A DATAFLOW MULTIPROCESSOR: PROGRAMMING,
SIMULATION AND PERFORMANCE PREDICTION

Pak Kuen Chan November 1984
CSbD-840044

¢ To my Motherland ©
© To my Parents ©

ACKNOWLEDGEMENTS

Many thanks to the members of the "FP group” at UCLA: Professor Milos
Ercegovac, Professor Tomas Lang, Dorab Patel, Jose Arabe, T.M. Ravi, Shih-
lien Lu, Paul Tu, Martine Schlag and John Worley for participating in construc-
tive and seemingly endless discussions throughout the development of this thesis.

I wish to express my gratitude to members of my thesis committee, in par-
ticular to my adviser Professor Milos D. Ercegovac, for their relentless and
patient pursuit of perfection during the preparation of this thesis.

Last but not the least, the work described in this thesis was largely spon-
sored by the NASA Lewis Research Center grant NAG 3-132 "Dataflow Comput-
ing Approaches in High-Speed Digital Simulation”, I deeply appreciate their sup-
port.

iv

TABLE OF CONTENTS

page

1 INtrodUCHON ...c.ciiiiniiiiiiiiiiiiiiii it rrersare s s rsssnancesssnserensnnnns 1

1.1 Problem Statementccociiiminiiiiiiiiiriiiiiisnsiiarncarecasaenes 1

1.2 ASSUIDPHONS ..ecouvniiiniriiiinnieereiniacearecerassssnsasassasiorasasacsonne 3

2 A Programming Methodologycccceviiiiiiiiiiiniiiiiiniiiiccict e, S

2.0 OVEIVIEW ..oiiviiiiiiiininrnnierieiiitsiiiatitenissssonenstsnnnssnarananes 5

2.1 Basic ASSUMPLONS ...covnimieiiiiincinienrinctrasietirestrasssssssasonnes 5

2.2 The High-Level Languagecccoviiiiiiiiiiiiiiiiiiciccicnaeannns 6

2.3 Functionai Program Languages and Dataflow 10

2.4 Code Generation Through bolic Interpretation 11

2.5 Levels of Abstraction, Recursion and Parallelismc.c.....c. 14

2.6 A Continuous-system Simulation Examplecccccvvinincncnnnns 22

3 The Machine Organizationcccccciiiiiiiriinrmrrcrceeecicnroscnnnses 27

3.0 OVEIVIEW ...cucuiiiireiiieiiiieiniettesnrissssssnssesnssnstrcsatinnenssnnnnns 27

3.1 The Dataflow Task Sequencing Modelcoveuiiiiiiiniinnnn... 27

3.2 ification of the Architecturec.oceveviriiniivecieiecriineen, 30

.2.1 The Communication Interface Sectioncccccccnnneen 32

3.2.2 The Execution SeCtOnc.ceoveieienimmmieiiariiiiieieniiincaenes 35

3.2.3 The Output Sectoncccceiviiireieninieriiircaiesrnracrosocasens 36

3.3 System EXtensioncccccceeiieniiiiiiriirienciitiicittesiintiansanennenss 37

3.4 Implication of the Arrival Counts - Pseudo Dependence 38

3.5 Implementation Considerationsccccceeeevieiiiinivernnenns 42

4 Performance Evaluationcccccciciiiiiiiiiiiiiiiininisiiesssnsscsrcnsosenees 43

4.0 OVEIVIEWcoimiiiuiiimiiiniiiiinaansanassnans ettt ereraeranas 43

4.1 DefinitionScc.ceveimiinieieiecrienreimirnesiscencusesoserasesssossasans 43

4.2 The Simulation Environmentc.cociiererivrnrrnconssnsnsenens 45

4.3 An Equilibrium Model based on Mecan-value Arguments 54

4.4 Performance Projectionsccceceviviiiiiininiiniiiiiniineen. 59

S ConCIUSIONcuiiiiiiiiiiiiiiiiiiiiiiiiirr et aar s s e 65

Appendix A Coupled Pendulum Examplecccoiiiiiiiiiiiiiinnnnn. 68

Appendix B Machine Code for Processing Nodesccccviimininenennns 72

Appendix C Linkage Tablescccooimiiiiiiiiiiiiiiiiiiiiceceienes 77

REFERENCES ...ttt st e s e s s e e s a e s em s naans 80
?

LIST OF FIGURES

Figure 1.1. Contemporary Programming Methodologyc.ceeet
Figure 1.2. A New Programming Methodologyc.cevveiiiriieiiniininen,
Figure 2.1. 8-point FFT in FPLccoviaiiiiiii e cennnee
Figure 2.2.a. Computational Graph of FFT Algorithm (Low-level)
Figure 2.2.b. Computational Graph of FFT Algorithm (High-level)
Figure 2.3. Forward Triangularization in FPLcoocvveiniinnvncinnnnen.
Figure 2.4. Computational Graph of Forward Triangularization
Figure 2.5. Treatment of Value-dependent Conditional
Figure 2.6. Physical set up of the Coupled Pendulums

Iélrgur;)l‘l . Coupled Pendulums Example (High-level Computational
APH) it sa st e e e e nans

F(;Tgurﬁ)Z.S. Coupled Pendulums Example (Low-level Computational
721 1Y U RS

Figure 3.1. Tokens Labelling/Relabelling in a Loopccccveeeennninniaies
Figure 3.2. The Multiprocessor Organizationccccceeveveceieneniannes
Figure 3.3. Processing Node Organizationcciceeinieniininesinseennen,

Figure 3.5. The ES Configurationoccoiiiiiiiiiiiiiiciiicinieiennnnens
Figure 3.6. System EXtensionccccoiiiiiiiiiiiiiniininiiinariccecaneas
Figure 3.7. A Scheduling Problemccooiminiiiiiiiiiiin,
Figure 3.8. Segment of a Task Graphc.ccooiimrmiiiiiiniiiiniiianinen,
Figure 4.1.a. State Transition Diagram for the CIPcoeeeeeiiniiains
Figure 4.1.b. State Transition Diagram for the ES ...
Figure 4.1.c. State Transition Diagram for the OSccoeeinnien,
Figure 4.2. Gantt Chartscccoeomiiiiiiiinnieiiieireeeeieierrreanraeens

Figure 4.3. A Binary Tree and A Sequential Task Graph
Figure 4.4.a. NRT V8. T, «ccevnriiemniiiimnimimiiiiiisesinaireniiiiniaisat

Figure 4.4.b. U, vs. T,
Figure 4.4.c. U, vs. T,
Figure 4.4.d. U, vs. T,
Figure 4.5.a. Svs. N ..
Figure 4.5.b. NRT vs. N
Figure 4.5.c. U. vs. N
Figure 4.5.d. U, vs. N

--

--

--

--

--

R

2 2B 8

ABSTRACT OF THE THESIS

A Dataflow Multiprocessor: Programming,
Simulation and Performance Prediction

by
Pak Kuen Chan
Master of Science in Computer Science
University of California, Los Angeles, 1984
Professor Milos D. Ercegovac, Chair

The research described in this thesis investigates a programming methodol-
ogy and a dataflow multiprocessor intended primarily for digital continuous-
system simulation. The programming approach is based on the functional style
language that is good for hierarchical specification of concurrent algorithms,
high-level to machine-level code translation, and task partitioning. While func-
tional style languages are conceived by others as a way to organize non-von Neu- -
mann type computers, we are primarily interested in using a functional program-
ming language to generate efficient machine task code executed on a network of
conventional microprocessors; parallelism is exploited at the machine-level by
sequencing the tasks according to the dataflow principles. Restricting the applica-
tion domain to continuous-system simulation makes implementation of the mul-
tiprocessor both pragmatic and feasible. A simulator of the multiprocessor is
built to facilitate architecture fine tuning, to experiment with heuristics for parti-
tioning and allocation, and to study various concurrent algorithms. This simula-
tor, together with some analytical performance analysis, helps to justify the pro-
gramming methodology and the dataflow multiprocessor design.

CHAPTER 1
Introduction

1.1 Problem Statement

This thesis investigates a programming methodology and a multiprocessor
system intended for applications such as continuous-system simulation.
Continuous-system simulation implements models of dynamic systems described
by a set of differential equations [Korn78]. The large volume of computation
involved makes continuous-system simulation a possible candidate for multipro-
cessing. In examining the classical numerical methods of solving differential
cquations, various researchers [Fran78] indicate that parallelism can be both
attained at the equation level and the sub-equation level where arithmetic opera-
tions may also be executed in parallel. This suggests that a multiprocessor with a
two-level hierarchy may be well suitable for the application.

Contemporary programming methodology [Bueh82, Mako83] for
continuous-system simulation may be summarized by Fig. 1.1. The user specifi-
cation is in some equation-oriented continuous-system simulation language such as
CSSL. Their cfforts involve a pre-compiler which converts user specification into
FORTRAN code. This is followed by a parallelizer which transforms the sequen-
tial FORTRAN code into a dependency graph. The dependency graph is further
analyzed by a scheduler to allocate object code to a multitude of processors.

:{"-‘. %

Sequenital version of . FORTRAN . |Dependency Paraliel
Pre- I alleliz Schedul R —.
HL Specification compler i—ge ™| Pardllelizer e il maren

Figure 1.1. Contemporary Programming Methodology
in Digital Continuous-system Simulation

Chapter 2 discusses a different programming methodology for the high-
level specification of computational algorithms. While the focus is still on
continuous-system simulation, it will be illustrated that our approach is applicable
to a broader range of numerical problems such as Fast Fouricr Transform (FFT)
and matrix inversions.

Our approach involves using Functional Programming Language (FPL) as
the high-level specification of an algorithm. FPL is chosen for its semantic
clegance, easc of expressing implicit and explicit concurrency, expandability, and
modularity [Back78, Erce83). The high-level specification is fed into a symbolic
interpreter [Schi83] to generate a computational graph. The computational graph
is subsequently analyzed by a task partitioning and allocation program to generate
the object code for a proposed multiprocessor. The task partitioning and alloca-
tion program attempts to optimize the communication and computation time by
partitioning nodes in a computational graph into sets to localize information flow.
Fig. 1.2 depicts the methodology.

Functional Program Symbolic Computational | Task Partirioning Paraliel
r——————
HL Specificaiion Interpreter Graph & Allocaticon Code

Figure 1.2. A New Programming Methodology

Chapter 3 describes a2 multiprocessor which executes the computational
graphs according to the dataflow model [Denn83]. This dataflow model presents
no explicit constraints on sequencing of execution. Sequencing is done intrinsi-
cally and asynchronously by the arrival of data. Accordingly there is no need for
a centralized control, and at least in principle it is possible to exploit all the paral-
lelism inherent in the computational graph.

The multiprocessor system is tailored for continuous-system simulation
using low-cost implementation. It consists of a network of processing nodes, pro-
viding concurrcnt operations at the equation-level. Within each processing node,
there are one or more processors to provide parallelism at the sub-equation level,
Essentially, each processing node has two sections: one for handling internode
communication and the other for the execution of object code. These two sections
run autonomously thus permitting overlaps between communication and computa-
tion. Extension of the system to larger number levels of parallelism, and imple-
mentation with off-the-shelf components are also discussed in Chapter 3. '

Chapter 4 presents two approaches for the performance analysis of the
multiprocessor system. The first approach involves the conmstruction of a
machine-instruction level simulator to emulate the behavior of the machine. In the
second approach, a simple functional model based on mean-value arguments is
presented to analyze the performance of the machine.

Chapter 5 concludes with a summary on the performance of the machine
and suggests directions for further research.

1.2 Assumptions

The work presented in this thesis is supported by a Functional Program-
ming Language symbolic interpreter, a task partitioning and allocation system,
and a microscopic simulator. These supporting software are cither operational or
in the final stage of development at University of California, Los Angeles

[Schi83, Ravi84].

The proposed programming methodology is restricted to structurally deter-
minate* and computational intensive type problems. Problems that involve data
(symbolic) manipulations to be determined by input values are out of the scope of
this context.

The proposed multiprocessor is tailored for continuous-system simulation.
It is not intended to compete with general-purpose dataflow machines such as the
Manchester, Dennis’ or Arvind’s machines [Gurd80, Denn83, Arvi78]. There is
also no provision for handling large data bases or data structures; tokens are
assumed to be scalars.

At the implementation level, the proposed multiprocessor requires large
(compare with von Neumann type computers) amount of random-access
memories and dual-port memories to achieve high speed computation. It is there-
fore assumed that the cost of memories is economical enough to make the imple-
mentation of the proposed multiprocessor system feasible.

Study has shown that machine performance is largely influenced by the
quality of task partitioning and allocation strategy [Demi82]. Therefore, any con-
clusion drawn about machine performance while ignoring task partitioning and
allocation strategies may be deceptive. Since this thesis does not cover task parti-
tioning and allocation strategics, the performance analysis presented in Chapter 4
is by no means extensive or complete. The intention of Chapter 4 is to provide
an estimate of the expected performance and to set up an environment for further
investigation and study of the proposed system.

* Informally, structurally determinate programs have the property that the sizes (form) of data
structures used in the program depend solely on the form or structure of inputs and not on the
value of inputs. An example of structurally indeterminate programs is factoriai(n). When
recursively defined, the stack size required to evaluate factorial(n) depends on the value of the
input n.

CHAPTER 2
A Programming Methodology

2.0 Overview

This chapter presents a methodology for generating the object code for a
multiprocessor. The source code is given in a Functional Programming Language
(FPL) [Back78]. The object code consists of concurrent scquential tasks
represented in machine-level code; the tasks are synchronized according to the
dataflow principles [Denn83]. The translation from the source language to the
machine-level code is done in two steps. First, by a symbolic interpreter which
exercises the algebraic conmstructs, detects parallelisms and dependencies, and
extracts primitives defined at the user-defined level of abstraction [Schi83].
Second, the interpreted source which corresponds to a directed graph whose
nodes are primitive operations, is passed to a task partitioning and allocation pro-
gram [Ravi84] to produce machine-level code to be subsequently run on the
dataflow multiprocessor.

2.1 Basic Assumptions

This section outlines the assumptions that we make with respect to the
application eavironment of the system, the high-level language, and the mapping
from the high-level language to the machine-level language.

This methodology is best suited for scientific or numerical type computa-
tions which are characterized by having high computational requirements and
static program and data structures. Particularly for an application such as
continuous-system simulation, the simulation model of the system, which is a set

of differential equations, is well specified before hand. It is usually the case to
study the effect of system outputs upon variations in the initial conditions and sys-
tem parameters. Consequently, the same simulation model is rerun (multiple
runs) a number of times with different initial model parameters and/or initial con-
ditions. Only in rare occasions will the strucrure of the system model be changcd
from simulation run to simulation run [Erce84, Korn78]). The machine-leve} code
generated by this methodology is assumed to be run frequently enough so that the
overhead in the extensive analysis of the source language can be offset by the
benefits of the efficient machine-level code. It is our belief that in continuous-
system simulation the functional style programming makes the analysis more
manageable.

The implementation of the proposed multiprocessor system is based on
commercially available microprocessor components. The machine-level language
of the multiprocessor is therefore of conventional type. The system organization
is discussed in detail in Chapter 3.

2.2 The High-Level Language

We employ Functionai Programming Language (FPL) as the high-level
language. It is essentially the one proposed by Backus, known as Backus’ FP.
The FPL that we use differs from Backus’ FP in minor syntactic details. FPL is
chosen for its semantic elegance, ease of expressing implicit and explicit con-
currency, expandability, and modularity [Back78, Frie78]. Here, we give an
informal description of the language, details can be found in [Wori84].

Functions and

Functional Forms Description

k sclects the k’th element of a sequence.

id returns the object itself.

tail returns the tail of a sequence, (all but head).

front returns the front of a sequence, (all but last element).
last returns the last object of a sequence.

atom is true if the object is an atom, false otherwise.

null is true if the sequence is the null sequence, false otherwise.
length returns the length of the sequence.

+ returns y+z.

- returns y-z.

* returns y*z.

/ returns y/z.

and returns y AND z.

or returns y OR z.

not returns NOT x.

transp returns the transpose.

eq is true if y=z, false if not.

gt is true if y>z, false if not.

1t is true if y<z, false if not.

distl distribute left element to all elements in x.

distr distribute right element to all clements in x.

apndl appends first clement to front of sequence.

apndr appends last clement to front of sequence.

concat concatenates sequences to form one sequence.

pair forms sequence into sequence of pairs.

split splits a sequence into two halves.

rotatel rotates the sequence circularly to the left.

rotater rotates the sequence circularly to the right.

reverse reverses the order of objects in a sequence.

@ routes outputs of function into the input of the next.
[] forms sequence of results of many functions applied to x.
if then conditionally returns the result of one of two functions.
%y returns y.

! recursively applies a function into a sequence x.

I recursively applics a function into binary tree x.

& applies the function to all objects in x.

Table 2.1. Brief Description of FPL

A functional program consists of objects, functions, functional forms,

definitions and a single operator called "application”.

a.

Objects

Objects are numbers, symbols, or sequences. A sequence
<Xxy,X3, * * * x> of objects consists of x's which are cither numbers, sym-
bols, or sequences. Notice that the notion of "object” is recursively
defined; we refer to objects which appear at the first level of recursion as
top level elements. Objects which are not sequences are referred to as
atoms {cxcept the empty sequence < > which is considered both as an
atom and a sequence).

Application

This is the operation of applying a function to an object. For example, to
apply the addition function (+) to the object <1,2> we write +:<1,2> =
3.

Functions

Functions are applied to objects and they produce objects as results. Most
of the functions operate on sequences. Other functions operate directly on

atoms.

Table 2.1 contains an informal description of each of the functions
used in FPL.

Functional Forms

Functional forms are function-forming expressions. They are used to com-
bine existing functions to form new functions. Examples of functional
forms are composition (@), construction ([1), conditional(if them), constant

(%), insert (1), and apply-to-all (&) (see Table 2.1). Functional forms
offer explicit parallelism to the language which makes it attractive for the
high-level specification of algorithms.

1. Construct functional form

allows parallel application of several functions across the same
object, i.c.

[f1f2s * * - Solx = <fixfoum frx>

2. Apply-to-all functional form

allows parallel application of a function f to cach top level element
in an object, i.e.

&f:<x1,X2, * * * Xy = <fX1fixp, v 0 - fixy>
3. Linear insert functional form

allows a simple rcp;ucntation of pipelined operation on a homo-
geneous structure, i.e.

i<xyxg, * 0 0 x> = fixy, Ifi€xy, - - 0 x>
4. Associative insert functional form

allows a simple representation of parallel operations by a binary
tree, i.c.

[f:<x1,xg, - - - x> = fi<[fi<xy, - - 0 X 21>) [Fi<X|2ps - eSS

Deflinitions

Definitions define new functions in terms of existing ones. Example,
define f{ object names) g@h end

means that the atomic function f is to stand for the composition (@) of g
and f, namely, g@h. The object names is a list of zero or more mnemonic
names. They allow the user to give a3 mnemonic name to each object in
the input sequence.

2.3 Functional Program Languages and Dataflow

Even though we are using FPL as the high-level language, we are not
building an FP machine [Mago80; Trcl80, Pate81, Kcll83) to directly execute the
language. Instead, we first translate the FPL specification to a computational
graph; then we represent the computational graph using conventional instruction
sets (according to the dataflow principles). The reasons for not employing a
direct execution approach on the FPL specification are discussed next.

It is observed that when a user specifies an algorithm in FPL, he somehow
unavoidably uses a large amount of routing functions and functional forms, along
with arithmetic operations, to describe the algorithm [Wori83]. In FPL,
Sunctional forms are used to express dependency or explicit concurrency. They
arc uscful for analysis and exploitation of parallelism. Routing functions are func-
tions which do not change the data values of the object operands, but alter the
objects’ structure. They are used to channel data to the processing sites, where
the data values are processed.

In view of the above facts, if the nature of the computation problem is
relatively static, routing functions and functional forms secem to be superfluous at
run time. In the context of structural and computational bebavior, routing func-
tions and functional forms portray the structural information (the connectivitics
among nodes of the computational graph), while the arithmetic primitives exhibit

10

the behavior of the computational problem.

In order to achieve the goal of generating cfficient run-time machine-level
code from the FPL specification, structural information is identified and analyzed
before run-time by a technique we term symbolic interpretation. This is possible if
the application environment (e.g. production type) and the data structures of the
input object are static.

2.4 Code Generation Through Symbolic Interpretation

It is assumed that the structure of the input object to the FPL specification
is known. The FPL specification is symbolicaily interpreted on the symbolic input
to obtain a graph representation of the computation. This symbolic interpretation
effectively resolves the routing functions and functional forms employed in speci-
fying the algorithm. The result of interpreting the routing primitives is mani-
fested in the topology of the graph, while the arithmetic (computational) primi-
tives which can not be symbolically interpreted are retained as nodes in the graph.
The actual computation of the primitives is deferred uatil the values of the argu-
ments are known at run-time. In essence, most non-numerical operations are
pre-processed by the symbolic interpreter to achieve run-time efficiency. In the
context of symbolic interpretation, the FPL primitives can be classified into the
following categories.

a. Computational Primitives

A computational primitive is represented as a node in the computation
graph. Any function can be defined as a computational primitive, thus
allowing the computation to be represented at different levels of abstrac-
tion. This provides a facility for hierarchical decomposition and partition-
ing, and enables primitives to match the level of computation supported by

11

the machine architecture.

b. Routing and Control Primitives

This type of primitive can be symbolically exercised since it affects the
structure of the FPL object to which it is applied and this cffect is deter-
mined solely by the structure of that object. Although these primitives do
not appear as "nodes” in the graph, they are represented in the topology of
the graph whenever they affect the relative positions of the atoms within
an FPL object.

Example
As a simple example of symbolic interpretation, consider the following FPL
program to evaluate inner product:
define IP(vectors) (1+)@(&*)@transp@vectors end

To see the symbolic interpretation in action, take the following symbolic input as
an exampie and apply /P to this FPL object (with functions * and + tagged as

primitives):
<<a ,éz,a3> <by,by,b1>>
1. Composition gives:
(+):«((&*):(transp:<<ay,a3,a3>,<by,bs,b3>>
2. Transpose gives
(&+)@(&*):<<ay,b1>,<a,by>,<a3,by>>

3. Apply-to-all gives

12

(1+):<*:<ay,b1>,*:<a3,b,>,*:<a3,b:>>
4. Insertion gives
(1+):<81,82,83>
then
+:<81,+:<g82,83>>
another addition gives,
+:<g1,83”>
and, finaily,

8123

where g1, 22, 83, 823 and g5 are intermediate variables assigned by the symbolic
interpreter.

opcode operand operand, destination
¢ ay by 81
* a3 by 82
* a3 by 83
+ g2 83 823
+ 81 & 8123

Table 2.2. Intermediate Machine-Level Code for Inner Product Example

The intermediate machine-level code geaerated by the interpreter is shown
in Table 2.2. The final machine-level code, which depends on the allocation stra-
tegy and the number of available processors, has to be generated by the task par-
titioning and allocation program. '

]

13

Notice that after the symbolic interpretation, five simple instructions are
sufficient to represent the inner product algorithm. In the context of dataflow
operation, the variables appear in the instructions as tokens; instructions are
nodes and the connectivity of the graph is implicitly defined by the flow of
tokens. Functional forms and routing functions have been exercised by the inter-
preter to achieve run-time efficiency.

2.5 Levels of Abstraction, Recursion and Parallelism

This section highlights some of the features that are offered by our
approach besides efficiency. We demonstrate that any function can be defined as
a computational primitive, thus allowing the computation to be represented at a
desired level of abstraction. Particularly, it is demonstrated that algorithms which
are coded in a recursive programming style are completely unfolded (provided
that the predicate of the recursion is based on the structure of the FPL object).
This methodology encourages good and efficient program structure and permits
effective apalysis and transformation before the machine-level code is executed.

a. Levels of Abstraction

Fig. 2.1 shows the high-level specification for an 8-point Fast
Fourier Transform (FFT). Fig. 2.2.a depicts the computational graph gen-
erated with the functions *, /, + and — tagged as computational primi-
tives; Fig. 2.2.b depicts the computational graph generated with the func-
tions busterfly being tagged as computational primitives.

As far as task partitioning and allocation is concerned, it is obvious
that Fig. 2.2.b offers a much less complicated graph than Fig. 2.2.a. Task
partitioning can be performed on the function busterfly, and then on Fig.
2.2.b. Though Fig. 2.2.a is fully decomposed, it is unstructured and

14

complicated, whereas, Fig. 2.2.b reflects the modularity that can be
attained from the FFT algorithm.

Comparing Fig. 2.1 with Fig. 2.2.b, we point out that the routing
primitives (select, transp, split) and functional forms (constructs, compose)
which appeared in the high-level specification have been mapped into the
topology of the computational graph.

Recursive Style Programming

Recursive style programming enables a compact, easy to analyze
and elegant specification of an algorithm. However, a direct execution of
the program might result in loss of potential concurrency and incur over-
head in the dynamic invocation of the functions. As a matter of fact, most
reduction machines execute recursive definitions by unfolding them at
run-time. In some sense, recursive definitions are treated iteratively
[Pate81].

Fig. 2.3 shows a recursive specification of an algorithm for the for-
ward triangularization of a system of linear equations. Fig. 2.4 depicts the
computational graph resulting from symbolic interpretation of the recursive
definition on a 5x5 matrix. We can see that implicit computations and
function invocations have been explicated.

Notice that symbolic unfolding of the recursive definition is possible
only if the predicates, which determine when to terminate the recursion,
are structurally dependent. That is, the predicates must consist of one of
the functions: atom, nuil or length. Incidentally, value-dependent recursive
definitions are being treated iteratively by the symbolic interpreter. For
example, if we have a recursive definition like

15

define f1() if p then f2 else f1@ f3 end

where p is a value-dependent predicate, then p cannot be symbolically
interpreted. It will be retained as a predicate in the computational graph,
as depicted in Fig. 2.5.

16

Fast Fourier Transform (FFT)
input structure: pairs of complex numbers
e.g. <<xlyl> <x2y2> .., <x8 y8>>

fit()
Bitrv @ fftstages
end

fftstages()

if eq@(length,%2] then W

ehhe (& fftstages)@split@concat@Bfly@concat@(&W)@Bily
end

Bfly()
concat@1@[[shuffle@{1,3],shuffle@|2,4]] @concat @ (& trans) @split@pair]
end

Bitrv()
if eq@([length,%2] then id else (&Bitrv)@trans@pair
end

w()
end

cadd()
(&+) @ transp
end

csub()

(&~) @ transp
end

anul{)

[-el*@l@1,1@2],*e2@1.2@2]],+e[*@(1@1,2€2),"@2@1,1@2]]
end

Figure 2.1. 8-point FFT in FPL

17

i

A

gl

Graph of FFT Algorithm (Law-level)

Figure 2.2.a. Computational

Aylansampsds #d Y4 »

-
By | |Bfly { {Bfly | {Bfly | |Bfly |_ Bfly
] l’ T ;Lﬁr
— |
— 1 !
1 ! |
l —t— r
1 31 i
| 1]] 1 l
B;y=| Bily | [Bfly Blly Bfly | |BAy | |Bily Bfly
i ‘ T e
L= aj 1=
AT 15 -
Bily Bty Bily Bily Bfly Bfly Bfly Bily
Bfly Bfly | |Bfly | | Bfly Bfly | |Bfly Bty | | Bly
Il T 1 L i TT Tl
abecd e t

i
Hi

F l‘? 1|
ol | [| [| [o]

|
%Il':l 1]uu[J h’"s | =)

si7 g9 g1 g3

Figure 2.2.b. Computational Graph of FFT Algorithm (High-level)

19

Forward Triangularization in FPL
input structure: martrix ¢g. 2x2

<<all al2 b1> <a2l a22 b2>>

gel()

if (eq @ [length, %2])
then [[/@1]]
cse 2@t1

end

t1()

[norm@1,rte@tail)

end

norm()

&/@dist@[1,tail]

end

rte()

&(disti@(1,tail])

end

t2()

apndi@(1,2el@&({&elim)@transp) @distl]

end

elim()

-@R@2,"@1,1@2]]

end

Figure 2.3. Forward Triangularization in FPL

Figure 2.4. Computational Graph of Forward Triangularization

21

Figure 2.5. Treatment of Value-dependent Conditional

2.6 A Continuous-system Simulation Example

As an example of application of FP to continuous-system simulation, we
consider a dynamic system consisting of two coupled peadulums, as exemplified in
Fig. 2.6. The mathematical model of the system is described by two ordinary dif-
ferential equations (ODE’s), egs. (2.1) and (2.2). This system will serve as an
example for the remainder of the presentation.

M, 2"'201+ §,-sind, + SLEN K -(y=X) + D —2L — ¢ 2.1
" i M;-G-§'sinf) + -X) 7l (2.1)
M, . d%, . do,

L5 + MyG-Sysing; — SLEN - K -(3=X) + D —= = 0 (2.2)

where,

G: the gravitational constant
Wy: M -G (M : mass of the right pendulum)
Wiy MG (M5 : mass of the left pendulum)

8, : the displacement of W; from the normal

0;: the displacement of W5 from the normal

8¢ the length from pivot to the center of gravity of right pendulum
Sy the length from pivot to the center of gravity of left pendulum

SLEN the distance from ceiling to spring

L: the distance from ceiling to the bottom of the pendulum
D: the distance between two pendulums

X: the unstretched length of the spring

y the length while in motion

K spring constant

m the friction coefficent

D
LU LLL Gl AL LLLLLLLLLLLL L LSS LLL LS
1 A
b N
\ !
‘l “
1 1
L] i
\ L]
A SLEN| || \
02 “ }]
1 e 1
Lf v \ A
Sz 1 i Y
__ rrrrrrrrrTrrr— 51
X
-f - g
L W,

Figure 2.6. Physical set up of the Coupled Pendulums

The solution of the ODE'’s is obtained using Euler’s method. The algo-
rithm, specified in FPL, is given in Appendix A. The computational graph result-
ing from the high-level symbolic interpretation of the FPL program is depicted in
Fig. 2.7, while the low-level symbolic interpretation is shown in Fig. 2.8. More
will be said on this example when we come to Chapter 4.

Bl adll i [] h

’l— "L:g T
Iz

AT
!
1t ot

1\ _[’
ol

Figure 2.7. Coupled Pendulums Example (High-level Computational Graph)

ofl ol LI)]

|1

Figure 2.8. Coupled Pendulums Example (Low-level Computational Graph)

26

CHAPTER 3
The Machine Organization

3.0 Overview

In Chapter 2 we described a methodology for translating the high-level
language into computational graphs. This chapter describes a multiprocessor
which executes the computation graphs according to the dataflow model.

The design of the multiprocessor system is influenced by two factors: first,
the characteristics of the continuous-system simulation, and second, the goal of
practical implementation. Since the nature of the simulation problem is relatively
static, static partitioning and allocation of tasks are possible and desirable. Pro-
cessors in the system are connected via a broadcasting interconnection network.
This interconnection network is readily implementable using standard com-
ponents. Its use, however, is limited to a relatively small number of processing
nodes (8-16). Section 3.3 describes a hierarchical interconnection scheme to
incorporate a larger number of processing nodes. The goal of practicality is
achieved by using largely off-the-shelf components such as standard microproces-
sors and memory modules to realize the system.

3.1 The Dataflow Task Sequencing Model

The basic notion in the this model is (computation) dataflow graphs. In a
dataflow graph, the nodes represent functions and the directed arcs represent
data dependence between functions. Values are represented as tokens on the
arcs. A node can be fired as soon as all the tokens required by the node are

2

27

available. This basic mode!l has two important consequences. First, sequencing is
done by the flow of data in an asynchronous manner; there is no need for a cen-
tralized control. Second, in principle, it is possible to exploit all the parallelism
inherent in the computation graph.

The programming methodology presented in Chapter 2 essentially compiles
a high-level specification into a dataflow graph. Computational primitives and
recursions are the only constructs left after compilation. Structurally dependent
recursive definitions are statically unfolded whereas value-dependent recursive
definitions are manifested as loops (sec Fig. 2.5).

There are two ways to handle loop structures in the context of dataflow:
the static dataflow and dynamic dataflow approach [Toko83, Gajs82]. In the static
dataflow approach, computations are represented by directed acyclic graphs, each
iteration being described by a separate graph. In principle, this approach can
exploit the maximum parallelism that exists in the algorithm. The main problems
with the static dataflow approach is that it demands the iteration depths to be
known before run-time, and code has to be replicated for each iteration. For the
dynamic dataflow approach, computations are represented by directed cyclic
graphs. That is, loop structures (schema) do exist during run-time. A common
way to differentiate tokens from different iterations is by appending instantiation
labels to tokens [Arvi78, Gajs82). This permits the use of reentrant code and
enables an iteration to proceed before the preceding one has finished. However,
this tagged token approach presents difficulties for implementations, particularly
in relabelling and matching of tokens during run-time.

In attempting to balance the difficulties and the benefits of the static and
dynamic approaches, we combine the two approaches and apply them in different
domains. We use the concept of dynamic dataflow in the logical domain: tokens
are labelled and reentrant code is used. Consequently, there is no need to repli-
cate code for each iteration. Each token is represented by a triple v.x.j; where v
is the data value, x is the unique identificr for the token and j is the generic

28

instantiation number [Arvi82]. When j is ncgative, the token belongs to a task
‘which is outside a loop, otherwise the task is in a loop. Nested instantiations are
incorporated by appending more than one instantiation number to the token.
Hence, a token may look like v.x.i.k.! where i, k and / are instantiation numbers.
An instantiation number is immediately appended to a token when it first enters a
loop (by an "A" operator), and is automatically detached when it exits from the
loop (by a "D" operator), see Fig. 3.1.

Figure 3.1. Tokens Labelling/Relabelling in a Loop

In the physical domain, we use the static dataflow approach. We take
advantage of the static nature of our main application - continuous-system simula-
tion, where iteration depths are known before run-time. Consequently, instead
of matching tokens in an associative fashion we reserve predetermined and dedi-
cated memory locations to deposit each token, and use dedicated counters for
each task to record the arrivals of tokens. Section 3.2.1 will elaborate this point.

29

A static partitioning and allocation scheme is used to analyze the dataflow
graphs before run-time. This scheme attempts to optimize the execution and
communication time by partitioning nodes in a dataflow graph into sets so as to
localize information flow [Ravi84]. The partitioned nodes are referred to as
tasks. A task consists of a series of machine-level instructions to be executed
sequentially. Static partitioning and allocation scheme enables tasks to be pre-
allocated and distributed to the processing nodes.

3.2 Specification of the Architecture

The multiprocessor system has the organization shown in Fig. 3.2, consist-
ing of several identical processing nodes (Ps). Each processing node has a Com-
munication Interface Section (CIS), an Execution Section (ES) and an Output Sec-
tion (OS), as shown in Fig. 3.3.

l Bus k
r Bus 2
Bus 1
. & & . @ L L
i / 1
Proceasing Processing Processing
Node 1 Node 2 e o . Node k

Figure 3.2. The Multiprocessor Organization

Bus k

y Bus 2
Bus 1
Input Queues
CIs ¥ Y
CIP
T
ES Cawd| | Processors
oS Output Queue
N

Figure 3.3. Processing Node Organization

A key feature of the multiprocessor organization is that source-dedicated,
unidirectional broadcasting buses are used to provide global inter-processor com-
munications. As a consequence of using such broadcasting buses, there is no
need for explicit "copy” actions to replicate tokens to more than one processing
site. A design choice is whether a dedicated- or a shared-bus structure is
appropriate. For a system with N processing nodes, a dedicated-bus structure
requires one bus for each processing node, whercas for a system with a shared-
bus structure, the number of buses, M, is less than ¥. A bus control unit is also
needed to arbitrate the use of shared-buses among the processing nodes. The
performance of the system under a shared- and dedicated- bus structure will be
discussed in Chapter 4.

31

Briefly, a processing node collects tokens from the buses, initiates the exe-
cution of a task when all the tokens are available, and broadcasts the results to
other processing nodes. We now discuss in detail the main sections of a process-
ing node.

3.2.1 The Communication Interface Section

The broadcasting buses transmit identical tokens to all processing nodes in
the system. However, not every token is needed by the processing nodes in the
cluster. We consider two possible ways to discriminate the tokens:-

Scheme A - Discrimination by sink processing nodes

This scheme requires cach processing node to determine whether to accept
or reject tokens. Since each token carries a unique identifier, based on a
local linkage table, a processing node may accept or ignore a token.

Scheme B - Discrimination by source processing node

This scheme depends on the sending processing node to determine where
the tokens should go. The sending processing node broadcasts a token in
the first bus cycle. The token is buffered in the input registers of all pro-
cessing node. A bit mask is then broadcasted, in the next bus cycle, to
remove the undesirable tokens.

The effectivencss of these schemes are studied in Chapter 4. In both
cases, Input Queues (IQs) are used in 2 processing node to buffer the tokens. An
Input Queue consists of a number of registers organized as First Come First Serve
(FCFS) queues. The number of queues in each processing node is equal to the
number of buses, M, in the system. In other words, there is one IQ for each bus.

32

The IQs arc passive devices that are controlled by the Communication
Interface Processor (CIP), as shown in Fig. 3.4. The CIP serves the IQs based on
a Longest-Queue-First discipline. That is, the IQ with the largest amount of
queued items will be served next. The CIP polls the IQs to determine which IQ
currently contains the most queued items.

- Bus k
. Bus 2
Bus1
1
INPUT QUEUES
i ¥
Local Data P Local Linkag Counter
Memory Table Memary
{ :
v v
To ES Request to Execute

Figure 3.4. The CIS Configuration

The CIP owns a Local Linkage Table (see Fig. 3.4) which converts the glo-
bal information carried by the unique identifier {(x) and the instantiation number
(j) of the token into information local to the processing node. Each token in the
system has its corresponding entry in the linkage table.

The linkage table is indexed by tokens’ identifiers so that tokens with the
same identifier but different instantiation numbers require only one entry in the
table. All entries in the linkage table are predetermined by the static partitioning
and allocation system.

33

token | f1 | f2 | 3| f4| £5] 6| 7] f8

Table 3.1. Linkage Table Format
(see also Table 3.2)

The value (v) portion of an accepted token is transferred into a predeter-
mined region of a Local Data Memory, is to be read later by the ES. Conse-
quently, the Local Data Memory is dual-port. Referring to Tables 3.1 and 3.2,
field {1] in the linkage table keeps the base address in the Local Data Memory for
depositing the v portion of the token. The cffective address is the base address
plus the instantiation number, j, of the token. The arrival count of arguments for
the tasks (stored in a Counter Memory) which need the token are also updated.
Fields [2], [3] and [4]® in the linkage table contain the base addresses in the
Counter Memory which is reserved for keeping the arrival counts. Once the
arrivai count of the task has reached its threshold, the starting locations of the
tasks in an Instruction Memory, which are kept in fieids [S], [6] and [7] of the
linkage table, and the j portion of the token are transmitted to the ES. The last
field is only used in scheme A. This flag informs the CIP whether or not to
accept the token.

The linkage table enables the tokens, which have to be transmitted through
the buses, to carry as little information as possible. Consequently, the table heips
to reduce the bandwidth requirement of the buses.

*We assume the maximum number of tasks in a processing node which need the same token, is 3.
This assumption can be easily relaxed by adding more fields to the linkage table.

4

34

Field Description
1 local memory base address to deposit the token
2 base address of the arrival counter in counter memory for task #1
3 base address of the arrival counter in counter memory for task #2
4 base address of the arrival counter in counter memory for task #3
5 starting address for task #1
6 starting address for task #2
7 starting address for task #3
8 flag

Table 3.2. Field Description of the Linkage Table

3.2.2 The Execution Section

The Execution Section consists of a control unit, a scratch pad memory, an
instruction memory module, and one or more processors, as shown in Fig. 3.5.

From CIS
Local Data
Memory
Request to Execute
]
]
vy ¥ vy
Contrel P Instruction Scratch pad
Unit P Memery Meroary
To OS To OS

Figure 3.§. The ES Configuration

35

The control unit intercepts requests from the CIP and invokes the tasks by
transferring control to one of the free processors. A task consists of a series of
machine-level instructions. There is an instruction memory module which stores
the machine-level code of the tasks. An instruction counter is used to keep track
of the address of the next instruction. The processor starts execution by fetching
the first instruction, with the starting address supplied by the CIP, from the
instruction memory. The operands may come from three different sources: 1)
immedijate values which are encoded within the instructions, 2) the tokens in the
dual-port memory, and 3) the scratch pad memory. As soon as a result is gen-
erated by a task, the control unit moves the result to the Output Section (OS).
Along with that, a new instantiation number j and the result token’s identifier,
are also transferred to the OS.

A scratch pad memory is used to hold the currently needed data values.
This scratch pad memory is useful when the dataflow graph exhibits a certain
degree of sequentiality among the tasks. It supports higher-level of granularity.
The inter-node communication of routing tokens, through the global buses, the
IQs, and the CIP, is reduced by kecping the intermediate data values in the
scratch pad memory. However, location assignments of the scratch pad memory
have to be handled carefully at compile time to preserve the functionality of the
tasks and avoidance of possible side effects [Requ83].

3.2.3 The Output Section

The OS is responsible for converting results from the ES into token for-
mat, and sending tokens out via the broadcasting buses. In essence, it does the

following simple functions:

a. Obtain results, the new instantiation number j and the new token identifi-
cation number x from the ES.

b. Pack the result into the token format v.x.j.

c. Broadcast tokens from the OS queue through the broadcast bus.

d. For scheme B only, the OS broadcasts the bit mask to clear up the tokens
which are still in the input register of the potential recipients.

3.3 System Extension

The interconnection structure shown in Fig. 3.2 is limited to a small
number of processing nodes. In that case, the number of Input Queues (IQs) is
N2, where N is the number of processing nodes. Fig. 3.6 suggests a way to incor-
porate a larger number of processing nodes with the basic structure, for a

2
dedicated-bus system. In this case, the number of IQs is (%) and we can have

shorter buses. Processing nodes are combined into clusters (groups). There is a
processing node within a cluster responsible for intra-cluster communications.
The solid lines drawn in Fig. 3.6 denote inter-cluster buses, while the dashed lines
are for intra-cluster communications. The inter-cluster buses support tight
interaction among the processing nodes in a cluster, while the intra-cluster buses
are for loose interaction among the clusters.

Inter-cluster communications requires one step (bus cycle) while intra-
cluster communications may take two or three steps. For example, if P, needs to
send tokens to Ps. The tokens have to go through:

which takes three steps, whereas the transfer of tokens from P; to Pg requires
only two steps.

37

o = = -

Py 2 Py P, E
LT ;
.

v

- " 1 .

' TT1) TRy
L] (k] [(B] [n] |
- ;

Figure 3.6. System Extension

3.4 Implication of the Arrival Counts - Pseudo Dependence

Since this machine sequences the tasks solely based on the arrival of
tokens, there is no centralized control mechanisms to exert an execution
sequence. In this section, we investigate the possibility of exploiting the arrival
counts to introduce pseudo dependence among the tasks.

Pseudo dependence is advantageous in two 'aspects. First, it enables one
task to be dependent on the completion of another task so to exert the execution
of a particular task to take place only after a certain point in the computation.
Fig. 3.7 depicts one occasion where enforced execution is beneficial. Tasks a;, a5,
and a3 are allocated to Py, whereas tasks a4 and ay are ailocated to P,, the criti-
cal path is a;-a,-a3. Let us assume that x; and x, arrive simultaneously at both

38

processing nodes, and there is only one processor at each processing node. It is
also assumed that the inter-task communication time is negligible compared with
the execution time of the tasks. If P, fires ag before ay, then Py has to wait for
the completion of as and a4 before it can fire a;. On the other hand, if a, is
scheduled before as, then Py can run smoothly without pauses. This scheduling
can be accomplished by introducing a pseude arc from a4 to as. A pseudo arc is
different from a regular dependence arc in two ways: first, the data produced by
the parent is not consumed by its dependent(s). Second, the arrival counts
(thresholds) of the dependent tasks are affected by the arrivals of tokens belong-
ing to the parental task. So, a4 has an arrival count of one while the arrival
count for as is two: ay can be fired as soon as x, arrives, whereas a¢ has to
depend on the arrivals of x; and x».

Figure 3.7. A Scheduling Problem

39

Figure 3.8. Segment of a Task Graph

Pseudo dependence also aids to reduce inter-task (token) traffic. Fig. 3.8
depicts a segment of a task graph from a tree-reduction algorithm. Let’s suppose
that this segment is allocated to a single processing node. Tokens x; and x; are
associated with task a,, while task a, needs the result from task a, and token x3,
and task a, requires result from task a, and token x,. We assume the order of
arrival for the tokens is not known. We see that this scgment of the graph exhi-
bits strong sequentiality among the tasks. An attempt to exccute this task graph
at this level of resolution is inappropriate, since each inter-task token has to go
through the Output Section, the buses, and then the CIP before the tasks a;, and
a, can be fired.

Gaudiot and Ercegovac [Gaud84) have considered variable-level granular-
ity for the execution of dataflow graphs to reduce the overhead in inter-task com-
munications. According to their scheme, the three tasks are combined together to
form a macro-task. This macro-task has to wait for the arrivals of tokens
xy x x3 and x4 before it can be fired. However, this scheme does not exploit

the possibility that tokens x; and x, might arrive considerably carlier than the rest
of the tokens. If this happens, task a, can be fired and can send out token xs.
In fact, it is not hard to see that if the variance of the arrival times of the tokens
belonging to a macro-task is large, some tokens have to wait a considerable
amount of time before they are used; even though some of the sub-tasks may be

firable during the waiting period.

We suggest that by imposing pseudo dependence, precedence among the
tasks can be honored, parallelism can be exploited, and yet inter-task communica-
tions can be reduced. To accomplish this, first, a threshold (stored in the
Counter Memory, see also Table 3.2) is assigned to a task as follows:

Task Threshold Meaning
a, 2 fan-in to a,
ap 3 threshold of a,+ external fan-in to o,
a, 4 threshold of a,+ external fan-in to o,

When either x; or x, arrives, the arrival counts for all tasks are decremented by
one. A task can be fired as soon as the corresponding arrival counter becomes
zero. The threshold for task a; is associated with tokens x; and x,. Similarly,
the threshold for task a, is affected by tokens x;, x,, and x3 (but not x,!). How-
ever, the association between tokens x;, x, and task a, is only virtual. It merely
serves to insure that a, is executed after the completion of a,. In the same
manner, the threshold for task a, is affected by tokens x;, x3, x3 and x4 By
using arrival counters to keep track of the thresholds, precedences among the

41

tasks can be honored®. Further, to reduce the inter-task communications due to
the sequential nature of the graph, the intermediate tokens geperated by tasks a,,
and a; are kept in the scratch pad memory. Subsequent operand access for tasks
a, and a, will be to the scratch pad memory. This eliminates the overhead of
routing the intermediate tokens through the global buses, the 1Qs, and the CIP
and hence reduces the inter-task communications.

3.5 Impiementation Considerations

The bus-oriented interconnection between the processing nodes renders a
practical implementation of the system. The IQs can be readily implemented
using commercial FIFO queue controller (e.g., The Signetics 8X60 RAM con-
troller or Zilog Z-FIFO Buffer Unit). The R/W memory between the CIS and ES
should present no particular problem since dual-port access RAM modules have
been available since 1977 (ec.g., AMD 29705). If dual-port RAMs are not com-
mercially available at low-cost, the R/W memory can be implemented with some
Direct Memory Access (DMA) schemes.

We consider the arithmetic requirements involved in continuous-system
simulations: logical operations, transcendental functions, additions and multiplica-
tions which require that the processors in the ES be floating-point ALUs.

The availability of low-cost microprogrammable processors (e.g., AMD
2900 serics) particularly offers an advantage: it enables the user to tailor the
microcode for an instruction set to match the desired level of abstractions coded
in the high-level language. The user does this by adding instructions to the
instruction set to perform operations that otherwise would require two or three
primitive instructions to be fetched from memory and executed.

*For the special case of simultaneous arrivals of tokens, (say a, and a, are firable at the same
instance) the tie can be broken by properly arranging the local linkage table. The starting address
for a, must be placed in the second position of the linkage table, preceded by the starting address
of ay. In this way, the CIP scans (and delivers to the ES) the starting address for a, before ;.

42

CHAPTER 4
Performance Evaluation

4.0 Overview

This chapter presents two approaches used in the performance study of the
multiprocessor system described in Chapter 3. First, we discuss a simulation
mode] which aims at providing an environment for 1) fine tuning of the system
architecture, 2) experimentation with heuristics for task partitioning and alloca-
tion, and 3) study of various parallel algorithms. Second, a functional model
" based on mean-value arguments is devised to approximate a number of mean per-
formance figures.

4.1 Definitions

The following symbols denote the parameters of tf:e multiprocessor system:
P; : i-th processing node.

N : number of processing nodes.

M : number of buses.

t, : cycle time of the bus.

t,: avcrage time the CIR spends on a needed token.

u, : average time the CIP spends on a unused token.

43

By,

Y5, ¢

u,:

average overhead time ES spends on invoking a task.

Total Number of Tokens Used by P,
Total Number of Tokens Queued in P; ~

N
2

:l'lf— , the equilibrium average token acceptance ratio.

number of tasks allocated to P;.

fan-out of task f in P;, defined as the number of outgoing arcs from
the task.

fan-in of task j in P;, defined as the number of incoming arcs to the
task. '

4——— average fan-out per task, per processing node.

L]
PRI,

N fom
‘IIF > 4 ; , average fan-in per task, per processing node.
i

im=]

mean number of tokens the CIP inspects to fire a task.

: equilibrium mean utilization of CIP in P;, the fraction of time that

the CIP is busy.
N
_2 Uc,:’
'-IN , equilibrium mean utilization over all CIPs.

: equilibrium mean utilization of ES in P;, the fraction of time that

the ES is busy.

N
2 Ue,l’
-'L-, cquilibrium mean utilization over all ESs.

N
44

RT :

: equilibrium mean utilization of bus in P;, the fraction of time that

bus is busy.

N
QU

i-lN , equilibrium mean utilization over all buses.

: average execution time per task in P;.

N
2 Te,l'

i=]

, average exccution time per task per processing node.
processing time required by the CIP before a task can be fired.

is

Time steps taken with a sequential processor L
Time taken with N Processing Nodes » speedup; It
assumed that communication cost is zero on the sequential proces-

SOr.

%, efficiency.

mean response time per task, per processing node.

NRT : RT ormalized mean response time per task, per processing node.

T,

4.2 The Simulation Environment

A simulator has been developed to simulate the multiprocessor system at
the physical level [Ferr83]. The principal objectives of the simulator are to facili-
tate 1) fine tuning of the proposed system architecture, 2) to experiment with
heuristics for partitioning and allocation, and 3) to study various parallel algo-
rithms. To accomplish these objectives, some details of implementation at the
machine instruction level of the system are incorporated. The level of detail is

45

sufficient to mode! the interactions between the software and hardware resources,
the contention between the hardware resources, and the timing of a computation.
However, simulation of the system at the microinstruction level is not considered.

The simulator characterizes the multiprocessor system by a deterministic
state model. Inputs to this model are the machine-level instructions compiled
from the FPL specification, the time delays for each instruction, and the linkage
tables for each processing node.

There are three main reasons for adopting a deterministic model instead of
a probabilistic model. First, being deterministic the simulated numerical results
can be compared with the results obtained by running the high-level specification
on an FPL value® interpreter. This would partially validate the simulation.
Second, the effect of word lengths (eg. 16-bit/32-bit) on the accuracy of
continuous-system simulations can also be studied. Third, as mentioned in
Chapter 2, the application environment is assumed to be relatively static; it is
therefore inappropriate to introduce random quantities, as in probabilistic models,
to characterize the workloads of the system.

Activities in a processing node are mapped into states. The behavior of
the multiprocessor is identified by the transition of states. Each state is assumed
to take 10 cycles of the simulation time (see Table 4.1).

Fig. 4.1.a illustrates the state transition diagram for the CIP employing
scheme A (see Chapter 3) to discriminate the tokens. The states are defined as:

State 1: CIP polls the IQs to determine which IQ currently has the most

queued items.

State 2: CIP reads the IQ with the most queued items.

*The FPL value interpreter accepts and computes numerical inputs, whereas the FPL symbolic
interpreter that we mentioned in Chapter 2 accepts symbolic input and does no numerical
computations.

State 2: CIP reads the IQ with the most queued items.

State 3: CIP looks up the linkage table to determine whether to accept or
reject the token.

State 4: CIP writes the data portion of the token into the dual-port memory.
State 5: CIP decrements the arrival counts for the corresponding tasks.

State 6: CIP notifies ES that a task is ready to be executed.

In scheme B, the transition from state 3 to state 1 is omitted, since all tokens read
from the IQs are needed by the processing node.

Activities in the ES is modelled with three states. State 1 intercepts
requests from the CIP, State 2 checks whether any free processors are available,
and State 3 is the state for executing the tasks, as depicted in Fig. 4.1.b. Simi-
larly, Fig. 4.1.c illustrates the state transition diagram for the Output Section
(OS): State 1 of the OS obtains result from the ES, and State 2 broadcasts the
result to different processing nodes. In scheme A, the result is broadcasted to all
processing nodes, whereas in scheme B the result is broadcasted to some selected
processing nodes. It is assumed that #, is 10 cycles for scheme A and 20 cycles for
scheme B in the simulation.

The simulator consists of approximately 1500 lines of C code [Ritc78] and
runs under Unix Operating System. The simulator is divided into three sections:
initialization, simulation, and statistics collection. The initialization section reads
the machine-level code, the linkage tables and the timing parameters from an
input file. The simulation section controls the transition of states by keeping
track of an event list and a resource list. The statistics collection section gathers
~ data at each increment of the simulation clock and reports the statistics when the
simulation terminates.

47

State 1:

State 2:

State 3:

State 4:

State 5:

State 6:

Figure 4.1.a. State Transition Diagram
{scheme A) for the CIP

State 1:

State 2:

State 3:

Result 1o 1
Output Section |

Figure 4.1.b. State Transition Diagram
(scheme A & B) for the ES

State 1: no result (

State 2: 101 corglicts

Figure 4.1.c. State Transition Diagram
(scheme A & B) for the OS5

done

49

The main issues in the construction of the simulator are 1) the simulation
of concurrent proéum and 2) the flexibility in accommodating different design
alternatives. In order to accomplish these goals, first, we neced to maintain a
workspace (data structures + register images) for cach process. Second, each
section in the processing node is presented as a separate procedure. To execute a
particular process, the pointers in the procedure are set to reference the
workspace for the process. The simulation time will not advance untill all the
processes which are firable, within the simulation time interval, are executed.
Concurrent processes are kept mutually exclusive (no resource conflicts) from
each other: contentions of resources within the same simulation time interval are
resolved by pre-assigning priorities to processes. The simulator is believed to be
structural and flexible enough to adopt to arbitrary number of processing nodes.

Along with the numerical results of the computation, the system-related
performance statistics - the lengths of the interface queues between sections in the
multiprocessor system, the waiting times of the tokens, the utilizations of the bus,
CIP and ES are also reported by the simulator (sce Table 4.2).

A Simulation of Continuous-system Simulation

To see the simulator in action, consider the coupled pendulums example
that we discussed in section 2.6. Recall that the FPL program to model the cou-
pled pendulums is given in Appendix A, and the computational graph resulting
from the symbolic interpretation of the program is shown in Fig. 2.7. In Fig. 2.7,
the dotted lines outline one possible (manual) partitioning of the graph into tasks.
The machine-level code and the linkage tables generated based on such a parti;
tioning, assigned to six processing nodes, are given in Appendix B and C, respec-
tively.

50

The timing parameters used in this simulation are tabulated in Table 4.1.
Fig. 4.2.a depicts the Gantt chart for the tasks scheduled without imposing
pseudo dependences, for scheme A. The heavy lines indicate the ESs are in exe-
cution (state 3). The scenario of execution with pseudo dependences is shown in
Fig. 4.2.b. It is clear that by imposing pseudo dependences, we obtain more
overlaps between computation and communication.

Tables 4.2 and 4.3 give the performance statistics gathered by the simula-
tor for scheme A and B (with pseudo dependences), respectively. We see that as
far as the processing node utilizations is concerned, there is apparently no differ-
ences between the two schemes. P, is the most heavily used because all the tasks
along the critical path are allocated to P;. P, and P; are the supporting process-
ing nodes intended to sacrifice their utilizations so as to keep P; busy. As
expected, the CIP utilizations in scheme B are lower than in scheme A. This is
due to the fact that in scheme A, the CIPs have to process both the needed and
undesirable tokens, whereas in scheme B the CIPs only have to process the
needed ones. Tables 4.2 and 4.3 also show that the buses are under-utilized in
both scheme A and B. The bus utilizations are higher in scheme B mainly because
we set ¢, = 10 in scheme A and t, = 20 in scheme B. This suggests that a
shared-bus structure may as well be suitable for this application.

Assumed No. of instructions
Parameter . per iteration
tume steps (if applicable)
8 10 (scheme A)
t 20 {scheme B)
tadd 20 10
[9 20 10
| A 80 28
iy 80 8
teos 160 2
tsin 160 6
tr,w 160 2
sar 80 2

Table 4.1. Timing Parameters used in the Simulation

31

P Ut.; ES Ub.f bus Uc'l P ufl Token
! | Utilization(%) | Utilization(%) | Utilization(%) | Acceptance Ratio(%)

1 92.60 0.7 24.64 50.67

2 50.47 1.50 23.99 50.67

3 37.48 1.55 18.74 20.00

4 92.45 0.75 24.59 50.00

5 50.47 1.50 2394 50.00

6 37.48 1.55 18.74 20.00
average 60.1 1.3 2.5 40.00

Total token accepted : 906

Average token flows : 0.045277 tokens/cycle

Speedup : 3.61
Table 4.2. Performance Statistics (scheme A)
Reported by the Simulator

P Ue,l ES Ub.f bus Uc,l CIp n; Token
¢ Utilization(%) | Utilization(%) | Utilization(%) | Acceptance Ratio(%)
1 93.58 1.45 16.15 100

2 49.74 2,98 15.47 100

3 36.69 2.98 6.00 100

4 93.68 1.4% 16.12 100

5 49.74 2.95 15.45 100

6 36.69 2.90 6.00 100

average 60.02 2.44 12.53 100

Total token accepted : 712

Average token flows : 0.017796 tokens/cycle
Speedup : 3.60

Table 4.3. Performance Statistics (scheme B)

52

Reported by the Simulator

LY

1

|

i

r

|

A |

1

:

e — ——— i

: :
i !

FasinIetiisEATINIAERIEARIA 00841 ANEAB TR ARIARACIE!
‘m“!!!!!!!!mmﬂ'ﬂ'l!l:m;ﬂl’L‘l!’iﬂ'ﬂ?!?iﬁ”imi-isiim!ﬁ:ii!m!23 i

a:

'

e e - e e e —— ——— —_— - Bl

i

!

e mm —_ .- [|
i

i

EaRédaRgyaiin
“euraariag

pIdBTNEd EEssadainddig
$:

EXELEEEEL L LLY

£

ARG A§EEF 3T 104HRRA S AR IRITRTRTD

BEUSSIREIIRZ I 802 B0 e 93y

AiiEssAticith)

atsesste LALATIS g Enanaan

Figure 4.2. Gantt Charts

53

4.3 An Equilibrium Model based on Mean-value Arguments

Our goal in this section is to derive a functional model to approximate the
performance of the multiprocessor system at equilibrium. We believe that an
approximate functional model, based on mean-value arguments, will suffice to
provide some insights and better understanding on the system performance. This
functional model makes no assumptions on the implementation details. Only the
functional behavior of the multiprocessor system is considered. The word
“mean-value” means that we are not seeking for the performances of individual
processing nodes. Rather, we are interested in the overall speedup, and the mean
utilizations of the CIPs, ESs and buses.

The key inputs to this mode! are:
B = average fanout per task per processing node (4.1)
and
T, = average execution time per task (4.2)

which attempts to characterize the average effect of task partitioning and alloca-
tion. The way that B varies with 7, depends on the nature of computational
graphs and the partitioning strategy. For example, we expect a binary tree to
exhibit an almost linear relationship, whereas in a computational graph which is
sequential, B is independent of T, (see Fig. 4.3).

54

Figure 4.3. A Binary Tree and A Sequential Task Graph

The basic observation is that, at equilibrium, the number of tokens con-
sumed by the tasks is equal to the number of (result) tokens generated by the
tasks. That is, y equals B. If this is not the case, the number of tokens will
either diminish or grow. In the former case, the system will be idle while in the
latter case, the system will be saturated.

The following analysis applies only to scheme A. At ethbnum, each pro-
cessing node in the system is envisioned as possessing a single task with process-
ing demand T, and fan-out (which is also the fan-in) 8. The result token pro-
duced by this task is needed by B processing nodes. Hence, the average token
acceptance ratio, m, is related to the average fan-out by,

n=£ (4.3)

Next, the task activation overhead (time required by the CIP before a task can be
fired) is given by,

T.= (W - B)u + Bt 4.4)

where W is the mean number of tokens that the CIP has to inspect before the task
is fired. In general, W is not equal to § since each processing node in the system

55

broadcasts the result token to the rest of the processing nodes. In the worst case,
we expect the CIP would inspect a total of ¥ tokens before it collects all the desir-
able tokens for the task. On the other extreme, the CIP only needs to inspect the
first B tokens before it fires the task. Therefore, the mean value of W is expected
to be:

- N+]8] (4.5)

The average response time and the normalized average response time for a task
are respectively,

RT=T, +T,+18+1, (4.6a)
NRT = XL (4.6b)
T,

where ¢, is the bus cycle time and 1, is the average overhead time spent on invok-
ing a task, by the ES.

Following Eq. (4.6), the equilibrium mean utilization for the ES is given
by

U, = = (4.7)

Note that U, corresponds to the efficiency E = % of the system.

56

Regarding the CIP, since it collects a total of N tokens from all processing
nodes at each (task) cycle, it then spends B-2, amount of time on the needed
tokens and (N—B)-u, time steps on the rest of the tokens, this yields

" (N=B)-u. + Bt
B RT

U, (4.8)

Finally, the equilibrium mean bus utilization and the speedup can be expressed as

=

Us = 2 (4.9)
N-T,

S = &= (4.10)

since a sequential processor would take N times the amount of time for the mul-
tiprocessor system.

By the same arguments, T, RT, U,, U,, U;, and the speedup S for scheme
B can be shown to be:

T. =Bt (4.11)
RT =T, +T, +1t+1¢, (4.12)
U, = T, 4.13
e RT (.)
U, = Te 4.14
e = RT (.)
U, = b 4.1

57

s=NL 4.16

Numerical Example

Egs. (4.1) to (4.16) are the main results for the performance prediction.
To see how accurate they are, we compare them with the result from simulation.
The following data are obtained from the coupled pendulums example (see Fig.
4.2).

P T. . Number of task Number of tokens
d ¢l | periteration nt; | per iteration per task
1 446 3 2.0
2 226 3 2.0
3 250 2 1.5
4 446 3 2.0
b 226 3 2.0
6 250 2 1.5

Table 4.3. Partitioned Tasks Data
from the Coupled Pendulum Example

with N=6, 1.=40 (see Fig. 4.1), u. =20, 1,=10, and 1,=20, we get W = 4. and
from Table 4.3 we obtain,

B = 1.8333 (4.17)

and
T, = 308 (4.18)

s0,
T, = (4—1.8333)-20 + 1.8333-40 = 116.667 (4.19)

which, in turn, give us,

58

Performance Result from the Result from
indexes Functional Model Simulation
scheme A | scheme B scheme A | scheme B
n 31.2% 0.0% 40% 0%
U, 67.7% 73.1% 60.1% 60.1%
U, 34.5% 17.4% 22.5% 12.5%
Up 2.2% 4.7% 1.3% 2.4%
S 4.1 44 36 36
E 0.67 0.73 0.6 0.6

Table 4.4. Comparison of Results

In essence, results from the two models do approximately agree with each
other, and the performance values from the functional model are higher than
from simulation. This may be due to the fact that the functional model is devised
for equilibrium behavior, whereas the simulation accounts both the transient and
equilibrium performances. Nevertheless, we see that the functional model cap-
tures the essential features of the proposed architecture.

4.4 Performance Projections

This section uses the functional model to study the performance of the
machine, under scheme A. We basically are concerned with the performance
indexes U,, U., U,, and S and the normalized response time as a function of N,
T, and 8. The performance measures: Eqs. 4.1 to 4.10 form the basis for this
study.

In attempting to quantify a relationship between B and T, we consider the
simple case that B is a linear function of T,, namely,
B=rT, (4.20)

where r is 2 constant expressing the unit increment of B w.r.t. T,. Substituting
Eq. (4.14) into Egs. (4.5) to (4.10) gives us the expressions for the performance

]

59

of the machine w.r.t. ¢,, ,, N, T, and r. Moreover, we select N=8 and r=1/150,
and as before we set 1,=20 and £,=10. Fig. 4.4.a,b,c and d illustrate how the
normalized average response time, CIP, ES and bus utilizations change through
the variation of T,, respectively. Clearly, these figures indicates that scaling up
the level of granularity (larger 7, and B) yiclds higher utilization of the ES and
smaller normalized average response time.

It is also illustrative to scc the change of N on the performance of the
machine. We keep the assumption that § = r-T,. Here, we select N as the
independent variable. Fig. 4.5.a,b,c and d demonstrate the effect of scaling up N
on the speedup, normalized average response time, CIP and ES utilizations,
respectively. Fig. 4.5.a and b suggest that increasing the number of processing
nodes in the multiprocessor system has the undesirable effect of saturating the
system as indicated by the gradual deviation of the achieved speedup from the
ideal case. This may be due to the fact that as the number of processing nodes
increases, the number of tokens that has to be processed by the CIPs subse-
quently will increase. This in turn increases the inter-task communication time
between task activations and thus degrade the performance of the system.

Normal i zea Response Time

CIP utitization

3.2

400 500 70 4a00 900

l[e {average task size}

Figure 4.4.a. NRT vs. T,

Q 100 200 39 600

1000

1100

53

S
&0 —

LN

S

=2

P S RS N S NSO R N B

0 00 200 300 400 5SD0 &R0 700 A00 900

Te (average task size)

Figure 4.4.b. U, vs. T,

61

1900

1100

ES utilizatvion

Bus uullizatlon

nH—

65—

o) =

S5

oS —

=

-1

59—

!] | J | | i

|

|

N0 200 300 400 500 600

Te {average task size)

Figure 4.4.c. U, va. T,

700 800 900

100G 1100

! t | | i ! 1

i

0

100 200 300 400 500 600
Ta (average task size}

Figure 4.4.d. U, va. T,

700 800 SO0

1000 1100

8

{
(

o) (002=31)

x
*

} € 0%%=31)
) (1esel)

N {(number of processing nodes)

Figure 4.5.a. Svs. N

AN
N / 7
// /
/.
../ .
N
,/
g —
N
/
/1
/O/ —
//
N
IS IO TR N B S 7
wn u ~ uy L o] [Tad [Tyl 1)) K u
L) ~ l. o = w _) - "
0) (D0E=21) Sl asvodsay paz|jewsoy
x

} {DGy=]) Bwla asu0dsay PIZ | JPwWION

12 14 6 15

0

N (mumber of processing nodes!

Figure 4.5.b. NRT vs. N

)
}

4500 (¥
CIP Utilization (Te=%00) (©

CiP Udilizatlon (Te

)
)

X
o

450) |
000 ¢

ES Utidizavion (Te
ES Utitization (Te

38+

2 /

N K.

284) - /
25 /'D/ /

2 6 A 10 12 14 1% 18
N (nomber of processing nodes)
Figure 4.5.c. U, vs. N
74
e
0
~ .
b = \ . -
6 b \\ \
62 .
~
,L\
'58 - ~,
.
S6 b\\ .
s \\\
s ! | ! | ! 1 ?
2 4] 8 10 12 T4 16 18

N (number of procassing nodes)

Figure 4.5.4. U, vs. N

CHAPTER 5
Conclusion

We have presented a functional language based programming methodology
and a dataflow multiprocessor for digital continuous-system simulation. We have
also developed an environment for detailed simulation and approximate perfor-
mance analysis. The programming methodology and the multiprocessor, together
with the support tools provide a tseful environment for the formulation, experi-
mentation, and validation of continuous-system models.

The interaction between the user and the tools in continuous-system
modelling is organized in our environment as follows. A user begins with a
dynamic system model coded in FPL augmented with a user-defined level of
abstractions. The symbolic interpreter, and partitioning and allocation program
will then generate the machine-level code according to the FPL specification and
architectural parameters such as the number of available processing nodes. The
user can either run a detailed simulation to obtain performance estimations, or
use Egs. (4.1) to (4.16) to predict the performance. If the performance is satis-
factory, the user may experiment with the dynamic system model using different
initial conditions and system parameters on the dataflow multiprocessor system.
On the other hand, if the performance is not satisfactory, he may either reformu-
late the dynamic system model, or adjust the partitioning and allocation strategies
to match the application, or under extreme circumstances to refine the numerical
methods used to solve the differential equations.

We have stated in Chapter 1 and demonstrated in Chapter 2 that the pro-
gramming methodology is suitable for structurally determinate type problems.
Structurally determinate algorithms, coded in FPL, enable functional forms and
routing functions to be symbolically executed before run-time. In the domain of
numerical computations, the distinction between computational functions and
routing functions is often clear. This may not be the case in applications where
the storage characteristics (size and form) depend on the values of input or inter-
mediate variables.

We admit that the syntaxr of FPL described in this thesis is not as appealing
as CSSL in which users are supplied with operators such as INTEGRATE. How-
ever, it is our belief that the users would easily exploit the modular nature of FPL
to customize compact functions and establish their own library functions.
Incidentally, syntactic enhancement of FPL has been discussed in [Lu84).

A general-purpose machine is difficult to design and to build. However,
by trading versatility and feasibility we are able to come up with a low-cost
dataflow multiprocessor design to support the programming methodology.

Simulation of the architecture allows us to discover both bottlenecks and
under-utilizations of various components. The deterministic simulation, described
in Chapter 4, demonstrates that the dedicated-buses are under-utilized. This sug-
gests that a shared-bus structure is preferrable.

The question of which scheme is better for token discrimination: scheme A
or scheme B was not rcsolved by the simulation. Tables 4.2 and Table 4.3 show
that both schemes are competitive to each other in terms of speed up and proces-
sors utilizations. However, Eqs. (4.4) and (4.11) show that as the sumber of
processing nodes in the system grows, scheme A is subjected to a higher CIP utili-
zation than scheme B. For a shared-bus system or system with slow buses,
scheme A may be preferrable mainly because the amount of bus traffic required is

less.

Several areas for further research were uncovered as a result of this work:

The performance analysis in Chapter 4 was presented under a
specific set of architectural parameters and an arbitrary (manual)
partitioning strategy. It requires more work to review the sensi-
tivity of architectural performances to changes in the parameteriza-
tion of the architecture and graph partitioning strategies.

Variable level granularity for the execution of dataflow graphs is
proved in Chapter 4 (and by other researchers) to be desirable
[Gaud84]. However, the desired level of granularity for a given set
of architectural parameters remains to be investigated and formu-
lated.

67

deflne

APPENDIX A
Coupled Pendulum Example

Continuous-system Simulation in FPL
The Coupled Pendulum Example
input structure: <<nfl ndd1> <nd2 ndd2> h>

Initializations
Defining Constants for the Parameters

2 B B

;

;

define

define

define

M2()
%10.0

S1()
%48.0

82()
9048.0

MU()
%0.03

K()
%1.5

Run Section
Integration of the ODE’s

ddth()

@[minusone, + @[@[1,2],3]]

end

f1()

+@[*@l'@[*@[G,s1),"@[L.L]),sin@ 1],
/@[*@[*@[SLEN,K],-@[y,X]],*@[*@M1,L],L]]]
end

ff2()

-@[*ele{*@[G,2),"@(L.L]]sin@ 2],/@[*@[*@[SLEN,
K]: - @b’x]] ' ‘@[.@M,L] !L]]]

end

yO)
sqr@-@[+@[‘@[D,D],pow@[‘@['@[sm@/@[—@[1,2],
two],two],L],two]],*@[*@[*@[two,D],"@[*@
[Sj-n@j@[— @[1!2]v two],two],L]],ms@l@[- @[1,2],two]]]
end

bb()

1@1,*@[2,pow@(3,twol]]

end

tminush()

~ @[time,h]

end

Integral{)

r@rel1)2

end

main()

[next, h, tminush]

end

69

PoFFFOE G

b

PoFE R PR PR G

next()

[[n8,,nd8,],(n6,, ndd.]}
end

timeup()

<@ [3, zero]

end

h()

2

end

time()

3

end

ndé,()

Integral @ [dde,,de,,h]
end

ndé,()

Integral @ [ddobdebh]
end

n8,()

Integral @ [d8,,8,,h]
end

8,()

Integral @ [dez,ez,h]
end

dde, ()

ddth@[b1, d8,, f1]
end

ddé,()

ddth@[b2, d8,, 12)
end

de,()

2@1@1

end

de,()

2@2@1

end

8.()

1@1@1

end

8:()

1@2@1

end

f1()
1@ [0, 0,]

70

end
define f2()
ffZ@ [els eﬂ
end
define bl1()
bb@ [MU, M1, L]
end
define b2()

bb@ MU, M2, L] -

end

71

APPENDIX B
Machine Code for Processing Nodes

addressing first second destination
opcode . mode opergd operandﬂ operand
sub 0 1 100.0 1
div 1 1 2.0 1
sin 1 1 0.0 1
mul 1 1 20 1
mul 1 1 59.0 1
pow 1 1 2.0 1
add 1 1 1600.0 1
eot
sub 2 1 200.0 2
sqr 1 2 0.0 2
sub i 2 44.0 2
mul 1 2 72.0 2
div 1 2 100 2
mul 1 2 59.0 2
mul 1 2 59.0 2
eot
add 2 2 400.0 3
mul 3 300 0.0000008618 4
add 4 4 3o 3
mul 1 3 -1.0 3
mul 7 3 501.0 3
add 2 3 300.0 9
inc 5
out 1 1
eot

Machine-code for Processing Element # 1

addressing first second destination

opoode | e | operand | operand | operand
|-

sub 0 1 100.0 1

div 1 1 2.0 1

sin 1 1 0.0 1

mul 1 1 2.0 1

mul 1 1 59.0 1

mul 1 1 80.0 1

eot

mul 2 1 200.0 9

out 1 5

eot

mul 6 300 401.0 3

add 2 3 1.0 S

inc 5

out 1 0

eot

Machine-code for Processing Element # 2

i addressing first second destination
mode | operand | operind ._°E'2Lr
“wﬂ

sub 0 1 100.0 1

div 1 1 2.0 1

cos 2 1 0.0 9

out 1 9

eot

sin 0 1 1.0 2

mul 1 2 13.5 9

out 1 6

eot

Machine-code for Processing Element # 3

73

first
operand

J

(=}

bk ek ek b puak ek
b bt b ek ek i Pk

I I T &)
NN NN -

[l T IS TR S V8]
uuuu§u

w

59.0
1600.0

200.0
0.0
44.0
72.0
10.0
59.0
59.0

400.0
0.000008618
3.0)

-1.0

501.0

300.0

N RN N

DWW L bW

Machine-code for Processing Element # 4

74

addressing first second

opcode
mode Eand operand

sub o, 1 100.0
div 1 1 20
sin 1 1 0.0
mul 1 1 20
mul 1 1 59.0
mul 1 1 80.0
eot
mul 2 1 200.0
out 1 7
eot
mul 6 300 401.0
add 2 3 100.0
inc 5
out 1 2
eot

destination
operand

b bk ped h ek

W

Machine-code for Processing Element # 5

addressing
opcode mode
L ——

sub 0
div 1
o8 2
out 1
eot

sin 0
mul 1
out 1
eot

first
operand

second destination
operand operand
1.0 1
2.0 1
0.0 9
1.0 2
13.5 9

Machine-code for Processing Element # 6

75

first second
operand Ennd
index base index base
scratch-pad direct
scratch-pad index base

]

direct index base
scratch-pad | scratch-pad
not used

N AR s WN =S

index base direct
scratch-pad index

Addressing Modes in the Multiprocessor

76

APPENDIX C
Linkage Tables

4

£6

n61
ndal
né2

on
013
175
119

172

g8 "=
2

100

—

888
288
B

=

8

ool

a2k

15

15

15

Linkage Table for Processing Node # 1

token

3

4

6

nfl
nd6l
né2

071
015
175
119

172

100

-

100

g8
88 “§“P

7
10

s — e s
s

Linkage Table for Processing Node # 2

token f1 2 3 14 5 | 6| 7] f3 !
' 1

ndel
ndé2
o7
015

175
119

172

Linkage Table for Processing Node # 3

token __t"ll 7] 3 | f4 £s f6 f1 __g
nél 1 1 100 | 200 0 7 15 11
nde1 1
n2 100 | 1 100 | 200 0 7 1
nde2 300 | 200 15

h 500 | 200 15 1
m

015

175 200 | 100 | 200 7 15 1
119 400 | 200 15 1
068

007

172

Linkage Table for Processing Node # 4

78

nol
nddl

nd62

o7
015
175
119

172

§88
28"

200

100

100

100

10
10

10

7

10

Linkage Table for Processing Node # §

f1

token_|
nol
el
n82
nde
h
on
018
178
119
068

007
172

100

-

100

100

Linkage Table for Processing Node # 6

[Arvi78]

[Arvi82]

[Back78]

[Buehsg2]

[Demif2]

[Denn83]

[Erces3)

[Erce84]

[Ferr83]

REFERENCES

Arvind, K.P. Gostelow, and W. Plouffe, “An Asynchronous
Programming Language and Computing Machine,” Dept. of
Information and Computer Science, University of California at
Irvine, Tech. Rep. TR 114a, Dec. 1978.

Arvind and Gostelow K.P. , “The U-Interpreter,” IEEE Com-
puter , Feb. 1982, pp. 42-49.

J. Backus, “Can Programming be Liberated from the von Neu-
mann Style ? A Function Style and Its Algebra of Programs,”
Commumications of the ACM, Vol. 21, No. 8, Aug. 1978, pp.
613-641.

R.E. Buehrer et al., “The ETH-Multiprocessor EMPRESS: A
Dynamically Configurable MIMD System,” IEEE Trans. on
Computers, Vol. C-31, No. 11, Nov. 1982.

J. Deminet, “Experience with Multiprocessor Algorithms,”
IEEE Trans. on Computers, Vol. C-31, No. 4, Apr. 1982, pp.
278-288.

1.D. Dennis, W.Y.P. Lim, and W.B. Ackerman, “The MIT
Data Flow Engineering Model,” Proceedings of the IFIP, 1983,
Pp. 553-563.

M.D. Ercegovac and S.L. Lu, “A Functional Language
Approach in High-Speed Digital Simulation,” Sunmer Computer
Simulation Conference, 1983, pp. 383-387.

M.D. Ercegovac and W.J. Karplus, *“A Data Flow Approach in
High-Speed Simulation of Continuous Systems,” Proc. Intl.
Workshop on High-Level Computer Architecture 84, May. 1984,
pp. 2.1-2.8.

D. Ferrari et al., Measwrement and Tuning of Computer Systems:
Prentice-Hall, Inc., 1983.

[Requs3]

[Ritc78]

[Schi83]

[Toko83]

[Trel80]

[Worl83]}

[Worl84]

J.E. Requa, “The Piecewise Data Flow Architecture Control
Flow and Register Management,” The 10th Annual Intl. Symp.
on Computer Architecture, Vol. 11, No. 3, Jun. 13-17, 1983, pp.
84-89.

D. M. Ritchie, S. C. Johnson, M. E. Lesk, and B. W. Ker-
nighan, “UNIX Time-Sharing System: The C Programming
Language,” Bell Sys. Tech. J., Vol. 57, No. 6, 1978, pp. 1991-
2019.

M.D.F. Schlag, “Extracting Geometry from FP Expressions,”
University of California, Los Angeles, Los Angeles, CA, Tech.
Rep. (Internal Report), Dec. 1983.

M. Tokoro, J.R. Jagannathan, and H. Sunahara, “On the
Working Set Concept for Data-Flow Machines,” The I0th
Annual Inil. Symp. on Computer Architecture, Vol. 11, No. 3,
Jun. 13-17, 1983, pp. 90-97.

P. Trelcaven and G. Mole, “A Multi-Processor Reduction
Machine for User-Defined Reduction Languages,” Proc. 7th
Annual Symp. on Computer Arch., 1980, pp. 121-130.

J. Worley, K.G. Tu, and J. Arabe, The Architecture and Design
of the Functional Programming Machine, UCLA Computer Sci-
ence Department internal memorandum (Dec. 1983).

J. Worley, The UCLA T-FP User Manual, Los Angeles, CA:
University of California, Los Angeles, Jun. 1984.

82

[Fran78]

[Frie78]

[Gajs82]

[Gaud84]

[Gurds80]

[Kell83]

[Korn78]

[Lus4]

[Mago$0]

[Mako83]

[Pate81]

[Ravis4]

M.A. Franklin, “Parallel Solution of Ordinary Differential
Equations,” IEEE Trans. on Computers, Vol. C-27, No. §,

‘May. 1978, pp. 413-420.

D.P. Friedman and D.S. Wise, “Aspects of Applicative Pro-
gramming for Parallel Processing,” IEEE Trans. on Computers,
Vol. C-27, No. 4, Apr. 1978, pp. 289-296.

D.D. Gajski, D.A. Padua, D.J. Kuck, and R.H. Kuhn, “A
Second Opinion on Data-Flow Machines and Languages,” IEEE
Computer, Feb. 1982, pp. 58-69.

J.-L. Gaudiot and M.D. Ercegovac, “Performance Analysis of
a Data Flow Computer with Variable Resolution Actor,” Proc.
4th Intl. Conf. on Distributed Computing, 1984.

J. Gurd and 1. Waton, “Data Driven System for High Speed
Parallel Computing - Part 2: Hardware Design,” Computer
Design, Jul. 1980, pp. 97-106.

I.N. Kellman, “Parallel Execution of Functional Programs,”
University of California, Los Angeles, Los Angeles, CA, Tech.
Rep. CSD-830114, Jan. 1983.

G.A. Korn and J.V. Wait, Digital Continuous-system Simulation:
Prentice-Hall, Inc., 1978.

S.L. Lu, “A Compiler for A Functional Programming System,”
Univeristy of California, Los Angeles, Los Angeles, CA, Tech.
Rep. Master Thesis, Apr. 1984.

G.A. Mago, “A Cellular Computer Architecture for Functional
Programming,” Proceedings of the COMPCON Fall 1980, 1980,
pp. 179-187.

A. Makoui and W.J. Karplus, “Data Flow Methods for
Dynamic Systeryp Simulation : A CSSL-IV Microcomputer Net-
work Interface,” SCSC, Jul. 1983, pp. 376-382.

D.R. Patel, “A System Organization for Applicative Program-
ming,” University of California, Los Angeles, Los Angeles,
CA, Tech. Rep. CSD-810302, Mar. 1981.

T.M. Ravi, “Partitioning and Allocation of Functional Pro-

grams for Data Flow Processors,” University of California, Los
Angeles, Los Angeles, CA, Tech. Rep. (in preparation), 1984.

81

