now switch to the queue with starter system and call it system-B. In figure 2.1b
we plot U(t) versus t in system-B. In order to compare the systems, we use the same arrval
behavior in both systems. This means that the sets of arrival instances ({r}) and service times
{{e,}) are identical in both systems. In this figure the dashed line represents system-A and the
solid line system-B. The difference {denoted by D) represents the additional delay suffered in
system-B.

In figure 2.1b we note that customer C, arrives to an empty system and thus suffers an
additional delay D, due to a cold start. Note that C, and y suffer exactly the same additional
delay. When C, arrives, it finds the system idle, and suffers the additional delay of a second cold

start (D,), which is not necessarily identical in length to (D,}. However, another bebavior is
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(a) System- A, a system without starter

- t

(b) System-B, a system with starter

Figure 2.1: The unfinished work in the system (with and without a starter)
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observed when Cj arrives. Simce D,>X, , Cy finds the system busy, and a cold start is not
required. Nevertheless, C; is still subjected to an additional delay, which is D,-X,. Again, we
note that C, and Cj sufler the same additional delay as (.

Keeping this in mind, we now turn to the analysis of system-B.

2.3 The Analysis of System-B, a Queue with Starter

As we mentioned before, this analysis will be done by comparison to system-A. Thus, we
shall compare the behavior of systems A and B under the same arrival pattern.

In addition to the notation used above, the following are also used:
X, = length of the ith idle period {under system-A).
5, = length of a cold start (it any) corresponding to the ith busy period .
D, = actual additional delay suffered by the first customer of the ith busy period.
The reader should note that, even though we deal with system-B, we still consider busy periods
according to their appearance in system-A. Thus, all the above notation relates to busy periods
ag viewed in system-A, e.g., the ith busy period is the ith busy period in system-A.

We start our analysis by observing the basic properties of the queue-with-starter system.

2.3.1 The Basic Properties of the System

The assumptions required for the general analysis are the following:

1. The length of an interarrival time, ¢, is independent of the length of any other interar-
rival time, ¢, (i5£7). The service time of an arbitrary customer, c,, is independent of the
service time of any other customer, ¢, (i7€7). Service times are independent of interar-

rival times, so ¢, is independent of ¢, for all i and j.

2. The length of a cold start, S, is independent of the length of any other cold start §, {for
any i7j).
3. The length of a cold start is independent of of the series {t.} and the series {c,}. This

implies that S, is independent of the series {X,} and {Y,}.

The first assumption is very common for most queueing systems. The second and third
assumptions simply state that the length of a cold start is chosen independently of system-A and
of the length of other coid starts.
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Next, we show how to calculate the additional delay suffered by the firat customer of
busy period i. The additional delay suffered by this first customer can recursively be calculated
from the following equation:

D, = S (2.1a)

D-X, i D2X,
Dsy = S+ it D<X, (2.2b)

The first line in the recursion (2.2b} represents the case where the first customer of busy period §
(from system-A) finds system-B busy, while the second line represents the case where this custo-
mer finds the system idle, and its additional delay is due to an independent cold start. The basis
of the recursion, D,, is clearly the first cold start of the system. [n the following sections, we will

use this recursion to calculate the limiting distribution of D,.

While the additional delay suffered by a "first customer” is an important measure, our
main interest is the additional delay suffered by an arbitrary customer. In the following we show
that the distributions of these two measures are identical.

THEOREM 2.1: If customers C, and C, belong to the same busy period in system-A, they suffer

exactly the same additional delay in system-B.
The proof is omitted here for its simplicity; examination of figure 2.1 can convince the reader.
THEOREM 2.2: D, is independent of X, for every i.

Proof: It is clear that D, is a function only of X, X,, - - - X

1

o and of 5,8, - -+ §, ;. Since X is
independent of all these variables it is also independent of D,. ®

The following theorem states that the additional delay a customer suffers in the system
with starter is actually independent of the delay it suffers in the system without starter.

THEOREM 2.3: The additional delay suffered by an arbitrary customer in system-B is statisti-
cally independent of the delay this customer would suffer in the equivaient system-A.

Proof: Consider an arbitrary customer, C,. Let j be the busy period in which C, is served in
system-A and let C; (k<<i) be the first customer served in this busy period. From theorem 2.1
the additional delay suffered in system-B by C, and C, is the same. Thus, we have to show that
the additional delay suffered by C, in system-B is independent of the delay C, suffers in system-
A. It is clear that the delay suffered by C, is a function only of the interarrival times and the

service times that "belong” to busy period j. Namely, the series {,.,,t,.p - - - ¢, and the series

€nliryy ' * ° €. On the other hand, the additional delay suffered by C, is only a function of the
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system

behavior prior to 7, (the starting time of busy period ;). Specifically, this is a function only of the
sequence f,,ly, - - - I, the sequence ¢,,¢,, - - - ¢;; and the sequence 5;,5,, - - - S, . Now, since the
group of variables on which the delay (in system-A) depends and the group of variables on which
the additional delay depends are mutually exclusive, and due to assumptions 1 and 3, these
groups are statistically independent of each other. Thus, the additional delay suffered in system-
B is independent of the delay suffered in system-A. ®

This theorem is very powerful and is a key result of our analysis. It now allows us to
study the total delay suffered in the system with starter in three steps: 1) Derive the delay
suffered in the system without starter. 2) Derive the additional delay suffered in the system with
starter. 3) Convolve the distributions of the two delays to yield the total delay in the system
with starter.

The next theorem states that the additional delay suffered in system-B by the customers
of a given busy period (according to system-A) is independent of the number of customers
served in this busy period.

THEOREM 2.4: D, is independent of the number of customers served in busy period i.
The proof is omitted for its similarity to the proof of theorem 2.3.

The following corollaty is a direct result of theorems 2.1 and 2.4 and states that the lim-
iting distribution of the additional delay suffered by an arbitrary customer is identical to the lim-
iting distribution of the additional delay suffered by a "first customer”.

COROLLARY 2.3: The limiting distribution of the additional delay suflered by an arbitrary
customer in system-B is identical to the limiting distribution of D,.

2.3.2 Discrete System with General Memoryless Arrivals

The mode!l assumed here is a discrete time model in which time is indexed by fixed
length slots. The arrival process can be described as a renewal process, which means that the
pumber of arrivals in slot i is independent of the number of arrivals in slot j for any i7j. The
number of arrivals ip a given slot is taken from a geseral distribution, and the service time is

general.
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In this section we are interested in the limiting behavior of D, as ¢ approaches infinity.

We recall that time is measured in units of the fixed slot length and define:

Aprp =i] , DAYz, 4 A MM 4 DAY, DAL,
1=0 J—oo 1220 =0
0 l. o0 [ +]

2APX =i . X(AE#, 54 MMy, X(:)ATar, XATig
1=0 J=oo 1=0 1=0

Lo} x xR
g APHS,=i] , S(z)A¥ e, s, A lim o, Sz) ANsz, FAYis,
1=0 J—’m 1=0 =0
a, A Prli arrivals in a given slot]

In addition, S)z) and 5®z), will respectively denote the first and second derivatives of 5(z},
and DfY)(z) will denote the first derivative of D(z).

Under the above assumptions, it is clear that the random variables X, representing the
lengths of the idle periods, are independent and identically distributed. Thus, the limiting distri-
bution of X is identical to the distribution of X . Since the number of arrivals in any slot is
independent from slot to slot, then X, is geometrically distributed (shifted by a slot) with
parameter a, (the probability of no arrival). For the sake of simplicity, let us use z = 4, so X

is distributed as follows:

7, =1 = Pr|X, =i = (1-7)7" i=1,23... (2.2)

From similar arguments, it is clear that the limiting distribution of the length of a cold-

start is identical to the distribution itself, so 3, = 2.
In the following we solve for D{z). From (2.1) we get:
#*' = PrlD-X,=i] + Pr|D, <X -Pr|S,.,=i | D,<X|] i=0,1,2,... (23)

Using the independence property between D, and X, (theorem 2.2) and the independence

between S ., to D, and X,, and using the fact that z/=2z and #/=s, we compute it

L 1]
& = YVrdl,, + - gd; Y‘ 2, i=0,12.... (2.4)
£=1 =0 = k+l

From (2.4}, compute the z-transform of D:

o L=+ ] 5’-“ @ o
Dyy\fz) = Yd©iz = Y- |Vadl, + 5, N4 ¥ 3z (2.5)
=0 =0 Le=1 =0 (=k+)
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Substituting {2.2) into (2.5):

Di(z) = T2 N(t-2)etdly, + To's - Bd- ¥ (1-2)77
=0 k=1 1=0 k=0 =t
Manipulating this and using the definitions for S(z),D(z) gives us:
1-z)[D (z}-D
Dfs) = LZBEDLL 4 gy p g (29)
Computing D(z), by taking limits, gives:
D(z) = D(:)'El ‘”1_552"”1] (27)

Solving (2.7) at z=1, using D(1)=1, S(1)=1 and L'Hospital’s rule, we get:

| = D(g)- Em[l_l)_l} (23)

Using S((1) = T, we get:

_ 1
Dz} = 1+ (1-2)3 (29)

Substituting (2.9) into {2.7) gives us the important result:

p(e) = —L frcztstaen 2.10)
1+(1-2)5 | 1-z

Expression (2.10) relates the z-transform of the additional delay to the probability of no
arrival (z), the z-transform of a cold start (S5(z)) and the expected length of a cold start (5). To
calculate the z-transform of the actual delay suffered in the queue-with-starter, one has to calcu-
late the z-transform of the delay in the equivalent queue-without-starter, and to multiply it by
D(z) (as taken from {2.10)). This is true since the additional delay in the queue-with-starter is
independent of the delay in the queue-without-starter (see theorem 2.3},

Given equation (2.10), it is now easy to compute the expected additional delay. Using
the relationship

aD(z)
b= azz z=1
we get:
0, = 1 L[ S(2)(z-2)-S{z)] 1 -2] + [1-z+S(e)(z-z}|
DUYz) 1+(l—z)g E (o2 {2.11)
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Evaluating (2.11) at z=1, using L'Hospital’s rule, and further manipulation gives:

1 [o3_s®(1)(z1)
D =011) = 1+(1-z)3f > (2.12)

Recalling that S®(1)=5%-F, we get:

D‘ = 2_32.(%1 (2_13)
2+23(1-2)

We note that the mean of the additional delay depends on the first and the second moments of
the cold start and on the probability of at least one arrival (1-x) in a slot.

From corollary 2.4 it is clear that (2.10) and (2.13) represent the additional delay and its
expected value for an arbitrary customer in the system.

2.3.3 The Behavior of the Mean Additional Delay In the Discrete System

The purpose here is to examine the behavior of expression (2.13) for the expected addi-
tional delay suffered due to the existence of the start-up delays.

The behavior of (2.13) when arrivals are rare (1-z approaches 0) is I = 5. In this situa-
tion the distance (in terms of time) between consecutive busy periods is very large, such that
almost every busy period suffers a cold start. Therefore, almost all customers of a busy period
(usually exactly one) will suffer a "cold start”, so I = T and D(z) = $(2).

When arrivals are common (1-z = 1), the length of idle periods is usually 1, and the
average of the additional delay is:

_ T+ F

T 21+ 5
This result agrees with the following simple calculation: Suppose that at busy period i a cold
start occurred and that the length of this cold start is j. The additional delay suffered by busy
periods i,i+1,-,i+j is jj-1,--0, respectively (since the length of each idle period is 1); busy
period i+j+1 will suffer a new independent cold start. Let D{|;) be the mean of the additional
delay suffered by busy periods which are under the infAuence of a cold start, the length of which

is 7. Clearly, D(|j) = 'é- Now, the fraction of busy periods that are under the influence of j -
cold starts is:

8, {1+1)

oo

Ya(i+l)

1=
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Unconditioning (] /) gives:

i‘f:o D(lj)s(i+1)

Yafi+)

1=0

T =

Substituting D{|j) = -é- gives:

_3+F
2(1 + 5)

which agrees with our result.

From (2.13) we realize that I is monotonically increasing with 5, when 57 is held con-
stant. Moreover, if instead we hold the squared coefficient of variation (C2=(ST{Z)*V(5)) fixed,
and let § approach infinity, IF will approach infinity too.

While all the previous properties look intuitive, the following is very surprising: Uis not
necessarily smaller than T, i.e., the mean of the additional delay seen by a customer may be
larger than the expected length of a cold start. Take, for example, the following cold start distri-

bution:

l-% i=0
s = -‘k- ik
0 else
50, F =1, 5% = k. According to (2.13)
+{k-1)1-z
p = 2e-li-z)
2+2(1-2)

Clearly,if £ > 3, then I > 1;50 I > §!

Once this property is noted, the explanation is simple. The reason is that a short cold
start affects only a few busy periods (in this extreme case, exactly one) and, therefore, only a few
customers, while long cold starts affect many busy periods, and therefore many customers may
see a large additional delay. Thus, if you take an average of all customers, the mean of the addi-
tional delay may exceed the average length of a cold start.



From this observation we realize that even if we hold 5 fixed, IF can approach infinity
when the second moment of the cold start is large enough. This observation is similar to the
observation made about the delay suffered in an M/G/1 system. According to that observation
(see for example, [Klei75]), the delay suffered in the M/G/1 system linearly increases with the
coefficient of variation of the service time, so the detay may be unbounded even if p is kept fixed
and under unity.

We conclude that the additioral delay may grow extremely large if either thc expected
value of the cold start or the second moment of the cold start go to infinity.

2.3.4 The Elgenfunctions of the Discrete System

In the previous section we computed the additional delay D(z) suffered by the system
customers as a function of the "cold start” length S(z). In this section we are interested in how
the start-up delay distribution is transformed into the additional delay distribution. Mathemati-
cally, we may view equation (2.10) as a transformation from S(z) to D(z) 2nd express it as:

D(z} = T (5(2)) (2.14)

where T is the transformation expressed by (2.10).
We may now inquire as to what are the eigenfunction of this transformation. The
mathematical meaning of this eigenfunction is: Find the solutions for the cquation

${z) = T(5(z)). In other words, an eigenfunction of the system is an additional delay distribu-
tion (D(z)) which is identical to the cold start distribution (S(z)) causing it.

To solve for the eigenfunctions of our system, let us use (2.10) in (2.14}:

. 1 N 1-z+S(z)(z-2)
5{z) = 1+(1")3E - ) (2.15)

Solving for S(z) gives:

S(z) = 1-z
(1-2)+5(1-2)(1-2)
or;
i
S(z) = -—jl'ii— {2.16)
1+5

Inverting (2.16) yields:
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1 5 | .
3 = —— ——— '={)11,2'... 17
1+5 1+5'] a7)
Yes! — the geometric distribution strikes again! As we aiready know, many "good things” in

queueing theory have the memoryless property ...

In conclusion, then, il the cold start is geometrically distributed, the distribution of the
additional delay suffered by all customers is also geometrically distributed with the same parame- .

ter.

Another important property of the eigenfunctions is that if the cold start is geometrically
distributed (i.e., this is an eigenfunction of the system!} then the additional delay is not a func-
tion of the system load. As a result, the expected value of the additional delay in a system
where the starter is geometrically distributed, is not affected by the arrival rate.

2.3.5 The M/G/1 System with Bulk Arrivals - a Continuous Model

For the sake of completeness, we repeat the derivations made ia the previous section for
an M/G/1 system with bulk arrivals.

The system is a single-server system with exponential interarrival times (with parameter
A) and arbitrary service times. In this system arrivals have the memoryless property. Here the
interarrival times are continuous, whereas they were previously discrete. As in the discrete case,
the arrivals themselves may consist of bulks of arbitrary size. The derivations here are quite
similar to our previous derivations. To make the reading easier, we will use the same equation
indices {with little modification}.

The basic notation is not changed: X, S,, D, have the same meaning as before, and
equation (2.1) still holds. The probabilistic notation is the following:

b & pringd, a2 28 b & feraqar
a9

X{t) & Prx, <y, z() & a);'t(t). X/(s) 2 etz (),
L]

sw apdssd, o0 225 s & [etaom,
Q9



As in the previous section, the limits (when i—o0) of d(t), z,(¢), and s (¢) are denoted by
d(t), x(t), and s(t), respectively. Similarly, D’(s), X’(s), $°(¢) denote the limits of D(s), X(s),
and 5(s). From the same arguments used in the previous section it is clear that z{f) = z(¢) and

that s(t) = s¢).

Sipce the arrival points form a Poisson arrival process, the interartival times as well as

the length of the idle periods are exponentially distributed (with parameter 1). Thus, we get:

X() =1, ) =g =reM, X(e) = X(o) =

From {2.1) and corollary 2.4 we get:

dy(t) = [ zr)d(r+t)ydr + s(0)( [ dir)dr [ z(u)du)
r=0" =0

u=r

Taking Laplace transform of (2.4b) yields:
(s o] = ] o o0 o0
Diiyle) = [ et [ zr)d(r+t)drdt + {fes(t)dl] - {[d(r)dr | z{(u)du|
=0 r=0" ] 1] us=r

Substituting (2.2b} into {2.5b) and manipulating the expression gives:

D, ()-D(s)

DJ““I(a) = s - N

+ S"(5)D](\)

Solving for D’(s) in equilibrium yields:

RPN SR

-

Solving (2.7b) at 8=0, using D*(0)=1, 2°(0}=1 and L'Hospital's rule, we get:

1= D'()J-El - x-a—gﬂ

§=0

Using

&S'Is]

ds =5

s=0

where 5 is the first moment of S, and we get:

1
1+\5

D'(\) =

Substituting into (2.7b), we obtain:

(2.2b)

(2.4b)

(2.5b)

(2.6b)

(2.7b)

(2.8b)

(2.9b)



oo 1 ha+S"(s)(s-M)
D(e) = 1+>\SE . ] (2.10b)

As in the discrete case, here too, the Laplace transform of the actual delay suffered in the quene-
with-starter can be calculated by multiplying the Laplace transform of the delay in the
equivalent queue-without-starter by D'(s). This is true since these two variables are independent
of each other.

From (2.10b) it is easy to derive I:

p=23% 2 ST

2.13b
2+ 22§ ( )

The expressions for the Laplace transform of D (2.10) and for I (2.13) agree with Schoil’s results
[Scho76], which were calculated by a different method.

Now, to compute the eigenfunction of the system, we solve the equation:

gy _ 1 EA+S5(s)(s-))
5°(s) = T ﬁ . ] (2.15b)
The solution is:
¢ 1
S = 2.
(0) = —A— (2:17b)
Inverting (2.17h) gives:
o(z) = lg : e-[?] (2.18b)

which is, as expected, the exponential distribution!

2.4 An M/G/1 with Vacation Perlods (Rest Periods)

Consider an M/G/1 system with unlimited storage. The arrival process is Poisson with
arrival rate X, and service order is first-come-first-served. When the server becomes idle, it goes
for vacation of random length V. The probability density function of the vacation length is v(¢),
and the Laplace transform of it is V*(s). If the server, upon returning from a vacation, finds any
positive number of customers in the queue, it starts serving the customers as a regular M/G/1
{until the next vacation). If, on the other hand, the server finds no customers in the queue, it
takes another vacation. Vacations are identically distributed and independent of each other and

of arrival process or service times.



- The M/G/1 system with vacation periods was Brst studied by Miller [Mill64] which
analyzed, in addition to other system properties, the delay in the system. This system and simi~
lar ones were reported in  |[Levy75, Coop70, Heym77, Scho78, 5han80] and analyzed by different
approaches. Scholl [Scho76] and Scholl and Kleinrock [Scho83] were the first to notice that the
delay in an M/G/1 with vacation has the same distribution as a random variable which is the
sum of two independent random variables:

- the time in system as if there were no vacation; plus

- an additional delay distributed as the residual life of the vacation period.
However, Scholl and Kleinrock [Scho83| emphasize that this is just an observation on the ezpres-
sion for the delay in the system with vacation, They were not able to show these properties
directly (i.e., by analyzing the system ).

In this section we show, in a direct way, that the additional delay in a system with vaca-
tion is independent of the delay in a system without vacation and that it is distributed as the
residual life of the vacation distribution. First, using the queue-with-starter, we directly calculate
the additional delay and find it to be as observed in [Scho83]. Second, we make a simple direct
queueing analysis of the additional delay in the system with vacation and show that it is distri-
buted as the residual life of the vacation.

2.4.1 Solving a System-with-Vacation by a System-with-Starter

In this analysis we notice that, as in the system-with-starter, additional delay is created
only by a customer who arrives to an empty system. [t is also clear that this customer is the
first customer of some busy period as observed in system-A. Let us assume that this customer is
C, who arrives at time r,, and that the busy period in system-A, started by C,, is the jth busy
period. Since the additional delay suffered by C, {and hence by all customers of busy period j) is
due to the server’s late return from vacation, let us call this delay the return time and denote it
by R,. In the following we show that the system with vacations can be considered as a system
with starter where the start-up times (S)) are the return-times (R ). It is clear that in contrast to
the cold starts the return times are no! independent of all interarrival times. This is since a
return time depends on the arrival process (for example, the return time R, depends on the
arrival epoch r; and therefore on the interarrival time ¢,}). For this reason all the theorems from
section 2.3 have to be checked again, to make sure that they still hold when the cold starts are
replaced by the return times. Even though the return times are not independent of all interar-
rival times, the following still holds:

THEOREM 2.6: The return time R, is independent of all [uture interarrival times

{tis1s tire.-) and all future service times {c;, c,pyp, ).

Proof: The return time R, depends on the time (let us denote this time by ¢, ) at which the



previous idle period (according to system-B) started, on the arrival time of C; (which is r,), and
on the vacations taken from t, until before r,. Since the vacation lengths (note, not their timing}
are independent of each other and of system-A, all the above variables are independent of the
sequences fyvq, lpvo, 30d ¢, €4y, . Therefore, the return time, R, is also independent of

these sequences. ®

In addition to theorem 2.6 we next show that in systems where the arrival process
possesses the memoryless property the return time is also independent of the system history,

THEOREM 2.7: Let {, be the moment at which system-B becomes idle and the server starts
taking vacations. Let j be the first busy period (according to system-A) starting after ¢,. If the
interarrival times possess the memoryless property (namely, they are geometrically distributed in
discrete systems and exponentially distributed in continuous systems) then the return time R is

independent of any property of system-B as observed prior to ¢,.

Proof: It is clear that the return time R, depends on the lengths of the vacation periods taken
after {, and on the timing of the next arrival after ¢,. Since the interarrival times possess the
memoryless property, the time from {, to the next arrival is independent of the system history
{prior to f,). Since the vacation lengths are also independent of the system behavior, the return

time is independent of the system behavior prior to {,. &

From theorems 2.6 and 2.7 it is now easy to realize that for an M/G/1 system all the
theorems {(and the analysis) from section 2.3 still hold if the cold-start times are replaced by the
return-times. Therefore, the system with vacations can be considered as a system with starter
where the role of the cold starts is played by the return times. For this reason, in the following
we abandon the notations return-time and £, and denote them, as done for the queue with star-

ter, by cold starts and S,.

The following corollary states that the M/G/1 with vacation periods can easily be solved
by using the results of the M/G/1 with starter.

COROLLARY 2.8: An M/G/1 system with vacation periods can be solved as following:
1. Compute the distribution of a cold-start resulting from the vacation periods.

2, Use the expression for the Laplace transform of the cold-start distribution, computed in
(2.1) above, and plug it into expression (2.10b).

3. The additional delay computed by this expression, is the additional delay in the system

with vacation periods.



~Next, we must calculate the distribution of a cold start. Keeping our old notation, we
now add the vacation variable:
V = the length of a vacation period;
v(t) = the probability density function of V;
V’(#) = the Laplace transform of v{¢).
We recall that the length of a cold start is denoted by S and that of an idle periocd by X. Since

-, Moreover, due to the memoryless pro-

the arrival process is Poisson with rate X, z({) = Xe
perty of the arrival process, any time interval which starts at an arbitrary point, {;, and ends

with the first arrival after {, is also exponentially distributed with parameter A (like z(¢)).

To calculate the length of a cold start, we start counting from the moment the system
becomes idle; let us call this moment {;,, At {, the server goes on vacation. The time elapsing
until the server returns is V. The first arrival after {, occurs X time units after £,. f X < V,
then the server, on returning {rom vacation, inds a customer in the system, and the additional
delay that this customer will suffer is V-X, If, on the other hand, X > V, then the returning
server will take another vacation. Again, due to the memoryless property of the arrival process,
the first arrival will occur X time units after the end of the first vacation. Thus, if X > V we
can calculate the length of the cold start, recursively, as before,

All this explanation is summarized in the following recursion:

< PAV-X<I it V> X
PriS<t] =1 ‘pys<i it vex (2.18)

From this recursion we now solve for $°(s). From (2.18) and since V, X are independent:

sty = [ ne™O(u)du + st} [ v(u) [ e dw du

u=t u=Q w=y

= [ A (u)du + s{t)- V'(\) (2.19)

u={

Taking Laplace transform on {2.19):

o0 o [e <]
Se) = [ et [ e () dudt + [ es()V'(N)dt (2.20)
t=0 u=t t=0

Inversion of the integration order on the left term yields:

S(a) = [ rePufu)du [ 2t + VI(N)S'(s) (2.21)
y=0 f=0
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$s) = LL"—'%';—V'M- + V'()S'(e) (2.22)

Solving for 5*(s):

s’(,) = M (2.23)

(-a)1-V'N)]
From (2.23) we now compute 5 by taking the derivative of $°(s) at 2=0:
as'(s) _ [ V' (a)(A-s)+ V' (s)-V'(2) ]
s 1- v‘(x) (A-8)?
Using V'(0)=1, V"'(0)=-V, we get:
.ﬂﬂl - [ _Mh+1- V'{)\[]
=0 - v ‘(\)
S’ = I—V)\—V'IM (2.24)
M{V'(r)-1)

Now that we know the Laplace transform and the first moment of the starter distribu-
tion, we can compute the Laplace transform of the additional delay using equation (2.10b) from
the analysis of the queue with starter. Recall equation (2.10b):

Ds) = Jatstapen)
1+)\3 ’

We now substitute (2.23), (2.24) into (2.10b) to obtain the additional delay for a system with
vacations:

D(s) = 1=Lel (2.25)
Vs

Yes! this is the residual life of the vacation period! We have thus shown that the additional delay

in an M/G/1 system with vacation periods is independent of the original delay and is distributed

as the residual life of the vacation period.

2.5 Direct Explanation for the Delay of a Queue with Vacatlon

In the previous section we showed by direct calculation that the delay in a queue with
vacation actually is (and not only "could be thought as”) the sum of two independent random
variables:

- the delay in a queue without vacation;
- additional delay distributed as the residual life of the vacation period;



yet we did not give a direct queueing explanation for the fact that the additional delay is distri-
buted as the residual life of the vacation period. We shall do that in this section.

Consider the busy and idle periods in a regular M/G/1 system (denoted as system-A) as
described in figure 2.2a. We denote busy periods by Y,, Y,, --- and idle periods by X,, X, -
Now, let us impose vacations on this system (the new system is denoted as system-B}. For
"pedagogical” reasons, let us assume that the "vacation” is just another job the server has to do.
Thus, if we lock from the Server’s point of view we notice three properties:

1. The server always consumes work at rate of "one unit of work per unit of time."”

2. At time points where a vacation V, starts, additional work, equaling (in amouat) the

vacation length | V|, arrives at the system (remember, from the server's point of view!).

3. A new vacation starts if and only if the amount of work in the system is exactly zero.
This means that the server takes a new vacation either when it finishes working in the
M/G/1 system or when it returns from vacation and finds the M/G/1 s stem still empty
of customers.

This situation is illustrated in figure 2.2b. The solid line represents the total amount of work as

seen by the server {denoted by U,, () ), while the broken line represents the unfinished work in

the M/G/1 system with no vacations {denoted by Uy, (t) ). We notice that the server is con-

tinuously busy at a rate of "one work unit per time unit” (=1} and that "vacation work” always

arrives to the server system when U, (t) drops to zero. Next, we notice that the server system

serves in first-come-first-served (FCFS} order. This is because of the following properties:
- M/G/1 customers are served according to FCFS policy;
- "vacation customers” arrive only when there are no M/G/1 customers;

- the server completes service of any customer of any type before serving the next

customer (nonpreemptive system).

For this reason it is clear that the total time in system for an M/G/1 customer arriving
at time ! to the system with vacation is exactly U, [¢). Clearly, the time in system for the
same customer in a system without vacations i8 U,y (¢); thus, the additional delay suffered by

this customer is given by U, .{!) - Uppgn(t).

In figure 2.3a we plot the function difference U, {¢) - Uppan(t) (denoted by D(t))
versus {, In this figure the following properties can be noticed:

1. In time segments corresponding to idle periods in system-A {figure 2.2a), D(!) is con-
sumed at the rate of "one work unit per time unit.”
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2. In time segments corresponding to busy periods in system-A, D{t) remains constant.

3. The time epochs where D(¢) increases are those corresponding to the beginning of vaca-
tions. At such a moment, D({)=0 and discontinuously increases to the "height” of the
vacation starting at that time.

In this figure we note that D(¢) is independent of any property of a system-A busy
period (excluding its timing) since it stays constant during the duration of such periods. D(t) is
determined only by the length of the vacations and the length of the system-A idle periods. This
is the reason why the additional delay in the queue with vacation (as in the queue with starter)
is independent of the delay in the reguiar M/G/1 system.

Since additional delay is independent of any property of system-A busy periods (exclud-
ing timing), we can represent any system-A busy period by its starting point only. We do so by
contracting the Aat segments of D(t) to a point. This is done in in figure 2.3b, where the time
axis becomes a virtual time axis and a segment Y, from figure 2.3a is contracted to a point y,.
The point corresponding to the beginning of a vacation, V,, is denoted by v,. For this igure we
define D (t) as the {virtual) additional delay of virtual time ¢ as seen in figure 2.3b. In the
trapsformation from 2.3a to 2.3b, we notice the following properties:

1. D {y,) equals the additional delay suffered by all customers of busy period (in 2.2a) Y,.

2, D, continuously decreases at the rate of "one work unit per time unit.” Whenever D,

becomes zero, it increases by a discontinuous increment.

3. The increments of D, occur in epochs corresponding to vacation starts. The increment

size is the vacation length.

4, Let ¢ be an arbitrary time epoch on the virtual time axis and v, be the epoch correspoad-
ing to the first vacation starts after {. From properties 2 and 3 and from the structure
observed in figure 2.3b it is clear that D (t)=v,-t.

From these arguments it becomes clear that, in order to find the additional delay
suffered in system-A, one may compute [}, for the points {y.} in figure 2.3b. This can be done as
follows: We take a large time segment (0,¢) in figure 2.3b and examine D [(y) for all y, in this
segment. We first note that the length of a subsegment (v,v,.,) is distributed according to the
distribution of the vacation length. Then, we notice that the intervals between the adjacent y-
points represent lengths of idle periods; so, they are exponentially distributed with parameter A
Thus, in 2.3b the y-points behave like a stream of Poisson arrivals. Now, let n be the number of
y-points in (0,¢). From the property of the Poisson distribution (see, for example, [Klei75]), the
intervals between the y-points have the same statistics as if these points were selected from a
uniform distribution on (0,t). Suppose that this was the way that the y-points were created, and
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let us examine what D(y,) is. Things now become clear: We randomly, according to the uniform
distribution, drop a poiat y, on the segment (0,¢). This segment is divided to subsegments,
(v1,95),(v3,v3),... Thus, the time difference between a point y; and the next point v, , D,(y,), is
the residual life of the segments {(v,v,+,)}. Since the lengths of the segments {(v,,v,+,)} are distri-
buted as the vacation lengths, we get D[y} distributed as the residual life of the vacation

period.

Thus, we arrive at the expected conclusion: Dy ), the additional delay of the custo-
mers in a system with vacation periods, is distributed as the residual life of a vacation period!

2.8 Summary

The queueing system with an independent starter and the queueing system with
independent vacation periods were studied in this chapter. It was shown that the delay distribu-
tion in the queue with starter is composed of the direct sum of two independent variables: 1)
The delay in the equivalent queue without starter. 2) The additional deiay suffered due to the
starter presence. Using this decomposition property, the Laplace transform of the additional
delay was derived. This transform was derived both for discrete time systems with geometrically
distributed interarrival times and for continuous time systems with Poisson arrivals. Using the
same approach, we then analyzed the M/G/1 system with vacation periods. It was first shown
that the M/G/1 with vacations is just a special case of the M/G/1 with starter, so that the delay
in the M/G/1 with vacations can be easily found by using the formula for the delay of the
M/G/1 with starter. Second, using geometric arguments we explained why the additional delay
in the vacation system is distributed as the residual life of the vacation period.
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CHAPTER 3
A Queue with an Non Independent Starter: Delay Analysis

A queueing system in which a start-up delay is incurred whenever an idle period ends is
analyzed in this chapter. In chapter 2 this system was analyzed under the assumption that the
start-up delay is a random variable independent of the system behavior. In this chapter we
extend the study of the "queue with starter” and allow the start-up delay to depecd on the sys-
tem behavior. Two types of systems are analyzed: 1) A system where the start-up delay
depends on the amount of work (or the number of customers) arnving to the system at the
beginning of the start-up period. 2} A system where the start-up delay depends oo the length of
the idle period preceding the start-up operation. The analysis is done foz systems (both discrete
and continuous) where the interarrival periods possess the memoryless property. The results of
this analysis are used in chapter 5 in the analysis of some exhaustive slotted ALOHA systems.

3.1 Introductlon and Previous Work

o the following we consider a queueing system with a “starter.” In such a system the
server is "turned off" whenever it becomes idle. When a customer arrives at an idle system, it
cannot be served immediately; rather, an additional (random) amount of time 18 required to start
the "cold” system before the new "lirst” customer can be served. Customers who arrive at a
"hot" systemn (i.e. one with at least one customer in the system) will join the queue and be served
in turn.

The queue with starter has been studied before under the basic assumption that the
length of the starter (or, the length of the set-up time) is a random variable independent of the
system behavior; for a literature review of the indepeandent-starter system, see chapter 2. In this
chapter we study a new variation of the queue with starter. In contrast to the previous studies
and to the analysis carried in chapter 2 we do not assume that the starter behavior is indepen-
dent of the system status. Rather, we allow the set-up time to depend on two system factors:

1. The amount of work brought to the system by the new arriving customer(s).

2. The length of the time the system was idle prior to the set-up period. Namely, the length
of the idle period preceding the starter operation.



To understand the importance of these new variations for the modeling of queueing sys-
tems, let us describe what systems can be modeled by the new models, compared to the systems
that can be modeled by the old independence model:

1. The queue with an independent atarter can be described as a system with an "indiferent”
server. In this system the server goes for a "vacation” of indefinite length whenever the
system gets idle and returns to service when new customer(s) arrives. However, the
return of the server is not instantaneous since it takes the server a random amount of
time to complete his vacation {or just to start working again). We call this type of
server "the indifferent server” since the time it takes the server to start working is

independent of the system behavior.

2. A quene with starter where the set-up time depends on the amount of work brought to
the system by the new arriving customer, can model a system with customer-sensitive
server. In this system the server is sensitive to the amount of work brought by the first
customer [or to the number of customers srriving tn the first bulk, in a bulk-arrival sys-
tem) and the return-time depends on this amount. In manyv real queueing systems it is
only natural that the server will "rush” back to work when it sees a "big customer”
arriving (much work to do...) and will be mnuch slowee if the new arriving customer is
just 3 "small one”. Clearly, this is not the only application that can be modeled by a
starter that depends on the amount of work brought to the system. As a matter of fact,
as already stated. the analysis of the queue with a non independent starter was
motivated by the need to analyze some exhaustive slotted ALOUHA systems, and the
results derived in this chapter are used in the analysis of those ALOHA systems (chapter

3).

3. The queue with starter which depends on the length of the last idle period can be used
to model systems where the server is some machine which is turned-off whenever the sys.
tem gets empty, and the set-up time is a "warm-up” period of the machine. As we know
from behavior of automobiles, this warm-up period may directly depend on the amount
of time the machine was idle belore starting-up: the longer the idle period, the longer

the warm-up time.

In section 32 we review the model description and the analysis of the queue with an
independent starter reported in chapter 2. Using the analysis approach and the results reported
in chapter 2 it is very convenient tu analyze the queue with non independent starter. The proper-
ties of the queue with an independent starter which are important for this chapter are reviewed
in section 3.2. Also reviewed in section 3.2 are the model description and the potation used in

chapter 2.



Section 3.3 deals with a discrete (slotted) system with memoryless bulk arrivals, where
the start-up delay depends on the number of customers arriving in the first bulk after an idle
period. For this system we derive the z-transform and the expected value of the additional delay
an arbitrary customer suffers in the system. We realize that the expected value of the additional
delay (unlike the z-transform} can be used directly to calculate the expected value of the total
delay suffered in the system.

In section 3.4 we are interested in a continuous time system. Here the underlying system
is an M/G/1 system and the starter depends on the amount of work brought to the system by
the first customer of a busy period. The analysis in this section is similar to that done in section
3.3 and it yields the Laplace-Stieltjes transform (LST) and the expected value of the additional
delay suffered by an arbitrary customer in the system. As in section 3.3 we realize that the
expected value of the additional delay can be used directly to calculate the expected value of the
total delay suffered in the system. Nevertheless (again, as in section 3.3), the LST of the addi-
tional delay cannot be used directiy to calculate the LST of the total delay suffered in the system.
This is true since the additional delay suffered by an arbitrary customer in the system with star-
ter is not independent of the delay this customer would suffer in the system without starter.

The LST of the total delay suffered by an arbitrary customer in this type of system, is
the topic of section 3.5. Due to the non-independence property, observed above we must go

through a more complicated analysis in order to derive this LST.

In section 3.6 we deal with a queue with starter where the starter depends ca the length
of the time the system was idle before the start-up time. It is observed that for systems with
memoryless arrivals the dependence of the starter on the system behavior is quite simple, so
using the results reviewed in section 3.2 it is rather trivial to calculate the additional delay
suffered in this system. This result has been previously reported in |Welc64] and is discussed
here for completeness. Section 3.6 also deals with mixed systems. namely, systems where the
starter depends both on the length of the preceding idle period and on the amount of work
brought to the system by the first customer in the busy period.

Section 3.7 deals with extensions and generalizations of the basic models. It is observed
that most of the results reported in the previous sections can easily be extended {sometimes by a
small modification) to the following types of systems: 1) Systems with bulk arrivals. 2] Systems
where the starter depends on the size of the "first bulk”. 3) Systems where the starter depends
on the amount of work brought to the system by the “first bulk”.
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3.2 Model Description, Notatlon and Review of the Queue with Independent Starter

In this section we review the results for a queue with starter where the start-up times are
independent of the other system parameters. These results were reported in chapter 2 and will
be used throughput this chapter.

The model considered here is simple: We consider a single server queue in which a custo-
mer that arrives to an empty system cannot be served right away. Rather, an additional (ran-
dom) amount of time is required to start the system up, before this customer can be served. This
petiod of time, during which the server "warms up" is called a cold start. The lengths of the coid
starts in a system with an independent starter are identically distributed and are independent of

apy of the system parameters.

The notation used and the assumptions on the arriving customers are the following:

1. Arrivals occur at time epochs 7,7, - - - . The arrivals may consists of a bulk of custo-
mers (in several of the cases studied) or of single customers. Interarrival times are

denoted by ¢, - - - . Thus, ¢, =1-1,,.

2. The interarrival times are statistically independent of each other. Namely, ¢, is indepen-
dent of ¢, for i3 ;.

3. The ith customer’ is denoted by C,.
4. The service time of C, is denoted by «¢,.
5. The service times are statistically independent of each other. Namely, ¢, is independent

of ¢, for i7j.

6. The interarrival times are statistically independent of the service times. Namely, ¢, is

independent of ¢, for every i and ;.

The notation and the assumptions made above on the arrivals are valid both for the systems
with an independent starter and for the systems with a non-independent starter.

‘Note that some ambiguity in the numbering of the customers and of the arrivals may arise in
the case of bulk arrivals. However, since the actual service times are not required in the analysis,
this ambiguity is avoided.
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To analyze this system we compare it to a similar system (under the same arrival realiza-
tion) which does mot suffer cold starts. We call the system with starter, aysliem-B, and the
corresponding system that does not have a starter, system-A. The analysis is done by observing
the unfinished work, denoted by U(f), in the two systems.

The system time suffered by a customer in system-B is calculated by comparing it to
system-A. We call the time spent by a customer in system-B, the total delay (or the system lime ).
This delay is viewed as the sum of two different delays: a) The delay this customer would suffer
in the equivalent system-A, which we call the original delay. b) The additional delay this custo- -
mer suffers due to the starter "presence”, called the additional delay.

In figure 2.1, we plotted the unfinished work as observed in the two systems. Figure 2.1a
describes U{t) in system-A, and figure 2.1b describes U(t) in system-B. In this figure, Y, denotes
the ith busy period according to the realization in system-A, and X, denotes the corresponding
ith idle period. D, denotes the additional delay suffered in system-B by the customers of the ith
busy period (busy period are indexed by their realization in system-A).

The following facts were established in chapter 2:

1. The additional delay suffered by ail customers of the ith busy period is the same. Thus,
D, is the additional delay suffered by afl customers of the ith busy period.

2. The additional delay suffered by an arbitrary customer in system-B is independent of the
delay it suffers in system-A.

3. A busy period (b.p.), ¥,, may "suffer” a cold start (as do Y, and Y,); in this case the
additional delay suffered by the customers of this b.p. is distributed as the distribution
of the cold start. However, not all busy periods do suffer cold starts. In this case the
additional delay suffered by the jth b.p. is some residual of the additional delay suffered
by the j-1st b.p.; for example see that the additional delay suffered by the customers of
Y, is some residual of the additional delay suffered by the customers of Y,.

Using the above observations one can recursively calculate the additional delay suffered by the
customers of the ith busy period from the additional delay suffered by the customers of the i-1st
busy period. From this recursion it is then easy to derive the Laplace-Stieitjes transform (LST)
of the additional delay suffered by an arbitrary customer when the system is in equilibrium.
Since the additional delay is independent of the original delay, this LST can be multiplied by the
LST of the original delay suffered in the corresponding system-A, to yield the LST of the total
delay suffered in system-B.
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In chapter 2 we analyzed the queue with an independent starter for two types of sys-
tems: 1) A discrete system where the arrivals consist of bulks of customers and the interarrival
times are geometrically distributed {with parameter z). 2) A continuous system with Poisson
arrivals (an M/G/1 system).

The notation used for analyzing the discrete system are the following:

Sjé the length of the cold start (if any) suffered by the jth busy period
DJ__‘-’_‘ the additional delay suffered by the jth busy period
5,(2) A the z-transform of the distribution of S,

D (z) A the z-transform of the distribution ofD,

Similarly, S(z) and D(:) denote the z-transforms of the cold start and of the additional delay
suffered by (customers of) an arbitrary busy period when the system is in equilibrium. In addi-

tion T, SZ denote the first and second moments of the cold start distribution and IF denotes the
equilibrium expected value of the additional delay, suffered by an arbitrary busy period. z

denotes the probability of no arrival to the system in a given slot.

The recursive relation of the additional delay in this system was found to be:

(1-2){D (2)-D (2)]

-2

Dsif2) = + S(z)- D(2) (3.1)

The z-transform of the additionzl delay suffered by an arbitrary busy period, when the system is
in equilibrium, is:

D(z) = 1 l-zH{z-2)5(z) (3.2)
14(1-2)5 | 1-2
The expected additional delay is given by:
2T+(S-5)1-7) (3.3)

2+28(1-1)

The notation used for analyzing the continuous system (M/G/1) are the following:

S/(2) & the LST of the distribution of 5
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D)(2) A the LST of the distribution of D,
where S, and D, have the same meaning as in the discrete system.

Similarly, $°(v) denotes the LST of the cold start distribution and D‘(s} denotes the LST of the

additional delay suffered by an arbitrary busy period under equilibrium. 5, S and I have the
same meaning as in the discrete system. X is the parameter of the Poisson arrivals.

The recursive relation of the additional delay in this system is givea by:

Dini(n) = MELRIN g e (3.4)

The LST of the additional delay suffered by an arbirrary busy period is;

D'(s) ~ — -5”3""""“] (3.5)
1+A5 | 3

The expected additional delay is given by:

) I AN

3.6
2+ ¥ (356)

Having reviewed the queue with independent starter we now turn to analyze queueing
systems with starter where the length of the rold start is not independent of the system
behavior. Considering the arrival process, these systems are similar to the queve with indepen~
dent starter. The difference is that in the non-independent systems the length of the cold start is
not chosen independently of the arrival process. Rather, the length of a cold start is a function of

this process.

3.3 The Discrete System Where the Starter Depends on the Number of Customers it
finds In the System

QOur first system is a discrete queueing system with starter. The arrival process in this
system consists of bulks of arbitrary size. Therefore a2 system-A busy period starts with the
amount of work brought by the "first” bulk {we will refer to the customers in the first bulk as
“first” customers). In contrast to chapter 2, we do not assume here that the length of a cold start
is independent of the amount of work brought by these first customers. Rather, the length of the
cold start is a function of the number of customers in this first bulk. This dependency is denoted

by the lollowing notation:



KA A Pr{S, =i | the number of customers starting busy period j is k]

2] o
5z lk) & Y. i A Yisl
1=x0 1=0

To avoid confusion, note that this notation is valid only for a busy period j that suffers a cold
start (in contrast to many busy periods that do not suffer a cold start). The conditional z-
transform of an arbitrary cold start (without considering the busy period index) and its expected
value are denoted by S(z |£) and S‘IT. respectively. Clearly, since we assume that the distribu-
tion of a cold start is independent of the busy period index, 5{z |k} = 51z | k) and Sie=5%;

for every k.
In addition we define:

a, & Pr{ bulk consists of i customers | ; =012,

5, é Pr[ a system-A busy period starts with a bulk of { customers | . 1=0,1,2,--

>
e
(18

b

1

i

1

7, A Pr{ the length of an arbitrary idle period is ¢ time units |

a!

From this notation, it is clear that b = for i5£0. [n addition, if we denote by z the proba-

bility of no arrival in a given slot (z = a,), we can easily calculate z;

7, = (1-z)-z*! i=123,..

Using this notaticn we may write:

Sfz) = L S (2 lk)d, . S(z) = .E S{z ke, . § =

k=1 i=1

W[ s

S'F»b,‘

This allows us to calculate the unconditional expressicn for the length of the cold start from the
conditional expressions.

Similarly, we denote the additional delay. suffered by customers of the jth busy period,
conditioning on the size of the first bulk of this busy period:

& a PriD =i | the number of customers starting busy period j is & |

a1



X0
Dz 1k) & L p?
1=0

The additional delay suffered by an arbitrary customer is denoted by:
g, 2 Pr| the additional delay suffered by an arbitrary customer is i |

The z-transform of this distribution, and its expected value are denoted by:

s ] o
Glz) A%y, TALi,
1=0 b=0

We may now start deriving the additional delay suffered by customers in the system
under equilibrium conditions. First, lev us pick an arbitrary customer and calcufate the addi-
tional delay suffered by this customer. Without loss of generality, we can assume that the
system-A busy period in which this customer is served, is j+1. Next, let us condition the delay
suffered by this customer on the aumber of customers (k) that start busy period j+1. As shown
in chapter 2 the additional delay suffered by this customer depends on the additional delay
suffered by the customers of the jth busy period, on the length of the jth idle period and on the
length of the cold start {if any) starting the j+!s¢ busy period. As in the system with an
independent starter, here too, these three measures are independent of each other. Thus, the
additional delay of our customer is:

. o . k) oo
[l T { 1 (gl T ol ~ -
e = Yoz ., + s o Sdn Yoo (3.7)
m-_-ull m=0 [=m*]

The first term of this expression represents the situation where the additional delay suffered by
busy period j+1 is the residual of the additional delay suffered by the jth busy period. The
second term represents the situation where the additional delay suffered by the jth busy period
is smaller than the length of the jth idle perind. In this situation busy period j+1 suffers the
additional delay caused by a cold start.

Taking the z-transform of (3.T) and using the fact that the distribution of the cold start
is independent of its index, we get:

(1-z)[D.(2)-D ()]

D.(z]|k = + S(z |k) - Df2) (3.8)

Since the system is in equilibrium, the! additional delay suffered by the customers of the jth busy
period 1s just the equilibrium additional delay. We observe that this additional delay is distri-
buted exactly as the additional delay in a queue with independent starter. Thus, using the

derived unconditional expression for 5(z) (see section 3 2 equation (3.2)} we have:
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Dfz) = Dz} =

1 . l-1+5(2}(3'21} (39)

1+(1-2)5 | 1-z
Thus, replacing D (z) for D(z) in equation (3.8) we have:

Dz k) = MJ%E]“—DM]- + S$(z {k) - D{(2) (3.10)

Next, let us compute the probability that the busy period to whick our arbitrary custo-
mer belongs, starts with & customers. It is clear that the expected number of customers served in
a busy period which was started by k customers is proportional to k. This is true since this busy
period can be thought of as k consecutive independent sub-busy periods, each of which starts
with one customer (see for example [Klei75|, section 5.8). From this argument it is easy to calcu-
late the probability that an arbitrary customer belongs to a busy period that starts with £ custo-
mers:

b,k

[+ -}

Y,

Pr| arbitrary customer belongs to a busy period started by k customers ] = {3.11)

Now, it is clear that equation (3.10) is actuaily independent of the busy period index (j+1).
Thus il we condition on the fact that our arbitrary customer is served in a busy period started
by k customers, then the z-transform of the additional delay suffered by this customer is given
by:

(1-z)-[D(z)-D{z]]

r-Z

D(z | busy period starts with k customers } = + S(z |k} - D{z} (3.12)

From equation (3.11) and equation {3.12) it is now easy to calculate the z-transform of the addi-
tional delay suffered by an arbitrary customer. This is done by unconditioning equation (3.12):

* bk _). -
G(z) = ¥ o {L=kBELEL & s(; 11y - ()]
k=1 .
A
1=1

ES(: {£)8,.k
G(z) = JL:ELL’;J__?;QLE]L + D(,)..’E.f.'_F_ (3.13)

Using equation (3.9) we may rewrite this as:

5 S(z 1)b,k
G(z) = D(z) + D(:)-[ = = -S(z)] (3.14)

from which we observe that the z-transform of the additional delay in our system equal to the
additional delay in the system with an independent starter plus the second term of (3.14}. Now
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substituting D(z) from equation (3.2) gives:

[] -z)!l S|z|] + k§15(z 'k)btk]

Glz) = =

1+(1 -7)% (8.15)

Note, that neither G{z} from equation {3.15) nor D(z) (rom equation (3.9} can be used
directly to solve for the z-transform of the fotal delay to a customer in the queue-with-starter.
Unlike the approach suggested in chapter 2 for a queue with an independent starter, we cannot
compute this z-transform by multiplying any of the above transforms by the z-transform of the
queue-without-starter. This is true, since in this system the additional delay in the queue-with-
starter is no! independent of the delay suffered in the queve-without-starter. Nevertheless, if one
is interested in the ezpecied value of the total delay, one can compute it by summing the
expected additional delay and the expected delay in the queue-without-starter. The expected
value of the additional delay in the system is calculated from (3.14):

v STk
C=D+ D(z:-{if{o— - 5’] (3.16)
S bk
=1
or, by using (3.3):
§ bk -
LA TR " ] a17)
1+(1-2)5 2 %'1‘ bk
sk
k=1

3.4 The M/G/1 System where the Starter Depends on the Amount of Work Brought
by a First Customer: Analysis of the Additlonal Delay

In this section we are interested in the analysis of the additional delay in an M/G/1 sys-
tem with a non-independent starter. The system model is the following: the basic system is a
regular M/G/1 queue. The modification is that when a customer arrives to an empty system a
random amount of time is required to “start” the server before this customer can be served. This
amount of time depends on the amount of work brought to the system by that "first customer”.

The goal here is to analyze the additionsi-delay suffered in the system. Thus, as in sec-
tion 3.3, we will derive the LST and the expected value of the additional delay suffered by an
atbitrary customer in the system. As in the discrete system, one can sum the expected value of
the additional delay in the system and the expected value of the system time in the correspond-
ing M/G/1, to yield the ezpected value of the system time. On the other band, the LST of the



additional delay suffered in the system cannot be used in a direct way {namely, by multiplying it
by the LST of the system time in the corresponding M/G/1) to calculate the total delay in the
system. Nevertheless, using more sophisticated analysis and the results derived in this section,
we will be abie, in the next section, to derive the LST of the total delay suffered in the system.

The notation to be used is similar to that used in section 3.2, but here we condition on
the service time of the first customer of the given busy period:

D[t |z) 2 Pr|D,<t | the service time of the first customer in b.p. i = 2

3Dt |2)

4o ls) & =5

o0
Dl(e {2} 2 [e"dfe |1ae,
)

St lz) & Pr|S,<t | the service time of the first rustomer in b.p. i = 1|

as(t |z)

ot l2) & =52

™ o
. ST lz) A fersle fade S, 2 [eaft |2)de,
4] ]

The conditional LST and the conditional expected value of the cold start suffered by an arbi-
trary busy period (disregarding its index) are deaoted by S*(s |z) and S'l','respect.ively. The con-
ditional LST of the additional delay suffered by an arbitrary busy period is denoted by D'(s |z).
The unconditioned cold start is denoted by S'{«). 5(¢). s(t). and 5. The unconditioned additional
delay (suffered by the customers of an arbitrary busy-periodj is represented by D*(s), D(¢), d(t),
and U. The additional delay suffered by an arbitrary -ustomer is represented by G'(s), G(¢),
g(t), and G.

Now let us follow the derivation from the previous section to derive the LST of the addi-
tional delay suffered in the system. The LST of the additional delay suflered by the customers of
busy period j+1, conditioning that the service time of the first customer of this busy period is z,

is recursively expressed as follows:

A[DIN-D(s]
Y

D;‘.,(s l7) = —

+ S |20 (3.18)

Since the system is in equilibrium, the additional delay suffered the customers of the jth busy
period is the equilibrium additional delay (D°(\), so:

Dfyte 12y = ARDLE o 54y 1210 (3.19)

Clearly, the above expression is correct for every j, so it represents the LST of the additional
delay suffered by an arbitrary busy period (conditioning oa the amount of work started this
b.p.). Thus:
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D'(s |:)--*JE{N_%ML + S 19D°0) (3.20)

Next, we calculate the distribution of the additional delay suflered by an arbitrary custo-
mer. This is done by considering the fraction of customers who are served in busy periods which
start with an amount of work equal to z, and by unconditioning equation {3.20). In addition, we
substitute D’(s) and D’(\) with the corresponding expression taken from (3.5). This calculation
yields:

Tb(z)zs'(a |z)dz

RN | .{s—xlll—S'a 0
G'(s) 1+x3[ - + - ] (3.21)

From this equation it is easy to derive the expected additional delay suffered by an arbitrary cus-

tomer:

5 bz ads
1 [AS %o .
T = 1+x3[ — = ] (3.22)

As mentioned eartlier, the expected value of the additional delay can be added to the ori-
ginal expected delay suffered in the M/G/1 system to yield the expected system time spent by an
arbitrary customer. Nevertheless, the the LST of the additional delay, cannot be multiplied by
the LST of the original delay suffered in the M/G/1 system to yield the LST of the system time
in our system. This is true since the original delay is not independent of the additional delay.

In the next section, we use a more sopbisticated analysis to derive the LST of the total
delay suffered by an arbitrary customer in this type of system.

3.6 The M/G/1 System where the Starter Depends on the Amount of Work Brought
by a First Customer: Analysls of the System Time

The approach used in the previous section cannot be used to derive the distributicn of
the totai delay suffered in the system. Even though we derived the LST of the additional delay,
D(s), and even though the LST of the original delay is known for an M/G/1 system, one cannot
directly use these results to compute the LST of the total delay suffered in the system. The rea-
son, as already mentioned, is that ip this system, in contrast to the system with an independent
starter, the additional delay suffered by an arbitrary customer is not independent of the original
delay suffered by this customer, so the two transforms cannot be multiplied to give the required
LST. Therefore, we have to use 2 more direct approach to find this LST.



. Let us assume that the system is in equilibrium and let £ and t be random variables
respecti\fely representing the service time and the waiting time of an arbitrary customer in the
system without starter (system-A). Let d be a random variable representing the additional delay
suffered by an arbitrary customer in the system with starter (system-B). This additional delay is
due to the starter. Let { be a random variable representing the system time (total time} an arbi-
trary customer suffers in the system with starter fsystem-B). We call these variables the service
time (7), the original waiting time (1), the additional delay {d) and the system time ({). The pro-
babilistic measures of these variables are the following:

Blo) 2 Prie<yl, o) 2088 B(0) 2 [emilgy
0
W) & Prla<yl, i) 208wl 2 femuudy

D) & prld<yl,  diy) 208 D) A [evalylay
0

To) & Priesyl, o) 20T T 2 fevgay
Q

In our analysis we realize that the system time of a given customer depends on two pro-

perties of first customers:

1. If the customer is the "first customer” of a busy period or not.

3

The amount of work brought to the system by the "first customer” of the busy period, in

which our customer is served.

For the sake of clarity, iet us define these properties carefully. Consider the busy and
idle periods as observed 1 system-A (i.e., a system without the starter]. Recall that a customer
is 6 firat cusiomer if it happens to be the first customer of some busy period. A customer which is
not the first customer of some busy period is called non first. We say that a busy period is of
height z (or type zj if the amount of work brought to the system by the first customer of this
busy period is z. We say that a customer belongs to a busy period of type z il it is served in a
busy period of type z. In figure 3.1 we see that customer j is a first customer, while the custo-
mers j+1,..j+k are non-first. The busy period described in this figure is of type r.
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u(t)

a1

Figure 3.1: The mth busy period, a busy period of type =

Next we are interested in the conditional distributions of the setvice time, the original
waiting time, the additional delay and the system time. These measures are conditioned on the
height (type) of the busy period to which the customer belongs and on the customer being first
or non-first. First, we denote the service time, waiting time, additional delay and system time of
the customers which are non-first, distinguished with the subscript n:

B,(y |z) & Prii<y | the customer is non-first and is served in a b.p. of type z]

d z
by I2) & -—B'gJ.

Bi{e 1z) & [eb, (v |2)dy
1]

W,.(y 12) A Pr{ii<y | the customer is non-first and is served in a b.p. of type 7|



AW, (y |2)

w,(y |2) & 3

. Wislz) A [ (y l2)dy
0

D,(y |z) & Pr[d<y | the customer is non-first and is served in a b.p. of type 3|

8D (y |z . =
(o 19 & 25 Dl 1a) & [emd,(y Laiay

T,(y |z) & Pr{t<y | the customer is non-first and is served in a b.p. of type z]

aT,(y |2)

e «]
. Tasl2) & [ewt (v lz)dy
a!l 0

t,{y lz) &

Similar notation is used for first customers, distinguished by subscript [:

B,(y |2 A Priz<y | the customer is first and is served in a b.p. of type z]
A GB!(y Jz) . A = y
b‘,(y |3) = ay , B{(’ '-"] = {5 yb/(!l Iz)dy
W (y |z) & Pr(<y | the customer is first and is served in a b.p. of type 1|
NELAVAE] . AT
wly |z) & By Wislz) & fg“l'w!(y | z}dy
0

D,y |z) & Prid<y | the customer is first and is served in a b.p. of type 7|

3D, (y |2) . <
4ol 2 200 pfo 1a) & [endyty iy
0

T (y |z) & Prf<y | the customer is first and is served in a b.p. of type z]

a7 (y Iz) ’ <
Yl & —5—=  Tisla) & [eyly lady
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Now we show that the conditional original waiting time, the conditional service time and
the conditional additional delay are independent of each other.

THEOREM 3.1: Given that a customer is served {in system-A) iz a busy period of type z, the
additional delay it suffers is statistically independent of its original waiting time and of its service
time.

Proof: Let us first consider an arbitrary customer, C,, which is non-first. Let j be the busy
period in which C, is served, and let C, (k<i) be the first customer served in this busy period.
From fact 1, observed in section 3.2, the additional delay suflered by C and C, is the same.
Thus, we have to show that conditioning on the type of the busy period (or, actually, condition-
ing on the service time of C,) the additional delay suffered by C, is independent of the original
delay suffered by €, and of the service time of C,.

It is clear that the original delay suffered by C, is a function only of the service times
and interarrival times that "belong” to busy period j. Namely, the sequence c;,c4y, - - - ,¢,, and

the sequence f,.,,fc.y, - ,f,. Let us call this group of variables, the original delay group. On

y
the other hand, the additional delay suffered by C, is only a function of the system behavior
prior to 7., the starting time of busy period ;. More specifically, this is a function only of the
sequence f,,ly, - - ' {; the sequence c,,c; * - - ¢, ; and the sequence 5,5, - - -,S5. More carefully,
we recall that S, is a function of ¢, (the cold start depends on the service time of the first custo-
mer in the busy period). Thus, we bave to add to this set the variable ¢,. Let us call this set
(including c,) the additional delay group. In addition, we must mention that S, --- S also
depend on the service times observed in the system; however, all these variables belong to the
"past” and are contained in the set ¢;,cp, - - - ¢, .

Now, we note that the additional delay group and the original delay group are mutually
exclusive, excluding ¢, that belongs+to both groups. Due to the assumptions on the arrival pro-
cess (independence of interarrival times and service times) it is clear that the statistical depen-
dence between the groups is only due to the fact that ¢, belongs to both groups. Therefore, we
conclude that if we condition on the value of ¢, (which is identical to the busy period type) the
additional delay suflered by C, is independent of the original delay suffered by C,.

It is now easy to prove that the service time of C, is independent of the additional delay
it suffers. This is true since this variable does not belong to the additional delay group.

Now, let us consider a customer C, which is a first customer. First, the original delay
suffered by this first customer is constant {0), so it is independent of the additional delay it
suffers. Second, considering the customer's service time, ¢, we realize that it is contained in the

original delay group. However, since we condition on the value of ¢, the conditional service time
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is independent of the conditional additional delay. ®

In additicn to the above theorem, it is well known that the waiting time of an arbitrary
customer in an M/G/1 system is independent of its service time. Therefore, the original waiting
time {in our system) is independent of the service time. All this leads to the following conclusion:

COROLLARY: The conditional system time consists of the sum of three independent random
variables: the conditional original waiting time, the conditional service time and the conditional
additional delay.

From this corollary it is now easy to calculate the LST of the conditional system time,
This is simply the multiplication of the proper Laplace transforms:

Ti(s [2) = B/(s 12} W](2 |2)-D](s |2) (3.23)

TJ(# lz) = Bj{(s |2)-W,(s |2)}-D (s |2) (3.24)

We are now ready to start calculating the conditional system time. This we do by using
equations (3.23) and (3.24) and by calculating, one by one, the proper terms appearing in these
equations.

The Delay Suffered by First Customers

In the following we derive the LST of the conditional service time (B;(s {z)) and the LST
of the conditional original waiting time (W;(s |2)) suffered by first customers. The LST of the
conditional additional delay (D;(a {z)) will be derived later.

First, it is clear that since we condition on the fact that the first customer is served in a
busy period of type z then its service time is exactly z, so the LST of its conditional service time

is:
Bi(s |z) = ¢ (3.25)
Second, the original waiting time of first-customers is always zero, so:

Wils [z) =1 (3.26)

The Delay Suffered by Non-First Customers
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In the following we derive the LST of the conditional service time (B.(# |2)) and the LST

of the conditional original waiting time (W.(2 1z)) sufered by non-first customers.

First, it is clear that the service time of 2 non-first customer is independent of the type
of the busy period to which this customer belongs. Thus, its service time is just the service time
of an arbitrary customer in a regular M/G/1 system:

B(s |z) = B'(s) (3.27)

The computation of the LST of the original waiting time of non-first customers is more
complicated. This is true since the waiting time that a non-fiest customer suffers in system-A,
strongly depends on the type of busy period to which this customer belongs.

To analyze this LST, we follow the method used in [Klei75] to defive the waiting time in
an M/G/1 system by analyzing the behavior of the busy period; we depart from this M/G/1
derivation when we uncondition on z, the height of the busy period.

Let us consider a busy period of type r, as observed in system-A. Let us examine the
unfinished work, {’{t}, as ohserved in the system during this busy period. To analyze the waiting
time we decompose this busy period into a sequence of intervals whose length are dependent ran-
dom variables as [ollows. Consider this busy period as shown in figure 3.2 (bhorrowed from
[Klei75] and modified properly). Hete we see that customes C, initiates the busy period upon his
arrival at time 7. The first interval we consider is his service time ¢, =z, which we denote by
X, during his interval more customers arrive (in this case C, and Cj). All those customers who
arrive during X, are served in the next interval, whose duration is X, and which equals the sum
of the service times of all arrivals during X, (in this case C, and ;). At the expiration of X we
then create a new interval of duration X, in which all customers arriving during X, are served,
and so on. Thus, X, is the length of time required to service all those customers who arrive dur-
ing the previous interval whnse duration is X, ;. Now, let us denote by n, (§=0,1,2,..} the
pumber of customer arrivals during the interval X,. Using this notation it is clear that n, custo-
mers are setved during the interval X, ,. To allow for an infinite number of such intervals, we

define X, ==0 for those intervals that fall beyond the termination of this busy period.

Let us now define X,(y) to be the PDF for X,, and X/() the LST of the corresponding
pdf, that is,

X(y) APAX <y}, Xo) 2 [evdXiy) = Ele™]
0

In a similar manner, we define the following measures for, conditioning on the fact that the busy
period to which this interval belongs is of type z:
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Figure 3.2: The sub-busy periods of a busy period of type =
o
X(y |2) & PriX,<y |X, falls in b.p. of type z] , X(s |z) & fe""dX,(y |2)
0
We now condition our caleulation on the event that a new tagged customer arrives while

the busy period is in its ith duration (i.e, arrives during the interval X)}; let w denote the waiting

time of this customer. It is clear that the waiting time of our tagged customer equals the remain-



ing time of the ith interval plus the service time of all the customers* who arrived before he did
during the ith interval. Let us define Y, to be the remaining time of the ith interval (that is, the
time from the arrival cf our tagged customer until the end of the ith interval), and let IV, be the
number of arrivals during the ith interval but prior to the arrival of our tagged customer (that
is, in the interval X,-Y,). Now, we are interested in calculating E{e*? {i, X,=21|, and this we do
by conditioning on X,, Y, and N,. This is simply the following:

Ele*" i, X, =y, V,=y’, N,=n, X,=31] = e""[B'M]' (3.28)

Now, since we assume that n customers have arrived during an interval of duration
y-y', we uncondition on N, as follows:

E‘[c-lﬁ Ii, X'=y' Y’==y" Xo=_‘r} === e”" E m%nlc'x(y'vl)[B‘(g)}.
n=0 -

= My-y VFA-¢ )BT (3.29)

Since Y, is defined to be the remaining time of the ith interval, it is distributed as the residual

life of X,. Therefore, as shown in [Klei75] the joint density for the conditional X, and the condi-
tional Y, is given by:

dX [y |z)dy’
E|X, |4}

Thus, we can uncondition on X, and Y, in equaticn (3.29) to obtain:

Priy<X,Sy+dy, y'<Y,<y'+dy’ Ii, X,=1] = for 0<y <y<eo

o ¥ ’
) Bl wan) Xy |2)dy

e~5¥ !i, Y. =z = e-[s-\-HB(s)]y _e-p\-xﬂ(s)]y , :.
E[ 0 l y'LoyJ;o[ ) E[.X, |X0=Il

oo [c_sy_c-p-lﬂ'(s)]y]

—VJ_;o[-aﬂ”-xB'(s)]-E[x, 1X, =1

D dPRE (3.30)

which is identical to:

Xle 15)-X(A2B(s) |2)

e i, X,=z1| =
Al b o= = B BIX, o=

(3.31)

Now, X4, (¢ |z) can easily be recursively expressed in terms of X!(2 {2) (see the derivation of

equation 5.161 in [Klei75]) as follows:

"We assume that the service policy is first come first served (FCFS)



Xiuale I2) = X (A -2B(5) 1) (3.32)
Thus, using equation (3.32) in equation (3.31) we get:

Xx“"l(, IZ"—X’:(J IZ)
oA +2B'(o)]-BIX, 1Xy=3]

Ele*® |i, Xy=1] = (3.33)

Next we note that the probability of arriving into the ith interval is proportional to its length,
80:
E1X, |4]

Prlarriving in the ith interval | the b p. is of type i} = m-—-—]
0 =1

Thus, we can remove from equation {3.33) the condition that our customer arrived in the ith
interval {still conditioning on the fact that it arrived during a busy period):

2 X% (s 120-Xe 1)

%% {customer arrives during a b.p., X,=i] = —="— 3.34
& o= le-x+2B°(s)]- E]Y |X,=1] 13:34)

Now, the summation from this equation collapses into X;ls 12)-X(s |z), whick is clearly identi-

cal to 1-¢7*7 (recall that X =0}), so:

-5E

l-e

oA ()-ENY | X,=1]

Ele *¥ |customer arrives during s b.p., X,=1] (3-35)

Now, let us calcuiate E]Y {X,=z]. First it is known that the expected length of an arbi-
trary busy period is given by
E(Y}) = = (3.36)
1-p

where Z is the expected service time and g is the system utilization.

Second, we note that the distribution of the amount of work brought to the system by the first
customer of a busy period is just the distribution of the service time, 5(z). Therefore, we get:

E(Y) = fE[Y | | (z)dz
O

8§07

-

_OIEI)- Izlb(.l”d: =z l—f-p- (337)

Now, in our system, as opposed to a regular M/G/1 system, we condition on the amount of work
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(z) brought by its first customer. Thus, the expected length of a b.p. is proportional to z, so;
ElY | X,=1z] = ¢z

where ¢ is some constant. Thus, we obtain:
a0 o
JEY |zlb(z)dz = [c-z-b(z)dz = c-Z {3.38)
] 0

Using (3.37) and (3.38) we get that c==Tl-; and the desired result is:

= = -
ElY [ X,=1] - (3.39)

Finally, we can now plug (3.39) into (3.35) to yield the conditional LST of the original
waiting time of non-first customers:

1-2-%F){] -

L (3.40)
(s-7A+\B'(s))-z

Wi(s |z) = Ele~*° | customer arrives during a b.p. of type z] =

The Distribution of the Conditional Additionsl Delay

In the following we derive the expressions for the LST of the additional delay suffered by
first customers and non-Grst customers as proposed.

From the analysis done in section 3.4 it is clear that the additional delay suffered by the
customers of a busy period of type z is identical for all such customers, independent of the
first/non-first property. From that analysis we get:

Dife 1) = Dflo 12) = D(s |z} = AULLLLA 4 g, 1. p7pr) (3.41)

The LST of the Total Delay Suffered in the System
Having calculated the LST of the conditional service time, the conditional original wait-
ing time and the conditional additional delay, we are now ready to calculate the LST of the total

system time.

The LST of the total delay suffered by first customers which belong to a busy period of
type z is given by:

Tis |2) = 1-3-"-E3¢U—’3’l_l%(iﬂ- + 59 |29D"\) (3.42)

where equation (3.26} gives the factor I, equation (3.25}) gives the factor ¢"** and equation (3.41)
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gives the term in brackets.

The LST of the total delay suffered by a non-first customer who belongs to a busy period
of type z is given by:

o = !1-6'“"1-—2' g% .. )\'ID‘IXI—D.IJII . .
Tz |2) I’_H)‘B,(’)]:B(a)ﬁ Y + 5(s |2)D°(0) (3.43)

where the first term, the second term and the third term are taken from equations (3.40), (3.27)
and (3.41), respectively.

Next, we calcuiate the fraction of customers which belong to each type.

Considering the "first” customers, we realize that these are actually customers who arrive
to system-A while the system is empty. Therefore, the fraction of customers that are first custo-
mers is exactly 1-p, where p is the utilization factor of system-A (recall that p=\7}). Now, it is
clear that the first customers who "fall” into a busy period of type z are exactly those first custo-
mers whose service time is z. Thus, the [raction of first customers who "fall” into a busy period

of type z is given by 8(z). Therefore, we conclude that the fraction of customers who are "first
customers and belong to a busy period of type z is given by:

P,. & Pr|a customer is a first customet and belongs to 3 b.p. of type z| = b(z)-{1-p43.44)

Considering the non-first customers, it is now clear that these are customers who arrive
to system-A while it is busy, so the fraction of customers who are non-first is exactly p. To find
the fraction of non-first customers which are served in a busy period of type z, we note that the
expected length of a busy period is proportional to the amount of work brought by the customer
starting the busy period. Thus, the expected number of customers arriving to the system during
a busy period of type z, is proportional to §{z)-z Therefore, the [raction of non-first customers
who belong to a busy period of type 2 is given by:

Pr[ a customer belongs to a b.p. of type z ] non-first customer | = = Mzyz b(z)z-M

fb(:.}-:d:
0

And the fraction of customers who are non-first and served in a busy period of type z is given
by:

P, A Pr{ a customer iz a non-first customer and deiongs to a b.p. of type-z| =

6(3}'3 o = b(-‘l_'"i (345)

fb(z)-:dz :
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Having calculated the conditional LST of the system time and the fraction of customers
belong to each type, it is now straightforward to calculate the LST of the system time for an
arbitrary customet.

T(e) = {P,_,T,'(a lz)dz + [P, Ti2 |2)dz (3.46)
0

Substituting (3.42), (2.43), (3.44) and (3.45) into (3.46) yields:

T'(s) = T(l_p)b(z)fﬂ-éﬂ"—'(ﬁ)g—"'(ﬂ + 5% I.r)D'()\)]-dz

+ f)u b(z)z .L_'_IL_E.L ()E..ID_QL’LEqu-s( Iz)D(k)]d:

(a-\+2B(s)) 2

Using the foilowing equalities:
o [+ ]
[Hz)e**dz = B(s) , [b(z)dz =1
0 0

and rearranging the expression for T°(s), we get:

T'(a) (1-p)- |D I)‘I - |a|| B( ) + _)‘|+ng[( ) '(8)' )\-ID'(:_!;D‘PH -(l—B'(a))

PR | =) i R im N
s-A\+1B'(s) AB)D IS ) + E(l PPN - N +AB(3) AB'(s)D (3)] L{t‘:( Je5'(s |2)d

Factoring the first and the second terms of the above expression and combining them together,
and factoring the last term gives:

' A MDD pe g (1-8) s p%apiiaic
e) = (1op) MELER L o) o+ L0 )5 (0
+ (1-p)D*\) —m);m fb{z)e 289 |2)dz (3.47)
) [°
Now, from {3.4) it is clear that:
’ 1
OBy = 1+)\%

thus, we get:

D'N-D'(s} _ D{M1-S'(s)]
a-x e

Substituting this relation into (3.47) yields:
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7o) = —El B D (M) 1-5"(e)) + —LL2—B(6)D S (s)

s-A+\B'(s) 8-A+2B’(s)

22 .
s-A+rB'(s)

+ (1-p)D'(\)- 1}05(::#"‘5'(0 |2)dz
LO

Rearranging this expression and substituting D*(\) from (3.4), finally gives the desired result, the
LST of the system time:

T'(s) = ).
[s-A+AB’(s)] (1 +)3]

w'(s}+(m;-}nb(:)c-“s‘(a |z)dz (3.48)
I. 0

Now, if one is interesied in calculating the LST of the "additional delay” suffered in the system,
(3.48) can be rewritten as following:

(a-h)-?b(z)e‘“S'(s |z)dz

T(s) = s-“—'ﬂﬁ‘ﬂ- (3.49)

L s\ +\B"(s) } evE B'(e)

The first term in (3.49) is the well known expression for the system time in the M/G/1 without
starter. Thus, the second term of (3.49) could be considered as the additional delay suffered in
the system with non-independent starter, and we can consider the delay suffered in this system
as consisting of the sum of two independent random variables: 1) the delay in the M/G/1
without starter, represented by the first term. 2) The additional delay suffered due to the starter
and represented by the second term.

The reader should note the difference between the property mentioned above for the sys-
tem with a non-independent starter to the equivalent property ohserved for the system with an
independent starter studied in chapter 2. In chapter 2 we could show that for the system with
an independent starter the total defay is distributed as the sum of two random variables (the ori-
ginal delay and the additional delay); morecver, we have shown how to directly calculate the
additional delay in that system. In contrast, in the analysis of the non-independent starter sys-
tem, done above, we can only consider the delay expression as conspling of the sum of two ran-

dom variables.

3.8 A System where the Starter Depends on the Length of the Idle Period

In this section we are interested in analyzing a system where the start-up delay depends
on the amount of time the system was idle before the arrival of a "fizst customer”. Such a sys-
tem, where the underlying system is M/G/1, has been analyzed by Welch {Welc64]. In the fol-
lowing we analyze this system using our approach. Like Welch we do the analysis for an M/G/1
system with single arrivals. In addition we emphasize that the same approach can easily be used
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to analyze discrete systems and systems with bulk arrivals, This is an immediate result of the
method of analyzing the additional delay instead of the total delay.

The basic assumptions required for this section are:

1. The interarrival times possess the memoryless property. Thus in a continuous system
the interarrival times are exponentially distributed and in the discrete system they are
geometrically distributed.

2. For the analysis of the additional delay the arrival may consist either of bulks or of sin-
gle customers.

3. The length of a "cold start” depends on the length of the idle period preceding it. For
clarity it should be emphasized that this depeadence is on the length of the idle period
as observed in system-B. This emphasis is important {or having a realistic model,

Under these assumptions it is easy to see that the following holds:

1. The coid start {if any} suffered by the jth busy pericd (according to system-A) is
independent of any property of this busy period.

!-’}

The leagth of an idle period, as observed in system-B is exponentially distributed with
parameter i,

3. Let us assume that the jth busy period (according to system-A) suffered a cold start in
system-B. Let ¢, be the moment when system-B becomes idle prior to the beginniag of
the jth busy period. Then the cold start suffered by the jth busy period is independent
of the history of system-B prior to .

Let us now calculate the additional delay suffered in an M/G/1 system. The notation to
be used is very similar to the notation used in section 3.4. [n fact, we use exactly the same nota-
tion bat modify its meaning. The modification is that here the conditioning parameter (z)
represents the length of the preceding idle perind while in section 3.4 it represented the amount
of work brought to the system by the first customer. Thus, for example, we denote by SJ'(s |z)
the LST of the cold start (if any} suffered by the jth busy period (according to the realization in
system-A) conditioning on the fact that the length of the preceding idle period (according to
system-B) is z.

From the observations made above it is clear that in order to compute the LST of the
additional delay suffered by an actbitrary busy period, one need merely to calculate the LST of an
arbitrary cold start and then plug it into equation {3.3). From the second observation, calculat-
ing the LST of the coid start suffered by an arbitrary busy period is an easy task:



x
5°8) = [xe>:S'(s [2)ds (3.50)
0
Similarly one can easily calculate the expected value of the cold start distribution:
oo
5 = [re? 5 |dz (3.51)
0

And, as observed above, the LST of the additional delay is expressed in the terms of 5°(s) and 5

D) = ;Eﬁlaﬂlul] (352

1+)%

which is what we are looking for.

It is easy to see that the above results hold for M/G/1 systems where the arrivals consist
of customer bulks as well as for an M/G/1 system where the arrivals consist of single customers,
In addition, we realize that the same approach can be used to analyze discrete systems where the
interarrival times are geometrically distributed. As observed for the M/G/1 system, the results
for the discrete system will hold for bulk arrivals as well as for single customer arrivals. While
the basic result {concerning the M/G/1 system with single customer arrivals) has been reported
by Welch, the extensioas for discrete systems and bulk arrival systems have not been observed

previously.

3.6.1 A Note on Mlxed Systems

In the first sections of this paper we considered systems where the start-up delay
depends on the amount of work it finds in the system. In the beginning of section 3.6 we dealt
with a system where the start-up delay depends on the amount of time the system were idle. A
natural extension of this work is to consider mixed systems. A mized sysiem is a system where
the start-up delay depends both on the amouat of work it finds in the system and on the length
of the preceding idle period. Using the results reported in the previous sections it is quite easy to
analyze mixed systems.

For simplicity let us consider an M/G/1 system and use the notation used in sections 4
and 5. Thus, $°(¢) denotes the LST of an arbitrary cold start and S*(s |z) denotes the LST of a
cold start conditicning that the amount of work brought to the system by the first customer of
the busy period (corresponding to the cold startj is z. In addition to the notation used in section
3.4 let us denote by S°(s |z,y) the LST of the cold start conditioning on the fact that the length
of the previous idle period is y and the amount of work brought by the first customer of the
busy period is z. Similarly, we denote by Smthe expected value of the cold start conditioning

on the same two parameters.
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To analyze the system we note that the service time of the first customer of some busy
period (according to system-A) is independent of the length of the preceding idle period (accord-
ing to system-B). Thus, the same approach used in equation (3.50) can be used to uncondition
$*(s [2,y). This is simply:

S'(s §z) = [2e™8(a |z,y)dy (3.53)
0
and similarly, one can find SF:
=]
5= {)\e“”&'lz_.vdy (3.54)

Now we note that $°(s |z} and 5; have the same meaning as in sections 3.4 and 4.5.
Thus, to obtain the LST of the additional delay suffered by an arbitrary customer in the mixed
system one need metely to use the expression derived in equation {3.53) and then substitute it
into equation (3.21). Similarly, to obtain the expected value of the additional delay suffered in
the system one need to substitute the sxpression from equation (3.54} into equation (3.22). In a
sitnilar manner, it is easy to derive the LST of the total delay suffered in the system. This can be
done by substituting equation (3.53) into equation (3.49).

3.7 Extensions and Generallzations of the Results

In this section we review the results reported in the previous sections and describe how

they can be used in the analysis of other systems.

In section 3.3 we analyzed the LST and the expected value of the additional delay
suffered in a bulk-arrival discrete time system where the starter depends on the size of the first
bulk arriving to an empty system. In a very similar manner one can find the additional delay in
a discrete system with simple arrivals where the starter depends on the amount of work brought
to the system by the firat customer of a busy period. The z-transform and the expected value of
the additional delay suffered by an arbitrary customer are then given by the following equations:

L oelltSte] ¥ 5z 16)b,k

1 f-z)(1-Slz)}) =}

G(z) = . + 3.55
() l+(l—z)3[ 1-z [} ] ( )




3 S bk

- 1 [ {SZ-3)1-z)} | (3.56)
1+(1-25 L 2 . '

which are equivalent to equations (3.15) and (3.17) respectively. The difference is in the interpre-
tation of the expressions, where here (in contrast :o the expressions derived in section 3.3) the
subscript & appearing in the equations represents the amount of work (in terms of time units)
brought to the system by the first customer.

Using the same approach it is also possible to find the additional delay in discrete system
with bulk arrivals where the starter depends on the amount of work brought by the firs! bulk
arriving to an empty system. The expressions for the additional delay suffered in this system
are, again given by equations (3.55) and (3.56) where the interpretation of & and 5, changes

properly.

It should be noted that the type of analysis done in section 3.3 is good for al] these sys-
tems, mainly because it calculates the additional delay suffered in the system (not the total
delay!). Since the additional delay depends only on the interarrival times (not on the service
times and not on the bulk sizes) it is natural that this can be extended to all these systems.

The same observation made above with respect to discrete systems, can be made when
we consider continuous systems. Thus, all the systems described above can be analyzed when the
underlying model is a continuous time system. For example the following expressions give the
LST and the expected value of the additional delay in a continuous time system with bulk
arrivals where the start-up delay depends on the number of customers arriving in a first bulk:

x

b, kS"(s |k
G'(e) = —L [LeM=TTell o = _ )] (3.57)
bk
e
E‘,S’T;bk-k
JR SO i (059
1S = ¥ bk

In these expression k denotes the number of customers arriving in a first bulk and 5, denotes the
probability that a bulk consists of k customers.



The only part of this work that cannot easily be modified is the analysis of the LST of
the total delay done in section 3.5. We believe that a similar approach, to the one taken in sec-
tion 3.5, can be used to amalyze the equivalent discrete system. However, this analysis is not
trivial. Another non-trivial task is to analyze the LST of the total delay suffered in systems with
bulk arrivals.

The extension applied to the work done in sections 3.3 and 3.4, can easily be applied to
the systems reported in section 3.6. These are the systems where the starter depends on the
length of the previous idle period and the mixed systems. Thus, if one is interested in analyzing
these types of systems, it is relatively easy to modily the equations reported in section 3.6 in
order to achieve the LST {and the expected value) of the additional delay suffered in the specific
system. This analysis can be applied to discrete systems as well as to continuous systems, and to
systems with simple arrivals or bulk arrivals.

It turns out that for most types of systems it is relatively easy to derive the LST and the
expected value of the additional delay. On the other hand, deriving the LST of the total delay
suffered in the system is not so easy, and may be difficult for some of the systems. It is noticed
that the system with starter will be difficult to analyze if the equivalent system without starter is
difficult to analyze. Nevertheless, it should be noted that the expected value of the additional
delay suffered in the system with starter may have its own importaace even in the cases where it
is difficult to calculate the total delay. The reasons for this are the following: 1) In many cases
the measure of interest is the expected value of the delay suflered in the systemt. In these cases it
is valid to calculate the expected value of the original delay {(suffered in the system without star-
ter) and to add it to the expected value of the additional delay (suflered in the system with star-
ter). This summation is valid although the two variables are not independent of each other. 2)
In some cases it is required to compare two types of starters on the same “original system”. [a
this case it is very important to find both the expected value and the LST of the additional
delay even if it is difficult to calculate the same measures for the total delay.

3.8 Summary

We studied queueing systems in which a non-independent start-up delay is incurred in
the beginning of each busy period. The particular systems analyzed in this chapter are those
where the start-up delay depends on either or both of the following parameters:

1. The amount of work brought to the system by the first customer(s) of a busy period, or,
similarly, the number of customers arriving in the first bulk of a busy period.

2. The length of the previous idle period.
The analysis was done for both discrete-time and continuous-time models where the interarrival

times posses the memoryless property.



CHAPTER 4
The Analysis of Random Polling Systems

In this chapter we analyze the behavior of random polling systems. The polling systems
considered consist of NV stations, each of them equipped with an infinite buffer, and of a single
server who serves them in some order. [n contrast to previously studied polling systems where
the order of service used by the server is periodic (and usually cyclic), in the systems considered
here the next station to be served after station i is determined by probabilistic means. More
specifically, according to the model considered in this chapter, after serving station i the server
will poll station j (j=1,2,---,N) with probability p,.

The main goal of this chapter is to derive the expected delay in the random polling sys-
tem. This result is later used in chapter 5 in the analysis of exhaustive slotted ALOHA schemes.
Ip addition we analyze the cycle time and the number of customers found in the system.

4.1 Introduction and Previous Work

The queueing behavior of polling systems has been extensively investigated in the last
twenty years. The "traditional” polling scheme that appears in the literature, is a method by
which a single server serves /V stations, each of them generates its own stream of work requests
{or customers} and each of them equipped with a queue to store its requests. According to this
scheme {called the cyclic polling scheme ), the N stations are served in a eyclic order in which the
station served after station i is station i+1 (modulo N).

In contrast to previous studies that dealt with cyclic polling schemes, our aim, in this
chapter, is to study the randem polling scheme. In a random polling scheme, the station polled
after station 1 is not determined ahead of time. Rather, this station is determined at operation
time according to some random criteria. According to the specific scheme we investigate in this
chapter, after servicing station 1, the server will poll station j (j=1, 2, ---, N) with probability p,

Naturally, the previous studies were motivated by the wish to model a time shared
system: the most common computer system of the last twenty years. The time sharing system
consists of a central processor (controller) which serves many users, by a way of polling them in

cyclic order.



In contrast to the past studies, this chapter was motivated by the wish to model a disiri-
buted system. Unlike the central processor, the distributed system can not always take a decision
in a deterministic way. In particular, visiting /N stations in fixed order (which is equivalent to
moving the control from one station to the next one) may not be a natural process for these sys-

tems.

Motivated by the recent developments of distributed systems, we believe that the ran-
dom polling scheme is a natural model for distributed systems where the coatrol moves from sta-
tion to station according to some random criteria. As an example (that, as a matter of lact,
motivated this research) one can think about a shared channel communication network, where
the decision of "who will talk next® is done in distributed manner, and is based on some ran-
domly behaving algorithms, rathef than being based on a fixed order. Such a system is analyzed
in chapter 5 of this dissertation by using the results derived in this chapter.

The aim of this chapter, is to study the random polling scheme, emphasizing the analysis
of the delay suffered in the system. The model we use is a discrete time model and the extension
of the results to a continuous time model can be done in a similar way. As done in the analysis
of cyclic polling systems, we allow the server to have a random-length switch over period between
the service of one station to the service of the next station. The length of a switch-over period,
in our model, is associated with the station served prior to the switch over period.

For this model, under the assumption of fully symmetric system, we are able to derive a
closed form expression of the expected delay in all three types of service policies (the three poli-
cies are described below). For a non symmetric system, we form a set of MN? linear equations that
can be solved by numerical methods. A solution of this set easily gives the expected delay in the
different systems. In addition to deriving the expected delay, we derive the expected cycle time
and the expected number of customers found in a given station, for the exhaustive and the gated
systems.

Three types of service policy are studied in this chapter: 1) Exhaustive service. 2) Gated
service.  3) Non-exhaustive service. After a detailed description of the system model, done in
section 4.2, the first three sections of this chapter deal with the exhaustive scheme. In section 4.3
we analyze the number of customers found in the exhaustive system at polling instants. In sec-
tion 4.4 we analyze the length of the service periods and the the cycle length in the system. Ia
section 4.5 we analyze the number of customers found in the system in arbitrary times, and the
delay suffered by arbitrary customers. Since the analysis of the gated system is quite similar to
that of the exhaustive system, we do this analysis in short, and devote section 4.6 for it. Section
4.7 contains the analysis of the expected delay in the non exhaustive scheme. In section 4.8 we
compare the delay in the three different schemes, and also compare them to the delay in the
equivalent cyclic polling schemes. Lastly, due to the many algebraic symbols used in our
analysis, and to help in reading this chapter, we provide, in appendix D, a glossary of the pota-
tion used in this chapter. The rest of the appendices (A, B and C) are devoted to the algebraie



derivation of some of the equations appearing in the text.

4,1.1 Previous Work

As already mentioned the amount of work done in the area of polling systems is tremen-
dous. For this reason we will mention only the work that is strongly related to this chapter.

The discrete model of exhaustive-service cyclic-polling system with /N stations and ran-
dom switch over periods were studied by Konheim [Konh80|, Swartz [Swar80|, Rubin and
DeMoraes [Rubi81, Mora81]. The discrete model of the gated-service cyclic polling system with
N and random length switch over periods were studied in [Rubi81, Mora8l]. The expected delay
in a non exhaustive cyclic-polling system where at most one customer is served in a service
period was studied, for a symmetric system in [Nomu78|. Many other references dealt with the
cyclic polling systems but under different assumptions (continuous model, zero length switch over
period, approximated results and so on).

Lastly, a recent paper aiming at tutorial of polling systems was written by Takagi and
Kleinrock [Taka83]. This paper summarizes the known results for polling systems and brings a
coherent and organized derivation of most of the known results. This paper served us as an
excellent source for previous results, and helped us in the derivation of many of our results.
Many of the references not mentioned here can be found in that paper.

4.2 Mode! Descriptlion

We consider a system with N infinite-buffer queues and one server. The time is slotted
with slot size equals to the service time of a customer. The time interval (¢-1,¢) is called the tth
slot. Customers which arrive during the th slot may be served at the é+1st slot.

The arrival process to each queue consists of bulks of customers. We denote by X (¢) the
number of customers arriving during the (th slot, i.e., this is the size of the bulk arriving at sta-
tion i during the fth slot. For each queue i, the arrival sequence, {X,{t) : t=1,2,..} is assumed to
be an independent and identically distributed sequence of random variables. The z-transform,

mean and variance of X|({) are given by:
X
P(:) & £ b & EX(1)] = PO)

a2 & VarlX,(1)] = PE(1)+PI(1)-[P(L)] (4.1)
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The polling policy is the following: after completing the service of queue s (the period
during which thee server serves a queue is called a service period ), the server goes for a switch-
over period. During this period, nope of the queues is served, and it may be coansidered as the
time required to switch from queue i to the next queue to be served. The switch-over period is
associated with the queue previously served (in this case i), and its length (distribution) may be a
function of i. At the end of the switch-over period, the server picks, in a random fashion, the
next queue to be served. The polling policy is that at this moment queue j is selected to be
served with probability p,. It is also assumed that the p,’'# add up to one, ie.,

N
=1
1=l
After serving queue j, the server, again, will go for a switch-over period (associated with queue 7
and then pick, in a random fashion, the next queue to be served.

Three types of service policies are considered in this chapter: the ezhaustive policy, the
gated policy, and the non-ezhaustive policy. In the ezhaustive policy, when queue i is selected to
be served, the server will serve this queue until the queue becomes empty. Thus, all customers
found in the queue at the beginning of the service period, and those who arrived during the ser-
vice period are served in that service period. In the gated policy when queue i is selected to be
served, the server will serve, in that service period, all (and only) the customers found in queue §
at the beginning of the service period. Thus, noze of the customers arriving during the service
period, will be served during this period. In the non-ezhgustive policy when queue 1 is selected to
be served, the server will serve at this service period exactly one customer from queue i. Natur-
ally, if no customer is found in this queue, when it is polled, no service is given to the queue in
this service peried.

Three types of epochs are of interest: the time at which the server starts serving queue i
in the mth time, the time at which this service period ends, and the time when the switch-over
period, succeeding this service period, terminates. The mth period at which queue i is served is
called the mth service period of queue i. The switch over period succeeding the mth service
period of queue i is called the mth swilch over period of queue i Let us use the following nota-
tion:

L{m) A the instant at which the mth service period of queue i starts.
r(m) A the instant at which the mth service period of queue i terminates.

T (m) 2 the instant at which the mth switch-gver period of queue i terminates.

From this notation and the service policy described above, it is obvious, that for each ¢ and m
there exist j and n such that 7,(m)=z(n).



 The length of the mth switch-over period of queue i is 7(m)-r,(m). For each queue it is
assuméd that the sequence of switch-over periods associated with it, {7,(m)-r,(m): m=1,2,...}, is
a sequence of independent and identically distributed random variables. The z-transform mean
and variance of 7,{m}-r,(m) are given by:

R(z) A EA™) r, & EfF(m)-r(m)| = RO1)

5% & Varfr(m)-r(m)} = R®(1)+R{I(1)-[RO? (42)

In addition to the notation used above, let us denote by fm) the instant at which the
server starts polling at the mth time, independently of the index of the station polled. Similarly,
r(m) denotes the instant at which the server finishes serving at the mth time, and {m) denotes
the instant at which the server finishes the mth switch over period. According to this notation, it
is clear that {m)=zm+1).

4.3 Exhaustive System: Number of Customers at Polllng Instants
We start our study by analyzing the number of customers found in the system at the
polling instants. The oumber of customers found at the system is denoted as following:

L,(t) & number of customers at queue i at time ¢
L(t) & [Ly(#).Loft), - - - L{¥)]

While the process L{t) by itself is not a renewal process, it can be observed that the
sequence (1), 42), 43), -~ is a natural sequence of renewal epochs for the process L(t). Thus, if
we observe the process L at the polling instants, {dm)}, the process is Markovian.

The z-transform of the number of customers found in the system at the mth polling

instant is:

N
Lidm
Fulzyzy, - -0 o2p) é E[HZ‘. o ))] (4.3)
1=l

The limiting z-transform when m approaches infinity is given by:

Flayzy, ) & lim Fo(zyzg, - 2n) (44)

Similarly, the limiting marginal z-transform for L {r{m)) when m approaches infinity is denoted

by:
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FL(Z,) é lim EIZL'(:(“)“ = F(l,~~-,l,z,l,---,1) (4‘5)
T m—eo

In addition, let L,' be a random variable representing the number of customers at an arbitrary

polling instant when the system is in equilibrium.

To calculate F(z,,2,, - - -,2y) we express F_,({z,2, -",zy) in terms of
F (7,25 ' - * 12y). To do so, let us condition our calculation on the specific queue served during
the mth service period. Let this queue be the ith queue.

The time interval of interest is the interval [f{m),{m)| which consists of the mth service
period, |f{m),7(m)], and the mth switch over period, [{m),{m]|. Since station i is the station
served in the mth service period, there exists some {unique) n such that:

7(n) =dm), r{n) = r(m), 7(n) =7m),

Thus we are actually interested in the nth service period of station ¢ and in the nth switch over
period of queue .

First, consider the service period for station i: [r,(n),r,(n)]. The period starts when station
i has L (z,(n)) customers in its queue and terminates when this queue is empty. The behavior of
queue i during this period is equivalent to the behavior of the gambler's capital in the gambler’s
ruin problem (a short description of this problem is given in appendix A), where the initial capi-
tal is L(z,(n)}. The length of the period, 7(n)-£(n), corresponds to the gambler’s ruin time.

Thus, from the gambler's ruin problem we have:

Bl = Hi® (w) (46)
where
H(z) = B*5) (47)
and O (w) satisfies
®,(uw)-wP[8,(u)] =0 (48)
From (4.6) and (4.7) we get:
Bl = glfe (w4 (49)

and from (4.8) the first and the second derivatives of 8 (w), evaluated at w=1 are:

2

o) =1, o) =, ot = —L—s 2

H (l_”:)z (1—#1)3

(4.10)

Now, let us return to calculate the number of customers in the system at the end of the service

period. This is expressed as following:
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0 =i
Lr(n)) = {L](L(n))+ arrivals to queue j in [z,(n),r,(n)| JHE (4.11)

The z-transform of the number of arrivals to all the stations (excluding ¢} during the interval
lz,(n),7,(n)] is given by:

E[{I;IIP,(Z,) o40] (4.12)

which is identical (see (4.9)) to:

E[{e[ﬁ pj(z,)]}”‘r("”] (4.13)

i=1
(1#n

The z-transform of the number of customers in the system at the end of the service period is
given by:

E[ﬁ

=1

N N

Lir(n)) Lir(n)) Lirdn rin)-

) f 0] )]s
D) b

From (4.12), (4.13) and (4.14), and since z,(n} =z m), it can be shown, as shown in the analysis of

exhaustive polling systems (see for example, [Konh80| and [Taka83]) that the z-transform of the

number of customers at the end of the polling period is given by:

N Lfrm) N
E[H"’} . ] = Fm(zl,zz,---,z,_l,e,( H P;(ZJ}]szﬁl!""zN) {4.15)
= (n
Next, we calculate the number of customers arriving to the system during the nth switch over
period of queue i, namely, during the interval [r(n),7,(n)]. This is simply the compound
transform of the length of the switch over period and the number of arrivals during a slot:

R,[liIlP,(:,)] (4.16)

From (4.15), {4.16) and the fact that the number of arrivals during the switch over interval is
independent of the number of customers in the system at the beginning of this interval, we get
the z-transform of the number of customers in the system at the end of the switch over period.
As we assumed at the beginning of this analysis, this z-transform is conditioned on the station

served during the mth service period:

~ N
Froelznzg - - 2y |iis served) = R:(H Pj(z}))-Fm(z;,z.z,---,zl_l,e,[H Pj(z;)],z‘ﬂ,---,zh,)
7 (417
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Now, let us uncondition (4.17). From the system description, It is clear that station i is
served in service period m with probability p,. Thus, the unconditioned z-transform of the

number in system at the end of the mth switch over period is:

N N
Famlevts o) = 2R (I P20 Ful, (T Ps) zate ) (4.18)
= =1
U#L)

+ Pz'Rz[ﬁP;(z;)]'Fm(zx-ez[ Iill Pj{zJ)),z_.,,---,zN)
(r#2)

N N
+ PN'RN(HP;(Z;)]'Fm("'nzz»‘a""-enr[ I1 P;(z,)])
1=1 =1
(=M
Equation (4.18) expresses the z-transform of the number of customers in system at the beginning

of the m+1st service period by the z-transform of the number of customers in the system at the
beginning of the mth service period.

Now, in the limit, when m approaches infinity, and if the system is in equilibrium, we

obtain:
N N
F(ZI’ZZ’ e 'ZN) = pl-Rl [HP](ZJ)).F(BI.[ H PJ(ZJ)],ZZ,ZS,"',ZN) (4'193)
=1 1=1
(1#1)

+ pz.nz[ﬁlpj(zj)].p(zl,ez[ rN[l P2)) o)
- ps
(17#2)

N N
+ v Bu([1P,(2)) - Flav 84 { TT P2)))
=1 =1
GEM
similarly, the conditional limiting z-transform is:

N

N
F(z,,-,zy |i is previously served) = Rl[IIIPJ(z))]-F(:l,-:e,---,z,_l,el[ I P;("’;)]’z.+1—"'-z~)
1= =1
(170



(4.19b)

4.3.1 Number of Customers at Polling Instants: Mean and Variance

Following the approach used in the literature, we next compute from (4.19) the mean
and variance of the number of customers found in the system at polling instants. Let L,' denote

the number of customers at station i at polling instants. In addition, let us denote the partial

derivatives of F(z,,z, - - - ,zy) as following:
AF(z,,20, - - - 2

) & 1 3 ) - i=12,N (4.20)

% r=1

FF(z,,2, - 2n)
C A 1142 'Nl . .

:r 3 — ] ‘sJ_'lgzp ,N 421
1(3.5) 23,87 - (4.21)

where z is the vector of the z,'s, namely, z = (z;,22,,zy), and 1 (when applicable) corresponds
to the vector (1, 1, -, 1). Similarly, we define f{i }k) and f(i,j |k) to be the corresponding meas-
ures, conditioning on the station {k) served during the previous cycle:

3F(z,,2, -+ - 2y |K) I _

i A i =17
f(" Ik) = az, -, ! 1,..., ,N
"!k AazF(zl,zQ,---,z,'le)‘ ) =192 N
f(an ) = az,azj _; ) ; i,j=12,",
Using this notation, then:
EIL) = 1(7), VarlL] = fli.i)+EIL) {ELF (4.22)

In appendix A we diflerentiate (4.19) with respect to the z's to calculate the terms
f(i),i=1,2,- N. This yields a set of N linear equations, of the form:

L ¥ p,Ji)
)y ==+\Spr + ¥ —— 4.23
) P, [:Z=:l 21 L-n, ] ( )
17y
The solution of this equation set is shown (in Appendix A) to be:
N

(1‘#;)#‘;21’.";

EL) = flj) = ——— (4.24)

?, [l—glu.]



which is the expected length of queue j at polling instants.

Comparing this result to the expected queue length in the regular exhaustive polling sys-
tem, we note that when p, = 1/N for all 4, the above expression becomes: )

N
(1-p,)n, 31,
=1

=N

ElL] = f(j) =
which is identical to the expected queue length at polling instants in the cyclic-polling exhaustive
system.

In the case of symmetric system, i.e., when all the stations are identical, we have:

1

b=, p=Tg LT i=1,2 -, N
so (4.24) becomes:
o Nru(l-p)
EIL) = 10) = =5 (4.25)

This is the expected value of the queue length at polling instants for the case of symmetric sta-
tions. The reader may note that this value is identical to the expected queue length {at polling
instants where the stations are symmetric) in a cyclically exhaustive polling system (see for
example [Taka83)).

The computation of f(i,{) is more complicated than that of f{i). In appendix A we
differentiate (4.19) twice with respect to the z 's. This yields a set of N* linear equations that can
be solved by numerical methods. When the switch over period and the arrival process are
assumed to be identical for all stattons, this set becomes: '

N

fG.8) = % (a+6!f(1')+f(’c)l+0f(=')+d[f(f,j)"'f(i.k)]+f(j,k)+ d”f(i.i)]'p.
(=4
+ (ﬂ"'blf(j)"'df(k)l]-m + (a+5[f(k)+df(j)]]-p, j#k  (4.26a)

N
1.9) = XSG 1) =

1=1



N
= 5 { o+ r(t-p)+2805)+ (S + ) 1)+ 15.4)+ 261(6.1)+ 16 b »,

1=1 l—y
(1%£1)
+ p,lat+r(c®-p)] (4.26b)

Where the terms a, b, ¢, and d are defined in the appendix.

In the case of fully symmetric stations {(namely, in 2 system where in addition to sym-
metric arrival process and symmetric switch over periods also the p,’s are identical for all sta-
tions) (4.26a) and (4.26b) can be solved (see appendix A) analytically. This yields the following
solution for f(i i), i=1, --~-NV:

SN u] rN[L-(N+1jp+{2N-11p"]  Nru(l-p}

Hig) =

l Ny {1-Np)? 1-Np
o M P NN ) (1.27)
(1-Nep? (1-Nu)?

From (4.22) and (4.27) we can now calculate the second moment and the variance of the

number of customers at polling instants:

EiLA = 622 N[l—g[ + a2rN[1 - U\:;FIIL;L')ZHN -1)p% (4.28)

4 N1 pl | NPWA(N-1H1-p)
(1-Nup? (1-Ng)?

FuiN(1- + a2rN11-(N+11g+(2N411u2] + NrEu2 N_1){1-u)
1-Ny (1-Np)? (1-Nuf?

Var[L]] = (4.29)

4.4 Exhaustlve System: Service- Time, Intervisit Time and Cycle Time

In this section we calculate the length of the different periods observed in the system. Let
us define as the service period of queue i, S, the period at which queue i is served. The intervisit
period of queue i, I, is defined to be the period in between two consecutive services of queue i. A

cycle of queue i, C,, consists of a service period followed by an intervisit period. The length of a
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service period, S, is given by r(m}-r{m), the length of an intervisit period is given by
7(m)-r,(m), and the length of the cycle is given by 7(m)-£,(m). These measures are called the

service time, the intervisit time, and the cycle lime, respectively. In addition we define:

S(z) A BAHN ) A g o) & B

It is easy to realize that the cyclic behavior of our system is very similar to that of the
system where the queues are served in cyclic fashion (polling system). In both systems a service
period of queue i is followed by an intervisit period of queue i, and this is followed by a service
period of queue i. The only difference between the systems is the specific behavior during the
periods. For this reason, it is rather natural for us to follow, in the sequel, the approach used in
[Taka83] to analyze the cycle time of the polling system.

To analyze the service time of queue i we recall {4.9). This can be rewritten as:

£ = Yo (™) (4.30)

where ©(z) is given in (4.8). Now, using (4.10) and {4.30) it is easy to derive the expected value
and the variance of S, in terms of the expected value and variance of L

E[S)] = Elr,(m)-z(m)] = EIL]-6{"(1) (4.31a)
Var|L]] _ oPEIL))
Var|S] = Var{r(m)-L(m)] = + 4.31b
risi = ver =T ey 31b)
Now, using (4.24) we get:
N
w20,
E[S| = —=—o (4.32a)
p:[l'E#])
- r=1
N
U?#:EP;",-
VarlS)] = m 1 ; VarlL]+—=— (4.32b)
# pl(l-z #,]
1=1
In the case of symmetric stations we have:
= N
ElS| = 1 7 (4.33a)
Var[S] = 1 [ PuiN(1-p) | Nro®[1-Np+(N-11u7 er,usz—l)(l-gl] (4.33b)
(1-uf L 1-Np (1-Nu)? (1-Nuf?

76



Next we calculate the intervisit time of queue i. To do so we relate the number of customers
found at queue i when it is polled (namely, at time z,(m)) to the length of the previous intervisit

period. This relation is:
LiT{m T{m)-r{m
A = Bip (434)
From (4.34) it is easy to find (see |Taka83]) the expected value and the variance of /;:
E|L) = pEll} Var|L] = uVar|l] +oTEl] (4.35)

and substituting {(4.24) in (4.35) we get:

N N
(l_ul)zpjrj (1‘”:)‘7:22!’,'}
Bl = —5— ,  Var[l] = L |Vart)) - ———=2— (4.36)
P:(l—E#,) ol Pl[l—zul
1=1 1=1
In the case of symmetric stations we get:
Nr(1- N1 -u) Nra?}(N-1) NrN-1){1-x)
I ae , Var I‘ = + + 4.37
£lr) = Ll 1) = S o Bl o SR )

Lastly we calculate the length of the cycle time. The expected value of the cycle time of
queue { is simply the sum of the appropriate expected service time and the expected intervisit
time (even though these variables are not independent):

. Y
Yo,

EIC] = E[S]+E|l| = —=5— (4.38)

P, [l- g}lu,]

The computation of Var[C is more difficult. This can be done by relating the length of the cycle
time to the length of the intervisit time and to © {z). In [Taka83] it is shown that these are

related as lollowing:
Cfz) = 18 (2)] (4.39)

From (4.39) it is now easy to calculate Var{C|]:

N
. oHui+p, -1} pr,
Var|C) = -;—2(-;;—)2- Var|L)] + —l= (4.40)
\ ' p,[l—En‘,]
L =1

In the case of symmetric stations we have:



1 {ve |, (vune | e
- {1-Nu  (1-Np)*  (1-Nup

Elc) = __1ieru , Ver[C] = (4.41)

4.5 Exhaustive System: Number of Customers at Arbitrary Times and Walting Times

Let us define @,(z) to be the z-transform of the number of customers found at queue i at

arbitrary times:

L
Qz) & Efz
This z-transform can be computed as the time average of 9 over the average cycle time:
T{m)-1 L
. g ]
t=:,4(m)

Q(z) (4.42)

= B (m)-z{m)]

where the denominator is the expected length of the cycle time (given by (4.41)).

To calculate the numerator of (4.42) we divide the sum to two parts: oae corresponds to
the service period and the other corresponds to the intervisit period:

T{m)-1 L r{m}-1 Lt T{m)-1 L
4
Ez,()= EZ'().PEZ'“)
t=1{m) t=1{m) =r1/(m)

The expected value of the first sum is shown in [Taka83] to be:

r{m)-1
: F{z)-1

Ly )

F I g —— 4_43
,=§m, z-P2) (4.43)

The expected value of the second sum is shown in {Taka83| to be:

r,(m)"l L‘“) _ 1"FI(Z)

z = 4.44
l=f,(m) I—Px(z) ( )

Thus, from {4.42), (4.43) and (4.44) we get:
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N

p;(l-Ei‘:] [ Flz)1 | 1-F(2)

Ql2) = = (4.45)
gpjrj Z—Pl(z) I—Pl(z)
1=1
To evaluate the expected value of L, we differentiate (4.45). This yields:
3 [Fla)-1 b UL Yo+ s EIL)
o) (49
[ Fla-1y _ oELY  EL) | E{L
o] S TN A (w A

From (4.46), (4.47) and the expected cycle length we get:
- ———t
AL) T+ ) (448)

In the case of identical stations, we use (4.24) and {4.28) to get:

=L[&u, 2 | Nrp(l-g) (N-—l]r,u]
BLl 2 [ r 1-Nu 1-Nuy 1-Nu (4.49)

Next we calculate the waiting times and system times observed in the system. Let C, be
an arbitrary customer. Recalling that customers arrive to the system in bulks, we realize that

the waiting time of C, consists of the sum of two independent random variables:
1. The waiting time of the first customer in the bulk in which C, arrives.

2. The service time of all the customers which arrive together with C, {the same bulk) and

which are served ahead of CJ.

Let W, denote the waiting time (excluding service time) of the first customer served in a
bulk (for a bulk that arrives to queue ¢) and let W (z} be the z-transform of W,. Let V| be the
number of customers which arrive together with C, to queue i (in the same bulk) and which are
served before C, and let V(z) be the z-transform of V,. Let T, denote the system time {waiting

time plus service time) of an arbitrary customer, and T,(z) denote the z-transform of T,



From the description given above, and since the service time of every customer is one
unit of time, it is clear that the z-transform of the system time observed by arbitrary customers
at queue ¢ is:

T(2) = 2 W (2) V(2)

It is straight forward to calculate V{z) from the z-transform of the bulk size, P{z), and
from its first moment, p,. This is shown in [Taka83| to be:

1-Plz)

(2) = ii-2) (4.50)

Also in [Taka83] it is shown that in an exhaustive system W,(z) can be calculated from
the z-transform of the idle period length, /,(z), and from the expected cycle length, E{C)), as fol-

lowing:

In a careful examiration of the derivation of this expression we realize that it was derived ander
the assumption that a customer which arrived at slot ¢ can be served at slot {. Since in our
model a customer arriving at time ¢ can only be served at time (<41, this expression should be

corrected (for our model) to:

1z A
Pl(z) E{CI] Z_Pl(z)

W(z) = (4.51)

Since this result does not depend on the specific order of service selected by the server (in
[Taka83] it is cyclic order, and here it is random order) and only depends on the fact that the
service is exhaustive, we can apply it to our system. Thus using (4.38) and (4.10) we get W {z) in

terms of [,(z) and the system parameters:

N
pf
L ZPT p(ga

P(z) P.[I‘ﬁﬂf] FP(3)

1=

Wiz} = (4.52)

Since /,(z) can be calculated from F(z), this equation actually expresses W (z) in terms of F(2).

Now, to calculate the expected system time of an arbitrary customer which arrives to
queue f, we can either differentiate z-W (z}-V{z) with respect to z and evaluate at z=1, or to
apply Little’s result [Litt61] to (4.48) and {4.49). Selecting the second approach, we finally get
the expected waiting time for an arbitrary customer arriving to queue 1 '

«



EL] EWW (1 1
T] = EJW]+ElV,|+1 = = +— -— 4.53
EIT| = E\W]+E{V) Pl A (&) (4.53)
which in the case of symmetric stations becomes:
L& a2 Nr{l-u) {N—I)r]
T} = =—{—+ + + )
BT) 2 [ r (1-Nu)u 1-Nu 1-Nu (4:54)

4.6 Random-Polling Gated-Service Policy

The service policy considered in this section is the random-polling gated-service policy.
According to this policy, when the server polls station i, it serves only the customers found at
queue i at the polling instant. Customers who arrive to station ¢ during the service period of this
station will not be served during that service period. Rather, they will wait and get served during
the next service period of station i.

The polling policy, for this system, is the same as considered in the previous model,
namely, a random polling policy. Thus, at a given polling instant, station i is polled with proba-
bility p,.

The system model, as in the previous sections, is a discrete time model, and the arrival
process is the same as in the previous model. The service time of a customer equals, as before,
the length of a time slot. Due to the similarity of this model to the exhaustive model we keep our

notation the same.

Like in the analysis of the exhaustive system, the key of this analysis is the z-transform
of the number of customers found in the system at the end of a switch-over pertod. This is
F (2,25 - * ,zy), 28 defined in (4.3).

For the gated policy the length of the service period of station i, is simply the number of
customers found in queue i at the polling instant:

r{m)-g{m) = L,(z(m)) (4.55)

Thus, the z-transform of the number of customers arriving during this period is given by:

| Ii{P,(z,)}"‘*"%‘"’] - e[ TP ™) (4.56)
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Thus, (4.17) is replaced by:

N N
N £ PR |é is served) = R, [H P,«(’;)]'Fm(zpzzv"'r"x-v II Pz )20 20}
1=l 1=1
() (457)

and (4.19a) and (4.19b) are replaced by:

N N
F(z,25, - - - ,2y) = p1'R, [H PJ(Z;)]'F( I1 Pj(zj),_zz,zs,---,zN)
=1 ;=1
(17%1)

N N
+ oy B[ Pe)) Fley T1 P52 o0
= =]
’ (%2)

N N
+ o Bu(T1P(2)) - Flapzzs -, T1 Py(2) (4.58)
= )

N N
F(z,, 2y |i is previously served) = R, (H Pj(zj))-F(zl,zz,"-,z,_l, IT P(2).2,41:2x)

=t v (4.58b)

Defining the moments of L, (f(i). fli.j), f(i |¥), f(i.i |F)) as in the exhaustive model and
differentiating {4.58b), we get the following set of equations:

S i) = rp,+u () (4.59a)

S 13) = s+ S+ £5) i) {4.59b)

Summing (4.59a) and {4.59b) gives:

N N N
1) = Spli 19 = Safw,*u,000) + S ot (1.60)
)

This equation is solved in appendix B to yield:

N
p P X
E|L) = f{j) = <L = (4.61)

! 1-2#1
pax]

When p, = 1I/N for every i this becomes:



N
By,
EL) = 1(j) = —5—
1- gp,-

which is identical to the equivalent expression in the gated system where the polling is done in a
cyclic fashion. In the case of fully symmetric stations E[Lﬂ is:
. Nr
L = = i
EIL) = fli) = 1A (4.62)

To find the variance of L' we differentiate (4.58b) twice. This gives the following equa-

tion set:

[k 1S) = (874 22 ¥ ey JU) + s JUB) + [0 s (20, + 1) + £(5,F)
+u [ u SN plid)  iskd, ik Ak (4.63a)
[G,3 1) = w482+ r A+ ro-n )+ 2ru fG)+ [G)o 2 -p, + 0 H2r, +1)]
+f(5.5) + 2u S(5.5) Fu 210 177 (4.63b)
[0k Vi) = 82+ r )+ e u JE)+ [0, (2r, + 1)+ S5, 6) + 0, 1)
ik {4.63¢)
f(J-J IJ) = “;2(5;24.r:2)+r)(”ﬁ'”))"'ﬂj)[a:z'“:+"12(2r:+1)]+'u12f(j'j) (4'63(1)
Now, considering the following relations,
N
[l.k) = Yo, 5k b)
1=1

then we have a set of N? linear equations that can be solved by numerical methods to yield the
solution of f{i,i) for 1=1,2,-- N.

In appendix B we solve this set of equations for the case of symmetric stations. The solu-

tion is:

9 = OJFNTI—(N—HE}_*_ [F—rz)N;L_'_ (t2r) N2ryt
(1+p)(1-Nup  (1+e)f1-Np)  (14p)(1-Nup?




N u2Nr
(1+8)1-Ns)  (1+p)(1-Nup {4.64)

Now, using (4.62), (4.64) and the relation
VarlL] = 0+ {0}
we get:

PN AONIAN-] |, (NN
(L+u)1-Ne)  (1+p)(1-Nu2 (1+p)(1-Ne)?

Var|L)] = (4.65)

This is the variance of the number of customers found in queue i at polling instants.

Now, that we have calculated the first twe moments of the number of customers found
in the system at polling instants we can calculate the cycle time, the number of customers found
in the system at arbitrary moments and the waiting times.

Before we start the analysis, it should be noted that the cycle analysis of this system is
independent of the polling order. This means that the way by which the variable representing
the cycle time is related to the variable represting the number of customers found in the the EYS-
tem at polling instants is independent of the polling order. Thus, the cycle analysis of the cyclic-
polling gated-service system and the cycle analysis of the random-polling gated-service system
should be the same. For this reason, in the following analysis we can use most of the results
derived in the literature for the discrete time cyclic-polling gated-service system.

To calculate the cycle time we note that in a gated system the z-transform of the cycle
length is related to the z-transform of the number of customers found in queue i at polling

instants as following:
Flz) = C[P(z)} (4.66)

Thus, we can immediately calcuiate the mean and the variance of the cycle time:

N
Yo
Elc) = L2 R = (4.67)

b P, ad
‘ 1‘2#‘.
t=}

and:

VarlL:] _ E[LJU?
pu? B

Var|C] =



which, in the symmetric case becomes:

_ N N (NN
(1+p)(1-Nu)  (1+p)(1-Np)?  (1+p)(1-Nup

(4.68)

Next we calculate the z-transform of the number of customers found in queue ¢ at arbi-
trary moments. To do so, we borrow the following two relations from the analysis of the cyclic-
polling gated-service systems (see [Taka83| for the derivation of these relations):

1 FIP()-F(z) (1-2)P(z)
EC] Pz 1-P(2)

Qlz) = (4.69)

and:

_ (1+,u,)E[{L,'}2| _i
2E1L,] 2u,

From {4.70} we can now calculate the expected value of the number of customers found in queue

ElL] (4.70)

i at arbitrary moments. For a symmetric system this value is:

_ & a’ Nru(l+p) . (N-1)ru
HL] = 2r * 2(1-Ny) * 2(1-Nu) * 2(1-Nu) (71)

To calculate the waiting time in the system, we recall from the cyclic-polling gated-
service system that the z-transform of the waiting time { W (z)) of the first customer in a bulk
can be calculated from the z-transform of the cycle length (C(z)} and from the z-transform of
the number of customers (F,(z}) found in queue i at polling instants. The expression calculated in
[Taka83] is:

_ e
E{C]{(z-P(z))

which after the correction for our model [see comment with respect to equation (4.10)) becomes:

= 1 . Z[CI(Z)-F’(Z)I
P(z) E[C]{(z-P[z))

W(z)

W (z) (4.72)

from which the expected waiting time of a first customer in a bulk can easily be calculated.

Now, let us calculate the expected system time of an arbitrary customer. We recall from
the analysis of the exhaustive system that the waiting time of an arbitrary customer consists of
the sum of two variables: W, the waiting time of the first customer in a bulk and V, the
number of customer who arrive with the {arbitrary) tagged customer in the same bulk aad
served ahead of him. The expected value of the system time (E[T]) can be found by calculating



E{W ] trom (4.67) and calculating E[V|] from (4.50) (recall that V(z) is just a property of the
arrival process and not of the service policy}). We, instead, choose to use Little’s result and apply
it to (4.71). Thus, the system time of an arbitrary customer in a symmetric system is:

E(T,I = i 02 + Nr[1+ﬂ)+ ‘N-l)f

2r ' 20(1-NR) | 20-Nu) | 2(1-Nu) (4.73)

4.7 Random-Polling Non-Exhaustive Service Pollcy

The service policy considered in this section is the random-polling non-ezhaustive policy.
According to this policy, when the server polls statioa 1, it serves only one customer from queue
i

The polling policy, for this system, is the same as considered in the previous models,
nzmely, a random polling policy. Thus, at a given polling instant, station 7 is polled with proba~
bility p,.

The system model, as before, is a discrete time model, and the arrival process is the same
ag in the previous models. The service time of a customer equals, as before, the length of a time
slot. Most of the notations, frem the previous sections, are kept the same, unless explicitly
stated.

Like in the previous analysis the key of this analysis is the z-transform of the number of

customers found in the system at polling instants. This is F,(z,,z,, - * - ,zy), as defined in (4.3).
To express F . (2,2, - -,zy) in terms of F,_(z,2, - -,zy), we condition
F+i(21,25 - - - ,2y) on the station polled during the mth cycle. This expression is the following:

Flzy,2, - - - 2y | i is served ) = R,(frIIPJ(z,))-[ﬁ PJ(ZJ))';!"[F(szz» e 'ZN)_F(ZI!""()!“'ZN)]

1= ;=1
a ;N
+ R (T1P2)) Flzy 0, 24) (4.74)
=1
Where £(z,,--,0,-zy) is F(z,,2,, - - - ,zy) where the ith element equals zero. The first term of



this expression represents the situation where queue i is not empty when polled, so queue j
"builds up" during the service slot, by a factor of P(z), and one customer is removed from the

ith buffer. The second term represents the situation where queue : is empty when polled, so no
N

service period follows this polling instant. In both terms the factor R, (H PJ(z,)] represents the
=1

queueing build up during the switch-over period prior to the m-+1st polling instant.

From (4.74), and under equilibrium conditions, we get the lollowing relation:

Flzyzg - - - 2y =
Px'Rx(ﬁP,(Z,)]'[(IiIIPI(z))]-F(zI,zz, cos ,zN)--zl]-+ [1—:—lll':IlP}(z})]F(O,zz,---,zN)]
N N N
+ oo (TP {{ITP) Flewia - ot (TP P00
+ ..
+ py R (ﬁp(z )]-[(ﬁP(a ) Flonz )-L+[1_Lﬁp( )Fleiaana®)| (475)
N N}___1 AL pet ANd 137 2N iy Tn o (2 M F(2,25 2000, )] .

In the following we are interested in analyzing a fully symmetric system. Assuming symmetry,
and substituting z;, =z,=-=zy =z in (4.75) we get:

F(z,2,+,2) = %R ({P(z)}”] {P(2)VF(z,2,-.z)+R ({P(z)}N]'(I-E%M)-F(O,z,z,---,z) {4.76)

where we have used the observation that F(0,z,z,--,z)=F(2,0,z2, - z)="-=F(zz,,z20) due to
symmetry. From (4.76) we have:

Flz.z,2) = R[{P(Z)}N]-[z—{P(z]}”]-F{O,z,z,---,z] (4.77)
2-R (P} JHP(z)Y

Next, we substitute into (4.15) z, =z and z, =2z, ==z, =1. This yields:

Flz1,1,1) = IW-ER[P(z)]-P(z)-F(z,l,l,---,I)-l; + R(P(z)]-[1--13!;5)-).5'(0‘1,1,...'1))

+ —’%‘-[R (P2))-Pla) Flzi1,,0) + R(P(a)]-(1—P(z)]-p(z,g,ljl'...,l)] (4.78)

where we have used the symmetry observations:



F(0,1,1,-,1) = F(1,0,1,1} = -~ = F{1,1,1,,1,0)

F(z0,1,1,,1) = F(z1,0,1,,L1) = -~ = F(z,1,1,~1,1,0)
1 2 N N

From (4.78) we get:

] = (N-1)z2R|P(z) - J1-P(2) | F(2,0.1,1,-.1
F(z1,1,---1) =
(2 ) i%z—%'Pizi‘-P(Z}';+(N-l)z| +

Our next step is to calculate the probability that an arbitrary queue is empty at polling

instants. This probability is given by:
fo A FO11,-)

In appendix C we use (4.77) to calculate f,. This is found to be:

fo = (480)

Next we calculate the expected queue length at polling instants. To do so, we use two
simple relations. The first relation is:

dF(z,2,---.2 dF(z1.1,--1 -
lagendl| | o y2Helled)| (41

dz

This relation simply states that (at polling instants) the expected number of customers in the
whole system is NV times the expect¢gd number of customers in queue i (f==1,2,---,N). This obser-
vation is true due to symmetry. The second reiation is:

aF(0,z,2,.2) L= (N-1) aF[ziOa,l z,l,---,l] |,=1 (4.82)

az =

which is also true due to symmetry.

For convenience let us introduce additional notation:

/A aF(z01.1.--1)
1= az

=1

Now we differentiate (4.77) and (4.79) with respect to z and evaluate the derivative at
z=1. Diflerentiating (4.77} and using (4.82) we show in appendix C that:

3F(z,z,-.z) - (N-1)(1-Nu)f, + Nra? +—NuP® | Nru (4.83)
3z =1 1-Nu-Nrg 2(1-Nu)(1-Nu-Nrp)  2(1-Np-Nrp) 2 .

Differentiating (4.79) with respect to z, evaluating the derivative at z=1 and using (4.82) we



show 7in appendix C that:

JYR:L EAR RN | _ AN-UNuf,
dz =1 1-Nu-Nrp

. N-{N2r 3+ Nu2(1-Np) P -r?) -2 Nru? + (024 )Ny

2(1-Nu)(L-Nu-Nry) (4.84)
Now, using (4.81) we equate (4.83) to (4.84) and solve (see appendix C) for f,:
R T (4.85)

2(1-Ny)

Substituting (4.85) back into (4.83) we finally get an expression for the expected queue length at
polling instants:

8F(z,11,-1) = (N-1)o?+plr ra? N2 L rp (4.86)
dz 2A1-Nu-Nrp)  2(1-Np)(1-Np-Nryg)  2(1-Np-Nrp) 2

Having calculated the expected queue length of quete i at polling instants, we next cal
culate the expected queue length of queue i right after a customers left this queue. Let us

denote:
G, & E|L( service completion time at queue i )|

First, since the queue chosen to be polled at a given polling instant is independent of the system
status, it is clear that:

1 8F(z11,.1)
1-/, 3z =1

E|L( service starting time at queue i )} =

Second, we have:
G, = E|L,( service starting time at queue i )]+ -1

Thus, from these two relations and from (4.80) and (4.86) we get:

= (N-1)(e?+ul(1-Nu) a

G =
' 2Np(1-Npu-Nrp) 2Nu(1-Nu -Nry)

Nu?#? 8 L 1-N,
g g0 1NM L 4.87
21 -Np-Nryp)  2r aN ! (4.87)

Which is the expected queue length at station i right alter a customer left this station.



Next, using G,, we calculate the system time (waiting time plus service time) of an arbi-
trary customer. Let us recall that T, denotes the system time of an arbitrary customer when the
system is in equilibrium. To calculate E[T, we investigate the number of customers left in queue

i behind a tagged customer, let say C,. These customers are of two types:

i. Customers which arrived together with C, (in the same bulk) but were queued behind
C,.
ii. Customers arrived to queue i during the system time of C,

Let V, be the number of customers arriving to queue i together with C, (the same bulk)
but queued behind €, then the following relation is a direct result of the above observation:

G, = E]V]|+uE[T) (4.88)

In appendix C we show that for symmetric stations
2-—
EV] = ‘72_*2”LJ£. (4.89)

Thus, substituting (4.89) and (4.87) into (4.88) we finally get the expected waiting time in the
system:

[l frnd Nro?®
= ———t +
BT, 2r  2u{1-Np-Nru}  2u(1-Np-Nrp)
{N-1)r + N&u
2(1-Np~Nrp)  2(1-Np-Nrp)

(4.90)

4.7.1 The Probability of an Empty Buffer

An important property of a queueing system is the times at which the system is empty.
In this sub-section we are interested in calculating the probability that a bufler is empty at some
specific instants,

In the analysis done above we have calculated the probability that a buffer is empty at
polling instants. This probability is given by:

Pr| queue i is empty at polling instants | = F(0,1,1,--,1}) = SR

From this measure it is now easy to calculate the probability that a buffer is empty at
switch-over times. A switch-over fime is the instant at which a switch-over period starts. Thus,
the mth switch-over time is denoted by r{m).



Let us recall that X,(¢) denotes the number of customers arriving to queue i at time ¢,
and that P{z) is the z-transform of X,(f). In addition, let us denote by 8, the probability that
buffer i is empty at switch-over times:

A prlL(Am)) =0] ; i=1,2, N

8

Since every polling instant 3 the end of a switch-over period, the probability that buffer
t is empty at a polling instant is related to the probability that this buffer is empty at the begin-
ning of the preceding switch-over period as following:

om)
PrLtm) = 0 | tm) m] = PrlLtm) =0} ( 1T _Prix(n =0l) (a9

Now, since the arrival process to station 1 is independent of ¢, and since in the symmetric case it
is also independent of { we can use the following notation:
7, & PriX(1) =0] ; 1=1,2,-- N
Thus (4.91) becomes:
PriL(r(m)) = 0 | gm), {m)] = Pr|L(fm)) = 0] - glt=)-dm]
or:
Pr|L,(f{m)) = 0] = Pr|[L{dm)) = 0] R(z,) (4.92)

and finally, from (4.92) and (4.80) we have the probability that 3 buffer is empty at an arbitrary

switch-over instant:

Pr| queue i is empty at switch-over instants | = (—ll-% (4.93)

4.8 Comparison of the Results and Discussion
In this section we compare the results derived in the previous sections for the expected

system time in the differeat systems. These results are also compared to the expected delay
observed in the equivalent cyelic-polling systems.
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Before making the comparison, we should recall that they are differences, regarding the
time at which 3 new arriving customer can be served, between the model used here to the model
used in [Taka83|. For this reason the results derived in [Taka83] for the waiting time can be
interpreted, in our model, as the system time. Thus, in the following, we will recall the results
derived in [Taka83] for the waiting time in the different systems, and use them as they were the

-

system time under our model.

Considering the cyclic polling system (in a discrete model, identical to our model), we
recall that the expected waiting time (see [Taka83)} is:

E o Ne(l-g)
2r  2u(1-Np)  2(1-Np)

The expected waiting time in the cyclic polling system under gated service policy is:

BB N1ty
2r  2u(1-Nu) 2{1-Ny)

Considering the non-exhauystive cycling-polling policy with at most one customer served
in a service period, we do not know zbout any previous study that considered a discrete time
model. Thus the result for this type of system is not available for comparison.

These results and the results derived in this chapter are presented in table 1.

Comparing the system time in the cyclic polling systems to the waiting time in the ran-
dom polling systems we realize that for both systems where the comparison is applicable (exhaus-
tive and gated) the delay of the random system is greater by a term of:

{(N-1}r

2(1-Nu)
This observation is quite intuitive since we expect the delay in the random polling system to be
higher due to the random behavior of the server. Note, also, that when the number of stations is
N =1, then the delay in the random system is identical to the delay in the cyclic system.

Comparing the exhaustive service to the gated service (in both types of polling methods)
we realize that the expected delay in the gated system is higher. Again, the difference in perfor-
mance between the exhaustive scheme to the gated scheme is the same for both types of polling
methods.

Looking at stability conditions, we see that both the gated system and the exhaustive
system are stable {under both types of polling methods) as long as Nu <1, On the other hand,
the non-exhaustive scheme is stable only as long as Nu{1+r)<1. This resuit is also intuitive
since at least one switch over period (whose expected length is r) is associated with every



Polling Method " Cyctic Random
Service Method
L -
Exhaustive
2 + _ad £ + o
2r  2u{l-Ny) 2r  2u(l-Np)
+ Nrllp) 4 Net-g)  (N-Ur
2(1-Nu) 2(1-Np}  2(1-Nu}
Gated
& i 7 2

4+ Nr(1+p)
2(1~Nu)

L A—
2r  2u(1-Np)

L b e Zne
2r 2u(l-Ny)

Nr(l'f'&)_ + (1’\,—1)"
2(1-Nu)  2(1-Nu)

Non Exhaustive

not available

L
2r  2u(1-Nup-Nry)

Nrg® + {N-1}r

+
2u{l-Nuy-Nry)

2(1-Nu-Nry)

e NEu
2(1-Nu-Nrp)

Table 4.1:

the expected system time in the different systems
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customer served.



CHAPTER 5
An Analysis of the Exhaustive Slotted ALOHA System

In this chapter we study the queueing behavior of exhaustive slotted ALOHA, a method
which is used to control the transmission of N stations in a single channel radio environment.
The exhaustive scheme can be considered as a simple method for synchronizing the transmission
of the different stations; it gains its efficiency from this synchronization. Due to the synchroniza~
tion the events in these system are strongly correlated to each other. For this reason, the system
does not lend itself to a simple analysis and approximation methods must be used. It is observed
that in certain cases that the exhaustive ALOHA system behaves similarly to the queue with
starter system; in some other cases the system behaves like the random polling system. For this
reason the results derived in chapters 2, 3 and 4 are used throughout this chapter.

5.1 Introduction and Previous Work

The (classic) ALOHA access scheme [Abra70] is a method which can be employed in
shared channel networks (e.g. in radio networks or in satellite networks). In this access scheme a
station transmits a packet as soon as the packet arrives, and packets transmitted concurrently
collide and are not received at the receiving station. Collided packets are retransmitted after a
randomly selected period of time, until they are successfully received.

The siotted ALOHA scheme [Robe72] is identical to the ALOHA scheme, but in addition,
the time axis is divided to equal length slots (each of them equals in length the transmission time
of a packet) and the stations are allowed to start transmitting only at the beginning of the time
slots. Usually, the retransmission of collided packets in the slotted ALOHA scheme is done as fol-
lows: at every slot after the collision slot, a station i who participated in the coilision, will
retransmit the collided packet with probability p,. Station i will continue this procedure until the

collided packet is successfully received.

The ALOHA scheme has been extensively studied in the past. However, most of the past
studies neglected the queueing behavior of the system by making simplistic assumptions either
about the arrival process, or about the stations’ buffer size. Naturally, the main result derived
by these studies, is the throughput of the system as a function of the offered load [Abra70,
Abra73, Robe72|. Several of these past studies (see [Lam74|, for example) anulyzed the delay in
the slotted ALOHA system. However, in those studies the basic system model does not allow any
queneing behavior, so the expressions derived in these reports mainly represent retransmission (of
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a packet) delay and not any queueing delay.

The queueing analysis of ALOHA has been done mainly for very simple systems. Sidi
and Segall [Sidi83| analyzed the expected delay in an N =2 station slotted ALOHA system. This
analysis is done under the assumptions that the arrival process to each station is a Bernoulli pro-
cess and that the stations are symmetric. The expected delay in this system is found to be:

T = 1.,..&2).2_";4& (5.1)
p(l-p)-¢ |

where p is the transmission probability used by each station to resolve’ collisions, and ¢ is the
Bernoulli arrival rate to each queue. The optimal transmission probability, p’, that minimizes
this delay is:

_0.5¢+[0.5¢(1-¢+0.5¢%)]
1-0.5¢

p'=1 (5.2)

The erhaustive slofled ALOHA scheme is a variation of the slotted ALOHA protocol.
According to this scheme, a station whose packet is successfully received in slot ¢, is granted the
exclusive right to transmit in the ¢+1st slot. By this mechanism, the exhaustive scheme over-
comes one of the main deficiencies of the slotted ALOHA scheme: the continuous "fght” among
the stations for every transmitted packet. Using this simple mechanism, the system takes advan-
tage of the knowledge of the system history: the behavior of all stations during the {+1st slot
depends on the channel status during the {th slot. The exhaustive scheme is called, sometimes, a
reservation scheme or, R-ALOHA. It should be noticed that the exhaustive ALOHA scheme is
based on the ability of the stations to recognize for each slot if the slot is a successful slot, a col-

lision slot, or an idle slot.

It is obvious that the behavior and the advantages of the exhaustive scheme, cannot be
studied without considering a queueing model of the system. Cleatly, in a system where each of
the stations is equipped with a single buffer queue (as assumed in many of the traditional
models) the use of the exhaustive discipline will have no effect on the system performance.

For this reason, in our analysis we cannot use the simplistic model which neglects queue-
ing behavior, To understand the system behavior, and to analyze its performance, it will be

required, in this chapter, to use a queueing systems model.

‘According to this model in every time slot f, a station who has a packet to transmit will
transmit with probability p.
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The queueing behavior of the exhaustive ALOHA system has been studied before in two
refererices. Lam [Lam80] studied the delay in the system by decoupling the behavior of each
queue from the behavior of the rest of the system. The decoupling is done by assuming that the
probability that a station successfully transmits in a2 contention slot equals to the average
throughput of the (non exhaustive) slotted ALOHA system. This assumption leads to an approxi-
mation of the delay in the system; an approximation which is relatively good for large (around
40) number of stations (as shown in[Lam80]) but may not approximate the system properly when
the number of stations is small. This analysis yields a small set of equations which must be
solved by numerical methods to give the expected delay in the system.

In a recently published paper, Hofri and Konheim [Hofr84] give an exact analysis of the
N-station exhaustive slotted ALOHA system. The analysis yields a set of several (relatively com-
plex) equations that must be solved by numerical methods in order to derive the expected delay
in the system.

In contrast to the previous studies the aim of the analysis done in this chapter, is to
derive an ezact closed form ezpression for the expected delay in a two-station exhaustive slotted
ALOHA system; for the N-station system we derive a heavy-traffic closed form expression
approximating the expected delay. In addition, in our analysis we will insist on deriving the
expected delay not only for systems consisting of many stations {(as did[Lam80}) but also for sys-
tems consisting of a few stations. The analysis of systems consisting of a few stations is impor-
tant for the understanding of the behavior of multihop packet radio networks. In these networks,
the local neighborhood of a given station does not necessarily consist of many stations. As a
matter of fact, if routing algorithms are used, it is reasonable to believe that every local environ-
ment consists of a few stations which have many packets to transmit. This is in contrast to the
model where in a one hop environment there are many stations, each of which transmits only a

very few packets.

It is reasonable to believe that in a system consisting of only a few stations, the behavior
of each station is strongly correlated to the behavior of the other stations. In contrast, in a sys-
tem consisting of many stations, this correlation is much weaker. Thus, simplistic assumptions
about independence of events, which are reasonable for many station systems, may be wrong for
a system consisting of only a few stations. For this reason in the following analysis, we will
avoid, as much as we can, the use of "independence” assumptions.

The analysis done in this chapter is divided into three main parts. First, in sections 5.3,
5.4, 5.5 and 5.6 we study the behavior of a two-station system. It is observed that an exhaustive
slotted ALOHA system consisting of exactly two stations possesses special properties that make
its behavior different from the behavior of the N-station system. This special behavior allows us
to derive exact expressions for the expected delay in this system. In section 5.3 we present aa
approach for analyzing the expected delay in two-station exhaustive ALOHA systems. This



approach analyzes the system by viewing it as a queue with starfer system, and by using the
results derived -in chapters 2 and 3. In section 5.4 we analyze the expected delay in the polite
symmetric system (to be defined below). In section 5.5 we analyze the expected delay in the
noisy aystem (to be defined below); this analysis is done both for symmeiric and non symmetric
systems. The results derived in sections 5.4 and 5.5 are discussed in section 5.6.

The second part of this chapter, deals with the analysis of the expected delay in an N-
station system; this analysis is done in section 5.7. Here we cannot use the method used in sec-
tions 5.4 and 5.5. Instead, we suggest a heavy load approximation of the expected delay. This
approximation is achieved by viewing the system as an N-station random-polling exhaustive-
service system and by using the results derived in chapter 4.

lastly, in section 5.8 we study a two-station system where the stations are not allowed to
assume that they exist simply in a two-station system. [n this case the special system behavior,
observed in sections 5.3, 5.4 and 5.5 does not hold. To analyze the system, we use the results
derived in sections 5.4 and 5.5 as a low load approximation and the results derived in section 5.7
as a heavy load approximation. These approximations are compared to simulation results, and
shown to be good approximations.

5.2 Model Description

The system considered in this chapter consists of N stations (for some of the analysis we
will assume N=2)} which transmit packets of fixed length to each other. The transmission
medium considered is a single radio channel. In this medium, if the transmissions of two (or
more) stations overlap all transmitted packets get garbled, and we say that the packets collided
{or, a cellision occutred). Therefore, a transmission of a packet from station i to station j is
successful if and only if no other station’s transmission overlaps it.

The model considered is a discrete time model: time is slotted with the slot size equal to
the service time of a fixed length packet, which, without loss of generality, we assume to be
unity. The time interval (¢-1,¢) is called the fth slot. It is assumed that a packet which arrives
during the {th slot may be served in the fth slot, ie, it is assumed that packets arrive at the
beginning of the slot (this is called the early arrival model {Klei64f}. A slot in which exactly one
station transmits is called a successful siot. A slot in which two or more stations transmit is
called a colligion slot (or, a conflict). A slot in which no station transmits is called an idle slot.
It is assumed that each of the stations can recognize for each slot if the slot is a successful slot, a
collision slot or an idle slot.
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The arrival process to station i (i==1,2,-- N) is an independent Bernoulli process with
parameter ¢,- Thus, the number of packets arriving at station i at slot ¢ is given by:

1-¢g, k=0
Pr [ # of packets arriving at station i at slot ¢t = k] = {q, k=1
0 k>1

Packets which arrive to a given station, are transmitted from this station according to a first-
come first-served order. Each station is equipped with an infinile buffer queue to store the pack-
ets which have not been transmitted yet.

The access scheme studied in this chapter is the exhaustive slotted ALOHA scheme; this
scheme will be compared to slotted ALOHA which we must first describe. Slotted ALOHA is a
method for resolving conflicts by probabilistic means. According to this method, a station, say 1,
which is involved in a collision (namely, transmitted a packet which collided with another
packet) will continue trying to transmit the packet. To avoid an eternal deadlock, this station
will not transmit in any slot succeeding the collision slot. Rather, in any of the succeeding slots
the station will transmit with probability p, and stay quiet with probability 1-p,. The station
will continue this collision resolution scheme until its packet gets successfully transmitted. p,, the
probability for transmission of a packet in any slot succeeding a collision, is called the transmis-
sion probabilily. We assume that the transmission propagation is instantaneous. Thus, at the
end of the (th slot, all stations know what was the status of the channel {successful fransmission,
idle or collision) in the tth slot. In addition, it is assumed that the channel is error free and

instantaneous and free acknowledgements are assumed.

The ezhaustive sfotted ALOHA pratocol (which is sometimes called R-ALOHA} is the
same as slotted ALOHA scheme with an additional property. According to this method, a sta-
tion, say i, who successfully transmits in the ¢th slot, is granted the exclusive right to transmit in
the ¢+1st slot. This means that all other stations stay silent in the (+1st slot, letting station
transmit with no interruption. Therefore, according to this scheme, once station 1 has success-
fully transmitted a packet it continues transmitting until its buffer is completely ezhausted.

It is obvious that in this protocol some additional means are required to signal the other
stations when station ¢ finishes transmitting. One way to indicate an end of transmission is just
by not transmitting. The idle slot succeeding the transmission period of statiom i signals the
other stations that station i has no more packets to send. Another method, and this is the
method considered in this analysis, is to use an end-of-use flag. According to this method, the
last bit of every packet sent by station i is devoted to notifying the other stations if station s

intends to use the channel on the next slot.



Three types of periods, classified according to the channel activity, are distinguished in
this system:

1. Transmisgion period: this period comsists of a sequence of successful slots, all of them
from the same station. The last packet in such a sequence has the end-of-use flag turned
on.

2. Idie period: a period in which none of the stations has any packet to transmit, and the
channel is idle.

3. Contention period:  During this period there exist some (at least one) stations who wish
to transmit, but none of the slots, due to collisions, is successful. Due to the probabilistic
bekavior of the ALOHA scheme, it is clear that some of the slots in a contention period
may be idle (all the stations involved in the conflict stay quiet) while the other slots in
the period must be collisions.

From this classification we conclude that:

1. A transmission period may be followed either by another transmission period (if station 1
transmits end-of-use flag in the ¢th slot and some station ] successfully transmits in the
t+1st slot), or by an idle period (empty system), or by a contention period.

2. An idle period may be followed either by a transmission period or by a contention
period.
3. A contention period is always followed by a transmission period.

Exhaustive slotted ALOHA schemes may differ from each other by the specific conflict
tesolution protocol used during the contention period. [n the following we consider two basic

schemes:

1. Polite ALOHA conflict resolution protocel with transmission probabilities p,,p,,-,p,.
According to this method, if station i wants to transmit, and if the channel is not
currently exhausting any other station's buffer (namely, this is not a transmission
period), then station i (i=1,2,-- V) will transmit with probability P,

2. Noisy ALOHA conflict resolution protocol transmission probabilities PuPy " PN
According to this method, a station, say 7, who wishes to transmit following an idle
period or following a transmission period, will transmit with probability 1. If this
transmission is successful, then station i is already in a transmission period. Otherwise,
station ¢ collided with other stations, and now it will transmit, in every slot, with proba-
bility p,. The ith station will continue to transmit with probability p, until one of the

competing stations wins the conflict and starts a transmission period. At the end of this
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transmission period, all’ the stations who wish to transmit will again become "noisy”
(transmit with probability 1} and then the algorithm repeats.

5.3 An Approach for the Two Station Case: The Queue with Starter

An exhaustive ALOHA system which consists of exactly two stations possesses a very
important property: When station i (i==1,2) stops transmitting, declaring, by the end-ol-use
flag that it has no more packets to send, then the other station can use the next slot without any
interruption. Thus, in a two-station exhaustive ALOHA scheme, a transmission period of station
1 will be followed by a transmission period of station 2 (unless station 2 has nothing to transmit
when the transmission period of station 1 ends) and vice versa. Therefore, we can conclude that
in this system, once a transmission period starts, a successful transmission will be seen on the
channel until the whole system (ramely both buffers) empties. Thus a contention period in the 2
station system will occur only after an idle period, which is not the case in a N-station system.

A natural approach to analyze this system is as follows: Derive the number of packets
found at queue i at an arbitrary point of time and then, {rom this result, derive the waiting time
at that station. However, this approach is not trivial since the behavior of one station depends
on the state of the other station.

For this reason we choose an alternative approach to calculate the expected delay. We
consider the whole system as a black box and derive the expected waiting time of the total sys-
tem. We assume that the arrival stream entering the black bor system is identical to the com-
bined arrival stream entering the real system. The service time, in the black box system is
asstmed to be, as in the real system, one unit of time. The server behavior, in the black box
system, is identical to the server behavior in the real system, according to the following rule: A
customer is served in the black box system if and only if a packet is successfully transmitted in
the real system. It is clear, under this "simulation” rule, that the number of customers found at
time ¢ in the black box system must be identical to the total number of packets found at time ¢
in the rea] system. Figure 5.1 depicts the relation between the real system and the black box
system.

It is true that if the black box system serves the customers in a first-come first-served
fashion, and if each station in the real system serves its customers in the same manner, then the
actual delays observed in the two systems will not be identical. Nevertheless, it is obvious that,
at every moment, the total number of customers {packets) found in both systems is the same, so
the ezpected number of customers found in both systems is the same. Therefore, using the black

’A station whose buffer is empty at the beginning of the contention period (i.e., a station who
does not transmit in the "noisy slot”) and which generates an arrival during the contention
period, will transmit only at the end of the lollowing transmission period.
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Figure 5.1: The two-station ALOHA system and the corresponding black box system

box system we can easily find the expected (total) number of packets found in the real system.

Moreover, since the number of customers arriving to the black box system at slot ¢
equals the total number of packets entering the two-station ALOHA system, it is obvious that
the arrival rate in the two systems is ideatical. Thus, using Little's result we can conclude that
the expected system time (waiting time plus service time)} of an arbitrary customer in the black
box system is identical to the expected system time of an arbitrary packet in the real system.
The use of Little’s result in this case is allowed, since this result is valid for any work-conserving
system, independent of the arrival process, and independent of the service policy used in the sys-
tem.

Let us start by analyzing the black box system. From the behavior of the real system, as
described above, the black box system will behave as [ollows:

1. Once the server in the black box system starts serving customers, it will continue serv-
ing, at a normal rate of one customer per one unit of time, until the queue of this system
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becomes empty. This behavior actually corresponds to the sequence of alternating

"' transmission periods in the real system.

When the black box system becomes empty the server will stay idle as long as no custo-
mers arrive to this system. This period is the idle period of the black box system, and it
corresponds to the idle period of the real system.

When new customers arrive to the black box system, following an idle period, they will
not be served immediately. Rather, some time will elapse before the first of these custo-
mers will be served. This period of time, starting at the first arrival to an idle system,
and ending at the beginning of the first service slot (following the idle period)
corresponds exactly to the contention period in the real system. This is a period of time
where there are packets in the real system but no packet is transmitted (a period of time
where there are customers in the black box system but no customer is served). We call
this period, in the black box system, a warm up period (i.e., the cold start period) since
at this time the server can be thought as "warming up” after being idle and before get-

ting ready to serve the new arriving customers.

From the above description, one can easily recognize that the black box system behaves

exactly like the queue with starter, which was analyzed in chapters 2 and 3. Thus, we will

analyze this system by using the results reported in the analysis of the queue with starter.

From the analysis done in chapters 2 and 3 let us recall that the expected delay in a

queue with starter system can be calculated by going through the following steps:

i.

ii.

Calculate the expected delay in the equivalent queue uithout starler.
Calculate the first two moments of the start up (warm up) period.

From (i) and (ii) above and the relations given in chapters 2 and 3 calculate the expected
delay in the queue with starter.

In the following we will use this approach to derive the expected delay in two different

systems:

-

A black box system which corresponds to a real system where the conilict resolution pro-
tocol is a polite exhaustive slotted ALOHA. This approach will allow us to solve oaly for
the case where p,=p,=1/2 (section 5.4); for general p we will later obtain a solution

using a Markov chain approach.

A black box system which corresponds to a real system where the conflict resolution pro-
tocot is a noisy slotted ALOHA (section 5.5).
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5.4 Two-Station Pollte Exhaustive ALOHA

In this section we study the expected delay in a symmetric two-station polite exhaustive
ALOHA system. The system is analyzed under the assumption that the stations are fully sym-
metric; Thus the arrival rate for each station is ¢, and the transmission probability used by each
station is p. Two approaches are used to solve this system: First we use the queue with starter
approack, which allows us to solve for the expected delay in the system when p =1/2. Second, a
Markov chain approach is used to derive the expected delay for an arbitrary p. The expressions
derived by these two methods are compared to each other and shown to be equivalent.

The importance of using the queue with starter approach to analyze the system when
Py =p;=1/2 is twofold: 1) The transmission probabilities p, =p,=1/2 are known to be the
optimal transmission probabilities of a two-station ALOHA system. These are optimal in a model
where queueing is not modeled and the performance criteria is to maximize the system
throughput. 2} As we see in the following, this specific system under the assumption that
P, ==p,=1/2 easily lends itself to analysis, by using the queue with starter approach. Thus, the
(relatively simple) results derived in this analysis can be used later to verify results derived in the
analysis of the more general system.

5.4.1 A Special Case Using the Queue with Starter Approach

In the following we analyze the expected delay in an exhaustive ALOHA system where
the conflicts are resolved by the polite ALOHA conflict resolution scheme, with parameters
P1=p;=1/2. As suggested above, the system will be studied by analyzing the black box system

and by using the discrete-time queue with starter results.

The queue with starter system to be studied is the following:

a. The model is a discrete time‘model, measured in units of slots.

b. Arrivals consist of the merged stream of two Bernoulli sources, each with parameter ¢.

c. Service times are equal to one slot.

d. Cold start periods, correspond to the contention periods in the exhaustive slotted
ALOHA system.

Let us recall that that the delay in a queue with starter can be calculated as a sum of
two random variables:

- the original delgy, which is the delay suffered in the queue without starter.

104



- the sdditional delay, an additional delay which is due to the presence of a starter.

The first step in analyzing the queue with starter is finding the delay (system time) in
the equivalent quene without starter, i.e., the system time in the equivalent system that does not
suffer cold starts. This is a simple single server queue with arrivals as in the queue with starter,
and regular service policies (the server serves a customer whenever there is some customer in the
system). Let us analyze a discrete time single server queue where service times are one slot, and
the number of customers arriving in any slot is taken from an arbitrary distribution. Let L(¢)
denote the number of customers found in this system at time ¢ (i.e. at the slot boundary) and let

M(z) denote the z-transform of L({t) when the system is in equilibrium, i.e.:

M(z) & Jim 14

Let X(¢) be the number of the customers arriving to the system at slot (time) ¢ and let:

V(z) & Bl g = EX(1) o = Var|X(t)]

From the system description we can relate the number of customers found in the system
at time {+1 to the number of customers found in the system at time ¢ as follows:

L)+ X(t+1)-1 if L(t)>0
Li+y = {L(z)+X(t+1) it L(1)=0 (5.3)
From (5.3), in equilibrium we get:
M(2) =:i-[M{z)-M(0)] Viz) + M0} Viz)
M(z) = moyAelz-L) (5.4)

z-V{z2)

Applying M(1)=1, and using L'Hospital's rule in (5.4), we get:
M@0)=1-u

Now, differentiating (5.4) with respect to z and evaluating the derivative at z:==1 we get the the
known result of the expected queue length in the system {at the slot boundaries):

_ dM{z _ hu-p?
EIL] - dz =1 — 2(1_“) (55)
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Now, a.ft.er analyzing a generakarrival system, recall that the arrivals to our system con-
sist of the merged stream of two independent Bernoulli sources. Thus we have:

(1-¢f k=0
PrX(t)=H = Zz"(l"") ::;
0 else

and
s = EIX(t)] = 2¢
o? = Var[X(t)] = 24(1-¢)
V{0) = PriX{t)=0] = (1-¢}’
So, substituting 4 and o2 into {5.5) we get:
ElL| = 2¢ + —£= (5.6)
Now, to find the expected delay in this system we apply Little’s resul:

E][ system time in the " queue without starter” | = %ﬂ =1+ ?(-l-gm (5.7)
q -

Next, the second step in calculating the delay in the queue with starter, is to derive the
additional delay suffered in the system. Let S denote the length of a cold start and let:

a0
ie,, FATR
=0

{18

0
s, ApPr(S=i] , S(z)A %sz, TA

1=0 1=0

In addition, let & denote the expected value of the additional delay suffered by an arbitrary cus-

tomer,

To calculate the additional delay suffered in the queue with starter one has to calculate
the first and the second moments of the cold start. We recall that the cold start in this system
corresponds to the contention period in the exhaustive slotted ALOHA system. The length of this
contention period is the number of slots from the arrival of a customer to the empty system,
until a first packet is successfully transmitted (not including the successful slot). Let us find the
probability that a slot, ¢, in the contention period will be a successful transmission. Clearly, this
ptobability depends on the aumber of stations who wish to transmit at time {. There exist two

cases:

1. Only one station wishes to transmit. In this case the probability of having a successful
transmission at time ¢ is p, and since we have p=1/2, the probability of a successful
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transmission is 1/2.

2. Both stations wish to transmit (i.e., both buffers are not empty). In this case the proba-
bility of a successful transmission is 2p(1-p), which again, under the assumption that
p=1/2, equals to 1/2.

From these properties it is easy to realize that independently of the number of stations
wishing to transmit, the length of the cold start is distributed as:

nm k) imonae 3

It is important to emphasize that the length of the cold start, in this carefully selected
case, is independent of the number«of customers arriving to the system during the contention
period (note that for p5£1/2 this property fails and thus the queue with starter approach cannot
be used to analyze the general system). Therefore, we are allowed to apply the results derived in
chapter 2 (the analysis of a queue with an independent starter). From (5.8) it is easy to derive
the z-transform and the first two moments of the cold start length:

S(z) = -;--—1;— , 3=1, F=3 (5.9)
l_—
2

Now that we have the first two moments of the the length of the cold start we recall
that the expected value of the additional delay suffered in the queue with starter can be calcu-
lated from these two moments and from V(0) (the probability that no customer arrives to the
system at a given slot, {). This is done using the following expression {taken from chapter 2):

7 = 25H(F-B)1-v(o))
2+23(1-V(0))

Substituting 5, 5% and V{0) into this equation we get the expected value of the additional delay
in the system:
+ 2(1-V{0
g = 2—-....1..._[..).!. =1 5.10
2 + 2(1-V(0)) (5.10)
Note, that the additional delay in this system is always 1, independent of the arrival rate. This
property is not surprising, due to the fact that the cold start of this system is geometrically dis-

tributed, and since the geometric distribution was shown (in chapter 2) to be the eigenfunction
of the queue with starter system.
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Now, after ca_lculat.ing the original delay in the queue without starter, and calculating
the additional delay in the queue with starter, we can add them up and finally get the total
delay (system time) in our black box system:

T = E| system time in the queue without starter | + T = 2 + 2(—1"—2—)- (5.11)
-«

Thus, we conclude that the expected system time of an arbitrary packet in the two-station polite
exhaustive slotted ALOHA system (with parameters p, =p, =1/2) is:

=0 4 —0
r=2 2(1-2q)

5.4.2 The General Symmetric Case: A Markov Chain Approach

In section 5.4.1 we used the queue with starter approach to derive the expected delay in
a two-station polite ALOHA system where the transmission probability of the statioas was
p,=p,=1/2. The goal of this section is to calculate the expected delay in this system for an arbi-
trary (yet symmetric) transmission probability (i.e., p, =p,=p).

The analysis method to be used in this section is a direct one: we construct the Markov
chain representing the number of packets in the system and derive from this chain the expected
number of packets and the expected delay in the system.

As in previous sections, due to symmetry in the system, our interest is in the total
number of packets found in the system. For this reason, a state in the Markov chain should
represent the total number of packets in the system. However, this representation is not
sufficient; it is also required to represent the specific state of the system. These states can be any

one of four types:
1. The system is in idle period. This state is called an idie state.

2. The system is in a contention peried, and only one quewe contains packets (the other
queue is empty). These states are called single-contention states.

3. The system is in a contention period and both queues have packets. These states are
called double-contention states.

4, The system is in exhaustive transmission period. These states are called An ezhaustive
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transmission states.

It is easy to see that if we define the system state to be specified by the specific state
type (one of the four mentioned above) and by the number of packets in the system, we have

then formed a Markov chain.
Based on these definitions we denote the following:

¢o 2 Pr[system is in the idle state |

¢, & Pr|system is in a single-contention state ,i packets in system | ; i=12,

d, & Pr|system is in a double-contention state ,i packets in system | ; i=0,1,2,

e Pr{ system is in an exhaustive transmission state ,i packets in system | ; i=0,1,2,-+

e

It is clear from the state defirition that d, =0, d, =0, and £,=0.

In addition to these definitions, m, denotes the probability that there are i packets in the
system, independently of the system state:

m, = Pr| there are i packets in the system |

]
so we have:
m, = C‘+ dl + ¢ ; 1=0,1,2,--

Based on this notation, let us define the z-transforms of the number of packets found in the sys-

tem:
C{z) = zj e,z
1==0
D(z) A Ed,z‘

E(z) A ;le,z'

Mz) 2 ¥ m2

=0

In addition we give notation for the probability of the events which can occur in the system:
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A pr| no packet arrives to the system at time |

A

g, 2 Pr| one packet arrives to the system at time t]

! A Pr| a packet arrives to queue 1, no packet arrives to queue 2, at time {|

ey 2

A Pr| a packet arrives to queue 2, no packet arrives to queue 1, at time (]

A A Pr{ successful transmission at potential’ contention slot |
one quene is empty and the other is not |

h A Pr[ no success{ul transmission at potential contention slot |
one queue is empty and the other is not |

8, & Pr| successful transmission at potential contention slot
| both queues are not empty |

Iz A Pr| no successful transmission at potential contention slot |
both queues are not empty |

Let us recall that the arrival process to each station is an independent Bernouili process

with parameter g, and that a busy station transmits at every contention slot with probability p.

Thus, from the notation defined above we have:
6o =(1-¢ ., o =2¢(l-9), a,=¢
8
of =af ==~ =4(i-9)

s;+af=a, and due to symmetry:

H==°, Hi=1-3 =1-p

‘A potential contention slot is a non-idle slot which does not follow a transmission slot. In a
If only one station

potential contention slot some of the stations are willing to transmit.
transmits in this slot, this is a transmission slot, otherwise it is a contention slot.
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8, = 2p(1-p) , fa=1-8, =1-2p(1-p)

Figure 5.2 depicts this Markov chain. A state in this figure is denoted by a couple: the
first element of the couple denotes the system state type (/ denotes idle, C, denotes single-
contention, C, denotes double-contention and E denotes exhaustive transmission). The second
term in the couple denotes the number of packets in the system. Three main rows can be
observed in this figure. The upper row in the chain (figure 5.2a) contains the double-contention
states. The middle row contains both the idle state and the single-contention states. The lower
row contains the exhaustive transmission states.

Due to the complexity of the figure we represent some of the state transitions in figure
5.2a and the others in figure 5.2b, Figure 5.2a depicts all the states and the rows as described
above. In addition it depicts the transitions entering states in the double-contention row and
transitions entering states in the single-contention and idle row. Figure 5.2b depicts all the tran-
sitions entering states in the exhaustive transmission row; for the sake of clarity the double-
contention row (which is the upper row according to figure 5.2a) is shifted to the bottom of the
figure.

Using the notation defined above, our next goal is to derive the z-transform of the
number of packets in the system. First, we deal with the single-contention states, represented by
the middle row in figure {5.2a}. From this figure we get the following equilibrium relations:

¢, = o8y F ey a0y (5.12a)

¢ =cothtesefy 0 i=23,- (5.12b)

From these relations we solve for ¢;:

. = (:0:,}, ],(:if;}l ) =i (5.13)

From equation (5.13) we find C(z) as follows:

Clz) § ' 01 (5.14)
z) = Y ¢ = g ——————= .
1=0 ° 1-a5f,-01f,2
Next, we deal with the double-contention states. From the Markov row we get:
dy = oo+ cya(f, + dyagf, (5.15a)
d, = 01-2a2f1+c=-la§fl+d:-lalf2+d:aofz : 1=3,4, (5.15b)

From these equations we get D(z) expressed in terms of C(z):
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C(z}= C(Z)-[02f122+ afflz] + c0[02(1—f1)32‘5ff121
1-02-f2z2_31f22-60f2

(5.16)

Thus, the z-transform of the top row can be expressed in terms of the z-transform of the middle

row.

Last, we deal with the bottom row, representing the exhaustive transmission states. For
these states we have:

ey = (10, + cpag)- 0 +(dy 8y + dpap) 9, (6, + e20) (5.17a)
e, = (¢, apFca,Fea)s +(d 0+ d e +d4 ag) s,

+ (el-la2+clal+c|+la0) ) t=2:3| (517b)

Now taking the z-transform of these equations we get:

8y 8yCq 6o,
E(z) = |310(3)+329(3)+E(z)]'[“1+'z—+“23] - 8y60-0p0 t——-Coapz - ——  (5.18)
z z
Next, we use the equilibrium equation for the state (/,0). This is:
tg = CodgF ¢ 1608, F €16y (5.19)
Equation (5.19) is now used to calculate ¢,:
o
g, = -8~ (5.20)
9

Now substituting equation {5.20) into (5.18) and manipulating (5.18) further gives:
_ 8[P(2)-co] +3,D{z) -1 -5,)

Z-8y-0,2-0,2"

E(z) = ¢ - 3,|P(2)-¢eo} - 2.D(2) (5.21)

From equations (5.14), (5.16) and (5.21) it is now possible to calculate the z-transform of the
number of packets found in the system, in terms of ¢, and the system parameters. This can be

done by:
M(z) = C(z)+D{z)+ E(z} (5.22)

From equation (5.22) we next can solve for ¢,. This can be done by using the fact that the sum

of the m,'s must yield 1. Thus, we calculate ¢, by solving the equation:

M(1) =1 (5.23)
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~ Due to the complex structure of this Markov chair, this job (of solving equation {5.23)
for co)'is quite complicated. Thus, we are aided by a computer program’ to detive this solution:

(85-a0)(32f, - 80, - S +2)(1-12)

Co = - " {5.24)
8080f1f2-80°[1f2-80f S - 200 f, +2fyF ayfy +3aof [, -2
Now, substituting the values of a,, a,, f, and f, into equation (5.24) we get:
_ 4{p-1)p(2g9-1){pg-g-p) ;

6y =

Let us evaluate ¢, for some known cases:

i. For ¢=1/2 and arbitrary p, we get ¢,=0. This means that when the system is heavily
loaded {total arrival rate to the system is one packet per one unit of time) then the pro-
bability that the system is empty, is zero.

if. For g=0 and arbitrary p we get c,=1. This means that when the arrival rate is zero,

the system must be empty.

iii. For p =0 and p =1 and for an arbitraty value of ¢ (¢7£0} we have ¢,=0. This is a case
where the contention period could become infinitely long, either due to too low a
transmission probability, or due to too high a transmission probability. In any of these
cases, the probability that the system is empty, must be zero.

Now, that we have the value of ¢, we substitute it back into M(z) (defined by equations
{5.14), (5.16) and (5.21)). Next M(z) is differentiated with respect to z, and the derivative is
evaluated at z=1. This yields the expected value of the number of packets in the system.
Again, due to the complexity of the' z-transform, this task is quite complicated (even worse than
finding ¢,), and again we need to be aided by the computer to derive this expression. Once we
have the expression for the expected number of packets in the system we use Little’s result and
divide this expression by the total arrival rate {2¢} to yield the expected system time.

The expected system time is expressed in a rational form where both the numerator and
the denominator are pelynomials of p and g. Thus we have:

= Mpg) a
T = i) (5.26a)

where:

*Part of the algebraic manipulation required in this analysis was done by the computer program
MACSYMA.
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Mp,g) = +2p°-8p P +1Tp ' -23p3F +19p° ¢ -0p ¢ +24°
—8pSqt+40p%¢*-88p4¢* +108p% ¢*-7TTp%¢* +30p¢*-5¢*
+12p8 2 -72p5 3 +161p4 ¢ -179p3 2 +102p%¢* -28pg* + 24°
-8p° 2 +60p5¢2-134p gt +132p2 2 -5Tp2 2 +8p ¢
+2p%¢-24p8¢+52p4q-42p3¢+12p%¢
+4p5-8pt+4p (5.26b)

and

D(p.q) = 2(1-p)p(1-2q)p+q-pg)

(2% -4p*C+pe*-¢
-6p3F+14p2F -9p P +24°
+6p%¢-12p%g+6pg

-2p3+2p? ' (5.26¢)

The expression for the expected delay in the system, given in equation (5.26) is quite
complex, and does not lend itselfl to an easy interpretation. For this reason, testing this expres-
sion for specific cases is essential for the understanding of the system behavior, and for the
"verification” of this computer aided analysis.

When the arrival rate to the system is very low, i.e., when ¢—0 we have:

limN(p.q) = 4p(1-p?)
—0

and:
imD(p,q) = 4p*(1-p%)
'—-

and so we get:

imT = & (5.27)
=0 P

This behavior has a very simple explanation: When the load is very low, each packet arrives to
an empty system and the delay it suffers is the time until it will be transmitted successfully.
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Since no collision is likely to occur in the system (no other packets are likely to arrive to the sys-
tem before it is transmitted) the delay is actually the time elapsing from the slot at which the
packet arrives, until it is first transmitted. Since, in every slot following the arrival slot, the
packet will be transmitted with probability p, the expected delay of the packet is 1/p.

When the system is heavily loaded, i.e., when g—1/2, we have:

. 34+9p-8p2-2p%
q) = p{1-p)1+ 2TIp-osptoep
l:%N(p g) = p{1-p)(1+p) 22

and:
_ , 1.p 3+9p -8p2-2p3
) 2 l- -—t i-—2 :
J.‘.%D(”) 01332 p(1-p)l5+5(2-29) 3
and so we get:
lim T = lim ———"" (5.28)

—2 —~v2 4(1-2¢)

Thus at heavy load, the delay in the system behaves as This is identical to the

1
4(1-29)
behavior of the queue without starter studied in section 5.4.1. Let us recall that the queue
without starter studied in section 5.4.1 represents a single server queue where the arrival process
is identical to the arrival process in our system. Now, the explanation of this result is
trivial: When the exhaustive ALOHA system is heavily loaded, the system spends most of the
time in the exhaustive transmission mode; in this mode of operation, the system behaves exactly
like a single server queue (no conflicts, and perfect transmissions), so the expected delay

approaches the expected delay of the single server queue.

When the transmission probability p is very small, i.e., when p—0, we have:

limN(p.g) = £(2-4)1-2)

limD(p,q) = lim2¢%2-g)(1-29)p
0 p—0
Thus we have:

imT = lim—— = oo (5.29)
p—0 7—0 2p
Again, this result is very intuitive: For a fized arrival rate 0 <¢<1/2 and whep p—0 the major
part of the delay is due to the contention period {the queueing eflects are negligible compared to
the contention period effect). In this case, since p—0 and the arrival rate is non-zero, both
queues will be non empty during the major part of the contention period. Thus, the probability
of a successful transmission during this period behaves like 2p(1-p) which approaches 2p when

p—0. Thus the expected length of the contention period and the expected delay behave like ‘ZL
4
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When the transmission probability is very high, i.e., when p—1 we get a similar

behavior:
lig:N(p,q) = ¢{1-2¢)
and:
limD{p,q) = lim 24%(1-2q)-(1-p)
r—1 —1
so:
. . 1
= | — =
Ml TRy < (5.%0)

This bebavior is symmetric to the behavior of the system when p—0, and the explanation is

similar.

The last “verification” test, is to evaluate the system delay, when p =1/2. We are able to
perform this test since the behavior of the system, under this transmission policy, was indepen-
dently studied in section 5.4.1. Evaluating the delay at p =1/2 gives:

{g+1(Tq-4)L-29-1)

N(p=1/2,49) = 4
and:
D(p=1/2,q) = (q"’l‘z‘QQ;;]{qz_gq_ll
50!
T(p=1/2,q) = ——L — 2 + —{ y
(r 7) 2(1-2¢) 2(1-2¢) (5.31)

This expression, as expected, is identical to the expression (equation (5.11) we derived earlier by
using the queue with starter method.

Next, we plot the expected delay in the system as function of the transmission probabil-
ity {p) and the arrival rate (¢} arriving to one of the queues. Figure 5.3 depicts the expected
delay in the system as function of the transmission probability p. The Ggure contains several
curves, each of them corresponds to different arrival rate (g). Figure 5.4 depicts the expected
delay in the system as function of the single-station arrival rate g. The figure contains several
curves, each of them corresponds to a different transmission probability (p). Figure 5.5 is a three
dimensional plot, depicting the expected delay as function of both the transmission probability p

and the single-station arrival rate gq.
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Figure 5.3: Polite system: The expected delay as function of the transmission probability

119

1.0

08

0.6

0.4

0.2

0.0



10

p=0.1
p=0.2

08

0.5

Figure 5.4: Polite system: The expected delay as function of the arrival rate

120

0.5

04

0.3

0.2

0.1

0.0



TON

- S¢
- 0E
- S¢
- Ob

- Sp

Fom

Figure 5.5: Polite system: The expected delay as function of the transmission probability and the arrival rat

121



5.5 Two Station Noisy Exhaustive Slotted ALOHA: The Queue with Starter
Approach

In the following we analyze the expected delay in an exhaustive ALOHA system where
the conflicts are resolved according to the noisy slotted ALOHA scheme. As in the analysis of
the polite slotted ALOHA (section 5.4.1) we derive the expected delay of the two-station ALOHA
system by analyzing the black box system and using the results from the analysis of the queue
with starter. This analysis is done in two parts: First a fully symmetric system is analyzed, and
then, the results are extended to a general (non symmetric) system. Note that for the noisy pro-
tacol the queue with starter analysis carries us all the way.

5.5.1 A Fully Symmetric System

We start this analysis by studying the fully symmetric (g,=g¢, p,=p; i=1,2) system. Due
to the symmetry assumption, it is obvious that the only difference between this system and the
system studied in section 5.4.1 above, is the behavior of the stations duting the contention
period. Thus, the original delay in the queue without starter is as reported in equation (5.7), and
what is left to be done is to derive the additional delay suffered in the system due to the cold

starts.

The behavior of an a noisy ALOHA systern during the contention period can be one of
two types:

a. Right before the beginning of the contention period exactly one station is willing to
transmit (i.e., all the other stations are still idle}). This station will transmit right after
the end of the idle period, and this transmission will be successful. The length of the con-
tention period, in this case is 0.

b. At the beginning of the contention period more then one station is willing to transmit.

All these stations will transmit at the first slot of the contention period, and all these
transmissions will collide. Following this collision slot, a station, say ¢, which was
involved in the collision, will start transmitting at every slot with probability p,. This
will continue until one of the competing stations wins and successfully transmits a

packet.

For our two-station system and for the corresponding black box system, we realize that
possibility (a) occurs when the first slot following an idle period, contains exactly one customer.
This corresponds to the case where the first arrival {following an idle period) to the two-station
ALOHA system consists of one packet (which arrives either to station 1 or to station 2). The
second possibility occurs when the first slot following an idle period in the black box system con-
sists of two customers. This corresponds to the case where the first arrival to the two-station
ALOHA system, consists of two packets: one arriving to station 1, and the other arriving to
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station 2.

From this observation it is easy to see that the length of the contention period is not
independent of the arrival process. Thus, we can no longer apply the results of the queue with
independent starter to our system. This is true, since in the analysis of the queue with indepen-
dent starter (chapter 2) we assumed that the length of a cold start is independent of the arrival
process following the cold start.

However, checking our system more carefully we cbserve that the length of the conten-
tion period depends only on the number of arrivals in the slot following the idle period. If the
slot contains one customer, the length of the contention period is distributed as described in (a).
If, on the other hand, this slot contains two packets, the length of the contention period is distri-
buted according to the behavior described in (b). Therefore, this system corresponds to a queue
with starter where the cold start depends on the number of customers arriving to the system at
the beginning of a busy period. This type of a queue with starter was studied in chapter 3, and
we can apply the results derived in that chapter to find the expected delay in our system.

Let us recall the main results reported in chapter 3 with regard to the queue with starter
where the starter depends on the number of customers starting a busy period. According to
these results, in order to calculate the expected value of the additional delay suffered by an arbi-
trary customer it is not sufficient to know the first two moments of the cold start distribution.
In addition to these moments, one has also to calculate the conditional moments of the cold start
distribution.

Let us recall the notation used in chapter 3:

b, A Pr[ a busy period starts by the arrival of k customers |
S(z k) = S(z | the busy period starts by k customers )

S'T: A E|S | the busy period starts by & customers |

In chapter 3 it is shown that the expected value of the additional delay suffered by an arbitrary

customer in the queue with starter can be calculated {rom 5, & V1{0), S"]Iand b, as following:
>
51 (F-5-vion 2o (5.32)
1+{1-V(O}T 2 § bk

-
k=1

Thus, in order to derive the additional delay suffered in our system we next calculate §,, 5(z | &),

S(z), 3, &, 5)i, and V(0):
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1) b, is the prqbability that a busy period in the queue without starter starts by the arrival of &
customers. In our system a busy period may start either by one customer (the arrival of one
packet to an empty system) or by two customers (the simultaneous arrival of two packets to an
idle system). Thus, we can easily calculate:

_2q1-q) _ 2-2¢
Y21+ @ 20

¢ q

2(1-g)+¢  2-¢

2) 5(z | k) is the z-transform of the cold start, conditioning on the number of customers starting
the contention period. Thus we have:

Sz 1) =1

5(z |2) = = g]ol?p(lﬂp)i-l92+(l-p)"'!’-z* = 14:28:’;;21‘2

3) 5(z) can be easily calculated from the above:

S(e) = bSte W+ I2) = 2L+ iR

4} 57y and 577 can be calculated by differentiating S(z [1) and S(z |2} (respectively) with respect

to z and evaluating the derivatives at z=1;

Si=0

( l I 2 2
SE= dS{z [2 R 1+ b +[l-—pl _ 1
dz 2p(1-p) 2p(1-p)

5) 5 can be calculated by differentiating S(z) with respect to z and evaluating the derivative at

z=1:

-1
] (2-q) 2p(1-p)

6) S%-F can be calculated by differentiating S(z) twice with respect to z and evaluating the
derivative at z=1:
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FF = d25(2) -1 2p2-2p+1
a2 1"™=' " 24 2(p -1)°p?

Next, we can substitute these expressions into equation (5.32) to give the expected value of the
additional delay observed by an arbitrary customer in the system:

_ F+2p(1-p}efl-q (5.33)
2p(1-p)[¢*+2p(1-p)]

Now we can add the original delay observed in the system (calculated in equation (5.7)) to the
additional delay derived above and get the expected value of the total delay suffered in the sys-

tem:

T =]+ —0— 4 C2p(1-p)a(l-g)
21-9)  2p(1-p){g*+2p(1-p))

This is the system time in the two-station exhaustive noisy ALOHA system.

(5.34)

Optimization of the Transmission Probability

An important issue in planning access schemes is to optimally set the values of the sys-
tem parameters. In this system, it is important to set p (the symmetric transmission probability,
used by both stations} to minimize the expected delay. It is obvious, that in order to find the
optimal value of p, cne does not have to calculate the value of the total delay. Since p affects
only the expected value of the additional delay,and since the total delay is the sum of the origi-
nal delay and the additional delay, then one can find the optimal value of p by analyzing the
expression of the additional delay.

For the sake of optimization we can substitute 2p(1-p) = z into equation (5.33), giving:

U=Ml_‘ql
o2+ 1)

It can be seen that this expression monotonically decreases for z2>0, so the minimal value of & is
achieved for the maximal value of z { = 2p{l-p)). This maximum, under the constraint that
0<p<l! is achieved when p=1/2. Thus, the optimal symmetric transmission probability is
p=1/2. This result is quite intuitive since p=1/2 is the symmetric transmission probability
which will minimize the length of the contention period.

Now, substituting p =1/2 into (5.33) we get the expected value of the additional delay
under the optimal policy:

g =2Ct2 (5.35)

Mol P

Accordingly, the optimal system time is:
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T, ol 4 el + 2C20 5.36
opt 2¢(1-9) 2841 (5.36)

5.5.2 A Non Symmetric System

Having analyzed the fully symmetric system we next study the son symmetric system.
We assume that the arrival rate to stations 1 is ¢, and the arrival rate to station 2 is ¢, (both
arrival streams are Bernoulli independent as in the previous models). The transmission probabik
ity used by station 1 during the conflict resolution period is p,, and the transmission probability

used by station 2 is p,.

The approach to analyze this system is identical to the one used in sub-section 5.5.1
above, and the notation to be used in the sequel is identical to the notation used in sub-section
5.5.1.

Following the calculation in section 5.5.1 we first caleulate the additional delay in the
system. This is calculated as follows:
1) The value of b, is:
_ Q¥ a-29,9,

Ot -9

. 0192
¥ -0

2) The value of S(z |) is:
Sz 1) =1

lel(l‘Pa)+P2(l "Pl)]
1"‘1 ‘Pl‘P2+2P1PzI'3

Sz 12) =

3) The value of $(z) is:

5(e) = 6t e-200 019 [le;(l-pz)"‘pz(l—p;)l ]
it -0 it e-010 1-[1-p,-22+2p,p,] 2
4) The value of 37, is: *
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Fp=0

1

2 = pi¥re-201pg

5) The value of T is:

T = 4z 1
q|_+ fa—-f142 P +p,-2p,p,

6) The value of §7-3 is:

Fog = 0192 ) 2A1+2p,p2-p,-p0)
"0 (py*ra-2p,p,)

In addition let us calculate V{0), the probability that no packet arrives to the system at

time ¢. This is:

V(0) = (1-¢,)(1-¢;)

Now substituting the values calculated above into equation (5.32) yields the expected
value of the additional delay suffered in the system:

019:(2(py + 22 -29,20) F (0 + )1 +2p, 0y -2, - p,)]

o=
(Pr¥p2-2p1P2F 010)(P1 + P2-20:P2)(0 T+ 12)

(5.37)

In addition to the calculation of the additional delay we have to recalculate the original
delay, suffered in the queue without starter. To derive this value we repeat the derivation of
equation (5.7) but with non symmetric arrivals. This calculation yields:

92
(1-g-a)a+ )

E| system time in the queue without starter | = 1 + (5.38)

Adding the original delay to the additional delay, finally gives the expected delay in the

non symmetric system:

9,9, . 0,922(py + po-2p,p2) {0, + 0.)(1 +2p,0,-2,-p,)|

T=1 +
{1-9,-¢)(q,+q2) (Pytra-2p1p2F 010y Fo2-2p105) (1 + 02)

(5.39)
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It is obvious that the set of values for p;, p, which minimizes the expected delay is the
set that maximizes the probability of successful transmission when both stations are willing to
transmit. This set (see[Yemi80]) is either {p, =1, p,=0} or {p, =0, p,=1}.

5.8 Discussion of the Results for Symmetric Two Statlon Systems

In this section we compare the expected delay as observed in three systems: 1) The non
exhaustive slotted ALOHA scheme, described in section 5.1. 2) The noisy exhaustive ALOHA
scheme. 3) The polite exhaustive ALOHA scheme. The comparison is done for the results
derived for the symmetric system.

5.8.1 A Comparison of the Results

As we studied in the previous sections, the expected delay in each of these schemes
depends both on the transmission probability p and on the arrival rate (to a single queue) . In
the following we compare these schemes when they are optimally operated. A scheme is
optimally operated if for every arrival rate ¢ the transmission probability p is chosen to minimize
the expected delay. An optimal transmission policy for a given scheme, is a function F{q), which
defines for every arrival rate ¢ the optimal transmission probability to be used: p,, = F(q).

The first question of interest is to compare the optimal transmission policies of these
schemes. Equation (5.2) of section 5.1 gives the analytic expression for the optimal transmission
policy for the non exhaustive scheme. From section 5.5.1 it is obvious that the optimal transmis-
sion policy for the noisy exhaustive ALOHA is: p,, = 1/2, independent of the arrival rate.
Thus, it only remains to derive the optimal transmission policy of the polite exhaustive ALOHA.
Due to the complexity of the expression for the expected delay in this system, we are unable to
derive an analytic expression for the optimal transmission policy of this scheme; we use numeri-

cal methods instead.

In figure 5.6 we plot the optimal transmission policies of the three schemes as a function
of the arrival rate q. The optimal policies for the exhaustive schemes are plotted over the range
0<¢<1/2. The optimal policy for the non-exhaustive scheme is plotted only over the range
0< ¢<1/4, which is the stable range for this scheme.

From this figure we can observe the following properties:

i The optimal transmission probability, in any of the schemes is non increasing function of
¢. This is true since in any scheme, higher loads make the queues less likely to be empty,
which in turn, suggests a more polite (lower p) policy.
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Figure 5.6: Two stations: The optimal transmission probability as function of the arrival rate

L.

iv.

The optimal transmission probability of the polite exhaustive scheme is always higher
than the optimal transmission probability of the non exhaustive scheme. The reason for
this property, is that at any arrival rate a queue in the non exhaustive scheme is less
likely to be empty than a queue in the exhaustive polite scheme.

Only for one value of g {g=1/4) does the optimal transmission probability of the non
exhaustive scheme equal to one half. The reason is that oanly at this load is the system
heavily loaded, and none of the queues gets empty. Thus, in this case the heavy load
approximation holds, and the optimal transmission policy is 1/2. For any other value of
¢, the system is not heavily loaded, and the optimal transmission probability must be
higher.

The optimal transmission probability of the polite exhaustive scheme is always greater
than one half. The reason is that a contention period in this system always follows an
idle period. Thus, the stations can not be assumed to be heavily loaded during the con-
tention period, and the optimal transmission probability must be greater than a hall.
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Next we compare the expected delay observed in these systems. Figure 5.7 depicts the
expected delay in the three systems when they are operated under the optimal transmission pok
icy. In addition, for comparison, we plot in this figure the expected delay in a single server
queue (ro contention) which operates under the same arrival process (the expected delay as given
in equation (5.7)).

T
A
12
10
[ NO EXHAUSTIVE (OFTIMAL)
8 =
[ ] o
AN POLITE EXHAUSTIVE (OPTIMAL)
NOISY EXHAUSTIVE
2
NO CONTENTION
0 L ] . ] 1 | 1 1 ) ] -
0.0 10 02 03 0.4 05

Figure 5.7: The optimal (minimal) expected delay as function of the arrival rate

It is easy to see that for every arrival rate 4, both exhaustive schemes are superior to the
non exhaustive scheme. Similarly, for every arrival rate g, the single server queue (without con-
tention) is superior to both exhaustive schemes. Both these observations are very intuitive.

A more surprising observation is that the expected delay of the exhaustive schemes is
almost identical to the expected delay of the single server queue. To test this observation more
closely, we plot in figure 5.8 the difference between the expected delay in the exhaustive scheme
to the expected delay in the non-contention single server system. This can be thought of as an
extra delay (i.e. the additiona! delay) spent in the ALOHA schemes due to the distributed control
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Figure 5.8: The additional delay observed in the exhaustive schemes

they use. From figure 5.8 we see that the performance of the exhaustive schemes (in terms of
expected delay) is very close to the performance of an optimally controlled scheme {namely, the
single server queue) and the "extra delay” suffered in these schemes is bounded by a unity. The
fact that the optimal additional delay suffered ia the polite scheme is bounded by 1 agrees with
our previous results; according to these results for p =1/2 the additional delay is exactly 1. Thus,
the additional delay in an optimally controlled scheme cannot be greater than 1.

5.8.2 Applications
In the anaiysis carried in the previous sections the measure for the expected delay was

the time slot. Thus, in the comparison made above, we compared the expected number of slots a
packet stays in the system under different transmission policies.
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Recalling the description of the exhaustive ALOHA protocol, we realize that an extra bit
of every packet is used as an end-of-use flag. Such a flag in the non exhaustive scheme is not
required. For this reason is it clear that the time duration of a slot in the exhaustive scheme is
slightly longer than the time duration of a slot in the non exhaustive scheme.

Let & be the number of bits used in a packet in the non exhaustive scheme. Thus, the
number of bits that must be used in the exhaustive schemes is b+ 1, and in order to compare the
delay of the different schemes one must multiply the delay suffered in the exhaustive scheme by
a factor of 1+1/5. )

It is obvious that for any reasonable packet size (e.g., 100 bits and above) this factor is
very small, and does not affect most of the results. The two effects this factor has on the results

discussed above are:

1. At very low arrival rates (¢—0) the delay in the non exhaustive scheme will be lower
than the delay in the exhaustive schemes.

2. The additional delay suffered in the exhaustive schemes (in comparison to the expected
delay suffered in the single server queue) is not bounded by a constant”’.

Nevertheless, these two effects are minor and for most practical purposes the results reported

above are accurate enough.

Another important issue is the applicability of the exhaustive scheme as described in this
section. In all the analysis done above we used an important property of the two-station exhaus-
tive scheme: When one station finishes transmitting, the other station can start transmitting in
the next slot without any interruption. This assumption cannot be applied to an N-station sys-
tem, since in such a system, when one station finishes transmitting, several other stations may be

willing to transmit.

For this reason we conclude that the analysis done above holds onfy for two-station sys-
tems, where the stations know that they are the only stations in the system. Therefore, if one is
willing to analyze a two-station exhaustive system, where the two stations cannof assume that
they are the only stations in the system, one cannot use this method. However, for such sys-
tems, the expected delays derived above can be used as a lower bound approximation of the
actual expected delay in the system. This we investigate in the following section.

It is obvious that under heavy load the cost of the end-of-use flag is very high. Clearly, at very
high loads it is more efficient to use the "silent slot” method to notify the end of transmission.
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5.7 N Symmetric Statlons: An Approach by the Random Polllng System

In this section we study the expected delay in an exhaustive ALOHA system which con-
sists of NV queues. It is obvious that the events in such a system are strongly correlated to each
other, so there is little hope of a closed form exact delay analysis of the system.

Our goal is to approximate the expected delay in this system under certain conditions.
This analysis is carried out under the basic assumption that the stations are symmetric. Thus, it
is assumed that the arrival process to each station is a Bernoulli process with parameter ¢, and
that the conflict resolution scheme, used during the contention periods, is the same for all sta-

tions.

The main analysis tool, used in this section, is the ezhaustive service random polling sys-
tem, studied in chapter 4. The reason for this is that the behavior of the exhaustive ALOHA sys-
tem is very similar to that of the random polling scheme: 1) The service method in both systems
is exhaustive. 2) The contention period in the ALOHA scheme can be approximately modeled as
the switch over period in the random polling system. 3) [e the random polling system the sta-
tion to be served following a switch over period is chosen among all the stations by a random
method. In the exhaustive ALOHA scheme the station to be served following a contention period,
is randomly selected among all the stations who participated in the contention period. There-
fore, our analysis method in this section is to emulate the ALOHA scheme by the proper ran-
dom polling system, and to use the results derived in chapter 4.

Before starting the analysis, some more definitions are required. In section 5.2 we have
classified the slots in the exhaustive ALOHA scheme into three types: 1) Transmission slots, 2}
Contention slots. 3) Idle slots. In addition to the above, a slot is called a potential transmission
slot if it is either a contention slot or the first slot in the transmission pericd. The common pro-
perty of all the potential transmission slots, is that at the beginning of such a slot there are
several stations (at least one) who are trying to transmit in the slot. If exactly one of these sta-
tions transmits at this slot, then the slot i3 a transmission slot; otherwise, it is a contention slot.

In addition, let us recall (rom chapter 4 some of the notation used in the analysis of the

random polling systems. The notation used to denote the arrival process is:

X,(t) 2 the number of customers arriving to station i at time ¢

u BEX( o & Var[X(¢)]
The length of a switch over period is denoted by R and we have:

r BER ;& A varlR|
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5.7.1 A Heavy Load Approximation of the Polite Exhaustive ALOHA

In the following we approximate the expected delay in a polite exhaustive ALOHA sys-
tem, by the expression of the expected delay in the exhaustive service random polling system. In
order to use this approximation, we have to define the behavior of the random polling system, in
a way that will simulate the ALOHA system. Since in both systems the service policy is exhaus-
tive service, what is left to be done is to simulate the contention period of the ALOHA system by
the switch over period of the random polling system. Thus we will extract parameters from the
exhaustive slotted ALOHA system and substitute them into the delay expressions of the random
polling system.

First, we examine the behavior of the ALOHA system during the contention period.
Since this system is assumed to be heavily loaded, it can be assumed that at the end of an
exhaustive service period exactly V-1 of the stations are busy, and one of them, say station 3,
(the station which was just served) is idle. Clearly, this claim is not correct in all cases {there are
still occasions where the whole system is idle!} but it can be used as a good approximation of the
system status in most cases. Therefore, the number of busy stations, at each contention slot, say
¢, is either N-1 or N. In the first case, no packet arrives to station & during the contention period
before time ¢, and in the second case at least one packet arrives to station i during this periad.

It is clear that the time at which the first packet arrives to station i affects both the
length of the contention period and the performance of the system. For simplicity of the analysis,
and since we are interested only in an approximation, let us consider two simple extreme cases:

1. The first packet arriving to station i arrives right before the end of the exhaustive ser-
vice period. Thus, the number of busy stations during the whole duration of the conten-
tion period is V. It is obvious that this is not a feasible event in the exhaustive scheme,
since the first packet can arrive to station i only after the contention period started

However, this can serve as a simple extreme case for our approximation.

2. No packet arrives to station i, during the duration of the contention period. Thus the
number of busy stations, during the contention pericd is always V-1,

We start the analysis by looking at the first case. Let ¢, denote the probability that a
potential transmission in the slotted ALOHA system is a successful transmission, i.e..
s, & Pr|slot tis asuccessful transmission | slot ¢ is 3 potential transmission |

Under the assumption that at any contention slot all the N stations are willing to transmit, it is

clear that for every potential transmission slot we have:

8, = Np(1-p)}¥-V) {5.40)
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Let r, denote the probability that the length of a switch over period, in the random pol-
ling system is &:
r, & PrlR=i]

Using the above notation, we can simulate the exhaustive ALOHA system by an exhaustive ran-
dom polling system where we have:

r,o=(1-8,)"8, ; i=0,12,-- (5.41)

From (5.41) it is easy to derive the expected value and the variance of the length of the switch
over petiod:

r =ER] = j—%’- : & = Var|R] = *(—l-{-:-zi)- (5.42)

Now we must find the parameters of the arrival process; since the arrival process to each station

is a Bernoulli process with parameter g we have:
p=EXl=q¢ ; o® = Var[X,(¢)] = q{1-q) (5.43)
Now, to derive the expected waiting time in the system, we substitute 4, ¢%, r and & into equa-

tion (4.547), to yield:

MLoai-g) (V-1
T=L-g Loz, T4 + 24
25, 2(1-Ng) 2(1-Ng) 2(1-Ng)

(5.44)

where:

54 = Np(1 —pjvt

For the second case we calculate the delay in a system where exactly N-1 of the stations
take part in the contention period. The simulation of this system by the random polling system
is not as straight forward. The reason is that in the random polling system the next station to be
served after a switch over pertod is selected among all the stations, while in the exhaustive
ALOHA system the next station to be served is selected from the V-1 busy stations.

Let us define 9, as defined above, namely, this is the probability that a potential
transmission slot in the slotted ALOHA system is a successful transmission slot. [t is clear that in

this system the value of s, for every potential transmissicn slot, is:
94 = (N-1)p(1-p)¥2 (5.45)

And the length of a contention period is geometrically distributed with parameter s,.
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Let R be a random variable representing the length of a switch over period in the ran-
dom polling system, and let R(z), r and & be the z-transform, the mean and the variance of R,

respectively.

Let us denote by the virtually idle pericd (of the polling system), the period that starts at
the beginning of any switch over period, and ends right before the beginning of the service
period (i.e., right before a customer is first served following the switch over period). We call this
period the virtually idle period since during this time the server is idle, but the system is not
necessarily idle. Let R, be the random variable representing the length of the virtually idle
period, and let R,(z), r, and & be the z-transform, the mean and the variance of R, respectively.

It is obvious that in the simulation the contention period of the slotted ALOHA sy.stem
should be represented by the virtually idle period of the random polling system (and not simply
by the switch over period!), since this is the period during which the server is idle in these sys-
tems. Thus, R, in the simulation is distributed as the length of the contention period, and in
order to complete the simulation it is now required to calculate r and & (from r, and %) and

substitute them in the expression of the expected delay in the random polling system.

Under the assumption that exactly N -1 stations are busy during the switch over period,

it is easy to derive a relation between R,(z) and R(:). This is:
Ri(z) = 2=Lp(o) + LR(yR () (5.46)
: N N ! '

The explanation of this expression is simple: The first term in the expression represents the case
where at the end of a switch over period the server selects one of the N-1 busy stations. In this
case the length of the virtually idle period is identical to the length of the switch over period.
The second term in the expression represents the case where at the end of the contention peried
the server selects the idle station. In this case the length of the virtually idle period is distributed
as the sum of two independent random variables: 1} the length of a switch over period. 2} the

length of a virtually idle period.

From (5.46) we derive:

R(Z) = M_ (5 47)
N-1+R,(z) '
Now, we calculate r and &
dR(z (N-1)r,

= 5.48
r dz 7=t N (5.48)
R N-1 AN-1ry
HHA = g - 2=

dz? N NE
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so we have:

2

2 = N_A-rl_[af_;_\l{.] (5.49)

As stated above, the length of the virtually idle period is distributed as the length of the

contention period. Thus, we have:

Pr|R,=i| = (1-2,)"2, : i=0,1,2,--
where:
9, = (N-1)p(1-p)"2
Thus:
1-9 1-2
r = —2 ; 52 = —4 (5.50)
3y si
s0 we have:
N-1 1-3,
_ N1 5.
"TTN s, (5.51)

-1 1-¢ N-1}+2
g oo Nl ,4'(( )t e,
IV S“ N

A

) = r1+r) (5.52)

Finally, we substitute u, 0% r and & into equation (4.54?) to derive the expected delay in
the ALOHA system:

1+r +l-g o Nr_(_l—ql+ {N-1)r

T =" AL-Ng) | 21-Ng) | 2(1-Ng) (5.53)
where:
_ 1 N-1
Np(1-pp¥2 N
Discussion

Two different expressions have been suggested above to approximate the expected delay
in the N-station polite exhaustive ALOHA system for heavy traffic. The first expression assumes
that ali the N stations compete during the contention period and the second expression assumes
that exactly N-1 of the stations compete during this period. The first expression tends to be a
pessimistic approximation while the second expression tends to be an optimistic approximation.

The true value of the expected delay is likely to lie somewhere between the two values given by
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these expressions.

When the number of stations is small (small N} it is reasonable to believe that the pes-
simistic expression is a better approximation than the optimistic approximation. The reason is

that the arrival rate to a single queue, when the system is at heavy load, is about # When N is

small, % is a relatively high arrival rate so it is very likely that the station which was idle at the

beginning of the contention period will soon get busy (due to a new arrival to this station) and
the contention in most slots will be among N stations. On the other hand, when N gets larger,
the arrival rate to a single station, when the system is at heavy load, is very low, and the idle
station is very unlikely to become busy during the contention period. Thus, when the number of
stations is large, the pessimistic expression (assuming that exactly N-1 stations are willing to
transmit during the contention period) is believed to be a good approximation of expected delay
in the system. Nevertheless, note that for large values of N the two delay expressions are
approximately the same, so both can be used to approximate the expected delay in the system.

An Invariant Behavior under Heavy Load

As described above the length of a contention period when the system is at heavy load,
may depend on the time at which the first packet arrives to the idle station. The probability
that a potential transmission slot is a successful transmission when N stations participate in the

contention period is:
Np(1-p)™!

The probability that a potential transmission slot is a successful transmission slot when N -1 sta-

tions participate in the contention period is:

(N-1)p-(1-p)¥?

Let us examine what is the transmission probability p for which the behavior of the pol-
ite exhaustive ALOHA during the contention period (at heavy load) is independent of the
number of stations {N or NV-1) which participate in the contention period. Let 7’ be this invari-
ant transmission probability. Thus, we must have:

Np“(1-p Y-t = (N-1)p"(1-p )V 2

OoT:

Pt =+
N

This is exactly the transmission probability which maximizes the system throughput when the
system is under heavy load {see section 5.1 above).
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It is clear that under these conditions the length of the contention period is independent
of the time at which a new packet arrives to the idle station. Thus, il the transmission probabil-
ity is chosen to maximize the heavy load throughput, then the length of the contention period in
the polite exhaustive ALOHA system (when the system is at heavy load) is geometrically distri-
buted with parameter:

s aN1 _ oy LaNa
Np'(1-p" )" = (1-5)"

5.7.2 A Heavy Load Approximation of the Noisy Exhaustive ALOHA

The approximation of the expected delay in the noisy exhaustive ALOHA system is simi-
lar to the approximation of the polite system. Under heavy load conditions, the number of sta-
tions which are busy right after the end of 2 contention period is exactly N-1. Thus, the first
slot of the contention period is a collision slot (of N-1 stations)’ and the rest of the period con-
sists of contention slots. In each of these contention slots exactly V-1 stations are willing to

transmit. Thus, the probability of successful transmission in each of these <. ts is:

5, = (N-1)p(1-p)-2 (5.54)

If we assume that the idle station becomes busy before the end of the contention petiod,
then as in the polite system, we can simulate the ALOHA system by a random poiling system
where the length of the switch over period is distributed as the length of the contention period.
Thus, the switch over period is distributed as:

r, = 8,(1-5,)0 i=12, {5.55)

The expected value and the variance of this distribution are:

S g Ut (5.56)
34 SA2

and the expected delay, in the system is:

1 1
N==|(1-g)  (N-1)[=]
1-3, l-g %4 + 34
23, 2{1-Ng) 2(1-Ng) 2(1-Ng)

T = (5.57)

where the value of s, is given in equation (5.54).

“This observation is true only when N>2. For the analysis of a two-station system, see section
5.8.
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If, on the other hand, we use the optimistic assumption, namely, if we assume that the
idle station ddés not become busy before the end of the contention period, then we follow the
derivation for the similar case in the polite system. Thus we get that the length of the virtually
idle period in the polling system is distributed as:

PriR, =i] = a,(1-3,)""" V=12, {5.58)

and the mean and the variance of the virtually idle period are:

1

R (5.59)
3
A Lt

where s, is given in equation (5.54).

From equations {5.59), (5.48) and (5.49) we can derive the mean and the variance of the

corresponding switch over period:

N-1 N-1 [(N-1)-Ns,
b I el ey el Rl (560}
A A
and the expected delay in the system is:
T = r-1 + 1-¢ + Nr{l-g) + (N-1)r (561)

2 2{1-Ng) 2{1-Ng) 2A1-Ng)
where the value of r is:

1
r = —————
Np(1-p)¥2

As in the polite exhaustive ALOHA system, the pessimistic approximation is good for
systems with a small number of stations, and the optimistic approximation is good for systems

with a large number of stations.

5.8 T'wo Stations in a General N station Environment

The two-station system studied in sectioms 5.3, 5.4, 5.5 and 5.6 above, were studied
under the basic assumptions that the two stations know and can gssume that they are the only
stations willing to transmit in the system. This assumption was used in the access scheme
employed by the station, and allowed the continuous transmission of packets in the system as
long as any of the stations has something to transmit.
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In the following we study the behavior of a two-station system where the stations cannot
assume that they are the only stations willing to transmit in the system. In this system, after a
transmission period of station 1, station 2 cannot assume that it is the only station in the sys
tem who wants to transmit (if station 2 has a packet to transmit at this moment), so it cannot
transmit right after hearing the end-of-use flag transmitted by station 1. Rather, a collision reso-

lution scheme has to be applied before the beginning cf every transmission period.

5.8.1 Polite Exhaustive ALOHA: An Approximation

It is obvious that the expected delay in the two-station system, studied in sections 5.3,
5.4 5.5 and 5.6 above, is a lower bound for the expected delay in this system. Thus, one can use
the expressions (5.9) and (5.26) as a lower bound for the delay in this system. In additiop, it can
be noted that the behavior of the studied in sections 53, 5.4 5.5 and 5.6 is similar to the
behavior of the systemm we study here when the arrival rate is low. In this case, transmission
periods are relatively short, and it is very rare that station 2 will be busy when station 1 fiaishes
transmitting. Thus, this lower bound is a good approximation of the expected delay when the
system load is low. On the other hand, when the arrival rate is high, this lower bound cannot be
used as a good approximation of the system delay. The reason is that at high load, station 2 is
very likely to be busy when station 1 finishes transmitting, and the similarity between the sys-
tems is very weak.

Thus, we conclude that the expected delay derived in sections 5.4 and 5.5 is a lower
bound for the expected delay in our system, and that these results are good approximations of
the expected delay in our system when the system is under light load.

At the other extreme we have the analysis of section 5.7 (using the random poiling
method). This analysis provides an heavy load approximation of the expected delay in the sys-
tem. As stated in section 5.7, when the number of stations is small (and this is the case here) a
good approximation of the heavy load delay is taken from equation (5.44). This expression, when

evaluated at N =2 yields:

1 1
A==-1(1-q)  [—-1]
g A T AR + (5.62)
23, 2(1-Ng) 2(1-Ng) 2(1-Ng)

where:

84 = 2p(1-p)

Using the two approximations mentioned above, let us now approximate the expected
delay in the system when the transmission probability p, is the invariant transmission probabil
ity; i.e., p=1/2. The light load approximation is given by equation {5.11):
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Tygw =2+ 2—_‘1’; (5.63)

The heavy load approximation is calculated by substituting p =1/2 in equation (5.62):

=24+ Ly 2 (5.64)

Now, il one is interested in approximating the expected delay in the system over the
whole range of arrival rates (0<¢<1/2), a natural approach is to use a linear combination of
equations {5.63) and (5.64). This combination yields:

T =0+ =L 440 5.65
approximation 2_44 2_40‘ ( )

To test the quality of this approximation, the expected delay in the two-station polite
exhaustive ALOHA was studied by running a simulation program and measuring the expected
delay for different arrival rates. The results of this simulation, and the approximation expressions
suggested above, are plotted in figure 5.9. The three curves represent the light load expression,
the heavy load expression and the approximation (equation (5.65)) expression. The black squares
the simulation results. From this figure it is we see that the expression given in equation (5.65)
serves as a good approximation of the expected delay in the system.

5.8.2 Nolsy Exhaustlve ALOHA: An Approximation

The analysis of the two-station noisy exhaustive ALOHA system, where the stations can
not assume that they are the only stations in the system is trivial. This is implied from the fol-
lowing observation: When the number of stations in the system is exactly two, the "noisy” slot,
following the end of a transmission period, will always be a successful transmission. This is true
since at most one station will transmit at this slot. From this observation it can be concluded
that the behavior of this system is identical to the behavior of the two-station system studied in

section 5.5.

Therefore, we conclude that the expected delay in the two-station noisy exhaustive
ALOHA system is given by equations (5.34) and (5.36) even il the two stations can not assume
that they are the only stations in the system.

5.9 Summary

In this chapter we have derived the expected delay for several exhaustive slotted ALOHA
schemes. In the case of two-station systems we have derived exact expressions; part of this
analysis was done using the the queue with starter approach. For N-station systems a heavy-load
approximation was introduced. This approximation was achieved by emulating the system by a
random polling system. The approximation expression was shown to be very close to simulation
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Figure 5.9: The expected delay in the two-station polite exhaustive ALOHA system
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results. To approximate the expected delay for the whole range of load we introduced a heavy-
load /low-load approximation. This approximation uses a heavy load approximation for the high
load values, a low load approximation for the low load values, and a linear combination of these
two approximations for the middle range.
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- CHAPTER 6
Synchronization Properties in the Behavior of a Slotted ALOHA Tandem

The tandem is one of the basic structures frequently used within communication net-
works. For this reason, understanding the hehavior of a tandem is crucial for the invention of
access and routing schemes, and ir the performance analysis of multi-hop networks. This
Chapter deals with the throughput analysis of a directional tandem in a multi-hop radio environ-
ment. The synchronization properties uncovered by this study suggest that the throughput
achieved in this tandem is relatively high. It is shown that that the tandem throughput, due to
the synchronization effects, is much higher than the value calculated for the throughput in

models where "traditional” independence assumptions are used.

8.1 Introduction and Previous Work

Recent development and implementation of multi-hop packet radio networks has raised
the need for the analysis of such networks. Compared to one-hop packet radio networks or to
point-to-point wire networks these systems are very complicated and difficult to analyze.

A tandem is the simplest multi-hop packet radio network. Therefore, it is very attrac-
tive to study this system in order to get better understanding of general multi-hop packet-radio
networks. Moreover, thinking about a general multi-hop network that carries the packets accord-
ing to relatively stable routing, we realize that a general network is actually a collection of inter-
connected tandems. This is true since the route from one station to another can be considered
as a directional tandem. For these two reasons we believe that studying the tandem behavior will
contribute to the understanding of multi-hop networks. Discovering special properties related to
tandems may lead to the invention of new access and routing schemes tailored for muliti-hop net-
works. This is in contrast to existing schemes, that are based on the behavior of one-hop net-
works, and which have been modified to fit the multi-hop environments.

The behavior of a station located on a tandem is strongly correlated to the behavior of
its neighbor station om the tandem. This is true since the packets one station transmits are
received by its neighbor station. Therefore, it is expected that the events occurring in a tandem
will be correlated to each other, and that commonly used independence assumptions may [ail to

predict the real behavior of the tandem.
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For these reasons we choose to analyze in this chapter the behavior of a directional tan-
dem under the Slotted ALOHA transmission policy.

The one-hop ALOHA system has been extensively studied in the past. For literature
review of this area, see chapter 5 above,

One recent approach to study general multi-hop packet-radio networks was developed by
Boorstyn and Kershenbaum [Boor80] , Sahin [Sahi82| and Tobagi and Brasio [Toba83]. This
approach numerically solves for the set of attained throughputs as function of the set of offered
traffic for given topology, routing and access schemes. The access schemes analyzed by this
approach are the traditional one-hop access schemes when applied in a multi-hop environments.
The drawback of this approach is that in order to analyze the system, strong “independence
assumptions” have to be made which may hide important system properties.

A directional tandem network under a Slotted ALOHA policy was studied by Yemini
[Yemi80|. The network model assumed by Yemini is depicted in Figure 6.1.

...®_....®—-@——-®——I

Figure 8.1: A tandem oetwork

The assumptions made {or this model are:

1. The time is slotted with slot size equals to the transmission time of a fixed size packet.
2. Station N is the only traffic source. The other stations do not generate any traffic.

3. All stations are under "heavy load”, so that they always have something to transmit.

4, The access scheme used is Slotted ALOHA: At time slot ¢ station i transmits with proba-

bility p,. The transmission probabilities of different stations are not necessarily identical,
The transmission of a station is independent of its actual buffer status due to the heavy
locad assumption.

2. The propagation delay is zero and acknowledgements are free and instantaneous.
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8. A station in the system, let say i, only hears the packets transmitted by its neighbors,
‘ namely, stations s+1 and i-1 (This is with the exception that stations 1 and N hear
only one neighbor).

7. Station ¢ (i=2,3,--,N) transmits its packets to station i-1. Station 1 transmits its pack-
ets to the destination.

The throughput S is defined as the rate of packets successfully leaving station N. Buffers
are not considered in this model and are not "required” once assumption 3 is made. This assump-
tion means that ail stations are always under heavy load. A "lait” policy in this model is a set of
transmission probabilities {p,} such that the probability of successful trapsmission from station i
to station i+1 is identical for all stations.

Under this model Yemini analyzes the relation between the set {p} and the system
throughput, This is described in figure 6.2. For most practical networks (those which consist of
more than four stations) it is shown that the maximal throughput is about 4/27.
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Figure 6.2: Tuned-up transmission policies from Yemini's model
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An important observation made in [Yemi80| says that when all stations are “rude” (i.e:
they all transmit with probability p,=1) the tandem becomes synchronized and the throughput
is 1/3, much higher then the throughput achieved in figure 6.2!

The goal of this chapter is to study in more detail the behavior of the directional tandem
under the slotted ALOHA access scheme. This is in light of the observations made in [Yemi80}
with regard to the synchronization properties of this tandem. In section 6.3 we derive the tan-
dem throughput under the assumption that the behavior of each station is independent of the
behavior of the other stations. This analysis is based on the analysis done in [Yemi80f. In sec-
tion 6.4 the independence assumption is relaxed and the tandem throughput is approximated
both for heavily loaded system and for "relatively synchronized"” system. Based on these two
approximations a general approximation of the system throughput is then suggested. Lastly, sec-
tion 6.5 discusses the properties discovered in sections 6.3 and 6.4.

8.2 Assumptions and Model Description

The model considered here is very similar to the one used in [Yemi80]. We consider a
tandem of N stations, as described in figure 6.1. Station N is the source of all packets and the
packets are destined to the desiination station (the black station at the right hand side of the
figure). Each station i (i =2,3,---,/N) transmits its packets to station i-1 and station 1 transmits
to the destination station,

The assumptions on the system (most of them identical to the assumptions made in
[Yemi80]) are the following:

1. Time is slotted into equal length slots (each of them equal in duration to the transmis-
sion time of a fixed length packet). Without los of generality it is assumed that the

length of a slot is 2 unit.
2, Station N is the only traffic source. The other stations do not generate any traffic.

3. The access scheme used is Slotted ALOHA: At any time slot ¢, every station flips a coin
(with probability p for "heads”). If at time ¢ station i has a packet in its buffer and if its

coin shows "heads” then it transmits the packet; in all other cases station i keeps silent.

4, The buffer size of all stations is infinite.

5. The system is under heavy load. This means that station /N always has something to
transmit.

6. The transmission probability p is identical for all stations.
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7. The propagation delay is zero and acknowledgements are free and instantaneous.

A transmission from station i to station i+1 is successful if at the transmission time
both stations i+1 and i+2 are silent (equivalent special definition can be made with regard to
the transmissions made by stations 1 and 2). The throughput of the system, S, is defined to be
the expected number of packets successfully transmitted from station /V to station N-1 per slot.
It is clear that in this model, under equilibrium, this number is identical to the expected number
of packets successfully received at amy arbitrary station on the tandem, in particular, at the des-
tination.

Using this model we are interested in finding the throughput § as functiom of the
transmission probability p.

6.3 The Throughput Under Independence Assumption

In this section we derive the system throughput under the assumption that the behavior
of every station is independent of the behavior of the other stations.

The following independence assumption decouples the behavior of station i from the

behavior of the other staticns:

INDEPENDENCE ASSUMPTION: The event "station i transmits at time ¢" is independent of
the event “station j transmits at time ¢" for every i7£;.

This assumption is very commoa in the analysis of shared channel networks, in particu-
lar in packet radio networks (see [Boor80, Sahi82, Toba83] for example). Clearly, this assumption
is not true for the tandem system and the goal hete is to test how close this assumption is to the

real system.

Let T, denote the probability that station i transmits a packet at time ¢. Note that T, is
different from p,, since p, is the probability that station ¢ transmits at time ! given that its buffer

in not empty.

Under stability conditions, and under the assumptions made above, it is obvious that the
tandem throughput equals to the probability that station & {(#=1,2,,N) transmits a packet at
time ¢, and this packet is successfully received at its destination (station i-1). Thus we have:

S5=T, (6.1a)
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S=Tf1-T)) (6.1b)

S=Tt(1"Ts-l)(1"T|—2) ' i=3,4;"';N (6.10)

The set of equations given by equation (6.1} can be solved to yield the throughput of the
tandem. It is obvious that the model analyzed in this section is actually identical to the model
studied in [Yemi80]. This is true, since the assumnption that the transmission of station i at time
{ is independent of the transmission of station j is equivalent to the assumption that all stations

are always busy.

This set of equations has been analyzed in [Yemi80| and the solution of this set is actu-
ally depicted in figure 6.2. The interpretation of this figure is the following: if the figure axis are
interchanged, ther the curve denoted by p, represents the throughput in a tandem of length ¢ as
function of the transmission probability p. From this figure it is obvious that under the indepen-
dence assumption the maximum achievable throughput for most tandems (those which consist of

more than four stations) is about 4/27.

8.4 The Reallstic Model: Discovering the Synchronization Properties

In this section we study the tandem behavior without using the independence assump-
tion made in section 6.3 above. [t is obvious that in order to give an exact analysis of the tan-
dem one has to consider the state of all N queues (one in each station) in the system. This model
is equivalent to the model of an N-dimensional random walk. Facing the fact that even a two-
dimensional random walk is very difficuit problem to solve (A comprehensive discussion about
the problems related to the two-dimensional random walk can be found in [Yemi80] and an
approach for solving such problems is suggested in [Cohe83]} we study this system using approx-
limations.

8.4.1 A Heavy Load Approximation: A Lower Bound for the System Throughput

Our first approximation is a heavy load approximation. Let us assume that the system
is heavily loaded, in particular, assume that the queues of stations V-1 and NV-I are never
empty ‘. Under this assumption it is easy to calculate the system throughput from the expres-
sion for the probability that station NV successfully transmits a packet to station V-1:

§ = p(1-pf (6:2)

* Recall that from the system model station ¥ is also always busy.
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Considering the reaj system it is obvious that disregarding the transmission probability
(r) used in the tandem, there exist always times at which either station N-1 or station N-2 (or
both) are empty. Clearly, in these cases the probability that station N successfully transmits to
statios N-1 is higher than p(I-p)°. Thus equation (6.2) forms a lower bound on the tandem
throughput.

6.4.2 A Synchronized System: An Approximation of the Throughput at High
Tranamlission Rates

In this sub-section we investigate the synchronization properties obsetved in [Yemi80|.

First, let us consider, the rude transmission policy. According to this policy, as defined
in [Yemi80], the transmission probability used by all stations is p =1. As observed in [Yemi80], if
the system starts operating when all queues are empty, and if the rude transmission policy is
used, then the system throughput is 1/3. This property is depicted in figure 6.3. In this figure
the horizontal axis represents the tandem and the vertical axis represents time. An empty circle
represents a station whose buffer is empty, and a bullet represents a non-empty bufler. Packet

propagation (transmission) is represented by an arrow.

From figure 6.3 it is observed, that when the rude policy is used, the system is fully syn-
chronized, and the throughput obtained by this policy {1/3) is the highest attainable throughput
for a slotted ALOHA tandem.

Next, let us define more carefully the synchronization property observed above: A sta-
tion, say i (i=1,2,--,N-1), on the tandem is called a type I station if i(mod 3)=1. Station i is
called a type 2 station il i(mod 3)=2. Station i is called a type 3 station if i(mod 3)=0.
According to this definition the stations of type 1 are: 1,4.7,---; the stations of type I are:
2.5.8,---: and the stations of type 3 are: 36,9~ A tandem of .V stations is fully synchronized at
time t if at this time one of the following holds:

1. All stations of type 1 have exactly one packet in their buffer, and all the rest of the sta-

tions have empty buffers.

2. All stations of type 2 have exactly one packet in their bufler, and all the rest of the sta-

tions have empty buffers.

3. All stations of type 3 have exactly one packet in their buffer, and all the rest of the sta-
tions have empty buffers.

It is obvious, from this definition, that the tandem depicted in figure 6.3 is fully synchronized at

every time {25,
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Figure 6.3: Packet propagation in a seven station rude tandem

The observation made in [Yemi80| actually states that if the system starts operating
when all the queues are empty and if the rude policy is used then after at most N -1 time units

the tandem is fully synchronized and its throughput is 1/3.

A similar observation can be made, even if not all the queues are empty at the starting
time:

THEOREM 6.1: Let m;m, - ,my , be the number of packets found at time 0 in queues
N-1
1,2,--,N-1, respectively. Let m==3Y" m,. Let us assume that the system starts operating at time 0,

1=1
using the rude policy. Thea at every time ¢ > max(N,m/3) the tandem is fully synchronized, and
the system throughput is 1/3.

Theorem 6.1 can be proved by a simple induction, a proof which is avoided here for its simpli-
city,
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~ The importance of theorem 6.1 is that independently of the system state, if at time ¢ all
stations start using the rude policy, the tandem will eventually {and relatively fast!) become fully

synchronized.

After understanding the tandem behavior under the rude policy, we next discuss the sys-
tem performance when p7£1. The goal here is to derive the system throughput when p is rela-
tively large. This will be done by assuming that the system is fully synchronized, and by observ-
ing its behavior when p =1-¢ and =0,

Let us assume that the tandem is fully synchronized and that the transmission probabil-
ity used is p=1-¢. Under these assumptions it is clear that the normal operation of the tandem
is the following: At time ¢ all stations whose buffer is not empty (successfully) transmit their
packet to their down stream neighbor. An exception to this "normal” operation occurs when one
of the stations, say i, whose buffer is not empty, does not transmit its packet. This can happen
since the transmission probability is p <1. In this case we say that a failure occurs al station i at

{tme ¢. The point (f,{) in the time space domain, is called, in this case g failure point.

Let us assume that at time {1 the system is fully synchronized, and that at time ¢ a
failure occurs at station 1. [n addition, let us assume that no other failure occurs in the system at
time ¢ or afterwards. In figure 6.4 we depict a fully synchronized tandem consisting of 16 sta-
tions, where a single failure occurs at station 9 at time 5. The points in this figure represent the
location of the packets on the tandem. A bullet in this figure represents a successful transmis-
sion, and an empty square or a cross represents an unsuccessful transmission. A cross in this
figure (point {9,5}) represents a failure point; a point where a station whose buffer is not empty
chooses not to transmit (with probability 1-p}. An empty square represents a different type of
unsuccessful transmission: in this case a packet is transmitted but, due to noise, it is not sue-
cessfully received by its destination station. For the simplicity of the figure the empty-queue sta-
tions are not explicitly depicted in this figure.

From figure 6.4 we make the following observations on a fully syachronized system:

1. In the time space domain, a fully synchronized system is represented by a uniform struc-
ture of diagonals, going from top left to bottom right. Each of these diagonals represents
the propagation of one packet over the tandem. These diagonals are three units apart
from each other.

2. A single failyre occurring at station i at time { affects the uniform structure by produc-

ing two waves as following: .

a. A forward wave, which is a diagonal that propagates from the [ailure point to
the bottom-right direction, Along this wave the distance between two consecu-
tive packets is four units, instead of normally three units.
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Figure 6.4: A lailure in a fully synchronized tandem

b. A backward wave, which is a diagonal that propagates from the failure point to
the bottom-left direction. This wave contains all the unsuccessful transmissions

occurring in the system as a result of the failure occurring at station { at time ¢,

To calculate the tandem throughput in the presence of failures let us observe the system
bebavior at the destination. From figure 6.4 we see that when the tandem is fully synchronized
packets arrive at the destination at rate of one packet per three time units. When a single failure
occurs, the interarrival time between the failed packet to the packet preceding it is four time
units. From this cbservation it is easy to calculate the throughput when single failures occur in
the system. Let us call a packet who arrives to the destination four units of time behind the
packet preceding it a delayed packet. Let F be the failure rate as observed by the destination;
i.e., this is the expected number of diagonals who get shifted by a forward wave, per unit of
time. Let a cycle be the period starting right after the arrival of a delayed packet to the
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destination and ending right after the arrival of the preceding delayed packet to the destination.
Let z be the number of packets arriving to the destination in some cycle.

From these definitions, we see that z-1 of the interarrival times observed by the destina-
tion during the cycle are of length 3, and one of these interarrival times is of length 4. Thus the
length of the cycle is 3z+1 time units. The expected length of the cycle can be calculated from
the failure rate:

Elcycle length] = %4'1 (6.3)

This is true since for every failure occurring in the system, one packet gets delayed by additional
unit of time, Similarly the expected number of packets arriving to the destination in a cycle is
thus:

E| number of packets arriving at the destination during a cycle] = 3_11': (6.4)

Thus, the system throughput can be calculated from equations (6.3) and {6.4):

1
3F 1
S = = (6.5)
1., 3(+F)
F

Now, let us calculate F, the failure rate. Before calculating F, we should note that not all
failures occurring in the system are sensed by the destination. The reason is that some of the
failures may “cancel” each other. In particular, the next theorem deals with failures which occur

concurrently.

THEOREM 6.2: Let (i,t) and (j,t) be two failure points in the time space domain and let i <.
Then the forward wave produced by (i,!} is not sensed by the destination.

We avoid a formal proof of this theorem; the reader may convince himself by observing figure 6.5
where two concurrent failures are depicted. Each of the two failures, one occurring at station 7
at time 8 and the other occurring at station 16 at time 8, generates a forward wave and 3 back-
ward wave. However, the forward wave generated at the point (16,8) and the backward wave
generated at the point (7,8) “cancel” each other. Thus, only one forward wave, the one generated

by station 7, arrives at the destination.
From theorem 6.2 we may conclude that if £ failures occur in the tandem at time ¢ at

most one of them will be sensed in the destination. Thus, at most one of these concurrent

failures should be counted in the throughput calculation.
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Figure 6.5: Two concurrent failures in a fully synchronized tandem

A more complicated task is to consider non-concurrent failures. [t can easily shown that
not only concurrent failures, but also failures who occur at different times may “cancel” each
other. For example observe figure 6.5 and suppose that in addition to the failures depicted in the
figure, a failure also occurs at time 6 at station 20. The forward wave generated from this failure

will get canceled by the backward wave generated from the failure (16,7).
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The problem with non-concurrent failures is that it is quite complicated to estimate their
effect. For this reason we simplify our calculation by the following assumption:

ASSUMPTION: The waves produced by non-concurrent failures do not cancel each other.

Under this assumption and from theorem 6.2 we can now calculate F, the failure rate as
observed by the destination. This is simply the probability that at least one lailure occurs at
time ¢ in the whole tandem. This is true since for every set of concurrent failures we count
exactly one failure. Since in the average, the number of stations whose buffer is not empty, is
N/3 (recall that the system is synch‘rouized) then the probability that at least one failure occurs
at time ¢! can be estimated by:

F =1-p¥ {6.6)

From equations (6.5) and (6.6} we finally calculate the tandem throughput as a function

of the transmission probability p:

s=—2=1 (6.7)

3. (2-;;”’3]

Note that the expression given in equation {6.7) should be good only for relatively high
values of p, since in the derivation of (6.7) we assumed that the system is [ully synchronized.
Note also that this expression should give a lower bound on the tandem throughput; the reason
for this is that wave cancellations due to non-concurrent {ailures are not considered in this calcu-

lation.

8.4.3 A General Throughput Approximation

Two expressions have been suggested above for the tandem throughput: 1) A heavy
load approximation given by equation {6.2) 2) A high transmission-rate approximation given by
equation {6.7). To test the quality of these approximations we compared them to simulation
results. In figure (6.6) we plot the system throughput as a function of the transmission probabil-
ity in 2 4 station system {N =4). The continuous curve in this figure represent simulation results
and the dashed curves represent the approximations. In a similar way, figures (6.7) and (6.8)
depict the tandem throughput in a nine station system {N=9) and in a nineteen station system
(VN =19}, respectively.

The following observations can be made on the quality of the approximations;

1. The keavy load approximation, given by equation {6.2) is very good for the lower range
of transmission probability. The quality of this approximation increases with the size of

the tandem; the reason for this property is that the longer the tandem is, the more the
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Figure 6.6: The throughput in a {-station tandem
stations are likely to be heavily loaded.
2. The high transmission rate approximation is good, as expected, in the higher range of

the transmission probability. The quality of this approximation decreases with the tan-
dem size; The reason is that in long tandems the likelihood that two non-concurrent
waves will cancel each other is higher than in short tandems. Since this effect is
neglected in equation (6.7), the approximation for short tandems is better thap the one
for long tandems. Nevertheless, it is observed that for most practical purposes (tandems
which are shorter than 20 stations), this approximation is relatively good.

Using the two approximations suggested above we pext suggest a general approximation

of the system throughput. This approximation can be constructed as following:

1. For the low range of p (p smaller than the point p,, which is to be defined below} use the

heavy load approximation given by equation {6.2).
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0.4

Figure 6.7: The throughput in a 3-station tandem

For the high range of p (p greater than the point p,, which is to be defined below), use

the high tragsmissioa-rate approximation given by equation (6.7).

For the middle range (p, <p <p,) use a linear approximation, $=a-p+b, tangent to the
curves given by equations (6.2) and (6.7).

The four parameters required for this approximation, 4, &, p, and p, can be determined
by solving a simple set of equations, consisting of equaticns (6.2}, and (6.7), and of the
linearity and tangency constraints. This set is:

apy+b = p{1-p,)? (6.8a)

& = (1-p,}{1-3p,) (6.8b)
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8.5 Discussion
Two types of behavior have been observed for the slotted ALOHA directional tandem:

1. When the transmission probability p is smali, the system behaves in non-synchronized
way. Under this policy the queues in the system are usually non-empty and the tandem
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. can be considered as heavily loaded. Thus, the behavior of each station is independent of
the behavior of the other stations.

2. When the transmission probability is high the system gets synchronized. It is evident
that the transmissions are usually phased in waves, and thus the number of coilisions is
relatively low and the throughput is high.

In contrast to what could be thought from [Yemi80] the system moves from a heavy-load
behavior to a full-synchronization behavior in a continuous way: the higher the transmission
probability the more likely the tandem to be synchronized.

It is observed that the throughput in the system monotonically increases with the
transmission probability p. This property suggests that high transmission probabilities can be
used very efficiently in multi-hop radio networks to yield high throughput over tandems. It
should be emphasized that p=1 cannot be used safely in general multi-hop networks since the
use of rude policy in such networks may cause eternal deadlocks between conflicting stations.

The synchronization behavior suggests that using independence assumptions in the
analysis of multi-hop radio networks may lead to a wrong analysis of the system behavior. It is
evident that the results derived by using independence assumptions (see figure 6.2 and the heavy
load approximation in figures 6.6, 6.7 and 6.8) may be absolutely wrong in predicting the system
behavior. Moreover, using those results in the invention of access schemes and in the process of

tunning up their parameters, may cause these schemes to behave inefficiently.
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CHAPTER 7
On the Behavior of a Very Fast Bidirectional Bus Network

In this chapter we study the behavior of the very fast bidirectional bus system. The
bidirectional bus system has been investigated in the past under the main assumption that the
propagation delay incurred by a packet is relatively small in comparisen to its transmission time.
Under this assumption, it has been shown that if the packet transmission time decreases the per-
formance of existing access schemes (like CSMA) degrades. Recent technological developments
(such as fiber optics) in communication networks have brought up new faster bus networks. For
these networks it cannot be assumed any more that the p}opagation delay is relatively small in
comparison to the transmission time. This chapter deals with analyzing the very fast bidirec-
tional bus system. In contrast to the previous studies, the assumption that the bus is very fast is
inherently embedded in the system model. The results derived in this chapter show that due to
self synchronization properties observed in the system at high loads, the system performance is
not poor as implied from previous studies.

7.1 Introduction and Previous Work

In a local area network a channel is shared among many stations which are (relatively)
close to each other. One of the common topologies for such a network is the bidirectional bus
(like Ethernet) and one of the most popular access schemes for this topology is the Carrier Sense
Multiple Access (CSMA). In this scheme a station behaves in a "polite” way: when it wants to
transmit, it first senses the channel. If the channel is found to be idle the station will transmit
the packet, and if the channel is busy the station remains silent and postpones its transmission
attempt. An improvement of CSMA is CSMA with Collision Detection {CSMA-CD). o this
scheme, in addition to the protocol described above, a station can detect if it is involved in 3 col-
lisior. If a collision is detected the station aborts its transmission and repeats the scheme

described above.
Both access schemes take advantage of the very short propagation delay {relative to the

transmission time). The ratio between the propagation delay and the transmission time is
denoted by a and can be thought of as the number of packets “contained in” the bus.
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‘The performance of CSMA was studied by Kleinrock and Tobagi in [Klei74, Klei75,
Toba74]. The performance of CSMA-CD was studied by Tobagi and Hunt [TobaT79].

The following properties are observed with respect to these access schemes:

1. Both schemes are superior to Alcha and Slotted-Aloha. The superiority is in terms of
higher throughput and lower delay.

2. The attained throughput, S, of both systems, increases with the offered load, G, until it
reaches its maximum. After this point (very high load) the throughput decreases. This
property (and the properties described above) is shown in figure 7.1 (taken from
[Klei76]).

3. The maximum attainable throughput, denoted by the system capacity, decreases with g.
This is shown in figure 7.2 (taken from|Klei76}). It is observed that the performance of
these schemes is good as long as 4<.05.
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Figure 7.1: Throughput for the various random access modes (a=0.01)

Technological developments (such as fiber optics) in communication networks have
recently increased the speed of the communication channel, and future developments are likely
to increase it even more. Other technological improvements allow the future networks to be
longer and longer. These trends lead the communication industry to the building of systems
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Figure 7.2: Effect of propagation delay on channel capacity

where the parameter s is larger and larger. Observing the properties mentioned above, we real
ize that CSMA and CSMA-CD may not be efficient in these future systems. Nevertheless, it is
not really clear what will be the performance of these access schemes under the presence of big-a.
This is so, since all the properties described above were derived from models that szsumed rela-
tively smali g (very small propagation delay). It is therefore desirable to study the behavior of a
shared-bus communication system under the assumption of big-a.

The behavior of such systems has been recently investigated by several studies. However,
these studies concentrated on suggesting semi-organized access schemes for these networks and
not on studying the behavior of these networks under the CSMA scheme. The main principle of
these schemes is to organize the packets transmitted in the system to efficiently use the channel.
These studies are reported ia [Frat81, Gerl83a, Gerl83b, Limb82].

This chapter is devoted to the study of multi-access bus systems under the assumption
of big-a. The purpose here is to take, as a basic assumption, the fact that the communication
channel is fast and that the parameter s is large. For this type of system we study its behavior
and analyze its performance when controlled by different access schemes.
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Two main aspects of this system are studied in this chapter. First, in section 7.3 we
study the theoretical limitations of the very-fast shared bus system. The main goal in this section
is to calculate the maximum throughput which can be achieved in the system, neglecting the
randomized behavior of the system inputs. The capacity of the system, defined to be the highest
attainable throughput, is derived in this section, under several assumptions. The main result of
this section is that the capacity of the very fast bus system is about 2. This means that it is pos-
sible to schedule packet transmissions in the system such that the expected number of packets
transmitted and successfully received (per slot ’) is about two.

Second, in section 7.4 we investigate the system behavior under the assumption of sto-
chastic arrivals. The model used in this section is similar to the models used in the analysis of
slotted ALOHA and CSMA-CD; however, in contrast to those models, this model encaptures the
correlation between events occurring in the system. This property is rather important since the
correlation between events in the very fast bus system seriously affects the system performance.
The main property discovered in this analysis is that in contrast to previously studied shared
channel systems, this system is very stable and the system throughput always increases with the
offered load.

7.2 Model Description

The system considered here consists of N stations connected by a bidirectional bus. It is
assumed that the stations are located on the bus such that the distance between every two
neighboring stations is exactly a unit. The stations are numbered 1,2,--. N from left to right.
Since the bus is bidirectional a transmission which is originated at station i will propagate in
both directions on the bus.

The time is slotted with slot size equals to the propagation delay a transmission incurs
when propagating between two neighboring statioms. This means that if station i starts
transmitting at time {, then station s+1 will start hearing this trapsmission at time t+1. The
time interval, starting at time { and ending at time ¢+1, is called the tth slot. Every packet
transmission starts at the beginning of some slot.

The transmission media is assumed to be very fast, such that the length of a fixed size
packet, measured in terms of distance, is smaller than or equal to the distance between two
peighboring stations. This implies that the parameter g of this system is s > N-1. For simplicity
we assume that the packet size exactly equals to the distance between neighboring stations, i.e.,
s=N-1.

* The duration of each slot is the transmission time of a packet.
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Due to the above assumptions, the traditional model which considers only the timing of
events can not be used to model our system. The reason is that each event must be represented
by two parameters: time and location. For example, consider that station 1 starts transmitting a
packet at time ¢. Station 2 will start hearing this packet at time {+1, station 3 will start hearing
this packet at time {+2 and so on.

To represent the system behavior, we use the time-space domain. In this domain the hor-
izontal axis is used to represent the bus (on which the stations 1,2,--, ¥ are located left to right)
and the vertical axis represents the time. The propagation of a packet, in this domain, is
represented by a band. For example, see figure 7.3 which depicts the propagation of a packet,
transmitted at slot ¢ from station 2.

stations
1 2 3 4

1 1

t+1

te2 ¥

t+3

t+4 =3 -
4
time

Figure 7.3: The Representation of a Packet in the Time-Space Domain

This packet is heard by stations 1 and 3 at slot {+1 and by station 4 at slot ¢ +2.

In contrast to the traditional model, packets which collide, are not assumed to destroy
each other. Rather, they are assumed to "pass through” each other. For example, consider the
two packets depicted in figure 7.4. These two packets are transmitted concurrently at stot ¢ by
stations 2 and 4. At slot {+1 the packets collide at station 3 and thus non of them is heard
properly by station 3. However, the packets pass through each other, so at slot {+2 one of them
is heard correctly by station 2 and the other one is heard correctly by station 4.
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Figure 7.4: Two Packets Pass Through Each Other

From the above description, it is implied that the terms: idle slot, successful slot and
collision slot are not global properties of the system but, rather, local properties of a given sta-
tion. Slot ¢ may be a collision for station i and idle for station j. Similarly, a given packet may
be successfully heard by station i and unsuccessfully heard by station ;.

A time slot ! is said to be idle at station i if no transmission is heard by stationm 1 during
this slot. Slot { is said to be successful at station i if exactly one transmission is heard by station
s during this slot. Slot ¢ is said to be collision at station ¢ if more than one transmissions are
heazd by station i during this slot. A packet z is said to be heard correctly by station ¢ ot 3lot 1 if
z is heard by station 1 at slot { and no other packet is heard by i during this slot. A packet z is
said to be collided at station s at slot t if z is heard by station 1 at slot { and and z is not the
only packet heard by station i at this slot.

To analyze the system performance one has to recognize for every slot ¢ and for every
station 1 if ¢ is a successful slot at station ¢ or if it is an idle (collision) slot at this station. From
the assumptions made above, it is clear that a given packet is heard by station ¢ duriog slot ¢ if
and only if, the head of the packet is heard by station f at time (. Therefore, to analyze the sys-
tem, one can simplify the representation of packets: instead of using a band to represent the
transmission of the packet, use a line to represent the time at which the packet head is heard.
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According to this simplification, figure 7.4 is transformed into figure 7.5.

stations
1 2 3 4
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t+3
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time

Figure 7.5: A Simplifying Representation of the Packets Propagation

When analyzing the performance of a shared channel communication media one has to
be careful in defining the performance criteria. A shared channel communication network can be
used both for broadcast and for point-to-point communication purposes. A bdroadcast {ransmis-
sion (packet) is a transmission (packet) which is originated at station i and has to be received
correctly by all other stations. A point-lo-point lransmissien fpacket) is a transmission {packet)
which is originated at station i, destined to station j (j7:) and has to be received correctly at

station J.

In this chapter our main interest is in the point-to-point performance of the system.
Thus, it is assumed that each packet z is destined to a specific station, let say 1 and has to be
successfully heard by that station. The way by which this packet is heard by the other stations
(successfully or not successfully} is not relevant to this analysis. Following this assumption we
have to define the successful reception of a packet more carefully: A packet z is said to be suc-
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cessfully received” by station i at slot t if z is destined to station ¢ and il it is successfully heard
by i at slot .

In this chapter we will study the behavior of the system under different {ransmission pol-
icies. A transmigsion policy is a set of rules, used by the stations in the system to determine
when a station can transmit and when it stays sileat.

As stated in the introduction, the influence of two general transmission rules, the polite-
nese rule and the fairness rule, will be examined in this chapter. These rules are defined next.

A station is said to be polite if it does not transmit when it hears transmission originated
from another station. A station is said to be polite to the left il it does not transmit when it
hears trapsmission originated at a lower index station (i.e., transmission that arrives from the
left, according to our representation). A station is said to be polile lo the right if it does not
transmit when it hears transmission originated at a higher index station. A transmission policy
is said to be bidirectional-polite policy if ail stations in the system are polite. A transmission pol
icy is said to be unidirectional-polite policy il every station in the system is either polite to the
left to polite to the right. A transmission policy is said to be left-polite policy (right-polite policy)
if every station in the system is polite to the left (polite to the right)

A transmission policy is called a fair policy if for every to stations ¢ and j, station j is
allowed to transmit between any two consecutive transmissions of station 5. A transmission pol-
icy is called a strictly fair policy if for every four stations i, j, k, and [, station i is allowed to
transmit to station j between any two consecutive transmissions from station & to station [

To better understand the politeness ruie, let us observe the transmissions depicted in
figure 7.5., and let us assume that these are the only transmissions in the system. Under polite
policy, station I is not allowed to trapsmit at times {+1 and ! +3; station 2 is not allowed to
transmit at time {+2; station 3 is not allowed to transmit at time ¢-+1 and station 4 is not
allowed to transmit at time ¢+2. Under left-polite policy stations t and 2 have no transmission
constraints; station 3 is prohibited from transmitting at time ¢+1 and station 4 is prohibited
from transmitting at time t+2,

‘In contrast to the previous definition of "successfully heard”.
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7.3 On the Capaclty of the System

In this section we study the capacity of a very fast bidirectional bus system, The impor-
tance of this study is that the capacity of a system forms a reachable upper bound on the system
transmission capabilities, and thus provides an evident for the system potential,

7.3.1 The Definition of Capacity

In the following we are interested in the "logical” capacity of the system. For a given sys-
tem, consisting of N stations, it is assumed that a station can transmit one unit of information
(one packet) per one unit of time. Since our interest is in the point-to-point performance of the
system, a packet transmission is defined to be successful if the packet is transmitted by station 1,
destined to station j, and received correctly by station j. Let ¢ denote the time, and let P(¢)
denote the number of packets transmitted and successfully received in the system by time {. The
throughput of the system is denoted by S and defined as:

s 4 im £
t—co o
The capacity of the system, denoted by C, is defined to be the highest achievable throughput of
the system.

To understand the capacity definition and its importance, let us calculate the capacity of

some simple systems.

First, let us consider a system consisting of two stations, connected by a point to point
line. Each of the stations can either transmit or receive, but canoot transmit and receive simul-

taneously. This system is depicted in figure 7.6.

station 1! station 2

- i

Figure 7.6; The Capacity of a Point to Point Two Station System is 1

It is obvious that the capacity of this system, according to the definition given above, is 1; i.e,
the maximal number of packets that can be transmitted and received, per unit of time, is 1. It is
also obvious that il in this system, the stations are able to transmit and receive concurrently,

than the system capacity is 2.
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Next, let us consider a system which consists of /V stations where each station is con-
nected to every other station by a peint to point line. Like in the previous system, here too, each
station can ¢ither transmit or receive, but cannot do both concurrently. This system, is depicted
in figure 7.7.

Figure 7.7: The Capacity of a Point to Point Fully Connected N Station System is N/2

It is easy to see that the capacity of this system, if .V is even, is N/2. The reason is that the max-
imum number of conversations that can be handled concurrently, is N/2.

The last system to be considered is the one hop packet radio network coumsisting of NV
stations. Here, if the distance between the stations is assumed * to be negligible, then at every
moment at most one station can transmit. The reason is that if two stations transmit con-
currently the packets collide and get garbled. Therefore, the point-to-point capacity of this sys

tem is 1.

It should be noted that the definition of capacity as given above, gives a measure for the
concyrrency of the system. The capacity of the system can be thought of as an average over time
of the maximum number of conversations that can be held concurrently in the system.

* This is the traditional assumption in the analysis of one hop packet radio networks
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Having-defined the capacity measure, we now calculate the capacity of our system under
several constraints. First, the capacity of an unconstrained system is derived.

7.3.2 Two Upper Bounds on the System Capacity

In the following, we derive two upper bounds for the throughput in the system. These
will serve also as upper bounds on the system capacity. Before deriving these bounds, some
more definitions related to the time-space domain are required.

A point (¢,i) in the time-space domain is called a {ransmission poin{ is station ¢ transmits
a packet at slot ¢ (i.e., starts transmitting at time ¢). A point (¢,1) in the time-space domain is
called a reception point is station i hears a single transmission at slot ¢ and if this transmission is
destined to station i. A line which contains the points (¢,1), (¢+1,2), (¢+23), -, (t+N-1,N) is
called a left disgonal (a diagonal that starts from top left and goes to bottom right). Similarly, a
line which contains the points {¢,N), (! +1,N-1), (¢t +2,N-2), -, {t+N-1,1) is called a right diag-

onal.

Using this notation we next derive the upper bounds on the system throughput. First it
is shown that the system throughput is bounded by half the number of stations.

THEQOREM 7.1: Let N be the number of stations in the system, then the system throughput
obeys: S<N/A2.

Proof- Let T(t) be the set of transmission points (¢',i) such that ¢"<t. Let R(t) be the set of
reception points (¢',5) such that ¢'<t. Let (!,,1) be a reception point in R(t), then there exists a
transmission point (¢,7) which is in T(?) and which corresponds to (¢,i). This is the transmission
point which corresponds to the transmission of the packet successfully received at (f,,i}. For this
reason we conclude that the size of the transmission-point set is larger than or equal to the size
of the reception-point set: |T(t)|>|R(T)]. In addition, the sets of tramsmission points and
reception points must be disjoint (a station cannot transmit and receive concurrently) so the
number of points in the union of R(¢) and T{(t) cannot exceed the number of points in the rec-
tangle NX!. Thus |R(¢){ +| T{t)] < N-t. Therefore we have:
IR ¢ N
t — 2
Now, since the number of packets successfully received by the time f equals to the pumber of
poiots in R(¢), we inally have:
s=imf < &

t—moo - 2
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The next theorem states that the system throughput is upper bounded by 2. Te prove
this theorem let us consider, for a3 moment, a system consisting of N stations connected to a uni- -
directional bdus. Without loss of generality, let us assume that packets are transmitted in this
system from left to right. Now let us examine the time-space domain for this unidirectional sys-
tem.

LEMMA 7.2: Let d be a left diagonal in the time space domain representing the unidirectional
system. Then, there exists at most one reception point on d.

Proof: For the contradiction assume that 4 contains more then one reception points, and let R,
and R, be such two points; let R, be the upper point of the two (see figure 7.8).

stations

Y
time

Figure 7.8: Two Reception Points in the Unidirectional System

Since all packets are transmitted left to right the transmission heard at the point R, must be
also heard at R,. This is in contradiction either to the assumption that each transmission is des-
tined to exactly one station, or to the assumption that R, is a reception point. By the contradic-

tion, the claim is proved. ®
LEMMA 7.3: The throughput of the unidirectional bus is S<1.

Preof: From lemma 7.3 the number of reception points in the rectangle XN must
obey: |R(t)]<t+ N-1. Thus:

173



s <limiXN-Ll 4 im &=L

t—c0 =0

and the proof follows. @

Now that we examined the unidirectional bus system, let us return to the bidirectional
bus system.

THEOREM 7.4: The throughput of the bidirectional bus system obeys: 5<2.

Proof: Let SYS1I be the bidirectional bus system. Let SYS2 be a system with the same number
of stations, which are connected to two unidirectional busses: one is used to transmit packets
fzom left to right and the other is used to transmit packets from right to left. Let us assume that
in 5YS2 each station is connected to each unidirectional bus according to the same rule a station
is connected to the bidirectional bus in SYS1; i.e., a station can transmit on the bus or receive
from it but cannot perform both operations concurrently. In addition, let us assume that the
operations taken by a station on one bus are independent of the operations taken on the other
bus; for example, a station can transmit on one bus and receive from the other bus concurrently.
Clearly, the throughput of SYS2 cannot exceed the throughput of two separate unidirectional
systems, so: S5(5Y52)<2. In addition, from the assumptions made above it is easy to see that
the maximum achievable throughput of SYS2 is not smaller than the maximum achievable
throughput of SYS1. The reason is that any operation operated on the bidirectional system can
be simulated on the two unidirectional-lize system. Thus, it follows that S{5YS1)<2. ®

7.3.3 The Capacity of an Unconstralned System

In this sub-section we present a lower bound on the capacity of an unconstrained sys-
tem. The lower bound presented is very close to the upper bound derived above, and thus deter-
mines the system capacity.

To prove that z is a lower bound on the system capacity one has to show that the
throughput z is achievable on the system. Using the time-space domain, in figure 7.9 we depict a
transmission pattern implemented on a six station system. The throughput of this pattern when

implemented on the six station system yields throughput of value S=1—60-. It is easy to see that

this pattern can be implemented for a general N station system yielding throughput of value
5=2-2/N. From this observation we conclude:

COROLLARY 7.5: The capacity of a pon constrained /V station system is:

2-1%- <c< min(2,%) (7.1)
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stations

Figure 7.9: Throughput of Value 10/6 is Attainable on a Six Station System

7.3.4 The Capacity of a (Strictly) Falr System

In the previous sub-section we derived the capacity of an uncoastrained system. How-
ever, the pattern used to derive a lower bound for the system capacity does not obey the restric-
tion of either a fair system or of a strictly lair system. The reason is that according to that pat-
tern most transmissions in the system are originated at the end stations {1 and N) and destined
to these stations. Since fairness is a property which may be required from most systems it is
important to see il the performance of the system is not degraded under the fairness require-
ment.
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In figure 7.10 we depict a strictly fair transmission pattern implemented on a six station
system. It is easy to check that in this pattern there is exactly one packet transmission {rom
every station § to every other station j (i77). Thus, if the pattern is repeatedly applied, the
transmission policy is strictly fair. The throughput achieved by this particular transmission pat-
tern is 30/22. It is easy to implement this pattern on a system consisting of an arbitrary (even °)
number of stations N. The throughput attained by such a pattern can be calculated as
following: First, the number of transmissions in the pattern is N(N-1) {from every station to
every other station, exactly one packet). Second, the time it takes to complete the pattern is the
following sum:

time = 2+2(4+6+8+-+N) = E—i’%"—‘-‘-‘- (7.2)
Now, dividing the number of transmissions by the time we get the system throughput:
= 2._._Qﬂ_.ﬂ_ (7.3)
Ne+2N -4

A more efficient transmission pattern for the strictly fair system has been suggested by
C. Ferguson [Ferg83]. This pattern is depicted in figure 7.11; the throughput attained by this
pattern is:

§=2-— (7.4)

From this result, and since the upper bound derived in sub-section 7.3.2 holds for the strictly fair

system, we conclude:

COROLLARY 7.6: The capacity of a strictly fair NV station system is:

4
- <
N+2 —

2 ¢ < min(2, 2 (7.5)

7.3.5 The Capacity of a Polite System

In this sub-section we calculate the capacity of a system where all stations are polite. As
defined above a polite station is not allowed to transmit when it hears a transmission originated

from another station.

The following lemma states that the number of transmission points on a diagonal (in the
time-space domainj} is bounded:

LEMMA 7.7: Let d be a left diagonal in the time-space domain representing a polite system.

* A similar pattern can be used for systems consisting of odd number of stations.
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Figure 7.10: Strictly Fair Throughput of Value 30/22 is Attainable on a Six Station System
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Figure 7.11: Strictly Fair Throughput of Value 30/20 is Attainable or a Six Station System

178



Then, there exists at most one transmission point on d.

Proof: For the contradiction assume that there exists a left diagonal with more than one
transmission points on it. Let d be such a diagonal, let T, and T, be two transmission points on
d, and let T, the upper of these points. Clearly, the transmission originated at T, must be heard
at the point 7, in contradiction to the assumption that the system is polite. By the contradic-
tion the claim is proved. ®

From lemma 7.7 it is now easy to show that the capacity of a polite system is exactly 1.
THEOREM 7.8: The capacity of a polite system is exactly 1.

Proof: First we show that the system capacity is upper bounded by 1. Let T({) be the set of
transmission points {¢’,i) such that {’<¢. Let R(t) be the set of reception points (¢',5) such that
t'<t. As shown in the proof of theorem 7.1, the size of T(t) is greater or equal to the size of
R(!), ie, [ T(¢)] 2 R(t). The number of packets transmitted and successfully received by time ¢ is
P(t)=|R(t)]. From lemma 7.7 it is obvious that the size of R(!) is bounded by the number of
left diagonals in the rectangle ¢ X N, ie, |R(t)| <t+ N-1. Thus, the throughput of the system is
bounded by:

s <lim XML g 4 g ML
t-=c0 ‘ t—00

Therefore for every € >0 and for every throughput S attainable on the system, S<1+¢ and the
capacity of the channel is upper bounded by 1.

Now, it is easy to see that throughput of value 1 is attainable in the system, this can be
achieved by having station ! transmitting all the time and all the other stations stay silent.
Thus, we conclude that the capacity of the system is exactly 1. ®

Aflter calculating the capacity of a polite system, we next discuss the capacity of a
unidirectional-polite system. It is easy to see that if the direction of politeness can be chosen for
every station independently of the politeness direction chosen for the other stations, then the
capacity of the system can get close to 2. To verify this property observe figure 7.9: Let station
1 be polite to the left and station 6 be polite to the right (which actually implies no politeness of
these stations}, let station 2 be polite to the left and station 5 be polite to the right, and let sta-
tions 3 and 4 be either polite to the right or polite to the left. Under this politeness rule the
transmission policy depicted in Agure 7.9 is still valid and the system throughput can get as high
as 2-2/N.
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On the other hand, if the politeness direction is chosen to be uniform (i.e., either all sta-
tions are polite to the left or all stations are polite to the right) then lemma 7.7 still holds* and
the system capacity is 1.

7.3.8 Discussion

From the analysis made above it is evident that the potential of the fast bidirectional
bus system is relatively high. The capacity of similar single shared-channel systems, like the one-
hop packet radio network or the relatively-slow bidirectional bus system, is known to be 1. In
comparison it was shown above that the time-space event-separation observed in the very-fast
bus system allows the throughput of this system to get as high as 2. This is shown to hold even
if {strict) fairness is required in the system.

However, as shown in sub-section 7.3.5, forcing on the system the politeness property, a
property which increases the actual throughput of a relatively-slow bus system (like in the
CSMA access scheme), decreases the system capacity down to 1. Nevertheless, applying direc-

tional politeness, does not necessarily degrades the system capacity.

The bounds on the system capacity versus the system size (number of stations in the
system) is plotted in figure 7.12.

7.4 The System Performance Under Stochastic Arrivals: A No-queueing Simplistic
Model

After studying the bounds on the system performance, next, in this section we study the

system behavior under the assumption of stochastic arrivals.

The system model is the one given in section 7.2 above. The arrival process {i.e., the
way by which packets arrive to the stations) is modeled according to the "traditional” model
used in the literature (see for example, [Abra73|) of packet radio networks. According to this
modet, the packet transmissions of each station are modeled as a sequence of independent Ber-
noulli trials. This sequence represeats the combined stream of old retransmitted packets and

newly arriviag packets. Thus we have:

G, = Pr|ith station transmits a packet in any given slot] i=12-N

* Lemma 7.7 holds for a a left-polite policy; clearly, a symmetric lemma holds for a right-polite
policy
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Figure 7.12: Bounds on the System Capacity

Since in our model there is importance to the packet destination’, we define further more the
destination of each packet sent:

r, = Pr{station i's packet is destined to station j] i
This definition obviously requires:

Eru =1 § =12 N
17

* the destination information is not important in the model of one hope packet radio network,
since the successful reception of a packet does not depend on its destination.

181



Two important parameters are considered in this model: the average traffic (per slot),
called also the offered load, and the throughput. The offered load of station i is the expected
number of packets (per slot) transmitted by this station. This is denoted above by G,. Similarly,
the offered load from station i to station j, denoted by G, is the expected number of packets
transmitted from station i to station j. From the assumption made above it is obvious that

G, = r,-G,. The total offered load of the system, denoted by G, is the average number of pack-

N
ets transmitted (per slot) in the system. Obviously we have G=YG..

1=}

t

In a similar way we define the throughput of the system. The throughput of station 3,
denoted by S, is the expected number of packets (per slot) originated at station 3 and success-
fully received at their destination. The throughput from station i to station j, denoted by S, , is
the expected number of packets (per slot) successfully transmitted from station i to station j.
The total system throughput, denoted by S, is the expected number of packets {per slot)
transmitted and successfully received in the system. Note that this definition of throughput is
consistent with the definition given is section 7.3 above.

7.4.1 Exact Throughput Analysis of a Non Polite System

We start the throughput analysis of the system by studying the non-polite scheme. In a
non-polite scheme the behavior of one station is independent of the transmissions of the other
stations; thus, using the model described above it is easy to calculate the system throughput.

Let i apd j be two stations in the system and let i <j. To derive the throughput from
station i to station j let us examine a time slot ¢ and calculate the probability that at this slot
station j successfully receives a packet from station i. This event occurs if and only if the follow-

ing conditions kold:

1. At time {+3i-7 station i transmits a packet destined to station ;. This occurs with pro-
bability r,-G..

2. Station j does not transmit at time (.

3. For every station k such that k¥<j and ky#i, station k does not transmit at time !+k-;.
The probability that station k does not transmit at that slot is 1-G.

4. For every station k such that k> j, station k£ does not transmit at time t+;-k. The pro-
bability that station k does not transmit at that slot is 1-G,.

Now since all events in the system are independent of each other, the probability that station j

successfully receives a packet from station i (at time {) is simply the product of the probabilities

given above. Since this product is independent of {, the throughput from station 1 to station J is

equal to this product:
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N
Slj = G.‘PU'H(I—GA.) ‘#J (76)
[ 21

From (7.6) it follows that the total throughput originated at station i is:

Sl = ESU = GlH(l_Gt) i=l|21'"-N (7.7)
17 k7

This is exactly the throughput of the slotted Aloha system derived by [Abra73|.
When the stations assumed to be symmetric, i.e., when G, =G, =G for every i3 and
k%1, then the system throughput is:
S = NG(1-G)N! {7.8)

This expression is maximized when &'=1/N, so the maximum attainable throughput in a sym-

metric system is:

Seus = [EL) 4 (7.9)

From equation {7.8) we may conclude that the throughput in a non polite system is
exactly identical to the throughput in the slotted Aloha system. For this reason we do not dis-
cuss in more detail the performance of this system; this discussion can be found in the literature
dealing with the analysis of the slotted ALOHA system (see, for example, [Klei76]).

7.4.2 Polite System: An Exact Analysls of a three Statlon Symmetric System

After analyzing the throughput-load relationships for a non polite system we next study
the stochastic behavior of a polite system. The system model is similar to the one used in sub-
section 7.4.1 above. This means that queueing behavior is not represented in this model and that
the transmissions of each station are modeled "like” a stream of Bernoulli trials. We say "like”
since the politeness rules do not allow the transmissions of a station to be a real sequence of Ber-

noulli trials.

For this reason, the transmissions of each station are modeled somewhat differeatly from
their modeling in sub-section 7.4.1. For station i it is assumed that at every slot ¢, in which sta-
tion i is not forced to be silent by the politeness rule, ¢ will transmit with probability G,. Thus,
if we observe the slots at which station i does not obey the politeness rule, the packets trapsmit-

ted from station ¢ behave like a stream of Bernoulli trials.

Two symmetry assumptions are used in the following analysis: 1) The transmission rate
(7, for symmetric stations is assumed to be identical. Thus we assume that G;=G,=p and
G,=4q. 2) The destination of a packet transmitted from station i is equally likely to be any of

the other N-1 stations, i.e., r,= Nl : for j7£i and r, =0.
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Under this model an exact throughput analysis of a three station symmetric system is
given next. The analysis of this system is done by constructing the Markov chain representing -
the system. In contrast to other studies of communication networks, in which a state represents
the status of the stations (like "busy”, "idle” or number of packets in the station’s bufler), here
the station status is not sufficient to represent the system. Rather, it is required to include the
channel status in this representation. The reason for this is that the current location of a packet
affects the future behavior of the system. For example, observe figure 7.3: the fact that during
slot ¢ a packet propagates from station 2 to station 3 implies that station 3 will be polite at slot
t+1 and station 4 will be polite at slot ¢+2.

Under this requirement it is convenient to represent the system status at time ¢ by the

packets locations on the channel. In figure 7.13 we depict all the possible states in the three sta-
tion system. The number of states in this system is sixteen and they are denoted by 3,,8),°,8,.

/N
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X DN XN XX
Se st Sg ~ sh

-
si Si Sk S|
N\ NN DX
Sm Sn So Sp

Figure 7.13: The sixteen states of the three station polite system



To better understand these states consider, for example, state #,; this state represents
concurrent propagation of three packets in the system: the first packet propagates from station -
1 to station- 2, the second packet propagates from station 2 to station 3 and the third packet
propagates from station 3 to station 2. Note that these states represent neither the origin nor
the destination of the packets. In figure 7.14 we give an example for the dynamics of the system,

stations
1 2 3
T
1 -~
2
3 -
4
time

Figure 7.14: The dynamics of the system

Three packets are transmitted in this figure: station 1 transmits at slot 1 and slot 2, and sta.
tion 3 transmits at slot 2. The system state is s, at slot 1, s, at slot 2 and &, at slot 3,

It is easy to see that the sixteen states given above form a Markov chain. {n order to find
the equilibrium probabilities of the system states, we next construct the tramsition matrix,
representing the the transitions in the system. To save work, note that some of the states in
figure 7.13 are symmetric to other states. Thus, before constructing the transition matrix, we
first merge the symmetric states to be represented by a single states. This is done by mapping
the sixteen states #,,4,,,2, into ten states s,,8,,-2,,. This mapping is given in table 7.1.

Now, using the new merged states we construct the transition matrix P. This transition
matrix is given in table 7.2. An entry in this matrix represents the probability for transition from
the row state (of the entry) to the column state. The symbol p in this table stands for 1-p and 7
stands for 1-g. When the probability for a certain transition is zero, the corresponding entry is
left empty.
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2, g ”
8,8, - 2,
L - %
2,.8, — .,
Ly — a5
a, - %
8,80 ~ S
2,8, - 2y
9.9, — 2
9, - %10

Table 7.1: Merging symmetric states to single states

Let 7,7, 7, be the equilibrium probabilities for the states 3,5, .2, respectively. Let
T,,Mg T o be the equilibrium probabilities for the states #,,8,,,9,, respectively. Let 7 be the
vector (m,,m,,,15) and P be the transition matrix given in table 7.2. Then the equilibrium pro-

babilities can be found by solving the linear system:

= xP _ (7.10a)
10

After solving for 7 the throughput of each station can be calculated as following:

Sis = (x“+1rb+1rd+1rf+rm+1r”+rra+1rp)-p

=[x ¥mytagt (mFrgtag b))y (7.11)
Siz = [(l*P)'("fa"'”b+’rd+”/)+”m+”u+”a+”p]'P

= [(1-p)(m, +mytm)+ (r+mgrma+mo)lp (7.12)
Spg = (m o +x ¥ +17,)q

= (m +rstm)g (7.13)

The three other types of throughput observed in the system can be calculated by sym-
metry arguments;
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& 7y | r7 17 1]
og 3 P
LM P r
%10 2 4
Table 7.2: The transition matrix of the three station polite system
Su=3s »  Sp=S2. Su=5x (7.14)

Using numerical methods (required to invert the transition matrix P) we have calculated
from equations (7.10), (7.11), (7.12), (7.13) and (7.14) the system throughput as function of the
transmission rates, p and ¢. The results of this analysis are given in figures 7.15, 7.16, 7.17, 7.18

and 7.19.
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Figure 7.15: The side-to-side throughput in a three station system

Figure 7.15 is a three dimensional plot of the throughput originated at a side node and
destined to the other side node (the sum of S, and S,) as function of p and g. To uncover the
hidden lines of figure 7.15, we give in figure 7.16 a contour map corresponding to the three
dimensional plot given in figure 7.15,

Figure 7.17 is a three dimensional plot of the throughput originated at a side node and

destined to the middle node (the sum of 5, and S,,) as function of p and ¢. The shape of this
plot is similar to the shape of figure 7.15, so we avoid plotting a contour map of it.
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Figure 7.16: A contour map of the side-to-side throughput in a three station system

Figure 7.18 is a three dimensional plot of the throughput originated at the middle node
and destined to a side node (the sum of §,, and S,,) as function of p and g.

Lastly, figure 7.19 depicts the total throughput (5) in the system as function of p and 4.

A discussion of the system behavior, as observed in these figures is given in sub-section
7.4.6.

The results reported in this sub-section are importapt for the understanding of the sys-
tem behavior. However, the drawback of the method used here is that it cannot be used to
analyze the system throughput of larger systems. The reason is that the number of states in the
Markov chain, according to the representation used in this sub-section, grows expounentially with
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Figure 7.17: The side-to-middle throughput in a three station system

the number of staticns. It is easy to see that the number of states, as function of the number of
stations is: 2(2Y-2) Thus the number of states for a four station system is 64, aod for a five sta~
tions system is 256 °. Since in order to solve the Markov chain one has to invert the transition
matrix (an M X M matrix where M is the number of states), it is obvious that the exact method
cannot be used to solve for the throughput of systems with more than five stations. For this rea-
son in the next sub-section we suggest a method for approximating the system throughput.

*The reduction in number of states achieved by merging symmetric states is at most a factor of
two, thus, even after this reduction at teast 2(2¥-% gtates are required.
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Figure 7.18: The middle-to-side throughput in a three station system

7.4.3 Polite Syatem: An Approximation for an N station System

In this sub-section we suggest a method for approximating the throughput of a polite N
station system. This method is derived from analyzing the time space domain of the N station
system.

Let the triple (RS, k,¢) denote the event that during slot ¢ station & hears a packet arriv-
ing from the right. Similarly, let the triple (LS5,k,¢t) denote the eveat that during slot ¢ station &
hears a packet arriving from the left. Let the triple (Q,k.!) denote the event that statiom & is
quiet (does not transmit) at slot ¢.
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To derive the system throughput we first calculate the probability for the event (LS,k,?)
occurs. Clearly, at time ! station k does not hear a packet arriving from the left if and only if for
every station j, such that 1<j <k, station § does not transmit at time ¢+ j-k. Thus, the proba-
bility of the event (LS,k,t) can be calculated as following:

Pr((LS,kt)] = Pr[(Q.k-1,t-1),(Q,k-2,t-2),-(@Q.1,t-k+1)] (7.15)
This can be calculated as:

Pr[(LS,k,t)] = Pr|(Qk-1,¢-1) |(Q.k-2,t-2),,(@1,t-k+1)]

Pri(@,k-2,t-2),-,(Q,1,t-k+1)] (7.16)
The conditional probability given above can be calculated as following:

Prl(Qk-1,t-1) 1(Q.k-2,t-2),,(@,1,t-k+1)]

= 1-G,  Prl(RS,k-1,t-1) |(Q k-2,-2),- (@ Lt-k+1)] (7.17)
Now to calculate the expression
Pri(RS,k-1,t-1) |(@,k-2,t-2),-(@.1,t-k+1}|

we make the following independence assumption on the system:

The independence assumption: The event (RSk!) is independent of the events
(@.k-1,0-1),(Q.1,6-k+1).

This assumption means that the event that station k hears at time { a transmission
arriving from the right, is independent of the fact that stations £-1,k-2,---,1 are quiet at times
{-1,0-2,-- t-k+1, respectively. Obviously, this is not a true property of our system since these
events are correlated to each other. However, it is easy to see that the dependency between these

events is relatively weak and thus we assume full independence.

Let R, denote the probability tbat during slot ¢ station k does not hear 3 transmission

arriving from the right, i.e.:
R, A Prl(RS,k,1)|

Similarly let:
Ly & Pr{(LS.k,)]

Then from the independence assumption and from equations (7.16) and (7.17) we may conclude:
L, =(1-Ry.,'G, ) (1-R, G, .} (1-R-G)) ; k=12, N-1 (7.18)

[n asymmetric way we can calculate R
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Figure 7.19: The total throughput in a three station system

Ry = (1-Lyay Goa) (1-Lyug Grao)(1-Ly Gy) P k=23, N {7.19)

The values of R, and L is obviously 1.

Now equations {7.18) and (7.19) form a set of 2N -2 equations in 2N -2 variables, a set
which can be solved by numerical methods.

Having the values of L, L., L, and of R R, - R, we next calculate the probability
that at time { station k successfully hears a packet transmitted from station j. Let us denote this
event by H(£,,t) and let us assume that j <k Then, H(k j,t) occurs if and only if the following
holds: ')} At time ¢-k+; station j does not hear a transmission arriving from the left. 2) At
time t-k+j station j does not hear a transmission arriving from the right. 3) At time (-k+j
station j transmits. 4) At time { station & does not hear a transmission arriving from the right.
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Thus we have:

PrlH(k,j,t)] = Pr{(L5,k.),~(Q.j,1-k+])|

= Prl(LS 1), |~(Quit-k+5)-Pr(~(Quj.t-k+3) (7.20)

Ftom the independence assumption, it is easy to show that:

Prl(LS,k1), | ~(Q.j.t-k+j)] = Prl(LS,k!)| = L, (7.21)
Again, from the independence assumption, we have:

Pri~(Q.it-k+j)} = G, LR, (7.22)
Thus, we finally have:

PrlH(k,jt)] = G LR R, (7.23)
From the definition of throughput we have S, = Pr[H(k,j,1}], so:

S =G, L 'R-R, ; i<k (7.24a)
[t j >k then we have:

Sp=GR:L:Ly ;  j>k (7.24b)

Thus from equations (7.18), (7.19), (7.24a) and (7.24b) cne can calculate the system
throughput as function of the transmission parameters.

If we assume that the system is symmetric, namely, that G,=G,=-=Gy = p then

clearly we have:
Ry =Ly yuy ; k=12, N (7.25)
For the symmetric system let us denote:
L AL
so we have the following set of N-1 equations:

fp = (1-Iy rpp)(1-Iy segp)(2-Iyp) k=23,N (7.26)

And the throughput from station j to station k is given by:

Se=rpLly 'l JFAk (7.27)
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7.4.5 Polite Systems: A Verificatlon of the Approximation Method

To verify the accuracy of the approximation method suggested above, it is important to
compare the results predicted by this method to the exact throughput in the system.

Testing the accuracy of the approximation method for a three station system is not
difficult. The results reported in sub-section 7.4.2 give an exact calculation of the system
throughput as function of the transmission parameters for a system where the side nodes are
assumed to be symmetric. The approximation method yields a set of two (only two due to the
symmetry of the side nodes) equations:

L=1-Ip (7.28a)

I=(1-1,p)(1-Lyq) (7.28b)

This set can be solved analytically to yield expressions for the values of [, and /,, from which the

system throughput can easily be calculated:

Sis=Sy=Ilyp

S12=Syy=Iyp-(1-Iyp)

Syy =Sy =13q (7.29)

To compare the approximation results to the exact results let us assume that the system is fully
symmetric, i.e., p=¢. Under this assumption we plot in figure 7.20 the system throughput as
function of the transmission parameter p. Four throughput curves are depicted in this figure: 1)
The throughput from a side node to the other side node (S,,+5,,). 2] The throughput from a
side node to the middle node (5, + S,,). 3) The throughput from the middle node to a side node
(S,s+S521). 4) The total throughput (S). The solid line in this figure represents the exact value
of the throughput and the broken line represents the approximation. From this figure we can
make the following observations on the quality of the approximation:

1. The general shape of the approximation curves is very close to the shape of the exact
throughput curves,

2. For the range p <.5 the throughput values predicted by the approximation method are a
very good approximation of the true values. For the range p >.5 the approximation
prediction is not as good.

3. The values predicted by the approximation method for the {ofal throughput are very
close to the true values (three percent error at most!) for every value of p.
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Figure 7.20: The throughput in a fully symmetric three station system

Next we examine the approximation method when applied to a five station fully sym-
metric system. The approximation method yields a set of four equations in four unknowa vari-
ables, a set which can be solved by numerical methods. Since we cannot derive an expression for
the exact throughput in the system a simulation program is used to find the true values of the
system throughput. Figure 7.21 depicts the comparison between the approximation results and
the simulation results for this system. Four curves of throughput are plotted in this figure: 1)
The total throughput originated at station 1 (5;). 2} The total throughput originated at station
2 {S,). 3) The total throughput originated at station 3 (S,). 4} The total system throughput (S).
Due to symmetry arguments the other types of throughput, S, and §,, are equal to S, and §,,
respectively. The solid lines in this figure represent the results predicted by the approximation
method. The points represent the simulation results. The observations made on the approxima-
tion of the three station system, apply to this figure too. Nevertheless, it can be noted that the
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accuracy of the approximation for the five station system is better than that of the three station
system.

S
1.0

0.8

0.6

0.4

0.2

Figure 7.21: The throughput in a fully symmetric five station system

7.4.6 A Discusslon of the System Performance

The analysis done in this section reveals the important properties of the very-fast bus
system. These properties are discussed next.

From the throughput analysis done for the three station system we can study the system
behavior under non symmetric input loads. From figures 7.153, 7.16 and 7.17 it can be seen that
the throughput originated at the side stations {1 and 3) behaves as following: 1) When the
offered load of the middle station (G,) stays coastant, the throughput of the side stations
increases with their offered load. Note that although the two side stations compete with each
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Figure 7.22: The throughput in a fully symmetric ten station system

other, their joined throughput {51+ 53) increases when both stations are more active (namely,
when p increases). 2) When the offered load of the side stations stays constant, the throughput
of these stations decreases with the offered load of the middle station. This means that the more
the middle station is active the less packets originated at the side stations will be received
correctly at their destination. In a similar way, the throughput originated at the middle station
behaves as following: 1} When the offered load of the side stations stays constant, the
throughput of the middle station increases with the offered load of this station. 2) When the
offered load of the middle station stays constant, its throughput decreases with the offered load
of the side stations.
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These properties can be summarized as following: When a certain station increases its
load, the throughput originated at this station will increase while the throughput originated at
the other stations will decrease. This behavior is quite common for shared channel communica-
tion networks; for example, the slotted ALOHA system, or the non-polite system described in
sub-section 7.4.1 above behave the same way (see equation (7.7) which describes the throughput

in these systems).

While at the individual station level the polite system behaves very much like other
shared channel systems, the advantages of this system are revealed by examining the giobal
behavior of the system. From figure 7.19 it is easy to see that the total throughput in the system
increases both with p and with ¢. This means that increasing the oflered load either of the side
stations or of the middle stations, causes an increment in the total throughput. The impottance
of this property is that the system is very stable: whenever the system load increases the
throughput increase too. This property is not very common in shared channel communication
networks. For example, the slotted ALOHA system mentioned above is not stable (see [Klei76]
for example); in that system an increase in the offered load may cause the throughput to
decrease.

The importance of the stability property is that no special mechanisms are required for
controlling the system stability. In the non stable systems, like the slotted ALOHA, it is required
to control the offered load to prevent the system from getting into unstable situations (situations
in which the system blocks itsell); here these mechanisms are not required since the system con-

trols itself in a natural way.

The explanation for this stability property can be given by observing the station
behavior in the time-space domain, Let i be an arbitrary station in the system, and let us assume
that at time { station 7 transmits a packet. Now, let us examine the behavior of this station at
time {+1. If the offered load of station i is relatively low, the station is not likely to transmit at
titne {+1; if the offered load is relatively high, the station is likely to transmit at this slot. Thus,
if the offered load is high, a successful transmission at time ¢ will imply a sequence of successful
transmissions originated at station s. This is true since stations who are polite to the packets ori-
ginated from 7 at time ¢ will continue being polite for all the packets transmitted from i after
time t. This behavior is very similar to the behavior of the exhaustive scheme studied in chapter
5: A station who transmitted a packet is very likely to continue transmitting additional packets.

It can be observed, therefore, that at high loads the system is very likely to run itself
into "self synchronization” states. In these states, a single station will successfully transmit a
sequence of packets while all the other stations politely listening. In contrast, when the offered
load is relatively low, the system is not likely to get syachronized, and its behavior is quite ran-

dom.
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When the system is fully symmetric, its behavior is very similar. Figure 7.20 shows that
at low load the throughput of every station increases with the offered load. At high loads, in -
contrast, the throughput of the middle station increases with the offered load but the throughput
of the side stations decreases with the offered load. However, the total throughput always
increases with the transmission parameter p. Similar properties can be observed in the behavior
of the five station system and the ten station system. This can be scen in figures 7.21 and 7.22.

Next let us compare the throughput observed in different systems. Figure 7.23 depicts
the total throughput as function of the transmission parameter p, in several symmetric systems.

S
1.0
0.8~
| 3 STATIONS
06 5 STATIONS

10 STATIONS

0.2

0.0

0.0 0.2 0.4 0.6 c.8 1.0

Figure 7.23: A comparison of the total tkroughput for different petworks

The curves plotted in this fgure correspond to the values calculated by the approximation
method. From this figure we may learn that for a given value of the transmission parameter p,
the system throughput increases with the number of stations. The reason is that by holding p
constant and increasing N, we cause the system to be more "poisy” (more stations traasmit with



probability p) and thus force the system into synchronization.
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APPENDIX A
Random Polling: The Analysis of the Exhaustive System

A.l1 Gambler{s Ruln Problem

The model of the Gambler's ruin problem is closely related to the exhaustive service
model. In the following we describe this model and review the important known results related to
this problem. A detailed analysis of this problem can be found in many references, for example,
see [Taka33, Konh80)|.

We consider a gambler who starts gambling with imitial capital W, {>0). The gambler
plays a sequence of independent and identical games. The gain on the nth game is X and the
fee for the nth game is 1 unit. The capital after the nth game is:

W, = W+ X+ X+ +X, -n n>1

The gambler's ruin time, denoted by T, is the smallest n for which the gambler's capital
becomes zero:

T = min{n: W, =0}
The statistical measures of the initial capital and of the gains on the games are defined to be:

Hz) A E:"Y, Plo) AR, » 2EX]<1, o* A VarlX|]

An important role in the apalysis of the gambler’s ruin problem is played by the z-
transform ©{w). This is the z-transform of the ruin time when W, = 1, and is the solution of the

following equation:
O(w)-wP[B{w) =0 [8(w)] <1
The derivatives of 6(w) can be found from the above relation:

o() =1, e“’(t)=;—f-u-. o)1) = —L& z

(-p?  (1-pp

The z-transform of the ruin time can be shown to be:



Elu™] = H|B(u)]

and the first moments of the ruin time are:

_ LA fAT] = Var[W,]  FEIW,
At = 1-u VerlT] (1-a) ¥ (1-u)?

An additional useful result is the following relation:

[ ]”f;(;)

A.2 Solving for f(J):

To find f(;) we differentiate (4.19) with respect to z,. This yields:

fG) =p,rs, + Ep[ B, ¥ 1) +
7y

Rearranging {A.1) gives:

N M p. /(1)
1) = ?f"[E prot TIT
To solve {A.2) let us evaluate f(k):
pfl i)
k) = —
1) [‘gp. A

Now, subtracting (A.3) from (A.2) gives:

/1) pJlk) - rfl8) p f17)

f()n]

i, Hy 1u, 1p,

which can be rearranged to give:

18 = 1)

”Jll'#‘,) P

s i) X p.f15)
._J__ o —
p'y |Ep‘ ' |#] “;‘l_“;)

Manipulating this expression, finally yields the value of f(j):

p,/17) _{-“t(l'ut)

)

Now, substituting {A.4) in the right hand side of {A.2) for all values of i gives:

)

(A1)

(A.2)

(A.3)

(A4)

(A.5)



N
Yo,

”‘](l-”J) s=]
==

N
P 1_2“1

1=1

) (A.6)
A.3 Solving for f(1,1):

To solve for f(i,i) we again note the similarity of (4.17) to the corresponding equation in
the analysis of N queues exhaustively served in cyclic order (see, for example, {Taka83]). For this

reason, we closely follow the approach taken in [Taka83] to calculate f(i,i).

For the ease of the analysis we again condition our calculation on the queue served dur-
ing the previous cycle. Differentiating (4.17) with respect to z, and z, gives:

1.k i) = a—':;-[{-:TtR,(élP,(z,)]}.ﬂzh...,z._l,e,[.fj]l p_(z“)],zm,...,zN,

{n51}

+ R.(ﬁlp.(z.))-{;.,{:nz,.---,z.-l.e.( 1i[ XER) SRR 1]

(nst1)

- [ (7)o

(n71)

+ :39;3, [.lip“(z')]] |-="['53?;'”"""‘z""9'[,[i P,(z,)],z,ﬂ,---..-ﬁ)]

=1
(nsd1)

r 32 N
+ az azt F(le'"’zhl'e:( I-[l Pn(zn)] ,ZH,I,“',ZN)] l.:[ (A‘l”

L 3z, e

(ng1)
Now, evaluating this expression, term by term, gives:
a d ,

[ (T Pte)] o = RO =1, 1S r9



N
aiz;F(Zb-.-,z'_ve.[ H P'(g-))’zﬁ.p...'zn) =0 (A'g)

()
Eaz_,”z"""z""e'[c:I;It}P'(Z")”'*"""’~’|-=u = [31 =t [gf]-ﬂ'eﬁ"(l)ﬁ”u)
= f(j) + !(i)f‘; j#i (A.10)
oLl L)) S ot O
Rrmei RN o) EICN) ) W (A1)

(npé1)

[ J(5),p,00(1)+ OF )] + SN 5.5} + 13 B |

+/(7.6)+ £, )@Y 1), 4, i, ik k, jEk
= { f()[8F(1)p+0M1)PE1)] +2u,8{1)/(:.1)
+ 17,51+ 16,5801 u,? 7=k
L 0 i=jori=k

The equations (A.8}(A.11) can be substituted into {A.7) to yield a relation between f(j & [i) to
the set {f(7,k)} and the set {f(;)}. This set can be solved by numerical method to give the solu-
tion of the set {f{i,7)}.

Now, let us assume that the stations are symmetric. Under this assumption, we can now
drop the subscripts f[rom equations (A.8)-{A.11) and substitute them into (A.7). This gives:

1.k [5) = 6+ 8l70)+ fUR)] + ef (i) + QI ALS) + Sl B) + f(5.8) + E*1(3.5)



isk], igkE, jobk (A.13a)

15,5 1) = a rl®-w) +2bfl)+ (S + ) )+ £1.9)+ 240061+ 1)

i#j (A.13b)
16,k 13) = a+b{s(k)+df(i)] i#Ek (A.13¢)
fii li) = a+r(c®-p) (A.13d)

where
2 PLd + 1 + 0'2
- (1-p) (1-pp

s A uB+r%), bAru, cBy

dA L a4 = Nl (A.14)
1-u 1-Nu

Summing (A.13a) and (A.13c) over all i, we have:

N
f(Jsk) = Z_:p,f(j,k I‘)

N
= Y pd a+b[J()+SIR)]+ () + d[A(5.)+ S ) + 1. k) + 10,0}

(]

et

+ p{o+olrti)+ dante) + o {a+ slrta + ar(in} )

Similarly, summing {A.13b) and (A.13d) over all 5 we get:

N
13.3) = Y p 5.7 l§) = pla+r(c®-n)]
s=1

N
+ gl p,{ a+r{o?-p)+2bf(5)+ (%4-c]f(f)+f(j,j)+2df(:‘,j)+ Ff(i,:‘)} (A.14b)

(7))

Equations (A.14a) and (A.14b) form a set of N? linear equations, where the unknown
variables are f{i,j}, i=1, -, N, j=1, -~ N. Now, let us assume that the p,’'s are symmetric.

Due to complete symmetry in the system we have:



_J6) = £() for every i and j
J(5.3) = f(5.5) for every i and j

[(3.5) = f(E1) for 3¢5 and kbl
thus, we can define:

ma 19) i=1,N
@A) =N

£ 2 (k) kAL
From (4.25) we know the value of f(V);
f“) i &E“_'E). (A.l5)

1-Ng

Now, due to symmetry, p,=I/N for every i. Using this fact and the notation defined above,
(A.14a) and (A.14b) become:

x1
£ = fli ) = ¥k 1)

=]

- %‘_2..(4+2bf(l)+cj(l).{.gdj('f)-{nﬂh')-l-ﬁﬂz)] + 72\7[“ +(1+d)bﬂ”] (A.16a)

N
10 = f155) = S f5 1) =+ (s +rt0*0)

1=1

- Al .Ew(az-pmmw [—ﬁ*—]ﬁwcﬂ”+ﬂ2>+edfu.m+Mﬂ'} (.16b)

Rearranging {A.163) and (A.16b) we get two equations with two unknown variables (/) and

2

£ = g+ p(o?-p)+ DL -[(25+-"if‘-+c]-ﬂ1)+(1+d’~’)f<2)+zdﬁ'ﬂ] (A.172)
N 1-u4
1) = a+ b+ LR [ e s r2ayor e 210) + Loagn (A.17b)

Solving {A.17a) and (A.17b) for % yields:



@ =.[r(a'z-p)(l—p)(N(l+2d)—N"d] + d(p-0?)fVIN?

+ ((1-uK2bP+20d+ c+2B) O+ a1+ d)(1-4)+ B+ 121 V)N

+ (2b4%+2bd+ c+28)(p-1)f 1+ (1+2d)1-0%) ) ][-1-1_—‘1%] (A.18)

Substituting (A.14) into (A.18) and manipulating this expression finally yields the expression for

o

12 = SuN-p) | ArNIANFDp+(N-1pT  Nrp(l-p)

1-Ny (1-Np)? 1-Nu
+ NP1 -p? | NP2 N-1)(1p) (A.19)
(1-Nu)? (1-Nu?



APPENDIX B
Random Polling: The Apalysis of the Gated System

B.2 Gated System: Solving for f(})

To solve for f{j) we use equation (4.60):

N N
1) = %o, (rm, +1,000) + 5 ps10) (B.1)
- (1)

Rearranging (B.1) gives:

pf0) _ X oo .
.~ = o (r+ 1) (B.2)
Thus, we have:
flk) = f(j)-fﬁ*- for every j and k (B.3)
i1

Substituting (B.3) into the right hand side of {B.1) we get:

) N N

? 151 =1

Solving (B.4) finally gives:

N
u Yo
f(j) = =+ e (B.5)

B.2 Gated System: Solving for 1(},})

To compute f(?} we use (4.63a), (4.63b), (4.63¢) (4.63d). Assuming fully symmetric system

these equations become:



15k i) = p¥{(&E+A) ¥ rpf(5)+ruf(B)+ f)u*(2r + 1)+ [(5.F)
+pfi,R)Fpf(i) P fi5) iR ik Ak
1G5 1) = w42+ r(o®-p)+ 2ruf(j)+ [6)o* -p +p(2r + 1))
+ f(7.5)+ 2uf(5.5)*+ u*/(i3) i#j
1,k 1) = p¥E+ P +rpf(E)+ f(5)u(2r+ 1)+ uf(7 k) +1%/(7.5)
J#k
f5.7 15) = w¥{E+ A+ r(e®-p)+ ) o*-u+p*(2r + 1]+ 4215.5)

Now, assuming that p, = /N for all {, and unconditioning {B.6) we get:

N = f(j k) = o + azf('ﬁ + asf(z)

1{2) = f(.f.f) = + bzfm + bd"ﬂ

where:

8, = pH{(F+ ) +rufO+ N&z e+ 043 (2r+1)

8, = (l+y)-%+y

= 2
oy = i

by = pH{(FE+r)+ r(d’—u)'*'?ruN—!;l"}‘”*'ﬁ”IO"—u+u=(2r+1)l

N-1
b, = p*+
2 s N
N-1
by =2
3 H N

The solution of (B.7a) and (B.7h) is:

o =

by(ay-1)-a, b
8yby+ by + ay(1-5,)-1

Evaluating the denominator of {B.8) we get:
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(B.6a)

(B.6b)

(B.6c)

(B.6d)

(B.7a)

(B.7b)

(8.8)



agby+by+ay(1-b)-1 = %(1"'#)(“'!"1) (B.9)

Evaluating the numerator of {B.8) we have:

8,(a;-1)-a,b,

= {n’((é’*’ )+ r(o%-u) + 2ru Lk VAR e u+p2(2r+1)]}{ l+u)—+u 1}

{ 2((52+r2))+mf(”+-—— rpf0 f‘”u"(2r+l)}{2u—}

which, after some algebra, becomes:

bl(“z‘l)"'lbs

= fﬂ-{N(f‘”"' r)(o®-u)[u(N-1)-1] - Nu?((F+ r2)) - fM[2ruN(1 +#)—2ru+N#21}

Now, substituting /(1) from (4.62), we get:

2 | 2Nr(p(N-1 NMrufp+2 i
by(ag-1)-a,, = M{ "{“Np B e N:v +Np2((52+r2))}a.10)

Now, dividing (B.10} by (B.9) we finally get:

o _ CrNLAN-Ul (SN
(1+p)(1-Np)? (1 +u)(1-Np)

4+ pt2r)NPry? uNr u*Nr (B.11)
(1+p)(1-Np)? (L) L-Ni)  (1+p)(1-Np)?
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APPENDIX C
Random Polling: The Analysis of the Non-Exhaustive System

To solve the non-exhaustive system we need the first two derivatives of P(z), P(z)",
R[P(z)], and R [P(z)”). These are:

azz I'=l =8 azzz l:=1 = o%-p+u? {C.1a)
M|:=l = N’_‘ , w|z=l = M#2+N02—Np (C.lb]
az 322
a_Mﬂﬂ}'l'ﬂ =T wlm = (F+)? + r(o®-p) (C.le)
dz azz
2
aRJI;z(zlﬂl,=1 = Nry , d Riaf;[zl’_“[ |,=l = (B+A)N2u? + Nr(o®-p) (C.1d)

C.1 Solving for F(0,1,1,...,1)

To solve for f, we evaluate (4.77) at z=1. Using L’hospital's rule, and differentiating
both the numerator and the denominator of (4.77) we get:

1-N,
1 = F(1,1,--,1) = F(0,1,1,-, U SntiS " I )
(11-1) = FOLL 1y e (c2)
from which (4.80} immediately follows.

C.2 The Derivation of Equation (4.83):
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Differentiating (4.77) with respect to z at z=1 we get:

3F(z.z.02) _ vy JRUPE -z {P(2)}Y]- a4 Ii’|{P(z}"‘r 1zAP()¥ 1 [c.3
. ”‘E RPN PG)] )+ o azE z-frI{P(:z)&l-w(z)}J ] )

To evaluate (C.3) we need the following derivatives:

35';[1?({142)}”].[z_{p(.a)}ﬂ]-],=l = 1-Nu (C.4a)
;"":;[R[{P(z)}*"]-(,-:-{P(z}}”]-],=1 = 2(1-Np)Nrp [N+ N(o?-p) (C.4b)
%[z—ﬂ({P(z)}N]-{P(z)}N]gl = 1-Nru-Np (C.4c}

%["“R (PAP) P, = U+ AN + Nrfo? )+ 200074 N+ No?-9]40)

Applying L'hospital rule to (C.3) we get:

JEERY |—toNu
_y = (N-1)f,-
dz = = 4 ll—Nr_u—Nu

ny ‘ {201 - Np)Nrp [ N*p?+ N(o? - p)|}{L - Nrp - Nub
¢ { 21-Nru-Nu)?

+ fo" {(8+ 2 NZu?) + Nr(o? )+ 2r Nou®+ N2u?+ N{o?-p)}{1 - Nu} ) (C.5)

L 21 -Nru-Nu)?

Manipulating this expression and substituting [, from (4.80) we then get (4.83):

N_angn---l)I _AND-Ne, Nrg? o Nu?® | Nru
z =1 1-Nu-Nry H1-Nu)1-Np-Nrg)  2(1-Np-Nrg) 2

C.3 The Derivation of Equation (4.84):

Recalling Equation (4.79):

To evaluate the derivative of (4.79} with respect to z at z=1 we need the following derivatives:
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%[R(P(z)].(z-ﬂz)]]ml = I-p (C.6a)
%[R(P(z))'(z'f’(z)]]p: = 2rp(1-p)-(c*-p+4?) (C.6b)
%[NZ-R(P(",))-P(;:)-(I+(N-l)z)]‘=l = 1-Np-Nry (C.6¢c)

%[Nz-R(P(z))-P(Z)'[l +(N-1)=]}==n

- -[N{(c?"i'rz)pz'i'r(o‘z—p)}+2Nrp2+2ru(N-l}+N(az-p+p2)+2p(N—l)] (C.6d)
—:;[zf?(f’(z)]-[1—}-"(2)]],=l = —u (C.6e)
322 [ZR(P(Z) [1 P("‘)H:— = —[2u+2m’+(az p+u2)] (C .61)

Now we differentiate (4.79) with respect to z and evaluate the derivative at z=1. Using (C.6) we
get the derivative of the second term in the right hand side of (4.79):

j_ER Pi2}]-l:<P(2)}-FlO1.1, = Jy [er(l u)-fo® - p+p2)] [l Ny - Nrpl
alez—R 2} -Plz)1+(N-1)z) | _ gll_N” Nru]

(l»u] [N{(?+r"’);.:2+r(cr2 p)}+2Nrpd+ 2rp(N-1)+ N(o®-p+p%) + 2u(N- 1)]
2{1-Nu-NruJ?

which, after manipulation, becomes:

- Nrud+{N-1)oZ+u-p?)+ Nro®+ Nrp -2Nru?+ Nu¥{# -2} (1-p) (c7)
2(1-Nu)(1-Np-Nrp} ’

Diflerentiating the first term in the right hand side of (4.79) we have:

2L v-1er[pa)) 1-P) A0, 1)
az[ z- Pz -P(z): lf+(N l)zJ

=\

(okhi + (N-1)f, [2#+2r.u 2+{o®- p+ﬂ2)] [1 Ny - Nrp]
1-Nu-Nrp 2(1-Nu- Nrpr‘

= (N-1)-

(N-1),: —[N{((?+r2)u2+r(d‘z—#)}+2Nm2+2rp(N-l)+N(a-i‘_”+u2)+2u(N_l)’|_(_n)
_ e 2(1-Np-Nrp)? '
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which after manipulation becomes:

-u) 2+ p-pt-Nrud+ Nud(# -2
~ (N-1) CByh Sl aopt-Neut+ NuE ) ()
| 1-Nu-Nrp 2(1-Np-Nru)?
Now, summing (C.7) and (C.8) we get from (4.79):
AF(z1.1,+1 ]I AN-1uf,
az 1- N,u Nru
+ Nerud+ Nu{1-Nul(#2-r1Y-2Nru?+(a?+u)Nr (C.9)

2(1-Np)(1-Np-Nry)

which is equivalent to equation (4.84).

C.4 The Derivation of Equation (4.85):
To solve for f, we use (4.81} to equate the right hand side of (C.5) with the right hand
side of (C.9). This yields:

(N-1)f - rN'"ru’+Np2(l Nu)(§- rzLQNr,uz-Ha'z-l-n)Nr]
1-Nu-Nry 2(1-Np)(1 -Nu-Nru)

[ Nro?+ N2u28(1-Nu)+ Nrpa(t - Np)(1 - Ny - Nrg))
2(1-Nu)(1-Np -Nry)

+ (C.10)

Manipulation of this equation gives the value of {;:

/o = 2HulNe
' 2(1-Ny)

C.5 The Derlvation of Equation (4.89)

We recall that customers arrive to the system in bulks and that X{{) denotes the size of
the bulk arriving to queue i at time f. We also recall that under the symmetry assumption we

have:

EX(] =n , VarlX() =0 ; i=1,2,N

Now we look at a tagged customer, let say C,, who arrives to queue i at time {. We
denote by V, the number of customers arriving to queue i at time ¢ but queued behind C,. simi-
latly, V, denctes the number of customers arriving to queue i at time ¢ but queued in front of C.

It is clear that V, and V, have the same statistical characteristic (symmetry) thus,
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| Av] = £v)
For this reason we can calculate E{V,]. To calculate E]V)], we condition on the size of the bulk in

which (J'J arrives:

k-1

i
ElV, X () =H = -i—-EH - (C.11)
Now, unconditioning (C.11) we get:
© . 1 EPrX(t)=H
E{V']=Ek21 £ rlX()=H
=T R ePx(n=1)
i=1
= LIS epix=s - Seedx=4
B |e=1 t=1
= Lz_tf‘z_‘& (C.12)

2p

which is identical to (4.89).
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A

F(zl,zz, e ,ZN)

F(2)

L)

2,

APPENDIX D
Glossary of Notation for Chapter 4
the length of a cycle (system in equilibrium). Sometimes, when the context
allows, C, is also used to denote the ith customer.

the z-transform of the length of a cycle [system in equilibrium).

the z-transform of the number of customers found in the system at polling
instants.

the z-transform of the number of customers found at queue 1 at polling instants.

the expected number of customers found at queue i when service completed at
station & (applicable only to non-exhaustive systems).

the length of an idle period (system in equilibrium).

the z-transform of the length of an idle period {system iz equilibrium).

number of customers found at queue i at pelling instants (system in equili-

brium).

number of customers at queue & at time {.

the probability that station i is polled at a given polling instant,
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P(z)

Q.(2)

z-transform of X(¢).

the z-transform of the number of customers found at queue i at arbitrary
moments (system in equilibrium).

the expected length of the switch-over period associated with station 1.

z-transform of the length of the switch-over period associated with station i.

the probability that queue i is empty at switch-over instants (symmetric system).

the length of a service period {system in equilibrium).

the z-trapsform of the length of a service period (system in equilibrium}.

the waiting time of an arbitrary customer arriving to station 1 (system in equili-
brium).

the z-transform of T,

number of customers which arrive together (in the same bulk) with a tagged cus-
tomer to queue ¢ and which are served in front of the tagged customer.

the z-transform of V.

number of customers which arrive together {in the same bulk) with a tagged cus-
tomer to queue i and which are served after the tagged customer.
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W(z)

Xt

#

Rm)

z{m)

r{m)

(m)

the waiting time of the first customer of an arbitrary bulk arriving to station i
(system in equilibrium).

the z-transform of W,

the probability that no customer arrives at queue i at time { (symmetric system).

number of arrivals to queue 7 at time ¢,

the variance of the length of the switch-over period associated with station i.

E‘l“’s(‘)l

Var(X,()]

the instant at which the mth service period of the system su starts.

the ipstant at which the mth service period of the system terminates.

the instant at which the mth switch-over period of the system terminates.

the instant at which the mth service period of queue iu starts,

the instant at which the mth service period of queue i terminates.

the instant at which the mth switch-over period of queue § terminates.
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