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ABSTRACT OF THE THESIS

A Compiler for a Functional Programming System
by
Shih-Lien Lu
Master of Science in Computer Science
University of California, Los Angeles, 1984

Professor Milos D. Ercegovac, Chair

The functional style of programming provides an alternative in problem
solving to the sequential style of languages commonly used. Given this different
style of programming, 2 new approach to executing programs written in function-
al language is desired. With conventional computing modules in mind, we pro-
posed to translate programs written in functional languages to an intermediate
language. This intermediate form Complete Decomposed Form, bridges the gap

between the functional language and the conventional hardware.

Programs written in functional languages are first translated into CDF and
then into the C programming language to be executed on an existing machine -
VAX-11/780. Some issues concerning code optimization are discussed. With an
application in mind such as real time simulation of continuous systems, we also

explore a methodology of solving problems in the functional programming style.
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CHAPTER 1
INTRODUCTION

1.1 Background

It is widely believed that a computer architecture should be based oii a
high-level language in order to achieve ease of use (programmability), perfor-
mance and effectiveness in use of hardware resources [KELL-79]. Most high-level
languages in use today are not supported by the underlying architecture of con-
ventional machines in this sense, resulting in a large semantic gap. It is also evi-
dent that these languages have difficulty in managing the complexity of the
underlying software needed. Some of the problems require excessively expensive
solutions in these languages which are unreliable, inflexible, and hard to main-
tain. These problems can also be attributed to the style and the nature of the

programming languages used [BACK-78].

1.2 The Problem

The "Software Crisis” resulted from the fact, as Backus points out, that
conventional programming languages are "fat” and “flabby”. As languages
evolved they grew bigger and more complex in order to incorporate new features
while retaining old ones. The payoff rate decreases dramatically as languages
become very complicated and difficult to learn. The small advantages gained in

programmability by adding new features is offset by the problems caused by the



added complexity. The second problem of conventional languages is their
inflexibility in combining existing programs and procedures to comstruct more
complex programs. Practically most programs in conventional languages are writ-
ten individually. There is little sharing in existing routines that perform similar
tasks. Side effects resulting {rom state changes and variables are the main cause
of these problems. Together with the complexity and inflexibility, there is also
the problem of "correctness.” Because conventional programming languages lack
useful mathematical properties, programs are hard to reason about and debug.
Denotational and axiomatic semantics are elegant and powerful concepts, yet in

using them to describe conventional languages one can only "talk” about pro-

grams.

1.3 The Approach

A conceptually different approach, based on the concept of functions, to
high-level languages, programming and architecture has been investigated by a
number of researchers [ARVI-82, BERK-75, ARVI-81, DENN-79, KELL-79,
PATE-81, PLAS-76, TREL-80, TURN-79, WATS-82]. Functional or applicative
languages offer a nontraditional approach to programming. They are easy to learn
because of their small sets of primitives and simple semantics. Yet, a functional
language can be made powerful enough to handle with complex algorithms. It
also has an important advantage of being very close to human reasoning in prob-
lem solving. Moreover, programs written in functional languages have the alge-
braic properties which simplify correctness proofs [WILL-81]. Since programs
have neither states, nor variables, a program has no side effects. However, there
are difficulties with the functional style of languages in achieving cost-

effectiveness in execution. The problem of cost-effectiveness in executing



functional programs is strongly related to the representation of the program at
run time and compatability of this representation with the execution-level
resources (eg., processors and communication) [ERCE-in preparation]. The main
objective of this work is to develop an intermediate level representation for func-
tional programs and a corresponding translator. This intermediate form could be
executed on a special architecture, or be compiled for execution on conventional

computers.

1.4 Thesis Overview

With a particular class of applications in mind, we adapted an intermedi-
ate representation for functional programs, called Complete Decomposed Form
(CDF) [FELL-81]. This intermediate form marrows the semantic gap between

functional languages and conventional hardware used to execute them.

In Chapter 2 we discuss basic concepts of functional languages, their
semantics and syntax, largely based on Backus [BACK-78]. In Chapter 3 the
intermediate level language (CDF) is introduced. Motivations for DF as well as
advantages and disadvantages are discussed. In Chapter 4 some transformations
useful for optimization are described. In Chapter 5 we discuss the implementation
of translation of CDF into C on VAX-11/780. Finally in Chapter 8 we illustrate

the approach with an example, solving a real-time simulation problem.



CHAPTER 2
THE HIGH-LEVEL LANGUAGE

2.1 Introduction

High-level languages are necessary when complex computations to be per-
formed on computers. There are several criteria we look for in choosing a high-

level programming language:

(1) Clarity and simplicity;

(2) Conceptual conssstency;

(3) Suitability for applications;

(4) Ezpandability;

(5) Efficiency in execulion, translation, program creation

and program lesting.

Conventional high-level languages rarely possess a majority of the qualities
mentioned above. An alternative to the conventional languages is a functional-
style of programming language [BACK-78]. Functional (applicative) program-
ming languages are based on the concept of mathematical functions. Programs
written in a functional language map objects to objects. There are neither states,
nor variables. A functional language satisfies most of the criteria mentioned
above. It is simple and clear. Its semantics are consistent and easy to under-

stand. It acquires complexity as required by different applications. Expahdability



is its strength too. The only disadvantage it exhibits is in the efficiency of execu-

tion on a conventional machine.

2.2 Functional Language

The functional programming system is based on the use of a fixed set of
combining forms called functional forms. These, plus simple definitions and prim-
itives, are the only means to build new functions from existing ones. With a
given input, a functional language program always maps the input into the same

output. Backus’ functional language consists of:

(1) A set of objects: O.

{2) A set of predefined primitive functions: F.
(3) An operation, application; denoted ™.
(4) A set of functional forms: FF.

(5) A set of definitions: D.

Throughout the thesis we will be using FP to refer to this functional

language defined by Backus.

2.2.1 Objects, Operation and Definitions

Objects can be "bottom”, which is "undefined”, or null, which is the
empty set, or a single atom, which can be a string of characters or numbers, or 2
list of atoms, or a list of lists. A list is denoted as (a,b,c....), where a, b, c.... can

be atoms or lists. A null list is represented as ”()”.



The operation refers to the applying of functions on objects. The action

of this application is termed an execution of a function with the object as its

argument.

User can define functions. These definitions are the partial expressions of
the algorithm used to solve a problem. Programs are built from primitives,

defined functions and functional forms.

2.2.2 Primitives

There are several types of primitives, arithmetic, logical, conditional, and
data list manipulation. Arithmetic primitives are addition, subtraction, multipli-
cation, division, and perhaps other functions such as SIN, COS, LOG and EXP.
Logical primitives are OR, AND, XOR and NOT. Both of these two type of
primitives accept objects of type (a, b), where a and b are atoms. For example,
apply + on (1, 2) will produce 1+2=3. Conditional primitives are EQ,
.GT(greater than), LT{less than), AT(atom), NL(null), and LS(list). The first three
primitives act on pairs {a, b), where a and b are atoms, and return values True or
False (T or F). The last three primitives check the type of objects. There are
primitives which are used to manipulate lists, SLn(select(n)), PK(pick), FR(front),
TL(tail), RL(rotate left), RR(rotate right), @(append), PR(pair), SP{split),
[X{index), CT(concat), CL{circle left), CR{circle right), TR(transpose) etc. These
primitives and their semantics are described in more detail in [BACK-78, LAHI-

81].



2.2.3 Functional Forms

Primitive functions can be combined using several functional forms. The

functional forms used are:

(1) Compose : denoted CM({, g):x;
J and g are primitive functions or
definitions, and z i3 an object. It returns
the result of applying f on the result of

applying g on .

(2) Construct denated}f,g,h,... ’X;
if returns (f:z,9:z,h:z...). That is, it
constructa a list of results from applying
Junctions f, g, h... on 1.

(3) Condition : denoted IF(p,f,g):x;
if p applied on z has result true (T) then
it returns f:z, else it returns g:2.

(4) Apply to all : denoted AP f:x;
if z="7 (bottom} it returns ™ 7,
— else if z=() it returns (),
else if z=(z1,22,28,24,25,....zn),
it returns (f:z1,[:22,f:28,..., [:zn).
(n>=1)

(5) Insertion  : denoted IN fx;
if z="9 it returns " 7",
else if z=? it returns (),
else if r=(z) it returns z,
else it returns
(IN f:(z1,22,...zn-2),[:(zn-1,2n)).
(n>=2)

(6) Constant : denoted K y:x;
tf 2="7" 1t relurns " 7
else it returns y.



The notation for primitives and functional forms can be easily modified to

improve readability as discussed in the following section.

2.3 Syntactic Variation

It has been pointed out that FP can be used to implement algorithms
[LAHTI-81]. Its ability to match the problem and to map the solution algorithm
closely to program coding has been recognized. Many examples are given to show
how FP helps to evaluate and guide programmers to tackle a particular problem
differently in order to achieve better performance. Unfortunately, the prefix form
is not conducive to understand programs written in FP. This is clearly seen when
a numerical problem is solved with prefix notation. For example, a simple

evaluation of the two roots of quadratic polynomial:

plz) = aZ + bz + ¢ (2.1)
2. -6+V2:!-4¢c (2.2)
= LN AL T (2.3)

28

will create a quite unreadable version as illustrated in Figure 2.1.

Besides the readability, prefix form also requires user to specify explicitly
the parallelisms inherent in the expression. For example: z=a+b+c+d can be
expressed in two ways in the prefix form: Clearly we observe that the first expres-

sion implies parallelism when executed.



/ * evaluate two roots of quadratic equation
] # INPUT: (a, b, ¢)

posx == CM(/,[CM(-, [sqrtofb4ac, negb}, twoa));
neqx = CM(/,[CM{(+, [negsqrtofbdac, negb], twoal));

negb = CM(*, [K-1,SL2]);

twoa = CM(*, [K2,SL1});
negsqrtofbdac = CM(+, [K-1,sqrttofbdac]);
sqrtofbdac = CM(SQRT, CM(-,[bsq,4ac}));

bsq == CM(s, [SL2, SL2|);
4ac = CM(*, [K4, CM(*, [SL1, SL3|}});

Figure 2.1 Solution of Quadratic Equation in FP
x=CM(+,{CM(+,[a,b]),CM(+,[e.d])]);
X==CM(+,[a, CM(+,[b.CM(+[e.d]]);

One solution is to allow expressing functions in both the prefix and infix
forms. We prefer to use the algebraic style of expressing problems, without losing

the ability of using functional forms to construct and manipulate programs.

Basically, we allow users to define frequently used algebraic expression
with infix notation. A pre-processor can be used to convert the infix notation into

prefix form.
For example we can express one root of quadratic equation as follows:
r=({-1)*b+3aqri(b 2-4+axc))/2+a
which if necessary is translated into prefix form:

x=CM(## [CM(5#/,[CM(#+,[CM{z#*,[K-1.b]),

CMisqrt, CM(#-,[CM(POW b K2]),



CM(#+,|CM(#+,[K4,a}).c]1)})]). K2|)a]);

Several other examples illustrate the use of this preprocessor is given as follows:

/t RREEREFBIRRERTRERERRRER R R AT EF RN SR LS #/

+ FUNCTIONS Vi
/* notice the arguments of function 74
/* [ rad,g imply a given input lype *
[+ and they are automatically mapped #f

»

[+ input selection primilives
/l SRERRRRIRRRERERRRRERZEARERERRREI G R RN RS a/

f{x,y,2)m=g(x)+b(y 4+ func(x+y+2,x*¥y*3);
rad(x,y j=sin(x " 2+y " 2)-+cos{x" 2+y "2);
g(x.y,:)-r(x+delta.x,y+deltay,z+deltaz);

F RRRFRRBSERRFFERRRRIRLERERRBERERRB RIS RE RS t/

/ + EXPRESSIONS s/

/l ERRREERREEEZ R IR R I LRI R RGBT RG IR RRRRRER I/

area==1/3spisradius’2;
vol==4 /3+pisradius"3;
radiusm=x+y+z-+w+s+dsf;
pi==3.14159;

+

After the preprocessing only prefix form is showed:
/* FUNCTIONS #f

f=CM(#+{CM(#+,[CM(g, SL1),CM(b, SL2)]),
CM(func, [CM{#+,[CM(#-+,[SL1,5L2]),SL3|),
CM({#+,[CM(#+,[SL1,SL2]).SL3I));
rad==CM(#+, [CM(sin, CM(#-+,{CM(POW,[SL1,K2]),
CM(POW [SL2,K2])])),CM(cos, CM(#+,[CM(POW,[SL1,K2]),
CM(POW,[SL2,K2{))]);
g=CM(f, [CM(#+,[SL1.deltax]), CM(#-+,[SL2,deltay]),
CM(#+,[SL3,deitaz])]);

| * EXPRESSIONS +/

area=CM(#*, [CM(#+, [CM(#/,[K1.K3]),pi]), CM(POW [radius,K2| )

vol=CM{#*,[CM(#%.|CM(#/.[K4,K3]),pi], CM(POW, [radius, K3|)} )

radius==CM(#+ [CM(#+,[CM(#+,[CM(#+,[CM(#F+,[x.y]).2]), w]).5]),
CM{#+[d.0));

pi=K3.14159;

10



We observe that allowing programs to be expressed in infix can improve

readability. Functions defined in infix form still retain thetr functional properties.

Discussion of Functional Programming Approach

We now illustrate some advantages of a functional language approach to

programming over a conventional approach, by considering the following exam-

ple:

EXAMPLE

Newton's method for finding the root of a function:
This iterative procedure consists of:
* An initial guess z0,
* Approximation of derivative as :

df o S
gz T im 32

s dlie-2)

= Iim

{as deita -> 0}
* A new value news:
newr <-- z-f{z)/f'(z)
Substitute newz into the function to find
the new value of f{newsz).
Repeat this process until
|f{z)-f(newz)] < limst.
In this example we assume:
flz)=2-22 -2z + 4
A FORTRAN solution to this problem might be:

11



NEWTON'S METHOD
PROGRAM NR(INPUT,QUTPUT)

03 FORMAT(1P,2E14.5)

O O aag

PRINT, »X»
READ, X
PRINT,* X F(X)*
FX=F(X)
PRINT 3, X, FX
c
C FIND DERIVATIVE
C
22 DELTA==0.00001%X
DIFF={F(X+DELTA}FX)
DERIV=DIFF/DELTA
C FIND NEW X
X1==X-FX/DERIV
FX1=F{X1)
IF (ABS(X1-X).LT.0.00001) GOTO 99
59 CONTINUE
c
C GET NEW X THEN REPEAT
c
81 X=X1
FX==FX!
PRINT 3, X, FX
GOTO 22
99 STOP
END
c
C FUNCTION DEFINITIONS
FUNCTION F(X)
F=X#3-2.0¢X#42-2.08+X+4.0
RETURN
END

Using infix FP to solve the same problem:

/ * newton’s method */

limit == 0.00001;
delta(x) = limite*x;

[ *f(z} +/
fx(x} = x"3-2.0x"2-2.0*x+4.0;

fofdx(x) = fx{x+delta);
dfdx = (fofdx-fx)/delta;

12



newx(x) == x-fx/dfdx;

[ * main +f

main = pewtonsmethod; '
newtonsmethod = CM (repeat, initial);

initial = [newx,oldx|;

repeat = IF( test, SL1, continue);

continue == CM( repeat,[CM(newx,SL1},SL1});

test = CM{(GT, [limit, CM(#FABS, #-)|);

oldx = ID;

However the infix form is transformed into prefix form as follows:

| + newton's method */

limita=K0.00001;
delta== CM(##,[limit,SL1]);

[*(z) +

fxmCM(#-+,[CM{##- |CM(#-,[CM(POW,[SL1,K3]),
CM{#+,[K2.0,CM(POW [SLLK2))})),
CM(#+,[K2.0,SL1})]}.K4.0]);

fofdx==CM(fx, CM({#+,|SL1,delta}));

dfdx=CM(#/,|CM(#- [fofdx,fx|),delta]);

newx==CM(#-,[SL1,CM(#/,[fx.dfdx])|);

/ * main */

main == pewtonsmethod;

pewtonsmethod == CM (repeat, initial);

initial = [newx,x|;

repeat == [F( test, SL1, continue);

continue == CM( repeat,[CM(newx,SL1),SL1|);
test = CM(GT, [timit,CM(#FABS, #-)|);

From the above example we can see several advantages of the FP
approach to programming. First, the program is hierarchically structured.
The main routine, “newtonsmethod”, first, sets up an initial pair of

(newz,oldz). Then it tests if newz-oldr is less than the limit (test). If not, it

13



continues to get another newz from the old newz. This testing and acquiring
newz is repeated until the desired accuracy is achieved. Instead of jumping
around with "goto” statements, the program is well structured and easy to

read.

The second advantage is related to concurrency. This is observed from
the definition of function f(x). An inherent parallelism is demonstrated as we

try to evaluate f(x)==x*%3-23x#%2-2%x+4.

The third advantage lies in the fact that FP programs are easier to
debug than conventional language programs. FP tells the user exactly where
the problem is when a function generates an illegal object. Thus, the user
can easily pinpoint the mistake. Another advantage has to do with the
language itself. This particular functional language has less than fifty primi-
tive functions, instead of all the complex structures of FORTRAN state-
ments, DO, GOTO ete. As a result, this language can be learned in a short

time.
In summary, we mention the following advantages of a functional pro-
gramming language approach:
(1) Concise, clear and easy to learn language definitions;
(2) Well-defined, extensible and simple semantics;
(3) Well-structured programs, easy to compose;
(4) No variables or control statements; easy to debug;

(5) Natural expression of parallelism; and

14



(8) Possibly very close to the mathematical model of a problem.

One of the problems of the functional language approach is the lack
of suitable architectures on which functional programs can be efficiently exe-
cuted. There are several proposals for functional language machines [ARVI- -
82, DARL-81, DENN-79, MAGO-81, KELL-79]. These proposals emphasize

novel aspects of machine representation and require special resources.

In the next chapter we will describe an intermediate language which,

in our opinion, is more suitable for execution on conventional architectures.

15



CHAPTER 3
THE INTERMEDIATE LANGUAGE - CDF

The main objective of this thesis, as mentioned in the first chapter, is to
develop a translator for programs written in the Backus’ functional language into
object code which is "close” to the conventional processors. We have selected an
intermediate language (CDF [FELL-81]) as the target of our transiator. From
CDF, we can either interpret programs directly on a suitable machine, or we can

further translate CDF into a conventional language to be executed by a conven-

tional machine (Figure 3.1).

machine
@ ) ] - objects
interpret

machine |
FP CDF objects
compile nterpret
compile DEC  VAX
C language 11-780
ccC

Figure 3.1 Illustration of the Methodology

16



Several advantages can be gained by using an intermediate form.
First, the semantic gap between functional programming languages and
machine can be narrowed. As the CDF is "closer” to the hardware it may
make interpretation more efficient than interpreting functional language pro-
grams directly. Second, the intermediate language gives the flexibility of not
confining the target language to a particular hardware organization. The
intermediate form can be translated into many machine languages. In this
study we chose the C language and DEC VAX 11/780 as the execution
environment. This is presently being studied in [RAVI-83]. Third, the inter-

mediate form simplifies task allocation in 2 multiprocessor environment.

3.1 Definition of CDF

The functional form COMPOSE is one of the main construets in func-
tional programs. It corresponds to the "sequential” flow of computation dur-
ing execution. For example, a definition of "D = CM(f,g):x” can be treated
as obtaining first D1 = g:x, and then applying f on D1 to get D = {:DL.
The intermediate language is defined to represent the functional program in
a decomposed form with respect to its sequential parts as specified by the
functional form COMPOSE. This form of the intermediate language has
been suggested in [FELL-81]. A complete decomposition form (CDF) of a
functional program takes the advantage of the sequential aspect of composi-
tion, and breaks a long program into statements. Abstractly, a program in
CDF is a list of statements representing the traversal of the parsed program
tree, each consisting of a label, a ":” and a body instruction. The label

enables another instruction to refer to it and to request the value needed.

Each Iabel is unique within a program. In the case of a recursive definition,

17



two labels may be equated to express that a definition has already been

given. In this case the statement looks like "fn := fm”.

An instruction consists of an ”operator” and ”arguments lists”. An
operator can be either a primitive function or a functional form. Argument
lists can be lists of labels whose value need to be evaluated or a ”.” which
indicates input data object or the data object produced in the program. The
length of the é.rgument list is not fixed. The functional form CONSTRUCT
has no definite length, while the length of functional form IF is three. For
functional forms AP, Al, IN, it can either be one or two. There is a unique
syntactic name for each functional form and primitive with the exception of

COMPOSE which, due to the decomposition is eliminated.

3.1.1 A Formal Description

Statements in CDF can have three different forms as defined in the

following:

1) <LABEL> : <PRIMITIVE> <LABEL>
2) <LABEL> : <FUNCTIONAL FORM> <LABELS>
3) <LABEL> : "=" <LABELS>

where:

<LABELS> : <LABELS> <LABEL>
<FUNCTIONAL FORM> : "CN” (construction)
"AP” (apply to all}

"Al” (assoclative insert)

"IN” (insert)

"IF” {condition)

"K” (constant)

<PRIMITIVE> : "AR” (append right)
"AL” (append left)
"AT” {atom)

18



<LABEL> : ".” (input)
»f» < DIGITS >
<DIGITS> : <DIGITS> <DIGIT>
<DIGIT>| ;g
”1#

i ”9”

This syntactic specification implies a demand-driven model [TREL-

81]. A syntax for data-driven model can be specified as shown in the follow-

ing:
1) <LABEL> : <PRIMITIVE> <LABEL>
2) <LABEL> : <FUNCTIONAL FORM> <LABELS>
3) <LABEL> : "=" <LABELS>
4) "+” <FUNCTIONAL FORM>
5) "*END-" <FUNCTIONAL FORM>
where

<LABEL> <LABELS> <PRIMITIVES> <FUNCTIONAL FORM>> are
unchanged from the specification given above.

Demand-driven and data-driven specification are pre-order and post-

order traversals of the execution tree, respectively.

3.1.2 Graphical representation:

The semantics of CDF is rather simple. For primitives, the label on
the left of ”:" contains the address of the result after applying that primitive
on the object pointed by the label on the right of ”.”. For functional forms,

there are different meanings according to the individual functional forms.
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Figure 3.2 Graphical Representation of CDF
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Functional forms IN, Al, and AP take two labels, the first one is the funec-
tion definition to be applied or to be inserted, the second is an object.

Graphically, they can be represented as in figure 3.2.

3.2 An Example

To have a clearer view of the CDF we give an example in a functional
language and transiate it into both data-driven and demand-driven forms of
CDF. Refer to the following FP specification of the program we will parse.

This program produces indices of a list of elements matched to a given key.

| *# This program takes a key and a lisl and returns all indices of
] * the list which match the key.
L ]

[ *INPUT : (key,(array of elements)]

/* key - an atom

/* array of elements - the lisi we are searching

/] * OUTPUT: 0 - if no element maiches the key

/* < list of indices> - indicales (he indices of elements
* that match the key.

/* SUBPROGRAMS:

] * equal : check cach elements with the key

[ * indez : get all indices

| * pairs : pair the resull of equal with indices
| * search: checks, and returns all indices that match
/*EXAMPLE:

/* equai: (a,(a,b,cd,ef]) = (T,FF,F.FFj
[* indez : {a,({a,b,c,d,e.f)} = (1,2,3,4,5,8)

{* pairs : ((T,1},(F,2},(F,3).(F.4).(F,5),(F.6}))
[ * search : pairs . finput) = (1)

[/* main = (1)

equal = CM (AP EQ, DL});

index == CM (IX, LN, SL2),

pairs == CM (TR, [equal, index|);

search= CM {CT, AP IF(SL1,[SL2| K{)), pairs);
main = CM (IF (NL,K0,ID),search);

t

Parsing an FP program into this syntactic type of the CDF implies the
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demand driven model of execution. It is shown as follows:

/ * The CDF statements are :

fo:IF 2 (3 4
f2:NL 11

f3: KO

f4:ID 11
fl1:CTIf15

f5: AP f7 {6

f7 : IF {8 19 110
f8 : SL1.

f¢ : CN f11
fi1:SL2.

f10 : K

8 : TR 112
f12 : CN 13 f14
f13 : AP {16 {15
f16 : EQ .

f15 : DL .

f14 : IX 17

f17 : LN 18
f18 : SL2 .

This same example can also be translated into a syntactic form which

implies a data-driven model of execution as illustrated in the following:

f7:DL.

*AP
f8:EQ.

f5 : AP {8 (7
*END-AP
f10 : SL2.

M : LN f10
i6:IXf0

f4: CN {5 {6
f3: TR {4
*AP

f12 : SL1 .
f15: SL2.
f13 : CN f15
fl4 : K]

f11 : IF 12 113 f14
2: AP 1113
*END-AP
f1:CT {2
f18 : NL {1
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f17 : KO
118 : ID {1
fo : IF f16 {17 f18
The codes between corresponding *<FUNCTIONAL FORM>" and

7 +END- < FUNCTIONAL FORM>” are treated as macros.

Graphical representations for both the demand and the data-driven

style are shown in Figure 3.3 and Figure 3.4, respectively.
3.3 The Translation from FP to CDF

Since all functional forms and primitives are in prefix form, it is
natural to write the parser recursively. First, the program text written in FP
is read into an input buffer in which all comments and tags for tracing ("Q@")
are deleted. Then a user definition name table is established to check for
recursion. The translator starts by requesting the definition named "main”.
The main part of the translator is the parser, which checks the text to see if
a name is a user defined name, a primitive function, or a functional form, in
this order. If it is a primitive, the appropriate label for the 'operand is
assigned and printed. If it is a user defined name, a procedure is evoked to
check if there is recursion. If it is not a recursive call, the parser continues to
parse; otherwise the statement number which is repeated is equated to the
current one to produce an "fn :== fm” type statement. If it is the functional
form CM (composition), it is removed. If it is an another functional form the
parser continue to parse the appropriate field supplied to this form. If a
name is not identified, an error message is printed: *undefined term or func-
tion.” This is repeated until all of the text has been parsed or an error is

detected. Tags are kept and incremented according to different functional
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forms, primitives and recursion. In the following we give an algorithm for

parsing FP programs into CDF form:

procedure parse(string,label,comp,ff)
check(string) :
case 1. user defined name :

if (not recursion) then
parse(userdef,label,compo,ff);
else print (label,” ”,” =" previouslabel, ff);

case 2: PRIMITIVES :
print (label,” 7 primitives, ff);
case 3: FUNCTIONAL FORMS :
check(functional-form):
case [: CONDITION

print(label,” " tag,tag+1,tag+2);
get-the-operands;
for each operands do
begin
parse{operand, tag,compo,ff);
tag = tag +1,;
end;

case 2: CONSTRUCTION

count-the-number of elements;

i = number of elements

print(label,” " );

for indez = I to 1 do begin
tag = tag + 1;
print(tag);

end;

for each elements do begin
parse(element,tag,compo,ff);
tag = tag + 1;

end;

case 3: APPLY TO ALL
INSERT
ASSOC. INSERT

gel the rest of the string after the functional form;
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temp = the rest;
if (compo = lrue) then

print(label,” " string< 1:2> tag++);
else printfiabel,” " string);
parse(temp,tag,0,.f);

case . CONSTANT
print(label”: K7, string);
case 5. COMPOSITION

temptag = 0;
for each elements sn COMPOSITION do
begin

tag = tag + 1,
temptag = lemplag + 1;
end;
for i = | to temptag do
parse(element,i,compo,ff);
otherwise: ERROR;

end-proec.

3.4 Discusgion

There are several reasons why it is useful to convert FP representa-
tions into CDF. In CDF we can perform preliminary code optimization suit-
able for conventional machine organization. This can be accomplished
because functional languages have no side effects. A function definition
applied on the same data always produces the same result. If two sections of
code are the same, omly one copy is needed. This is particularly useful
because it aillows us to take advantage of FP modularity. It is often to the
user's advantage to build complex programs from existing software. However,
this flexibility and modularity may cause repetition and inefficiency. Code

repetition in the CDF can be detected and removed. For example:
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A polynomial
J(z)=zr2f+z222
can be defined using FP as:

f=CM(+,[x-forth,x-square});
x-forth=CM(*, [x-square x-squa.re]),
x-square—CM(*,[

The corresponding CDF is:

fo: 4 f1
fl:CNf2f13
f2 . % {4

f4 : CN {516
f5: {7
f7:CNi819
f8:1D.
9:ID.

f6 : = f10

f10 : CN f11 f12
fi1:1ID .
fi2:1ID.

3 : = f13

f13 : CN 14 f15
fi4:ID .
f15: ID .

Notice that since 8, 9, f11, {12, {14, {15 are the same
This program can be optimized by replacing £9,f11,12,114,15

with {8 to obtain:

fo:+11
fl:CNI2(3
f2 : = {4
f4 : CN 15 {6
f5: =17
f7:CN 88
8:ID.
6 : = 10
f10 : CN {8 {8
f3: * 13
f13 : CN f8 8

By repeating the optimization, the CDF program is
further reduced to:
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fo: 4+ f1
ft . CNf213
f2 : = 4
f4 : CN {5 {6
f5 : = £7
f7:CNf8 8
f8:1ID.
6 : = {7
f3:=1(7
By eliminating {6, {3 we obtain the final form:
fo: + f1;
f1.CNf215
f2:xf4
f4 : CN 1515
f5: =7
fT:CNI818
f8:1ID.

CDF also provides sequencing order for execution on a conventional
machine. A limited number of primitives and functional forms can be coded
to form an instruction field. For primitives, each statement takes a single
operand referenced by a pointer (an address). Functional forms require two
operand fields, with one being the address of a function to be applied on the
second operand, specifying an object reference. A subprogram is generated

with appropriate data assigned.

Lastly, statements are completely tagged so a multiple processors
environment could be used to achieve high performance. This is achieved by
allocating blocks of the CDF statements into different processor and execut-
ing them independently. A CDF program can be activated in demand-driven
or data-driven manner. Since CDF programs represent the execution tree,
task allocation for multiple processors environment would be straight-

forward.
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CHAPTER 4
TRANSLATION FROM CDF TO C

We discuss in this Chapter an implementation of a translator to con-
vert programs from CDF into C. Here C is assumed as the target language
because it can be efficiently executed by the available machine (DEC VAX
11/780), and because UNIX [THOM-78, KERN-78a ,KERND] supports many
software tools for C. The translation approach is based on macro substitu-
tion. The translation contains a procedure for each of the pre-defined primi-
tives. A statement in CDF is equivalent to a procedure call in C. The data
object needed for that primitive function is referenced by a pointer to a
character string. This implies that all data objects are stored as strings of
characters. The primitive function returns a pointer to a string of characters
which is the result of the application of that particular function. Functional
forms are treated differently from primitives as discussed in the following

section.
4.1 Functional Forms

There are six functional forms allowed in our functional language.
They are CM {composition), || (construction}, K (constant), IF {condition}, IN
(insert), Al (associative insert) and AP (apply-to-all). The functional form
composition is removed as we translate FP into CDF. The remaining func-
tional forms have different semantics. Yet insert, associate insert, and

apply-to-all are very similar to each other in that all of these take two

30



operands, one being the function to be inserted or applied, the other being
the data object. For apply-to-ail, data object is divided into N elements, with
N being the length of the data. Each of the N elements is submitted to the
same function. Results from these function evaluations are put together to

form the final result. We illustrate this with a description as follows:

AP x

case 1l -z =92-->7%
case 2z = atom --> ¢
case 3: z = (z1,z%,...2N} (N>=2)

AP fz = :
(1) for i:=1to N do begin
ofi] < [ <fi]
endfor
(2) collect all results and do construction.
result <-- [yl, ¥2,... yNJ

In this case it is not necessary to produce multiple copies of the func-
tion being applied. For a multi-processor system it is possible to broadcast
the data elements to different processors, apply the same function, then col-
lect each of the results to form the final result. For insertion, a sequential

process is required:

IN f:x

case 1.z > ?
case 2:x =zl --> rl
case 3.z = (z1, 72, 28,.... zN} (N>=2)

IN frz =
(1) y <--zN
(2) for i:= N-1 downto 1 do begin
y<--f:[zfi], y]
endfor
(8) result <-- y
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For assocsiative insert, a function is defined recursively on the object

split from the original data.

Al f:x
case 1z =9--> ¢
case 2:z=1z1--> 21
case 3z = (zl1, 22, 28, ..... zN) (N> =2)
Al fiz =
(1) if N is odd then
[(Al f:[z1,22,...zN-1/ 2],
Al f:[zN+1/2,...zNf)
{2) else
[A{AI [:[z1,22,...zN/[ 2],
Al f:[zN/2,...zN])
endif .

In a2 multi-processor environment all these recursive calls can be
thought of as parallel function evaluations. For construction, all of the func-
tions within the construct are evaluated simultaneously. Their results are
passed back to the calling procedure. The calling procedure returns the con-

catenation of these results upon completion.

The conditional statement takes three operands. These operands can
not be evaluated simultaneously since they might cause an infinite loop. The
first operand of the form is evaluated first in order to determine which of the

other two functions is to be executed to obtain the result.

IF(f,g,h)

If (f:z equal True} then return(g:z)
else return(h.z)
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Constants may be handled at the compilation time. Constants are

part of the program statements.
4.2 Memory Allocation Scheme

A global stack is employed to perform the memory simulation. For
primitive function calls, the referenced data object is copied first to a local
memory. Then the data is erased from the global stack. After application of
that particular function, the result is again stored in the global stack with a
pointer passed back by the function. With this approach a simple program,
consisting of only compositions of primitives, needs only a stack size equal to
the maximum size of the intermediate result. For functional forms apply-to-
all, insert, and assocsative insert the data object is copied to a local memory
first, then erased from the global stack. For apply-to-all, each of its element
is put into global stack and passed to the function, which is the first operand
of these functional forms fo.r execution. After all has been executed, results
are constructed to form the final result. For insertion, a similar thing action
is performed by copying the original to local memory, and erasing it from
the stack. According to their semantic definitions, functions are evaluated
and results put into the global stack. The functional forms construction and
condstion can be defined simply: Construction evokes its funections and col-
lects their reference pointers. Results pointed to, are erased after they have
been copied into the global stack. Conditional statement evaluates the
predicate first. Its result is tested and erased from the global stack. The
proper function is selected and evoked as composition. Constant requires

only copying from the program store to the global stack.
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4.3 Recursion

One might raise doubts on how the global stack can handle recursion.
In the execution graph, recursion is a re-entry which forms a cycle. In CDF
representation it is written as "fn:=fm < object label>>". First the current
workihg object pointer is saved in a stack. New object is obtained by calling
the "object label”, which is the second operand of the statement. This refer-
ence to the label is assigned as the object of the function "fm”, which is
evoked recursively. If this new object terminates the procedure, it returns
the value and pops the stack to get back to the original object pointer and
continues the program from there. If the new object does not terminate the
recursive call, it repeats the previous steps by pushing the newly obtained
object pointer into the stack and obtains another result by calling the object
label with the second result as the object reference. In doing so the result of
"object label” is not fixed as we might have thought, but changes its value
every time a new call is issued. This is also the reason why conditional state-
ment can not execute the two possible functions simultaneously with the

predicate, this might result in infinite recursive calls.

Since FP has no global variables, there are no side effects. The global
stack is sufficient to handle the recursion. During the run time this stack
may grow very large, yet we do not have to retrieve any value in the stack.
Thus the size of the stack has no effect on the efficiency of the algorithm

used. That is, we do not need to search in the stack for a particular element.
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CHAPTER 5
OPTIMIZATION CONSIDERATIONS

It is claimed that the functional style of programming improves pro-
grammability. It is also the general consensus that programs written in this
style can be very inefficient ({WADL-81] [ISLA-81]). In order to make FP
object codes efficient, code optimization is necessary. The environment
which codes will be executed in governs the optimization consideration. In a
multiprocessor environment, optimization considerations differ from the con-
ventional compiler optimization which has a sequential environment. This
environment described by finite state automata is quite close to the pro-
cedural language used to describe the solution of a problem. Since FP is
different from the procedural language used, we need a different approach to
the problem of optimization. It again depends on the environment which FP

programs will be executed in.

In general there are two extremes in code optimization. At one end is
true algorithm optimization. The compiler is to "understand” what a func-
tion defined by user is suppose to do and to produce a transformation of the
user's program to solve the same problem on a target machine. This is
difficult to accomplish with conventional procedural languages. Because of
the side effects caused by the states and variables, it is difficuit to break
down a big program into smaller modules to be “understood” and

?transformed”.
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"eofficient”,. An example of this approach is illustrated in the data flow
language LAU [COMT-77|. In this language the construct "EXPAND”
explores parallelism. When the compiler sees this construct it reads from the
program a number provided by the user specifying how much parallelism is
to be abstracted from that section of the code. Accordingly, manyp copies of
this object code is generated. Although this expansion creates much more

code, the code generated is faster for a2 multiple processor environment.

Since CDF represents the execution tree of a program written in func-
tional programming language, it is natural to treat each statement or a block

of statements as a task.

There are three possible levels of optimization in the FP environment.

And they are:

(1) Functional Programming Level: transformation
(2) CDF Intermediate Form Level: elimination redundancy

(8) Object Code Level: code smprovement

5.1 Functional Programming Level

Several people have worked on the transformation of FP prog-ra.ms
using algebraic properties. ([WADL-81] [ISLA-81]) Here are some transfor-

mation rules which can be implemented:

(1) AP CM(f,g) = CM(AP I, AP g)
(2) AP[f1,{2,{3,...fn] = CM(TR,[APf1,APf2,APf3....APfn])
(3) AP IF(f,g,h) = CM(AP IF(SL1,SL2,SL3),TR,[APf,APg,APh))
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Proofs are as follows:
(1) AP CM(f,g):x =? CM(APf, Apg) x
case 1: x = "?" both sides get "?”
case 2: x = (x1, x2, x3, .... xN)

LHS = AP CM(f,g):x
= (CM fg) x1, CM(f,g):x2,..
CM(f.g:xN)
RHS = CM(AP{,APg):x
= AP [:(APg:x)
= APf :(g:x1, g:x2, ... gxN)
{ xl)f(§x2),- ot (s"xN))
C ((JM) :x1, CM(fg) 'x2,
f,g):xN
= AP CM f,g):x
= LHS

(2) AP[11,12,13,...fn}=x =? CM(TR,[APf1,APf2,APf3 ... APfn]:x
case l: x="1" OK
case 2: x = (x1, x2, x3 ..... xN)
LHS = AP [f1,12,....fn]:x
= ”n 12, fofix1,....[1,12,...fa]:xN)

fl:xl, f2 x1,...Mn: x1],
[fl xN, {2:xN,...fn: xN})

by taking the transpose we obtain:

([f1:x1,11:x2,f1:x3,....f0:xN],...
[fn x1,fn:x2,.. In: xN})

= [APf1,APf2,....APfn|:x
= [APf1: x, APf2:x,.... fn X}
(f1:x1,11:x2,....),(f2:x4,12:x2,...}),...
(fn:xl,...fn:xN)
LHS

(3) AP IF(f,g,h):x =? CM(AP IF(1,2,3),TR,[APf,APg,APh)x
case L x ="17" OK

case 2: x = (x1,x2,x3,....xN)



LHS = f;*P IF(f, g,h) X
- i]“ },g,h) x2,...JF(f,g,h):xN)
and [APf,APg,APh]
= [APf:x,APg:x, APh:x]
= [(f:x1,f:x2,....f:xN),(g:x1,...5:xN},
h:xl,...h'xN)]
take the transpose we get:

[(f:x1,g:x1,h:x1), (ff\:?) £:x2,h:x2),...

(f: xN,g'xN
RHS = AP IF(1,2,3):{( fxl ),
fx2 Ji(f:xN,
= xl,g x1,h: xl) (f:x2,g-x2,h:x2),
l'x3 £:x3,h:x3
= (f s,h) xl] JIF (f g,h):x2),
18'

The purpose of performing these transformations is to simplify the
allocation task. We see that the apply-to-all functional form takes a function
and applies it to every element of the input list. This form constitutes one
of the most frequently used parallel construct of FP. It is rather difficult to
allocate resources for a program with an apply to all of a complex function.
Many subtasks have to be generated in order to be executed evenly by the
hardware. It also has the problem of uneven execution time which may
cause inefficiency. If we can find transformations to map complicated
functions-which is being applied-to-all, to simple primitives, we would
achieve a better run time efficiency. It also facilitates the optimization on

the CDF level. This will be discussed in more detail in the next section.
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5.2 CDF level

We have demonstrated in Chapter 3 that repeated statements can be
eliminated without side eflects. On first thought, this elimination process
may seems to require exponential time, however the following intuitive algo-

rithm is polynomial time.

While there are repeated statments do
Begin
For i:=1 to n do begin
For j:=i to n do begin
if (statement[ij=statement[j]} then
begin

eliminate ith statement;
perform necessary change on label;

n<-n-l
endif;
endfor;
endfor;

endwhile.

In the worst case the inner most loop requires O(n} time, since relabel-
ing takes n comparisons to find out if there are any statements which refer
to the eliminated one. The checking of repeated statements takes O(n?)
worst case. Thus the total complexity is O(n'). A better solution is to sort
the statements according to their primitives or functional forms first. This
would take O(nlogn) time. After sorting, repeated statements could be
clustered together and eliminated, any necessary relabeling is performed at

the same time. The time complexity for relabeling is still O(n?). However
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the average case takes only Ofcn) time, (¢ being a constant). The value of
"¢” depends on the percentage of repeated statements. Elimination and rela-
beling would not change the order of the sorted list. As a result further
elimination can be repeatedly performed until there are no repeated state-
ments. Then the program is re-sorted according to statement numbers. JTo

summarize we give a simple description as follows:

sort the list according to their funcison lypes;
while there is repeated statements do
for cach type of funciions
eliminate repeated statement;
relabel all necessary references

endwhile

sort the list again according the the statement number.

We would like to obtain the total time complexity of this algorithm.
First we need 2*nlogn to sort the list twice. If we assume the maximum por-
tion of repeated statements is one half of the original program, for each
repeated statement eliminated we need to examine n-1 statements to relabel
all statements which might refer to this eliminated statement. The number
of different functional forms and primitives is constant. Therefore we are
bounded by a constant. Relabeling, then takes O(n) time in its worst case.
So it takes a maximum of Ocn?) time to do elimination and relabeling.
Adding these two type of requirements, the time bound is now O(r?). We see
that this is not a high price to pay for the improvement we may obtain,
since we estimate that about thirty percent of the CDF code may be

repeated. We observe also that, as we perform transformations on the
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functional language level, the number of repeated statements may increase.
This is a result of breaking down functional forms into primitives. As the

number of statements increases the repetitions also tend to increase.

5.3 Code Level

After an FP program is parsed into CDF we can translate it into the
C language and run it on a VAX 11/780. This is done simply by macro sub-
stitution. Let us look at a simple example of how this translation from CDF

to C is accomplished.

For ezample:

J0:SL1f1
11:5L2"

can be casily thought as :
schar fO()

ezlern *char [1

return(selectgifl ()
*char f1{)

extern #char input;
returnfselect(2,input});

The C compiler does its optimization on the C code. Depending on
the target language the final code can be further optimized. If micropro-
gramming code is employed to perform the primitive calls, it can be fine
tuned through careful programming. This would only be a one-time job.

Because primitives are used over and over again, the savings may be great.
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CHAPTER 6
SOLVING ORDINARY DIFFERENTIAL EQUATIONS USING FP

The field of numerical problem solving can be divided into many
classes. Some examples are linear and non-linear programming, ordinary
differential equations, partial differential equations. In this chapter we exhi-
bit the applicability of FP on a particular class: a continuous system simula-

tion requiring the solution of a system of ordinary differential equations.
6.1 Generalized Model

A large class of engineering problems when expressed mathematically

take on the form of systems of simultaneous ordinary differential equations

[KARP-81].

T d~y dp
ﬂt.-"&".— + Ry oy + a3t = Fi(ty,slim)

Ly 4™~y dy,
a— + —-l—r veen —_ = LYy L]
b + Gy ot G ok Folt.gy,emr¥m) (6.1)
d"y., a('-uyn dy

-
“u.s‘I',T + “m.n-lw + ...+ "m.lT + dmotm = Fult.31, . ¥m)



6.2 General Approach in Solving the System of Equations

A common approach to solving these equations numerically is to
transform these equations into a set of first order equations. This is some-
times called the "state variable” approach, in that a new set of variables is

created. For example, the following equation :

"y d~y dy -
ay— - + 8y ——= D + e b y— i + agpy ™= Flz,y) (62)

can be rearranged into a set of first-order equations:

dw
'ﬂ = F, :(S,ﬂ(x)-V(z).---- .II(-))

"(2)
- Falz,50) ¥ay---- 1¥(w)
(8.3)
d%n)
- - Fz.00) W2y 1Bm)
where yop, &a),---- U € 3 New set of state variables given as:
K=y
dir)
Yo = d;
dyn
=t (6.4)
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dkn-
om0

(6.4)
By substituting these new state variables into (6.2) and rearranging (6.2) we

obtain equation {6.5).

(8.5)

Each of the remaining state variables is integrated numerically in
term, using the solutions for the previously considered state variables. (8.5}
we may obtain a equation for dye.), and dya.s from dy.., and on. Applying

this method to equation (6.1), we obtain:

r -

iy 1 'l 'y
F - ';'l": .Fx(l-m,----v- }apa 'F i -61,0”1‘
w1 L
d‘. R —— Fz(‘,yl,...'y- )-dz'_‘l —F .- -32032
P | ) (6.8)
dy%, 1 - 1!"']
T {F'"‘ R B

Integrating these we obtain:
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- ™'y
- = —— | Ft, 315 Um )’-dl.n—l['-d';;'_'r T =ty +HIG

dy3! ey [ ™y

— T m— 1 F fvﬂ e lim )— - l 1 | e +I

de~! fo 4| b s WP i G (6.7)
dy%? ty ™y
= - foa—,_, Fualtirsestm )‘“-.n-l[ T"l‘] t ~8molYm| +1Cn

This integration process is performed uatil all state variables are obtained.
8.3 Using Functional Language

The need for hiera.rchicai representation at the user definition level
has become clear to us as well as to others [NILS-74] [BEKE-88| [KARP-77].
This hierarchica_l representation is achieved by separating the program into
four blocks: a function block, a constant block, a flow biock, and an input

block. In general the program for solving a set of O.D.Es would look like:

/* FUNCTIONS »/

f1(x1, x2, .... xn) = .......
(... .

fn
sum(wX,y,2) =W+ Xx+y+z
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/* CONSTANTS s/

const =

tablel = { (0.1, ..), () )
table2 = {( ....

/* FLOW s/

yl =sum(Fl, ..... )
y2 = INT(yl);
y3 = INT(y2);

next = [v1, ¥2, ¥3, ...];
/* INPUT »/
input := (IC1, IC2, ..... , h)

Each of these blocks is discussed in one of the following sections.

6.3.1 Function Block

This block contains the definitions given by the user. In our example,

in equation {6.1) we need to evaluate:

Fltinye - Ym)

Ftnye - - ym)
(6.8)
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The user can specify all of these functions in mathematical terms and the
notation for the necessary function definitions in infix form. Any other func-
tions which the user requires, such as summation or product can also be
expressed here. The format of function definitions can be hierarchical. That
is, a user is able to define a function, using other functions. These expres-
sions can be transformed into prefix form. Optimization can be performed
during this conversion from infix to prefix of the execution trees defined by
these definitions of functions in order to obtain a minimum beight tree. If
we do not want to explore all possibilities, we use some heuristic method to
improve the transformation of trees. Of course, block sharing should also be

allowed; any identical subtrees can be shared.

8.3.2 Constant and Table Block

In solving this kind of simulation problems, we need constant scalings,
constant additions, and table look-ups. These data are not part of the pro-

gram input but rather part of the program.

8.3.3 Flow Block

Program statements are written in this block. It is to the user’s
advantage and compiler writer's advantage to allow the infix notation only.
Some functions may need to be defined as primitives, such as iteration, SIN,
COS, TAN etc. The functional form composition allows the user to express
the ordering of the defined functions. All state variables within the conséruc-

tion functional form are calculated at the same time. If the program is exe-
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cuted in a data-driven fashion, at any point of execution, all data necessary
are ready for that particular evaluation. This style of execution allows the

compiler to explore the parallelism among the different equations.

6.3.4 Input Block

This block contains the input vector, and any special conditions for
the system. It may also contain information about how the program is to be
applied. Other information included in this block, is related to hardware
resources such as number of processors, memory size, etc. This is included to

help the compiler to do pre-run time optimization and allocation.

8.4 An Example

The system we are modeling has two pendula and a spring. The

spring is attached to both pendula to create feed-back effects. See figure 6.1
for the physical set-up. [KARP-81]

8.4.1 Mathematical Derivation

Two O.D.E.s are employed to model the system. For a single com-

pound pendulum the second order differential equation is given by:

W

7
CUE

-WSrin(@) ==

where
W is weight of the pendulum
G is gravitational constant
S is the length from pivot to center of gravity
L is total length of penduium

49



Figure 6.1 Physical set up of the coupled pendulums.
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A friction term is assumed to be proportional to d'g?' The total force

acting on the single pendulum comprises : forces from gravity and from the
spring. The force from gravity is already included in equation 6.9. We then
have to introduce another term for the spring force. This force is propor-

tional to the displacement of the spring (F=kz).

Writing this model as differential equations we obtain:

&0 Dds
ML + M,GSsind, + SLEN K (y-z) + —— =0

Oc 93 . “2
Myl*—=+  M,GSgindy - SLENK (p-2)+ D-—7= =0
a ¢ (6.11)

Each of the terms in figure 6.1 are defined as:

W1 : M1+G (M1 : mass for the right pendulum)

W2 : M2+G (M2 : mass for the left pendulum}

S1 : length from pivot to the center of gravity of right pendulum
52 : length from pivot to the center of gravity of left pendulum
SLEN : Ceiling to Spring

D : the distance belween two pendulum

X : is the original length of the spring

Y : is the length while in motion

MU : is the friction coefficient

Constants are obtained from standard tables. Physical measurements
are actually taken to determine the length of the spring (X), the distance

between two pendula {d), the length of the pendulum(L), and their weights

(W1, W2). They are:
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G=1980
=44 cm
=59 em
=40 cm
=15

M1=10 gm

M2=10 gm

SLEN=46.5 cm

S1=48 cm

S2=48 cm

MU=0.03

The O.D.Es derived are:

dé,
+ 51—""‘ + F\(8,,6,) =0

dé
- bg—t + Flf183 ) = 0

Fy = %l( wsindy+SLEN K (Y-X}

Fy= %( wpsind-SLEN K (Y-X)

0,
dr
£t
dé
where;
and

4102

Y= \/ (D*+2L(sin ( 912—82 4L D{sin ( fibs Jeos ( 5 )

Elements al, a2, b1, b2, wi, w2, X, D, L, SLEN, K, ... are

stants.

2
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(6.12)

(8.13.a)

(6.13.b)

(6.14)

all con-



w = M G5

g = MGS;

Therefore, there is only one term on the left side :

i'l— -{bl +F,]

where

GS SLEN K (Y-
F = —L-‘-m(el) +SLENK(FX)

M L2

F, = T it + SLEN K (Y-X)

M,L?
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(6.15.b)

(6.15.¢)

(6.15.d)

(6.15.e)

(6.15.1)

(6.16.a)

(6.16.b)

{6.17.a)

(6.17.b)



A mapping from this mathematical definition into an FP program is

obtained more directly than obtaining a mapping into a conventional

language program.

8.4.2 Programming in Functional Langnage

Let us convert this model into a graphical representation similar to

the solution on an analog computer as shown in figure 6.2.

Each box can be easily defined in FP infix form. Let us use the Euler
method to solve these integrations. We give the functional language
specification in the following section and its graphical representation in Fig-

ure 6.3.

/s FUNCTIONS s/

DDTH(b, DTH, f) = (-1)*(bsDTH+{);
F1(thetal, theta2) == (G*S1/(L+L})*SIN{thetal)+
(SLENsK»*(Y-X))/(M1=LsL),
F2{thetal, theta2) == (G#S2/(L+L})*SIN(theta2)-
(SLEN*K*({Y-X))/(M2+LsL);

|+ WHERE 3/

Y(thetal, theta2) = SQRT(D*D+(SIN((thetal-theta2)/2)s2«L)s+2
-2#D»(SIN{(thetal-theta2)/2)*2¢L}*
COS((thetal-theta2)/2);

B(mu,m,L) = mu/(mlsL+*2)
INT(d,ic,h) = d*h +ic

/» CONSTANT ¢/

G = 980.0
X =44.0
L = 59.0

= 40.0
SLEN == 46.5
M1 = 10.
M2 = 10.
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0, 8
DDTH1 [ INT ™ INT
b2
L '9'2 9.2
DDTH?2 INT INT
————ai

Figure 6.2 Block Solution of the Example
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§1 == 48.0

S2 = 48.0

MU == .03

K=1.5
/+ MAIN PROGRAM +/
/+ FLOW s/

main == [F(timeup, next, CM(main, [next, b, Tminush|));

next = [ [pextthetal, nextdthetal], [nexttheta2, nextdtheta?| |;
timeup == CM(LT,|SL3, Ko|};

h == SL2;
T == SL3;

nextdthetal == CM (INT , [ddthetal,dthetal,h});
nextdtheta? == CM (INT , [ddtheta2 dtheta2 hi);
nextthetal == CM (INT , [dthetal thetal hi);
pexttheta2 = CM (INT , [dtheta2 theta2,h]);

thetal == CM{SL1,SL1,5L1};
theta2 = CM(SL1,SL2,SL1);

dthetal == CM(SL2,SL1,SL1);
dtheta2 == CM{SL2,SL2,SL1);

ddthetal == CM(DDTHLI.[bl, dthetal, f1};
ddtheta2 == CM{DDTH2.[b2, dthetal, f2};
/ # caleulate 1, {2 and b1, b2 +/
f1 = Fl(thetal, theta2);
2 = F2{thetal, theta?2);
bl = B(MU, M1, L);
/* END
/* INPUT =/

{((0.1, 0), (0, 0}), 0.01)
This program is analyzed using the Berkeley version of the FP

dynamic trace and static package [BADE-83]. The number of specific opera-

tions, the maximum number of operations per iteration, and the use of
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constants are given in the following tables.

Function | Total Max./step Average/step
+ 198 4 2.25
- 263 7 2.99
* 880 0 5
264 0 6
stn 132 6 3
€os 44 2 2
sqrt 44 P 2
power 88 4 4
all arith. 1605 23 4.56
all 1913 25 4.83

Table 6.1 Parallelism of Operations

We can also study the usage of constants to determine where and

when to put the value of the constant into the system.

Constant | Total Max./step Average/step

2 352 16 16
-1 22 1 1
0 22 1 1
G 44 2 2
X 44 2 2
L 308 14 14
D 132 6 6
SLEN 44 2 2
K 44 2 2
M1/M2 88 4 4
S1/S52 44 2 2
MU 4 2 2

ALL 1210 50 3.75

Table 6.2 Frequency of Constants in the Example

This information gives us a preliminary feedback on the maximum
parallelism which can be obtained for a particular problem assuming a given
hardware organization. We observe that with the maximum parallelism

obtainable we still need 16 serial steps.

58



constants are given in the following tables.

Function | Total Max./step Average/step
+ 198 4 2.25
- 263 7 2.99
* 880 0 5
/ 264 0 6
sin 132 6 3
cos 44 2 2
sqrt 44 2 2
power 88 4 4
all arith. 1605 23 4.56
all 1913 25 4.83

Table 6.1 Parallelismm of Operations

We can also study the usage of constants to determine where and

when to put the value of the constant into the system.

Constant | Total Max./step Average/step

2 352 16 16
-1 22 1 1
0 22 i 1
G 44 2 2
X 44 2 2
L 308 14 14
D 132 6 6
SLEN 44 2 2
K 44 2 2
Mi1/M2 88 4 4
S1/52 44 2 2
MU 44 2 2

ALL 1210 50 3.75

Table 8.2 Frequency of Constants in the Example

This information gives us a preliminary feedback on the maximum
parallelism which can be obtained for a particular problem assuming a given
hardware organization. We observe that with the maximum parallelism

obtainable we still need 18 serial steps.
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8.5 Discussion

From the above example we observe that there is a close relation
between the mathematical derivation and the functional programming tech-
pique. It would be more natural and intuitive for engineers and scientist in
FP than in FORTRAN or other procedural languages. Because the graphical
representation for the model and the FP solution are similar, it is easier to

program in FP than in conventional procedural languages.

\
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CHAPTER 7
CONCLUSION

Functional style of programming offers many advantages. It provides
an alternative in solving problems and utilizing concurrent hardware
resources. Backus' functional programming language has been used as the
base for many unconventional architectures. Most of these architectures,
however, are based upon the reduction scheme of execution. This thesis
discusses a way of decomposing functional languages into an intermediate
form which can then be executed both in a demand-driven or in a data-
driven fashion. This intermediate form, called Complete Decomposed Form
(CDF) may not necessarily be the only intermediate form into which FP can
be translated, but it provides a natural method of extracting the sequential
aspects implied by the composition. It provides not only an intermediate
level between the FP language and the hardware resources but also a bridge
between two extremes of machine model - sequential conventional machine

and complete asynchronous parallel scheme.

In this thesis we experimented with translation of FP programs into
CDF and CDF into C codes. A simple example of a real system is modeled
and solved with functional language. There are basically three levels of
parallelism that can be exploited in this application. The first is in the simul-
taneous equations. Each equation can be executed separately, exchanging

parameters after each cycle. The second level of parallelism is in the function
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evaluation. The last level is in the intergration algorithms. In this applica-
tion we restricted the method of execution to the parallelism inherent in the
functional form construction. Parallelism in functional forms apply-to-all and

associate insert have not been taken advantage of.

During the process of writing this translator, we also observed that
the optimization is different from conventional compiler optimization. There
are three possible levels of optimization in the FP compiler environment. On
the FP level, algebraic transformation provides global modifications to the
FP program without a full understanding of the algorithm. On the CDF
level, space compaction is performed by the elimination of commonr subtasks.

On the C level, conventional compiler optimization techniques can be used.

A more complicated benchmark could be studied to experiment this
methodology. The complexity of the specification, the parailelism inherited
from the problem, the speed-up acquired with this approach and the over-
head needed should provide us an understanding to the further study of

using FP in high speed simulaticn.

Other methods of decomposing FP programs should be investigated
and their implications should be studied. Task allocation is another subject
needed to be investigated further. Given a type of intermediate form of FP,
allocating these codes into separate processors requires a knowledge of pro-
gram behavior and hardware resources. In particular, the communication

cost between tasks should be considered.
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APPENDIX A
The Methodology of Approach
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APPENDIX B
Brief Specification of Language

This appendix includes an informal description of the primitives and func-

tional forms employed by the compiler.

SLk selects the k'th element of a vector.

PK  picks the k'th element out of a vector.

ID returns the object itsell.

TL returns the tail of a vector, (all but head).
FR returns the front of a vector, (all but last element).
LA  returns the last object of a vector.

[X returns the first permutation of n integers.
AT is true if the object is an atom, false if not.
NL s true if the vector is the null sequence, false if not.
LN returns the length of the vector.

+  returns y+z. (integer arithmetic)

- returns y-z. (integer arithmetic)

*  returns y*z. (integer arithmetic;

/  returns y/z. {integer arithmetic

#+ returns y+z. (floating point arithmetic)

#- returns y-z. (floating point arithmetic)

#x* returns y*z. (Hoating point arithmetic}

#/ returns y/z. (floating point arithmetic
#SIN returns sin(y). (floating point arithmetic)
#COS returns cos(y). (Roating point arithmetic)
#TAN returns tan(y). {floating point arithmetic)
#EXP returns exp(y). (floating point arithmetic)
#POW returns v z.  (floating point arithmetic)
#LOG returns log(j?. (floating point arithmetic)
#SQRT returns sqrt(y).(Aoating point arithmetic)
&  returns y AND z,

| returns y OR z.

! returns NOT x.

TR returns the transpose.

EQ is true if y = z, false if not.

GT is true if y > z, false if not.

LT istrueif y < z, false if not.

DL  distributes left element to all vectors in x.
DR  distributes right element to all vectors in x.
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AL appends first element to front of vector.

AR  appends last element to end of vector.

CT concatenates vectors to form one vector.

PR forms vector into vector of pairs.

SP splits a vector into two halves.

RL rotates the vector circularly to the left.

RR rotates the vector circularly to the right.

CL circularly rotates vector k times to left.

CR circularly rotates vector k times to right.

RV reverses the order of objects in a vector.

CM routes outputs of function into the input of the next.

pF forms vector of results of many functions applied to x.
conditionally returns the resuit of one of two functions.

Ky returnsy.

IN recursively applies a function into a sequence Xx.

Al  recursively applies a function into binary tree x.

AP  applies the function to all objects in x.
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