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ABSTRACT OF THLE TIHESIS

A Functional Language Machine Based on Qucues
by
Guang Liang Xiong
Master of Science in Computer Science
University of California, Los Angeles, 1984

Professor Milos D. Ercegovac, Chair

A machine organization based on queues is proposed to execute the Berkeley FP

programs in the format of Q-code.

The proposed machine consists of an instruction queue, a data queue, an execu-

tion unit and memory modules.

The overall organization and each part of the machine are described. Several
alternatives for the main components are suggested and compared. The potentials of
concurrent executions are explored. A simulation package of the machine and its per-

formance are reported.

The characteristics of the Q-machine include the simplicity of the organization,
the beneficial implicit address management of the queues, the doubled bandwidth of

memory access and the simplicity of the compilation.
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CHAPTER t

Introduction

In 1978, Backus, in his well-known Turing Award lecture [t], discussed a new
style of programming language - functional programming language. The functionul
programming language breaks the circle of conventional programmicg languages and
leads to a new direction of programming style and computer architecture. There are
numerous research projects, trying to develop a suitable computer architecture to exe-
cute programs in functional programming languages{l10]. As another attempt in this
direction, a functional programming language machine based on queues, is discussed in

this thesis.

1.1 Functional Programming Languages

The conventional programming languages, such as COBOL, Fortran, Pascal,
etc., are characterised by Backus in [1] as "von Neuman” languages, because they are

¥

are mainly based on the von Neuman computer model. These languages "use variables
to imitate the computer’s storage cells, control statements elaborate its jump and test

instructions; and assignments imitate its fetching, storing, and arithmetic.” [1]

Along with the rapid advancement of hardware and the decrease in its cost, the
concurrent executions, which can enormously increase the efliciency of data processing,
become not only possible but also necessary. However, the conventional "von Neu-
man” programming languages impede the progress of concurrent architecture due to

their inherent difficulties of partitioning programs to parallel processors.



Moreover, the conventional programming languazes are partially responsible for
the difficulties in software development and maintcnance, die to the difficulties of
building up a program using existing subroutines, the lack of wathematical founda-

tions, the complexities, and the limited expressive power.

The functional programming languages, which are suggested by Backus in [l1],
arise as a new type of programming languages attcmpting to eliminate some of the

drawbacks of conventional languages.

The Berkeley FP [2], is one of a few existing functioral programming language
implementations closely following {1]. We now use Berkeley FP as the example to illus-
trate the characteristics of functional programming languages. The specifications of

primitive (system-defined) functions in Berkeley FP are listed in Appendix.

FP, unlike conventional programming languages, does not bave the concept of

"variable.” [t deals with functions instead of values and has no assignment statements.

The single FP operation, application (:), evaluates an FP function and its argu-

ment. For example, +:<1,2> means the application of the function + to its argument

<1,2>.

Functional programs consist of the expressions which are a functional-level com-
bination of primitive functions. For example, we write the function returning the sin
of the sum of its input, i.e. sin(x+y), as sin@W+. This functional expression is the com-

"

position of "sin” and "+". The symbol "G” is the compose operator, and "sin” and

"+" are the functional arguments of the functional form compesition.

Functional forms can take functions or other functional forms as arguwments

and return functions as their results. Functions may be directly applicd to objects, e.o.



sin@+:<1,2>. Functions may also be taken as a functional argument in another func-
tional expression, e.g. cosO@sin@+, where sin@+ is taken as functional arguments by

the function cos.

Arnother important feature of FP is to use certain functional forms to avoid the
explicit specification of control information. For example, the functional form Apply to
All (&f) can be used to apply the functional argument f to all elements in its input. [t
replaces the loop control statement in the programs written in conventional program-

ming languages.

Certain functional forms in FP also give the potential of parallelism. For exam-
ple, the functional form Tree Insert (|f), recursively applies f to the two sequences split
from the original input until it reaches 2 null sequence or a sequence which has only
one element. The splitting procedure forms a binary tree, and exccution starts from
the leaves of the tree. If there are multiple processors in the system, the nodes in the

same level of the tree can bhe exccuted in parallel.

The composition of the functional form Apply to All and the function distr (or

distl) also has the potential of parallelism.

A more detatled discussion of the Berkcley FP language is given in [2]. The

style of programming is discussed in {1,9].

In order to execute FP efficiently, we need an architecture, which should require
simple translation from FP to exccutable machine instructions, be able to seperate the
accesses to instructions and data as well as have the potentizls of concurrent exccu-

tions.



Because of its tree structures and the absence of variables, we found that FP
program can be translated to a striang of ibstruction representation - Q-code, wkhich
then can be exccuted by a machine based on queues - Q-machine. Q-code and Q-

machine are discussed in the next section.
1.2 Q-code and Q-machine

The following tree represents the graph of FP expression sin G+G[1,2).

If we traverse the above tree from bottom-up by level-order and from right-to-

left by node-order, we get the following string formned by the encountered nodes:

21 [] + sin

This string form is called the Q-ccde (Q-notation in [5]), which is the string
representaion of the above P program tree. Q-code was first defined by Z. Pawlak

and A.J. Blikle and called by them "cross order.” [3,4]

A queue machine organization is propesed by M. Feller in {5,6] to exccute Q-
notation. The proposed Model S queue machine has an execution unit, a queue, which
contains the operands of the next instruction in its front and the result of the last in-
struction in its end, and a memory module, where the instructions and data are stored.
It has the advantage of transparent working store management, no addressable regis-

ters, and the potential of concurrent executions.



In this paper we develop a modified version of the quecue machine, which can
execute the Q-code compiled from Berkely I'P programs. It consists of an execution
unit and a data queue, which are simtlar to the ones in the queue machine in 5,6, a in-
struction queue, which handles the instructions and two scperate memory modules to

store data and instructions.

We load the above Q-code from FP program sin@+@G[1,2] to the instruction
queue, and load the data sequences, which are applied by the two legs of the FP tree,
to the data queue. We then connect the front of the data queue and the front of the
instruction queue to an execution unit. The execution unit applies the instruction in
the first word of the instruction queue to the data in the front of the data queue and
enqueues the result to the end of the data queue. The machine organization is shown

in Figure 1.1.

4

Data Queue

, Execution
Ma b’ Unict M

Instruction Queue

Figure 1.1 Q-machine {

We call the above machine organization " Q-machine.”

In Chapter 2, we discuss the details of the Q-machine organization and the exe-
cutions of FP programs on the Q-machine with a single processor. In Chapter 3, we -

explore the possible purallel executions of FI* programs on the Q-machine wirth multiple



processors. In Chapter 4, we report the simulation of the Q-machine and evaluate its

performance by running several FP programs. Chapter 5 is the conclusion of this

thesis,



CHAPTER 2

The Single Processor Q-machine

In this chapter we develop a queue machine (Q-machine for short) architecture,
which can execute FP programs compiled in Q-code, with a single Q-machine processor.
We illustrate the Q-machine organization, structure, and fuanction of its components.

We also discuss some alternatives and perform comparisons between them.

2.1 System Organization

The Q-machine consists of four main components: Data Queue (D-queue), In-
struction Queue (I-queue), Execution Unit {E-unit), and Memory modules {Af, and 1))

-- as Figure 2.1 shows below.

D-qucue

L

Mg {2 E-unit

I-queue

Figure 2.1 Q-machine Organization

The D-queue conmsists of a sequence of words, cach word containing a data

representation {we will elaborate its structure in Section 2.2). The front word of the



D-queue contains the representation of the data to be processed by the E-unit during
the next machine cycle. The end word of the D-queue contains the data obtained from
the E-unit at the last machine cycle. The D-queue performs all qucue operations, such
as removing the front data {rom the queue, enqueuing data to the end of the queue,
etc. In the beginning of the execution of an I'P program, the data applied by the FP
program are enqueued to the D-queue (because the D-queue is empty in the beginning
of the execution, thus the data are in the front of the D-queue after enqueued). In the
end of the FP program execution, the data contained in the front of the D-queue,
which are the only data in the D-queue, are the final result. At each machine cycle the
result data from the E-unit are enqueued to the D-queue, the front data in the D-queue
are fetched to the E-unit, and each word in the D-queue is moved one word ahead.

(Except for functional form CONSTRUCTION, the details of which are in Section 2.6).

In the I-queue, each word contains an instruction of Q-code. Introduced in
Chapter 1, Q-code is a string consisting of FP instructions in the order of traversing
the FP program graph tree from right to left on node-order and and bc.)ttom-up on
level-order. Each node in the tree, such as +, -, trans, etc., is an FP instruction, which
we call Q-instruction. In the beginning of an FP program execution, the Q-instructions
of Q-code compiled from the original FP program are enqueud to the I-queue. The
front instruction in the [-queue is the one to be executed by the E-unit at the next
machine cycle. At each machine cycle, the front Q-instruction in the I-queue is fetched
to the E-unit and other Q-instructions in the I-queue are moved one word ahead. The

details of I-queue structure will be given in Section 2.3.

The E-unit performs the operations according to the front data in the D-queue
and the front Q-instruction in the l-queue. {t applics the (Q-instruction to the data,

accesses and/or allocates memory il needed, and enqueunes the execution result data to



D-queue. It halts the entire operation when an END instruction is met in the front of

the I-queue. We will discuss the structure and lunctions of the E-uunit in Scetion 2.4.

The FP program in the Q-instructions with their associated user-defized names

is stored in memory module Af, The data are stored in memory module A,

We now give a simple example to illustrate how this system works. Assume the

following FP program:

+@[1,2}

Its equivalent tree is shown in Figure 2.2:

Kz.4.54 [3.4.55

Figure 2.2 Trec Graph of +@[1,2):43,4,5)

In the Q-instructions this program is:

21 {] +



The data to be applied is sequence <3,4,5>. After the data and the Q-

instructions are loaded into the system, the system appears as in Figure 2.3:

D-Queue

3,4,55K3,4,5> h

Md [P]E-Unit

I-Queue

M.
2 1 [ 1] + END L

Figure 2.3 Execution of 2:¢3,4,5)

At the first machine cycle, function 2 (Select) is applied to <3,4,5> and the
result, 4, is enqueued to the D-queue. The state of the system after the first machine

cycle is shown in Figure 2.4,

D-Qucue
K3,4,54 & ©
My ] E-Unit I-Queue M
L i
= 1 L3 *+ | END <

Figure 2.4 Execution of 1:43.4,5

At the second machine cycle, function 1 {Select) is applied 1o <3,4,5> and the

result, 3, is enqueued to the D-queue. The system after the second machine cycle is

10



shown in Figure 2.5.

D-Queue

Md > E-Unitje
L I-Quecue M

f 1 + END <

Y

Figure 2.5 Execution of [ J

At the third machine cycle, functional form "[ ]” (Construct) is applied to the
first two words in the D-queue (the number of data elements to be constructed into a
sequence is stored in the Q-instruction CONSTRUCTION at compilation time) and the
resulting sequence, <3,4>, is enquecued to the D-queue. The system after the third

machine cycle is shown in Figure 2.6.

D-Queue

K 3,47

Mg [¢3] E-Unit

I-Queue M

+ END &+

Figure 2.6 Exccution of +:43,45

11



At the fourth machine cyele, function + is applicd to <3,4> and the result, 7,

is enqueued to the D-queuc. The system after the fourth cycle is shown in Figure 2.7:

D-Queue

~SHE-Uni

I-Queue

END €]

Figure 2.7 Result of +@[1,2):¢3,4.5>

At the fifth machine cycle, the instruction END is encountered in the front of
the I-queue and the data, 7, in the front of the D-queue is the final result. The entire

operation is finished at this machine cycle.

For the purpose of illustrating the Q-machine operation, the data in the D-

queue and the Q-instructions in the I-qucue are simplified in this cxample.

2.2 D-queue Organization and Functions

The D-queue is a very important component in the Q-machine. It bolds the
data that will be fed to the E-unit and the data generated by the E-unit. Therefore, it
is necessary that the D-queue be able to handle various data structures of FP objects
and perform nccessary data moves. An atom in FI> can be eitber a number {real or in-
teger), a character string, a Bottom (?), an empty sct (<>}, T{rue} or F(alse). A Se-
quence in FP is an ordered list of atomf{s) and/or sequence(s) enclosed in angie brackets

(<>), such as <1,<2,3>> and € <1,5>,<89>,<>>.

12



The word in the D-queue must be able to handle both the atom and sequence,
and allow queue operations to be performed quickly. We discuss three alternatives of
the data structure for the D-qucue word: with fixed length and pointers to the memory;

with fixed length and multi-level queue; and with variable length.

2.2.1 D-queue With Fixed Length and Pointers to the Memory

In this structure, each D-queue word has always a fixed length. An atom is

directly represented by the word. A sequence is represented by a descriptor.

The atom is represented by the format shown in Figure 2.8

M F 0 N

"(_1,_ i - j 2l k A

Figure 2.8 Data Format of Atom

M ficld: 1 bit, is always 0 for atoms;
F ficld: i bits, indicates the type of atom, such as integer, real, ete.;
Q field: j bits, holds the data, such as 1.23, 567, ete.;

N field: k bits, is the pointer to the next object if the atom is an eclement of a

sequence; otherwise it is 0.

Thus, the object of integer atom 789 (not belonging to a sequence) is represcnot-

ed as shown in Figure 2.9.

13



0 int % 789 nil

Figure 2.9 Atom 789

A sequence is represented by a sequence descriptor, which has the format as

shown in Figure 2.10.

I M E P N

l:l—%;@—i s j - k

Figure 2.10 Data Format of Sequence Descriptor

M field: 1 bit, is always | for sequences;

E field: i bits, is an integer number which indicates the number of elements in

the sequence it represents;
P field: j bits, is the pointer to the first element in the sequence it represents;

N field: k bits, is the pointer to the next object if the represented sequence itself

ts an element of another sequence; otherwise it is 0,

The sequence <10,<20,30> > is represented by the descriptor shown in Figure

2.11.
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Figure 2.11 Data Structure of Sequence <10,420.30);

With the above structure, if an object is an atom, it willi be directly enqueued
to the D-queue; if an object is a sequence, only its descriptor will be enqueued to the
D-queue. All its elements (surrounded by dashed lines in Figure 2.11) will be stored in
the memory and fetched by the E-unit when needed. Figure 2.12 illustrates the rela-

tionship between these components.

D-queue can be implemented in a group of fast registers. There are two

methods for generating the movement of a quene word.

In the first method, all queue words are shifted ahead one word as Figure 2.13

shows.

This method is simple, bui involves considerable data movements il the length

of the D-queue is relatively long.

In the second method, two indicators are used to indicate the front and end of
the D-queue respectively. Therefore only the indicators are advanced to implement the

movement of queue words. Figure 2.11 shows the second method.

15
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D-Queue

Atom

Seq.

Atom .~

E-Unitg

I-Queue

fl

£2

Mj
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Figure 2.12 Sequence Elements Stored in the Memory

E-Unit

g/’“) ///F)A//’)4g’/7 D-Queue
Dy DEY Dy, Ds
Front End

Figure 2.13 Data Movement in D-quecue

|Front Indicator

' End Indicator

l_l

=

D-Quecue

D1

D2

D3

Dal

Ds

Figure 2.14 Data Movement Using Indicators
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This method eliminates data movemerts inside the D-queve. However, it nceds

a circular register group to hold the data.

The strong point of the above D-queue organization is its addressiess operation,
implicit register allocation and deallocation, as well as simplicity and ease of implemen-
tation. The weak point is its use of the random-access memory to bandle sequences

and need of garbage collection.

In order to estimate the access time to the memory, we define two diffcrent lev-
els of memory access. One is called Vertical Access, which locates the first element of a
sequence according to the pointer stored in the P ficld in the descriptor of the sequence.
The other is called Horizontal Access, which locates the ith (i>1) element in a sequence
according to the pointer stored in the N field in the representation word of the (i-1)th

element in the same sequence,

For example, in IMigure 2.15, to get atom 10 in the sequence <5 <8 7 10> >,
according to its descriptor, requires 2 vertical accesses (VA, and VAy) and 3 horizontal

accesses ([IA,, HA; and 1iA;).

Therefore, to locate an clement of a sequence requires

n+):n:D,

=]
access time. Here n is the nesting level at which the clement to be located resides, and

D, is the number of horizontal accesses in level 1.

For the example in Figure 2.15, n is 2, D, is 1, and D. is 2. The total access

time is 5 = 24142,

17



1{2 }|1¥]|nil
J{ VA;  HAp
0] inels| +—11]3] | i1
e, .
| olinele | b—foTinc]7 >0 | int f10[ni1]
— ;
HA

Figure 2.15 Access Path of Atom 10

A suitable garbage collection scheme for the Q-machine using the above D-
queue organization is nceded. We discuss how the scheme of reference count [11] can

be used.

The data which are valuable to the system, and therefore need to be kept in
the memory, are the data which are referred by the descriptors currently residing in
the D-queue. The memory cells which hold the data no longer referred by any descrip-
tor in the D-queue can be freed for future use. We use an integer tag ficld in each
memory cell to indicate the number of references that are currently pointing to this
cell. This tag field is called reference counter. If the reference counter of a cell is 0,

there i3 no reference pointing to this cell and it can be freed.

The algorithm of the reference counting is:

I8



1. Before ar object is enqueued to the D-queue, it is checked whether it is an
atom. If so, nothing has to be done. If it is a sequence descriptor, all the reference
counters of the cells that are referred by this descriptor and/or the descriptor of its

descendents are increased by 1.

2. After an object is fetched from the D-gueue, if it is a sequence descriptor, all
the reference counters of the memory cells that are referred by this descriptor and/or

the descriptor(s) of its descendents are decreased by 1.

3. The cell whose reference counter is 0 can be collected for use. The collection
can be carried out at any time except during the pcriod that the reference counters of
the fetched data have been decreased but have not been increased by the E-uait, if

such increase is necessary.

We now use the example of applying FP program +@]1,2] to sequence <4,5,6 >

to illustrate how this garbage collection scheme works,

The sequence <4,5,6> and its descriptor are shown in Figure 2.16.

| U 3 nil Descriptor (D)
D D D
y 1 2 3
0 lint | & 0] int 15 0| int |6 | nil

Figure 2.16 Senuence {4,5,6)>
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After the descriptor of the sequence is enqucued to the D-queue twice (because
the sequence will be applied by both sclect functions 1 and 2), and the Q-instructions
are loaded to the I-qucue, the state of the system is shown in Figure 2.17. Notice that
the reference counters {the leftmost field) in the memory cells which hold atoms 4, §

and 8 are all 2's.

J D-Queue
i Dl FD D <
2o Tone Bl
i Uz ~———NE-lUnit My
M
l2 l OIint 15 I + d I-Queue
211 {3+ END 'Jr
. D3
_LZJJ)] int k l“i—l‘

Figure 2.17 Reference Counters of¢4.5.65

During the application of function 2 (Select) to <4,5.8>, the descriptor in the
front of the D-queue is fetched to the E-unit, and the reference counters of atoms 4, 5
and 6 are all decreased by 1. The result of 2:<4,5,86> is atom 5, and it is directly en-

queued to the D-queue. The state of the system is shown in Figure 2.18.

After the application of function 1 (Select) to < 1,5,8>, the refereuce counters
of the cells holding atoms 4, 5 and 6 are reduced to 0s as [igure 2.19 shows. Hence

these 3 cells can be freed.

After the application of IFunction "{ |" {Construction} to atoms 4 and 5, a new
sequence <4,5> is formed. The descriptor of <:1,6> is enqueued to the D-queue.
Atoms 4 and 5 are stored in the memory and cach has a reference counter of 1, Figure

2.20 shows the state of the system after applying the Construction.

20



D-queue
1 Dy —| Di5
1 ]o] tac |4 —
EREy
D 2
’ 2 € 7 - E'Unltl Mi
. M
IIILO int |5 _—‘I d I-queus
Dy 1l )i+ |enp
110! int [6]ai1
v Figire 2.18 Reference Counters of(4.5,6>
D-queue
By 54 3
0{0] int| & -,—" y
D
J, 2 g [€ E-Unig M;
lo|o]| iact |5 1
D, I-queue J
[] + | END
oo} inc] 6] ni1 | a
Figure 2.19 Reference Counters of (4,5.6)

During the application of function + to <4,5>, the reference counters of 4 and
5 in the memory are decreased to 0. The cells holding them can thus be freed. The
result of +:<4,5>>, 9, is enqueued to the D-queue and the operation halts due to the

END ia the front of the I-queue, The state of the system is shown ia Fignre 2.21.
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Figure 2.20 Reference Counters of {4,520
D-queue
9 <
0 |0lint |4 my
Mgle o JE-Unit § My
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O'EO int |5 | I-queue }
END = i
1
|
i
Figure 2.21 Reference Counters of <4,5) H
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2.2.2 D-queue With Fixed Length and Multi-level Queue

Here we consider an alternative D-queue organization with a fixed length and

multiple queues, which we call the multi-level queue.

An object can be represented by a tree. A node in the representing tree could
be an atom or a sequence descriptor. The level of the root of the tree is 1, and the level
of a node is the sum of | and the distance between the node and the root. For exam-

ple, the sequence, <10,<30,40> >, is the following tree:
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< > level 1
10 < > level 2
/A

30 40 level 3

If we put the objcets {cither an atom or the descriptor of a sequence) on the
same level of the tree to the corresponding queue with the same level, we will have H

parallel queues forming the D-queue. (H is the height of the object tree; e.g. for the

above object <10,<30, 40>>, i is 3).

With this structure, an atom is represented by the format in Figure 2.22:

N2

P i < j

Figurc 2.22 Data Format of Atom

M field: 1 bit, is always O for atoms:

F field: i bits, indicates the type of atom;

O field: j bits, is the data itself.

A sequence descriptor is represented by the format shown iu Fizure 2.23.

M field: 1 bit, ts always 1 for sequence;

E ficld: k bits, is the position of the beginning element in the sequence which

this descriptor represents in the queue at the next level;
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M E B

< k
-1 - — K

Figure 2.23 Data.Format of Sequencc Descriptor

B field: k bits, the position of the ending element in the sequence which this

descriptor represents in the queue at the next level.

The sequence <10,<30, 40> > is stored in the following format in the D-

queue with a muiti-level queue as Figure 2.24 shows.

1 1 2 Level 1
[ eo--- -
L7 I
0 l int! 1] 1] 2 Level 2

0! imt! 30 | 0 | int |40 } Level 3

Fieure 2.24 <10.430,40» Stored in Multi-level Queue

When data are fetched to, or enqueued from, the E-unit, the words to the left

of the dashed lines will be fetched or enqueued together.
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There are also two methods for implemeuting the data movement in the multi-
level queue structure: 1) moving the data, or 2) advancing the indicators. However,
multi-level indicators are needed to indicate the dilferent fronts and ends in the multi-

level queue.

This organization is good for eliminating memory access and avoiding garbage
collection. However it has two main drawbacks: 1) frequent update of position

pointers, and 2) many data moves.

Because the descriptor of a sequence on a certain level contains the front posi-
tion and the end position pointers to its elemeuts in the next level, whenever the posi-
tions of its elements in the next level change due to the queue operations, the position
pointers in the descriptor of the sequence must be changed as well. For example, the
D-queue containing sequences <10,<30,40>> and < <5,6>>,8> is shown in Figure

2.25.

In Figure 2.25, the data on the left side of the dashed line are <10,<30,40> >

and the data on the right side are <<{5,6>,8>.

If the data in the front of the D-queue, sequence <10,<30,40> >, are removed
from the D-queue due to queuc operation, the data pext to the fronmt, sequence
< <5,6>,8>, would be moved to the front. Meanwhile, the position of the descriptor
of sequence < <5,6>,8> at level 1 is changed from 2 to 1, the position of descriptor
of sequence <5,6> at level 2 is changed from 3 to 1, the position of atom 8 at level 2
is changed from 4 to 2, and the positions of atom 5 and 6 at leve! 3 are changed from 3
and 4 to 1 and 2 respectively. All the position pointers stored in the deseriptors ut the

upper level have to be updated correspondingly as well. The D-quene after the removal

of the front data, <10,<30,40> >, is shown in Figure 2.26. Notice all the changes In



11 2§1)13] 4 Level 1
1__.“i |
- -
0 lint |10} 1 1 2 1 3 4 0] int Level 2
| i
!
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— ]

Figure 2.25 (10,430,409 and {{5,6>,8)Stored in Multi-level Queud

the position pointer areas in the data representation of sequence < <5,6>,8>.

111 2 ] Level 1
L

V. ,

L1102 lo inc |8 | | Level 2
L

l, Oi_int 5 il 0 j_nf 6 }! B J Level 3

Figure 2.26 Changes of Position Pointers
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The second drawback of this muiti-level queue organization is that all data at
all levels must be moved during queue operations. For cxample, in the queuce organiza-
tion of a fixed length and pointers to the memory, which is described in section 2.2.1,
applying select Tunction 2 to the sequence <10,<30,40>>, we need only to enqueue
the descriptor of the resulting sequence <30,10> to the D-queue without moving atom
30 and 40 in the memory. On the other hand, if the multi-level queue organization is
used, not only the descriptor of the sequence <30,40>, but also atoms 30 and 40 need
to be enqueued to the D-queue. If the data to be applicd have many nesting levels, the

number of all data moves at all levels will be fairly considerable.
2.2.3 D-queue With Variable Length

The third structure option of the D-queue is to stors all atoms and sequences in
one level, but to use different delimiters to separate the words of the D-queue and to

separate the elements of the sequence.

An atom is represented by the following format shown in Figure 2.27.

M T
[He—— i —< 3

Figure 2.27 Data Format of Atom

M field: 1 bit, is always 0 for atoms;

T field: i bits, indicates the atom type;
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QO field: j bits, contains the data.

A delimiter is represented by the format shown in Figure 2.28.

Figure 2.28 Data Format of Delimiter

M field: 1 bit, is always 1 {or delimiter;
T field: i bits, indicates the delimiter type; such as '<’, '>", 7', ete.
L field: j bits, is the level number of the delimiter.

Sequence <10,<20,<30,40>,50> > can be stored in the D-queue as Fignre
2.29 shows,

<10 v [<]20]5 | <{30 |7 | a0l >{r{50| >|>

Figure ?.29 Sequence {10,(20,430, 40,,50»>

This D-queue organization also eliminates the memory access and avoids gar-
bage collection. However, the distance of data movement in this organization depends
on the length of the first data in the front. Therefore, during the quene operation of

removing the front data, we have to search the boundary of the front duta. Further-
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more, having a sequence fetched from the D-queue, the E-unit has to search and/or
separate the elements according to the delimiters. This scarch and/or separation will

be a time consuming sequential operation.

In summary, each of the above thrce D-qucue structures has its strong points

and weak points.

For the D-queue word with a fixed length and pointers to the memory, the
strong point is its simplicity and ease of implementation. The weak point is its access

to memory and need of garbage collection.

The D-queue word with a fixed length and multi-queues is good for eliminating
memory access and avoiding garbage collection. However, it involves more data moves
during queue operations and all position pointers must be updated after every queue

operation.

The D-queue word with a variable length does not have the problem of memory
access and garbage collection, but because searching for the boundary of the front word
of the D-queue and separating the clements of a sequence must be done at run-time, it

considerably degrades the system performance.

The following table gives the comparisons of memory allocation and data move-
ment between the above three D-queue word structures during a single machine cycle.
Assume, during the machine cycle, a select function ¥ is applied to a sequence, <z,
ey Zey ooy 2>, where the elements of sequence 7, (m>i>0) are atoms only and N, is the
number of elements in z,. [ represents the D-queue word structure with fixed length
and pointers to memory, Il represents the structure with fixed length and multi-level

queues, and 11 represents the structure with variable length.

29



Compared [tem I It A
Memory Words Required m+3Y N, 0 0
=
Registers Required 1 m+i+3 N, | m+1+ V(28 +1}
= =l
D-queue Words Discarded 1 m+i+Y N, | m+l+ Y (2N +1)
=l —c=l
D-gueue Words Enqueued 1 1+ N, 2N+
Memory Accesses k 0 0
Garbage Collection Needed Yes No No
Boundary Searching Needed No No Yes

From now on, we use the D-queue word with a fixed length and pointers to the
memory as the D-queue organization in this paper. This organization needs less data
movement than the multi-level queue. Iv also avoids expensive boundary searching and
element separation at run-time, which are needed in the orgunization with variable

length.

2.3 The Organization of the I-queue

The I-queue coasists of i registers, cach of them being m bits long.

Figure 2.30 shows the format of an l-queue word.

) F M 0
pem =e— ] —e—- k%<

Figure 2.30 Tnstruction Word Format

S field: h bits, indicates the type of the FP functions! form, such as Regular,

Right Insert, Tree Insert, Apply to All, While, Condition, Construction and Constant;

30



F ficld: j bits, represents FP Tanction, such as +, -, apnadr, trans, etc;

- M field: k biis, is the number of times required to enqueue the result from the

l-unit to the D-queue;

O field: n bits, is used for different purposes with different FP functions. Tor
the functional form of Constant (“Gnumber), it stores the constant number; for the
functional form Construct ([ }), it stores the number of elements to be constructed in a
sequence; and for a user-defined functicn, it steres the nume string of the user-defined

function.

The [-queue connects to the memory and the E-unit. It is controlled by the E-

unit. Accessing l-queue is faster than accessing the mcemory.

Before the execution of an FP prograin starts, the Q-instructions of the FP pro-
agram are stored in the main memory. [n the beginning of the execution, the first 1 Q-
instructions of the invoked FP program are engueued to the I-gueue, if the number of
Q-instructions of the invoked program is greater than or equal to 1. If the number of
Q-instructions is less than i, all the Q-instructions are enqueued to the I-queuve. At
each machine cycle, the E-unit fetches the first Q-instruction in the I-queue and applies
it to the data in the front of the D-queue. The first Q-instruction in the l-queuve is dis-
carded after being fetched to the E-unit. The rest of the Q-instructions in the [-quecue
are each moved one word ahead. When the memory access is available and more Q-

instructions in the memory need to be applied, the I-queue filling process begins.

In the execution of programs in conventional languages on conventional
machines, the data and the program code are closely coupled through address refer-
ences alter they are loaded to the memory. Tetching data and fetching instructions

share the same memory access, which is the bottle-neck.
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In the execution of FP programs in the Q-machine, an advantage is that the ad-
dress of Q-instructions in the momery and the address of the data in the memory are
totally independent of each other after they are loaded tnto the main memory. There-
fore, we have the freedom to have the Q-instructions of an FP program loaded into the
same memory module where the data are loaded, or into a totally separate memory

module.

In a case where the data and the Q-instructions share a single memory module,
the I-queue filling process can be carricd out when the E-unit is not accessing data

from, or storing data to, the memory module.

In a case where the Q-instructions are loaded to a scparate memcry module,
which has its own access path, the [-queue filling process can be carried out whenever it

is needed.

In the rest of the paper, we use an independent memory module to store the

Q-instructios of an FP program.
2.4 The Organization of the E-unit

The Execution Unit applies the function instruction (tbe front of the I-queue) to
the data (the front unit of the D-queue), then enqueues the result to the end of the D-

gueue.

The E-unit consists of three main components: Pre-processor, Main-processor,

and cache memory units. Figure 2.31 shows the structure of the E-unit.

At each machine cycle, the E-unit carries out the following operations:



{(To Memory)
T 1
r{ngueue
Main e, | Pre-
Processor [ Processor
|
| Switch B /L J
] I I-queue
Cache A Cache B
Execution Unit (E-1)

Figure 2.31 E-unit Organization

1. It fetches data from the front word of the D-queue.

2. It fetches the next Q-instruction from the I-queue.

3. If the data from the front of the D-quecue is the descriptor of a sequence, and
the Q-instruction from I-queue operates on the clements of the sequence, the E-unit

fetches the elements of the sequence from the memory.

4. If the data from the front of the D-qucue is the descriptor of a sequence, the
E-unit decreases the reference count of each clement and their descendants of the se-

quence.

5. [t applies the Q-instruction to the data.

6. If the result is a newly-formed sequence, the E-unit stores its clement(s) to

the memory.
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7. If the resulting data is a sequence, the E-unit increases the reference count of

each element and their descendants of the sequence.
8. It enqueues the result to the D-qucue.

In order to make it possible for the operations to overlap, hence reducing the
time for each machine cycle, the above operations are divided into two groups: the first
group includes operations 1-4, the second group includes operations 5-8. The Pre-
processor carries out operation 1-4 and the Main-processor carries out operation 5-8,
The Pre-processor and the Main-processor are pipelined. When Main-processor is carry-
ing out operations 5-8 of the ith Q-instruction, the Pre-processor is carrying out opera-
tions 1-4 of the (i+1)th Q-instruction. The time cycle required for the Pre-processor or
Main-processor to complete an exccution is called an E-unit cycle. The communica-
tions between the Pre-processor and the Maijn-processor are through the buffer (cache

A and cache B) via a switch. Figure 2.32. is the time diagram of the E-unit cycle.

2.4.1 The Memory

There are two cache memory units in the E-unit. At any moment, one of them
i connected to the Pre-processor and the other is connested to the Main-processor by
the switch. After one E-unit cycle is completed, the two cache memory units switch the
connections to the two processors. The one connected to the Pre-processor will be con-
nected to the Main-processor, so that the Main-processor can apply the function in-
struction to the data prepared by the Pre-processor. The one conneeted to the Main-
processor will be connected to the Pre-processor, so that the Pre-processor can have

available space to store the data being fetched in the next E-unit cyele.
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Mq -- Enqueue resulting data to D-queue

Figure 2.32 Time Diagram

2.4.2 The Pre-processor of the E-unit

The basic task of the Pre-processor is to fetch the front Q-instruction from the
I-queue and the front data from the D-queue, as well as to have the data ready for exe-
cution in the Main-processor. The Pre-processor is connected to the D-queue, the I-

queue, the memory and ane of the two cache memory units at any moment.

For example, the current front in the l-qucue is the Q-instruction "+”, and the

current front of the D-queue is the descriptor of sequence <3,4>.

The Pre-processor fetches the front Q-instruction from the l-queue and stores it
in a special location in the cache memory to which it is currently connected.
Meanwhile, the Pre-processor fetches the two elements of the sequence, according to its
descriptor iu the front of the D-quene, from the main memory and puts them in one of

the cache memories that is currently connected to the Pre-processor, so that the Main-
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processor can apply the Q-instruction "+" to them at the next E-unit eycle.

If there is no data available in the D-queue (i.e. D-queue is empty) for the next
wstruction, the Pre-processor will wait for the result from the Main-processor. In this
case, the result of the current execution in the Main-processor will remain in the cache
and the Pre-processor will fetch it from there in the next cycle instead of fetching from

the D-queue.

The Pre-processor can access memory, but does not have the capability of allo-

cating memory nor of writing data to memory.
2.4.3 The Main-processor of the E-unit

The task of the Main-processor is to apply the current funciion to the data
prepared by the Pre-processor, allocate memory if needed, and enqueue the result to

the D-queue.

The Main-processor is connected to the D-queue, the memory and one of the
two cache memory units. It does not have a connection with the I-queue and only

takes Q-instruction from the Pre-processor through one of the two cache memory un-

its.

We continue using the example set forth in Scction 2.4.2 above. After the E-
unit cycle, during which Pre-processor fetches function instruction "+", elements 3 and
4, and stores them in cache unit A, the Main-processor is connected to cache unit A.
From cache unit A, the Main-processor takes the function jpstruction "+", as well as
operands 3 and 4, and processes the addition to get the result 7. Because 7 is an atom,
there is no need to allocate memory, nor to form sequence. Therefore, the Main-

processor just enqueues the result to the D-qucue.
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The Main-processor can access memory, allocate memory and write data to

memory as well.

The Main-processor is required only to be able to exccute these sysiem-defined |
functions. (The execution of user-defined functions is actually the executions of a
group of system-defined functions, the details of which will be given in Section 2.6.2).
Hence, the Main-processor can be implemented in hardware or firmware, which will

make the execution of functions more efficient.

2.5 The Stack of Queues

In the above description of the Q-machice, the D-queue and [-queue are one-
dimensional queues. In this organization of the Q-machine, the FP programs whick call
user-defined functions cannot be exccuted efficiently. In order to solve this problem, we
develop a two-dimensional queue structure, or Stack of Queues (5-Q), to deal with
user-defined function calls and certain functional forms. The structure of the Stack of

Queues is shown ip Figure 2.33.

When the execution of an invoked user-defined FP function begins, a new I-
queue which contains the Q-code instructions of that user-defined function is pushed to
the top of the I-queue stack (In the very beginning of the execution, the I-queue stack
is empty). Meanwhile, a new D-qucue whose front unit contains the data to be applied
by that user-defined function is pushed to the top of the D-queue stack. (As with the
I-ueue stack, the D-queue stack is empty in the very beginning). During the execu-
tion, only the tops of the l-queue and D-queue stacks are connected to the E-unit.
After the execution of the user-defined function is finisked, the top l-queue und top D-
queue will be popped off from the I-queue stack and the D-queue stack, respectively.

The E-unit will then be connected to the new top of the l-quene stack and the new top
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Figure 2.33 Queue Stacks

of the D-queue stack.
2.8 Execution of FP Programs on the Q-machine

In this section, we discuss the exccution of Berkeley FP programs on the Q-
machive including the execution of regular FP system-defined functions, the exceution

of user-defined functions, and the execution of functional! forms.
2.6.1 Execution of FP System-Defined Functions
Berkeley FP Las 39 systew-defined functions, which are listed in Appendix.

Here we use a function "select” as an example to show how a FP system-defined

function is exccuted on the Q-machine.

A select function is defined as follows:

4z
z

<zt > NO<p <k E
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z= <z, 23 .. %> Nk € <0 = 2440 ?

A select function is represented by am integer. For example, a single 2 in FP
represents selecting the second clement from the applied data sequence. So if function

9" is applied to sequence <10,20,30,40>, the result will be object 20.

When the Pre-processor encounters a select function in the front of the I-quene.
it checks first whether the object in the front of the D-queuc is a sequence. If the ob-
ject is not a sequence, the Pre-processor will put a "?" (bottom} to cache. If the object
is a sequence and the select number is within the range of the elements in that se-
quence, the Pre-processor will feteh the element from the memory to the cache memory
connected to it. In the above select function 2:<10,20,30,402>>, 20 will be stored in a

cache.

At the next E-unit cycle, the Main-processor is connected to the cache that was
connected to the Pre-processor during the last C-unit cycle and takes the select instruc-
tion passed from the Pre-processor. Because the selected clement is already in the

cache, the Main-processor simply enqueues the selected clement to the D-queue.

2 8.2 Execution of User-Defined Functions

The FP allows a user to define a function which cousists of a user-given name

and FP expressions.

For example, a function calted MEAN can be defined by a user to compute the

average of the number in an input sequence. Function MEAN is defined as follows:

{MEAN /@[t+ length]}
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The curly brackets are delimiters of user-defiued functions.

A user-defined function can be directly applicd by a user or called by other
user-defined functions in the same program. For example, a function named DEVIA-
TION is defined by the user to compute the deviations of each element in the applied

sequence from their mean. The function DEVIATION is defined as follows:

{DEVIATION &-@dist!&[MEAN id}}

It calls MEAN to get the mean of elements in an applied sequence, then distri-

butes the mexzn to each element and applies - (subtraction) to all of them.

In order to execute these user-defined functions, their compiled Q-instructions
have to be loaded to the memory in the Q-machine first. Figure 2.34 shows the Q-

instructions of DEVIATION and MEAN.

Function
Name Q-instructions
. MEAN id | length! '+ |y ~ END

DEVIATION|id | id | MEAN|fj|distl| &-| END

Figire 2.34 Q-instructions of MEAN, DEVTATTON

When DEVIATION is applicd by a user to a sequence, ¢.g. <4.0,5.0,6.0>, the
Q-code of DEVIATION are pushed to the top of the I-queue stack, and the sequence

<4.0,5.0,8.0> 15 pushed to the top of the D-queue stack. The system is shown in Fig-

ure 2.35.
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Figure 2.35 Execution of DEVIATION

The system as it appears after the first two machine cycles is shown in Figure

2.36,

D-quecue

4.0,5.0,6.0 7 <4.0,5.0,6.09‘ <

=
o

7]

N

-unit

M
‘t I-queue
MEAN | [ ] &- | END N

distl

Figure 2.36 MEAN Encountered

From Figure 2.36, we can sce that the E-unit encounters the user-defined fune-
tion MEAN in the front of the I-qucue and the sequence <4.0,5.0,6.0> in the {ront of
the D-queue. Then the E-unit scarches for the Q-instruction which is associated with
the name "MEAN". After the Q-instruction of "MEAN” is located, it is pushed to the

.,

top of the [-queue stack. Mecanwhile, the object sequence <4.0,5.0,6.0> is pushed to



the top of the D-queue stack. The snapshot of the system at this moment is shown in

Figure 2.37.

D-qucue Stack

¢ 4.0,5,0,6.0 > op

< 4.0,5.0,6.0

—
Md E—unitrl .
I-queue Stack
l-— id {length + 103 / END dTop
£ 3 [discl| & | END N
Figure 2.37 Execution of MEAN

In Figure 2.37, the top of the l-queue stack is the current active I-queue and the
top of the D-queue stack is the current active D-queue. The E-unit is connccted to the

D-queue as well as the I-queue, and begins the execution.

After 5 machine cycles, the front of the active I-queue is END and the front of
the active D-queue is the result object 5.0, which is the mean of 4.0, 5.0 and 6.0. The
E-unit sees the END in the front of the I-queue, and keeps the result, 5.0, in its cache.
The top of the I-queue stack and the top of the D-queue stack are popped off. The sys-

tem snapshot afterward is shown tn Figure 2.38.

The state of the system returns to the state that existed when the user-defined
function MEAN was invoked. Then the new tops of the I-queune and D-queue stacks
become tops and connect to the E-unit again. The result object 5.0 {the result of
MEAN:<4.0,6.0,6.0>) carricd by the F-unit is enqueued to the presently active D-

queue, and the execution of the remaining Q-instructions in the l-queue resumes.
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Figure 2,38 Result of MEAN Enqueued to D-queue

2 8.3 Execution of Functional Forms

In an FP programming language, besides the basic system-defined functions,
there are also functional forms that define new functions by operating on function and
object parameters of the form [1]. Functional forms considered here include Composi-
tion (fGg), Construction ([fi, for .., fi), Condition (f—gh), Constant(%n), Right
lasert{!f), Tree Insert(|l), Apply to All (&f) and While {while [ g). We now discuss the

executions of these functional forms in the Q-machine.
2.8.3.1 Composition

In the Q-machine, the functions connected by the Composition symbol, "@",

n

are dealt with as two levels of the FP tree. For example, "[{ig” is a tree in Figure 2.39.

Therefore, [Gg is transiated into Q-code as

gf



Figure 2.39 Tree Graph of f(@g

Here function g is executed first, then the result of g will be enqueued to D-
queune and used by f later. The compiler takes care of putting the functions on both
sides of "@” in the proper order of exccution, so there is no need for the E-unit to deal

with it in a particular way.
2.6.3.2 Construction

The functional form Construction is dealt with as a special function in the Q-
machine. Form Construction (| }) is the root of the function tree, and the functions in-
side the Construction brackets are the leaves of the tree. Figure 2.0 shlow the tree
structure for Construction form [fy, f,..., /. (n is the number of functions inside the
square brackets). The number of the functions inside the Construction brackets is
known at the compilation time and is stored in the O field of the instruction represent-

ing the Construction.

|

fl fz LI ] fn

Figure 2.40 Construction
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Because of the way of generating Q-instruction, when the instruction of the
Construction reaches the front of the I-queue, the values r, r.,, ..., r, and ry, resulting
from executing f., fo1, -, fo and f,, respectively, are in the first n words in the front of

the D-queue. Figure 2.41 gives the system snapshot at the moment Construction is en-

countered.
D-queue
Enj Fn-1|--fp | ] l D
Mg 7 E-unit My
! - I-quecue
1] ¢ |- et
: Figure 2.41 Execution of Construction

At this point, the E-unit fetches and removes the data in the (rst n words from
the front of the D-queue. The E-unit creates a sequence which consists of these n ob-
jects as its elements. The sequence then is enqueued to D-queue as the result of Con-
struction. Figure 2.42 shows the system after the result sequence is enqueued into the

D-qucue,

Observing I'P program trees, we can find out that the functional form Con-

structions are the only nodes that may have more than one descendants.
For example, we have the following P program:

{ CONSTR 140 [f20[3, [, [58f6afT] af8 )



D-queue

D KTq, Tn-1,q-- T2 , 71>

Md E~unit 3

I-queue

Figire 2.42 Result of Construction

where f1-f8 are either FP system-defined or user-defined functions.

Its tree representation is shown in Figure 2.43.

|
i |
i |

!
f £ £ |
| 2 4 5
I I | I
, | £ fs |
| ! | i

t
| £, |
R I
£
8

Figure 2.43 Tree Graph of CONSTR

In Figure 2.43, the part which is surrounded by dashed lines is the fuuctioual

form Construction. Apparently, it s an unbalanced tree. If the tree is directly
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translated into G-instructions, the execution of the Q-instructions will fail to perform
correctly. The data resulted from [8 will not be able to reack f3 and f4, which is re-

quired by the above FP program CONSTR.

In order to overcome this problem, two steps need to be taken:

1. The result of executing f8 will be enqueued to D-queue n times, where n is
the number of legs of the Construct tree. In the above example, n is 3. The number n
is detected at compilation time and is stored in the N ficld of the Q-instruction

representing the function f& by the compiler,

2. FP system-defined function "id” will be stuffed into the unbalanced tree by

the compiler to make it balanced. In the above example, three ids wiil be stufled in.

After the above two steps are taken, the tree in Figure 2.13 appears @s shown
in Figure 2.44. The Q-instructions compiled from the FP program CONSTR are:

18 (3) 7{1) id (1) id (1) 16 (1) id (1) 3 (1)
£5 (1) 14 (1) £2(1) [ (1) T1(1)

The number inside the parethesis lollowing the Q-instruction is the number of
the times that the result of the Q-instruction would be enqueued by the E-unit to the

[D-queune.

2.6.3.3 Condition

The functional form Condition is defined as:

L]
[

T — gix;
=F - hux;?

Here "I is the predicate function, "g" is the true part function and "h7 is the false
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Figure 2.44 Balanced Tree of CONSTR

part function. If the result of applying f to object "x”, i.e. ([ix), is T{rue), then the
true part function g will be applied to x, and the result, g:x, will be returned as the
result of this Condition. However, if ({:x) turns out to be F(alse), then the result of ap-

plying h to x, i.e. h:x, will be the result of the Condition.

At the time of compilation, the compiler generates one instruction to represent
the entire Condition functional form. The instruction has a special tag to indicate that
it is the functiopal form Condition, and has a name given by the compiler in the O
field of instruction. The given name is unique in the Munction names of this FP pro-
gram file. During the compilation time, the compiler compiles the predicate function
(f) part, the true action function (g), and the false action function (h) separately as
user-defined functions. The compiler gives a name, which is correlated to the name
given to the entire functional form Condition above, to cach of these functions. Later
when the Q-machine executes the instruction representing the Condition, i1t can there-

fore fetch its predicate and true or false action functions.



To illustrate the exccution of Condition, we give the fellowing FP program as

an example:

{EXAMPLE

This FP program is to perform 2 first, then get the absolute value of the resuit from
{2 and turn it to f1. The result from {1 will be the Gnal result of function EXAMPLE.
Because we are interested in the functional form Condition, fl and f2 are not of our

concern.

The FP expression inside the parentheses is a functional form Condition. The
predicate part, " <@[id,%0]", tests whether the applied pumber is negative. If it is
true (the number is negative), the true action part, "-@[%0,id]", wil! be applied to the
number to get its absolute valuc. If the predicate function part returns a F(alse),
which means the number is positive, the false part function, which is function "id", wiil

be applied to the number.

The Q-code compiled from the above FP program EXAMPLE are listed in Fig-

ure 2.45. (Assume the name given by the compiler to the Condition is "CONDI”™).

Function i ,

Name Q-instructions
EXAMPLE f2 COND1 f1 END
COND1? id H0 _id [ 2 r:g___ﬁﬁp
COND1# id id AL E 1 - _|_END
COND1~ id END

Figure 2.45 Q-instructions of EXAMPLE
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Here "CONDI1?" is the name given by the compiler to the predicate part of the

“?H

Condition. The name is forined by appending a to the name given to the Condi-
tion. "CONDI1#" is the name given to the true part of the Condition. The name is
formed by appending a "#” to the name given to the Condition. "CONDI1+" is the

name given to the false part of the Condition. The name is formed by appending a "~

to the name given to the Condition.

The system snapshot at the time the Q-machine executes the functional form to

the atom -2 is shown in Figure 2.48.

D-queuc
-7 <
— !
My > E-ui]'.-r;]“f— Mg
™ I-quecue :
{EONDI f‘1 END <

Figure 2.46 Execution of EXAMPLE

When the Q-machine encounters the Condition instruction with name
"CONDI1", it fetches the Q-instruction of the predicate part lunction, which is stored
in the memory with its name "CONDI1?", and executes it as a regular user-defined
function. The system after the Q-code of "CONDI1?" is pushed to the l-queue stack

and the atom -2 i3 pushed to the D-queue stack as shown in Figure 2.47.

The result of executing the predicate funetion part "CONDI1?” to -2 is T(ruc)
because -2 is a negative number. Then the Q-machine fetchies the true part function

"CONDI1#" and executes it to -2 as a user-defined function as well. The svstem after



D-queuc Stack

Mg EE-unitf

I-queue Stack

id | %] id|r3]| < |EwD P

f1 END

Figure 2.47 Execution of COND1?

the Q-instructions of "CONDI#" and atom -2 are pushed to the I-queue stack and the

D-queue stack, respectively, as shown in Figure 2.48.

D-queue Stack

-2
Md HE-unit M
I-queue Stack
id {id {%0 {CL 3| — | END 1
f1 END

Figure ?.48 Execation of CONDIL #

The result of exccuting "CONDI1#” is 2, which is the absolute value of -2. It is
enqueued to the original D-queuc when the top I-buller and D-queue, after "COND#"
has been exccuted, are popped off from their respective stacks. The system snap shot

is shown in Figure 2.49.
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Figure 2.49 Result of CONDl*¥ Enqueued to D-queue
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2.8.3.4 Constant
The defipition for Constant in P is

Gx:y =y =="! =1 x, for every x being an atom.

The number x following "9%" is the object parameter. ‘The Constant form al-
ways returns x as result when it is applied to any objects other than bottom (7). In
the Q-machine, Constant is dealt with as a function. Its value, x, is obtained at compi-
lation time and attached to its instruction during compilation time. When the functi-
nal form Constant is applied to the data in the front of D-queue, the constant, x.
which is stored in the O field of instruction by the compiler will be empicucd to D-
queue, if the applied object is not bottom (*). If the applied object is bottom (?), a bot-

tom (?) will be enquened to D-queue.

w
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2.8.3.5 Right Insert

Right Insert is defined as follows:
f:z=
1= <> = gl X

1= <> — Iy
r= <1y, By o B> Nk D2 = i<y, <y, 12250

Because of the nature of Right Insert, the E-unit in the Q-machine has to han-

dle it differently {rom regular functions.

The Pre-processor in the E-unit fetches the elements of the sequence to a cache
memory inside the E-unit. There is an internal pointer, IP, pointing to the last element

in the sequence.

When the Main-processor takes over, it picks up the element IP pointing to, in
this case, z;, and applies function [ to z;. The result, [z, replaces z, in the cache after
this application. Then [P is decreased by one, and points to z,;. The Main-processor
picks up z., and f:z; to form a mew sequence, and then applies functien f to this new
sequence, <z,,l:2,>. The iteration of operation continues until 7, is picked up and

the last result is generated. The last result then is euqueued to the D-queue.

—

If {is a system-deflined function, the Muin-processor can exccute it directly. IN T
is » user-defined function or a system-generated function, the Main-processor will exe-

cute it in the same way it executes other user-defined functions.

2.8.3.8 Apply to All

The Tunctional form Apply to All is defined as follows:

&1
z <> = <>,
z= &1y, Ty ooy B> — <Dz, Tipgy o, [ 357
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Apply to All applics the function following the symbol "£" to all clements of
the sequence and returns a sequence consisting of the results of applying f to each ele-

ment.

At execution time, the Pre-processor gets the functionzl form &f from the I-

queue and the data sequence from the D-queue. Then the Pre-processor fetches the ele-

ments z,, %, ..., 7; of the sequence x to a cache.

=t

At the next E-unit cycle, the Main-processor takes over. It starts applying f to
7, and puts the result, :7), to a newly created sequence y. It goes through from z, to
z; and puts the results one by one to sequence y. Finally, after all elements are ap-
plied, the Main-processor enqueues the descriptor of sequence y to the rear of tke D-

queue.

If [ is a system-defined function, the Main-processor applies it to each element

in x as we described above.

If fis a user-defined function, the Muin-processor will inveke the function and

perform the I-quene and D-quene stack operations.

The functional form of Apply to All can be executed in parallel in a system

with multi-processors. Details will be givenr in Chapter 3.
2.8.3.7 While
The functional form While is defined as follows:
{whilefg):z=

fz - T — {while f g) : (g:x);
fr=F = x;?

Both [ and ¢ are FP expressions. We call [ the predicate function and = the action
2 P p 4
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function of While.

Applying While to object x, we apply function f to x first. f its result is
T{(rue), we will apply the While to the result of gix. If the result of fix is F{alse), we

will return x as the result of the While functional form.

At compilation time, the compiler generates one instruction to represent the en-
tire While functional form. The instruction has a special tag attached to indicate it is
a While functional form. Similar to the compilation of Condition, n unigue name is
given by the compiler to the While. Meanwhile, the compiler compiles the predicate
part and action part of Wlile separately as two user-defined functions. Each of the
functions is given a name which is correlated to the name given to the While {unctional

form.

To illustrate the procedure, we give an example of the I'P progrem FACTORI-
AL:

{FACTORIAL
1@ (while >@[2,%1] [+@[1,2], -G[2,551]) G[%]1,id]}

After compilation, the Q-instructions of FACTORIAL are shown in Figure 2.50.

Function Q-instruction
Name
FACTORIAL | id | id | %1 L J[WHILE] 1 END
WHILE1? idy %11 2 (L3 > END
WHILEL# | id | %12 |2 1 £ a1l a3|-]» ] Enp

Figurce 2.50 Q-instructions of FACTORIAL




The name "WIHLEL” is given by the compiler 1o the While functional form.
The name "WHILE1?” is formed by appending " to the name "WHILEL™, and given
by the compiler to the predicate part function. The name "WIILEI#" is formed by 7
appending "#” to the name "WIHILEL", and given by the compiler to the action part

function.

When FACTORIAL is executed on the Q-muachine, the E-unit meets the in-
struction of the While functional form associated with the name "WHILEL" after 4
machine cycles. The E-unit recognizes that it is a functional form While according to
the tag attached to the instruction during compilation. The E-unit keeps the object D
from the front of the D-queue, applied by the While, and fetches the Q-instructions of
"WHILE}?", which are the predicate part of "WIHIILEL", aud applies them to the data
D in the same way it executes regular user-defined the functions. If the result of the
execuation is T(rue), the E-unit fetches the Q-instructions of "WHILEL#" and applies
them to the data D as a regular user-defined function. The result of the exccution, D,
will replace D in the E-unit. Then the BE-umt applies the predicate function
"WHILEL? to D, again. The iteration continues until the result of predicate funetion
"WHILEL? applied to the object D, becomes F(alse). After the E-unit gets the result

of F(alse), it returns the object [, as the result of functional form \While - "WHILE1".

In the next chapter we discuss several alteruatives in the Q-inachine organiza-

tion which allow the exploitation of parallelism in FP programs.



CHAPTER 3

Q-machine With Multiple Processors

The characteristics of the FP language and the Q-machine allow us to explore

possible parallel executions in different levels if the Q-machine hus multiple processors.

In this chapter, we discuss several alternative organizations for parallel execu-
tions of FP programs. In FP, certain functional forms, such as Apply to All and Tree
Insert, explicttly provide the opportunities for parallel executions. Another functional
form, Construction, can also be executed in the Q-machine in parallel. In addition, the
organization of the Q-machine also has the potential of using parallel E-urits connect-
ing to the D-queue and I-queue to carry out concurrent executions. In the following sec-
tions, we discuss the parallel execution of Apply to All, Tree Insert and Construction in
the Q-machine with multiple [S-units or multiple Q-m=achine units. We will also discuss
the parallel executions using parallel E-units connccting to the D-queue and the I-

queue.

3.1 Parallel Execution of Apply to All

in FP, Apply to All (&) is & functional form. lts function parameter £ could be
a system-defined function, or a user-defined Tunction. In Section 3.1.1, we will discuss
the parallel execution of &f where [ 13 a systcm-defined function. In Section 2.1.2, we

will discuss the parallel execution of &f where f is a user-defiued function.

oy
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3.1.1 Parallel Execution of Apply to All Using Multiple E-units

Assume that the Q-instruction in the front word of the I-queune of the Q-
machine is a functional form Apply to Al (&), and that the data in the front of the
D-queue is a sequence, D, having n elements. If the Q-machine has only a single E-
unit, it has to apply the pirameter function f to cach element in D sequentially. The
time cost then would be nt {where t is the time cost for applying f to one element of
sequence D). We can improve the performance by having n E-units apply the Q-

instruction [ to the n elements of the sequence D in parallel.

In the Q-machine with parallel execution using multiple E-units, when the origi-
nal system E-unit encounters Apply to All and the data sequence D, which has n ele-
ments, it will invoke a group of E-units, where the number of the E-units in the group

equals the number of the elements in the applied sequence D.

We call the invoking E-unit "Master E-unit” and the invoked E-units "Slave
E-units.” Figure 3.1 shows the relationship between a master E-unit and its slave E-

units.

\LD ((D]A‘Dz,D:;'...Dn))

Master
E-unit & &f

= ™ I T
Dy Dy Dg ! 7A
£ - -
E-Uy g L-Uy £ E-Uq T° f E-U, f
Slave Slave Slave Slave !

Figurc 3.1 Parallel Execution of &f
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The master E-unit broadcasts the function parameter f of the functional form
Apply to All, &f, to every slave E-unit. [t also passes the first element in the sequence,
for instance Dy, to E-Uy; the second element Ds to E-{4, ..., and the nth clement D, to
E-U.. Each Slave E-unit will apply the fuaction [ to the reseived data and return the
result to the master E-unit. After receiving all results from these slave E-units, the
master E-unit forms a sequence which includes all the results as elements in an order
corresponding to their original data and enqueues the formed sequence to the D-queue,

to which the master E-unit is connected.

The Q-mnachine with the capability of executing the Appiy to All in parallel us-
ing multiple E-units has a speedup of n, (n is the number of elements in the sequence
to which Apply to ANl will be applied), versus the Q-machine using a single E-unit exe-

cuting Apply to All sequentially.
3.1.2 Parallel Execution of Apply to All Using Multiple Q-machinzs

The scheme introduced in section 3.1.1 for exceuting Apply to All (&f) in paral-
lel is only good if [ is a system-defined [unction, because the E-units used to carry out
the parallel executions, unlike a complete Q-machine, does not have its own D-queue

and I-queue, which are necessary to execute user-defined functions.

In order to execute Apply to All (&f) in parallel when f is a uscr-defined funec-
tion, each slave E-unit in the conligurations in section 3.1.1 used for parallel exscutions

must be replaced by an entire Q-machine unit.

The following Figure 3.2 shows the configuration of using multiple identical Q-

machine units to execute Apply to All &f in parallel, where fis a user-defined function.

59



Master
Q-machine

f:<DI,D2’ Dn)

b f~l 12 =

Slave Slave Slave
Q-machine 1 Q-machine 2 Q-machine n

Figure 3.2 Palallel Executions Using Mutiple Q-machines

When the Q-machine encounters an &f in the {ront of its I-qucue, and the data,
D, which is a sequence consisting of n ¢lements Dy, D, ... D, in the frout of its D-
queue, it invokes n Q-machine units Q,, @a, ..., @,, which are identical to the invoking

Q-machine unit, to apply [ to each c¢lement of D in parallel.

The invoking Q-machine is called the master Q-muchine and the invoked Q-

machines are called slave Q-machines.

The master Q-machine broadcasts the Q-instructions of [ to all sluve Q-
machines. (If the scheme is implemented in shared memory, only the pointer to the
starting instruction of Q-code of f needs to be broadcasted to each slave Q-machiue).
The master Q-machine passes the data D) to @y, Dy to Qy,..., D, to Q.. Alter receiving
the Q-ipstructions and data, each slave Q-machine begins excention like an indepen-
dent Q-muchine. After completing the exccution, the slave G-machine returns the

result to its master Q-muchine und s detached from its master. Having received all

80



the results from its slave Q-machines, the master Q-machine forms a sequence to in-
clude these results as elements and enqueues the sequence to its D-queue. The execu-

tion of the rest of the Q-instruction continuecs.
3.2 Parallel Execution of Tree Insert

In FP, Tree Insert (&f) is a functional form. Its fupction parameter [ could be
a system-defined function, or a user-defined. In Section 3.2.1, we will discuss the paral-
le! execution of |f where f is a systemn-defined function. In Section 3.2.2, we will discuss

the parallel execution of |f where [ is a user-defined function.
3.2.1 Paratlel Execution of Tree Insert Using Multiple E-units

Tree Insert is defined in FP as:
if:z=

T= <> > glx;

I= <> =1y

= <z ..., B> /\k >1—
f.<|f: <z >, If : <.r_i+l,...,zt>>; ?
z z

To execute a Tree Insert [, the master E-unit splits the input sequence D into
two sequences, D, and D, then tnvokes two slave E-units, E-U, and E-0,. The master
E-unit passes the Tree Insert | to both slave E-units, but passes D, to E-1) and D, to
[E-U,. If D, has more than one element, E- {7, will split D; again and invoke another two
stave E-units, E-U, and E-U.. The same applies to {3-1;. The procedure will go on
uutil a slave [L-unit has am input scquence which is a null sequence or a sequence has
just one element. Figure 3.3 shows the splitting procedure for executing |+
<1,2,3,1,56,7,8>. When the splitting stops, the F-unitss at the bettom level, such as
BTy, 1=, LT, B0y, -4, 1-Us, I5-Us7 and BE-1%,. besin to apply function + to

their data, then return the results to their master F-umits, such as F-U,, B0, B-17,
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$€1.2,3,4,5,6,7,8>
Master L= i+
E-unit
¢1,2,3,4> | ! q./<5,6,7,8>
: E‘UI]]LH- E-U12 \H'
, |<3;4>  p— 7,8y
: 1,2) L 1 $5.62) ;
: E-Ugq [+ E-Upj i\ I+ E-Uzaé-‘l"‘
S —— I 1  E—
1 N 3 ‘& v 5 ) 6\‘ 7
? !+l I+ + Fr 1+ + f+
E-U31 E -Usy -E-Uj3 E-Uq, E-Ugs E-Ujg E-U37 E-Usg
Figure 3.3 Parallel Executions of }+:<1.2,3,4,5,6,7,8>

and E-U%,. The E-upits that complete their executions are detached from their master
E-units. Figure 3.4 shows the system after the bottom level E-units bave completed

their executions.

Now, the E-units in the third level, -4y, E-Us, E-Usy and E-Ua,, begin to ap-
ply + to the sequence formed by the results of the lower level, and return the results of
execution to their master E-units, which in this example are E-U, and E-U.. Figure 3.5

shows the systewm after exccutions in the third level are fintshed.

The procedure goes on until the top level Master T-U finishkes the exccution of
applying 4+ to its data, which is a sequence formed by the data returned from the
second level exceutions. The top muster E-units will euqueue the final resalt to the D-
gueue, to which it is connected. FFigure 2.8 shows the system state after the executions

of |+ are finished.
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Figure 3.4 Parallel Executions of |+

! Master
i E-unit

Figure 3.5 Parallel Executions of |+
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The E-units in the same level can execute in parallel. The time cost of execut-

ing Tree Insert |f is
VoM x T+ T

where N is the number of elements in the applied sequence, T, is the time cost to apply
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Figure 3.6 Result 36 Enqueued to D-aucue

f to data, T, is the time cost to split the applied sequence.

The speedup for Tree Insert executed in parallel using multiple E-Us versus one

executed in a single E-unit is
N1

TS it
! Ll
kg"j\j 7

3.2.2 Parallel Execution of Tree Insert Using Multiple Q@-machines

The parallel execution of the Tree Insert (If), when { is a user-defined {unction is
similar to the parallel execution of Tree Insert when { is a system-defined function.

Only the slave E-units in Figure 3.3 will be replaced with slave Q-machines.
3.3 Parallcl Execution of Construction

The exccution of Construction in the Q-machine with a single processor is
described in Section 2.6.3.2. The solution is sultable for the executions of Coustruc-

tions in the Q-machine with a single processor.
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If we use the scheme of invoking multiple (-machines, we will not only be able
to avoid stuffing ids to an unbalanced tree, but also be abie to exccute the legs of the

Counstruction in parallel.

To illustrate how to use multiple Q-machines to execute Coastruction, we recall
the example used in Section 2.6.3.2. It is the FP program CONSTR, which was defined

as the following:

{CONSTR {1Q[f2533, 14, [5Gf8GI7]7[8}.

Assume there are multiple Q-machines which can be invoked by a master Q-machine.

At the compilation time, the functional form Construction will be translated
into a single Q-instruction, {], of which the O field contains a system-given name, for
instance, LEG. The n legs of the Construction will be compiled separately to n Q-codes
having names given by the compiler. These names, LEG1, LEG2 and LEG3 in this ex-
ample, are associated with the name in the O ficld of the Comstruction Q-instruction.

The Q-instructions of the FP program CONSTR appears as Figure 3.7 shows.

Function Q-instructions
Name
) CONSTR folr 1], | END|
LEGI fa]fy [END
LEG2 £, {END
LEG3 £7[fe |5 | END]

Figure 3.7 Q-instructions of CONSTR
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Wken the master Q-mackine encouniers the instruetion of Construction in the
front of the I-queue and the duta D, which is the result of 8, in the front of the D-
queue, it will invoke 3 slave Q-machines to cxecute the three legs of the Construction
tree in parallel. The master Q-machine broadensts the datz D to the D-queue of ench
slave Q-machiue. It passes the Q-instructions of LECI1 to the slave machine 1, the Q-
instructions of LEG2 to the siave mrchine 2, and the Q-ipstructions of LIEG3 to the

slave machine 3. Figure 3.8 shows the configuration.

D-queue
&= D ] Stave
| Q-machine
E—uniﬁq I-queue executing
1 £3 |£, |2nD LEG1
s
[ . D-queue
{ 51
! - ave
% Maste? "——J::ﬁ:_ D l Q-machine
IQ-machme E-uniq; I-queue exeg;g;ng
e £4 ] EnD
| [
| I
! D-quecue
— 51 F Slave
‘ \ Q-machine
~-—|E-unit{; I-queue | axecuting ‘
L—[— Ll £5 | £6 | £5 | Enp | ] LEG3
Figure 3.8 Parallel Execution of Construction

Having received the data and Q-code from the master Q-machine, each of the
slave machines beginy exccution in parallel. After all three slave machines return their
results to the master machine, the master machine puts the results into a sequence.
The sequence, which is the result of the exccution of Construction, then is enguened to
the the D-queue of the master Q-machine. The operation in the master Q-machine

resumes.
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The speedup of having multiple Q-machines execute o legs of u Construction
tree in parallel versus having a single Q-machine execute the balanced Couwnstruction

tree sequentially is about n.

3.4 Parallel Execution Using Paralle] -uniis Connecting to D-queue and I-

queue

In the Q-machine with a single processor discussed in Chapter 2, there is one
E-unit connected to the D-queue and the J-quecue, and it oaly operates on the front of
the D-queue and the [-queue. Figure 3.9 shows tie snapshot of the systemn when the
data in the front word of the D-queue, D1, and the Q-ipstruction in the front word of

the I-queue, 11, are exccuted by the E-unit.

D-queue

My E~unit|

I-queue

I]_ 12 PR Ik ~

Figure 3.9 Q-machine With A Single E-unit

In the execution of FPP programs on the Q-machine, if the front Q-instruction in
the I-queue is any Q-instruction other than Construction, only oue operand in the front
of the D-queue is required for applying the Q-instruction. If the frout Q-instruction in
the [-queue is Construction, then n front operands in the D-qucue are reguired to ferm
the resulting sequence, where n is the number of elements in the sequence to be formed

and n is attacked to the Constructiog instruction during compilation rime.
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Assume there are a total of m operands in the D-queue at a moment, and each
instruction, 7, in the I-queue, needs O, operands from the D-queue. (As indicated above,
0, is 1 for all Q-instructions other than Construction, O, is 2 non-negative integer for

Construction). We can find a number k such that

E
Y;0,<m
=1

The pumber k indicates that all the operands nceded for executing instructions
L, L, ..., I, are already in the D-queue. Therefore, with a single E-unit, at the time

that /[, is applied to Dy, Do, ..., Do, all Q-instructions f,, ..., J, in the [-queue and
operands Do 41, Doyor -y Dmy are idle. If there are k E-units available in the Q-

machine, we can have all these idle (k-1) Q-instructions to be executed concurrently
with the execution of ;. We call this parallel execution using parallel E-units connect-
ing to the D-queue and the I-qucue. Figure 3.10 shows the crganization of modified Q-

machine to carry out the above parallelism.

In Figure 3.10, each word of the D-qucue connects to the interconnection net-
work. The network also connects to an array of E-units, which are connected to the k
front words of the I-queue. The control unit of the interconnection network detemines
the executable Q-instructions (/,,l, ..., [;), the operands required by each instruction
and the number of E-units required (which is k as well). Indicated in [5] and [6], the

shuffle-exchange network {7] is suitable for the interconnection network.

The possible parallel executions using paraliel E-units connected to the D-queue
and the I-queue are determined by the tree structure of the FP program. For example,

we have the following FP program tree as Figure 3.11 shows.
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| Dy | D2 | D3 | D4 | o Drm

= | Bl

M4
; 7 I 1
: E-uniElL E-unit]-fl E-unitﬂ
- T 1 I
v : ¥
I | I
I-queue

Figure 3,10 The Q-machine With Parallel E-units

D3 D, D1

Figuwre 3.11 Tree of A FP Program

The compiled Q-instructions of this FI* program are:

f1 123 f4 5 f6.

The data to be applied to this program is Dy, D, and Dy
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After the Q-instructions and data are loaded to the I-queue and the D-queue,
respectively, the Q-machine system appears as Figure 3.12 shows. (Here 0, =1, 0, =

I, Og==1, 0, =1, 05 = 2, 0y = 2).

D-queue
D1 |D2 f Da| | k‘
T | I
[ Interconnection Network l —
rl i 1
w7 v il | 2 -
Ma E-U; | E-U%ev E—U3r| N
| i
l ] [
f I N I-queue )2
£y, | fp | f3 | £4 | £5 | £ | END

Figure 3.12 Parallel Excutions of f1, fs and fj

In the above Figure 3.10, three front Q-instructions in the I-queue can be exe-

cuted in parallel. (Ilcre k=3 because m=3 and 0+ 0+ 0y = 3)

After the first machine eyele of paralle! exccution, when the results R,, R, and
Ry from E-U,, E-U, and E-U,, respectively, are enqueued to D-queue, the system be-

comes as the following Figure 3.13 shows.

At the sccond machine cycle, two front Q-instructions in D-qucue can be exe-
cuted in parallel. (MHere k=2, because m==3 and Oy=1 and 0,=2). Data fi, are fed 1o
E-U, and will be applied by f1; data R, and Ry are Ted to E-U; and will be applied by
f5. The result R, and Ry from B-U) and E- (5, respectively, are enquecued to D-queue like

Figure 3.14 shows.

At the third machine cyele shown in Figure 3.15, only one Q-instruction, 6 in
P (=1 - -

I, can be exccuted, because 0,=2 and m=2 at the moment. Data ¥, and 2; are fed
11 1 4 D



D-queue

[ Ri_| %2 | R3

[ interconncetion Network ]
=1

' 4
coif] oo w
& ' ||
| - :
-_J i ) ~ I-queue ]

Figure 3.13 Parallel Exccutiois of £, and £
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5

D-queue

R Ry
! l
r Interconnection Network

Mg ol M

E-unig

L~

—

fg END J*_”'_

I-qucue

Figure 3.14 Exccution of fg

to E-U, and are applied by f6. The result, 2, will be enquened to the D-queue, which

is the final result.

From the above illusiration, we can find that the nodes in one level of the FP
program tree can be exccuted in parallel using parallel E-units connecting to the D-
queue and the l-queue. Tle exccution time ccst for one level is the maximum within

the time costs of nodes in that level, which is:
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D-queue
Re ] 5 =
l 1 L ! 1

l Interconnection Network

My 4-——,||

i
; E-unit "l

r.....—3
I END

I-queue
Figure 3.15 Result Rg Enqueued to Dqueue

T,g == Ald.‘l’( Tgl)

where l=level, i = 1.., n, and n is the number of nodes in that jevel.

Therefore, for a program tree having a beight I, to be executed in parallel us-

ing parallel E-units connecting to the D-queuve and the l-queue, the time cost will be:

PNV

=1

where 1 is the trec level, H is the Height of the trce.

It is roughly O{iz;N) for a k-ary FP tree, where N is the number of the func-

tions in the P tree.

The time cost of exceuting the same FP program tree in a Q-muchine with a

single processor would be

1=
e

where 7T, is the time cost of exceuting f. and N is the total number of functions in that

FP program. The time cost is O{N). Lxecuting an FP pregram with paraliel F-units
|19 \ ) <« |



connecting to the l-queue and D-queue will save a considerable amount of time if the

FP tree is well spread.

We discussed several schemes of the parallel executions in the Q-wmachine organ-
ization. The Q-machine organization is bencfitted by certain functional forms in FP,
such as Apply to All and Tree Insert, which provide the explicit opportunities for
parallel executions. In addition to it, the Q-mackine organization also has its own po-
tential of parallelism, such as using parallel E-units connecting to the D-queue and [-
queue to carry out concurrent executions. The different schemes that we discussed can

be invoked individually or combined together to reach the maximum of the parallelisin.

In order to check the feasibility of the Q-mochine and the performance of FP
programs runaing on the Q-machine, a Q-machine simulation package is needed. In
the next chapter, we describe a simulation package of the Q-machine and analyze the
performance of some sample FP programs, which have been run on the Q-machine

simulator.
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CHAPTER 4

The Simulation of the Q-machine and Performance Analysis

In order to verify the feasibility of the Q-machine design, gather statistics infor-
mation about the executions of FI> programs on the Q-machine, and explore the possi-

ble parallel executions in the Q-machine, & simulation puckage has been implemented.

Several FP programs have been run on the simulator of the Q-muachine. Tkhe
examples of the FP programs which have been run on the simulator and the perfor-
mance of their executions are discussed in this chapter. They are DEVIATION, MA-

TRIXMUL, QUICKSORT and TOWERHANOI programs.
4.1 The Simulator of the Q-machine

The simulation package includes three parts: a compiler, a data converter, and
the Q-machine simulator. It is written in Pascal and runs under the UNIX system on
VAX 11/780 at the Computer Science Department at UCLA. Figure 4.1 shows the

configuration of the Q-machine simulation package.

The compiler reads in the program in Berkeley P language from a file, which
is specified by the user, and translates the I'P program into executable Q-instructions.

We call the compiler the Q-instruction compiler.

The Data Converter reads in the input data in FP format either directly from
the user's terminal or from a data file given by the user, and converts the input data to

the data format used in the Q-muachine.
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FP Programs Data Data

Q-instruction Data
Compiler Coaverter

Q-ins tructlons\ /onverted Data

Q-machine
Simulator

L
Result E ]
j file 'stat’ file "diag’

Figure 4.1 Organization of Simulation Package

The Q-machine simulator first loads the executable Q-instructions of the FP
program, which is specified by the user, from the Q-instruction compiler to the Instruc-
tuion Queue (I-queue). It also loads the data, which are given by the us'er, from the
Data Converter to the Data Queue (D-queuc). Then the Q-machine starts executing
the FP function. The result of the execution are printed on the screen. Meanwhile, two
files are generated -- one is called 'stat’, which contains the statistics data from the exe-
cution of the FP program; the other is called 'diag’, which contains diagnosis data to

help debug the Q-instruction compiler, Data Converter and Q-machine.
4.1.1 The Q-instruction Compiler

Compared with the conventional compilers which translate the programs in
conventinal languages to ones in assembly languages, the Q-instruction compiler is
simpler and more straightforward. The Q-instruction compiler used in the simulation

package has about 1,000 lines of Pascal code. The natural tree structure of FP pro-

TH



grams, the absence of variable in FP programs and the architeeture of Q-machine make

the Q-instruction rompiler simple.
Most conventional programming language compilers consist of three phases:
1. Lexical analysis.
2. Parsing.
3. Code generation.
On the other hand, the Q-instruction compiler consists of two phases:
1. Top-down depth first, and then left-to-right FP program tree traversal.
2. Q-instruction generation.

Unlike conventional programming languages, FP dces not. have variables. More-
over, data and Q-instructions are totally independent of each other in the Q-machine.
Therefore, the Q-instruction compiler does not need to bind attributes (such as types,

scope, ete.) to variables or to ailocate storage for variables.

Phase 1 of the Q-instruction compiler processes the character string of the FP
program from left to right using recursive descent method. It puts all the Q-
instructions (including the system-defined and user-defined functions in FP) ie the ord-
er that they are encountered to a table, which is called the function table. Each Q-
instruction in the function table occupies one entry, which has two fields: the Q-
instruction, which is in the format of the word of the I-queue of the Q-machine; and
the number of its level in the ] tree. Alcax with the traversal of the FP tree, neces-
sary id stuffing (described in section 2.6.3.2 us the mcans of making the P tree bal-

anced) is carried out.
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For example, the user-dcfined function MERGE

{MERGE distr@[l trans@2]

is compiled by the Q-instruction ccmpiler as follows.

During phase 1, the Q-instructions, the stuffed "ids™, and the level of cach Q-

instruction are put into the function tabie shown below.

No. | O-instruction | Level
1 distr 1
2 [1] 2
3 1 {select) 3
4 id (stuffed) 4
5 trans 3
8 2 {seleet) 4

Phase 2 of the Q-instruction compiler scans the above table from the bottom up
and put the Q-instruction with the deepest level first in the order which they are en-
countered to another table, which holds the exccutable Q-instructions associated with
the name of the user-defined function. After n times of scauning, where n is the
number of the deepest level (4 in the above case), the table which contains the execut-
able Q-instruction is shown below. The first Q-instruction in the table, id, is added to
distribute the applied data to the two legs of the FP tree of MERGE. {The reason of
this was discussed in Section 2.6.3.2). The last Q-instruction, END, is added to indi-
cate the end of the Q-instruction stream. (The level numbers are no longer needed in

this table, but we put them in the table to show how they are rearranged).



No. | Q-instruction | level
1 id
2 2 (select) 4
3 id (stuffed) 4
4 trans 3
5 ] (select) 3
i) (] 2
7 distr 1
8 END

Unlike the code generation phase in couventional compilers, there is no need for
complex register allocation and assignment in the Q-instruction gereration phase. This
makes the Q-instruction generation phase of the Q-instruction compiler much simpler

than the code generation phase of a conventional compiler.

4.1.2 The Data Converter

The Data Converter converts the input data to the data format used in the Q-
machine. We chose the word with a fixed length and poisters to the memory as the
word data structure of the D-queune in the Q-machine simulator. All input data are

converted to this structure,

4.1.3 The Q-machine Simulator

The Q-machine is the main part of the simulator. It consists of three main

componeets -- the Pre-processor, the Main-processor and the utility routine group.

Figure 4.2 shows the organization of the Q-machine simulator.

-

The Pre-processor processes the data from the D-queue. It calls ElementSep to
separate the elements of the fetched object, il it is a sequence. It stores the processed

data in a table (cache memory) iuside the E-unit.



Q-machine

I

PreProcessor MainProcessor l {Utilitv Routines

I — l —
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Figire 4.2 Software Organization of Q-machine Simulator

The Main-processor applies the Q-instruction passed-in by the Pre-processor to
the data prepared by the Pre-processor. It then enqueues the result to the end of the
D-quene. Inside Main-processor, there are 37 procedures to handle the executions of 47

FP system-delined functions.

The utility routine group handles the movemerts of the l-queue and the D-

queue, the conversion of numbers, and the fetching of user-defined functions.

4.2 The Execution of Sample FP Programs

In this section we discuss the executions of four FP programs, DEVIATION,
MATRIXMUL, QUICKSORT and TOWERHANOIL Assume one time unit is the time
to execute a machine instruction. The estimated numbers of machine instructions need-
ed for each FP system-defired function are listed in Appendix. Also assume one
machine instruction is approximately equivalent to an asscmbly instruction in the con-

ventional machine.



4.2.1 The Execution of DEVIATION Pregram

FP program DEVIATION finds the deviation of each element in the input se-

quence from the mean of the elements in the scquence.

FP program DEVIATION is:

{DEVIATION &-@distré(id, MEAN]}
{MEAN  /@i{+, length]}

Its Q-instructions and estimated execution time cost are shown below, The

number of elements in the sequence applied by DEVIATION is n.

Time Cost for Function MEAN
Q-tnstruction | id [ length | |+ | [] | / | END || Total
Time Cost 2 1 n-1 1 1 0 n+4

Tine Cost for Funetion DEVIATION
Q-instruction ! id | MEAN | id | [] | distr | &- | END || Total
Time Cost 2 n+4 2 l n n 0 3In+8

From the above tables, we can see that the total time cost for applying DEVIA-

TION to a sequence consisting of n clements is 3u+8 time units.

The above time cost is based on the Q-machine with a single E-unit. If there
are multiple E-units available, certain functional forms in the above DEVIATION pro-

gram can be exccuted in parallel by multiple processors.

For the above exccution, if there are as many processors as needed, the fune-
tional form "|+” ("[ree Insert of Addition) in MEAN can be executed by n L-units in
parallel. Assume that split time to build up the binary tree is Ign and the exceution
time of the additions is {{zn], then the above |+ can be executed at the time cost of

2|4gn] instead of (n-1} time units which would he needed with a single E-unit.
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With n E-units, the functional form &- (Apply to All of subtraction) in DEVIA-

TION can be executed in one time unit instead of n time units with a single E-unit.

Using as many processors as needed to carry out the sbove exccution of DEVI-
ATION, the time cost is (n+2lignd + 5). The speedup of using as many processors as

needed versus using a single processor is

3n+8

n+ 2|[gn| + 5

The following table gives the comparison and speedup of using as many proces-
sors as needed and using a single processor to apply DEVIATION to the input se-

quences with different number of elements.

No. of Input | Time Cost Using | Time Cost Using Speedy
Bl . 5 Speedup 2REECRP
ements Single Processor k Processors k
8 32 19 (k=38) 1.68 0.21
16 30 29 (k==14) 1.93 0.12
32 104 417 (k=32) 2.21 .0.06
64 260 81 jk=061) 3.20 0.05

If there are only k processors available for parallel executions, the time cost for

applying DEVIATION to a sequence having n elements is

M-
2n - 1 +n+9

The ratio of speedup over the number of processors is

3n+ 8
n -1 +kn+ 9k

A program, equivalent to DEVIATION, in conventional progratmming language

renning on a conventional machine would need (8n + 1) assembly instructions. Com-
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pared with the number of macbine instructions needed for running DEVIATION on the
Q-machine, the extra (5n-7) time units of runuing the conventional program are spent
on loop controls and variable assignments, which 2re not peeded in the FP program

running on the Q-machine.

A more extensive study is needed to muke a fair ccmparison between the per-

formances on the Q-machine and the conventional machines.

4.2.2 The Execution of MATRIXMUL Prozram

The FP programm MATRIXMUL carries out the multiplication of two matrices.

The FP program MATRINMUL is:
{MATRIXMUL &TOTALG&distl¢MERGE }
{MERGE distré[1 trans@2}}

{TOTAL &INNER }

{INNER !4+@&*Gtrans }

Assume that the multiplicand matrix has p rows acd q colunns. and the multi-
plier matrix has q rows and w columns. The value of p, q and w could be any positive
integers. The Q-instructions compiled from the zbove FP program and the estimate of

time are shown below.

Time Coxst for Function MULTIPLY

Q-instruction i id | MERGE | &dist] | XTOTAL | END Total
Time Cost 1 7 +n+aw pw n{4qw) 0 Apaw+pw+gw+p+8
Time Cost for Function MisRGE
Q-instruction [ id | 2 | id | trans [ 1 [] ] distr | END Total
Time Cost 2 111 aqw ] 2 D l 0 qw+p+7

Time Cost for Function INNER
Q-instruction | id ! traps | &+ | 4+ | END Total
Time Cost 1 2q « a1 0 4oy




Time Cost for Function TOTAL
_Q-instruction | &INNER | END 1] Total
Time Cost w(-lq) 0 Jow

/

The time for multiplying two mautrices, which hove p rows and g columns, g

rows and w columns, respertively, is

4pqw + qw + pw + p + 8.

If there are as many processors as needed, we can execute the same program in

the cost of

qw + p+ 3q + w + 9.

with (pqw + p) processors.

The following table gives the information about the speed up aud the ratio of

the speedup over the number of processors used.

Time Cost Time Cost Speedup
p q w | Using Single Using k Speedup k
Processor Processors
4 3 3 177 34 {k==10) 9.2 0.13
4 4 4 300 45 (k=08) 6.67 0.098
7 7 7 1485 86 {k=2340) 17.23 0.019
10 10 10 4218 159 {k=1010) 26.53 0.0268

If there are k processors available for parallel exceution, the

used to carry out the multiplication of two numbers, and the time cost will be

4pquw

k

+pw+qu+p+ 38
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If an equivalent program in cooventional language runs on a conventional

machine, the number of assembly instructions executed would be

Speqw + 3pg + 2p.

The following table gives the comparison betweer the numbers of time ubnits for
running the MATRINMUL on the Q-machine and a an equivalent program in conven-

tional language on a conventicnal machine.

Time Cost on Q-machine | Time Cost on
P |l q | w Using a Single Conventional | Speedup
Processor Machine
4 3 3 177 224 1.28
4 4 4 300 376 1.25
7 7 7 1485 1878 1.26
16 | 10 | 10 4218 5320 1.26

The extra time units for running the equivalent prozram in conventional

language on a conventional machine are also spent on the loop controls and variable as-

signments.
4.2.3 The Execution of QUICKSORT Program

The FP program QUICIKSORT sorts the number in the input sequence into as-

cending order.

The FP program QUICKSORT is listed below:

{ NULLORONE or@{nul,ONEELEMENT]}
{ ONELELEMENT =w{length, %a1}}
{ PUTSMALL (> @id->[2]-4])}
{ PUTLARGE (<=id-> 2]}
{ SMALLLIST concat G&PUTSMALL Gdistle [first, ]}
{ LARGELIST concat@&PUTLARGEdist] &[first 1]}
{ QUICKSORT (NULLORONE->id;concat ®[QUICKSORTASMALLLIST,
[first},
QUICKSORTULARGLELIST]})
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The Q-instructions compiled from the above FP program and the estimate of
time are shown below. Assume that the recursively invoked QUICKSORT always sorts

half of the input numbers of the invoking QUICKSORT routipe.

Time Cost for Function NULLORQNE
Q-instruction | id | ONEELEMENT | null { {{ [ or { END Total

Time Cost 2 7 1 2 1 0 13
Time Cost for Function ONEELEMENT
Q-instruction | id | %61 ! lenath | [} | = | END | Total
Time Cost 2 1 I 2 1 0 7

Time Cost for Function PUTSMALL
Q-instruction | id | > | 2 | [] | END Total
Time Cost 1 1 1 i 0 4

Time Cost for Function PUTLARGE
Q-instruction [ id | < | 2 | [] | END Total
1

Time Cost 1 1 i 0 4
Time Cost for Function SMALLLIST
{n is the number of elements in the applied sequence)
Q-instruction id t] first i] dist] {continued)
Time Cost 2 1 1 2 n {continued)
Q-instruction | £ZPUTSMALL | concat | END || total
Time Cost 4n n 0 6n+6
Time Cost for Function LARGELIST
(n is the number of elements in the applied sequence)
Q-instruction id tl first [] dist! {continued)
Time Cost 2 1 1 2 n (continued)
Q-instruction | &PUTLARGE | concat | END || Total
Time Cost 4n n 0 tin+6




Time Cost for Function QUICKSORT
(n is the number of elements in the applied sequence)
{T,is the time for sorting n numbers.

Q-instruction | NULLORONE | LARGELIST first
Time Cost 13 6n+0 1
Q-instruction SMALLIST QUICKSORT i
Time Cost 6n+06 ’1'"_,1 1
Q-instruction | QUICKSORT il concat
Time Cost T, i o

2
Q-instruction END Total
Time Cost 0 2.‘(_2+13n+30

The following table gives the comparison of time and the speedup of running
QUICKSORT in the Q-machine with a single processor and in the Q-machine with as

many processors as needed.

No. of Time Cost Time Cost
Numbers | Using Single Using k Speedup Speedup
Sorted Processor Processcrs k
4 247 B4 (k-'—'-S) 2.94 0.37
8 628 134 (k=18) 4.68 0.29
16 1478 208 (k=32) 7.10 0.22
32 3402 330 (k=04) 10.30 0.16
64 76668 548 (k=128) 13.19 0.11

The time cost on the Q-machine with a sinsle processor looks relatively high,
because we have to use two comparisons to detemine whether a given number should
be placed either to the side where numbers smaller than the sclected number reside, or
to the side where numbers which are greater than or equal to the selected number re-
side. HHowever, if 2n E-units are used in parallel to sort n numbers, these comparisons

can be done in parallel.

4.2.4 The Execution of TOWERHANOCI Program

The FP program TOWERIANOI simulates the disk movements in the well-

known "Towers of Hanei” problem.
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The FP program TOWERHANOI is:
{Move ( =©[1,%1] -> [@1,%1],-0{2,921].3,+G[4,%1]);
(960,3,2,4]@Moved (2,361,261 121
@[Movei#[%01,2¢1 461,231],2]
@[Move©[-13[1,%1],2.4,3],-8[1,%1]])}

We simulated the movements of 5 disks. The execution takes 2025 machine in-

structions (1598 functions).

In {8], Turner reported the numbers of reduction steps in the executions of the
"Towers of Hanoi” problem with 5 disks in both Landin's SECD and his reduction
machine implementation. The concept of the reduction step is equivalent to our
machine instruction. The comparison between SECD, Q-machine and Turner's Reduc-

tion Machine is

Machine SECD | O-machine | Reduction
Time 1488 2025 30437
Time Factor 0.75 1 1.51

The time cost in the Q-machine iy between the SECD and the Reduction
machine. The reason of this is that Turner's reduction machine has to execute extra
reduction steps generated by the compiler, on the other hand, the number of Q-
instructions running on the Q-machine is very close to the number of FP primitive

functions in the original program.



' CHAPTER 5

Conclusion

In this thesis, we discussed a Q-machine architecture, which executes the Q-
instructions compiled from an FP program. In addition, we gave the design of the Q-

machine with a single E-unit.

The proposed Q-machine with a single processor is of interest because of the

following advantages:

1. The simplicity of the Q-machine organization.

2. The beneficial implicit address management of the D-queue and the I-queue.

3. The separate data memory module and Q-izstruction memory module virtu-

ally double the bandwidth of memory access.

4. The simplicity of the Q-instruction compiler.

We have also explored the potential parallelism in the Q-machine with multiple

E-units and in multiple Q-machines,

We have simulated the (Q-machine with & single E-unit and analyzed the perfor-
mance of exccuting several FP programs on the Q-muchine simulator. Compared with
the performance of executing equivalent prozrams in conventional languages running
on conventional michines, the Q-machine has the advantages of eliminating loop con-

trol and variable assignment,
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The Q-machine is not a totally new architecture. Many of its compouents use
the concepts of conventional machines, such as queues, stacks, shift registers, memory
modules, etc. Therefore, it can be built up independently, or implemeunted (or emulat-
ed) as an alternative version in conventional machines, so that FP programs can run on

conventional machines without losing efficiency.

The communication networks between multiple E-units and between multiple
Q-machines will of course require further research to detemine the overhaed of the pos-
sible parallel executions, but the advantages of executing FI programs in the Q-

machine in parallel are obvious.

An even more efficient Q-instruction compiler can possibly be generated
through further study. Moreover, a challenging potential is brought to light through
the generation of the Q-instruction compiler: the possibility of writing a Q-instruction
compiler in FP, thereby enabling the Q-machine itself to compile FP programs into Q-

instructions.
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APPENDIX

Berkeley FP Primitive Functions

Selector Functions

u:z
1= <15,25..,5> N0 <u<k—=z,
= <zl!zﬂi"-rzt> A'k S i <0 Thtu+ts !

Estimated machine instructions : p.

pick : <n,z>
1= <z,70..,5,> A0 <n <k =z
1= <1,75.,5> Ak €0 <0 = g0 !

Estimated machive instructions : n.

last : z=
=L - <>
2= <1,z mu> Nk 21— 241!

Estimnated machine instructions : k.

first : =
= <> = <>
T = <.1:1,‘."2,...,zt> Ak 2 l =t I[; ?

Estimated machine instruction : 1.

Tail Functions

th: z
z L > - <>,
1= <1, Lenr> Nk 22— <ron> !

W

Iostimated machine instructions : 2,
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tlr: 2
I
z

<Ig> —_ <>|
<1y Ty, ie> Ak 2 2 = <zyy,0,> 5!

Estimated machiue instructions : 2.

Distribute From Left and Right
distl ; z =
1= Ly, <>>-2> <>;
T = <Yl<311z2r"'rzi> > - <K <Y:31>,---,<y|-’-r> >1 ?

Estimated machine instructions : k.

distr : z

I W

<Lz -2 <>
= <<yhy2r'"ryk>rz> - <<yl:z>1---,<yh3> >;?

Estimated machine instructiouns : k.

Identity
id:x=x

Estimated machine zstruction : 1.

out 1 x =X

Lstimated machine instruction : 1.

Append Left and Right
apndl : z =
1= <Ly, <>> =+ L{y>,
= <Y!<zl!:‘2v'--r‘=l’>> - <)’v~'|12‘:,---.5k>; ?

Estimated machine instruction : 2.
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apndr : z =
1= < L> 1> - <>y
T = <<ylnhr---yyk>v1> - <y;,y2,....y;,z>;f

Estimated machine instructions : k.

Transpose

LD, <> D> <>
Iy Ty By > LYy ¥m>5 7

ere I, = < 2yyerrfim s /\y, = L Typeeny TNy
<i<kl1<£)j€<m

L ]
(3 [

-3
=

Estimated machine instructions : £xX m.

reyerse 1 r =
T = LIy, Ty, Ly > —* L Typeeent > 1

Estimated machine instructions : k.

Rotate Left and Right
rotl : r=
1= <> = <>,
= <Il> —* <2’|>;
z = <Il!:r?!'“)"rf> /\1{22 - <‘TL’I"'JIITIJ'|>; ?

Estimated machine instructions : k.

rotr :

<> = <>
<> -2 <n>;
<IlJ:21"'ka> f\kZ? nd <:h.'|.'],...,1'g_1>; ?

I
x
z
z

Estimated machiue instructions : k.

concat @z =
= <<Illl"'vrik>1<I'.‘l-"-1:'.!n>r"'s<zmly-°-17mp>>
N kmnp >0
— Lty Tio Tz o ToneTmtae e Imp 2> | ?

92



Estimated machine instructions : k+n+...

pair ;: z =
= <z1,5....5> Ak>0 Ak is even
i <<11,32>,..-,<Ig ,,1}>>;?
2= <z,2,..,2:> Ak>0 Ak is add
- L L1, 10>, <>

Estimated machine instructions : k.

split : z=
1= <> -2 < <>, <>>;
= <21132r"-:zk> Ak>l
— <<zl""’z_t.>’<I.£+1’""zk>>; ?
2 =

w_| -

Estimated machine instructions :

iota: z=
z=0—- <>;
ze Nt o <1,2,...x>;?

Estimated machine instructions : x.

Predicate (Test)} Functions

atom : z =
reatoms — T;
r=1-=F;?

Estimated machine instruction : 1.

eq:z=
r=<y2> fy=21-T,
r=<y2> NyF#z-F;?

+p.

Also less than (<), greater than (>), greater
or equal (>==), less than or equal (<<=},

equal { =); '="1is a synonym for cq.

Estimated machine instruction : 1.
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null - z=
= <> =T
r#£ 1o F;?

Estimated machine instruction : 1.

length : z =
= <Zl,22,...,1t> —+ k;
r=<> =01

Estimated machine instruction : 1.

Arithmetic and Logical

+ =
z= <y,2> Ay, are numbers — y+1z;?

Estimated machine instruction : 1.

~IIT=

z= <y,z> /\y,z are numbers — y-z; ?

Estimated machine instruction : 1.

*1z=
z= <y,z> My, are numbers — y+z; !

Estimated machire instruction : 1.

[iz=
1= <y,:2> Ay, are pumbers Az5£0 — y/z; !

Estimated machine instruction : 1.
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And, Or, Not and Xor

and : <2y> =
=T~y
r=F-F"?

Estimated machine insiruction : 1.

or . <rny> =
z=F - y;
z=T —-T;?

Estimated machine instruction : 1.

Xor @ <z y> =
=T py=T—+F,
z=F Ay=F - F,
=T pApy=F =T,
:=FAy=T-T,;?

Estimated machine instruction : 1.

not :

F;
T;?

H W W

T —
F—

Estimated machine instruction : 1.

Library Functions

sin @ X =
x is a number — sin(x}); ?

Estimated machine instruction : 1.

asin ; X ==
x is a number A x| € I — sin7'(x); !

Estimated machine instruction : 1.



€08 ! X =
X 1= a eumber — cos(x); ?

Estimated machine instruction ; 1.

AC08 @ X =
x is a number /i lxf € 1 — cos7'(x); ?

Estimated machine instruction : 1.

exp : X ==

X 13 a number — ¢5 ?

Estimated machine instruction : 1.

log: x =
x is a positive number — tn(x); ?

Estimated muachine instruction : 1.

mod : <x,y> =

"

r
x and y are numbers — - yx| =|; 7
Y

Estimated machine instruction : 1.
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