REQUIREMENTS ANALYSIS OF
LARGE SOFTWARE SYSTEMS

Meir D. Burstin ~ July 1984
CSD-840048

REQUIREMENTS ANALYSIS OF
- LARGE SOFTWARE SYSTEMS

Meir D. Burstin

© Copyright 1984 by Meir D, Burstin

REQUIREMENTS ANALYSIS OF LARGE SOFTWARE SYSTEMS
Thesis submitted for the degree “Doctar of Philosophy”
by
Meir D. Burstin

Submitted to the Senate of Tel - Aviv University
July, 1984

This work was carried out under the supervision of
Dr. Moshe Ben-Bassat

This work is dedicated to my parents, Gina and Jacob Burstin.

ACKNOWLEDGEMENTS

IwishmexprmmygmﬁmdemDm.DmBaryandethm-BmfaMgtﬁdmmd
their help.
Apmafﬂisrumdlmmﬁedomwﬂelmaviaiﬁngs!ﬂarnthe&mptms&m

Department at the University of California, Los Angeles. I wish to thank this department for hosting me,
for enabling me to use their facilities, and for providing a warm and stimulating research environment.

Imyamfdmhdirmlmforbrﬁngmspmdmmmndwkddngthisrm

I first encountered many of the problems and of the ideas that are the subject of this research dur-
ing my years at Advanced Technology Ltd. I wish to thank all my friends and colleagues there.

anny,lwiahmthnnkmyfamﬂy,mywifemﬂmychﬂdrm,forthdrpaﬁm, understanding,
and constant encouragement. Without their help this work would not have been possible.

ABSTRACT

This thesis suggests a method to produce requirements for large software systems and provides a
prototype of an expert system that assists in this method.

The method consists of seven stages: study, user identification, interviewing, raw requirement pro-
cessing, verification, functional specification, and operational system specification. The basic unit of infor-
mation in the suggested method is a requirement. It undergoes several modes of processing aleng the
various stages of the method. Each requirement is generated, noted, dlassified, decomposed, composed
with other requirements, checked, changed, and sometimes removed.

After an initial study of the needs of the specified system, a user identification process is initiated.
An abstract user is defined as any entity that affects the system requirements. Abstract users are identi-
fied by a systematic hierarchical top-down decomposition. Next, the elementary abstract users are inter-
viewed to form their requirements. A modified problem-solving technique is proposed for this stage.

In the next stage, implicit requirements are gathered and all the requirements undergo initial pro-
cessing and classification. Then verification of the requirements occurs. This is done by abstraction of re-
quhun:nﬂofbwalevdmsmhiglnlevdsmddmckingthamhnad:levd. The next two stages

The requirements production method can be viewed as a process of transformations on system
representations. First the system is represented by the net sum of the requirements of its users. Then
during verification, it is represented by the net sum of the requirements of abstract users at various levels
of abstraction. At the raw requirements processing stage and functional specification stage, the system is
represented as being composed of main subjects and of functions. A different presentation is produced in
the last stage. There, the system is represented in terms of basic operational procedures that are comman
to the specified system and its environment. _

MWMMMWMWWBMW
by the users and is easy to maintain for a system that is rapidly changing. The system implementors usu-
ally find the functional representation more natural and easier to wark with. The customer, some of the
users, and the operators all benefit from the operational represeatation.

The entire process can be computer assisted, and this sutomation is fully delineated in this thesis.
A prototype was built that deals mainly with user decomposition, requirements composition, and verifica-
tion. An expert system was developed to assist the specifiers in the composition of requirements that are
stated in natural language.

Tahle of Contents

System
24 Characteristics of a Large Software Systemcccccicenee vessasnsssns eetesessrnrransansasasssssanas
2.5 'IthlfﬁwlnamDevelopmgaLargeSoﬁwareSysm ceerscasenncns cevtussestsssanannsasanesasaane

3.2 PUIPOSE ..ceccececennentessssssssntnossasssassessassasaiesassassaas crerscensese Fesssmassessnennatnnessoetreestaane
33 &epsofmekequml’roducuonMﬂhod cetestasnunassannssasassinareee
3.4 Flow of Information in the Process . reesenesessesensansnnsatite
3.5 Inputs and Products of the Process reessesssnsssitesseseressrastrestnsrsssansrnatane
3.6 DiscusSiOn ...cceccccccenccncassnssnsrsace reeteesestasansstsstsnrasresnssasstareaseteststssssrassnssesnasnes

4 w 1 M ll [IXTITITRIINL) SHRBERBRSOEY TTITIIIZE SN N Y L} a8 saBEe
4.1 INrodUCHON ..ccceverececessisessscasosnssscnsnssansusassnce veescacacanse cosevasssnnss senanssseneressenasasesuress

42 'I lllllllllllllllllllllllllll deeend SN GEAIN IR RERGRsRNOIERTNERRERREY

52 An Example: A Banking SySteMlc.ccccecceiescnnassnissanisssnsssnnsssnnmsinnsssssssssssssssnsssnss
5.3 Abstract Users, Requirements, and Data TYpesccccccceeiieisissssnnnnnnninnescesssarssnnanenanans
8.8 MEBOGcccerieuueecienanemvmsiosssssaatmessensesssssssssstsasssnanssssssssassnnnntesssstssssssanasasssrannsesss
5.5 Hierarchical Decomposition of an Abstract USErccccciesnsanmesssssinsisinnassansnnssneninnnes
S&Am:ommon ...

63 A General APPTOAhcccoovciiiinnseetsitnieiiiisisiiienistisieeisnssstisttisresstesssssssssssatatasass
6.4 Requirements Generation at the Elementary User Levelcocoiviiiiniiiiiiiisiinnniiinninnns

6.5 The Preparatory SUb-SLAGEccceeccsrimimisiniiiiiiiiiiiiisiiieintiesiiisnniesssssssinniaasassasns
6.6 The INIEIview SUB-SIAZEcocviierasernerssrecnninitiisiissstnesanssannsastosstssstasatssstsssanassnsssses

ODOQ ~J~INh Ly La B =

6.8 AUOMALIONcccosessrnrasssnssssssransnsossveresssssens essesesesnanetsratsssesesetetesetanananerneteesiooass 27

7 Stage 4: Raw Requirements PrOCESSINEcocvaecssnniassansassancassses ST, 23
7.1 Introduction cesseneesaees teseseeresennsnensanasesasssenananasets cessssetsaetatsseresnnsnssssassssanansart 28

7.2 MEthOd .ccccueciciivinrenccccsissssssnssssssssssnsnsssssassnsssstnaess €eeesssateraenteessssannnnennsnnsnsnnanessass 28
7.3 of Implicit ITCMENS ...ocvurrossssasaccansssss essssastetsretsnsasssssisasesanananatre 29

7.4 Preparation of Keywords and Subjects Listscciceaueees eeeeenssssssseassrenseanssasessrransoeses 29

7.5 Qlassification of Problems and Requirementscccccccccneecccecssens . cereresserssneen 3

7.6 Users’ Ratings of Problems and Requirementsccceeeeeee cossssansastnnsaanasnsenteranssasarana k) |

7.7 Tramlanonofl’robl:nsnnoneqmranm esesssssesssnsssassonnsssssenarersasnnnnasess 32
7.8 AULOMALON ..ccvorrrreeraeesssssennsstorsnsosasstranrsanssnases vesseseacseses eresssssnsenssesessssnanietanasasanas 32

7.9 Conclusions teessssatenneeniutisarsnasssessnsstssstsesanananiestinsrerens 32

8 Stage S: Verificationccceer reseeersssessesernsnresasteseseetttetennesterseneatetessisssessetetinariretiittantars 3
8.1 Imroduction teeeesesessseseeseentessrenansttstrnraarerersasanssateans seanssannns hiisesstanstanrnnanasanbace 33

8.2 The Method sorassasassarannense ceaseesre vessesrese casessns eesssessenserensstasassanesanssssseesesass 33

8.3 An Example: A Banking Systeftcceeeeecenneaceenes eseesoens ceseeasen tetsssceseantsirsteaseneranans 35

8.4 Bottom-up Hierarchical Composition of Requirements ... cossesseresisssssssssunsuasnnrannasenseses 36

8.5 Checking the Requirementscccoceeeeccsseanence reeeeeessstessssrsssnsssannantssesssessnatesessrsen . 3

8.6 Antomation eracessraasise eeereereseassssesssssesaressannas easersessattaatenatntsItsIIsaIRacaRSenssRES 38

8.7 Conclusionscceceesnnssanses eerssesssentitsesssessesasesessesstitttraee sesssssenssssssreesssesarsannasense . 39

9 CAS — Computer Assisted Spedificationcccsensecscnenns ereesarRRSALLLINSSaaEREEOIIIITORRR NSRS NSRS BOORELS 40
9.1 Introductioncceemseeiaeenssensannne ressnesne casasmansansnssassessanannssss eessssssasssssrnssssssannransee 40

9.2 Tutorial reseeesesetettetesEsetetrrerIseeeeeetentettteransantestsrREatesetasesenaeeitiittetsasnnnasssssnasarars 40

9.3 CAS — A General CODCEPtcovveeerivtesecsenssssssnareassssanne eraessssrasnseseettentanansssssasesenans 44

9.4 Design Considerations of CAS “hiessssrannRERIIRRERSRIRISESSS eseassesacansnsstserninaennsanicassses 45
9.4.1 General ereessrasananansnnes teaeersnnaresasenns cestsssesenssasarasennase cesssssesens sesasaannens 45

9.4.2 The Data Basecccceviiiiccecnnnmnssusssnsscscsanase assssasasases snasssessessssssseensengnnsnnnae 45

9.4.3 The Knowledge Base cevereserns casseresas ceettsenesarasnesessansanittsesansatnseesstns 46

9.4.4 CASFiles teeteeeesresutstsesnsiensestesssessesnennnnserassssesen eecesssranersntttraserisssansarossens 46

9.4.5 ING svereccneccsecncessnrerssarasasssssassnnnssassenans eessssesserntttsesanssssesisesssssnacases 47

9.4.6 Installation and MAINtENancececscccossnne sesssessanee teetsessessentessestansnassassetaranrenes 47

9.5 CAS As an EXPert SYStEMcccccccrresssssssscssssseisassassessesssansisesssanasesssatntsasssassssasssnne 47

9.6 An Example: A Banking SYStEmcccocciisssssrssscnsssansssnssossasasaacscsassstsssasssssssssans 51

0.7 CONCIUSIONS ..evuveerremeeccerranceraosssnsnsssseesnnsessssransssseesssnssnnsssssssstamssssssssossessasssssssnssens 52

10 Stage 6: Functional SPecificBtionccecersssssnssarssrssntsnssinssasstassessnseasssnssissassatssnssssssssass 53
10.1 IDrOQUCHONccevsrsssrasscsssnnncesssssansesssassnnassssssnassssssassasasses crsssesssass eressesssssessesses 53
10.2 MEthOdciiicicisisssnsosesssnnessrssesasessosssssssssssssssssssssnsanans CesesssesesananssnenannrInasuunssnas 53
10.3 Qlassification of Requirements to FUNCHONS cceeeeeiiiiiiimmaniieniesccininnniie. 54
10.4 Functional ADAIYSIScccccorecisssnnnierssrssssossossssasssaansassssrnnsnncssssasasaaasisassssnss ceenseans 54
10.5 System ReEpresemtationcc.ccceccessssssssssnssssssesessssssessnssssantsssantsessssacsossasssssassennansas 56
10.6 AULOMALOM ...vvvvvsveecereosssssnserssssessssseaanssssssssassssssssnnsssssssssssssssssssassessesssssssossansans 57
10.7 CONCIUSIONS ..ecvvvrrseeesesseenssesssasssssssssesnsssssssssssssssssssssssssssssssssssssasasssssssassssssansanans 57

11 Stage 7: Operational System Specification ...c.ossisssresinnisnsssiessnissnssnsscenssansssnssanssnissansanacanes 58
11,1 IDTPOAUCHOM ..cceeevnerrvescseceserenmnsssnsssssssssssermasssensssssesessssssssssessssssssstntessssssseosssasacs 58
11.2 PUIPOSE ..ocveeecerrenessisssessssssossaesssassmssnessasssssessstsssessssssssnassnssnsssnessssstassasassssssannss 58
11.3 THE MEhOT .eeoevvuriissnsrensorsosnsncssnssssssassonsnssitsntssessstsssressessssasssssesssssssssssssnssssnne 58
11.4 QlasSifICAtION ...ceveeererercssssssesssssssssssnssssstnassssensessrrssssstasssesssessensassssansrrisesnssntastes 59

11.5 Mappmg reessassannssnsassssiassevesasassatens : resessneassrnsatsstsasansanssnasiaes
11.6 A General System Conmpt cesesessanssansueasnennes sessansanavanes
11.7 dewmmawm

11.7.1 MethodOlOgY ..uceerecorssssncessnscssssisssnrasentessastsssasssssssasanocssacossasessacesssnscassasasss
11 7 2 Tm &mm lllllllllllll Pa8nasnan shbdadsddnsedeansaisdvisanas denissessaennsaddddiesnucassnans
11.7.3 Work Procedm'a

1181 OrgamzxnonalmepmmalChanga cesseseensasssrasesarnnaassan ceesssssanssenace
11.8.2 Documentation and Trainingcccccceiseseses crececastssseratsitansanssnnsereses rsasesans

11.8.3 Data Directorycc... cassrrnsnas sreessansane
11.9 Automation vesusesaneastsansatenesreatestetertstsrtaetantseerantiteestrsantteisasasestsstentss reeeseserenes
11 10 wm .Il-I....llllll‘A [XIL121L 0] S4SSRA0SSSRARS A484550 PSR SSSRORRED

12.4 User Domain of CASSo... e s

Appendix A The Products of the Requirements Production Method ..ccceeeeicnniesnininnnnnnsssianee
A.1 Functional SPeGifiCAtONSceceesrssssncossssserncsssssssrosasssssensanssssssssassassananassasessasassss

A.2 Operational System SpecficationScocccesscerersnssssnessassssrsasssnancsasssrassssasasssnasssnasss
A2l TahleofConm enestseseansetbesessasttresttastasantensrrens

A2.4 Principles and CORSIAINTSooccersrssnassarssssensssassssntossnsssssansssssasssnssssasnasassaae
A.2.5 Interface t0 Other SYStEMIS ...cccccciseriiniiiiiniissssonsiresssssssttesssssnssnassssasnssessasises
A.2.6 Basic Operational FUNCHODS ...cooeoeiiniciiiniittissssnssss sttt ettt
A.2.7 Operational PrOCESSESicccccecesmmisorcisissnioseissssesssnasssntanssnssssssesssesssansesssssas

A2.8 Services and Users” VIEWScccccivesctserens vecaseeseens heressesssseansaranerensestsrananaren 90

A.2.9 Logical Data DIrectoryccoccsisisnnsisnnsessssescecisrsans assssanasasmsunssensenteavasusstane 91

A.2.10 Back-Up and RECOVETY ...ccccrerineciininninenianissssscsssnnissssssesssnnessssresssnssssassasens 91

A2.11 SECUTILY ..ccvveessacssssssssnsenneacsiessssesseneansnnacssssane sescssuussassssas S 91

A.2.12 Documentation ceeeessesssssseeneens censsnense avasescesees testnsnssassesnesnnnuanrseoriee 91

A2.13 TIRNNE ..ccorssrersccssnnerseseanceisscssssnttsnsasasssssanes eesesertrsasastannnanannassana et soeen 91

A.2.14 Organization and Operationccccsssssasseccessecssaasssaes etseseetstsnerennseananaansssnns 91

A.2.15 Operational COntriBUtiOnsseesceescsscssssssstsssaressatessasssssssssnessassasasessasosnnss 9

A2.16 Cost ESmationscccceersseesessssssasssssessoscanans sessesssssssassaseneratereresssnnseraane 92
Appendix B An Example: ABmkmgSystan . - sessssaanseseesnunsarasases 93
B.1 CAS SESSION ...ciicionnensmeccenscsssssssctssanesnsasnsensascossses sasesseeee ctestetetetnreransnnssessssnnnananes 93
B.2 Composition of Requirements - Free Format wsssserseresnnirersrnenanen 94

B.3 Composition of Requirements - Fm:um-aapc: Presentationeeesseeesmennennnncnnninninns 96
Appendix C Users Manual of CAS ccceveerienicnecsnsinene crtustsessnentiessssansssssssreraneessestetessrresteseen 100

List of Figures

page
Figure 3-1: An Outline of the Requirements Production Method reesessssaissssaaaes 12
Figure 5-1: A System and USers VIEWS ceccceeessssssssssssssssssssssssssees ceessossnmmnssssnaens evessssssraone 15
Figure 5-2: Users Domain of 8 Banking SYStEMuussseeessseessssssssss R —— 17
FGUTE 5-3: AD ADSITECE USEE TI8 cvvesnueerreesscssssssssssnssssssssssssasssssssassssessssssssssssssssss e 18
Figure 7-1; Outline of the Raw Requirements PIOGESS +uusesssssssees - ceeereeemsesssssamaesssaasass 29
Figure 7-2: Incorporation of Implicit ReQUIrements eeeeeeessaessemmaesseteaassstteRs s Raee e 30
Figure 8-1: Users Tree and Requirements Tree of & Banking SYStefM .uuuvssssecessesssssssssessssessiss 34
Figure 82: Outline of Users Identification and VErification SUEGES .uuusssssssssssssssssssessssssssssesses 38
Figure 83: Various Levels of USErS VIEWS ...uveseeessssescessesrassssssssssssssssssssssssssssssssssssssseee . 36
Figure -1: An Example — A Banking System . eeeneessesssssssssssssesssssssressssRAse 41
Figure 9-2: An Example of CAS FIle SYSIEI cvvecceerrecesesssusssssssossssssssasssssssssssssssssesssssssses . 4
Figure 9-3; Users and Requirementscccere S eeeereensasessssesmesssssaaaes s ARRR s RRR R Rne a8
Figure 10-1: Classification of Requirements into FUDCHONS c.oovouusssssssssessssssrsssssssssssssssssssss . S5
Figure 10-2: Systcm Representation by Users Views and by SUBJECIS coevvesssssssesssrssessssssssssssnee 56
Figure 11-1: Examples of BOF 0d 0 SP .ocevroussossssssssssssssssssesssssessssssssssssssssssssn 9
Figure 11-2: Three Alteratives Representations of a System reeeeeseemseeeeessmsssassaasssares 61
Figure 12-1: Candidate Issues for AITOMAtON ..cciieirisecessesnsanssssstnssasnsassssssssssssstsstsrasnsancane 66
Figure 12:2: User DOMEIN f CASS .cuvueuuesessussessesssssessssssessssssssesssssssssssassssissssssssssssssssssss 68
FGUre 12:3: AD OULENE Of CASS coversuuesesrerssasss 68
Figure 124: Keyword Identification and CIESSIfCRHON SETVICES ..vvevessssssssssssmsssssssssssssssssssssass 7
FGUTE Acl: PrOOYPE SRS QUL .uvvvessresssssseseessssssseseessssemssssossssssssasssssssessssssssssssenees 8

Figure A-2: A Prototype Outline for a SRS CHAPLETeeeieriiisnmnnteninniiictinnoniissnsasnsnisisnne 88

CHAPTER 1

1.1 Requirement Specification

The requirements gathering phase is the first phase of a software project. Requirements are used
as a contract, and as a communication medium among the system users and the system implementors, as
ariteria against which to check and verify the system after it is developed, and as a toal to launch changes
and enhancements to the system. Their importance to proper development system is recognized today as
a result of the many failures in projects that lack them, and awareness of this importance is increasing.
Nowadays, it is obvious that good requirements are a necessary condition for having a good final product
and for being able to manage the software project efficiently.

The study of requirernents specification of a system has recently drawn a lot of attention in the
academic community and in industry. It has become a research area of software engineering in its own
right. Yet, not encugh is known about the process to arrive at the requirements — about the best way to
state them and to verify them. _

The criteria to be used in judging software specifications are derived from their use [Bal81]. They
should be understandable by all the parties that are involved in the project, they must be testable before
the implementation is initiated and before the final product is used, and they must be casily modifiable.

A large software system is defined as a software system that has a large and divensified commmi-
ty of users and entails a variety of human, organizational and sutomated activities. A large saftware sys-
tem tends to be physically very large in terms of lines of code, pages of documentation, etc. The develop-
ment time and the life-cycle time of these systems are long, large amounts of money and other resources
are needed during development and maintenance, and many users and parts of the organization affected
by them.

There is one basic difference betweesn a large software system as defined above and an ordinary
software system. The requirements for an ordinary system are usually known in advanced or understood
intuitively, and the whole system can be perceived by one person. However in a large software system,
not all the requirements are known in advance; rather they have to be generated. Furthermore, knowing
all the requirements does not necessarily mean understanding the system. The large size of the require-
ments makes delineation of the system difficult.

Formulating requirements for a large software system has been found to be very difficult for a
variety of reasons, most of which may be attributed to two major factors. First, too many users with too
many interactive requirements imply the difficuities inherent in the management of any large scale project.
Second, a broad communication gap between the users and the developers, combined with non-coinciding
objectives lead to the temptation to push under the carpet unciear or unresolved issues, knowing full well
that they will pop up in the future. To this, add the perennial shortage of software professionals who are
equipped with the unique psychological skills and experience required to conduct the interviews with the
users, sort the structures, and formuiate the output into a set of requirements.

Aﬂgmmmhmﬁrdmmﬂnwnmmwfmﬂmmdrm
quﬁranmnandmblcndthanhmmmﬁtythndeﬁnamddauibathedeﬁredsysm This method
shmﬂdpoﬁdewd:eckmdvaﬂytherequkanumagm&nwchofﬂwm& The sheer size
asmmsﬁmmwmmgmammdmmmm

1.2 Overview

Mmypubﬁshedarﬁdudismsvmiomwm&repradsystunamﬁwamspedﬁaﬁom. These
uﬁdahmedeﬁmdspedﬁaﬁm!mmmd&mmhﬁmdedfmmqﬁmnmﬂoﬂymdm
mddp!mmga&ﬂmmpdmuusdm{mmm”wemnhqﬁtecﬁfﬁaﬂtmdrwa
Enebetwqulﬁmnmmmghlwdddgn,mdﬂmdmmuﬁdutmdwdedwithbom

Several software tools have been designed and implemented. These toals enable computer assist-

dﬁpm&mpmﬁngdﬂnwmmm,mmmm
on a central data-base.

A system called SSA (Structured System Analysis) [Gan79], [DeM78] assists in structured design
mmmmwmmummmnmdmmmm
mhmwmnwdamﬁudmh&ﬂmd&edmwghm
msmmhMMWawwmmmem)mt
defined in structured English or by decision tables.

SAUI(StmchnedAnnlyﬁsmdDdgnTednﬁque)mdevdopedbyDouglaRm[Rmﬂ]
mgamdmﬁﬁaﬁmdmﬂam,mdmbemﬂimdmsymmmm
processing. A description is made by model diagrams called arrigrams. The model presents process, in-
put, m,m,mmmmmmmﬁmdmymmm
processes.

One system that has relatively wide use is PSL/PSA (Problem Statement Language/Problem State-
ment Analyzer) ﬂaﬂﬂdcvdopedbyDuﬁdednoew&mthelhﬁvuﬁtyothﬁdﬁgmaspmofthe
propctISD(B(InfmmauonSyswangnmepmmonSym] This is a formal language for the
statement of problems that is assisted by the analyzer PSA. PSA accepts PSL as input, executes various
checks for similarity of input and output, gaps in information flow, etc., and produces a set of reports that
describe the system, external and internal data-flow, and more. PSL is based upon definitions of objects
and their relation and includes about 20 object types and about 50 relations. The language is quite similar
to a natural language and can be learned quickly. It is a very effective documentation toal as well.

At the University if California, Los Angeles, a research was done that relates requireme.s defini-
ﬁmmddﬁpmcﬂwddoﬁawmmmmmwkdtbSpmARdﬁmApprmﬁa
(SARA) Project [Est78] and the ISDOS Project [Win&2]. SARA offers support to a designer in creation
and analysis of muitilevel modeis. While expressing a need for a requirements definition subsystem SARA
hasmappropiatemquﬁranmdeﬁ:ﬁﬁonlmguage,mrdatedwohamcthodologia. SARA and
PSL/PSA offer some unique strengths but also need cach other’s strengths.

Alargemeﬂ:odoloyhasbemdevdopedinTRW,Im.uapmtoftheAEﬂprojed(U.S.Army
Anti-Ballistic Missile Defense), named SDS (Software Development System). A component of the system
named SREM (Software Requirements Engineering) [Alf77] {Bel77) deals with requirements. The system
wmhﬂtfmdedhgwimmymmnmd-ﬁmamtamunmbeappﬁedwgmﬂimaacﬁvesy&
tems. It enables description of parallel processing. The processes are described by a language called RSL
(Requirements Statement Language). The system has tools that assist in production and checking of the
requirements.

AttheUnivuﬁtyofCaleSmandm,amethodoloyfmwfmmdwdopmmhm
development. It has been named USE (User Engineering Methodology) [Was77] and a part of it is the
USE Specification Method. This system is being built for the development of interactive systems that have
three parts: user interface, a data base, and users’ actions on the data base. In this system, transition di-

Twoprogmd&dgnlmgtmgathmmbemedfarequﬁrmmdevdopedbyhmﬁmm-
panies. A system called SuperPDL was developed by Advanced Technology, Ltd. [Bur83] [ATLS4]). Su-
meanmmmmmmmmumwmmmm
tailed design phases of the software development. It utilizes a non-rigid syntax allowing the designer to
express hisher design ideas in a natural language. Ancther system name<d SDP was developed by Mayada
Ltd [May83). it has some common characteristics with SuperPDL but is batch-oriented and has no data
base.

All the above mentioned systems are more design-oriented, but still can assist in formulating and
processing requirements. Generally they are used by the technical staff during system development. Usu-
aﬂyﬁhhﬂdmmmmemofthesymmmdmmereqtmm that have been for-
mulated in this way.

Many other articles have been published on formal representation of requirements. This kind of
fmﬂaﬁm-dgehﬁ:abgial-kbuedonfmmalmnhﬂmﬁahadﬂmdﬁevepmdﬁmmd
conciseness and to enable requirements checking by thearem proving.

SRI International has developed a design system named HDM (Fherarchical Design Methodology).
mmmmamamaopwwm)wﬁmhawmsm
CIAL. There are tools for proving the consistency of a TLS. There are also tools for proving that the TLS
in fact implemented by a given high language implementation [Rob76] [Rob77] {Lev79].

A methodology named FDM (Formal Development Methodology) {Kem80] was developed by
SDC. Its formal specification language is called Ina Jo™ and it also has tools for formal verification of the
conﬁsmyofaHSmddthemofl_nhnplanmtaﬁonohn&

used both for specifications and implementation. The system enables development of relatively small pro-
grams with high level of reliahility. That is done with the help of a proof system called The GYPSY Ve-
rification Environment [Goo78]. Ancther system named AFFIRM [Mus80] [Tho81] was developed at
USC-Information Sciences Institute. SLAN-4 [Bei84] was developed as a formal tool for specifying and
designing large software systems. It provides language constructs for algebraic and axiomatic specifications
and pseudocode for the design phase.

Some articles that discuss the formal approach to i can be found in the book Research
Directions in Software Engineering by Wegner [Lis79] [Lis75] (Gut77] [Hoa73] and in Yeh’s book Current
Trends in Programming Methodology [YehTT).

All these formal approaches enable a precise definition of a system or a part of it. Their draw-
backs lie in the fact that they cannot be understood by the user, and frequently they cannot be understood
by the developing staff. Therefore a special person having special training has to deal with this aspect of
the requirements, Unfortunately this may have an undesired contribution towards broadening the gap

®@1Ina Jo is a trademark of SDC, a Burroughes Company.

betwamumandsystandeve!m Procf of the requirements can be achieved only partially or for re-
hﬁvdymﬂwummwvummmdaﬂnmummdmdfaﬂmhmmthe
prodemk@ghmghmdthecmthﬁghm:ghﬁﬂfmmﬂtecbﬁqua&mghﬁfﬁmhmmm-
ed,

' Several commerdial software companies have developed detailed methodologies for software
dwdopmuﬂ.PmdﬂaEV.hmpodudamtbdologaﬂdSDM(SymDevdomMzmodnlogy)
M]mmamm&aﬂmmﬁaﬂmmmmuﬁbﬁmeda
software project. The book describing this methodology [Hic79] has a chapter that is dedicated to require-
ments,

Atlantic Software, Inc. has produced a more detailed methodology based on a set of specially
Mmdfm@hmﬁmfmﬁﬂhg&muwkmﬁmd&eme&o&loyh
mmmummmmmmmmmhmsm(smmmm
tions).

Lmdyommmﬁmamﬂmqm&ﬁtﬁngaspedﬁmﬁmmemmtypaofm
cation with common characteristics. Wasserman's work on USE [Was79] was already mentioned.

i fm'pmmdsysmsmbedeﬁnedbyasymmnedmmo[md&]
M],wﬁdmwdopdumNmMCm,m&mmy. ESPRESO consists
damdm,awmmmnmfmmmmwdﬁmdspdﬁ-
cations, and 8 method for the use of the system. The formal approach introduced in [Hei83] produces
abstract requirements specifications that apply to a particular class of systems, those that must reconstruct
data that have undergone a sequence of transformations.

Afmﬂyofspedﬁmﬁmlmgmgathmdedwithtdemmnﬂaﬁmuppﬁaﬁommbedeﬁmd
uﬁngasysmdcvdopedaGIE[Dav&].Spedﬁ:ﬁmfmmermdmbeddedsysmmdy
cussed in [Zav82). The approach is embodied by the language PAISLey. The specifications that are gen-
anedmapuaﬁomlhmcmethnﬂmymmmbhmoddofthepmpmedsymmmﬁng
with its environment.

&npdﬁngly,mlyfewuﬁdauywpdmanway:ofhvdvhgthesymuumtheprmof
defining the requirements [Ber83] [Lun79].

It seems that most of the work that has been done so far concentrates on finding ways to
repruantherequhunammdtoprocessthﬂn,mﬁnlyfmveﬁﬁcaﬁon. There seems to exist a hidden as-
nmpﬁmhaﬂofﬁiswmkofapiodeﬂstmmofreqdrmuﬂmddabﬁckmwledgem&
desired system and its delineation. That is simply not the case with large software sy:tems. Not all the
requhunmtsmhmwn,andinmanymtbespedﬁedsystuninnmmm In other words, there
hamnddaaﬂegapbem&ehzyidwﬂoaﬁnghthem'mmmemmedumqm
ments statements required by the tools and methodologies described above.

E\mhamme,itwunsthntheummovulmkedinmostof:hemkthathmbemdmew
far. Comequmﬂy,thequrunmﬁmfmﬂatedhawthﬂhmtmﬂnsmdablebymmdthe
users and all the validation checks are made among the requirements and not between the requirements
and the user’s perception of the system.

Therefore, this thesis attempts to develop a method to produce requirements for a large software
system. The method should assume no prior knowledge about the requirements and should be user-
oriented. Starting from the users’ ideas and ending with a precise, albeit natural language, statements of
requirements suitable for processing by existing tools. The method should be independent of the way the

requirements are presented. Nevertheless, natural language, as the main vehide of communication should

1.3 Research Goals
a To develop a complete and practical method to produce requirements for large software systems.

: Toidenﬁfyﬂnmmmaﬁmpomhliﬁahﬂﬁsmahodandwspeﬂymmsymfmm
. quirements.

c To understand better, via this methodology, the notions of system, user, and requirement and
how a system is represented.

d To analyze the role of natural language as a way to represent requirements.
e To build automated tools for further research.

1.4 Outline of Thesis

mzmmmammmmdemmﬁumw
ing with such systems. Chapter 3 outlines the proposed method for producing requirements to large
software systems. Each stage is fully described and analyzed in the subsequemt chapters, and is sub-
divided into more elementary steps that are detsiled in sections. In each chapter, one section is devoted to
the automation possibilities of that stage. Chapters 4 to 8 dexcibe the first stages of the requirements
moduﬁmmcﬂnd@-Sﬂﬁy,S-Ummmﬁﬁaﬁm,ﬁ-mmﬁewhg.?-RnRaqdrmmhmg).
Thewqumhmnmtedh@apta9mdacﬂnapmuxypingdmaﬁmofthepeﬁmmga.
M(Cmam&dﬁaﬁm)hdmmwﬁﬂmmmdmmmm
described in Chapters 10 and 11 (10 - Functional Analysis and 11 - Operational System Specification).
Suggested outline for the final products appear in Appendix A. o

After the detailed description of the stages, Chapter 12 reviews the automation possibilities of the
whole method and suggests an automsted system named CASS to deal with this automation. CAS that is
discussed previously is a subsystem of CASS. The last Chapter (13) comes to the conclusions and pro-
poses further research in this area.

CHAPTER 2
Large Software Systems

2.1 Introduction

This chapter defines the notion of a large software system, discusses its characteristics and its
users, and addresses the difficulties encountered during its life time.

2.2 The User

Speaking informally, the word “users” means all the people that have anything to do with a sys-
tem, feeding it with data or using its output. These people are supposed to determine the system’s charac-
teristics in the initial development phase and during its life cycle when the system is in operation. Othex
mﬂemsmdmbethmaﬁngmmMghmmebmﬁﬁng
from it and also influence the system requirements.

Computer-embedded systems that usually operate in real time are activated by or invoke external
processes. These processes do not result from human activity. For example, an automatic computer-
embedded air defense system reacts to signals that come from planes, radars, etc. In this case, the plane
or the environment that generates the signals can determine, to some extent, how the system looks.
Therefore, a user can be a non-human entity, a part of the outer eavironment, or a signal generating
source.

The trend today is to integrate several individual systems to operate together. Thus, it is possible
that a part of an organization is a user of the system and affects its requirements. As an example, in a to-
tal banking system, a central exchange system that serves all the banks can be looked upon as a user, even
though it is not possible to identify a human individual in it.

Therefore, an abstract user of a system is defined to be an entity that affects the systems require-
ments. An abstract user can be a person, a function, an external process, an organization (or a part of it),
another system, etc. Later, it will be seen that an abstract user can be hierarchically decomposed into oth-
er simpler abstract users. This is analogous to functional decomposition of systems in the design phase
[Par79]. The abstract user is perceived by the system through the requirements that it generates. The sys-
tem is defined and shaped by these requirements. In order to develop a well-defined system, it is neces-
sary to identify al its users and let every user gencrate all his, her, or its requirements.

Sometimes it is necessary to go back from the design phase to the requirements phase during sys-
tem development. This happens when it is found that design problems or limitations change the system’s
requirements. Therefore, a system’s own design can act as an abstract user, or more genezally, a system
can be a its own abstract user. This recursive relation can be expressed in simpler terms by stating that
characteristics of an old system influence the requirements of a new system that replaces it.

2.3 A Large Software System

A large software system is defined as a software system that has a large and diversified commmumity
dummdmtﬁlsavﬁﬂydhmmmgminﬁmﬂmdmmmﬁa,mdmmeﬁmu
conflicting, aspects of different parts of its environments, A description of the behavior and evolution of
such systems can be found in [Leh82), [Bel79). ,

A large software system tends to be physically very large (hundreds of thousands of lines of code,
bundreds to thousands of pages of documentation, etc.). However, not all such physically large programs
are large software systems as defined above. For example, a program that salves a complicated set of dif-
ferential equations may be very large, but does not have a diversified commumity of usess, and therefore,
does not fit the definition of a large saftware system.

Many computer embedded systems exhibit the characteristics of large software systems as is men-
tioned below. Very often they have a very diversified commmmity of users of which some are human and
some are abstract users such as external devices, environment, control signal generators, ete.. A descrip-
tion of large, embedded software systems can be found in [Zav82], [Fis78].

2.4 Characteristics of a Large Software System

& Diversity of users: As mentioned above, this is the main characteristic of large software systems.

b. Mﬂﬁmdedusers:‘msfmismtmﬂyapmotthednﬁﬁﬁm. However in reality, the
diversity of the users community yields a multitude. The number of users of a large software sys-
tem ranges from several tens to several thousands.

(- Physical size: A large software system tends to be physically very large, Typically, it has hun-
dreds of thousands of lines of code, bundreds to thousands pages of documentation etc.

d. Resources for development: The development time of a large software systemn until its imitial
operation is typically five years or more. The costs rise from hundreds of thousands to tens of
millions of dollars. The development staff peaks at tens or hundreds of people. Typically, the

size of the specifying team is over ten people.

e. Influence: A large software system generally plays an important role in the operation of an organ-
jzation or of a major process. Stoppage, disturbance, or a malfunction of the software or its
underlying hardware can inflict severe damage to the organization.

f. Cyde life time: A large software system is built for a continuous operation for a long time. As.
suming adequate maintenance, 10 to 15 years is a fair guess.

g Maintenance: A large software system is being developed all throughout its life cycle. Users’ re-
quirements change; new users, new requirements, and new applications are introduced, and
hardware units change. A large software system is usually dynamic. Previous data shows that the
cost of the maintenance from the initial operation to the end of the life cycle time mounts to 3 to
5 times the cost of development until the initial operation.

2.5 The Difficulties in Developing a Large Software System

Awmmm&am&mﬁamhmy&vdmdaMge
scale project: amdmm@m!mmfmgl@gmman@ddﬁgmmm
resources and timetable.

Any software development, whether small or large, has its own drawbacks. Inavailability of prop-
amh,h&dm&mm,mmmdddpmmmaw,m
ence, and tools for conducting satisfactory testing and quality assurance.

To these difficuities, others are added that are inherent properties of a large software system. A
dndemmhmdypudvedmm@uawﬂemdmﬂwhummmthemiea
mmgemdlﬁsﬂaﬂwithmmouspmblumthﬂmrmaﬂygobeymdthcmalys‘uphm Having a
mmdmmmmmmmmm&ﬂmmmmm
(mthﬁm,mpaaﬁm,hﬁﬁmhmﬂiﬂ)hhpabmﬂdnmdfmmmﬁdngmdfmmﬁng
priorities. Ammd&mmumw,wmmwm
such as abstraction, capabilities, and intuition.

Thccﬁvuﬁtymdmﬂﬁpﬂitydmeummﬁmamﬂndwdommmmh-
complete or unsatisfactory requircments. This may lead the system to be umusable to a certain degree
rmgingﬁomlameopuaﬁon,inwﬁd:mlymeﬁmcﬁombemﬁedan,mwulimpcnﬁm There
mmmwmmmmﬂmamuwmmmm.
Mehmwyammmmandmphmmmdmmemedmm
Furthermore, it is difficult to identify all the users of a large software system. It is quite common to over-
look a user or even a whole group of users.

2.6 Errors in Requirements

An error that is made in the requirements phase of a software project has a more severe impact
than an error that occurs in a later stage of development (such as design or programming). A rule of
ﬂnmbhdmuﬁm&ewﬁa&emgehwﬁdmmhmﬁe,hmdnhmemmmmk
the time needed for correction. This problem is most severe if a mistake is made during the system defini-
tion, because such a mistake can affect the overall pexfarmance or usahility of the system. Considering
the resources and the time needed to develop a large software system, it is dear that no effort should be
spared in order to achieve good and carrect requirements.
mmwmummmmwmmdmm:
Error in a single requirement.
Absence of a single requirement.
Inconsistency among some requirements.
d Inconsistency among groups of requirements.
e. Absence of a group of requirements.
f. Overlooking a single user.

g Overlooking a group of users.

[

o

It is desirable to find a method, or a class of methods, that could ensure completeness and con-
sistency of the requirements as applied to the user and his and a method that aids in identifying all
the users of the system.

the

needs
The requirements of a system are likely to change during the system life cyde. The dynamicy of
the environment will probably force it. The above mentioned methods should allow dealing with changing

2.7 Cost

As menticned above, the resources that are allocated for developing of a large software system
are quite sizable: hundreds of thousands to tens of millions of dollars during a period of time of five to ten
years unti] the initial operation. The costs are three to five times more for the whole cycle life time. Dur-
ing this period, tens to hundreds of people of various levels and capabilities will be involved in the system
development. These people are usually difficult to find and are quite mobile.

peration, mal-operaticn, ar late operation of the system. It is very difficult to evaluate in exact figures the
damage to a bank of not knowing balances for some days, or to estimate the damage that a country may
suffer because of malfunctioning of an air defenss system. The harm done may go beyond just money
loss and can be described as a major catastrophe. Equally difficult is to quantify the
inoperation of a system on time. It depends on many factars, such as the type of the i
tality of the application, the existence of a back-up system, etc. Words like “enormous” are usually used
as an indication.

2.8 Organizstional Problems

Misapauniahhorhgedsh’ﬂzd-pwpleinanlcvehofwﬂwmdwdom At the more
senior technical levels, the lack is more severe and more significant.

The situation is different for the phase of system definition and requirements analysis. The skills
desired of the specifiers are not evident yet. It seems that a good specifier would have to have a high
technical level of proficiency, a system approach with applications-ariented understanding, and manage-
ment and psychological knowledge in problem solving and related topics. Hiring and training such em-
ployees is extremely difficult. On top of that, their wark methods are not structured and no proper toals
exist to assist them. The result is that specifying a large software system is a very difficult task. It seems
that managing ten specifiers can be tougher than managing fifty programmers.

2.9 Conciusions

mMuafalargcmm:ystmuﬂofmabmawmdeﬁmd. The characteristics
of a large software system were laid down, The importance of the requirements in the developmeat pro-
cess and the difficulties in forming them were discussed. Rough estimates of the money, people, and time
invested in the implementation of a large software system were presented. The necessity for a smoothly
operating system leads to the need for a method to produce requirements. This method has to address the
mﬂmdmplcmmmmofmemquhmhrdaﬁmwimmum'Mmdwm-
sure a full coverage of all the users.

CHAPIER 3
Qutline of the Requirements Production Method

3.1 Intreduction

This chapter outlines the suggested method for requirements generation and analysis of a large

software system. The following chapters detail the stages that are outlined here.

3.2 Purposs

»

p P oo

[

The suggested method attempts to achieve the following goals:

provide an organized work plan for requirements analysis,
identification of all the users,

ensuring completeness and consistency of the requirements,

obtaining users’ cooperation in the process of requirements generation,
increased perception of the large software system by its developers, and

3.3 Steps of the Requirements Production Method

1

2.

Study — initial study of the crganization and the eaviromment in which the desired system is ex-
pected to operate;

User Identification — identifying all the potential users of the system;

Interviewing — addressing all the system users, and identifying their problems and their require-
ments;

stage. At this stage, the users confirm and rate their demands;

Verification — checking the requirements for completeness and consistency versus the needs of
the users;

Functional Specification — analyzing the requirements and classifying them by subject;

Operaticnal System Specification — identification of basic system operations and of system
processes and determining how the system interacts with its exnvironment;

11

Egme}ljrjphimﬂyshmﬂwouﬂinedm. _
Input Stage Qurput

written material (doctrine, operation, Study
procecures, reports), interviews

User Identification users tree
interviews, discussicn, Wwritten material Interviewing interviews summaries, list of problems
requirements Raw Requirements list of requirements rated by the users
Processing
users tree, requirements Verification reqlumu-ee,m

requirements mapped to subjects - -

“Figure 3-1: An Qutline of the Requirements Production Method™

3.4 Flow of Information in the Process

The basic unit of information in the suggested method is a requirement. It undergoes several
modes of processing along the various parts of the process. A requirement is generated, rated, classified,
reﬁned,wmpmedwiﬂ:oﬂurequh'anﬂm,vcﬁﬁed,mapped,uﬂm:ﬁmmmnovei

Other information jtems that participate in the process are abstract users and abstract data types.
Abmaaummgmnednmcbeginﬁngofthemmdmdmpmedmmdumanwidmﬁﬁ-
cation of all the users. Abstract data types are usually formed together with the requirements and undergo
the same processes. They serve as the logical basis for the data directory of the specified system.

lheabi]hymdnﬁmbmicinfmaﬁmmﬁummuemmedhmmmﬁdnepmdsm
mation. A lot of human involvement is necessary here because of the need for unstructured knowledge,
proa&ing,reawning,innﬁﬁon,dedsiom,etc.. However since the number of basic information units can
bequi&wmidmﬂe(tmmﬂwumdsofum,mm&wmommdsdmﬁmnmmdmmdmdsw
tens of thousands of abstract data types), even the most basic tasks of automation, such as recording, do-
mmunpromﬁns,itammm,emmofamhﬂpmmesysmspedﬁmmdwmepmjea
management. Furthunepsinmmpmu-mdnedspedﬁmﬁommcﬁsmsudfmmdumgemdyand
an overview is presented in Chapter 12.

3.5 Inputs and Products of the Process

The inputs to the first stages are quite vague and unstructured. Among them are various staff pa-
pers, doctrines, written procedures, organizational charts, documentation of other systems, etc. The most
important inputs are the ideas of the people that are involved in the system. Sometimes these ideas ap-
pear in a contractual form. The purpose of the initial parts of the method is to materialize and structure
the inputs in order to allow further processing.

The products of the method are the requirements of the system with attached abstract data types,
users list, and outline of implementation alternatives. These products are the base for the design process
and the logical nucleus of the system that will be updated during its life cycle.

3.6 Discumsioa

The main significmce of the proposed method lics in the fact that it attempts to convert unstruc-
tured activities into an ordered, disciplined process, and to deal uniformly with large numbers of users and
requiremeats,.

There is a separation between the field-work, i.e., information gathering and investigation of
users, and the analysis work that is done by the specifiers. This approach yields two different levels of re-
quirements and defines a single requirement to be the basic unit of information in this method. By struc-
 turing and defining information units, a partial automation of the method is possible which can assist the
specifier int his job. ,

One of the main concerns in specifying a system is to ensure a full coverage of the users and the
niques are useful if they can compare system specifications to the needs of every user or groups of users.
Checking specifications among themselves is important because it indicates that there are no contradictions
and omissions to a certain level, but the ultimate test remains to be versus the users.

Many parts of the process have to be done as a team effart, allowing the users and the specifier to

It is important, though, to note that the suggested method can neither be fully standardized nor
fully automated, since it is essentially a process of design and reasoning. The purpose of the method is to
introduce systematic order, to allow more people to carry out specification tasks, and to better utilize the
people that participate in the process.

13

CHAPTER 4
Stage 1: Study
4.1 Introduction
MﬁtmdwmeMBmmﬁﬁdﬂm
m:r,ﬂaeorgmﬁnﬁmhwbid:ﬂnplmmdsymﬁﬂopam,themirmm So, this chapter
Lmﬁngabmﬂ&ewsmumdﬁsmgmﬁmﬁmisamﬁmmmthnismﬁedmm
anthemqtﬁrunenngntbuingphasawcnhnothedaignphm It is hard to anticipate and to acquire all
dnmuyknowledgcmmeﬁmmge,spedaﬂywhmampwfmmhspedﬁd

4.4 Antomation

Dmingthereqdmnmmodmﬁonmethodmdoammmﬁledup. These documents are
accessed several times in several stages. Therefore, having an on-line the list of documents with brief
dmuipﬁom,k:ywordsmdpointmmphysicallomﬁm,mbeofhdp]atu In fact having the docu-

mmtson-linecanonlyhelp,asitisthenpossihle,e.g.,touseecﬁmtoseard-lformmofsigﬁﬁ-
cant terms, etc.

CHAPTER §
Stage 2: User Identification

5.1 Introduction

One essential property of a large software system is a multitude of diversified users. Hence, any
methodology that deals with such a system has to identify the users first. Then, these users are ap-
Mmmmmmw,mmwmﬁmm
Therefore, a proper identification of users is a cornerstone of this methodology.

Traditionally, methodclogies for requirements specifications (e.g., [Ros77], [Alf77]) focus on the
system’s functions. Their primary concern is what the system does, with only secondary attention to who
uses it. The system'’s users seem to be obvious and therefore, frequently overlooked. Yet, system specifi-
cations, which are poar from the users’ point of view, may successfully pass consistency and completeness
tests with reference only to the system’s functions.

The methodalogical approach that is suggested here focuses on the system’s users and looks at the
system'’s functional specifications as the output of processing users’ requirements. A system is conceptually
as the net sum of the users’ views (this term is defined later). Figure 5-1 illustrates a system
representation by several users (denoted by the letters a, b, c). Only part of the system is covered by the
users’ views. Adding mare users’ views will result in a fuller coverage of the system.

Figure 5-1: A System and Users Views

A user-oriented approach seems to be logically simpler than an approach which starts with an at-
tunpttowntcﬁmctmnalspeuﬁcanm A user is a better defined and understood entity than a function.

15

One of the most common and most serious faults in system development is overlooking a user or
a group of usexs. Snmaumtypiaﬂygmatamudrequ&@.adgniﬁmtpmﬁmofthesped—
fied system may be overlooked. Any mistake in the specification bears scvere comsequences for the
developedsystun.nottomnnionthcfaﬂmtodeﬁneapm&it. A large software system has many
us&rs and is more prone to the danger of overlooking some. Thus, the first task of the spacifying teom je
to identify all the system’s usexs.

A method that attempts to overcome the problems of user identification is suggested in this
chapter. Thenutwcﬁmuplaimmzofthemmnmusedhmceforﬂ:,mdmmemethodof
hiaardﬁmldemposiﬁmofabs@aaugmisd'uuuud. Afterwards, the automation possibilities of the

5.2 An Exampie: A Banking System

Abmhngsysmkdanommedﬂrmghﬂisﬂ:ﬁshmdammmemcofthemof
the proposed method. The banking system under consideration should take care of all day to day opera-
tions of the branches and their various activities. This includes a variety of services such as ,deposits to
and withdraw accounts; Joans, mortgages, ete.. Other activities that fall within the scope of the desired
mmhtafmﬁ&&ebmkmmgmﬂmdbmw@m This kind of a
systemhindeedlmgemdmplamdfaﬂswiﬂﬁndndcﬁﬁﬁmda]ngewfmuym It is difficuit
thought to determine at first glance its users. Still, many of its applications are commonly known and do
not need lengthy explanations. Figure 5-2 shows part of the user domain of this system. The main groups
dmm(mhaﬂdhu“mm’ﬁmmemmcm,mmm
mmﬁmmmmmmm@pdm Each of those groups of
users are decomposed to its main constituent parts. E.g., the user branch is described to entail the users:
branch management, tellers, and back office derks. Figure 5-2 is self-explanatory, and looking at it re-
veals how further decomposition is done.

53 MMWNMW

Anabmaamofasystunisdeﬁnedwbemenﬁtythataﬂemorm-aﬂeathesym'sre-
qmmmmdmthnanmﬁtythnminvohthesym’sﬂmcﬁm An abstract user cam be a per-
m,amdpam,aﬁmcﬁm.nmgmﬁnﬁmmapmtdh,mu&mﬂprm,mﬂnm
etc.

Under this definition one can identify all the persons that provide inputs or use the outputs of the
mm—mmmmmmamm“mmwmummmMu
system as a single entity, the system’s operators, etc. Other systems may affect this system’s requirements
through interaction with it. In many cases, the system’s design may affect the requirements, usually by
impcdngd&dgnmum,mdmﬂdmﬂnddpim&mmmumﬁadmmm.
Abstract users may be defined at several levels of generalization.

An abstract requirement is a property of a system that is perceived by an abstract user. This may
be a collection of simpler requirements that can be further decomposed. There exists a many-to-many
correspondence between abstract users and abstract requirements. One abstract user can originate several
absﬂadreqxﬁrunﬂm,mdmabsmmﬁranunmbemiginnedbymadabsuaaum.

COMMUNITY
T
! L | }
BRANCH QUSTOMERS ADIACENT BANK
SYSTEMS MANAGEMENT
INTERNAL AUOIT I
BACK-OPFCE | orawens | communicanions CONTROL
TELLERS: | oanees | avm | execunive v
BRANCH OEPQSITORS ACCOUNTING PRESIDENT
MANAGER *
|ome ormex san | | [rixeD assETS |
[Der oTHER SRANGH J ACCOUNTS PAVASLE |
[cer oo account ACCOUNTS RECEIVABLE
DER NEW ACCOUNT|| GENERAL LEDGER
' LOANEE:CAR I
| LOANEE: PERSONAL
| LOANEE:SUSINESS |

LOANEE: MORTGAGE

Figure 5-2: Usars’ Domain of a Banking System

17

Foﬂwhgﬂndmmpodﬁmdabstnmmuﬂveaapohnwmmereqtﬁmnmm
ated with a given user may be fully delineated.

Reqﬂmnmoﬁmbermmdmhnpaaﬁvemﬁthaﬁmcﬁmuﬁnvabof
the sentence and abstract objects as the direct object of the sentence [Kems0]. In s case, it is conr
vaﬁemmmabsmdaumﬂjﬂﬂmmdeﬁﬁﬁomdmmmofmdrobbm
throughout the requirements definition. In the forthcoming example, functions and abstract data types are
used to specify requirements.

Thesdunemayﬁnubeamma'mdsthﬂof_mabs&aﬂumwbogmmmqlﬁr&
ments that are expressed by functions and by abstract data types. A scheme of an abstract users tree with
reqnﬁrunmugmmdatthedmmabsmmlevdisgivminﬁms-&

USERS' COMMUNITY

AU
ALY All.lul - N.i(-l
| I AN | AU I l I
AU(LZ) AUZZ] AUIZY) AURZ) AU23) O AU(s) AUR2) Al(mm)
Tt E]
P —] R
I mtzzzal
A2 AZ2) AU AUI(2.321
_— - E R SRR
F— ——— — F—
AU ASSTRACT USER
B RECUIREMENTS

Figure 5-3: An Abstract Users Tree

5.4 Method
1. Determine the highest level abstract user.

2. Decompose every feasible abstract user.

3. Rmuwzmnymdvuﬁanymﬁlmmmmhmmmﬁm
decomposition is possible or useful.

4, hvsﬁgaﬁwayindiﬁduddunmtuyabs&aammddmmreqdrm(&em
6).

5.5 Hierarchical Decomposition of an Abstract User

The process of decomposing the abstract users of a system starts with the generalized community

d"mm"mﬂhrwuﬁdﬁaudﬁmﬂywb&ehﬂhwﬁdﬁm&mﬁmhmlm
possible or useful. '
- An clementary abstract user is an abstract user at the Jowest level. These users usually represent a
wel] defined entity such as persons who can be interviewed, processes that can be analyzed, organizational
structures that can be investigated, etc. Thus, the process of generating requirements, once the elemanta-
ry users has been identified, is more natural and simpler to carry out. The trade-off is some redundancy
during the process of requirements elicitation, because the same requirement can be originated by several
clementary abstract users. This redundancy however, will be shown to be very useful for consistency and
completeness checks. It does not pose any burden on subsequent system development since it can be easi-
ly eliminated from the final product of requirements specifications. The final result of this decomposition
mkmabsn«mmm,wﬁdaﬁﬂydambamemdomﬁndthesymmdhduduanthe
abstract users and their decomposition. The next stage — Interviewing (chapter 6) involves generating the
requirements of the elementary abstract users.

This method, if carried out thoroughly and carefully, enables the system specifier to arrive at a
good coverage of the system users. Its main advantage is in comtrolling the complexity of the users
domzin by considering at any given time only the few abstract users that result from one upper level
abstract user. :

C.I - fmm’ lll . i ’ hfn L] e e

a mhnndingfmwbemnﬁia,membudabsumwmumiﬁna&m.
the decomposition of a singls abstract user should be Emited (range of 2-6 is reasonable.).

b. The elementary abstract users should be only those who can be directly interrogated for require-
ments, Foragivmabsmw,ifthbhnmmeme.dnnﬁnduoracﬁﬁmdemptﬁﬁm
is required. '

c At any level, an abstract user should bs a meaningful and logically sound entity. It should be a
well-defined entity that can be related to (Abstractness is by no means meaningless.). It mst not
be an incomprehensible gathering of other abstract users that have no common meaning.

Similar criteria for functional decomposition of code can be found elsewhere [Par79).

5.6 Auntomation
The functions of this stage that can be automated are:
a. construction and maintenance of the users tree.
decomposition of abstract users, and
c managing the specification project.

19

The entire users domain should be recorded and maintained. User information such as identifica-
tion, description, links to parents and children must be kept. Further data items such as requirements are
added during the next stages.

mmﬁmwﬁwmmmmmﬁmmﬁm@xmm
tions domain and a background of similar applications. Here the specifier can be assisted by an expert sys-
mmmmﬂizuakmwledgebaemmmespedﬁa’smmﬁmmpmﬁhhpmmddmpodﬁm
Thehnwledgebuemﬂﬂ&mmﬂaﬁmofapuﬁseofﬁmﬂmappﬁmﬁm Thus, an expert sys-
tem can artificially augment the specifier’s experience.

umﬁmﬁﬁaﬁmmp,&mmwmuampmmmmhmhmd
schedules of the specifying team.

5.7 Conclusions

Tﬁemmmwi@ﬁfywmoﬁaspedﬁedmmbem It expands
the intuitive notion of a user to the notion of an abstract user. A process of identifying users by hierarchi-
cal decomposition of abstract users is suggested. It is simple and orderly, thus reducing the chances to

ovexlook a user or a group of users.

The noticn of a user is basic to the whole specification methodology. The user is looked upon as
themofthereqﬁremm,mdthespedﬁedsymasthemofium'vim

mmmwmwwmwum,wmmmm
maries into requirements and how to check them. The notion of a requirement is further expanded to the
mﬁmdmabmnmqtﬁrmm,mhﬁngdiﬁmhvdsofuwﬁmmdhdingmawmm
and verify the requirements.

CHAPTER 6
Stage 3: Interviewing

6.1 Introduction

In this chapter, the method of interviewing the user of the system is discussed. In the previous
m,mmmhdzﬁndmbemym&wmnmﬁeadnm’sm After
W&MMMMuhmmMam&M&b

An elementary abstract user is, or is associated with, a real, physical entity, that would be usually
referred to simply as a “user”. She, he, or it is a person, a small well-defined group of pecple, a process,
ar other automated system that can be directly approached.

This investigation usually materializes in the form of people-to-people discussion. However well-
defined and well-documented the user may be, it seems that this encounter is unavoidable. Even if a cer-
tain elementary abstract user turns out to be a non-human entity (e.g., another automated system) still the
best, and maybe the only way, to elicit its requirements is by talking to people who run that system or are
in charge of it.

Every practitioner and every veteran of the area called “system analysis”, anybody who has ever
tried to specify systems requirements, has probably experienced the difficulties and frustration of this en-
counter. Two main reasons are supposed to cause these difficulties. One is the mental and technical gap
between the user and the specifier. The second lies in the fact that system’s requirements are essentially
the expectations of its users, and expectations tend to change. Therefore, a system seems never to be ful-
ly specified [Leh82).

This chapter discusses more deeply those difficulties, tries to lay down an orderly method for re-
quirements eliciting from the elementary abstract user, and a way of recording the results for the sake of
the next steps in the method at large. This chapter addresses mainly the problem of person-to-person in-
terface, which is a most difficult one to structure. Scme techniques that are based on psychological or
management techniques have therefore been suggested.

The importance of this stage is evident. This part of the method is where the first connection is
established between the system implementors and the system user, where the specifying work starts to be-
come a down to earth task, where computer science encounters reality. Here the cornerstone of the whole
system is formed. The new requirements that are generated at this stage are processed, checked, and
composed later on to form the base for the systems delineation.

21

Qﬁtz&equmﬂy,sysmmdwnm}mn.diﬂm&omwhﬁdthuthcummtheddgna

had in mind. Mmainproblmhavebeenxdem:ﬁedmdmmﬁomdabove. They deserve a further dis-

. .
treme cases despise towards the user. The system user (ar potential user) is application-ariented
and has his own jargen (be it banking, apparel industry, military and control, or what-
eva).fhknomvaywnﬂ!ﬁsdaﬂyrwﬁmamikgmﬂyunﬁdmmdsmm
mggatd:mgingevayﬂingaftuadimofafewhmrorafewdays.

In extreme cases, this relationship develops to plain hostility and sometimes causes the
termination of the whole project. Various solutions are designed for such cases, notably adding a
third party, a mediator, between the specifier and the user. Rarely is this solution satisfactory.
'Ihemedim(whmvahisﬁﬂemaybe)isforceddthzmtakeaaidcortofmvaguemﬂu,
mm@m:ﬁdybo&ﬁdumdwmgbmmmﬂ:ﬁmdawendeﬁmdm
tem.

mmedmwnhsﬁnxﬁmﬁndmdmbﬁshedunmoﬂhcorgﬁmﬁm
MMMW,MBﬁc&pwddmwaﬂS,symmmmhformﬁm
proachm:tbeﬂnulﬁmatcsoluﬁonwtheppproblm

W:mmmmdammmmMuang
the users’ desires and various comstraints, such as techmical limitations, budget and time limita-
tions, etc. m,mmmmmmmmmmfmamm,
theapmﬁmofthemmtcndmd:mgeandvary,mdmvagmmdvolaﬁle. An old saw
mtnthatifasystunworh,itdoamtfulﬁnthewishaofinum,whmemﬁmhaveal-
ready been changed.

ideas are introduced. Asﬁmepromch,usus’puwpﬁonsabanmaﬁmmdabmﬁﬂ:drown
systanreﬁms,mﬂdsyﬁndbetterwaystoe:prwthdridm This yields a stream of new re~
quirements and desired changes to the old requirements.

Atﬂ:eﬁmewhmthenewsyﬁanisopuaﬁomlandinﬂod:mdasnﬂlfmtheﬁntﬁme,
usmtypiaﬂymmaﬁsﬁedbeamedﬂautb:ydomtuemedthdrmqﬁmnmmaiﬂ-
izethewuydwywmﬂdﬁkcthanm,mthdrlwdofupeaaﬁmhmdzmgedandthndmm

. are i uced

This problem has been addressed so far by a mixture of administrative and technical
means such as freezing requirements, configuration management, ¢ic. In other words, at the mo-
ment when the user ceases to be indifferent or hostile to the notion of the new system, at the mo-
mmtwbentheusersmtobeacﬁve,adted,intrigued,aeaﬁve,andwishatowmribute,he
has to tackle what seems to him new obstacles. This can inflict upon him a negative attitude to-

wards the suggested system and its specifiers, or broaden the communication gap between him and

6.3 A General Approeck

The general approach that is suggested here is to look at the requirements generation at the ele-
mentary user level as a problem solving process that is carried out cooperatively by the users and the
developers of the system. Numerous techniques have been developed to address problem solving issues
[Van81]. Some of them can be adopted in requirements generation.

The most important issue here is that of team work. Both users and designers team together to
solve a problem. That solution will be implemented in the system and is desczibed by the system require-
ments, If this approached of togetherness prevails, then the communication gap narrows or disappears,
yielding better working relations and better results. The techniques that are described later on are used to
create and enhance this form of team work. _

One of the best known models for general problem solving process is Simon’s [Sim77] three stage
process of intelligence, design, and choice. In the first (intelligence) stage, the problem is recognized and
information gathered; in the second (design) stage, problem solutions are developed; and in the third
(choice) stage, the solution alternative is selected. The process of requirements generation can be looked
upon as a problem solving process. The user has problems to be solved by the desired system. These

have to be identified, information has to be gathered, several approaches to solve them have to
be discussed, and finally, a solution has to be selected. Therefare, the requirements eliciting method is a
multi-problem (because a single user may have several problems to be addressed) solving method.

Assuming for a moment that the communication gap can be narrowed by using a problem solving
techmique, still the second problem of expectation remains. No solution to this issue exists, and it is
doubtful if a solution is desired at all. Creativity should be looked at as a virtue that has 1o be en-
couraged, and a reasonable method has to pave a way to redirect and use the users’ expectations rather
than to discourage them. A fairly practical assumption is that every system is due to be changed and there
is no way to avoid new requirements being introduced.

6.4 Requirements Generation at the Elementary User Level

The process is outlined as follows:

a Preparatory Stage:

1. information gathering,
studying the environment,
lanning the i e
prepesing of ial .

b. Investigation Stage:
1. forming a discussion pattern,

I

fmmm4(mnmmwmmmuwmwm
rated, and selected. The reason for this delay is that this stage addresses the elementary individual user.
Amdmmmmmum,m@mmhﬂmmm
before proceeding to a selection method.

In the remaining sections of this chapter, sub-stages a, b, and ¢ are further claborated.

6.5 ’l'h-l’repn'm'ySnb-Shp.

Tlﬁssﬂgeispufmmndbdmgdngtoﬂ:espedﬁedusuﬁﬂhmembjeaofthem.
Fm,hfmaﬁmbgathﬂdawnﬁsbbdeﬁﬁﬁm.ﬁsphchmemgminﬁmmm,m
and activities that he is in charge of or participates in, and anything else that can bring the specifier to be
more knowledgeable about the user. If the elementary abstract user is a process, a system, or any other
nm-hmmﬁty,dmthepawmthﬂmmoﬁhnwledgabbabaﬂhhmembeidmﬁﬁedmdad-
dressed.

A thorough study of the user takes place before the interview starts. It is advisable that the user
behfmmedabmﬂthespedﬁm’hﬁuﬁommdw&ﬁﬁantﬁspdmandmmdmthcspdﬁc
what kind of information to gather. Then a set of questions are prepared and sent to the user before the
interview is done. In this way, he can get himself prepared for the main issues of the interview. Further

The whole process of investigation has to be planned ahead by the specification team. Care has to
be taken for items such as time and place, duration, allocated personnel, contents, etc. Under no dr-
cumstances should the time be limited, but one session should be limited to two to three hours. Provisions
have to be made for further interviews if necessary.

6.6 The Interview Sub-Stage

This stage should be and should look like a team effort rather than a court inquiry. Both the user
and the specifier must have the feeling of participating in a common effort. Therefore, the word “confer-
ence”, rather than “investigation” fits better here.

The conference should include the user and a small team of specifiers. The number depends on
the project size and on the needs but is no more than three or four persons. The user can involve other
in the conference, but one session should be dedicated to each single user, in order to make the
usafedimmrmnmxghwmm;mofspedﬁm,mdwmmmmwsspedﬂm

Onepasmwﬂ!badﬂncﬁsumimmdmthapasmwmbeinchxgeofrmdingmddouh
mentation. Agoodleadﬂcﬁremthewnfm,prmitﬁangdngm,mdmthefunpuﬁ-
cipation of all the attendants. He does not try to impose his own idea or preconceptions (if he has any) on
the other participants,

Gmaﬂyspeaﬁng,&esﬁﬁngdﬂmcmfmvﬁﬂbethﬂddmﬁalbrﬁmﬂming[&bﬂl.
mnmwmmmmm-'mmﬂ,hmmwmmm
to work together cn a problem. The group is encouraged to generate ideas and to record them. All ideas
mmﬂemmhmhﬁg&muﬂﬁmdmwmmﬂmm
new ideas. No criticism or judgement of ideas is permitted until all ideas have been laid down.

The conference starts with an introduction by the conference leader that states the purpose of the
meeting. Time is allowed for questions concerning the background material and then gn input-output tech-
nique is used to direct the requirements generation. The user, followed by other team members, estab-
lishes the desired output, the major inputs affecting the output, and any limiting specifications that the out-
put must meet. (This method was first developed by General Electric Company [WhiS8] but has been ex-
tensively used in various system analysis and software processes. A further development of the method
&mﬁmmemmmwdhmmmm

1D.

Wishful thinking and outrageous ideas are encouraged. No technical matters or technical jargon
that excludes any of the participants should be allowed. The conversation should use application terms
rather than implementation terms. Everything is laid out on the board in front of everybody and re-
evaluation and feedback is encouraged. No criticism of the suggested ideas should be allowed. However,
mﬂyﬁngeﬁsﬁngmmdm&ns,haaiﬁmlmdmﬂdbempd(mmmﬂoﬂm,d
course). A good leader (conference director) takes care of all this.

As a problem solving process, this stage blends several techniques known as Wishful Thinking,
Input-Output, Attribute Listing, Classical Brainstorming, and Lateral Thinking (A good description of
numerous problem solving techniques are found in [Van81].). The main idea is to allow teams to work in
an organized, orderly manner to enhance creativity and idea generation. The team must, in a relatively
short time, find the main problems of the user (actuaily of all the users of the whole organization) in view-
ing a specified system and to suggest solutions (Note that a solution here is defined to be a requirement of
the system.).

The method known as Lateral Thinking deserves a spedial discussion. It was developed by Ed-
ward de Bono [Bon70] to provide a method far escaping from conventional ways of looking at a problem,
and for developing new methods and new attitudes to apply to the thinking process. The purpose of La-
teral Thinking is to disrupt the normal patterns of thinking by introducing discontinuity and thus enabling
new ideas to be formed. The techniques used for this purpose are swareness, suggesting alternatives, and
provocation. The requirements analysis phase of systems development is the time to introduce new ideas.

hadammmﬁmdmmym,ammmmm&umm
mmwmmm,mmdmm-midemum
duced.

wdﬁm,wﬂebadpmmmwﬁaﬂymm,mm.ammgm,mndm
those new capabilities in order to excel in that task.

6.7 The Documentation Sub-Stage

Themﬂﬂofthehwaﬁgaﬂm@dnﬂdbepmpulydoammwdmdmedumhpmmt&
next stages. Since several teams are investigating many elementary users, a unifarm way of documenta-
tion is critical.

Asmenﬁomdabove,medmemmbushhd:zgedmdhgmddoummﬁng. How-
wa,eachmunbuof&emhm&fedrapmﬁbﬂhyfmthemﬂtmddnﬂddoﬁsbutinhﬂum
ing it. mwummmmwmwmmy@mmmwg.,mm
charts [HIP74]). No formzl presentation of requirements is indicated at this point.

Several papers are distributed among the team members during the first two stages, such as back-
mmm@mamdmagﬁmmamﬂm,m They should
be stored for later use and reference by the system implementors, or for use in a case when changes t0 2
requirement are needed.

Atmemddthehwsﬁgaﬁmmge,ammnedmehvsﬁgaﬁonmmisgm
Its contents are as follows:

a . Gmaalinfmmaﬁon-plamanddmdmnfm,mdpuﬁdpm,rdmmbu,

' name of the abstract user, etc.,

b. Organization chart — the function of the specified user in the organization,

Functional description — a list of the main activities and responsibilities of the usex,

d Detailed activities and processes — detailed description of activities and processes in which the
mpuﬁdpﬂa,m&ﬂmmdaﬁsrmmﬁh‘ﬁty,amhﬁomlﬁsxﬁﬁﬁa.lbedmipﬁm
is laid down verbally or graphically in an easy-to-read and understandable way,

e. Oﬂuhm—mbjem,acﬁﬁﬁamdpmmamadomtﬁtmm)mmmm
uring the i g

£. List of problems ~ a list of all the problems perceived by the team in the existing system from the
paint of view of the user,

8 List of requirements — a list of all the requirements raised by the team.

Problems and requirements should be laid down in a logical, arderly manner. They should be or-
dcredbysubjects(mxinotd:rmologmnydisamedbymewm). No subject that has been discussed is
allowed 10 be eliminated even if it seems to be not important to the editor. This investigation summary
document should be reviewed by all the team members before its final issue.

6.8 Antomation

Only some parts of the method that is suggested in this chapter can be automated or computer-
assisted. It is impossible to conduct a computer-assisted interview. An attempt to do so can frighten and
deter some of the users. However, it is possible to take advantage of the computer to edit and to store
the interview summary documents.

As discussed in chapter 3, it is highly desirable to automate or to be assisted by computer as much
as possible throughout this process. The interview summary documeats are input to the next step that
forms the raw requirements. Capturing them in the computer at that early phase enables to check for
completeness of all the interviews and gives the project manager an important tool for follow-up and for
monitoring the project. Word processing capabilities facilitate the editing and the generation of nice docu-
ments.

A full survey of automation of the requirements production method for a large software system in
given in chapter 12,

CHAPTER 7
Stage 4: Raw Requirements Processing
7.1 Introduction
Iheprevimnmgehuleftthespedfyinsmwhhabulkdimuﬁgaﬁmmuia. This stage
mmmmmmmmmmmmmmjm@mﬁed)mm
by the users.

_ requirements processing,
systanbymbjea,dmanowingambjectmbepacdvedanddmhwithuawhole. The output of this
mmmmm,mmmemmmmwmm Thev
mﬁnduvuiﬁedandprmedhthenatmgs,mcmdvuiﬁaﬁmmdﬁmcﬁmdspedﬁaﬁm

This chapter describes the suggested steps of the raw requirements processing stage. Substantial
automation can be used at this stage, and the issues that can be subject to automation are discussed at the
end of the chapter.

72 Method
The raw requirements stage involves
1. incorporation of implicit requirements,
2. preparation of keywords /subjects list,
3. classification of problems /requirements,
4 users’ rating of problems /requirements,
5 transiation of problems into requirements, and
6 further investigations whenever necessary.

Em?-ldum‘bsthemﬂhedmmgc&nwimtbcdmwmewedgemmumh-
volved. ..

DETERMING
2007
LEVEL-20CT AU

—

DECOMPOSE
INTO (i+i|th
LEve,

fOR ELEMENTARY BAIA-TYPES TO

SR (i-i)th LEveL,
MNDG ASSTRACT COMPOSE -
CATA-TYPES FOR REQUIREMENTS |~
|_ELEMENTARY USER| TO (i-11th LEVRL
DOWNWARD FROCESS : CORRICTIVE PROCESS UPWARD APROCESS .
OECOMPOSITION OF ADDITIONS OR COMPQSITION QF ARY
Ay CHANGES OF ANG AUy
TEQUIREMENTS

Flgare 7-1: Oucting of ths Process

7.3 Incorporation of Implicit Requirements

lhﬁlww,aﬂthemmanmﬁpramedmthespeuﬁmmthmctbﬂmgmbywen
identified users. Sometimes requirements are generated impiicitly by documents, management decisions,
etc. These documents should be treated as if they were interview summaries of unknown users. Usually a
usam,mdshould,bearmdmtbmreqmm turning them into explicit requirements. These
have to be run through the previous stage and thus incorporated into the explicit require-

ments, Figure 7-2 shows this sub-process

Sometimes the raw requirements processing process has to be reiterated because of user reviews
and comments. These iterations generate more raw requirements, that are classified, attached to users and

made ready for the functional specfication stage.

7.4 Preparation of Keywords and Subjects Lists

The first step that has to be taken before the dassification is initiated is to decide upon the classes.
This task is rather difficult because the system is as yet unknown or partly unknown, and therefore the
classes into which the requirements will be classified are unknown. 1t is large enough and undefined

enough to make predetermination of classes quite difficult.

29

[E“:‘.’: expliczit process:

== - N
-

Procassed
" = implicit datermination| explicit procass: Requiremantcs
of users ,
requirmmanty “eemi————ee——l rgquirezmnts |Rav

Fxglﬂg?—Z:InmrporaﬁonofImplicitRequimnm

Three ways are suggested for determining the classes. They can, and should, be used simmitane-
mﬂyfmbmmmm“ysmanedpmﬁmmﬁsﬁdmﬂyﬁs,mdmﬂm

b.'WMﬁtAM&wﬁmwmmmwmmmfmo{b
terview summaries. It is desirable that all of this text is stored on-line and can be processed by a comput-
er. Anmalysisoftherdz&ve&equmcyofeadiwordmmbednm. Wards that are more frequent
than the others are good candidates to form classes or to lead to classes. Some caution has to be taken
though. Commoﬂyusedwmdsthﬂm&rdamnwdxapmmmprepodﬁomshmﬂdbedhninated
from the analysis. w,mmmummmmummmmmm
one word. Skimnﬁngtednﬁquamdimsedh[&:ﬂB]mdM].

awwwmmdmmmmmm
ﬁumopummsimﬂarorgaﬁnﬁm.gmmdkmwledgemlevmmmeamsym The =fore,
use of other subject lists is recommended. This is specially important when a new generation of the same
appliaﬁonorabroadahmgraﬁmofmualcxisﬁngsystmisplmmd.

To enable the use of prior knowledge, such knowledge has to be recorded. An application glos-
suyismggaﬁdhaebbeaﬁﬂofkcywmcbthﬂmrdmedmmuppﬁmﬁmaadmofappﬁmﬁm
Am:ldatabmeofappﬁaﬁmglmuiesmbebuﬂtinordutouﬁ&newspedﬁaﬁ. As a matter
offact,omof&cprodﬂofmymdaignshaﬂdbemmuxbdappﬁaﬁmglmyfmﬁﬂmeduign
efforts. msappﬁaﬁmglmsuymbeusedincmusmgsoftheprmmumquhmmuwmpod-
tion (see chapter 8 and [Bur84]).

g

Utilizing accurnulated knowledge has broader application than it seems in this chapter. Much has
been said about reusable software. Reusable requirements are the indicators to the possibilities to use pre-
viously written software. Accumulating knowledge is a difficult task to define. Recording keywords is a
_ tiny start in this direction.

nhmwmmmm,mﬁmmmmmmm
knowledge be used. Each of these methods has some deficiencies that can be eliminated by a combined
use. Preconception is sometimes incomplete and tends to propagate old or incompiete approaches, thus
excluding consideration of new, complete ideas. Statistical amalysis is cumbersome (although programs
that do this analysis do exist) and when done may be incomplete. For using accumulated knowledge there
is @ need for similar systems that have been previously analyzed and recorded. A knowledge base of this
Hndmdyeﬁm,mdwmﬁitdoa,hmaymtmmhmwbjem(hymnmmeddnd
system. On the other hand, each of these methods has its own mezits, and, when combined, they can be
of a great help to the specifiers.

7.5 Classification of Problens and Raquirements

At this stage, problems and requirements are assigned to the classes that have beea identified by
the previous stage. Problems and requirements are sometimes interchangeable, ¢.g. one user may state a
need for a report as a requirement while another user may indicate the lack of such a repart as a problem.
On the other hand, solving a problem may lead to a new requirement or a new set of requirements. Reso-
Iution of problems and requirements is done in the functional specification stage (chapter 9).

The presently considered dassification yields an ordexly preseatation of problems and recquire-
ments, eliminates partly the redundancy in a requirement that has been stated by more than one user, and
allows ing requirements that have been issued for the same subject. Furthermore, following the
dlassification the system begins to take a shape. Both the specifiers and the users can percsive, for the first
time, the system's form.

A large software system usually contains hundreds of problems/ requirements, so the dassification
can be very long and cumbersome. Some work can be saved by preliminary classification to be done dur-
ing the interviews and by partial automation. The classification cannot be done entirely during the inter-
views stage because the classes are not fully known yet. :

7.6 Users’ Ratings of Problems and Requirements

The interview summaries that are prepared during the previous stage are now transferred back to
the users for review and rating. Every user should get the classified requirements that have been generat-
ed from what he said during the interviews together with the interview summaries. Generally, this docu-
ment includes the subjects, the problems and the requirements that are mapped to those subjects, and a list
of users that have raised these problem or requirements.

Each user, after evaluating the document, should rate every problem or requirement according to
a scale that is supplied beforehand by the system specifier. This scale indicates the importance of a specf-
ic problem or requirement to the user (¢.g. very important, low priority, unacceptable, irrelevant, etc.).
Whmscalingmmtmbemtﬁdmmmmusu’sﬁwthmmmbem

31

Tbcusahumagedatﬁiss&gewaddnewmb'pmudmwrequhunmmnhaVenmbem
investigated before or to change his previous requirements. All this new information should be processed
again, until it is satisfactarily incorporated with the initial documents.

7.7 Transiation of Problems into Requirements

Nwthespedﬁamgethﬂwimmerdwwumshmﬂdgomthewbjemmdumlmuhn
problems into requirements, In most cases, this is possible and can be done quite simply by mere stylistic
d:mga(Eg.,theproblan:“IdoMgﬂadaﬂybalm”mbenmedmmequmnm"Ihesystun
should prepare a daily balance report”.). Sometimes problems cannot be easily translated into require-
ments, and a more thorough analysis is needed. If possible, the analysis should be done at this stage. Ifit
ismtpms‘bleathisﬁme,itcmﬂdbedeferredmﬂnpmmequtﬁraumphm

A natural language processing system can be used here to help rephrase problems as requirements
mdtohclpﬁltuthemmempﬁmedproblmmﬁmmmbythespedﬁu.

7.8 Antomatios
There are several possibilities for automating steps of this stage. These are summarized below.

a. mﬁmzbm:md&mmwwmmmﬂaﬁmgmyhbymﬁsﬁ-
cal analysis of the interrogation summaries. Frequent words or phrases can, under some constraints, be
assumed to be keywords or subject titles. Assuming that all the interview summaries have been entered
on-line in order to take advantage of the computer as a word processar, then searching for repeated
phrases is a simple task.

A similar process can assist in the accummlated knowjedge process. There we try to match key-
words from other systems, that are known to have some similarity to our system, with the above men-

b. ChsszﬁcaﬁamOmeaEnofmbjemhabemobmimd,thenﬂnmﬁmsetofmm-
maries can be scanned to search for oocurrences of those keywords, yielding automatic dlassification. The
unciassifiable requirements should be processed by & human specifier.

¢. Management: During this stage, a lot of attention has to be devoted to keeping track of all the
data jtems in the process, such as subjects, problems and requirements, users, etc. The project manager
humuaignthmedm:itqnsmpamonlismﬂmdtoseemhm«:hdmitmhasbempropcrly
addressed and processed. Computer programs can support all these activities, and help in other manage-
ment activities such as budgeting, control, and scheduling.

7.9 Conclosions

This chapter discusses ways for the classification of a large amount and variety of requirements
andprobluns,evmwhmthemdﬂndmisnotfunyhnwnapﬁmi The classification task is
i as the first step towards arriving at a system out of discrete requirements. A part of the dassifi-
cation work can be computer-assisted or be entirely automated based on some text-processing tools. The
task of converting problems into requirements can be partly automated.

CHAPTER 8
Stage 5: Verification

8.1 Introduction

Tn the previous stages, the elementary abstract users were interviewed and requirements were ex-
tracted out of interview summaries. Naturally, the next stages should further process these requirements,
and turn them into specifications. However, before doing 30, the requirements have to be verified. The
method of verification has to ensure that no requirements are missing and that the stated requirements are
correct.

Substantial research has been done on requirements verification (e.g., [Rob76], [Dav79], [Kem80],
[Zan82]). Most of the work that has been done so far attempts to represent the requirements in a formal
way, which allows algorithmic checking by computer. These checks usually verify the requirements as con-
sistent with each other. This verification is important but is not the last ward. A more important verifica-
tion occurs when the users are confronted with the requirements and find requirements that do not con-
form with what they desire or find that some requirements or users are missing.

The way that this verification is done is by introducing soms redundancy into the process. As was
mentioned before, the requirements that are produced so far are elementary requirements that result from
elementary abstract users. Requirements can be produced for higher level users, so that several presenta-
tions of the specified system result.

This chapter discusses the idea of composition of requirements and its relation to a presentation of
the specified system. Then a method of composition and verification is presented. This method is proto-
typed and demonstrated later (chapter 9).

8.2 The Method

a. Starting from the elementary abstract users (the leaves of the abstract user tree) compose the re-
qnﬁrunmfat!i?highalevﬂabsuuum Figure 8-1 illustrates the abstract users tree and the

order of composition.

b. At each abstract user node, check the composed abstract requirements if they are logically sound.

In other words, compare the composed requirements to those that would have been generated by
the abstract user.

¢ If a discrepancy is found, then cither the composition process or the Jower level requirements have
to be checked.

d If the problem is found to be in the lower level requirement, then a correction is done: Require-

ments are modified or user decomposition is done. Thus, this process yields the necessary changes
in the users domain and in the requirements.

33

uROT ONBSY
ATtIqe
3y3ead ajndwod
uvamnfed ejndwod
Jep-IRD 9IWIOT

D
vouwo]

ueo] enssy
At1Iqe

-37302d ejndwod

syvoufed syndmod

ITP3ID NIIY
mep-12d 93WO0Y

12

wmaysks Supueg e Jo a1, sywdmarmboy pue 2211, 18 :1-8 2mMIy

uwoT enssy
Kyp1Iqe
=3¥730xd sjyndnod
syjusmiud sjndwod
TeI83RITOD HOOYD

Teuosieq
souvo]

ueoy onss}
Kagtyge

-3t130ad e3ndwmod
syvemivd ejndwod
wyup-30d 93 7IM

wIEp-UTy B3TIM
souwTeq oj3ndmod

w3ep-UuT3 0IFIA

WIPp-UTy e3jan
wjep-12d 837aM

[

UROYT ONEST

K311Tqe3t3oad fsjusuied ojndwoo
8103 E0TPUT-3TPRID YOooUud
vIRp-uvoT Yooy

geauvc]

ITPeAD YDaYo wiep-Tus | vjwp pues Junoosow souwteq ejinduoo aumoane uado

wIwp-8Ngq 93ED0] ~Jexdde e3jam yueq 93wO0Y fyouwaq 93w001 Junoose 93¥20] JUN03OR }IYD
gsouysng obwvbaaon Jued 29430 youwag Ieylo moeosoy pPIo UMDY MBN
waueor] seure] aojysodeq 203¥80dag aojysodag xo03160d3qQ

uvol enssy

s19jsmered-uoioesueay ejndwod

8I03RITPUT-3FPOAD YOBYD
VILP-IOMOREND Yo3eJ

819mMO380)

¥IUp-3Unoooe I3FIM
soueTwq 83jndwoo

vyep puss
JUNODIR YO0393

81073 780deg

e mwﬁcmﬁmmﬁmwmmmﬁrm‘m@
tion are iterated until no further discrepancies are found. :

Flgmes-zmmtratuthemethodbyinﬂowd:m

OETERMNG
Ll
LBVEL-AO0T Al

:

DERAOSE
INTQ (=it
LEVEL
ADD QR
CHANGE |
REQUIREMENTS
r |
WRITE SEQUIEEMENTY
FOR PLEMENTARY
=
FING ARSTRACT COMrOsE
OAIA-TYPES FOR IERREMENTS | =
_.thenrary e (D sictih ceve]
OCTWINWARD PROCESS: CORRRCITVE PROCESS UPwalD MOCESS :
ORCIDMPOUTION OF ADCITIONS QR COMPOILTICN GF Al's
A’y CHANGES OF AND Al's
RICLIREMENTS

Fgme §-2: An Oucine of the Users [dentifieacion sad Verification Stages

823 An Exampis: A Banking System

Before going into formal definitions and detailed discussions, an example will serve to darify and
to illustrate the main issues. The Banking system from the previous chapters is used here. Figure 81
tion of the upward composition of the requirements.

Requirements that have been generated at the lowest level of the abstract users such as “Deposi-
tors to New Account” (Dep-New-Account), “Depositors to Old Account” (Dep-Old-Account), etc. are be-
ing composed into abstract requirements for the abstract user “Depositor™, A similar process composes
mmmmdmmm“umw,ﬂmm".mmmm
quirements of the abstract user “Loanees™. Composing up one level further yields the requirements of the
abstract user “Customers” that results from those of “Depositors”, “Loances”, and several other abstract
user that are not mentioned in the example.

35

8.4 Bottom-up Hicrarchical Composition of Requirements

Cmpodﬁonafnquﬁmhﬁ!formaﬁmoﬂﬁghﬂlwdreqﬁrmmrlﬁghlwdma
the abstraction of requirements. Auur’sviewisﬂnwaythatthempuceimthesystun,oraﬂﬂwre-
date any abstract user, not only elementary abstract users. Thus, different coverages by users’ views exist
for the same system. These views should conform if all the users are identified and all the requirements
are properly stated. Hm&3mmmﬂnumﬁm’smwmwampmemsystm
Hgbﬁmmmmnambdongtotﬁghalevdm ‘The top node represents the view of

the entire users commumty.

Figure 8-3;: Various Leveis of Users Views

Thmdmampodﬁmdmwkmmﬂnmmbuquﬁr&
ments and to climinate details that are unnecessary for that level of abstraction. This is the
method of refinement or decomposition. Thus, a set of abstract requirements of an abstract user
repraanalusdemﬂedgrmpingofmemﬁmdmofreqmmofiudﬁldrm.

mmmmmmfmmmm,mwﬁammkmmm
user, of every level, and check if all its requirements are logically sound. If not, appropriate correction
can take place, possibly followed by further decomposition. It is suggested that these checks be performed
dtzfmnﬁngmeabmaamqtﬂrmmmmdabsmdmwpathmwmswmespedﬁedabmaaw.
Thm,mynededmecﬁmmmhplawbdmﬁemmpoﬁﬁmmhmplﬂed,&mwdﬁngm
necessary labor.

The proposed method is independent of the way in which the requircments are presented. Two
different ways of presenting the same requirements and their composition are demonstrated in Appendix
C. The most natural way for presenting the requirements is to write them down in a free-format natural
language. Since it is desirable to provide the specifier with automatic tools, it is suggested that a more for-
mal or structured presentation be used. '

Each requirement can be written as an imperative sentence with a function as the verb of the sen-
tence and abstract object as the direct object of the sentence. (The ciass that the objects belongs to turns
out to be an abstract data type at higher levels of abstraction.). The function and the object are natural

wuords that have a mezning to that application, and in a sense are similar to keywords (They form
the glossary of the systemv.). In Figure 8-1 all the requirements are presented in this way. ‘

The upward composition is accomplished by a two stage process:

a U:jeas(abmndmtypu)ﬁ:nmmdmbymemhnnﬁmmmgned@.g.,
“write personal-data” and “write business-data arc aggregated” into ‘“write personal-data,
business-data”.). Then, new higher level abstract data types are formed out of the aggregated
abstract data types (E.g., “write personal-data, business-data” can be replaced by “write account-
data”.).

b. Functions that operate on the sams objects are replaced by other, more general functions (E.g.,
“locate account”, “Open account”, and “check account” are replaced by “fetch account™.).

An automsted system that performs this compositions and assists in other tasks of the methodolo-
gy was developed and used. This system is discussed in Chapter 9.

Criteria for requirements composition may follow a scale that is similar to Myers's [Mjre‘IS].
Mostly, requirements should have functional and informational strength and decomposed in a way that re-
tains the functional strength. Therefore, selection of new function and new abstract data types should be
done cautiously.

To summarize, the overall method itself is independent of the way in which the requirements are
On the other hand, the degree of the achievahle automation is strongly related to the degree of
formality of the requirements. Generally speaking, the maore formal the statement of the requirements,
of functional hierarchical decomposition. In the suggested method, abstract users rather than requirements
are being decoruposed, while requirements are being upwardly composed. The benefits of the suggested
method lie in the fact that the users are a more natural and obvious entity to deal with. In addition, be-
cause of its focus on users, the suggested method reduces the chances of overlooking some users (as is
often done).

8.5 Checking the Requirements

Following the abstract user decomposition process and the generation of requirements for elemen-
tary usess, several essential questions are in order:

a Is the set of requirements complete? That is, have ail the elementary users been identified? Has
every elementary user generated all of his, her, or its requirements?

b. Are the requirements consistent? Do all the requirements conform with the users perception of
the system?

Thuequsﬁomhadmmemﬁmofmplemmmmydthereqﬁmminrdﬁm
to the outer world, the user commumity. A complete and consistent set of requirements should refer back
to the users and should be checked versus their needs and perceptions of the system.

To enswer thess questions, we utilize the trees that have heen generated upon completion of the
previous process. These trees were generated semi-independently. The abstract users tree was constructed
wmﬁmdmwm“.mmwmmmWMM
mwmmﬁmammqmm,mmmmmwmem.
Therefore, a good opportunity exists here to check the triad, the abstract users, the abstract requirements,
and the abstract data types. The checks are made versus the user community in the real world. This is
very important, since the other methods provide means to check the requirements cnly with respect to
themselves, e.g., [Rob76, Kem80]. After mapping a triad, the specifier has to determine if it is logically
sound. Do the abstract requirements and the abstract data type fit the specific abstract user? Are there
any redundant or incorrect statements among the requirements? Is anything missing? At this point, a
thorough knowledge of the system and the organization is required. At the higher levels of abstraction,
the checker can be aided by a written document or operational books of the organization for which the
system will be implemented.

The term “logically sound” in this context is difficult to define even though the act of checking is
by itself quite simple and straightforward. If the specifier has constructed meaningful abstract require-
ments and abstract data types, then he should be able to see at a glance if the triad is right. Wheaever a
deficiency is detected,” after ruling out improper upwards composition, then new requircments, new
abstract users, or corrections to the existing ones can result. It is not uncommon that discovery of a defi-

dency can lead to new areas of investigation.

These checks can be performed during the process of constructing the abstract user and abstract
data type trees. Whenever an inconsistency or incompleteness is detected, corrective action is taken and
the process comtinues, The faults sometimes provide the specifier with a valuable source of information
about spots in which further investigation is required. The banking example, when only partially per-
formed, indicates that profitability has to be computed for every loan. While examining the abstract user
“cpstomers”, the specifier can reveal that profitability could be computed timely for each account. There-
fore, he may consider including this statement as a new requirement even though the idea of checking ac-
count profitability had not been raised elsewhere before.

Thus, this method incficates checks for completencss and consistency with regard to the outside
world, the users community. A complete and consistent set of requirements among themselves do not
necessarily ensure a realistically correct system.

8.6 Antomstion

Activities such as requirements composition, and checking of abstract users versus abstract require-
ments involve human reasoming and human expertise. Therefore, those activities cannot be fully automat-
ed. On the other hand, it is obvious that for a large software system, large data bases are formed due to
the large numbers of users and requirements entailed in the system. Thus, it is suggested that the record-
ing and handling of all those data items be automated. An important by-product is a collection of manage-

The main automation possibilities are in:

a construction and maintenance of the requircment tree and the abstract data type tree,

b. assistance in the composition process,
c management aids.

Looking into Chapter §, Section 5.5 reveals that the automation possibilities there are similar to
what is mentioned here. This should not come as a surprise because these two sections propose automa-
tion of similar processes, decomposition and composition.

The requirements tree and the abstract data type tree of the specified system should be maintained
together with the user tree. The process of decomposition can be assisted by a computerized expert sys-
tem. It can augment the expertise of a specifier by suggesting composition patterns for requirements. In-
formation about these patterns is collected into a knowiedge base, and spedial algarithms called composi-
tion rules are used to process the knowledge base. An automated system named CAS (Computer Assisted
Specifications) has been prototyped and tested. It is discussed in chapter 9.

The management tools keep track of the data items such as users, requirements, data types, etc.
Th:yaddmmeinfmmnﬁmbﬂuedmitumwﬁama,addrm,pm,loaﬁm,mmdmy
mmmhmmdedﬁmthemwmmespedfyhgtmmdﬂnspedﬂdm Some of
these tasks are planning, scheduling, follow-up, etc.

8.7 Conclusions

In this chaptez, the notion of a requirement has been expanded to the notion of abstract require-
ment in a similar manner to what was done with a user and an abstract user in Chapter 5. The specified
mmmthMdeﬂdeMnﬂMdﬂm
representations of the same system lead to a way to verify the system requirements.

A method that is composed of three parts is suggested in chapters 5 through 7, user decomposi-
tion, elementary requirements generation, and requirements composition. The structure of the user tree is
formed by the decomposition process, and the same structure is used for requirements composition. On
the other hand the elementary requirements are generated by field work that is independent of the tree
structure. Therefore, this verification is done versus the real needs of the users. This kind of verification
cannot be done by formal methods, because these methods do not relate to the users.

The user-criented approach is preserved in this chapter. Requirements arc composed by users and
the structure of the requirements tree is the same as the structure of the user tree. The user-ariented ap-
proach seems to be logically simpler than the functional approach. A user is a better-defined and a better
understood entity than s function. Beginming with users and turning to functions afterwards is more natur-
al to the specifier and yields a better coverage of the system.

39

CHAPTER 9
CAS - Computer Assisted Specification

9.1 Introduction

C&(Cmncmwuﬁm)hamdmmkwopdhmdﬁmwm
some of the suggested methodaology.

The main objectives of CAS are |

to demonstrate that the specification design method can be computer-assisted,

to enahle experimental research utilizing CAS on real life systems,
wdevdopabammdammﬁn;dﬂnm-mwqu\ﬁrmmpmdmmdmd,md
to gain & hands-on experience with a simple expert system.

S S T e S T

Furthermore, the specifier is informed and consulted throughout the process.

p o P

[

|

mmmmwmmmﬂnmmmwﬁmum
mmmwmdthechignpdndplamcﬁmed,mdthedgmiﬂmsm
Wmopammmgmmmprmed. A discussion of the banking example follows.

A brief tutorial here explains some of the basic features of the system. The users domain is a
banking system that is described in figure 9-1. This example is, of course, very simplified.

Iheonmmdspcisusedinmdammnaspedﬁmﬁmddpmmhﬁﬁmaddpmﬁm:

bank-usars

Qfficers Cuscomars

|
I]]
corporace branch Depasitors [I.oanm
managers TZANAgATS Y
1
'

Figure 9-1: An Example~A Banking System

(1) spc bank "bank users community’

The name of a design, which is the name of the root user, and a brief description are entered. Other
users can be added to a parent using the adu (add user) commmand:

(2) ndu bank customers *bank customers’
(3) adm bank officers "bank officers’ .

The user bank is thus decomposed to two sub-users: customers and officers. Now the user customers is
decomposed in the same way.

(4) ada customers loanees *persons whe get a loan’

(5) sdu customers depositors *persons who deposit money’
Now, the whole users tree has been constructed.

Other commands allow maintenance of the users tree. Diu (delete user) deletes a user, and chu
(change user) changes the information or the parent of a user. If the specificer has mistakenly added the
user corporate managers to the parent loanees by

(6) adu losnees *corporats managers’ the fat cats’

the mistaks can be corrected by making the following change:

41

(7) chu ’corporate mansgers’ ” ™ cfficers

mmmhmmmgmmammoﬁcﬂswimmmemm
thedauipﬁon(twoadjacunapomophﬂsmﬂfaaﬁddthatisnmmbed:mgd).

Some more facts to be noticed thus far are:
a Thespedﬁaﬁmmmdnhmmssmrspondsbymﬁngthew&mmm

Thesmmdﬂ:eCASmmMisﬁmﬂnmtbemdem A UNIX

¢ A command parameter is either a ward or group of words enclosed between two quotes.

Toavoidmpeﬁﬁonofausa'snme,adm(“.")msmdforthema'smestheﬁntparm-
eter. In this case, the user’s name from the previous command is used.

e. Users are added to parent users only. Therefore, the CAS system can never have detached users.
The root usex is introduced by the spe comimand.

1. Tbmmmmm:spedﬁnﬁmddpahﬁﬁmuaspedﬁuﬁmuﬁmdaddp
Another command, ends, is used to terminate a design session. A session can be resumed by in-
voking the spc command with the name of an existing design. Therefore, several specification
Mpmﬁ&mammwymhmnmmm
mmm&mmwwammufm
(8) adr depositors d1 write account-dats
(9) adr . 42 compute balance ’compute balwcs after deposit’

(10) adr . d3 fetch sccount-data
»Nmeﬂ:nh:raﬂndot(“.”)atnthordepmm.

(11) adr loanees 11 fetch lonn-data
(12) adr . 2 compute payments "payments schedule’
(13) adr . 13 compute profitability

(14) adr . 4 issue loan ’invoks the AP system’
Bere the dot stands for loanees.

The command adr (add requirement) attaches a requirement t0 a user. A requirement is present.
ed as m imperative sentence that has a verb and a direct object (See above.). A requirement can also
have a free text that explains it further. Requirements can be manipulated by some other commands such
as dir (delete requirement), chr (change requirement), mwr (move requirement), and cpr (copy require-
ment). The name of a requirement must be unique within a design.

hordu'mm:posethereqmadepmmmdbmeabyvubmwmm,
the following command:

(15) cmr customers verb

The composition by verb after the first pass yields the interim requirements
fetch account-data, loan-data

mptnabalm,paymm profitability

whmhmmtpresmdmﬁnspeuﬁa Assuming that the knowledge base contains the following lines:
customer-data account-data loan-data

transaction-indicators balance payment profitability
The composition program goes ahead and generates the requirements
fetch customer-data
compute transaction-indicators
Issue loan

Aﬂmmmpramdwyou. You can decide whether to accept the recommendations of CAS or to
mmmm For example, you can eater the following line instead of the first kine of the

fetch transaction-data
Now, if a'composition by object is desired, do:

(16) emr castomers obhject
When you wish now to examine the user customers, you can do so by applying the command:

{17) usr customers)
Mmdmmm&mmuwmmwsmmmmm

dﬂﬁ?mmhwmnmnwwn(dmmmmedm

When you need assistance use the commangd:

(18) bip
This commands displays a list of all CAS commands and a short explanation of their order to

ir usage. In
get a brief description about usage of any particular command, the command name should be entered,
e.g.:

(19) adr

usage: adruaor-nammq—namvsrboblodm
For more detailed explanation about adr use the usual man command of UNIX:

(19) mam adr

CAS is applied by using CAS commands interactively. The commands are detailed in the forth-

coming manual pages. They are prompted by a regular UNIX prompt. A parameter to CAS commands
should be a single word or group of words encicsed in quotes. The first parameter is always a user name.

43

mwedgebaeshaﬂdbehsmnedhﬂuﬂemmmmmdam(mm
quirements) command. It is a text file in which each lice contains several words. The first word replaces
the other words in the line when a match occurs, The knowledge base file can be maintained and updated
by any editor.

Each command program checks the validity of its parameters and other conditions. When an er-
ror occurs, an error message is displayed and a new prompt is offered. Upon a successful completion of a
MaWMMﬂhmmmmthMammhoﬂm

Several specification designs can be stored simuitaneously. Commands pertinent to a certain
design should be invoked between spc (specification) and ends (end specifications). The same design can
be invoked in different sessions. Fach session starts by the command spe with the design name as the first
parameter, Furthermore, a session can refer to a sub-design by calling spe with a parameter that is a user
pame in that design. In that case modifications zre possible only to users that belong to the sub-tree with
the given design as its root node. All design names are stored on a file CAS000 that can be updated by an
editor.

CAS does not have means to update the knowledge base automatically. The specifier has to keep
sreck of words, terms or idioms that should be added to it, and to update the knowledge base. The cvn-
mand cmr displays composition alternatives for full matches and for partial matches too. Sometimes, par-
tial matches can indicate new desirable entries to the knowledge base.

The command cmr is highly interactive and consults the specifier through its execution.” It enables
both modes of compoasition, by mode and by object, and continuation of a prior composition.

9.3 CAS — A General Concept 1
CAS (Computer Assisted Specification) assists the specifier interactively in the following tasks:
a construction and refinement of the abstract user tree,
b. assignment of requirements to abstract usets,
composition of requirements by use of a knowledge base, and
d general maintenance of the data base.
The design goals of CAS are:
a to create an interactive specification environment,
to implement a knowiedge base system,
to allow exercising of real-life project,
d to develop CAS in a short time by using available tools, and
e to develop a system that can be easily expanded and easily changed.

After evaluating several alternatives for the design of CAS the following design decisions wers
a The system is developed under the UNIX [UNIS3] opersting system and makes use of UNIX
tools.

b. The CAS data base is implemented as a part of the UNIX file system. The hicrarchical UNIX file
system can be used to build the desired hierarchical structure of the data base.

c The CAS system entails a set of interactive commands that are invoked by the spedifier.
CAS commands are programmed as a set of UNIX shell scripts, using UNIX commands or UNIX
programs. Ci;usedwhaemshenpoyamingishnpouihle.

e The main files: the users file, the requirements, and the abstract data type file are integrated into
one file system.

f. All the information and all the data items are textual. . The knowledge base is a textual UNIX file.

'3 wkmmdeq,mymmhmawmocﬁfy.khnmopﬁmthmmdedbythem
quirements production method. .
h While interacting with CAS, the specifier is informed or consulted on all the actions taken.

9.4 Design Considerations of CAS

9.4.1 General

The design requirements of CAS calls for a rapid implementation, an interactive processing and
development environment that enables changes and enhancements to the system. Therefore CAS has been
developed under the UNIX operating system and takes advantage of some of the features of UNIX.

9.4.2 The Data Base

The data base of CAS consists of the user and requirements trees. They are implemented as a
part of the UNIX file system. A user is implemented by a directory which has the user’s name and which
contains a file named user-name.usr. This file contains user's name and description. If a user has chil-

dren, then each of them has its own directary (which is a sub-directory of the parent's directory).

Each elementary requirement forms a file in the user’s directary. The name of the file is reg-
name.req. It contains the verb, object and text of a requirement. Composed requirements appear in the
file 1002 in the relevant user’s directary. The first line in this file is the mode of the composition (either
00000verb or 00000cbject).

Figure 9-2 exemplifies the structure of CAS data base. Usrl has three sons, usr2, usr3 and usr.
Usr2 has two sons, usr5 and usr6. UsrS and usr6 has requirements that appear in the files ul.req, u2.req

and ri.reg, r2.req, r3.req respectively. These requirements are composed t0 usr2 and appear in the file
r002 in usr2’s directory. A further composition yields the file r002 in usr!’s directory.

45

el

waxl used |

T T 1
EHE =] EdEe

]

o] o) o]] e] (o] (o]

Fignre 9-2: An Exampie of CAS File System

9.4.3 The Knowiledge Base
mmmkammmmmmmmnmkb. It is a simple UNIX
file where each line is an entry. The first word in each line is a possible replacement for all the other
words in that line. There is no distinction among verbs and objects in the knowledge base. It is not up-
dawdbyCASprogrmblnanbecrmedmdupdatedbymyeditm
9.4.4 CAS Flles
CAS uses some other files that reside in the home directory:
CAS000, the list of all the names (root users) of the specification’s designs,
CAS001, the name of the current specification design, and
GAShb,d:eHstofaﬂCASmmamhmdtbdrmge;itismedbytbeMpmm
Tanpormyﬂamnmmedmmempodﬁmmmappwhum’sdirmﬁa.
r000 cmtﬁmtherequﬁrmzmﬁthnmwﬂemd&anmthedﬂdrm.

r001 mﬂsmwwmmmwwﬁ),awwmmwdm
file,

r002 contains the composed requirsments.

9.4.5 Programming

Most of the CAS system is programmed in the UNIX Shell programming langnage and appears
shell scripts. Running a CAS program is actually executing a script file that has UNIX commands. The
pmdmcpmpmmdmdedswiﬂamemmdingdmmﬁmmmnwiﬂnhemwiedgebaehpm-
grammed in C and uses the standard i/o package.
9.4.6 Installstion and Maintenance

In order to install CAS the following steps have to be taken:

a G&Smands(ﬂa)havetobeinstaﬂedwithmaﬂiﬁnpam
CASokb (the knowledge base) has to be installed in the bome directory.
e CAShip (the help file) has to be installed in the home directary.

Maintenance of CASokb and CAShlp is done by any editor. The fils CASO00 contains all the
specification designs. To remove a design, an editor has to be used. '

9.5 CAS As an Expert System

One of the design objectives of CAS is to implement and to test a simple expert system. This ex-
pert system is a part of the composition process. Its role is to find abstraction alternatives using a
knowledge base, and to let the specifier choose the cne that seems right to her or him.

A requirement is presented as an imperative sentence that has & verb and a direct object (e.g.,
“check balance”, “update file”, “compute direction”, etc.). No other restrictions exist for requirements,
and it can have any words for its verbs and for its objects.

The algorithm can be summarized simply as follows: Requirements that have a common verb are
grouped together and each list of objects is searched for in the knowledge base. If a match is found, then
the list is replaced by the corresponding word from the knowledge base. The composition alternatives is
presented to the specifier, who can choose ane of them or enter one of his own composition. This process
is repeated in a similay manner for a composition by object.

The expertise of the system resides in the knowledge base. It contains composition patterns from
similar applications or from a general knowledge. In the present prototype, the knowledge base can be
sugmented manually as more experience is gathered.

A user X has the following requirements:
v{®) of¥
vik))

v® o

47

Severﬁlusmmamd:edtoompmmt,uﬂead:mhasrequimnm The purpose of the
wmpodﬁmpromhmdeduaﬂnpmmfsmq\ﬁrmmafthedﬂdrm’sreqdrm. This process
evidently yields a smaller number of more abstract requirements.

" Figure 93 illustrates the siiuation before the composition is initiated. The pareat U has children

U, Upy o Unpe Each child has requirements that are generated either directly or by a former compo-
sition. The i-th requirement of the j-th user is =

v ol
where v{J) is a verb and o) is a direct object.
g
r | 1
13} 47 - - - U.
vih oft v{d of2 v oM
v oft) v? ofd vi¥ oM

W o) v o 29 o
Figure 9-3: Users and Requirements

M
a All the requirements of all the children are stacked (total N = 3, n; requirements).

iw]

b, The stack is sorted by verb. Thus requirements that have the same verb follow in the sequence.

No memory of the source user is preserved.
The stack is:

(b1)
VN ON

(The upper indices are omitted because they indicate a link to an abstract user that no longer ex-
ists.)

Groups of requirements that have a common verb are unified following the verb.

V10 i o Vi o
V2 0 V2 O V2 O
- v o - (e1)
. . Vi O +1 - v.ii X
VN ON 7 oN
VN ON N

where X is the vector o, 0;14..1 * 0 +M-1-
Pkre,apdxpofM1mqtﬁrénmhasammmvubviluﬁﬂmefmmmﬁﬁedm
Vi, O O41 " O+Mi-1 | (<2)
Several similar groups can occur in this assembly so its new general structure is
Vi, % O+1 7 O+M-1
Vi, O, O+l "t OnM-l

@
Vi 0, 01 " Ol
Assuming that L groups are formed. The total mumber of objects is preserved, therefore
$ M-N (ot

(A group can contain a single object. Then this presentation is equivalent to the former presenta-
tion (bl).)
The knowledge base has the general structure

W1 Wu Wu e Wm

WZ Wn w;z e Wm

- . - ene - (dl)

- L1 L)

WP wPl Wp)_ b wP’K,

The first word in each line W; is the abstraction (composition) of the other words
W;, Wy © -+ Wig. There is no distinction between an object and a verb in the knowledge
base.

Each line in the unified requirements (¢3) is compared to every line of the knowledge base. The

comparison is done word by word (excluding the first word in both lines, of courses).
If the line

49

Vi, 0 0, " O (e1)
matches the line
WL W Wi - Wix, (e2)
then (e1) is replaced by
v, WL - (e3)
However, the knowledge base line can fully match only a subset of (c1). Then, caly this subset is
replaced, resuiting in _
3 W o *°* oy (e4)
whereo; - - - oi,mtheruidlulobjemmatdonotmaﬁch.
When partial match occurs, i.e., when not all elements of the knowledge base (¢2) have a match
in the unified requirements line (e1), then the replacement is done as in (¢). The number of
matches is kept, and the specifier’s consent is requested.
The new assembly of requirements now has the following form
V19u°n"°1gwq, -
V2 0y O O W
« . « e . _ (1)

v oy o oo, W,
Some of the v's can be equal. In each line o or W may not appear.

The specifier reviews the results. He chooses one line among several lines of equal v. He may re-
place any combination with his own.
The reviewed assembly (f1) is restructured as simple sentences as in (b1)
Vi o
Vi o
V1 O1p (81)
1 qul

vz oy

and is inverted to obtain

Op, V1 (82)

i. Now composition by object is done starting from the assembly (g2) and repeating steps a to f.

The composition method should be carried out starting from the lower level abstract users up-
wards. It is used in the verification stage of the requirements production method. This method requires
that elementary requirements be attached to elementary abstract users only, and be composed upwards.
However, CAS allows elementary requirements to be attached to any abstract user at any level, and blends
them with the previously composed requirements before the next composition is done.

9.6 An Example: A Banking System

A banking system is used as the example by which the method is demonstrated. This system falls
within the definition of a large software system because it has a large and diversified community of users.
The example is simplified and incomplete in comparison with a real application. It serves only as an illus-
tration to the proposed method.

Figure 5-2 in Chapter S shows the results of the decomposition procedure, which is the user
domain of the banking system (steps 1 to 3). The root level, level 0, is the most general abstract user
called “User Community”., It is decomposed into four abstract users: “Branch”, “Cus *,
“ Adjacent-Systems”, and “Bank-Management”. Decomposition proceeds to level 2 for all level 1 abstract
users, and further to level 3 for “Depositors” and “Loanees”.

The decomposition is not carried out to the same level on every abstract user. It is stopped when-
ever it seems to be logically right, i.e. where further action is impossible or not necessary. A good indica-
tion for stopping the decomposition process is arriving at an abstract user that can be directly approached
and interrogated for requirements.

In this example, it is quite difficuit to approach a generalized customer of the bank or even a
loanee. However, in order to understand the requirements of a mortgage loanee one can approach the
bank officer that is in charge of mortgages and interview lim. Should that be too generalized in the sense
that no single officer handles this task, the abstract user “loance mortgage” can be further decomposed
into “first home loanee”, “home improvement loanee”, “home dealer loanee”, and so on. This decompo-
sition can point to the bank officers that can be interviewed. This process replaces the analogous process
of decomposing the abstract requirement “provide a mortgage” into a collection of simpler requirements.

L3 |

mlmm,mmmmmmmmmmm. The
abstract user “Depositors” has four sub-users “Dep-New-Account”, “Dep-Old-Accounts”, *‘Dep-Other-
Branch” and “Dep-Other-Bank”. However, the requirements can be interpreted as requirements stem-
ming from the abstract user Depositors. In order to ensure coverage and simplicity it is advisable though
to perform the deepest decomposition possitie. It is, after all, easier io clifinbaic unpcocssaty funcons
later than to add necessary functions later.

Examination of the results reveals that the requirement “Check Profitability” that is applied to
loans can also be applied to accounts. Since it is a logically desirable requirement, it should be implement-
ed in the system. This requirement could have emerged otherwise from the abstract user “Control”. The
mddmandmebmknﬁglnhmknpmdreq@mmmesymthafmmm
tion such as loans, and any financial entity such as account, branch, etc. be analyzed for profitability.
Sewndy,thereqtﬁrannnmbemﬁedmnbymdusymmaﬂed“mm”. Thus, a new
abstract user has been detected by the method. Should this abstract user be forgotten in the initial layout
dmespedﬁmﬁm.tbmitwoddMemgedehewhseuamhdﬂumm“AdbmSyv
tems”. Somepropmedmethodhmdunnmtmediuaﬁliwwgﬁdeﬂnéecﬁngoimereqﬁrmmfm
completeness.)

As meationed, Appendix B presents a full session of CAS rumning the banking systen example.

MdﬁmMﬁmMmmMnWmhwmmwmmmm
by natural language.

9.7 Couclusions
The following conclusions have been arrived at by using CAS for several applications.

a CAS has demonstrated that at least part of the methodology of requirements production can be
automated, thus forming a computer-assisted system.

b. CAS has many advantages in performing the clerical and administrative tasks of the specification

c Representation of requirements and specifications in natural language makes CAS accessible to all
the participants of the process.

d. The use of a relatively simple expert system as a part of CAS brings a member of advantages to
the specifiers.

e. IhedeﬁgngmhofCASmdyMeofhtaxﬁveopaaﬁm,mtepmedsystunfmprmmd
management, eic..

Stage 6: Functional Specification
10.1 Introduction

The previous stage, raw requirements processing, deals with the conversion of a bulk of investiga-
tion summaries into requirements and the classification of these requirements into main subjects. In addi-
tion, the requirements are rated by the users to designate their relative importance.

The purpose of the present stage, the functional specification stage, is to comsolidate 8 set of
hierarchical functional specifications out of the new requirements. In other words, in this stage a transition
is made from user-ariented requirements to function-oriented requirements. The specified system can now
be perceived from two different views, the users’ views and the functions’ views.

The product of this stage is a specifications document. It is described in appeadix A.

10.2 Method - -

The functional specifications stage involves
a determination of main functions,

mapping of users and functions into requirements,

c. analysis of functions,
d application of spedial techniques such as scenario analysis or modeling if necessary, and
e. preparation of a spedfications document.

As the former stages of the process, no assumption is made on the way the requirements are stat-
ed. But evidently a natural language is the most common medium for stating requirements. Other
presentations are not preciuded and can be applied towards the end of this stage.

This stage involves mainly human reascning and analysis, and is one of the most creative stages of

the entire requirements analysis method. Very little here can be automated, but extensive use can be
made of the stored results of the previous stages.

53

10.3 Classification of Requirements to Functions

Anthereqliranmshmﬂdbedassiﬁedhmamanmnnbeoffmﬁiomormbjem. A raw das-
sification was done in the previous stage and is discussed in Chapter 7. The specifier has now to deter-
mine the main functions of the desired system. Some criteria have to be applied:

a The total number of functions should be manageable and therefore should be fewer than ten.

b. demmmmbmmmmmmmmkar&
qukemmnthndonmbdmgmmyspedﬁcmbjea.e.g.,seuuity,mﬁmﬁmbﬂity,m.

¢ The subjects should represent functional, rather than technical classification. E.g., for a logistic
mg@ﬂmﬁmﬂdmﬁﬁaﬁmmﬂdummedm,m.mm,
rather than those of update, retrieval, reporting, ete.

d There should be a full coverage of the system by the subjects /functions. No raw requirement is
to remain unclassified,
e Care must be taken when the specified system is organization-crienied. Genexally, dassification

by organizationsl lines is not desirable uniess it represents a functional classification (e.g., the pur-
o vy coincide with the purchasig function).

The overall classification process is illustrated in Figure 10-1.

10.4 Functional Anslysis

Thepnpmeoftﬁsmgeismmlymthemquhunmmumfmlynﬁmdmambjea,
micknﬁfyﬂnhtuxﬁmandthemﬁﬁamgﬂnn,mdwfmmaﬁaudﬁmlﬁmcﬁmﬂ
framework of the specified system. In other wards, the purpose of this task is to convert a set of user-

This task is unstructured and is mainly. done by human reasoning. The specifying team is argan-
ized into work teams, one for each subject. Whenever two subjects are assigned to the same team, they
should be functionally related. Anassemblyofaﬂthework‘grmxpsshotﬂdtahplnregﬂmlytocﬁm
workprogras,hﬂz—gwpmbjem,andgmalsystunspeuﬁmﬁom.

Guidelines for the methodology for the functional analysis are as follows:

a. mmhawpdownﬁmﬁmdmﬂyﬁsdmbyﬁamdﬁddmﬁm,uduuibedby
several authors ([Alf77], [Bel76), [Bel77], [Dav79], [Ham76)).

b. The specifications are presented as a subject tree.

¢ mmm,rqmmmumemmM(mmmmﬁm

another requirement) or incomplete. In this case, the corresponding user or users should be iden-
tified and be referred back to.

d Dmingmemalyﬁs,thewmkwmmayidmﬁfyrequirunmﬂmbdmgmamthumbjeam
affect another subject. Thm,uansfaofmquimmmmdcﬁﬁﬁondinterfmisduired.

e. Aprogamdmignlangmge[Cai?S]isapowu'fulandmcasy-to-usetooltosupporttbisanalysis.

Asalywis

aana jubtects

Figure 10-1: Classification of Requiremenrs to Functions

It has been shown to be a superior tool in compare to flowcharting in the detailed design phase
[Ram83],andthnsapphatoteqmrunmmo It allows a semi-formal representation, with em-

bedded descriptions in naturai language. A recently developed program design language [Burg3]
allows the task of hierarchical decomposition to be performed and checked interactively.

At this point, formal specifications cam be introduced. Various reasons may lead to a decision to
fully formalize the specifications. Among them are the need for precision and the need for inter-
nal verification. It is suggested though that a natural language presentation be maintained togeth-
er with the formal representation. Some authors show how to start from informal requirements
and to formal requirements {Bei84] or how to start with informal but precise English description
and get a representation of the data types, variables, operators, etc. from the structure of the En-
glish sentence {AbbS3].

Thedq:thofﬂudewmposumudctumdbyﬂmdcpthofthemdemmpomuonmdbythc

scope of the specified system. Care must be exercised in order not to get into design analysis or
design details.

55

h. Speddtedmiquamaybeusedfmvmimmmofthespedﬁedsystm,a@mmﬂyﬁ&by-
scenario, modeling, rapid prototyping, ete..

10.5 System Representstion

The method that is discussed in this chapter defines the specified system as a set of functicnal
specifications. Inapreﬁmnd:apm(cmptan,thesymisdeﬁmduasetofuw-oﬁmtequﬁm
ments. Both definitions of the specified system are identical if the analysis is done propesly. Thus, two
diﬁaemmemaﬁomoftbemsystanmgmdumumawdinﬁgmm-z.

. \
\ subject B
(\\/‘é(/ N ewiecc

A e Y e 0

7\ 7 —

Figuplﬂ-&SyqurammﬂmbyUmV‘mandbySubjm

Inthisﬁgme,thesystanismprauﬂedby(ordivi&dto)mb'pﬂA.B,C,mdD. Subject D is shown to
be subdivided into functions D.1, D.2, D.3. On the other hand, the system is covered by users views g, b,
c. These user views can coss the subject /functional borderlines. User views do not have to cover the sys-
tem entirely. Ithpou'bhﬁmﬂmwedfyingteamadds,forvmiwam,rwdrmﬁthﬂmnm
uttered by any user, e.g., due to anticipation of future enhancements.

Each representation has its advantages for different uses. The user-oriented representation is best
understood by the users and is easy to maintain for a system that is rapidly changing. When new users or
mdmmﬁm&ﬁdﬁmamhmm,mwmmdgﬂﬁmﬂym
time passes, then the users-oriented representation is better. However, from the system designers’ and
programmm’pohﬁofﬁcw,thcﬁnmﬁonﬂreprummﬁmhmmmmdmdemiamwwkﬁm

Systems do change and grow as time passes. New users, new requirements and changes to the
specifications are introduced. Although it is difficult to keep and maintain both representations and to
kzepthanconsistentwithend:otha,itislﬁgblyrwommmdedtodoso. The tremendous effort that is
invested in system maintenance justifies this redundancy. There are real dangers in not maintaining both
mqtﬁxunm,mithmymlmthewmecﬁmbemmemandthereqtﬁrma.

10.6 Anﬁmﬂm

The functional specification stage favolves mainly human, unstructured activities and not much of
its activities can be automated. Yet, for large systems, the computer supports the specifying team by help-
mwmua&dmmmmmmmmmmwmmmhmm

The method of functional analysis that is done by hierarchical decomposition can be supported by
a tool called a program design language [Cai75]. The main idea is that a small set of primitive constructs
such as if then else, do while, etc., together with means to describe abstract data types and text written in
a natural language can be used to describe a program, and therefore be used as a design tool. This idea
was further developed to accommodate several abstract data types and to enable hierarchical decomposi-
tion and some verification [BeY82]. It was shown that an interactive program design language [Bur83] is
simple to use and powerful as a design tool. The use of a program design language can be extended to
describe and to support the analysis of functional specifications, because it includes all the necessary com-
ponents. It is therefore recommended that a program design language be included as cne of several tools
to support computer assisted specifications.

10.7 Concinsions

This chapter shows how to convert raw, users-criented requirements into functional specifications.
wThaespedﬁmﬁmsmlatabemedmtheiuptntoﬂndaipphm The process shows that there are
two ways to describe a system. One way is by a set of user views. A user’s view is a set of requirements
. that are attached to, or generated by a user. The other representation is by functional decomposition, i.<.,
the system is presented as a set of functions, or system propertics.

The analysis work of this stage can be supported by a program design language. Furthermore, m
automated system can help in keeping track of all the requirements and in performing other management

CHAPTER 11
Stage 7: Operational System Specification

11.1 Introduction

Mswmwmmdmmmp@cﬁmmmwopaaﬁmdm
tem spedifications. Mmﬁnpmeofﬂﬁsstageismmﬁwspedﬁedsymuammd
a global environment. IMsystanparﬁdpatainprmatbatmmnmmthemv&ommmdmit-
self, memﬁmaﬂﬁrdmprummﬁonofthupedﬁedsystan

In this chapter, the method is outlined and then detailed. A description of the final document is
given in appendix A. Asinevaydmptu,onesacﬁmis,duﬁcatedmdmailingthepmﬁbﬂiﬁmform
mation. Thisd:aptcmdathcdsaipﬁmofthemﬂhodbprodnmﬁrunﬂsuﬂspedﬁaﬁomfm
large software systems.

11.2 Purposs

Themmofopaaﬁmﬂspedﬁmﬁomiswidmﬁfymddamhbmicsymﬁm:ﬁandsy&
mmmmmuMMﬁmmWmemmmm
“ - - lm |l l I I » . ! I |l I »_® , .I’ .l. lnlq’m
This constitutes a higher abstraction than the functional spedifications.

11.3 The Method

A higher level presentation of the designed system is desired. This is a presentation by basic
operational functions and processes. The system is perceived as a part of a larger entity where global
m,mnpcminmtmmmdium,mmﬁmﬁmhmdﬂmadﬁweﬂu

Aba:kopemﬁaudﬁmcﬁonkdeﬁmdmbeasynunmmpmmakusedbyﬂnmmm.
AsyﬂmpmmhdeﬁmdasabmkapaaﬁmmmwmesymmdmmmthMism-
formed in order to achieve one or more of the operational goals. A system process invokes a series of
basic operational functions. Fimll-lgivessomemmplatobﬁngdmedeﬁﬁtiomdown-to—emh.

The basic methodology of this stage can be described as:

present state + requirements + constraints - new state
Thepramtﬁﬂebmeded&omﬁeinfmmaﬁm&ﬂhgﬁhaedhﬂnhﬁuﬁewhgsﬂge(&e@apm
6.). ThereqlﬁrunﬂnSarethoseoftheﬁmcﬁonalspedﬁaﬁonmge(&aptGIO). The constraints can be
mgmddmafmdrqﬁmﬂandmmededdnhgﬁehﬁuﬁmmdprmedaﬁm&.

Banking Calculation of interest Loan process
Daily balance sheet Deposit process
Cash Positioning Inter-branch operations
Air Command and Control | Tracking IFF process
Positioning Dogfight _
Display Missile launching

Figure 11-1: Examples of BOF and of SP
The basic steps of this stage are:

a. dmiﬁaﬁmdbaﬁcopuaﬁmﬂfmcﬁom,mmdm(mthcmsﬁtemdinme_
designed function),

mnppmgdmcmsedreqmmmbmopmmﬂﬁmammdm,
deriving the general system concept,

specification of every basic operational function and of every process,
presenting the users’ views, and

p P o

o

Each of these basic steps is detailed now, and a description of the final document is given later.

. 11.4 Classification

The first step of this stage is to classify-the basic functions, the processes and the users both in the
old system and in the new, designed system. The term “cld system” needs a little elaboration. Whenever
a system is designed to replace a present system that is in operaticn the term “old system” is evident and
refers to the present system. When there is no automated system to be replaced by the specified system,
than the extant manual system can be considered as the old system.

The classification is not necessarily the same in the present (cld) and in the designed (new) sys-
tem. Changes in the designed system can cause addition, deletion, unification and splitting of functions,
processes, and users. The way to perform this classification is by referring back to the sources that are
mentioned before, i. ¢., the interview summaries and the processed requirement. Most of the necessary
work about functions and users has already been done previously. Users were identified by a process of
hierarchical decomposition, that leads naturally to classification. Requirements were composed during the
verification stage {Chapter 8), and this abstraction can indicate a classification. Furthermore, functions
were classified during the functional specification stage (Chapter 9).

Basic processes have to be identified. If the kmowledge about the system processes is incomplete,
then reiteration of interviews is necessary. This classification can be done right after the interviews. How-

ever, the operational system specifications stage may reveal that some of the processes are unnecessary,
and therefore this classification should be done as the last step of the requirements production method.
Going back to the users at this point of time should not be considered bad because both the users and the

59

specifying team' can benefit from increasing the points of contact.

11.5 Mapping
Mmgekﬁmﬂummemapﬁngmdtheﬁmcﬁmﬂspedﬁmﬁmstage(@apm 10).

Evayreqﬁranmthmbbemappedmabmicopuaﬁmalﬁmﬁmmdwabasicm‘ This task is

donebytheenﬁrespedfyingtemmcﬁngtothefnﬂowingguidelinu:

a Evuyrqubmmmwbemapmdmulemtmbaﬁcopaaﬁondfmcﬁmmdmnlﬂstom
basic process.

b. One requirement can affect more than one function /process.

c Redassification of functions /processes can occur during the process of mapping, and to cause a
different distribution of requirements to classes.

d Somereqtﬁrunmtsmfomdwbemq:pedmahrgembeotﬁmcﬁomfprma. These re-
quirements pertain to general system requirements.
Mreprumtaﬁmoftheﬁpedsysmbybﬁcopeaﬁmdﬁmcﬁommdmis

mnhowdiﬁm&omﬂnrepruamﬁmthuhmggswdhﬂnpreﬁmsdmpm(is-sym

ion). }he,ﬁemmkpudvdammdamm.mﬁmm

Mmmﬁwwwewﬁmmmmﬂymsamb,hmmnmw

by that entity in order to achieve a goal. The goal is determined by the type of that entity. The processes

are only partly internal to the designed system. They can pass the borderline of cne system and involve

the environment or other systems. s
mell-zmmumﬂummmnﬁmdammmwkhtheothammnﬁom.

Theprmumshownmgommemwn,mdudnprmomupiumlyapmdﬂnm
tem. Agoodspedﬁmﬁmd&dgnmﬁmaﬁmmesystmmbdudefunprmawhmﬂupmbh

11.6 AGmﬂSym.Cmpt
Now the whole specifying team is engaged with delincating the general system concnt. At this
pominthespedﬁ:aﬁondaignprm,alltheinfoxmationisknmm.andadmframcworkofthe
designed system emerges from the processed requirements.
The general system concept has to determine
a. the purpose and operational goals of the system,
b. the criteria for checking the operaticnal contribution of the system,
¢ measures for testing the compliance of the system with its goals, and
d. the functional principles of the system.

Figure 11-2: Three Alternative Representations of a System

Traditionally, system developers expect to delineate the system concept prior to commencing any
work on the system. However, many times this has been proved to be impossible. The case of a large
softwu‘esystmisdwlymempleinwhidnonlyfewpﬁmdmcﬁcmofthatsmtcmbegivm,ifat
all. The method that is described here reveals only after several iterations, refinements, and abstractions,
how to artive at the system concept.

This step is dope by human reasoning. There is no recipe for doing it. However, it should not be
a difficult task to accomplish because the previous stages have made ail the information available and
properly organized for the specifying team. -

11.7 Specification of Basic Operational Functions and of Operational Processes
11.7.1 Metbodology

The task of this step is to determine each function /process for the designed system by taking the
following actions

a Documenting the existing (old) function /process, if such a function /process exists.

b. Analyzing the functional specifications that pertsin to the function /process. Those requirements
have been mapped to the function /process before.

c Determining the function /process for the specified (new) system.

61

& Documenting the specified function fprocess.

11.7.2 Texm Organization

The specifying team is divided into smaller groups. Each group is assigned one or more functions/
of a similar nature. The size of each group it.
should include at least two persons. One of the groups deals with general system concepts, criteria and
measures as mentioned in section 11.6.

11.7.3 Work Procedures

a Awmkinggrmpdzt:mﬂnaanddoammeadlﬁmcﬁonlprmasﬁgmdmit. Each group is
free to determine its own work procedures. However, schedules are to be imposed by the project
manager. There_mltsmdoamunedinauniformwaytobedisamedlata.

Wmmmmmmwwmmmm,
unless both functions /processes are assigned to the same group.

ai‘

c Mahisamorp:oblummdsamedbyﬂnwholespedfyingm

mmmmmmmaﬂmmmmmdeﬂ
groups, and to discuss subjects that are of general concern.

11.7.4 Documentation
Thewy&ehnwﬁms/pmumdom@edshmﬂdbemﬁmfmaspedﬁaﬁmsddgm

Tbmga&dm@@mmmzﬂnddounﬁmpmemymaﬂzfmpuaﬂaﬂm,hﬁm-

courages compliance with certain recommendations:

a. Bothgraphcmdwmmdmxpnmdead:ﬁmonlprmmmmmd.

b. Thegraphicpraeumﬁmanbea}mmumﬂmammdmtsﬂuthcommedh
Yourdan's methodology {DeM78].

c Oﬁupramﬁom,auﬂ:uafmnlptamﬁon.mbeaddedifm.

mmmmﬂmmmmamdmmmun
discussed in appendix A. '

11.8 Miscelianeons

After completing the determination of basic operational functions and the processes in the spec-
fied system, other subjects can be considered and documented in the final report. They are described
kere.

11.8.1 Organizationsl and Operational Changes

Implementation of a new system, especially a large system requires organizational and operational
changes to be carried out by the system users. This step defines and determines what preparations the
users have to make in order to ensure a smooth operation. The source for this task is the user tree and
the mapping of processed requirements to users.

11.8.2 Documenistion and Training

The representation of the system enables users to determine what kind of documentation and what
kind of training every user needs, The results of this primary investigations leads later to the preparation
of a documentation and a training plan. The detailed wourk is done at later phases of the system develop-
ment.

11.8.3 Data Directory

The presentation of the requirements, that is discussed in Chapter 8, gives rise to all the abstract
data types that appear in the specified system at various levels of abstraction. This is because each re-
quirement is presented by a verb and an object, and the object turns out to be an abstract data object.
Other presentations of requirements are, of course, possible, but eventually data types will emerge from
any presentation. These data types are used in the descriptions of the functions /processes. A list of all
the abstract data types of the system is an essential input to the design phase in the system development,
as well as in the description of requirements. "Good design work will derive the system’s data directory
and the logical structure of the system’s data base out of the abstract data types.

11.9 Antomsation

This stage, which is the last stage of the specification design, deals mainly with the preparation of
the final document. Obviously, a text processor is the most used tool for this stage. A text processor is
used in several stages of the process starting from input of interview summaries.

Several information items that are gathered or generated in previous stages are used here, These
items are the user tree, the requirements tree, with abstract data types, processed requirements, etc. This
information is accessed by retrieval tocls.

Classification and mapping of requirements appear to be a repetitive actions in several
A software tool can be provided to support it. It is discussed in the automation chapter (Chapter 12).

11.10 cm

m:mgewndudaﬂnprmofprom:ﬁmdspedﬁmﬁmfmlxgewfmewmndak
mﬁnhﬁ&yammmmmﬁmﬁm;pmmdmmmemdﬁmdmmmmMuk
vironment. Themethodhaedrawsupmtheinfmmaﬁmthnhgabaedmdprmedhtheprwiom
stages. It shares some similar processes (such as classification and mapping) with previous process.

Theopgraﬁmdsystanspedﬁmﬁmsﬁgembempm-wpporwdhmudofiumhm
uwmdprmingmddoamﬁprepunﬁm.informaﬁmmﬂiwﬂ,dnﬁﬁaﬁmmdmapping.

Automation of the Requirements Production Method
12.1 Introduction

The role of an automated system during the specifications process is the role of a supportive sys-
tem. Such a system accompanies the specifiers, prowdatlmmthmformnuonandtoolstoprmthe
information and, whenever possible, humbly suggests alternatives or courses of action. In this last role, it

acts as an expert system [Barf2].

Management and control of a specification project, that usually is a part of a larger software or
system project, involve keeping track of users, requirements, data types, specifications, etc., mostly un-
structured, and other tasks such as scheduling, doummhandlmgmﬂdmmamn.gmaﬂonofwork
plans, and ensuring a smooth transition to the design phase.

hmmmmmmuygmmmmmmmofmmm
several areas. One of them is a software support environment. Tools for requirements production are a

part of the process technology for the 1990’s as discussed in [Boe83]. The requirements production
method is valuable by itself, but undoubtedly its contribution is larger when it is supported by automated
tools.

This chapter attempts to analyze and to present the functional characteristics of a Computer As-
sisted Specification System (to be referred to as CASS). The next section (12.2) explains the methodology
used for obtaining the requirements of such a system. Afterwards, the general concept of the system is
presented (12.3) and a more detailed description of each service/ function is given.

Several interesting topics of CASS were subject to a more thorough research. This was done by a
prototyping of 8 sub-system named CAS (Computer Aided Specifications) and rumming it on a typical
specifications design problem. The CAS system is described in a previous chapter (chapter 9).

122 Methodology
A good way to arrive at the specifications of CASS is to use the requirements production method
described in the previous chapters. In order to save time and space, many shartcuts are done here and the
steps taken are
a definition of the users domain of CASS,
b. listing of automation functions of each stage,
c formation of subjects from common functions,
d analysis of each subject,

e. analysis of the management subject, _
f. discussion of CASS's main components (data bases, knowledge base, tools), and
g listing CASS services.

As mentioned before, this chapter attempts to present only a functional delineation of CASS.
Therefore, no design of CASS is presented here.

123 Automation Needs by Stages

Egmu-lpraemsaﬁnofacﬁmthnmbemmmthespedﬁaﬁmmmdhthe
management of the process. 'Ihelistiso_rgnﬁzedbymge: ‘

Stage Specification Automation Management Automation
1. Study
2. User Identificati D o
Maintenance of users file
3. Imerviewing Word processing Task assignment
Document processing Scheduling
Document handling -
4. Raw requirements processing Text analysis Distribution of documents
Qlassification Handling of mailing list
Correction of problems
Maintenance of req, file
5. Vexification Composition Errors processing

Mmmofreqﬁle Statistics
Handling of verification algorithms Completeness

Text processing Version handling
Text processing and editing
8. General CASS Work plans
: Team assignment
ing track on items
Guidance and help

Figure 12-1: Candidate Issues for Automation

The Stage and Specification Automation columns of this table are compiled from the description of
various stages of the process. For more details, the reader is referred to the corresponding chapters. The
Management Automation column describes management activities that are discussed later in a spedial section
(12.11.8).

From the above table, the services that CASS should provide can be listed:

ot

Text and document processing

Text analysis

Decomposition

Composition

Program design language processing
Maintenance of the information base

o p o o

™

A

Project management
Prmmoﬁtor

Each of these subjects is described and analyzed subsequently, after the description of the general system
concept.

-t
L]

12.4 User Domain of CASS

The users domain of CASS is described in figure 12-1. The main users of the system are the
specifiers. As abstract users, they can be further subdivided into specifiers at the decomposition stage,
specifiers at the verification stage, etc. Each kind of specifier requires different services from the system,
as is described previously. The system implementors can be considered to be CASS users because they are
the persons that use the product of the methodology. Naturally, the potential users of the specified sys-
tem are users of CASS, together with the customer and the project manager.

An elaborate analysis of the users domain will probably reveal ideas for augmenting CASS to
make it usable by users, designers, etc. Here the system is focused on the specifying team and its manage-
ment.

12.5 A General Concept of CASS
CASS is an interactive software system that provides on-line services for specifiers and for project
managers. These services enable them to conduct an orderly methodology designed to obtain system re-

quirements and specifications. The system can be described by three layers, information bases, tools, and
services, as shown in figure 12-3.

67

CASS Usars

I

Systam Users Systam Inplamentators Custooars

project manager Specifiers designars programsers Suppert

Figure 12-2: Users Domain of CASS
DATA SASE KNOWLEDGE BASE
INFORMATION BASES MCUIREMENTS S, TULES
COMP. RULES
rad \R /. e
o0 - A \
SERVICES

EDITING MANAGEMEMT OMAQSITION CECOMPQSITION

Figure 12-3: An Qutline of CASS

The information bases, the data base and the knowledge base, contain information about the
designed system and instructions for its processing. A tool is a program that perform a certain action or
process, typically, on the information bases. A service, or application, is the result of applying one or
more tools in a certain order.

12.6 The Data Base

The CASS data base contains all the information that is relevant to the specified system. It is
further subdivided into files as following:

User File: Contains all abstract user records and their relationships, e.g., parent-child. This includes
relevant user information, such as name, description, identification, type, references, etc., and
management information, such as date and reason for specifying that user, interviewer, dates for
planned interviews, etc. :

Interview Summaries Filé: Contains all interview summaries, references, and management information.

RmmmmCmmmmmmMmgmeyﬁedmmmmqum
ments that are generated by composition. This file can contain various presentations of the same
requirement and is conceptually linked to the user file and to the interview summaries file. The
same file holds raw requirements and processed requircments. Management information such as
I . ret rating etc., :es ench \

Document File: Every document that is produced by the process resides on a file. Several revisions of a
document can be held concurrently.

Abstract Data Type File: The data of this file is embedded in the requirements file. However, during the
requirements composition process, the file is created to contain the data types that are part of the
future system.

12.7 The Knowiedge Base

The knowledge bese of CASS contains knowledge that pertains not oaly to a specific application,
but to a larger ‘class of applications, to other similar applications, or to the environment of the designed
system. It attempts to provide the specifiers with expertise and prior knowledge of other systems that
were not designed by them.

The knowledge base is used by some of CASS services, most notably the composition, text
apalysis, classification and mapping. It has two main parts, the application glossary and the rules.

The application glossary is a list of words, phrases and terms that are pertinent to an application
or to a class of applications. Data items can be organized in the glossary either separately or as a part of a
structure, e.g., a hierarchy or a semantic netwark. The hierarchy and the networks are used to indicate
how terms are abstracted or decomposed and how they can be meaningfully chained.

The rules indicate how the application glossary affects the data base. For example, a simple yet
useful algorithm of composition is to match a list of words from the data base to the same list in the appli-
cation glossary and to replace the list by the one word provided by the glossary for the list. This was actu-
ally done in the CAS prototype (See Chapter 9.). Composition rules may be more complex, and other
rules may apply to text processing or mapping. For example, a simpie rule to identify classes of require-

ments out of interview summaries would be to count the frequency of the wards and phrases in the text,
and to build classes out of the most frequent words and phrases (discarding words such as “the”, “and”,
“is”, etc.).

12.8 Tools
The tools are higher order elements of software that perform a spedified task, usually by operating
on the information bases. Themohmdaaibedtogethcwiththemim.

a TheDBr(DanBaseTmmeﬁdammmthedmbme,mupdm,add,ddm,aﬁg
and retrieve abstract users and requirements, and to generate reports.

b. TheKBf(meledgeBmToonrovidnm&gmatamdmﬂw]mowledgebue,m
editandupdmeitcmshtheappﬁmﬁmglmymdthenﬂa,mﬂmnuimwhmwumy.

c The KOD (Knowledge Base On Data Base Tocl) provides means to apply the knowledge base to
the data base. mmham_dﬂnmﬁmmdmpodﬁmmmiiaﬁ‘ﬁeaﬁ-
plied either to users, requirements, or functions.

d TthOK(DataBmeOnmeledgeBmToonroﬁdummqnidnhehmwledgebmeby

' ing it with the current or the latest specifier decisions. Actions that are taken on the data

base.are analyzed and more terms are added to the application glossary. Thus, CASS can be seen

as a system that learns from its own experience. :

12.9 Text and Document Processing

Most of the data processed by the specification method is worded in some natural language:
Therefore, the CASS system should be able to accept input in that form. As explained previ , @ D=
mﬂlmgmgehthemmmmwaymmmqﬁmnmm;pedﬁmﬁmandhmmemly
form that can be understood by all participants in the process, the specifiers, users, and programmers, etc.

Therefore, one of the CASS services is text and document processing that enables entering text,
word processing and editing, document formatting, typesetting, etc. Some of the information should be
dsuihmedtospedﬁm,um,em,mdmuﬁm,dmmﬁlmuofmadvme.

The text and document processing service is used at most of the stages of the requirements pro-
duction method. Agwdaampleofnﬂasaﬁmhoﬂaedbymymmsmmm].

12.10 Text Analysis

The text that is entered into the CASS system has to be processed and analyzed. A relatively sim-
ple analysis of text can result satisfactory results. The following secticns describe the required analysis.

12.10.1 Identificstion of Keywards

The first classification of interview summaries (chapter 7) is done by identifying keywords and as-
signing parts of a document to these keywords.

| One method to generate these keywords is by scanning the text, counting the frequency of each
word and eliminating noise words. Meaningful keywords that lead to classes probably appear among the
most abundant words.

A list of other keywords reside in the knowledge base, as a result of previous analyses of similar
systems. A third source of keywords is the specifier’s preconception.

This service can be enhanced by dealing with phrases rather than words, and by using more ela-
borate methods of comparison, e. g., to strip words and compare only their stems. A discussion of skim-
ming techniques can be found in [Cul78] and in {DeJ79).

12.10.2 Qlassification

Qlassification of text is a service that is needed at several stages of the method, the raw require-
ments stage, the functional specifications stage, and the operational system specifications stage. The task
istoauignortomapaporﬁonoftmmaphrmeorakcymrd.

Omwqumafdangﬂ:emnppmgmmmthete:tfmmdthek:ym A more
elaborate way is to use parsing techniques on the sentences of the text and to replace words or phrases by
an equivalent phrase. No automated techmique can guarantee a full dassification. The least that such a
service can do is to let the specifier do the classification and just to record and store the mapping.

Figure 124 illustrates the keyword identification and text dassification services.

12.11 Mspping

Mapping means establishing a correspondence between two elements of the system, e.g., of re-
quirements to subjects, requirements to processes, etc. This mapping can be done sometimes by text
analysis or identification of matching keywords. However, usually it must be done by the specifier.

The method requires several mappings to be established and maintained, and this is a service that
CASS can provide quite easily. Thus, the specifier is free from the need to do tedious, mechanical tasks.

12.12 Decomposition

Decomposition or refinement is replacing an element of CASS by several, more detailed elements.
These elements are an abstract user, an abstract requirement, a processed requirement, etc.

71

Identification of
Kaywords

el prior knowledge preconception

—
I A
T N 4
e — =
— —
—
ey
O —

Kk.yv rds

clagsified taxs

Figure 12-4: Keywords Identification and Classification Services

msmmmm.m&uﬁmisdmebydnmspedﬁm CASS en-
ables interactive communication with the assembly of processed elements, monitoring, and some error
detection. Prior knowledge can be stored in CASS to assist the specifier. This prior knowledge comsists
usmﬁaﬂyofdempodﬁmpmummmhwebemfmmdmbe&equmﬂymloyedhﬁmﬂmappﬁm-
tions.

The discussion in the next section about the composition service is relevant to this section, too.

12.13 Composition

Compodﬁmmabmxﬁmisrephdngmmblyofdmbyfmdmmyid&a
less detailed and a more general description the whole assembly. Composition is used in the specificaticn
m&nhgthcvaiﬁaﬁmﬂge,hwﬁddmﬁquuﬁmmﬂmmpo&edmﬁghalwd re-
quirements and checked.

mmm,mmmﬁmmm,mmmmdhdmemﬁﬂybym
specifier. CASSassimbymHngmofantheduimlmbofrmdngmdbywaﬂhgpﬁmkmwledge
Or expert assistance.

The knowledge base is described in section 12.4.4. The composition algarithm combines all the
mposeddanm,malymthunandrefmtoknowledgebmmmismalysis. Chapter 9 describes
amdgbﬂmddgoﬁthmhwﬁmmewmpodﬁmmbdmbymplmandamhgcfm
by a single word.

Generally, composition rules of textual elements can be referred to in three levels, the ward level,
the phrase level, and the structure level. Each level assumes a different level of composition, by words,
by phrases or parts of sentences, or by structures that are sentences or other high order descriptions such
as graphs, tables, etc.

The application glossary can be divided to application-oriented terms, computerese terms, and
general, natural language terms. The first class contains terms that belong to the application itself. The
second class has to do with general computer jargon that often infiltrates the requirements, and the third
class consists of plain natural language terms. Therefare, only the the applications glossary has to be con-
structed for each class of applications (e.g., banking, logistics, air traffic, etc.), whereas the second dass is
built once for each type of designed system such as, real-time systems, operating systems, data-processing
systems, etc., and the third class pertains to all designed system and has to be constructed only once.

To summarize, the composition and decomposition services of CASS act as an expert system.
M,mimhowledgemdapaﬁuarmdedby@&mmgnﬂtbapabﬂiﬁadmespedﬁah

12.14 Program Design Language

Program design languages have been in use for several years [Cai75). The practical experience
geined shows significant improvement in productivity and ease of use in the design, checkout, and integra-
tion phases of a software project. A program design language can be used for statement of functional re-
(uirements in a similar way to design. In CASS; a program design language processor is used as a service
in the functional spedification stage (Chapter 9). The functional requirements are written down and then
refined and analyzed by the program design language processor.

Contemparary program design languages such as SuperPDL [BurS3] are better fit to CASS and to
be used for specifications presentation and analysis. Some of their characteristics are

a an interactive environment; so that the work is done imteractively with the designer; furthermore,

b. syntax directed editor, which enbles on-line analysis of constructs,
design analyzer, which checks completeness and intermochule interfaces,
d. abstract data types, which are used to describe and manipulate data and actions, and
e. hierarchical structures, which can be maintained and refined.
The way of representing a design by a program design language is by using several primitive con-
structs such, as while, select, call, etc., and definition of data types. All the information that is embedded

within a construct is stated in natural language. Possibly the same information can be processed by the

12.15 lnformthnBueMalnm

The information bases of CASS, the data base and the knowledge base, are updated during the
spacifications design process. This update is dore by one of the services mentioned above. However, a
saviceofmaighﬁmdmahnmmofmeinfmmaﬁmbuuhmededmdhﬁequmﬂym

The main features of this service are outlined:

a. Each information base and file (as mentioned in 12.4.3 and 12.4.4) is accessible to the user.

b. Each data item and knowledge item can be added, deleted or modified.

c Each link and relationship between data items or knowledge items can be modified.

d Whenever possible, a syntax directed editor is incorporated into this service. It enables error
detection and is easy to use.

e This service should preserve consistency in the designed system. Thus, no direct modifications
that remove a prior consistency are allowed.

f. This service should enable concurrent maintenance of several revisions of one designed system.

g Management data and files are maintained by this same service, -

12.16 Project Mansgement

wmmmdﬁwﬂmmmmdwmmwedmdﬂn
work and the complexity of the desired system. It is important to have good management data, tools and

Managing the specification design phase of the project is a difficult task by itself. It is only partly
structured, and it involves numerous data items, users, requirements, data types, processes, basic func-
tions, etc., and many persons, i.c., specifiers, users, customers, €tc. Proper management practices should
accompany any methodology, to ensure proper implementation of the methodalogy.

nhmguMMeMOmsystunbehnplanﬂmdfmtbespedﬁmﬁomddpmmdfor
the management process. The benefits of combining management tasks and specification tasks in one sys-
tem are quite evident. Redundancy is avoided, project management has a better visibility to the whole
prom,mmnﬂicmofinformaﬁonocan,mdreporﬁngbemumerdiable.

The meaning of project management here implies an extra dimension of the system by incorporat-
hgapmdiumhmm,nmdymeswdﬁm.ummdmwgmﬁmﬁm,mdambﬁsﬁngmrd&
tionship between these entities and the elements of the system.

The main tasks of the management service are presented below. They are the output of Section
12.3.

a Mthoqunud:keephgmckofanﬂwdmhumofCASS,mm,reqﬁrmm,dmatypu,
processes, functions, specifications, etc.

b. Task Assignment: assigning tasks to each member of the specifying team, and interfacing with the
c Work-plan and Schedule: planning the work for the participants of the process and setting a wark
schedule.

d. Document Distribution: distributing documents according to project mailing lists, e.g., distribution
of raw requirements to users, and follow-up when responses are

e. Error Processing: keeping track of errors that are revealed in the process and ensuring their proper
- :

f. Project Metrics: accumulating data and statistics about the project to be used for other projects and
for estimations of the current project.

g Cost and Time Modeling: obtaining the project statistics for models (see [Boe81]) that estimate the
project’s duration and cost.

12.17 Process monitor

The requirements specification process comprises several stages, each composed of several sub-
stages that manipulate different files. The situation becomes mare complicated because several stages may
be reiterated, and because different persons of the specifying team can be in different stages at the same
time. —~ :

The process monitor service directs the flow of the process and keeps track of where everyone is.

Furthermore, it can suggest what the next stage should be, determine a pattern of action and warn when
stages are overlooked. _

75

CHAPTER 13

13.1 Method

The method for producing requirements was fully developed and presented. Sclnectthepropa;
ties of this method are as follows:

e It is complete and exhaustive.

® It does not demand a prior knowledge about the specified system.

® It is user-oriented. |

o It is independent of the application domain.

onisindepmdandthewaythemqtﬁremml_:uefmﬂamdandstated.

® It is practical and easy to follow and implement.

® It is manageable for large projects.

@ It provides several ways far system presentation.

® It can be partially automated.
Agoodwnymrateamcthodubymprom This inci

good specifications and analyzing the method according to them. One such set of principles good specifi-

cations is given by Balzer and Goldman [Bal81].

1. Functionality must be separated from implementation.

unlasausastatalmreqmanaﬂ:mmplemmanonm Smmmmgbyttnspeuﬁmdxmgﬂm

mmmﬁmgmgemmemplmﬁummrmm

2, m:ysm:pecﬁcndouhugmgcshmddbcpmmm.

speaﬁcanonmgeprowduareprucntanon onbomcﬁmcuonnlopermom opemional
processes.

3. Specgﬁcaﬁommmmmsﬂwsystnnofwhkhﬂumwdadaigubacm

'Ih:spxmple:smamedmtwoways One, thesystanofwhld:tbesoftwmnacomponmcan
beaemedmmabstraausa,demmposedmoothaob;ecaﬂmmunmthﬂwwﬁwe This interac-

tion is stated as an abstract requirement. The second way is by the operational system specification stage
as stated above.

4. Specifications must encompass the environment in which the system operate.

One of the presentations of the specified system is as a component of its eavironment. The opera-
tional system spedification stage takes care of that. N

5. The System specification must be a cognitive model.
Thismethoddam‘buthesfnunmpucdvedbyinmmnﬁt.y. This perception constitutes
6. Specifications must be operationai.

This means that the specifications can be used to determine whether a proposed implementation
satisfies them. This problem has not been addressed in the method.

7.Th¢:ysm:p¢cﬂicmbnmb¢hmsﬁv¢mhwmpkm.

nepmpoaedmzdndd:ednthereqmanmfcrmpletmumvedbythemmd
maintains requirements in several degrees of abstraction. New users and new requirements can easily be
added due to the tree structure of the users domasin.

8. Specifications must be localized and loasely coupled.

The proposed method yields loosely coupled requirements due to its processes. First requirements
are generated by discrete users. Secondly, they are dassified and sorted by discrete subjects. Both users
and subjects are localized and loosely coupled. The exception is the class of general system requirements
{See Chapter 10.) that are not localized.

The ultimate test of any process or methodology is out in the field, in real-life eavironment. This
method has not been in the field used as a whole yet, but parts of it have been exposed to several large
softwmsystum. mmmmalomqm,ammmdmdmdmmamm
tion system. Each of them is estimated to be larger than 200,000 lines of code, and they ail are still in

development. Only initial, partial conclusions can be drawn presently.

® The existence of a method for specification, any method, was beartedly welcomed by the specifiers,
project management and users.

® User identification for a large software system was a real problem for the specifiers. This problem is
solved by the second stage of the method.

® The specifiers and the users value the manageshility of the project caused by the method.

e Formal requirements were rejected by the implementors and the users. The use of SuperPDL [Burg3]
with embedded natural language for requirements was successful. However, not all the users
could understand and relate to requirements written in this way.

e Automation was requested by everybody. When the method was tested, no automated components

were available.
Some weaknesses were found

@ The method seems to be too cumbersome for smaller projects. It does not adapt itself easily for scaling
down.

o The management issues are not stressed enough.
e Automation is incomplete.

132 Almmtln;tlnl’roes

The functional specifications for a computer-assisted specification system were described and the
automation of each stage was discussed. Furthermore, apratutypeofputoft!msystanwasxmplanuned
and used. The main conclusions are as follows,
@ The method can be partially automated as a computer assisted system.
@ The derical part of the method and the management control can be fully automated.

® The reasoning, human activities can be partly automated as expert systems. Further research is needed
here.

° mprmotypehmpmvedthnnmposﬁblemprmreqmthumwmtmmmphm
language, andthatreasanablemultsmbegamdbyumghmtedtequuu

@ Interaction between the computer and the specifier is essential.
A number of deficiencies were found.

] OMymemum,mdmmmme&mpmnm,mmprmw The
processes of finding classes, classification, and mapping were not tried out.

o Theprototypeuslowmdulmgmthlngeproblm
] Runotpoaﬁblemmmmadprmfmmalreqmmmthﬂmmm

133 Recommendations for Further Research

Experimental

a. The whole process should be used extensively on real life projects and be evaluated and refined accord-
ingly.

b. CAS should be used on several real and synthetic systems in order that it be better understood and
evaluated. A reasonable knowledge base has to be built.

c. CASS should be developed and implemented. It should be distributed to several users in order that it
be examined and evaluated.

d. More elaborate artificial intelligence techniques and ideas should be tested, e.g., skimming, natural
" language processing, expert systems, etc.

Theoretical . _

a. Develop a theory for the several representations of a sysiesi.

b. Devise algorithms for mapping, classification, and class formation.

¢. Develop better tools to process requirements that are written in natural language.

[AbbS3)

(Al77]

[ATL34]

(Bal79]

[Bar82]

[Bas2]

[Bei84)

[Bei79]

[Ber83]

[BeY&3]

CHAPTER 14
REFERENCES

Abbotts R.J., “Program Design by Informal English Descriptors”, Communications of the
ACM Vol. 26, No. 11, Nov 1983,

Alford M.W., "A Requirement Engineering Methodology for Real-Time Processing Re-
quirements”, IEEE Transactions on Software Engineering SE-3(1), 1977.

SuperPDL — An Interactive Software Design Tool., User’s Manual, Advanced Technolo-
gy Ltd., P.O.Box 13045 Tel-Aviv 61130 Tsrael.

Baltzer R., Goldman N., "Principles of Good Software Specifications and Their Imple-
mentation for Spedification Languages”, Proceedings of the Conference on Specifications
of Reliable Software, Cambrige MA, April 1979.

Barr A., Feigenbaum A., The Handbook of Artificial Intelligence, HeurisTech Press, Stan-
ford CA, 1982. ’

Ben-Bassat M., Dreizin Y., Carmon Y., Kashtan Y., "A Decdision Support System far
Comstruction and Maintenance of Developement Plans”, Mekarot, Israel, 1981.

Beichter F.W., Hertzog O., Petzsch H, "SLAN<4 — A Software Spedfications and
Design Language”, [EEE Transactions on Software Engineering, Val. SE-10, No. 2, Mar
1984.

Belford P.C., Bond A. F., Henderson D.G., Sellers L.S., "A Key to Effective Software
, Proceeding of the Second International Conference of Software Engineer-
ing", San Francisco, CA, 1976.

Bel T.E., Bixler D.C., Dyer ME. "An Extendible Approach to Computer-Aided
Software Requirements Engineering” IEEE Transactions on Software Engineering SE-
3Q1), 1977.

Belady L.A., Lehman M. M. "The Characteristics of Large Software Systems®, in
Research Directions in Software Technology, Peter Wagner, Ed., Cambridge, MA: MIT
Press.

Berry O., Berry D. M., “The Programmer-Client Interaction in Arriving at Program
Specifications: A Methodology and Linguistic Requirements.”, Proceedings of the Confer-
ence on System Description Methodologies, Kesckeemet, Fhmgary, May 1983.

Berry D. M., Yavne N., Yavne M, “On the Requirements for Program Design
Imgtmge:?armcﬂimﬁm,AbstamTypa,mdSUmgTypinginSoﬁwareDdgn
Process (SDP)”, Computer Science Department, UCLA, 1983.

81

[Boesl)
[Boek3]
(Boes)
[Bon70]
(Burg3]
[Burd4]
[Cai75]
[Cas31]
[Coh83]

[Cul78)

[Dev79]

[Dav&2]

[Del79]

[DeM78]

[Est78]

[Fis78]

Boehm B. W., Software Engineering Economics, Englewood Cliffs, NJ: Preatice-Hall,
1981. '

Boehm B. W., Standish T. A., "Software Technology in the 1990’s: Using an Evolusion-
ary Paradigm”, Computer, Nov 1983.

Boehm B. W., "Software Engineering Economics”, IEEE Transaction of Software En-
gineering, Vol. SE-10, No., Jan 1984.

deBmoEdwud,Lmdnmg,Harper&Rowmbﬁahqs, 1970.

Burstin M., Forscher Y., Maimon Y., Rotbard Y., "SuperPDL - ASoftwareDalgn
‘Tool” IEEE 1983 SOFTFAIR, 1983.

Burstin M., Ben-Bassat M., "A User’s Approach to Requirements Analysis of a Large
Software System”, ACM Conference, Oct 1984 (To be published).

Caine S.H., Gordon E.K. "PDL - A Toal far Software Design” Poceedings of the NCC,

197S.

Casey, T.,'WnnngReqmanthngﬁd::ANanmlA!maﬂve LEEEWorhbopon
Software Engineering Standards, San-Francisco, Aug 1981.

Coben D., “SymbothxeumwoftheG!SI'speaﬁmonlmguage Procudmgsafﬂu
E;gmuc.u 1983.

Cullingfard R. E. "Script Application: Computer Understanding of Newspaper Stories”,
116, Yale University, Department of Computer Scence, New Haven, Conn. 1978.

Davis A. M., Rauscher T.G., "Formal Techniques and Antomatic Processing to Ensure
Correctness hmkmm Specifications”, Proceedings of Reliable Software, Cam-
bridge, MA, 1979.

Davis, “The Design of a Family of Application Oriented Requirement Languages”, Com-
puter, May 1982,

Delong G. F., "Skimming Stories in Real Time: An Experiment in Integrated Under-
stnndmg 158 Yale University, Department of Computer Science (1979), Ph.D. Disser-

De-Marco T., Structured Analysis and System Specification, New-York NY: Yourdon
1978.

Estrin G., "A Methodology for Design of Digital Systems - Supported by SARA at the
Age of One", Proceedings of the National Computer Conference, Anaheim CA, June
1981.

Fisher D. A., "DoD’s Common Programming Language Effort”, Computer, Vol. 11,
Mar 1978.

[Gan79]
[Goo78]

[Gut77]
{Ham76]

[Feifs]

[Hic79]

(HIP74)
| [Hoa73]
(TEES4]
[Kem80]
[Leh2]
[Lev79]
[Lis75)

[Lis79]

{Ludf2)
[Ludss]

(Lun79)]

Gane C., Sarson T., Structured System Analysis Englewood Cliffs NI: Prentice-Hall 1979.

Good D.L et al. "Repart on the Language GYPSY - Version 2.0" Certifiable Minicom-
puter Project, University of Texas at Austin, Report ICSCA-CMP-10 Revision 1, 1978.

Guttag J., "Abstract Data Types and the Development of Data Structures”, Commumica-
tions of the ACM, June 1977.

Hamilton M., Zeldin S., "Higher Order Software - A Methodology for Defining
Software”, IEEE Transactions on Software Engineering, Mar 1976,

Heitmeyer C. L., Mclean J. D., "Abstract Requirements Specifications: A New Ap-
proach and Its Applications”, IEEE Transactions of Software Engineering, Vol. SE-9, No.
S, September 1983.

Hice G.F., Tumer W.S., Cashwell L.F., System Development Methodology, North-
Holland Publishing Co. 1979.

"HIPO - A Design aid and Documentation Technique”, Form GC20-1851, IBM Corp.,
White Plans, N.Y., 1974,

Hoare C.AR, Wirth N., "An Axiomatic Definition of the Programming Language
PASCAL" Acta Informatica 2, 1973.

IEEE Guide to Software Requirements Spedifications, IEEE Std 830-1984, IEEE Inc.,
NY, USA, 1984.

Kemmerer, "FDM - A Specification and Verification Methodology”, Proceedings of the
3rd Seminar on DOD Computer Security Initiative Program, National Bureau of Standards,
Nov. 1980. ' '

Lebman, M. M., "Program Evolution”, Research Report DoC 82/1 , Dec 1982.

Levitt X.N., Robinson L., Siverberg, The HDM Handbook val 1-3, Computer Science
Laboratory, SRI International, Menlo-Park, June 1979.

Liskov B. H. and Zilles S. N., "Spedification Techniques for Data Abstraction”, IEEE
Transaction on Software Engineering , March 1975.

Liskov B.H., Berzins V., "An Appraisal of Program Specifications”, in Wegner P. Ed.
Research Directions in Software Engineering, 1979

u:twigszl.,"Compm:AidedSpedﬁcaﬁonufPrmCmolSysm', Computer
May 1982.

Ludewig J., "ESPRESO - A System for Process Control Software Spedification”, Tran-
sactions of Softiware Engineering vol. SE-9, No. 4, July 1983,

Lundeberg M., "An Approach for Involving the Users in the Specification of Informa-
tion Systems”, Formal Models and Practical Tools for Information System Design H.I.
Schneider, Ed. North-Holland Publishing Co. 1979.

[Mus80]

[Mye78]
[Osb53]
[Pax79]

(Ramg3]

[Rob76]

[Ros77]

Rou?6]

[Swas3]
[SDM70]
[Sim77)

[Tei77]

[Thos81]
[UNI83)
[Vens1]

[Was79)

Musser D. R., "Abstract Data Type Specification in the AFFIRM System”, IEEE Tran-
sactions on Sgftware Engineering, val. SE-6, Jan 1980. -

Myers G. J., Compositel Structured Design, Van Norstrand Reinhold Company 1978.
A.F. Ozborn, Appiied Imagination, New York. Scribner, 1953.

David L. Parnas "On the Criteria To Be Used in Decomposing Systems into modules”,
Communications of the ACM, December 1979.

Ramsey R. H, Atwood M. E., Van Doren J. R., "Flowcharts Versus Program Design

Languages: An Experimental Comparison®, Cmma’omafduACM,Vul 26, No. 6,
June 1983.

Robinson L., Levitte X.M., Neuman P.G., Saxens AR. "A Methodology for the
Design of Operating Systems Software” in: Yeh E.D. ed., Current Trends in Program-
nﬁngMdmdolog,Prenﬁce-Haﬂlm.

Ross D.T., "Siruchured Analysis (SA): Al.ﬁgtngefa’(:mmmgldm IEEE
ﬁwwﬁauqu?wareEngmgSEJ(l). 1977.

Roubine O., Robinson L., "SPECIAL Reference Manual”, Technical Report CGS-45.
Menlo-Park, CA. SRI-International, 1976.

Swartout W. R., "The GIST Behavior Explainer”, ISI Reprint series, ISI/RS-83-3, July
1983.

SDM/70 System Development Method. AprmmyprodlnofAﬂmcSoﬁmIm.
1970,

Simon HA., The New Science q’Mmngecisim, Englewood Cliffs, N.J. Prentice-
Hall 1977.

Teichrow D. Hershey iii E.A., "PSL/PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing Systems”, I[EEE Transactions on
Saftware Engineering, SE-3(1), 1977.

Thompsen D. H, Gerhart S. L., Erickson R. W., Lec S., Bates R. L., eds., The AF-
FIRM Reference Library, 5 vols. USC Information Institute 1981.

UNIX Programmers Manual, Bell Telephone Labaratories Incorporated, Murray Hills,
New Jersey, Holt, Rinchart and Winston, 1983.

VanGundy A. B., Techniques of Structural Problem Design, Van Nostrand Reinhold
Company, 1981.

Wasserman A.L, "USE - A Methodology for the Design and Development of Interactive
Information Systems” In: Schneider H.J. Ed. Formal Models and Practical Tools for In-
formation System Design. North-Holland, 1979.

[Win82]

[Wits8]
[Yeh77]
(Zava2]

Winchester J., Estrin G., "Requirements Definition and Its Interface to SARA Design
for Computer Based Systems”, AFIPS Conference Proceedings, Volume 51,

June 1982, PP 369-379. '

Whiting C.S., Creative Thinking, New York, Reinholds, 1958.

Yeh R.T. Ciarent Trends in Programming Methodology Vol 1, Prentice-Hall 1977.

Zave P., "An Operational Approach to Requirements Specifications for Embeded Sys-
tems" IEEE Transactions on Software Engineering, Vol SE-8, No. 3, May 1982.

APPENDIX A
The Products of the Requirements Production Method

A.]1 Functional Specifications

The product of the functional specification stage is the first part of the final product. Its contents
and organization are briefly discussed below. They follow the recommendations of the IEEE standard for
requirements specifications SRS [IEES4]. The IEEE standard does not attempt to describe a methodology
to arrive at the requirements. It merely prescribes the contents of the final requirements document. The
output of the functional specification stage is a document that is crganized following the table of contents
in figure A-1. '

‘-

Table of Contants

1. Introduction
1.1 Purposs
1.2 Scope _
1.3 Definitions, Acronyms, and Abbreviations
1.4 References
1.5 Ovaerview

2. Generai Description
2.1 Product Perspective
2.2 Product Functions
2.3 User Characteristics
2.4 Generai Constraincs
2.5 Assumptions and Dependencies

3. Specific Requirements
{See 6.3.2 of this guide for alternate organiza-
tions of this section of the SRS.)

Appendixes

Index

-

Figure A-1: Prototype SRS Qutline

Chapter 1, the introduction, provides the reader with the necessary background before going into
details. It gives the purpose of the documents, their scope, the list of definitions and abbreviations, refer-
ences to other documents that are used in preparing the SRS, and overview of the whole document. A list
of action items to be taken by the readers of this document, mainly the users, is provided too.

Chapter 2 of the SRS document describes the general factors that affect the system and its require-
ments. It is divided into a number of sections as follows.

The Product Perspective Section relates the product to other systems or products.

The Product Functions Secticn provides a summary of all the functions that the software will per-

form.-

The User Characteristics Section describes the general characteristics of the eventual users of the
system.

The General Constraints Section provides a general description of other items that limit the
developer’s option for designing the system.

The Assumptions and Dependencies Section lists each of the factors that affects the requirements
that are stated in the SRS. '

Chapter 3 and the subsequent chapters are dedicated each to one of the subjects that comprises the

whole system. Specifically, chapter 3 is dedicated to the general system requirements.

The following list describes the contents and structure of each chapter.
Sub-functions are represented in a tree structure, as parts of the main function.

The structure of each chapter follows the guidelines of the IEEE standard 830-1984 [IEES4). Fig-
ure A-2 suggests the outline of a chapter.

The above mentioned outline lend itself to a hierarchical presentation. The presentation should be

Maﬁmmamﬁmham,mmmﬁomdhwmnm
derived from it should be indicated. '

mmmmmfmmmmmmmwm,mmndmuw
ed in the designed system.

A.2 Operstional System Specifications

A.2.1 Table of Contents

The product of this stage is the operational system specifications. This document is outlined here.

The table of contents is:

1.

o s W N

Introduction

Purpose
Interface to Other Systems
Operaticnal Processes

10.
11.
12.
13.
14.

3. Specific Requirements
3.1 Functional Requirement 1
3.1.1 Introduetion

Inputs
Processing
Qutputs
Extevaal Interfaces
3.1.5.1 Usaer Interfaces
3.1
3.1.
3.1.

1
A
Jd.
1.

“ﬂﬂﬂ
tri tabad

5.2 Hardware Interfaces

5.3 Software [nterfaces

5.4 Communication [nterfaces
Performance Requirements

Design Constraints

Attributss

3.1.8.1 Security

3 1 8.2 Maintainahility

faga s
Lol gy
[LRRY

3.1.9 Od:ur Requirements
3.1.9.1 Data Base
3.1.9.2 Opentions
3 1 9 3 Site Adaption

3.2 Funet:ona.l chummont 2
3.:'! Functiom.l Raequirement n

Figure A-2: Prototype Outline for SRS Chapter

Services and Users’ Views

Logical Data Base

Back-Up and Recovery

Security

Documentation

Training

Organization and Operation

Operational Contribution
nmmnmmdmmmdwﬁhﬂnammmwﬂmwhﬁmewwﬂﬂwmmomnm:memn

three chapters describe the operation of the system and the rest describe derived issues.

A.2.2 Introduction

2.

This chapter provides the reader with necessary background information. Its sections are

General

The purpose of the document

Sources
Method
Contents

oo s oW

Action items

A.2.3 Purpose

This chapter presents the operational goals of the system and how compliance with these goals is
to be checked.

1. Objectives and Goals
2. Criteria, i.e., the criteria for checking the system’s goals
3. Measures, i.e., quantitative measures to be applied while checking for system goals

A2.4 Principies and Constraints
This chapter defines the basic framework of the designed system.

1. Principles, i.e., operational principles upon which the design of the basic functions and constraints
were based

2. Constraints, i.e., constraints on system operation

A2.S Interface to Other Systems

This chapter defines the borderline between the specified system and adjacent systems and the in-
terfaces among them.,

1. System Domain, which lists the subjects that are handled by the designed system
2. Adjacent Systems, which lists all other systems that can potentially have any interface with the
A.2.6 Basic Operational Functions

These chapters detail every basic operational functions. A chapter is dedicated to each function.
1. General, i.e., a general description of the function, its goals and its role in the designed system
2. Description of the function

1. Invocation

2. Functional Operation

3. Uses
3. Operational Contribution, i.c., the benefit of this function to achieving the system's goals
4. Graphic Description

A.2.7 Operstional Processes

These chapters describe the processes and how the designed system is involved with them. A
chapter is dedicated to each process. An introductory chapter surveys all the processes For each process,
the chapter has the following form.

i. Geaeral, i.c., & description of the process, its operational goal and its intersction with the designed
system

2. The Present Process, a description of the process in the present (cld) system, if such a process
does exist

3. Description of the process
4, Graphic Description of the process

5. Operational Benefit, i.c., the benefits that the process provides for the operational goals of the
designed system

6. Abstract Data Types, i.c., a list of the abstract data types that are involved in the process

A.2.8 Services and Users’ Viaws
These chapters presents a list of all the system users and how the system is perceived by them.

Here the information of the previcus chapters is according to the user tree structure (See
Chapter 5 of this thesis). A chapter or section is dedicated to each user, or to each abstract user in every
level:

) User Description

2. Organizational Structure

3 Required Changes in Organization Structure

4,

System Services to the User

A.2.9 Logical Data Directory

This chapter lists the abstract data types that have been generated by the method. Most of the list
is derived from the abstract requirements tree (See Chapter 8 of this thesis).

A.2.10 Back-Up and Recovery

'mmmmeqmwmmeﬁmcﬁmﬂwhﬁmfmmmb&-upmd
recovery. Most of these requirements are system level requirements,

A2.11 Security

This chapter describes the security and privacy functions of the system and how they relate to the

A.2.12 Documentation

This chapter describes the functional documentation that is needed by each user for training and
for operation. o

A.2.13 Training

This chapter describes the training needs of each user before he can properly interact with the sys-
tem. :

A.2.14 Organization and Operstion

Implementation of a new system frequently demands organizational and operational changes. This
chapter identifies these changes, that are elaborated and detailed during the design phase.

1. Organizational Changes
2. Operational Changes
A.2.15 Operational Contribution

This chapter analyzes the contribution of the designed system to the organization or to the custo-
mer. This contribution is described by subject and by the operational goals of the system.

91

A.2.16 Cost Estimations

At this point the specifier may be able to come with first order estimated costs of implementing
the system. The COCOMO model [Boe81] can be used here.

AFPENDIX B
An Example: A Banking System

B.1 CAS Session

This is a a full session of CAS as used for the banking system (see figure 5-1). The actual CAS
commands are given here. The results of the compositions of the natural language presentation and of the
verb - object presentation are shown in the subsequent sections.

(1) spc bank ’s banking system’
(2) adn bank branch

(3) adu . customers

(4) adu . 'adjacent systems’

(17) adu . control

(18) adu . 'internal andit’

(19) adum . fed

(20) adu loanees car

(21) adu . personsal

(22) adum . business

(23) adu . mortgage

(24) adu depositors new account’
(25) ada . ’old account’

(28) adu . ’other branch’

(27) adu . ’other bank’

(28) adu accounting *fixed assets’
(29) adn . ’accounts payable’
(30) adu . ’accounts receivable’
(31) adu . "geners ledger’

(32) adr 'new sccount’ nl check account
(33) adr . nl open account

(34) adr . n2 write per-data
(35) adr . n3 write in-data

(36) adr ’oid account’ ol locate account
(37) adr . 02 compute baiznce
(38) adr . a3 write fin-data

(39) adr ’other branch’ brl iocate branch
(40) adr . 32 locate account

(41) adr . hr3 computs baiance
(42) adr . brd write fin-data

(43) adr *oihicr bamk’ ki lscats bank
(44) adr . bk2 send data

(45) adr mortgage ml write appraisal-data
(46) adr . m2 write per-data

(47) =mdr . m3 check credit

(48) adr . m4 computs payments
(49) adr . mé compute profitability
(50) adr . m5 jssue loan

(51) adr business bal locate bus-dats
(52) adr . b check credit

(53) adr . ba3 check collateral

(54) adr . bed compute payments
(55) adr . bsS computs profitability
{56) adr . beb lssue loan

{§7) adr persocpsl pl locate per-data
(58) adr . p2 check credit

(58) adr . p3 compute payments
(60) adr . p4 compute profitability
(61) wdr . p5 lssue loan

(62) adr car cl locate car-data
(63) adr . ¢2 compute payments
(64) adr . c3 compute profitability
(65) adr . of issue loan

(66) cmr loanees v

(67) cmr loanees o

(68) usr loaneces

(68) cmr depositors v

B.2 Compasition of Requirements - Fres Format

Here the requitements are written in natural language under each elementary abwstract user. Com-
posed requirements of a higher level appear under the abstract user name which is indented. o

Dep-New-Accournt
Check all account details.

Open new account by writting the necessary personal data.

Dep-Old-Accourt

A

Locate the account in the data base.

Compute the new balance and update the record accordingly.
Write the updated record.

Dep-Other-Branch

Identify data base to look at.

Locate record of account in the data base,

Compute the new balance and update the record accordingly.
Write the updated record.

Dep-Other-Bank
Cmmmmtheothﬁbmkmmtd:wadmbmeoftmfmedmds.

Prepare data to be sent over.

’ Depositors

Locate the account whether it resides in a local data base or in a remote data base.
Check the appropriate details and compute the new balance.
Update and rewrite the record.
Invoke communication activities whenever necessary.
Loanee-Mortgage
Locate personal data about the loance and appraisal data about the property.
Check the credit history of the loanee.
Check the equity of the property.

the terms of the desired loan.
Compute the profitability of the transaction.
Issue the loan.

Loanee-Business
Lomtethemarydmgbmﬂthebumanddwckmauﬁthsmry
Check the suggested collateral.

Compute the terms of the desired loan.

Compute the profitability of the transaction.

Issue the loan.

Loanee-Personal
Locate the necessary information on the person.
Check the credit history of the loanee.

the terms of the desired loan.
Compute the profitability of the transaction.
Issue the loan.

Loanee-Car

Locate the necessary data about the car and about the loanee.
Check the equity of the car.

Compute the terms of the desired loan.

Compute the profitability of the transaction.

95

Tssue the loan.

Loanees
Locate the data about the loanee and whenever necessary shout the collateral and the equity of the subject
of the loan.
Detzrmmemdmgtoaﬂﬂ:eaednmrﬁcatmﬂthelomshmddbegrm
Compute the terms of the desired loan.

Compute the profitability of the transaction.
Issue the loan.

Customers
Fetch customer data and other relevant data.
Check the relevant indicators to see if the transaction could take place.
Compute all the new customer and transaction parameters.
Invoke other systems to perform special tasks.

BJ3 Cmpdﬁndneqm ijeuhm
Here themﬂtsofthempwumdone CAS h:owledgebue. The require-
mnmurepn;;tedmthevub obpd:prumtamn. >y by using a
Composition of Requdrements: Dep” to “Depositors”
DepNew-Account Dep-Qld-Accomt Dep-Orher-Branch Dep-Other-Bank

{1.2.1.1) (1.2.1.2) (1.2.1.3) (1.2.1.4)
check account locate account locate branch, account locate bank

open account compute balance compute balance send data
write per-data write fin-data write fin-data
write fin-data .

locate accoumnt, branch, bank

-~

[pu-daa.ﬁn-dm ~ account-data
account, branch, bank - account
qx.n.loca:e check - fetch]

Composition dm: "Loan" 0 "Loanees”

Loan-Martgage Loan-Business Loan-Personal Loan-Car
Q221 (1.2.2.2) {1.2.2.3) (1.2.2.4)
write appraisal-data locate bus-daea locate per-data locate car-data
write per-data check credit check credit COmpute payments
check credit check collateral camnpute payments capute profitability
compute payments compute payments compute peofitability issue loan
compute profitability compute profitability issue loan
issue loan issue loan
4 '}) +
locate bus-data, per-data, car-data
write per-data, appraisal-data

[locate, write - fetch
per-data, -
crecit, collateral- credit-indicarors]

~—.

Composition dkm: "Loanees” and "Depasitars” to “Custoners”

Depositors Loanees
(1.2.1) (12.2)
fexch account feech loa-data
send data cheek credit-incEcarers
compute balance compute payments, profitability
write accourt-data send lomm

Consequences:
1. New requirement: compute profitability of an account.
2. New abstract. user: Account Payable system.

APPENDIX C
Users Manual of CAS

CAS users manual is presented in the subsequent pages. For each command the manual
pramiunme,insympa'n,aduaipﬁmofwhnmemmdoa,menmpleddnmga
of the command, error messages that may be displayed during the use of the command, the list of
files that are involved, the actual action that is taken by this command, other information that per-
tains to this command, and references to other commands,

CAS(1) UNIX Programmer’s Manual CAS(1)

NAME
spc — start a specification design
SYNOPSIS
SpC user-name user-description
DESCRIPTION
spe initiates a specification design of CAS (Computer Assisted Specification). It should be the first
command in a session.
user-name is the name of the specification design and the name of the root user.
user-description is the description of that user. The description parameter is optional, and is dis-
carded when a design already exists (i.e., if the design has been initiated before).
EXAMPLE
1 Initiate a new specification design for a banking system
() #pc benk ‘banking system users’

new specification session bank
USER NAME USER DESCRIPTION
bank bank system users

2 Initiate an existing specification design for a command and control system

()speee
specification design cc exists

1 Specification design name is missing

No name was given for the session.

FILES
CAS001 current specifications session
user-name.usr user’s file '
ACTION
1 File CAS000 is searched for user-name. If it is found, it is copied to CAS001 and the pro-
gram exits.
2 If it is not found, a directory by the name user-name is created in the home directory, and
a file by the name user-name.usr is created in that directory. The file contains user’s
name and description.
MISCELLANEQUS
1 Users can be added t0 a root user only after the spe command.
To end a specification session use a ends command must be issued.
3 All the CAS commands start by referring to the file CASO01. If this file does not exist,
an error message is issued.
4 CAS does not provide means to update CASO00 other than adding new specification
design names. Use any editor when updating is needed.
SEE ALSO

ends, adu
Meir Burstin, Requiremer:ts Analysis of Large Software Sysiems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Isracl.

-y Y. ye,e 4

CAS(1) UNIX Programmer’s Manual CAS(1)

NAME
ends — enis a specification session
SYNOPSIS
ends
DESCRIPTION
ends ends the current specification design session. A new spe command has to be initiated to
begin the next session.
EXAMPLE

End the current session
() ends

FILES
CASO01 current session name

ACTION
The file CAS001 is removed.
SEE ALSO

spe
Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel.

CAS(1) UNIX Programmer’s Manual CAS(1)

NAME
adu — add a user (child)
SYNQPSIS
adu user-name new-name new-description
DESCRIPTION ‘
adu adds a child to the user user-name. This is the only command that allows introduction of new
users {0 a system. Newususcanbemochmdanlyasdﬂmwemmm
Ihepum:wmmdmmmpumﬂmﬂdﬂd'snmmpmvdy. These are
mandatory parameters. New-description i the description of the new user (child) and is optional.
EXAMPLE
Add a user called “management”, who stands for the corporate bank management, to the user
"bank”.

() adu mansgement ’corporate bank manssement’
new user management added 10 parent bank.

USER NAME USER DESCRIPTION
management corporate bank managemant
:
1 usage: adu user-nams new-name new-description
At least one parameter is missing.
2 user user-name Joes not exist 4
An attempt was made to add a child to a non-existent user.
3 user name user-name aiready exists
Anattunptwasmadetoaddamwusuwﬂhameﬂmtnhudyemﬂmthespeuﬁm-
.uondtmgn.
FILES
user-name.usy user’s file
ACTION ’
1 The session is initiated from CAS001.
Ifﬂ:emnnbaorfpammammlmﬂmntwo an error message (1) is issued and the pro-
gram exits,
3 user-name is searched for. If it does pot exist the program issues an error message (2)
and exits,
4 new-name is searched for. If it does not exist the program issues an error message (3) and
exits.
5 new-name directory is built in user-name’s directory, and new-name.usr file is created in
new-name’s directory.,
6 The program declares a successfu] introduction of a new user.

MISCELLANEQUS
Please note that CAS does not allow two different users with the same name in the whole design.

SEE ALSO
adu, chu, usr
Meir Burstin, Reqmrermn Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel.

Tth Fdition 1

CAS(1) UNIX Programmer’s Manual CAS(1)

NAME
diu = delete a user

SYNOPSIS
dim user-name

DESCRIPTION
dlu deletes the user user-name. A user can be deleted only if it has no children. In order to delete
a whale subtree, the users have to be deleted ane by cne bottom up.

EXAMPLE
Delete the user "management” from the specification design.
() din mansgement
user management deleted frcm parent /bank
ERRORS
1 usage: diu user-name
A user-name parameter is missing.
2 user user-name does not axist
An attempt was made to delete a non-existent user,

3 user user-name has children and cannct be deleted
o An attempt was made to delete a user that hes children.

4 user user-name has requirements and cannot be deleted
An attempt was made to0 delete a user that has requirements.

FILES
user-name.usr user’s file

ACTION
1 The session is initiated from CAS001.
X there is no parameter an error message (1) is issued and the program exits.
3 user-name is searched for. ¥ it does not exist, the program issues an error message (2)
and exits. i
4 The directory of user-name is checked. I it has children (other directories), the program
issues an error message (3) and exits.
5 The directory of user-name is checked for original requirements (°*.req files) or composed
requirements (r002). If there are any requirements the program issues en error message
(4) and exits.
6 The user’s file (user-name.usr) is removed, and the user’s directory is removed.
MISCELLANEQUS
Requirements can be deleted using the dis command.
SEE ALSO
adu, chu, usr

Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel.

CAS(1)

NAME

SYNOPSIS

UNIX Programmer’s Manual CAS(1)

chu — change a user

chu user-name new-name new-description new-parent

DESCRIPTION

dmchmgama’sdatauﬂumanddﬂumﬁm It can also change a user’s parent. All new
parameters are optional, but appearance of at least ane of them is mandatory. Two apostrophes
(") means that a parameter does not appear and should not be changed.
M&mmmﬂnwbﬂe%wb&emﬂenmmu
transferred 10 new-parent.

EXAMPLR
1

FILES

Change the user "bank-afficers” to "bank-cmployees” with appropriate change of descrip-

() cim benk-officers bank-employees *all the employees of the bank’
user bank-officers changed

USER NAME USER DESCRIPTION PARENTS ,.., .
bank employees all the emplicyees of the bank bank/

Change the parent of the user "John" from "customers” to "management™ Donotd:ange'
the name or the description. :

() cha John * mansgement

user John changed
USER NAME USER DESCRIPTION PARENTS
John Mr. John Smith management

Change the user "swords” to "ploughs”, change the description and move him to the
parent "agriculture” (former parent was "defense™):

() chm swords ploughs *mmch better’ agricuiture

user swords changed
USER NAME USER DESCRIPTION PARENTS
swords much better gov/agricuiture

usage: chu user-name new-name new-description new-parent
At least one parameter is missing.

user Name user-name does not exist

An attempt was made to update a non-existent user user-name.

new paremt new-paremt does not exist
An attempt was made t0 move a user t0 a non-existent parent.

user-name.usr user’s file

ACTION

CAS(1)

5
6
7

SEE ALSO

UNIX Programmer’s Manual CAS(1)

The session is initiated from CAS001.
The number of parameters is checked. Error message (1) is displayed if necessary.

user-name is searched for. If it does not exist, the program issucs an errar message (2)
and exits.

I new-parent is mentioned then new-parent user is searched for. If it does not exist, the
program issues an error message (3) and exits.

'The file user-name.usr is updated, and its name changed to new-name.use.

I new-parent exists, then the directory user-name is moved to the directory rew-parent.
The program displayed a message that describes the changes.

adn, diu, ust
Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel. -

CAS(1) UNIX Programmer’s Manual -CAS(I)

NAME
usr — display all the information pertinent to a user.
SYNOPSIS
] O user-name
DESCRIPTION
usr displays all the information pertinent to a user: its name and description, parent, children (if
any), original and composed requirements (if any).
EXAMPLE
Display the information about the user "bank-officers™:
() usr bank-officers

USER NAME USER CESCRIPTION PARENTS
bank-officers officers of the bank systemvbank/

SONS

managermesnt
credit-officers

branch-managers
marketing-officers

no requirements

ERRORS
1 usage: usr user-name
No user name was given.

2 USSr user-name does not exist
An attempt was made to displey a user that does not exist,

FILES
user-name.usr user’s file

ACTION ’

1 The session is initiated from CAS001.
If there is no parameter an error message (1) is displayed.

3 user-name is searched for. I it is not found, an error message (2) is displayed and the
program exits.

4 User’s name, description and parent is displayed.

S If the user has children, their names are displayed.

6 If the user’s directory contains criginal or composed requirements, they are displayed.

adu, diu, chu, adr, dir, mvr, cpr, chn, anr
Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel,

“h Fdition 1

CAS(1) TUNIX Programmer’s Manual CAS(1)

NAME
air — add a requirement to a user

SYNQPSIS
adr user-name req-name verb object text

DESCRIPTION
adr attaches a requirement to the user user-name. The requirement is identified by a name reg-
name that is unique for a certain user. A requirement is stated by an affirmative sentence that
contains a verb and an object. The verb and the object are processed by the composition program.
The text is optional and is not further processed.

EXAMPLE
Attach a requirement "check account” to a user "data-base”. The requirement name should be
A.xx003:

() adr data-base A.xx/003 ’check account’ *check the account #°
new requirement AJo/003 added to user data-base

number of requirements:
4
REQNAME VERS OBJECT TEXT
Axx/003 check account check the accountd
ERRORS

1 usage: adr user-name req-name verb object text
At least one parameter is missing.
2 user user-name does not exist
An attempt was made to add a requirement to a user that does not exist.
3 . recuirement Nname reg-name aiready exists for user user-name
User name user-name has already a requirement with the name reg-name.
FILES]
req-name.req a requirement file
ACTION
1 The session is initiated from CAS001.
If there are fewer than four parameters, an exror message (1) is displayed and the pro-
gram exits,
3 user-name is searched for. If it is not found an error message (2) is displayed and the pro-
gram exits.
4 req-name is searched for in the user’s directory. If it does not exist an error message (3)
is displayed and the program exits.
5 A requirement file by the name reg-name.req that contains the requirement information
(verb, object, text), is constructed in the user’s directory.
6 A message that describes the change is displayed.
MISCELLANEQUS
1 Requirement name has to be unique for a whole design.
2 The requirement name is not preserved after composition.
SEF, ALSO
usr, dir, chr, mvr, cpr
Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tal-Aviv University,

CAS(1) UNIX Programmer’s Manual CAS(1)

Tel-Aviv, Israel,

7th Edition p

CAS(1) UNIX Programmer’s Manual CAS(1)

NAME
dir — delete a requirement
SYNOPSIS
dir user-name req-name
DESCRIPTION
dir deletes a requirement reg-name of the user user-name
EXAMPLE
Delete the requirement name "C38.1" from the user "bank-customers™:
() dir bank-customers C38.1
requirement C38.1 deleted from user bank-cusiomers
number of requirements of user bank-customers:
3
- ERRORS
1 usage: dir user-name req-name
At least one parameter is missing.
2 user user-name does not exist
An attempt was made to delete a requirement from a non-existent user.
3 requirement reg-name does nOt axist for user user-name
An attempt was made to delete 8 non-existent requirement from the user user-name.
FILES
req-name.req requirement file
ACTION
1 The session is initiated from CAS001.
" If there are fewer than two parameters then an error message (1) is displayed and the
program exits.
3 user-name is searched for, If it does not exist an error message (2) is displayed and the
program exits. .
4 req-name is searched for in user-name’s directory. If it does not exist an error message (3)
is displayed and the program exits.
5 The requirement file reg-name.req is removed from the user’s directory.
6 A message that describes the change is displayed.
SEE ALSO

usr, adr, chr, mvr, cpr

Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Isracl.

CAS(1) | UNIX Programmer’s Manual CAS(1)

NAME
chr = change a requirement

SYNOPSIS
chr user-name regq-name new-verd new-object new-text

DESCRIPTION
chr changes the contents of a requirement. Any of: verb, object, text can be changed. An empty
field (two single quotes ®, or no parameter when no other parameter follows) causes the
corresponding field to remain unchanged.

EXAMPLE
1 lk:'mmm'hsamp&mmed'mwrdmm

() chr sccommtent 2ndt.007 check all-fes
requirement audit.007 of user accountant changed o

VERB OBJECT TEXT
check all-files do it very carstully

2 Change the text of the above requirement to "do it fast”

()chr’’ do it fast’
requirement audit 007 of user accountant changed

VERB OBJECT TEXT
check all-fles - doltfast

1 usage: chr user-name req-name new-verb new-cbject new-taxt
At least one parameter is missing,
2 user user-name does not exist
An sttempt was made to change a requirement of a non-existent user.
3 requirement req-name of user user-name does not axist
An attempt was made to change a non-existent requirement of the user user-name.
FILES
reg-name.req a requirement file
ACTION
1 The session is initiated fram CAS001.
If there are fewer than {our parameters, an error message (1) is displayed and the pro-
gram exits.
3 A search is made for the user user-name. If it does not exist an error message (2) is
displayed and the program exits.
4 A search is made for the requirement reg-name in the user’s directory. If it does not exist
an errar message (3) is displayed and the program exits.
5 All the non-empty fields in the command line modify the corresponding fields in the
requirement file.
6 A message that states the chang=s is displayed.

Toby T Attt ven -

CAS(1) UNIX Programmer’s Manual CAS(1)

MISCELLANEOUS
Tochmgedthcmectareqﬁranmoriummhmmmd”mvr'.

ALSO
: usr, adr, dir, mvr, cpr

Meir Burstin, Requirements Analysis of Large Software Systems, Ph.D. Thesis, Tel-Aviv University,
Tel-Aviv, Israel.

CAS(1) UNIX Programmer’s Mamtal CAS(1)

NAME
mvr — move a requirement from one user to another with an optional change of the name of the
requirement.

SYNOPSIS
INVE USET-NAME TEq-NAME NEW-UIET-NAME REW-Teq-Name

DESCRIPTION
mmammwmﬁmhmmmmmhmemmm The
name of the requirement can optionally be changed to new-reg-name.

EXAMPLE
Move the requirement 007 from user "bank1” to user "bank2”. Change its name to 008:
() mvr bankt 007 bank2 008
requirement 007 moved from user bankt 10 user bank2
requirement name was changed to 008

number of requirements of user bank2:
3

ERRCORS
1 UsSage: Mvr user-name reg-Name NeW-User-Name new-req-nams
At least one parameter is missing.
2 user Name user-name does not exist)
An sttempt was made to move & requircment from a non-existent user.
3 NOW USEr new-uszer-name G068 NOt exist
An attempt was made to move a requirement to a non-existent user.

4 requirement name reg-name Jdo@s nct exist for User user-name
An attempt was made to move a requirement reg-name that does not exist for user user-
name.

5 requirement name new-req-name already exists
Anmmmﬂmm&mdlmmammﬂmw
to another requirement, i

FILES

reg-name.re requirement file

new-name.req new requirement file
ACTION

1 The session is initiated from CAS001.

The number of parameters is checked. If there are less than 4 parameters an error mes-
sage (1) is displayed and the program exits.

3 user-name is searched for. If it is not found an error message (2) is displayed and the pro~
gram exits.

4 new-user-name is searched for., If it is not found an error message (3) is displayed and the
program exits.

5 The user’s directory is searched for requirement field req-name.req. If it is not found an
error message (4) is displayed and the program exits.

6 The new user's directory is searched for a requirement file: cither reg-name.req if there is
no change of name or new-req-name.req if there is a change of name. If such a file exists
an error message (5) is displayed and the program exits.

7 mﬁerq-mmmw&mmmmymmmmm A
change of name is done if necessary,

