ON SPECIFICATION AND DESIGN OF DIGITAL SYSTEMS USING AN
APPLICATIVE HARDWARE DESCRIPTION LANGUAGE

Farshad Meshkinpour November 1984
Report No. CSD-840046

UNIVERSITY OF CALIFORNIA
Los Angeles

On Specification and Design of
Digital Systems Using an
Applicative Hardware Description Languague

A thesis submitted in partial statisfaction of the
requirement for the degree Master of Science

in Computer Science
by

Farshad Meshkinpour

1984

il

To My Father and Mother

Table of Contents

1 Introduction and Objectivescccoooeiiiiiiniil,
1.1 Introduction ...,
1.2 ODbJectiVes ._....cooiiiiiiiioiiiiie e
1.3 Imperative Languagescccco..
1.4 Functional Languagesccocooeemiimeiiiii.
1.5 Outline .. e,

2 An Applicative (Functional) Hardware Description
Language TS OO PR ORUOOO
2.1 Introduction ...

2.2.3 Functional Forms ... et
2.2.3.1 Apply to All Functional Forms
2.2.3.2 Sequential Functional Forms

Definitionsoooooviiiiiiiiiii e

Functional Forms ... et
2.3.3.1 Apply to All Functional Forms
2.3.3.2 Sequential Functional Forms
2.4 Examples ... S DSOS PURRURRRPRRRN

2.4.1 Conditional Sum Adder ...
2.4.2 One-Bit Sequential Adder
2.4.3 Multi-Operand Carry Save Adder

3 Design of Pipelined Systems using FHDLc.oovvouvini .
3.1 Introduction ..o,
3.2 Pipelining of Digital Systemscoco....
3.3 FHDL Support for Pipeliningcooveeeioei .

3.3.1 Detecting Parallelism and Dependencies
3.3.2 Composition Capability and Partitioning
3.3.3 Purely Hierarchical Approach ...
3.4 Partitioning of Digital Systems Using FHDL
3.4.1 Timing Analysis "................co e
3.4.2 Partitioning Criteriacocooeeennn..
3.5 Pipelining Example ...

4 Conclusion and Further Researchooovvvmmeeem

Appendix A FHDL Interpreters v eeenr e ——————————

v

=0T b G bt

References

...

List of Figures

Figure 2.1 Iterative Network and Sequential System
Figure 2.2 Carry Save Multiplerccoooovoviveeii]
Figure 2.3 Finite State Machine ...,
Figure 2.4 Sequence Functional Block Diagram
Figure 2.5 A 16-bit Conditional-Sum Adder
Figure 2.6 Graph of a 4-bit Conditional-Sum Adder ...

Figure 2.7 Graph of a 6-bit Conditional Sum Adder |

Figure 2.8 n-bit CPA ...
Figure 2.9 CPA Implementation Using Iterative Networks

Figure 2.10 CPA Implementation Using Sequence
CONSETUCE ..o e

Figure 2.11 CPA Implementation Using Moore Construct

Figure 2.12 CPA Implementation Using Mealy Construct

Figure 2.13 A Multi-operand Carry-save Adder
Figure 2.14 Logic Diagram of Multi-Operand-Adder
Figure 2.15 Logic Diagram of Sequential CSAoovvvv i
Figure 2.16 Logic Diagram of a CSA ..o
Figure 3.1 A Basic Pipelined Systemococooiiiiii]
Figure 3.2 6 Bit Pipelined CSA — Version 1 ...covovoove
Figure 3.3 6 Bit Pipelined CSA — Version 2ivi..
Figure 3.4 6 Bit Pipelined CSA -- Version 3 [T

Vi

12
14
19
20
37
38
40
41

44
47
49
53
54
55
55
61
70
73
75

ACKNOWLEDGEMENTS

1 am grateful to my advisor, Dr. Milos D. Ercegovac, for his guidance,
patience, invaluable support, and many stimulating discussions during the

course of this work.

I would like to thank Dorab Patel for providing the basic FP
interpreter and for his help at many decisive moments of this work. I am in
debt to Shih-Lien Lu for design of the graphic software system and for his

patient help.

Thanks go to all members of the FP group in the Computer Science
Department at UCLA.

I would also like to express my appreciation to my family and friends

for their moral support during this work.

This research is supported in part by a grant from MICRO-Rockwell.

vii

ABSTRACT OF THE THESIS

On Specification and Design of
Digital Systems Using an

Applicative Hardware Description Language

by
Farshad Meshkinpour
Master of Science in Computer Science
University of California, Los Angeles, 1983

Professor Milos D. Ercegovae, Chair

An applicative (functional) hardware description language (FHDL) is an
enhancement of previous work using applicative languages as ha.rdwafe
description languages. FHDL supports the specification of both combinational
and sequential digital systems. The FHDL interpreter implements the
specification of hardware algorithms at the gate level. The functions in FHDL
operate on attributes as well as objects. The attributes provide a mechanismj

for computing various parameters associated with the implementation.

FHDL supports the optimization phase of digital system design. As an
example, FHDL is used to reorganize a given system in a pipelined fashion to

improve its throughput.

viil

CHAPTER 1

Introduction and Objectives

1.1 Introduction

With advances in the field of Very Large Scale Integration{VLSI), the
hardware implementation of complex systems become feasible. The
availability of more than half-a-million devices per chip is expected by 1985
[Quey79]. These advances provided enormous amount of resources to the
digital system designers. At the same time the cost of specification, design,
and testing of VLSI systems is growing. VLSI is more than "a lot of LSI”.
The 256-K-bit RAM's of 1982 are quite different from 1-K-bit RAM's of
1970’s. As the scale of the system increases, different design issues gain
importance. The internal structuring starts to appear, specialized subpﬁrts
emerge, communication between the different parts gains importance, and at
same level, the complexity of the system becomes an explicitly stated concern
[Sequ83]. The main technique to deal with the complexity is the use of high-

level languages to specify and synthesize digital systems.

Many high-level languages have been suggested to be used as a
Hardware Description Language (HDL). High-level HDLs should provide the

following mechanisms for handling the design complexity:

1. Abstraction methods in order to hide the unnecessary details of

design.

2. Partitioning in order to use "divide-and-conquer” methods for

designing large systems.

3. Structured and modular design methodologies to manage the
complexity of communication among sub-parts.

Note, that various HDLs based on the high-level language capabilities provide
some of the above features. The above capabilities of HDLs reduce the design
time, make the design more error-free, and ease the debugging and
modification [Sequ83]. Another advantage of high-level HDLs is that they can
be used as a simulation tool for design verification at various levels of
~abstraction supported by HDLs. Simulation becomes a very important aspect

of VLSI design because of the lengthy manufacturing process {Fran8l].

These advantages of high-level language approach to design of digital
systems motivated the development of automatic synthesis tools [Shiv83,
Thom79]. Automatic synthesis is the process of creation of a detailed design
from an abstract specification. In other words, a synthesis tool transforms the
high-level description of a system into an implementation. Although the
results of current syntheéis tools are relatively inefficient, when the design cost
becomes comparable to the fabrication cost, a faster development cycle at the
price of a less efficient implementation becomes an attractive alternative

[Sequ83|.

Considering the current complexity of digital systems, the design of a
system without the use of a HDL (to specify the design) and the automatic
synthesis tools {to handle various details of the design) becomes almost

impossible. The objectives of this thesis is considered in the next section.

1.2 Objectives

The objectives of this work are two fold. First, we try to demonstrate
that functional (applicative) languages in general, with certain enhancements
can be used in various phases of design and that they are capable of handling
the general class of systems and algorithms. Conceptuélly, the design process

contains the following activities: [Sequ83]

a. functional design: guaranteeing proper behavior;
b. implementation: finding a suitable structure;
c. optimization: fine tuning of the physical arrangement.

The previous work in using a functional language for specification and
simulation of hardware-oriented algorithms [Laht81] considered combinational
algorithms only. The enhancements suggested and implemented in this work
allow us to specify both sequential and combinational systems. Second, the
main objective is to recognize the key features and characteristics of
functional languages in design of high performance systems. There are many
different approaches in organization of high performance digital systems, We
consider specification, design and implementation of a class of pipelined

system using a functional language as HDL.

Since the evolution of HDLs has been following the evolution of
programming languages, both imperative and applicative languages have been
used as HDLs. In the following two sections we introduce the differences
between these two classes of languages to illustrate our motivation in use of

functional languages as a HDL.

1.3 Imperative Languages

Imperative languages have been used extemsively as HDLs. These
languages are based on sequential execution of statements or instructions and
the concept of updatable storage(variable). This concept has migrated to
HDLs based on imperative languages. From a HDL point of view the problem

1s two foid:

First, almost all of HDLs (based on von Neumann model of
computation) describe hardware activities among hardware resources
[Marc79]. Typically, digital systems are modeled into resources like ALUs,
MUXs, registers and others (these are equivalent to declaration of variable in
the language). Then, a complex relation and control among these resources is
described. This results in an unstructured d&sigﬁ with very few mathematical
properties in order to perform optimization. In many cases, algorithms are

modified to meet the restrictions of the language [Laht81].

Second, in most cases the nature of the language does not a.llovll
expressing parallelism. If the language allows that, it becomes
computationally unattractive to detect parallelism from the description. Also,
because of existence of complex control relations in the language the HDL
forces an unstructured design methoddlogy, and mapping of high-level
description or constructs to low-level implementation becomes non-trivial.
Note, the general critique of the von Neumann model of computation can be

found in [Back78, Laht81], and others.

Functional languages offer alternatives to conventional procedural
languages and solutions to some of the problems inherent in conventional

languages.
1.4 Functional Languages

Functional Programming languages (FP) are attractive as HDLs.
Baden and Patel [Bade83] summarize the attractive features of the functional

languages in the following:

1. They ({functional languages) promote program brevity and

encourage hierarchical program structure.

2. They express a model of execution that supports multiple, a.ctiv;

centers of computations.

3. Their programs can be optimized through algebraic

transformations.

From a HDL point of view, FP can be used to describe a hardware
system organization as well as its behavior. That is, the organization of the

digital system is known from its FP specification.

Optimization of a digital system for higher performance requires the
"non-transparency” of the structure of the system. In most imperative HDLs
the system specification is transformed to an explicit implementation before

any optimization can be applied [Thom83}.

FP provides a structured descx;iption of digital systems because the
model of computation and control of system is based on the simple data-
driven or demand-driven model. The generality of the combining forms in FP
encourages hierarchical description which is a powerful abstraction
mechanism. The emphasis of the language is on developing larger systems
from smaller ones. Thus, both bottom-up and top-down design methodologies

are supported.

The attractive feature of FP as a HDL is that FP describes the
implementation of algorithms (we are concerned more about computation
schemes rather than algorithms (Davi83]) explicitly. In other words, a FP
programr that describes the implementation of a particular computation
scheme explicitly describes the precedence graph of precedence relations
associated with the computation scheme. This allows an almost one-to-one

relation between the high level description and the low-level implementation.

The mathematical nature of the functional language provides a
promising base for design verification. The use of mathematical
transformations allows optimization of the system based on cost criteria

[Pate82].

Functional languages do not allow use of storage and history
sensitivity. This disadvantage previously limited the use of functional
languages to describe combinational systems only, although the sequential
systems can be specified by modeling them with their iterative network

equivalents.

-

Functional languages encourage hierarchical system design. This

capability leads to design of systems in a purely hierarchical fashion where the

problem of optimum design becomes critical [vanC79|.

1.5 Outline

This work consist of two major parts. First, in chapter 2, a functional
hardware description language (FHDL) based on Backus's FP [Back78] and
Lahti's FP [Laht81] is introduced. The language is enhanced by adding the
constructs to support the specification of sequential systems. This language
can be used to specify the behavior of digital systems. The same specification
is used to generate an implementation in the gate level automatically. Few

examples are used to illustrate the capabilities of the approach.

Second, the above language and a synthesis tool are used to
implement digital systems in pipelined fashion. This synthesis step, discussed
in chapter 3, requires timing analysis of the digital system and automatic
insertion of buffer stages (latches). The advantages and disadvantages of
FHDL for generating a pipelined system is discussed. Some examples
demonstrate the improvement of the pipelined system throughput by factor of

two or three. The work is summarized in chapter 4.

In this work, UCLA FP interpreter [Pate84] has been modified to
support sequential constructs. Based on this interpreter, a symbolic
interpreter is developed to automatically generate an implementation
associated with the specification. A graphic software system [Lu83]| is used to
display the result of the symbolic interpreter. This interpreter also supports

the use of attributes in conjunction with functions. The time-delay, logic-

level, and pipe-ctage attributes are implemented and used to generate a

pipelined implementation of the given specification.

CHAPTER 2

An Applicative (Functional) Hardware Description Language

2.1 Introduction

The design process of a digital system consists of three steps:
specification of the system; implementation of the specification; and
optimization of the implementation. These three steps more or less follow the
three levels of hierarchy as discussed by van Cleemput [vanC79]. These three
levels of hierarchy are: behavioral hierarchy, structural hierarchy, and

physical hierarchy.

At the behavioral level, the user specifies the design or problem in a
HDL. Then, a functional simulator is used to verify the correctness of the
specification and design. The functional correctness achieved at the
behavioral level is totally independent of the implementation, performance, or
technology. The next stage of design is to implement the specification. The
high-level constructs are transformed into low-level structures with the use of
various synthesis steps and tools. Finally, the optimization is performed
based on cost criteria of the implementation. This step is highly dependent

on the idiosynecrasies of the technology and other design limitations.

The main objective of this chapter is to define a Functional Hardware
Description Language (FHDL) based on the concept of functional languages.

This language meets the need of the designers in two phases of the design,

First, the language provides an environment for specifying algorithms
(hardware oriented algorithms) and a simulation tool * for functional
verification of the design. Second, a synthesis tool is provided to use the same
specification to generate an implementation of the system at the gate level

because the basic primitives currently supported by FHDL are logic gates.

~ The functional language under consideration is based on Backus's FP
[Back78]. The use of functional language as a HDL is not new. Part of this
approach has been explored previously by [Laht81, Fran8l, Fran79, Card81,
Gord81, Pate82] and others. The language extensions are logically following
Lahti’s work [Laht81). Lahti used FP to describe hardware-oriented
algorithms and structures of combinational systems and interconnection
networks (which are combinational in nature). The main enhancements
provide the functional primitives to describe sequential systems and allow the

use of sequential systems with combinational ones.

This chapter is organized into three parts. First, the language itself is
described, at the functional level. Second, the mapping of the language
constructs to the implementation or structural level is introduced. This
section serves as a formal specification of the symbolic interpreter. F inally,

some programming examples illustrate the FHDL environment,
2.2 The Language

A digital system in FHDL is simply an expression representing a
function that maps objects to objects. This can be simply be visualized as a
function like adder that maps two numbers into one. The result is the sum of

the two input numbers. Since the functions can only map objects to objects,

10

the functions are memoryless and do not have side effects.

The main difference of FHDL from previous works (using functional
languages as a HDL) is the capability to specify sequential machines or
systems. In the combinational system the outputs are functions of only the
present inputs. In the sequential system the outputs at any given time are
functions of the inputs as well as of the stored information {or state) at that
time. Sequential machines can be either synchronous or asynchronous. In
synchronous sequential systems, the change of state takes place at discrete
instants of time defined by clock pulses. Asynchronous systems do not force
any restriction on changes of state. Synchronous sequential machines are
particularly interesting because every finite output sequence that can be
produced sequentially by a synchronous sequential machine can also be
produced spatially by a combinational iterative network [Koha78, Erce82,

Davi83|.

Thus, every synchronous sequential system can be specified in FHDL
using its combinational iterative network counter part. Figure 2.1 shows a
general case of a sequential machine and its iterative network implementation.
The behavior of the two systems(sequential machine and iterative network) is
the same, but they differ with each other in implementation characteristics.
The sequential machine is slower than the iterative network implementation,
while the iterative network implementation is more expensive than its
sequential counter part. The iterative network implements functions in space
domain, since it generates the results spatially. The sequential machine
implements functions in time domain, because it requires number of steps to

generate the results.

I

%9 X! xN-l

‘ 1 2 Ned
, y y y "

y — |Gl M rmm e g sy

N N

z0 z' ZN
X2 %}, X0 e

= M
N

> z2 z! 20

Memory

Figure 2.1 Iterative Network and Sequential System

At the behavioral domain we model a sequential system or machine
specified in FHDL using sequential construct by an equivalent iterative
network. In the behaﬁoral level, FHDL only considers the space domain
implementation of systems, while in the structural domain both space and
time implementations are used. The formal specification of FHDL sequential

constructs is provided in sections 2.2.3.1 and 2.2.3.2.
FHDL consists of five elements:
1. A set of objects, O.

2. A set of functions, F.

3. A set of functional forms, FF.
4. A set of definitions, D.

5. A single operation, application.
2.2.1 Objects

Objects may be atoms, or the "bottom” error symbol (?), or a sequence
of objects. Sequence of objects are represented by enclosing the objects in a

pair of parenthesis. The following are examples of objects.
() (10100) 1 A HELLO 4 ? (10(110}0)

1 denotes true, and 0 is used as false. The designers can distinguish two types
of objects or sequences. First, time objects, this is a sequence of objects that
are mputed serially into the system or function (input to the sequential
machine of Figure 2.1 is of this type). Second, space objects, the inputs to
the carry (z's and w’s) to the carry save multipler shown in figure 2.2 are
space objects. Since, at the behavioral level, FHDL concerns with the space
domain only, the time objects and space objects are treated similarly. In

considering space objects no consideration of temporal order is required.

2.2.2 Functions

Functions are applied to objects to generate new objects. Most of the
primitive functions described in FHDL are defined previously by Backus
[Back78], Lahti [Laht81], and Baden [Bade83a]. The following is the summary
of the primitives in FHDL; these definitions closely follow Berkeley's FP

definitions [Bade83a).

13

Iy Wy Z; W 7y W Zo W

ry e Fs T ry fz 5] Fo

Figure 2.2 Carry Save Multipler
n:x Selects the n'th element of object x.

pick:(n,x) Selects the n'th element of object x.

ext:(n,x) Selects the first n elements of object x.
last:x Returns the last object of x.

first:x Returns the first object of x.

tlx Returns the tail of object x.

tlr:x Returns the front of object x.

distl:(y,x) Distributes y to all objects of x.
distr:(x,y)} Distributes y to all objects of x.
id:x Returns the object x.
apndl:(y,x) Appends y to left of x.
apndr:(x,y} Appends y to right of x.

trans:x Returns the transpose of x.

14

reverse:x Returns the reverse of x.

rotl:x Rotates x left by one element.

rotr:x Rotates x right by one element.

concat:x Concatenates all elements of x into one element.

pair:x Pairs up the adjacent elements of object x.

split:x Splits x into to two equal halves. -
iota:x Returns the first pc-ermutation of object x.

length:x Returns the length of object x.
atom:x Checks if the object x is an atom.
null:x Checks if x is a null object.
+,-,%,/ix Adds, subtracts, multiplies, and divides
elements of x (x has two elements, see 2.2.6).
= > <, Returns true or false based on the predicate
>= =X (x has two elements, see 2.2.6).
and,or,xor, Returns and, or, xor, nand, and nor of the
nand,nor:x elements of x (x has two elements, see 2.2.6).

‘X Returns the complement of x.
2.2.3 Functional Forms

Functional forms are applied to functions and return a new funection.
Functional forms can also be considered as combining forms eof functions.
That is, a number of functions are combined together in a particular way and
result in a new function. Three classes of functional form are comsidered.
First, a general class of functional forms is used describe algorithms in-
general. Second, a number of functional forms are provided for proper

interfacing between combinational and sequential systems. The third class

15

.

are the sequential functional forms. The following general functional forms,

given informally, are available in FHDL,:

a) Composition

(f@g):x == (f:(g:x))
Note, "==" symbol means equivalent.
b) Construction
[f1,£2,...fn]:x == (fL:x,f2:x,...,fn:x)
¢) Constant
%cx == c.
d) Conditional

(it f
then g
else h

fi)x ==
If f:x is true then g:x is returned else h:x is returned.

Note: "if”, "then”, ”else”, and "fi” are FHDL keywords.

e) Right Insert

ix == fi(x1,:(x2,...,xn))

where If:x]1 == x1 and M:() == ()

18

f) Left Insert

\x == f:(\f:(x1,...,xn-1),xn)
where \l'x1 == xI and \[}() == ()

g) Tree Insert

[f:x == f([f:(x1,....x[n/2]),
[f:(x{n/2+1],...,xn))

where |{f:x] == xIl
2.2.3.1 Apply to All Functional Forms

Two apply to all functional forms are provided for interfacing the
sequential functions to combinational ones and specifying algorithms in
general. These forms are the same at the behavioral level, while they behave
differently in the structural domain. This distinction is caused by the
modeling the sequential systems with iterative networks in the behavioral
domain. That corresponds to the earlier definition of time and space objects.
The formal definition of the two apply to all functional forms is as follows.

a) Space Apply to All

&fix == (f:x1,0x2,...,f:xn),

where X is a space object.

Note: Space apply to all at the structural level will be mapped
to n copies of function f. One can assume that x is a space
object because the function "&f” operates on the input

simultaneously. This form is the same as “apply to all”

17

functional form defined by Backus [Back78] and Lahti [Laht81].
b) Time Apply to All

$f:x == (fx1,0:x2,...fxn),

where x is a time object.

Note: Time apply to all at the structural level will be mapped to
one copy of function f. Input x is a time object because the
implementation of "$f” assume that elements of input are
applied to { one at a time sequentially. In other words, "x1” is
the input at time "t1”, x2 is the input at time "t2”, and "xn” is

the input at time ”tn”.
2.2.3.2 Sequential Functional Forms

The abstract model of a synchronous sequential system is a finite state
machine shown in Figure 2.3. As illustrated in figure, "x” is the input and
"2” is the output of the machine, while "y” is the present sta.te.and Y™ is the
next state. There are many variations in specifying finite state machines.
The following three functional forms are provided as the well known
implementation of finite state machine. These systems are studied in detail
by Davio et. al. [Davi83], Ercegovac and Lang [Erce82], and others. The
previous argument used to distinguish between time and space domain
implementation applied directly to these functional forms. All the following
functional forms are implemented in time domain and applied to time objects.

a) Sequence

(seq { seqfunc g seqend):x ==

18

xpi— Combinational |} 7 |

Yo 3 logic

Yp-l
_ M - Yo
emory| : You

Figure 2.3 Finite State Machine

(g:(f:x,x1),g:(g:(f:x,x1),x2),...),

where x is a time object.

Note: "seq”, "seqfunc”, and "seqend” are language keywords
and act as delimiters. "f” and ”g” can be any function. Sequence
is a variant of finite state machine(shown in Figure 2.3) where
the output vector z is the same as the next state Y (see Figure
2.4). Function "f” provides an initial value for state register.

b) Mealy

(mealy { meout h menext g meend):x ==
(h:{f:x,x1),h:{g:(f:x,x1),x2),
h:(g:(g:(f:x,x1),x2),x3),...)

where x is a time object.

19

input

¥ {4
Combinational
circuit

y

state register

¥

output
Figure 2.4 Sequence Functional Block Diagram

‘Note: "mealy”, "meout”, "menext”, and "meend” are FHDL
keywords and act as delimiters. "f*, "h”, "g” can be any
funetion. In Mealy machine, the output depends on the present
state and input. Function "f” provides an initial value for state
register. Function "h” generates output. Function "g” generates
next state.

¢) Moore

(moore { moout h monext g moend):x ==
(h:(f:x),h:(g:(f:x,x})),h:(g:(g:(f:x,xl),x2)),...)

where x is a time object.

Note: "moore”, “moout”, “monext”, and "moend” are FHDL
keywords and act as delimiters. "f”, ”h"’, and "g” can be any
function. In Moore machine the output depends on the present

state only. Function "{” provides an initial value for state

register. Function ~h” generates output. Function "g”
generates next state.
The use of the above functional forms is demonstrated in section 2.4.2 and

2.4.3.
2.2.4 Definitions

Construction of larger functions or programs can be facilitated by the
use of definitions. A definition is a naming of a function which is constructed
out of other functions or functional forms. Whenever the name is
encountered the equivalent functions are expanded before the execution
proceeds. 'This process is similar to macro definition and expansion. The

syntax of definition is as follows:

defun function-name (parameter list}
FHDL expression
enddef
For example a simple carry save cell function(program) of Figure 2.2 can be

defined as following:

defun CarrySaveCell () # functional description
of a cell of figure 2.2
if (length = %2) # check the length to see
to generate what kind of module
then [id,id] @ # and the two inputs and
(1 and 2} # make to copies of result
else id , # generate sing.]e wire to

the next level

f
enddef

A null parameter list means unnamed parameters are passed to the function.

"#” designates the beginning of comment.
gn g g

2.2.5 Application

n.n"

The application is used to apply a function to an object. For

example, CarrySaveCell:(1 0} will return {0 0).
2.2.6 Syntax Variation

Original FP defined by Backus uses prefix syntax notation. For
example, "and” function that operates on two inputs must be expressed ag
following:

and @ (1,2]

The prefix nofation makes functional programs hard to read. FHDL allows
both prefix and infix notations. Thus, the following two expressions have

exactly the same effect.

(1 and 2) == and @ [1,2]
2.3 Implementation of Hardware Algorithms in FHDL

The language described in the previous section is used to specify,
design and simulate hardware algorithms at the functional level. Once an
algorithm is verified functionally, the designer has to implement the
algorithm. The objective of this section is to specify the mapping from the

behavioral domain to structural domain according to the FHDL specification.

22

One of the motivations for using a functional language as a HDL is that the
transformation from the behavioral level to structural level is one-to-one.
Since, we are considering the implementation of digital systems many new
issues will surface. The designer may be interested to know about various
physical parameters of the implemented system such as propagation delay and
power dissipation. These physical parameters or system attributes solely
depend on the characteristics of functions. That is, one can execute FHDL
~functions and, as the objects are being transformed, the parameters or
attributes of the system can be updated. This directly impacts how the
functions behave in structural domain and how the information about the

system attributes is handled.

The functions described in section 2.2.2 can be divided into four
categories. First, there are the basic functions such as ”and”, "or”, and
"not”. Second category contains basic interconnectior functions such as
"select” and “distribute left”. Third category consists of predicates such as
"equal”, "greater than”, and conditional functional form. Fourth category
contains functions that are used to simplify description of algorithms.
Examples are "length” or "iota”. The first two classes of functions and
functional forms are very important because by performing symbolic
execution or interpretation. of the specification, a logic diagram or
computation graph is obtained. Logic diagram is a graph or diagram where
the nodes represent gates and interconnection between the gates are shown by
the arcs. Functions in the symbolic interpreter operate on symbols rather
~ than values (the operation of functions on system attribufes is considered

later}. The implementation of FHDL expressions cannot be done directly from

the specification, because the structure organization of objects cannot be
extracted from the specification. For example, the description of a
multiplexer can be used for any size multiplexer. That is, a 18 bit or 32 bit
multiplexer has the same description, and for the actual implementation the

object must be known.

The third class functions {predicates) usually have dual purpose. That
is, they are used sometimes as simple language construct to manage the flow
of control and ease the description of algorithms, while in other instances a
predicate is mapped d.irectly to low level implementation. For example, the
conditional functional form used in description of carry save multiplier cell in
section 2.2.4 is used to control the type of structure is generated by the
function. Considering different uses of conditional constructs the following
strategy is adopted in the symbolic interpreter. Conditional constructs and
predicates are used to control the flow of data and ease of algorithm
description solely. Since the existence of conditional constructs in the
progrﬁmming languages is unnecessary [Fran79], the system specifications that
uses conditional constructs to be mapped to low level implementation can use

other functions to achieve the same goal.

The fourth class of functions are not mapped to lower level, and there

exists no simple mapping either.

The above classification is basically used to perform symbolic
interpretation or execution of FHDL. Also, the impact of design methodology
proposed for handling predicates becomes obvious in the implementation

phase. Next few sections describe the transformation of FHDL specification

24

from behavioral domain to structural domain.

2.3.1 Objects

Objects in behavioral domain carry values only and functions operate
on values to generate new values. In the symbolic domain, objects carry both
symbols and values. In this domain, functions operate on symbols to generate
new symbols, except in the case of predicates. Since predicates are used to
control the flow of data, they operate on values rather than symbols. Thus,
each atom must contain a symbol and a value. In order to provide useful
design statistics, various attributes is needed to be passed along with each
object and each function must update these attributes depending on the

characteristic of the function [Erce83}.
In general, an atom in symbolic environment has the following form:
(symbol-or-name value optional-list-of-attribute-values)

Currently, the symbolic interpreter supports three types of attributes: the
propagation delay(D}, the number of logic levels{(L), and the number of
pipeline stages(S). For example, atom "(MUXINL 1 25 3 0)” can be
interpreted as a wire or connection called "MUXIN1” with value of 1. The
delay of the corresponding signals is 25 units of time and the signal has
passed through 3 levels of logic. Signal "MUXIN1” has been through 0
stage(s) of the pipe(Chapter 3 provides the details). It is important to note
that a predicate like "atom” returns true token "(DUMMY 1 0 0 0)” when

applied to an object like "(MUXINI1 1 10 2 0)”, since this object is not an

atom in the behavioral domain.

25

2.3.2 Functions

Functions in the behavioral domain operate on values. In structural
domain, they must operate on symbols, values and attributes. For example,
"or” function applied to "((IN1 1 5 1 0}(IN2 0 9 2 0))” will result an atom
"(WIRE.01 1 18 3 0)". Following the previous discussion on the different
categories of functions, we now consider three classes of functions. First, the
functions that perform basic boolean operations are as follows: "and”, “or”,
"xor”, "nand”, ”"nor”, and ”not(” }”. These are mapped directly to the
corresponding logic gate. Second, the class of functions that are for ease of
describing algorithms consist of: "iota”, ”length”, "atom”, "null”, *4”, 6 ”-",
"%” 7/ and predicates. The rest of the functions defined in section 2.2.2

belong to the category of interconnection {unctions.

The boolean functions operate on time delay and logic level attributes.
The pipe-stage attribute is updated by latches and this operation in
illustrated in Chapter 3. The following algorithm is used for updating time

delay and logic level attributes.

Dout = max{D1,D2) + Df (2.1)

Lout = max(L1,L2) + 1 (2.2)
Where "D” stands for time delay and "L” for logic level. The equations are
interpreted in the worst-case sense: the time delay attribute of the output -
signal is. equal to maximum time delay of inputs plus the time delay of the
function or gate. The logic level attribute of the output signal is equal to
maximum logie level attributes of inputs plus one. Note, for inverter gate of

"not{”)” function the attribute of input is used instead of finding the

26

maximum, since it has only one input. The following is the output of the
symbolic interpreter for a half-adder which illustrates how the boolean

functions operate on attributes.

> 1 HALFADDER.841
> 1 ((A01000)(B11000))

> 2 AND.842

> 2(A01000)BL100O)

> 2 (WIRE.843 19 1 0)

> 2 XOR.844

> 2(A01000)BL1000)

> 2 (WIRE.845 0 16 1 0)

> 1 ((WIRE.843 1 9 1 0) (WIRE.845 0 16 1 0))

The number following ">” is the level of nested function calls. Each
function occupies three lines. The first line has the function name with a
unique number appended at the end, to make the particular function unique
in the whole output. The second line list the inputs, and the third line has
the list of outputs. The function ”halfadder.841” has a worst case
propagation delay of 16 units of time and has one logic level. The gate delay
of "and” primitive is 9 units of time and the gate delay of "xor” gate is 16

units of delay (Appendix A has the details of modifying these values).

2.3.3 Functional Forms

The following is the implementation of functional forms of FHDL in
structural domain. The structure shown for each functional form is generated

by the symbolic interpreter and a graphic package using the output of the

27

interpreter to provide a visual result, (Appendix A provides further details).
The label in each box is the unique label generated by the interpreter for each
function.

a) Composition

f@g:x

'11 112 _
fég:x
[|
b) Construction
- [f1,£2,£3,f4] : x
X ——————————
Fioaa [fl X
75,33 . f2:x
F3.24. JI_;__—f3:x
1,35 | fa:x

28

c¢) Constant
%c¢:x === (name x 0 0 0)
d) Right Insert

'f :x where x = (x1 x2 x3 x4 x5)

F.8%

e
gl

—!f:x

R

‘e} Left Insert

\l:x where x = {x1 x2 x3 x4 x5)

x1

x3
x4
x5

;

F.74 | F.76]

N

. \Ff:x

-

x
L

29

f) Tree Insert

If : x where x = (x1 x2 x3 x4 x5 x6 x7 x8)

>

i
ﬁ

2.3.3.1 Apply to All Functional Forms

a) Space Apply to All

The behavior of “space apply to all” in structural domain is the same
as in the behavioral domain. As shown below, the "space apply to all”
provides simultaneous operation on space objects and instantaneously
generate the result. This functional form is exactly the same as "apply to all”
defined b.y Lahti [Laht81] and Backus [Back78], so it can be used to specify

algorithms in general.

30

&f : x where x = (x1 x2 x3 x4 x5}

x1
X2 e
X3
x4
X ey
51 f:xl
| EE————
m f:x2
L [}

L FET] fix3
SN

L Fer— fxd

C——

] F5B — fix5
Lo F.5%5 _

b) Time Apply to All

The ”time apply to all” functional form only operates on one element
of input (the symbolic interpreter uses the first element of input) because the
inputs are processed one-at-a-time in the structural domain. ”Time apply to
all” assumes that its input Is generated by a sequential systems or its output
is used by a sequential system. Thus in the actual implementation the input
is generated one at a time.

$f : x where x = {xI x2 x3 x4 x5)

x1 ey

.48 i
! L §f:x
! !

31

2.3.3.2 Sequential Functional Forms

Considering the previous introduction of sequential functioral form in
section 2.2.3.2, the following is the implementation of these in structurah
domain. finit”, "f”, "g” can be any function.

a) Sequence

(seq finit seqfunc { seqend) : x

Xl s

F.i% | I IAI -1@ | Output

b) Mealy

(mealy finit meout g menext { meend) : x

x1

1o H l?‘t??’r——x l'gﬂ_.
iF 132 i STATE. 134 ; 135 ! _output

[

1
L

32

¢) Moore

(moore finit moout g monext f moend) : x

x1

t |
L

The use of the above functional forms and apply to all functional forms is

illustrated by mean of some examples in the next section.
2.4 Examples

Many combinational systems as well as interconnection networks have
been described by Lahti using FP [Laht81]. A number of examples of

hardware systems and algorithms are provided in this part. The purpose of

these examples is four fold. First, these examples introduce the variation of ..

FHDL from the previous work by Lahti [Laht81] or Baden [Bade83a]. Second,
a number of examples demonstrate the new enhancements of FHDL. That is,
the use of sequential constructs to describe sequential systems, illustrating the

implementation of an algorithm in both the time and space domains. Third,

33

these examples can illustrate the capabilities of the symbolic interpreter for
generating gate level diagram and computing system attributes. Forth, a
number of these examples are optimized for higher performance in chapter 3

using a synthesis tool.

In the following sections: First, we use an mn-input conditional-sum
adder [Skla60, Hwan79] as a typical combinational system. A one-bit serial
adder is considered next; Four different specifications associated with this
function is provided. This example illustrates the use of various sequential
constructs. In sequential domain, the implementation of a multiple operand
addition using carry-save adder and carry propagation adder complex is also
studied. Note, in all the following examples, the pipe-stage attribute is not
used because the system is not pipelined. Sections 3.4 and 3.5 describe the

use of pipe-stage attribute.

34

2.4.1 Conditional Sum Adder

FHDL description of a conditional-sum adder [Skla60] is given below.

defun hadder() # (Ci+1 Sj)
[and,xor]

enddef # (Ai Bi)

defun chadder () # (Ci+1{1] Si[1] Ci+1[0] Si[0])
conditional half-adder
[for,” @xor],[and,xor]}

enddef # (Al Bi)

defun mux2tolv () # ((X0) ... (Xn)) if cond
((Y0) ... (Yn}) if not cond
&or @ trans @ &&and @ &distl @
trans @ [[id,” |@1,2]
enddef # {cond {(X0 ... Xn)(YO ... Yn))

defun picknext {) # (X0 ... Xn) if cond
(Y0 ... Yn) if not cond
concat @mux2tolv@[1@2,1],t1@2]
enddef # ((X0...Xn)(Y0...Yn){cond dummy))

defun formboth () # n/2 partial result feed to last
MUX
if (length = %1)

then chadder @ 1

35

else &picknext @
[[1,1@2],[1,2@2]|@
&formboth@split
fi
enddef # ((An Bn)(An-1 Bn-1}...(An/2 Bn/2))

defun csumadd () # (Cout Sn Sn-1 ... S0)
if (length = %1)
then hadder @ 1
else picknext @ # last MUX in the adder
[formboth@1,csumadd@2] @
split
fi
enddef #({An Bn}{An-1 Bn-1)...(A0 B0))

defun condsumadder () # (Cout Sn Sn-1 ... S0)
csumadd @ trans

enddef # ((An An-1 ... AO){(Bn Bn-1 ... B0))

The above description is generic in 2 sense that it describes any size
conditional-sum adder. This example demonstrates the basic style of
specifying hardware algorithms in FHDL. Figure 2.5 shows logic schematic of
a 16 bit adder in order to make the reader familiar with the algorithm.
Figure 2.6 illustrates logic schematic generated by the symbolic interpreter
using the graphic interface software for a four-bit conditional sum adder
(Appendix A provides further details). Each box in the graph is associated,

with a logic gate; "X” stands for "xor” gate, "O” stands for "OR” gate, "A”

36

l |
[4FA J—o[wn I-lrntFA 0[4FA I-l[un }-o[un

%12-15 $12-15 *12-15 Y1215 %9-11 Yo-11 %11 Yo a7 Yap a7 ’ML "‘-)-I ’q-IJ ‘qI

44 474 r.‘ 4 E r"
-\h
l § 2-to-1 MUX L 5 2-to-1 MUX I § 2-to-] MUX
T 4 s “Ta A4
r § 2-to-1 MUX J_
I’a
“aut *g-15 ‘ $4.7 30.3

Figure 2.5 A 16-bit Conditional-Sum Adder
denotes ”and” gate, and "N” stands for inverter. The result of a sample

simulation of the four-bit adder is given below.
->> condsumadder:{((1 00 1)(0 1 1 0)) -
(01111)

The following is a part of the symbolic interpreter output for four-bit

conditional sum adder.

> 1 CONDSUMADDER. 228
> 1({(IN111000)(INI21000)(IN131000) (IN14 100 0))

:

' Figure 2.6 Graph of a 4-bit Conditional-Sum Adder

((IN21 1 0 0 0) (IN22 10 0 0) (IN23 1 0 0 0) (IN24 1 0 0 0)))
> 1 ((WIRE.341 1 53 7 0) (WIRE.343 1 56 7 0) (WIRE.345 1 53 7 0)
(WIRE.325 1 38 4 0) (WIRE.311 0 16 1 0))

The four-bit conditional-sum adder has the worst case propagation delay of 53
units of time and seven gate levels. Figure 2.7 shows a 6 bit conditional sum
adder that is generated for the same specification. The result of functional

and symbolic simulation of six-bit conditional sum adder is given below.
->> condsumadder:((1 1111111111 1))

(1111110)

> 1 CONDSUMADDER.348

> 1{((IN111000)(IN121000) (IN131000) (IN1410090)
(IN151000) (IN16 10 0 0)) (IN21 1 00 0) (IN221 00 0)

(IN23 1 0 00) (IN24 100 0) (IN25 1 0 0 0) (IN26 1 0 0 0)))

> 1 (WIRE.571 1 71 9 0) (WIRE.573 1 74 9 0) (WIRE.575 1 71 9 0)
(WIRE.577 1 71 8 0) (WIRE.548 1 56 6 0) (WIRE.551 1 38 4 0)
(WIRE.531 0 16 1 0)}

The propagation delay of 6 input conditional-sum adder is 71 units of time
with nine gate levels. In the next section an example of a sequential and

combinational system is studied.

39

55
54

C out
53

s2

sl

Figure 2.7 Graph of a 6-bit Conditional Sum Adder

40

2.4.2 One-Bit Sequential Adder

Consider first the design of a carry-propagation adder (CPA) as an

iterative network. Figure 2.8 shows the block diagram of an n-bit CPA.

n
"

Sna S Sg
Figure 2.8 n-bit CPA
CPA ‘can be implemented in many different ways. The iterative (space
domain) implementation that corresponds to the block diagram of Figure 2.8

1s as follows:

Ripple Carry Adder or Carry Propagate Adder (CPA)

defun cpa0{) # ((SO ... Sn-1) Cn-1)
(&2,1@last] @ # ((SO ... Sn-1) Cn-1)
tl @ # ((C0 S0)...(Cp-1 Sn-1))

\ (apndr @ # ((C-1 0)(CO S0)...(Cn-1 Sn-1))
[1,fulladder @

apndl @ {10

last@
1,2}]]
) @
apnd] @ # ({(C-1 0))(A0 BO)...{An-1 Bn-1))

41

([[1, %01}, ¢}
enddef # (C-1 {A0 B0)...(An-1 Bn-1))

The full-adder has the following specification.

defun fulladder () # OUTPUT (C1 S1)
[(1 or 2),3] @
apndl @ [1,balfadder@(2,3]] @
apndr @ |halfadder@(2,3],1]

enddef # INPUT {C0 Al Bl1)

defun halfadder () # OUTPUT (Ci Si)
[and,xor]

enddef # INPUT (Ai Bi)

Figure 2.9 shows the logic diagram generated from the output of the symbolic

interpreter.
C in
APN

B
Alg\—-t_[

—

+ 11
mm¨mmc out
= il
)

r| ' i'—'SS

Sl 52

Figure 2.9 CPA Implementation Using Iterative Networks
In the structural domain, the above specification of CPA is implemented using
an iterative network, since it does not use any sequential constructs. The

result of functional and symbolic execution of "¢pa0” specification is given

beiow.
->> ¢pa0:{0 (1 1)(1 1)(1 1)(1 1)(t 1)(1 1))

(011111)1)

> 1 CPA0.660
> 1((CIN0000)((A0O1000)(BL1000))
(AL1000)(B11000))((A21000)(B21000))
((A31000)(B31000))

> 1 (((WIRE.672 0 32 2 0) (WIRE.685 1 50 4 0)
(WIRE.698 1 68 6 0) (WIRE.711 1 86 8 0)} (WIRE.713 1 88 9 0))

The propagation delay of "cpa0” is 88 units of time with nine gate levels.

Now, let us use "sequence” functional form to implement the same

function. The specification is as follows:

1 bit at a time adder

Sequence Functional Form

defun seqadder () # OUTPUT ({C0 S0)...(Cn-1 Sn-1))
seq [%60,%0] # C-1=0
seqfunc fulladder @
apnd] @ [1@1,2]
seqend

enddef # INPUT ((A0 B0)...(An-1 Bo-1))

defun cpal () # CUTPUT ((S0 S1 ... Sn-1) Cn-1)

43

[$2, # select Sums
1Qlast] @ # select Cn-1

seqadder
enddef # INPUT ((A0 BO)...(An-1 Ban-1))

Notice, the use of "time apply to all” in function "cpal” for selecting the sum
bits generated by the sequential adder. The counter part of this is the use of

"space apply to all” in function "cpa0”. Figure 2.10 is the logic diagram of

function "cpal”.

B'i"'_'-'f !

i

]

bl

11

[

[

1%

!I lr I!fA!)D

1 1. =y s 5 -Rha RE-YA-1

: h—? I H 1 S1
1 | {
—y L Ci

L —— |

TL-..[_

Figure 2.10 CPA Implementation Using Sequence Construct

The following is the result of functional and symbolic simulation of function

“cpal”.

->> cpal:{(1 1)(1 1)1 1)(1 1){1 1)(1 1))

44

(011111)1)

> 1 CPAL748

> 1({(A0 100 0) (B11000)) ((Al 1100 0) (Bl 1 10 0 0))

((A2 120 0 0) (B2 1 20 0 0)) ((A3 1 30 0 0) (B3 1 30 0 0)))

> 2 SEQADDER.749

> 2{((A01000)(B11000))((A111000)(B111000))

((A2 120 0 0) (B2 1 20 G 0)) ((A3 1 30 0 0) (B3 1 30 0 0)))

> 3 FULLADDER.752

> 3 ((CONST.750 0 0 0 0) (A0 100 0) (B1 10 00))

> 3 ((WIRE.764 1 34 3 0) (WIRE.762 0 32 2 0)}

> 3 STATE.765
3 (WIRE.764 1 34 3 0) (WIRE.762 0 32 2 0)) -
3 ((CONST.750 0 0 0 0) (CONST.751 0 0 0 0))

> 2 ((CONST.750 0 0 0 0) (CONST.751 0 0 0 0))

> 1 ((CONST.750 6 0 0 0) (CONST.751 0 0 0 0))

The worst case propagation delay of the full adder is 34 units of time. The
clock period.of the above adder is 34 units of time plus whatever time is

required for the register or latch (used as state register) to stabilize itself.

The following FHDL program performs the same function using a

Moore finite state machine.

1 bit at a time adder using

Moore Functional Form

45

defun mooreadder () # OUTPUT ((C0 S0)...(Cn-1 Sn-1})
moore [%0,%0] # C-1 =0
moout id # pass Carry and Sum

monext fulladder @

apnd] @
(1@1,2]
moend
enddef # ((A0 B0)(Al Bl)...(An-1 Bo-1))
defun cpa2 () # OUTPUT ((S0 S1 ... Sp-1} Cp-1)
[$2, # select Sums

1Qlast] @ # select Cn-1
mooreadder

enddef 4 INPUT ((A0 BO)...(An-1 Bn-1))

*Time apply to all” is used for interfac.ing the output of a sequential system
to a combinational one ("select” in function "cpa2”). The logic diagram of
function "cpa2” is shown in Figure 2.11. A sample execution of function

"cpa2” in the behavioral and structural domain is shown below.
->> epa2:i((1 1)1 1){1 1){1 1)(1 1)(1 1))

(01111)1)

> 1 CPA2.792
> 1(({A0 1000)(BL100O0))((Al 1100 0)(B111000))

46

Bi —
i

LLADDER. 796 STATE,S $i

- j o

Figure 2.11 CPA Implementation Using Moore Construct
((A2 1200 0) (B2 120 0 0)) ((A3 1 30 0 0) (B3 1 30 0 0)))
> 2 MOOREADDER.793 '
> 2 (((A01000)(B11000))((Al 11000)(B11 100 0))
(A2 1200 0) (B2 1200 0)) (A3 1 300 0) (B3 1 30 0 0)))
> 3 FULLADDER.796
> 3 ((CONST.794 0 0 0 0) (A0 1 0 0 0) (B1 10 0 0))
> 3 ((WIRE.808 1 34 3 0) (WIRE.806 0 32 2 0))
>3 STATE.SOQ
> 3 ((WIRE.808 1 34 3 0) (WIRE.806 0 32 2 0))
> 3 §(CONST.794 0 0 0 0) (CONST.795 0 0 0 0))
> 2 ((CONST.794 0 0 0 0) (CONST.795 0 0 0 0))
> 1 ((CONST.794 0 0 0 0) (CONST.795 0 0 0 0))

47

The system throughput (clock rate) as for function "cpal” is achieved.

The following program describes the same function with use of the

mealy functional form.

1 bit at a time adder using

Mealy Functional Form

defun mealyadder () # OUTPUT ((Co S0)...(Cn-1 Sn-1))
mealy [%0,%0] # C-1 =0
meout 1 # pass Carry and Sum

menext fulladder @

apndl @
[1@1,2]
meend
enddef # ((A0 BO)(AL B1) ... (An-1 Bo-1))
defun cpad () # OUTPUT {(S0 S1 ... Sn-1) Cn-1)
(82, # select Sums

1@last] @ # select Cn-1
mealyadder

enddef # INPUT ((A0 B0)...(An-1 Bn-1))

Figure 2.12 is the logic diagram of function "epa3”. The functional and

symbolic execution of function "cpa3” is given below.
->> cpad:((1 1)(1 1)1 1)(1 1)(1 1)(1 1))

(01111)1)

48

A ———

Bi —

| _FTOLLADDER. B4 I 3 Aﬂ'..ml Si -
|

|
i
|———‘ Ci
1
]

Figure 2.12 CPA Implementation Using Mealy Construct

> 1 CPA3.836

> 1(((A01000)(B11000)){(Al 11000)(B111000))
((A2 120 0 0) {B2 1 20 0 0)} ((A3 1 30 0 0} (B3 1 300 0}))

> 2 MEALYADDER.837

> 2 (({A01000)(B11000))((Al11000)(B11 100 0))
(A2 1200 0) (B2 1200 0)) ((A3 1 30 00) (B3 1300 0)))
> 3 FULLADDER.840

> 3 ((CONST.838 00 0 0) (A0 10 00) (B11000))

> 3 ((WIRE.852 1 34 3 0) (WIRE.850 0 32 2 0))

> 3 STATE.853

> 3 ((WIRE.852 1 34 3 0) (WIRE.850 0 32 2 0))

498

> 3 ((CONST.838 0 0 0 0) (CONST.839 0 0 0 0))
> 2 ((CONST.838 0 0 0 0) (CONST.839 0 0 0 0))
> 1 ((CONST.838 0 0 0 0) (CONST.839 0 0 0 0))

50

2.4.3 Multi-Operand Carry Save Adder

Multi-operand carry-save adder uses a carry-save logic with feedback in
order to perform additions. The final partial-sum and the carries are passed
to a carry-propagation adder, described before, to generate the final result.

The following is FHDL deseription of the muiti-operand carry-save adder.

defun fulladder () # (Ci+1 Si)
 [{(1or2),3 @
apndl @ [1,halfadder@{2,3]] @
apndr @ [halfadder@(1,2],3]
enddef # (Ai Bi Ci)

defun halfadder () # (Ci+1 Si)

[and,xor]
enddef # (Al Bi)
defun initesa (} # initial value of state
[(& [960,%0]),%0] @ 1
enddef '
defun addall () # ((X0 Soti-1 0)...(Xr-1 Sn-1ti-1 Ro-1ti-1))
&apndr @ trans @ [1@tIr@1,2)
enddef # ({(Soti-1 0)...(Sn-1ti-1 Rn-1ti-1) Cnti-1) e
(X0 ... Xn-1))

defun rearrangeoutput ()
((50 0)(S1 0)(S2 C1)...(Sn-1 Cn-2))
pair @ apndl @ [%0,id] @ concat

51

@ & reverse

enddef 4 {(0 SO)(C1 S1)...(Ca-1 Su-1))

defun ¢sa () # ({S0ti 0)...(Sn-1ti Rn-1ti) Cnti)
[tlr,1@]last] @ |
rearrangeoutput @
&fulladder
@ addall
enddef #7(((SOti-1 0)...(Sn-1ti-1 Rn-1ti-1) Cnti-1)
(X0..Xo1)

defun multiopesa () # ({(SOt1 0)...(Sn-1t1 Rn-1t1))Cntl)
..
((SOtm 0)...(Sn-1tm Rn-1tm)}Cntm))

seq initcsa segfunc csa seqend -

enddef # ((AOt1..An-1t1)...(AOtm...An-1tm})

defun multiopadder () # ((Cntl Pn-1t1..POt1)...
(Cntm Pn-1tm...POtm))
$(apndr @ [cpa@1,2])
@ $([apndl @ {[[960,%0}],1},2])
@ multiopcsa

enddef # ((AOt1...An-lt1);..(A0tm'...An-ltm))

Figure 2.13 illustrates a high level logic schematic of the adder [Hwan79).
The important aspect of this example is the use of the sequential element in
"csa” function and the use of “"time apply to all” to interface between

sequential part and combinational one. "Time apply to all” functional

52

3 8Y 5Y Y &Y
A A,V A’V A'V A Y

. V T' Y V

‘s
FA FA | FA FA

] _1 1
CNI
CSA|{ FF FF FF

YR R R, v

S- Sy 5 5 1 5

1 Y 1 r Y
Carry Propagate Adder (CPA) -o-—c':
O A .3 ’ bk

Figure 2.13 A Multi-operand Carry-save Adder
generates multiple copies of carry-propagation adder in the behavioral
domain, in order to match the time object generated by the sequential
element "multiopesa”. In structural domain only single carry-propagation
adder is generated by the symbolic interpreter, because the outputs of

"multiopcsa” are folded in time.

Figure 2.14, 2.15, and 2.16 show the logic diagram of functions
"multiopadder”, "multiopcsa”, and "esa” respectively. The following is some

sample functional simulation of "multiopadder” and "multiopesa”.
->> multiopadder:({1 11 111)}(1 1111 1))

53

P §
—P1
— P3

J_H

|
) L —C out

oo = el

Figure 2.14 Logtc Diagram of Multi-Operand-Adder
((1111110){011111 1))
multiopcesa:{((00 0 0)(0 00 1)(0110))

(({(0 0) (0 0) (00} (0 0}) 0)
(((00) (0 0) (0 0) (01))0) (((00) (01)(01) (01))0))

multiopadder:{{0 0 0 0)(0 0 0 1)(0 1 1 0))

((00000)(00010)(01110))

multiopadder:{{0 0 0 0)(0 0 0 1}(0 1 1 0)(1 0 0 0))

((00000)(00010)(01110)(21110)

24

-

L

~CSA, 419 ——————{3TaTE: 478 5P

51
Rl
52

53

€ out

e

N .
A3¥-—..._.ii
Y e e———
Sﬂ——-——--
S =] ,
R3 /—7/
ok l DAk 28— L ATDER, 221} RERRRANGEDUTP
il
| 5 - ——FUCCADDER. 434 2_“
]
| — =
1 B e
VL)) prvy S | R ——
1 —1l ; —
f [—
_—]
-! FULLADDER. 469
e

Figure 2.16 Logic Diagram of a CSA

95

T, 473 SP

51
R1
52

33
R3
¢ out

->> multiopadder:({(11 1 1){1 11 1}{000 1))
(11110)(01111)(01101))

The simulation of "multiopadder” in the structural domain is given below.

> 1 MULTIOPADDER.408
> 1 ({(IN11 1 000) (IN121000) (IN13 10 0 0) (IN14 1 0 0 0))
((IN21 1 00 0) (IN22 10 0 0) (IN23 1 0 0 0) (IN24 1 0 0 0}))
> 2 MULTIOPCSA. 409
> 2 (((IN111000) {(IN121 000) (IN13 100 0) (IN14 1 00 0))
((IN21 1 00 0) (IN22 1 0 0 0) (IN23 1 0 0 0) (IN24 1 0 0 0)))
> 3 CSA.419
> 3 (((((CONST.410 0 0 0 0)(CONST.411 0 0 0 0)}((CONST.412 0 0 0 0)
(CONST.413 0 0 0 0)) ((CONST.414 0 0 0 0) (CONST.415 0 0 0 0))

((CONST.416 0 0 0 0) (CONST.417 0 0 0 0))) (CONST.418 0 0 0 0))
((IN11 1 00 0) (IN12 10 0 0) (IN13 10 0 0) (IN14 1 0 0 0)))
> 3 ({{((CONST.474 0 0 0 0)(WIRE.431 1 32 2 0)){((WIRE.433 0 34 3 0)
(WIRE.444 1 32 2 0)) ((WIRE.446 0 34 3 0) (WIRE.457 1 32 2 0))
((WIRE.459 0 34 3 0) (WIRE.470 1 32 2 0))) (WIRE.472 0 34 3 0))
> 3 STATE.475
> 3 (({(CONST.474 0 0 0 0) (WIRE.431 1 32 2 0))

((WIRE.433 0 34 3 0) (WIRE.444 1 32 2 0)) ((WIRE.446 0 34 3 0)
(WIRE.457 1 32 2 0)) (WIRE.459 0 34 3 0) (WIRE.470 1 32 2 0)))
(WIRE.472 0 34 3 0))
> 3 {(((CONST.410 0 0 0 0) (CONST.411 0 0 0 0))

((CONST.412 0 0 0 0) (CONST.413 000 0)) (CONST.414 0 0 0 0)

56

(CONST.415 0 0 0 0)) ((CONST.416 0 0 0 0) (CONST.417 0 0 0 0)))
(CONST.418 0 0 0 0))

> 2 ((((CONST.410 0 0 0 0)(CONST.411 0 0 0 0))((CONST.412 0 0 0 0)
(CONST.413 0 0 0 0)} {(CONST.414 0 0 0 0) (CONST.415 0 0 0 0))
((CONST.416 0 0 0 0) (CONST.417 0 0 0 0))) (CONST.418 0 0 0 0))

> 2 CPA.478

> 2 ((((CONST.476 0 0 0 0)(CONST.477 0 0 0 0)))((CONST.410 0 0 0 0)
(CONST.411 0 0 0 0)) ((CONST.412 0 0 0 0) (CONST.413 0 0 0 0))
((CONST.414 0 0 0 0) (CONST.415 0 0 0 0)) ((CONST.416 0 0 0 0)
(CONST.417 0 0 0 0)))

> 2 ((WIRE.490 0 32 2 0) (WIRE.504 0 50 4 0) (WIRE.518 0 68 6 0)
(WIRE.532 0 86 8 0))

> 1 ((WIRE.490 0 32 2 0} (WIRE.504 0 50 4 0) (WIRE.518 0 68 6 0)
(WIRE.532 0 86 8 0) (CONST.418 0 0 0 0))

The maximum clock rate of "multiopadder” is 34 units of time plus the time
delay of the register. The delay of "cpa” function is 86 units of time. Thus,

for adding 20 numbers about 20%34+86 (766) units of time is required.

57

CHAPTER 3
Design of Pipelined Systems using FHDL

3.1 Introduction

Various methods have been considered for improving the speed of a
computing system. First, the improvements in implementation technology
could easily decrease the switching speed of components and increase the level
of integration. Second, the exploitation of parallelism and utilization of many
computing resources concurrently may improve the system performance.
Third, the decomposttion of an algorithm into a fixed number of steps that
are to be executed in an overlapped manner for different inputs improves the
throughput. This method is called pipelining. Among the mentioned

approaches we consider pipelined systems.

Thel major advantage of pipelining over other parallel design techniques
is that frequently the same improvement in performance can be obtained for
less cost. This happens because an n-stage pipelined is obtained by
partitioning a nonpipelined system into n smaller subsystems and then
adding registers between the stages. Thus, the dominant additional cost of a
pipelined system is due to the added registers and their cost is usually much

smaller than the cost of the stages.

58

The objective here is to consider the specification and design of a class
of pipelined systems using FHDL. In our approach, a synthesis tool (an
enhanced version of the symbolic interpreter introduced in section 2.3) is used

to obtain a pipelined implementation of FHDL specification.

In the next section, the general concept of pipelining and associated
notation is introduced and the requirements for automatic design of pipelined
systems is specified. Then, FHDL advantages and disadvantages for
synthesizing a sys'tem into a pipelined one are considered. Next, the
approaches and criteria used by the synthesis tool is discussed. Finally, some
examples illustrate the result of the tool and the performance of synthesized

systems.
3.2 Pipelining of Digital Systems

Pipelining of a hardware algorithm is the process of dividing or

partitioning the algorithm into number of sub-functions or stages such that :

[Kogg81]

1. Evaluation of the basic function is equivalent to some sequential
evaluation of the subfunctions. =

2. The inputs for one subfunction come totally from outputs of
previous sub-functions in the evaluation sequence.

3. Other than the exchange of inputs and outputs, there are no
interrelationships between subfunctions.

4. The times to compute different subfunctions are approximately

59

equal.

Then each stage is separated from the previous one by a register or latch that

holds the intermediate results.

For certain type of algorithms {meeting the above requirements) the
use of pipelining can result in a significant increase in performance with only
modest increase in cost. For others a gain in performance may not be possible
or may only be realized at considerable cost because each evaluation of the
basic function or hardware algorithm is relatively dependent of the previous
one. This is the case in sequential or recurrence systems which reqilire
pipeline with feedback. Currently, we consider only the algorithms suitable

for pipelining without feedbacks.

Consider a basic static pipelined system (Figure 3.1), the throughput of,

the system is calculated using the following relation:

1
Throughput = ----mmeemeeeee- (3.1)
T+ W

Where, T is the delay of slowest stage in the pipe, and W is the delay
associated with the latch. Note, that the above relation is achieved only
when the pipe is completely filled [Jump78, Rama77]. The latch design, is
highly technology dependent, can utilize the idiosyncrasies of the target
technology to improve the throughput of the system drastically {Earl65}.
Also, the control scheme used and packaging can force a lower bound on the
value of T and impact the throughput [Cott65]. We did not consider cost as
a parameter, because we assumed the algorithm is suitable for pipelining and

only a modest cost of latches must be added to the system cost.

60

L L L
a a a
t Logic t Logic t
¢ < ¢
h h h
Clack
w

I

o 7 —

—pP =T+w¥—

T = time for logic to compute subfunction
W = time for latch to accept results
P = period of the clogk

Figure 3.1 A Basic Pipelined System

Our main concern is to partition the high-level language specification
into about equal delay stages. In depth analysis of pipelined systems and
associated problems is given by Kogge [Kogg8l], Ramamoorthy and Li

[Rama77], and Cotten [Cott65].

In summary, the basic synthesis step must be “able to partition the
specification into sub-parts of equal delay and define locations where latches

should be inserted. Also, relevant performance data must be collected for

evaluation of the result.

3.3 FHDL Support for Pipelining

Two requirements specified in the previous section for partitioning of
an algorithm to sub-functions are: (i) the inputs for one sub-function come
totally from outputs of previous sub-function in the evaluation sequence, (ii)
other than the exchange of inputs and outputs, there are no inter-

relationships between sub-functions. These two requirements basically lead to

61

detection of data dependency or parallelism associated with the algorithm.
Another requirement for pipelined systems is that the time to compute
different sub-functions should be approximately equal. This requires to
perform timing analysis on the FHDL specification. Although, timing ana.lysis‘
at the gate level (supported by FHDL) is highly technology dependent, but we

use a general timing model to perform this task.

In the following sections, the advantages of FHDL in detection of
parallelism, composition capabilities, and partitioning of algorithms (the one
specified in FHDL) are discussed and comparison is made with conventional
type HDLs. Finally, the disadvantages of FHDL for performing timing

analysis of FHDL specification are pointed out.
3.3.1 Detecting Parallelism and Dependencies

In FP one can easily obtain the precedence graph of the computation.
That is, the data dependencies are explicit. The symbolic interpreter,
introduced in section 2.3, exploits this property of FHDL and the precedence
graph of the computation can be obtained easily at a desired level. Also,
some constructs such as ”construction” functional form or “apply-to-all”
functional form provide an easy mean of expressing parallelism. To contrast
FP-based approach with a conventional one, let us consider the case of ISPS.
ISPS [Barbsl, BarbSd] provides the following construct to desecribe parallei

operation:

condition -->> action 1; action 2; ... ; action n
All the above "actions” are performed in parallel. ISPS behavioral description

62

is compiled and translated into an internal data flow representation called the
Value Trace. The data flow graph is a form of precedence graph of
computation. Then, the Value Trace is used by other synthesis tools to
perform various transformation on the design [Thom83]. In most cases,
obtaining the data flow graph of an imperative ‘language is a computationally
intensive task. Thus, FHDL provides a computationally more attractive

environment than imperative language based HDLs in detecting parallelism.
3.3.2 Composition Capability and Partitioning

The method of "divide and conquer” has been used extensively in order
to handle the complexity of today’s design problems [Sequ83]. FHDL provides
several features for decomposing and abstracting the design. First, the
generality of the combining forms in FP encourages hierarchical program
development. Second, the use of "composition” functional form provides an
easy mean of decomposition of a problem into logical subparts. Consider the
following two examples. The first description is written in a conventional

language, while the second one is in FP.
(1) sl;s2;s3; ... ;sn
(2) fn@ ...Qf3@(f2QIf1

The first construct implies a control sequence or dependency between the
statements. It is difficult to detect data dependency for decomposition in the
first construct due to access of global variables and operations on data
structures, Dependency detection becomes more complicated as the

programmer tries to minimize storage by re-using the same global variable

63

over and over again [Arvi80]. In other hand, the FP construct in the above
enforces the data dependency between the functions and actually reveal the

following structure:

i

f1

'
_ : +
fn
Y

If ”f3” needs some of results generated by ”f1”, then "f2” has to pass those
explicitly by use of functions such as "id”, or “select”, otherwise 3" has

access to "f2” results only.

FP composition functional form provides a mechanism for logical
decomposition of a program. The above structure revealed by FP closely
resembles a pipelined system. Note that for actual implementation, number
of functions must be combined together into a single stage in order to meet
the partitioning criteria. The synthesis tool implemented in this work uses

the above property of composition functional form for partitioning of systems.
3.3.3 Purely Hierarchical Approach

When a function is used in the behavioral domain to specify an

operation the concern is the transformation performed on objects. A single

64

function that is used to specify a single operation in two different places may
need to have two different interpretations at the lower level of abstraction (i.e.
structural domain). Let us elaborate on this. Consider an ”and” function
that performs logical "and” operation on a pair of inputs. The ”and”
function may be used at one point to drive three other similar gates (fanout of
three) while in another place and” is used to drive only one more gate.
These two ”and” functions, at the lower level of abstraction, must be
implemented differently and one cannot simply use the same mapping (from
one level of abstraction to lower one) for both instances. In case of generating
layout or artwork, one cannot use the same cell for both "and” gates. The
use of purely hierarchical appfoach, mapping of high-level primitives to low
level constructs one-to-one, leads to a non-optimal design [vanC79). ‘Van
Cleemput studied the problem associated with the use of purely hierarchical
approach in the layout domain, in the gate level, a function (i.e. "and”) with
different fanout has different timing behavior and could result to a faulty

implementation if gate fanout is not considered,

The timing analysis of FHDL specification could suffer from the same
problem. There exists two solutions: First, the introduction of a set of
primitives that perform the same function but have different interpretation at
the lower level. Elias and Wetze] [Elia83] used this technique. Second, the
primitives at the lower level of abstraction are identified with attributes as
introduced in section 2.3.4. The problem with the first solution is that the
designer in the behavioral domain must consider various aspects of
implementation rather than focusing on design of a functionally correct

system. The second solution is used, because it conforms better with

65

hierarchical program design encouraged by FP and the generality of the
combining forms in functional languages. The disadvantages of this method

are illustrated in the next section.

With the understanding of advantages and disadvantages of FHDL to
meet the partitioning requirements of pipelined systems, a synthesis
tool{symbolic interpreter) is introduced next. This tool is used to partition a
system into stages. The interpreter also provides some statistics in order to

evaluate the throughput of the system.
3.4 Partitioning of Digital Systems Using FHDL

A synthesis method has been integrated into the symbolic interpreter
described in section 2.3 to partition the FHDL specification into stages. This
section describes the algorithms used by this method to perform timing
analysis and decomposition of the specification. In the next section, the

capabilities of the interpreter are illustrated by several examples.
3.4.1 Timing Analysis

The timing analysis is performed through the use of attributes. The
two attributes introduced in section 2.3.1 (time delay and number of logic
level) are used. During the symbolic interpretation, each logic gate operates
on these attributes. ‘The following is a part of output generated by the

symbolie interpi'eter.

> 1 AND.442
> 1 (WIRE.421 1 6 1 0)(WIRE.407 1 15 2 0)

> 1 (WIRE.443 1 24 3 0)

66

The ”and” gate "AND.442” has two inputs called "WIRE.421” and
"WIRE.407” and both are at logic level "17. "WIRE.421” so far had the
delay of 6 unit of time and passed through one stage of delay, while
"WIRE.407” passed through two levels of gate and has delay of 15 unit of
time. The output of "AND.442” is a signal called "WIRE .443” with logic
value of ”1”, and time delay of twenty four, because the worst case delay of
"and” gate is 9 unit of time (this parameter is set by the user and depends
on the technology). The time delay of the output signal is calculated by
adding the delay associated with the gate to the maximum delay of the
inputs. For "WIRE.443” the number of logic levels is three because one of
the inputs ("WIRE.407") has been generated by two levels of logic and
"AND.442” is the third level. The values used for worst case time delay of
gates are based on tau-model for NMOS technology described in detail by
Mead and Conway [Mead®80], and Hon and Sequin [Hon80|. These values can
be defined by the user (see Appendix A for details).

The major disadvantage of using attributes for timing analysis is that
in some technologies the fan-out of a gate affects significantly the time delay
of the gate and during the interpretation of a gate the information about the
fan-out is not known. A two-step interpretation which uses the output of
interpreter in the second step is possible and can use more complex timing

modei. This case is not considered in this thesis.
3.4.2 Partitioning Criteria

Now, with some understanding of the timing analysis of FHDL

specification, we can partition a system into equally timed stages. The use of

67

”composition” functional form for decomposing a functional program was
introduced in section 3.3.2. The symbolic interpreter uses the following
method to partition the FHDL specification. During the interpretation, when
a "composition” functional form is encountered, the maximum value of time
delay and number of logic level of all the atoms that are passed to the second
function is calculated. If either of these values exceed the user specified value
. for the maximum time delay or number of logic level per stage then a latch is
required. In this case, a register or latch is generated and all attributes of all
those atoms except pipe-stage are set to zero. The pipe-stage attribute is
incremented by one since this is the start of a new stage. Also, when the
boolean functions operate on attributes they check the pipe-stage attribute of
all inputs. If they do not match, the signals are buffered, so that all inputs

have the same pipe-stage attributes,

The above method suffers from one problem. Consider the following
FHDL construct used to generate odd parity.
* defun oddparity ()
| xor
enddef

The implementation is shown below.

Parity

68

Since the above specification generates a large system without the use of
"composition” functional form, the partitioning algorithm is unable to
identify stages in the middle of the structure. This problem can be overcome
with the use of the following equivalent specification.
defun oddparity ()
| (xor @ id)
enddef

3.5 Pipelining Example

The conditional sum adder (CSA) example, introduced in section 2.4.1,
is now used to demonstrate the pipelining capabilities of the symbolic
interpreter. Figure 3.2 shows a six-bit pipelined CSA. The pipelining
{partitioning) requirement is that each stage of the pipe should have no more
than four logic levels. The statistics gathered by the interpreter are as
follows: |

Register Time Delay Logic Levels Stage

1 38 4 1
2 38 4 1
3 9 1 1
4 9 1 1
5 9 1 1
6 13 2 1
7 13 2 1
8 13 2 1
9 9 1 1
10 9 1 1 -
11 9 1 1
12 13 2 1
13 13 2 1
14 13 2 1
15 38 4 1
16 38 4 1
17 9 1 1
18 9 1 1
19 9 1 1
20 13 2 1

69

k1]
s

|
=13

Figure 3.2 6 Bit Pipelined CSA -- Version 1

21 13 2 1
22 13 2 1
23 20 2 1
24 16 1 1
25 31 4 2

As shown in Figure 3.2, there are 25 registers and three stages in the pipe.
"L”, ”A”, 0", X7, and "N” stand for "latch” or register, "and” gate, "or”
gate, "xor” gate, and inverter, respectively. Registers 1 through 24 separate
stages 1 and 2. Register 25 separates stage 2 and 3. The time delay and the
number of logic levels shown above are the values of the worst case timi
delays and number of logic levels. The latches (registers) are numbered from
upper"left corner of the Figure in column major order. The throughput of the
pipe is 1/(38+11) or 1/49 (assuming that the time delay of a latch in NMOS
technology is 11 units). That is, every 49 units of time a result is produced by

the pipe.

Figure 3.3 shows another pipelined six-bit CSA. Each stage has time
delay of about 20 time units. The data collected by; the interpreter is as
follows:

Register Time Delay Logic Levels Stage

1 20 2 1
2 22 3 2
3 22 3 2
4 20 2 3
5 0 0 2
6 0 0 2
7 0 0 2
8 4 1 2
9 4 1 2
10 4 1 2
11 0 0 2
12 0 0 2
13 0 0 2
14 4 1 2
15 4 1 2
16 4 1 2

20 2 1

71

18 22 3 2
19 22 3 2
20 g 1 1
21 9 1 1
22 9 1 1
23 13 2 1
24 13 2 1
25 13 2 1
26 22 3 3
27 0 0 3
28 0 0 3
29 0 0 3
30 0 0 3
31 0 0 3
32 0 0 3

The throughput is 1/(22411) which is 1/33 with four stages in the pipe.
Registers 1, 17, and 20 through 25 separate stage 1 and 2. Registers 4 and 26
through 32 separate stage 3 and 4. Stage 2 and 3 are separated by the

remaining of registers.

Figure 3.4 shows the same CSA, but the partitioning criteria requires

that each stage has about 30 time units of delay. The following statistics are

gathered:
Register Time Delay Logic Levels Stage

1 38 4

2 38 4 1
3 9 1 1
4 9 1 1
2 9 1)|
6 13 2 1
7 13 2 1
8 13 2 1
g 9 1 1
10 9 1 1
11 9 1 1
12 13 2 1
13 13 2 1
14 13 2 1
15 38 4 1
16 38 4 1
17 9 1 1
18 9 1 1
19 9 1 1

72

13

L
tH

Figure 3.3 6 Bit Pipelined CSA -- Version 2

20 13 2 1
21 13 2 1
22 13 2 1
23 20 2 1
24 16 1 1
25 31 4 2

This partitioning criteria resulted in the same system as the one shown in .

Figure 3.2.

The resuits of the symbolic interpreter illustrated in this part provides
at least a first order optimization in throughput of the system. As
demonstrated in the examples, the resulted throughput is improved by a

factor of two or three.

74

€ and
L]
]

TIIIITTIIRST

Figure 3.4 6 Bit Pipelined CSA -- Version 3

75

CHAPTER 4

Conclusion and Further Research

A functional HDL (FHDL) based on the Backus's FP was introduced
extending the previous work in this field which used FP to describe
combinational systems only. FHDL supports the specification of sequential
systems as well. The sequential systems are modeled by an equivalent
iterative network at the behavioral level. Then, a symbolic interpreter is used
to implement the specification automatically at the gate level. System
attributes are introduced so that the information about system performance
and design parameters can be extracted. The three attributes used are the
time delay, the number of gate delays, and the pipeline stage number. Also,
the definition of functions is extended so they operate on attributes as well as

objects.

The above three attributes are used to optimize the throughput of the
systems specified in FHDL. The higher throughput is achieved by organizing
the system in a pipelined fashion. A synthesis method is provided to partition
automatically the FHDL specification into equally timed stages. Composition
functional form in FHDL is used for decomposing the specification. Finally, a
number of examples demonstrate the pipelining capability of the existing

tools.

76

Further research is required to specify a general claﬁs of pipelined
systems (pipes with feedback) using the sequential comstructs introduced in
this work. Kogge uses recurrence systems as a general class of pipes with
feedback {Kogg8l]. ”Sequence” functional form can be used to specify
recurrence equations. This leads to the use of mathematical properties of
functional languages to pipeline mth order recurrence system. Also, various
control schemes must be studied for implementation of pipelined systems with
feedback. Automatic control signal generation for pipelined systems should

be part of future research.

77

APPENDIX A
FHDL Interpreters

The functional and symbolic interpreter for FHDL is written in T
[Rees83] which is a dialect of LISP [McCa60]. The functional interpreter
restides under "~ farshad/tfp” directory. To run the interpreter type °t”,
when the system responds with ”>" then type "(load ”fp.t”)”. The system
will respond with "> ” then type "(fp)”. Now, the FHDL interpreter is
running, the interpreter prompt is "->> ”. The latest information about,
this software is in a file called *" farshad/tfp/README”. Further

information on this interpreter is available in "~ micro/dorab/doc”.

The symbolic interpreter resides under "~ farshad/tsfp”. The user
must run T first. Then, inside T, type ”(load "sfp.t”})" followed by *(sfp)”,
similar to the functional interpreter. Read file ”~ farshad/tsfp/README” for

latest updates on the system.

The symbolic interpreter is controlled by a set of parameters.

"

Parameters are described in detail in file ”” farshad/tsfp/param.t”. In order
to change the value of a parameter during the interpretation, type ”)break” to
go back to T. Type "(set <param> <value>)”, where "<param>>” is the .'
name of the parameter and ” <value>" is the new value of the parameter.

Then, type "(ret)” to go back to interpreter. To get the collected data on

partitioning results, go to T and type "*stagedata*”, similar data as the one

78

shown in section 3.5 will be provided.

The output generated by the symbolic interpreter is the precedence
graph of the computation and is placed in a file, currently called "simoutput”,
see "param.t” to change the name. This graph can be used to draw logic
diagram at the gate level. The graphic software is under ”~ farshad/graph”
and is called "graph”. The output of symbolic interpreter must be copied 0:

moved to a file called "dataf” before the graphic program can be executed.

Detail information on the use of graphic software is in ”~ micro/sllu/doc”.

79

[Arvigo]

[Back78]

[Bade83a]

[Bade83]

(Barb80]

[Barb&1}

[Card81]
[Cott65]

[Davi&3]

[Earl6s)

[Elia83]

References

Arvind, “Decomposing a Program for Multiple Processor
Systems,” Proceedings of the 1980 International Conference
on Parallel Processing, August 1980, pp. 7-14.

J. Backus, ‘“Can Programming be Liberated from the von
Neumann Style? A Functional Style and its Algebra of
Programs,” Communication ACM, Vol. 21, No. 8, Aug.
1978, pp. 613-641.

S. Baden, Berkeley F'P User’s Manual, U. C. Berkeley, Mar.
1983.

S. B. Baden and D. R. Patel, ‘‘Berkeley FP — Experences
with a Functional Programming Language,” Proc. of
COMFPCON, Spring 1983, pp. 274-277.

M. R. Barbacei and J. D. Mortheutt, “Applications of ISPS,
an Architecture Description Language,” Journal of Digital
Systems, Vol. 4, No. 3, Fall 1980, pp. 221-240.

M. R. Barbacel, “‘Instruction Set Processor Specxﬁcatlons
(ISPS): The Notation and its Applications,” IEEE Trans.
on Computers, Vol. C-30, Jan. 1981, pp. 22-40.

L. Cardelli and G. Plotkin, ‘‘An Algebraic Approach to
VLSI Design,” in VLSI 81, 1981, pp. 173-182.

L. W. Cotten, “Circuit Implementation of High-Speed
Pipeline Systems,”" AFIPS Proe. FJCC, 1965, pp. 488-504.

M. Davio, J. P. Deschamps, and A. Thayse, in Digital
Systems with Algorithm Implementation , John Wiley &
Sons, 1983,

J. Earle, “Latched Carry-Save Adder,”” IBM Tech.

" Diselosure Bulletin, Vol. 7, No. 10, Mar. 1985, pp. 909-910.

N. J. Elias and A. W. Wetzel, ““The IC Module Compiler, A
VLSI System Design Aid,” Proc. of 20th Design Automation
Conference 1983, pp. 46-49.

20

[Erce82]

[Erce83]
[Fran79]

[Fran81]

[Gord81]

[Hon8&0]

[Hwan79]

[Jump78]

[Kogg81]
[Koha78]

[Laht81]

[Lu83j

[Mare79]

M. D. Ercegovac and T. Lang, in Digital Systems:
Hardware/ Firmware Algorithms., University of California,
Los Angeles, Dec. 1982.

M. D. Ercegovac, Private Communications, 1983.

R. E. Frankel and S. W. Smoliar, ““Beyond Register
Transfer: An Algebraic Approach For Architectural
Description,” Proc. of 4th International Conf. on Computer
Hardware Description Languages, Oct. 1978, pp. 1-5.

R. E. Frankel and S. W. Smoliar, “Digital Systems as
Mathematical Expressions,” Proc. of COMPCON, Spring
1981, pp. 414-416.

M. Gordon, “A Model of Register Transfer System with
Applications to Microcode and VLSI Correctness,” Tech.
Rep. Unpublished, 1981. ‘

Robert W. Hon and Carlo H. Sequin, “A Guide to LSI
Implementation,” Xerox PARC, Palo Alto, CA, Tech. Rep.
Report No. SSL-79-7, January 1980.

K. Hwang, in Computer Arithmetic, New York, N.Y., 1979,
p. John Wiley.

J. R. Jump and S. R. Ahuja, “Effective Pipelining of Digital
Systems,” IEEE Trans. on Computers, Vol. C-27, No. 9,
Sept. 1978, pp. 845-865.

P. M. Kogge, in The Architecture of Pipelined Computers,
McGraw Hills, 1981.

Z. Kohavi, in Suwilching and Finite Automate Theory,
McGraw Hill, 1978.

D. O. Lahti, “Application of a Functional Programming
Language,” UCLA Dept. of Computer Science, LA, CA,
Tech. Rep. Report No. CSD-810403, 1981.

S. Lu, Graphic Interface for FP, UCLA Computer Science
Department, FP Group Internal Memo., Oct. 1983.

R. W. Marczynski and P. Bakowski, “What Do the
Computer Hardware Description Languages Describe?,”
Proc. of 4th International Conf. on Computer Hardware
Description Languages, Oct. 1979, pp. 178-183.

81

McCab0]

[Mead80]

[Pate82]

[Pate84]

[Quey79)]
[Rama77]

[Rees83]
[Sequd3]

[Shiv83]
Skla60]

[Thom79]
[Thom83]

[vanC79]

J. McCarthy, “Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part 1,”
Communication of ACM, Vol. 3, No. 4, Apr. 1960, pp. 184-
195.

C. Mead and L. Conway, Introduction to VLSI Systems,
Reading, Massachusetts, Addison-Wesley, 1980.

D. Patel, “Applicative Languages in the Specification and
Implementation of VLSI-oriented Hardware Algorithms,”
Ph.D. Prospectus, UCLA Department of Computer Scince,
Dec. 1982.

D. Patel, UCLA FP User Manual, UCLA Departement of
Computer Science, 1984.

D. Queyssac, ‘‘Projecting VLSI's on Microprocessor,” IEEE
Sepctrum, May 1979.

C. V. Ramamoorthy and H. F. Li, “Pipeline Architecture,”
Computing Surveys, Vol. 9, No. 1, Mar. 1977, pp. 61-102.

J. A. Rees, N. 1. Adams, and J. R. Meehan, in The T .
Manual, Computer Science Department, Yale University,
1983.

C. H. Sequin, ‘“Managing VLSI Complexity: An Outlook,”
Proceedings of IEEE, Vol. 71, No. 1, Jan. 1983, pp. 149-
166.

S. G. Shiva, ‘“Automatic Hardware Synthesis,” Proceedings
of IEEE, Vol. 71, No. 1, Jan. 1983, pp. 76-87.

J. Sklansky, ‘“Conditional Sum Addition Logic,” IRE
Trans., Vol. 9, 1860, pp. 226-231.

- D. E. Thomas, ‘“The Automatic Synthesis of Digital

Systems,” Proc. IEEE, Vol. 69, No. 10, Dec. 1979, pp.
1605-1615.

D. E. Thomas, C. Y. Hitchcock III, T. J. Kowalski, J. V.
Rajan, and R. Walker, “Automatic Data Path Synthesis,”
IEEE Computer, Vol. 16, No. 12, Dec. 1983, pp. 59-73.

W. M. vanCleemput, ‘‘Hierarchical Design for VLSI:

Problems and Advantages,” Proc. of Caltech Conf. on
VLSI, Jan. 1979, pp. 259-274.

82

