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1. Introduction

The use of CAD tools has become essential in managing the complexity of designing a VLSI
crcuit. The design process entails going from a function describing the behavior of the drcuit to an
arrangement of colored polygons on a number of planes (artwork). To use these tools the designer must

provide a description of the circuit in one of the following forms suitable for the particular the tool.
1. Functional description in terms of primitives at various levels

2. Circuit description

3. Stick Diagram/Symbolic Layout

4. Fixed Geometry

The last level is the desired final format. Descriptions at higher levels are used to simulate and
analyze the arcuit. Unfortunately, many of the characteristics needed to realistically estimate the
feasibility and performance of a design are geometric and only manifest themselves at the lower two
levels. For this reason, circuit extractors and other tools are necessary to map back from the lower levels
to the ones above in order to simulate the circuit, and the design process usually requires several

iterations.

The systems of CAD tools can be divided into two classes, those in which the geometry is

provided by the designer and those in which the system must generate it.

Specifying fixed geometry entails the use of a graphics editor with which elements can be placed

and positioned [Ou81,0HMB83]. The most recent sophisticated tools in this area now allow the user to



place elements and provide “automatic routing,” [CHMS3]. In such a system, there is usually a library
available from which predesigned elements can be pulled and placed in the current design. The major draw
back of this type of system is that the objects it is handling are not very flexible and cannot adapt well to
the different interconnection, size and shape requirements they may encounter in various environments.
Much of the work involved in making the pieces fit is left to the designer. In addition this type of system
allows the introduction of errors in to the design process, requiring the use of error detection tools (i.e.

Design Rule checkers) and circuit extractors.

Describing a circuit with a stick diagram[Will78] or a symbolic layout[West81], also entails the use
of a graphics editor. However in this case, the designer places symbols which are then expanded by the
system into rixed geometry. Compaction is then used to position the expanded objects. The success of

compaction can depend largely on the initial placement of the elements.

In the second type of system, circuit elements and their interconnections are specified or compiled
from a high level description and tools are used to place these clements and route their
interconnections[Riv82]. Most of the essociated geometric optimization problems have been shown to be
NP-hard, leaving only heuristic algorithms as candidates for these jobs, making the tools slow and the
results inefficient and awkward. The problem arises because placement and routing are tightly coupled.
Many placement tools estimate channel widths before placing elements. Some placement tools attempt‘to
measure the connectivity of elements before placing them. On the other hand, routing can not begin until

the elements have been placed. It is awkward to deal separately with routing and placement.

In both types of systems, there is a gap between the non-geometric and the geometric
descriptions. Describing a circuit by geometry, entails the use.of an extractor or a separate definition
provided by the designer to simulate and analyze its behavior at the functional end circuit levels. On the
other hand describing it without geometry requires the use of placement and r-outing tools, hiding or

perhaps even destroying any correspondence between the functional description of a circuit and its

geometry.



In this work, the extent to which geometric information can be inferred directly from a functional
description of the crcuit, is studied. A Functional Programming Language (FP) is used to specify
computations for implementation in VLSL The input to this tool is an algorithm written in FP, and the
output is a visual representation of the behavioral and structural organization implied by this algorithm.
The idea is not to generate VLSI circuits automatically but rather to provide an interactive tool by which
algorithms can be examined for feasibility in terms of time and space constraints, As will be discussed, it
can not be expected that a complete low-level description of a layout will be the direct result of an FP
- specification of an algorithm. However there is enough information in an FP program to obtain a sketch of

a circuit, reflecting its spatial organization and interconnection pattern, which could serve as a floor plan.

This scheme is attractive because it allows the semantics of the drcuit (its functional description)
to follow the crcuit through design stages and guide design decisions. There may be ways of dealing
reasonably with the geometric optimization problems by using behavioral information. Knowledge of the
behavior of a drcuit removes the need to optimize globally, since the critical portions of the circuit can be
identified and optimized at the expense of others. The corresponding behavioral and structural hierarchy
can also be exploited to improve the effidency of these tools. Inferring geometry directly from a
functional specification does not mean that geometric tools such as channel routers and compactors are no
longer necessary. They can be used more efficiently within this framework since more control over where

and how they are applied is available.

In the following sections a brief description of FP will be given, as well as a discussion of the level
of representation of circuits, the structural implications of FP and the translation process from FP to
crcuits. In the third section, the implementation of a system generating sketches from FP expressions will

be described. Several applications will be demonstrated in the fourth section.



2. Preliminaries
2.0 FP and its Salient Features

The FP language, as described in [Ba78], consists of objects, primitive functions, and functional
forms. FP objects are atoms (alphanumeric strings) and sequences of objects. Special significance is
attached to the atom '?" which is termed "bottom" or undefined. If an object contains this atom it is said to
be equivalent to it. FP functions are mappings of objects to objects. Functional forms map functions or
objects to functions. Computations in FP are invoked by the application of a function to an object.
Computations (functions) in FP are defined by constructing new functions from existing ones using the
functional forms. The appendix contains a formal description of FP{Ba83], including the lists of primitives

and functional forms of Berkeley FP and T FP (the versions available at UCLA).

Since there are no variables in FP, a function locates and identifies its arguments by their
positions within its input object. This allows the definition of functions to be generic, independent of the

size of their arguments; a function which adds two bit vectors of any size can be defined.

Combining forms specify precedences and parallelism among functions. Various algorithmic
structures can also be made explicit by the use of a special form, although the same structure could be
specified otherwise. The use of these forms allows these algorithmic structures to be recognized and

exploited.

A computation can be viewed as consisting of two types of activities: directing data movement and
changes in value. In FP the delineation between these two types of activities is often explicit. This

delineation is useful in the extraction of structural information from an FP function.



In FP, the only bindings are those of functions to function names. These bindings can be assigned
by the user to establish a hierarchy within an FP function. This hierarchy can be exploited to make the
extraction of structure more efficient. As will be discussed, the extraction process itself must be functional
in order to exploit this hierarchy. This correspondence between behavioral and structural hierarchy is also

expected to facilitate the simulation of the circuit.

Finally, the aigebraic properties of FP offer the possibility of transforming an algorithm by
applying algebraic identities to its FP specification. These transformations would affect the structure of a

function without altering its input-output behavior and hence could be used to improve the algorithm.

2.1 Describing Circuits in FP

The concept of state does not exist within an FP program. Whatever information is needad for a
computation must appear in the input of the function performing the computation. The result of a
computation is otherwise independent of its environment. When a function is invoked (applied) it is
evaluated and only its output is retained. There is no other history of the execution of the function, These
execution semantics make FP inappropriate for describing circuits in terms of low level drouit elements
(i.e. transistors, resistors, capacitors) since the behavior of a drcuit is the result of the time-dependent
continuous interaction of these types of components. FP is appropriate for describing dircuits whose
behavior is the result of discrete interactions of elements which themselves have a behaviour which can be
described functionally (as a mapping of input values to output values). These elements are represented as

boxes; the correspondence between these boxes and circuit elements must be established by the designer.

Since there are no states in FP, a sequential circuit must be described by a function which passes
its state as an argument back to itself. Unfortunately this mechanism for describing sequential circuits
presents the difficult task of determining whether the invocation of a function generates a new circuit or

corresponds to an already implemented circuit for that function. In addition, it must be determined



whether sequences are mapped into space or time. To avoid this difficult task, it is assumed that each
invocation of a function corresponds to & new circuit. Feedback will be the result of the application of a

form. Work along these lines has been described in [Shee84] and [Mesh84).
2.2 The Structural Implications of FP

The type of structure which must be captured from FP functions is "boxes and wires;” FP
functions should be representable as boxes with input and output wires. As illustrated in Figure 2.1, the FP
combining forms interconnect and instantiate functions yielding graphs with functions as nodes (the

conditional form will be discussed later).

a) Compose fHer@...af,

Input Object () o () <f1> Output Object

b) Construct [flifb---zfn]

Input Object
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Figure 2.1. The structures of the FP functional forms

For a few of the forms (Apply to AD, Right Insert, Tree Insert), this structure also depends on
the object it is invoked with. To implement the connections represented by the arcs of the computation
graph, the structure of the objects which will traverse an arc must be known. The amount of "structure”
which can be extracted from an FP function without knowing its input is very limited. On the other hand
the structure of an FP expression (a function applied to a specific object) can be completely determined.
Clearly the structure of a function can not be extracted for each possible input object. Since the inputs to a
dircuit have some predefined structure, a more reasonable approach is to extract the structure of an FP
function for some class of inputs over which it is invariant. A carry-propagate adder can be defined

generically (for any size inputs) in FP, but to obtain its structure the size of the input must be specified.

Two objects are said to be structurally equivalent if one can be obtained from the other by merely
applying a substitution of labels. This need not be a consistent substitution; different labels can be
substituted for various occurrences of the same label. A symbolic object is sufficient to represent a
structural equivalence class of objects. No label is repeated in the symbolic object chosen as the

representative, simply as a means of ensuring that only structural information is represented.



By using symbolic objects, the computation graph of an FP function can be derived. The symbolic
output object generated by the FP combining forms can be determined from the symbolic outputs of their
sub-functions and each node can be replaced by the structure of its corresponding function until only nodes
corresponding to primitives remain. The resulting graph is the computation graph of the function. The
replacement of nodes by the structure of their associated functions can be monitored to obtain a
hierarchical representation of the computation graph. Even though the nodes corresponding to
computational primitives could be drawn as boxes, this graph is still far from a "layout” since the arcs
transport arbitrary objects and the routing primitives are represented as nodes. In the next section, the
amount of structural information which should be inferred from this graph is discussed.

The symbolic objects associated with the arcs in the computation graph must be mapped into space
(wires) and time. Fach atom can be considered as a signal which is representable on a wire in a unit of
time. For other objects, a decision must be made as to whether sequences are mapped into time or spaée.
The simplest decision is to always map into space; every atorn of an object gets its own wire. However
this may not be possible for some functions (¢.g. iota), and may not be desirable for others. For the
pu:pos&s.of this work, every atom is mapped to a separate wire.* This decision places limitations on the

class of circuits which can be described.

The unit of information ;'epresmted by an atom can be arbitrary; it reflects the level of abstraction
desired in the representation of an FP expression. For example in a decoder each atom would most likely
be a bit, while in an FFT each atom could represent a complex number. Once the level of representation

of the atoms is fixed, the FP primitives of an FP expression can be dlassified into one of the following two

categories.

*There is a problem with <> since it can be considered to be both an atom and a sequence. The latter
interpretation is chosen, and should be kept in mind while writing FP functions since otherwise the FP
function may not have an "extractable structure.”



Computational Primitives

These functions have the potential to generate atoms which are not atoms of the input object

and/or their effect is determined by the value of input atoms (such as a comparator).

Routing Primitives

These functions never create new atoms and their effect is independent of the value of their input
atoms. They merely rearrange the atoms within an FP object, possibly leaving some out and

replicating others.

Routing Primitives can be executed on symbolic objects. Computational Primitives cannot and
must be represented as black boxes; their output is a symbolic object with new labels. Computational
primitives whose symbolic output object can not be determined from a symbolic input object (e.g. iota)
can not be used. Computational primitives are the primitive cornponents of the layout, while routing

primitives yield connectivity between intermediate input and output objects.

The use of the Conditional must be restricted in order to extract the structure of an FP function.

Two types of conditionals are permitted.

1. The first type acts as a switch. Whenever this type is used, (p-fig), f and g must produce
structurally equivalent output objects for any symbolic input object they might reccive. This type
of conditional would yield the structure depicted in Figure 2.2,

2. The second type of conditional is interpreted as structural control. The predicate must be based
purely on structure (e.g. atom, null, =@[length, %3], etc.). The value of the predicate can be
determined from the symbolic input object; it is independent of the value of the input atoms. In
this case, the structure generated by (p—f;g) applied to an object is the structure of one of the two

functions (f or g) applied to the object, depending on the value obtained from applying p to the

object.
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Input Object

Output Object
Figure 2.2 Realization of a Non-structural Conditional

Since each invocation of a function results in a new implementation, all recursions are unfolded
completely. Thus each recursion must be terminated by a structural predicate, a conditional of the second
type. With these restrictions, only acyclic graphs computation graphs can be described; only combinational
circuits can be generated from combinational primitives. The addition of new forms to describe sequential

circuits is not considered here.

2.3 Defining the Corresponding Structure of an FP expression

The amount of information extracted and retained from the routing functions and FP functional
forms of an FP expression is what defines the term "corresponding structure.” At a minimum this
information includes the connectivity of the computation graph: the enumeration of the primitives as boxes
and their interconnections by net lists. A net is generated for each atom occurring in the computation
graph; it is a list of each occurrence of the atom in an input or output object of a primitive. A box is also
associated with each occurrence of an atom in the external input and output objects. Thus the connectivity
of the computation graph is effectively a hypergraph®.

Example:

*A hypergraph is the generalization of a graph to higher dimensions. It consists of a set of vertices and a
set of "hyperedges.” Each hyperedge is a non-empty subset of vertices. See Berge,C. Graphs and
Hypergraphs, North-Holland 1973.



The following computation graph would correspond to the hypergraph below.

Nodes : A, B, C,f1,f2,f3.f4,f5, D, E
Hyper edges :

{AS1f3.fe}

{ B.f1uS2}

{C.S2}

{fifafs}

{ fauf3:fa }
{fafs

{fafs}
{fsD}
{fsE }
Figure 2.3 A computation graph and its Hypergraph

This hypergraph is obtained by traversing the computation graph with symbolic objects keeping
track of each atom input to a primitive and each new atom generated by a primitive. The routing
primitives can be executed during this traversal to remove them as primitives. Only the connectivity

generated by the FP functional forms and routing functions is retained in this hypergraph. However FP
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functional forms and routing functions contain information which can be used to "layout” this hypergraph.
From Figure 2.1 it is clear that more than connectivity can be acquired. Each form implies a spatial
(planar) organization of its components and each routing primitive, a routing pattern. Thus the "structure”
of an FP expression must encompass the connectivity of the computation graph and may contain additional

information extracted from the forms and routing primitives.

In deciding how much information should be included as part of the “structure” of an FP

expression, the following criteria should be considered.

Functionality
This concerns the method by which structure is extracted from an FP expression. In order to
preserve functionality, the structure of a particular FP function applied to particular object should
be the same regardless of which FP expression this application occurs in. Functionality makes it
possible to obtain structure hierarchically. However it precludes the possibility of obéaining a "real
layout” directly from an FP expression since fixed geometry does not exhibit this type of
independence; the dimensions and positions of boxes and wires within an FP function maybe
affected by interconnection requirements with other functions. Functionality also permits the

reuse of the previously extracted structyre when an FP expression reoccurs.

Distance from the real layout
Since a "real layout"” can not be obtained as the “structure” of an FP expression, the "distance” or
level of abstraction of this "strucutre" from a real layout should be considered. Additional tools
must be used to transform this "structure” into a "real layout.” The larger the distance the more
complicated these tools will be. Although only a skerch is desired, the distance from the a “real
layout"” limits the level at which the drcuit can be measured and analyzed. In addition a larger
distance may limit the power and complicate the analysis of algebraic transformations applied to
the FP expression since the effects of these algebraic transformations may be masked by the tools

used to obtain the "real layout.” On the other hand a smaller distance puts a larger burden on the

13



programmer to write an efficient FP expression; the programmer must have some knowledge of th
structure manifested by the FP functional forms and routing functions. It is hoped that by
automating the application of algebraic transformations, less will be required of the programmer.

This may be an optimistic view.

The structure of an FP function could be defined merely as the connectivity of the computation
graph , but its distance from “real layouts" will require the use of conventional routing and placement
tools. Hence algebraic transformations can only affect circuit level characteristics of the layout such as
number and type of components, fan-outs and fan-ins, and critical paths. Wire length, area, parasitics and
other geometric characteristics of the layout may be difficult to predict since these will depend primarily on

the behavior of the routing and placement tools used to map the hypergraph into the plane.

A definition of structure “closer” to fixed geometry and yet retaining functionality would be more
advantageous. "Relative geometry” or "topolo-gy“ can be extracted from an FP expression by using the
ordering of the atoms within an FP object and retaining the spatial organization implied by the FP
functional forms. In this type of structure, the relative placement of elements is specified without

specifying their dimensions or exact coordinates.

Formally, the "topology” of an FP expression can be defined as an embedding in the plane of a
graph corresponding to the hypergraph. This planar graph comprises three types of nodes. The first type
is a node of the computation graph. The second type is a branch node which is used in representing a
hyperedge (a net). The third type is a crossing node which is needed to obtain a planar graph. This node
always has four incident edges, two pairs, each pair belonging to a wire. The edges interconnecting these
nodes correspond to a single atom and thus can be mapped directly to wires. In essence, each hyperedge
' of the computation graph is mapped to a tree whose interior nodes are either branch or crossing nodes and
whose leaves are the original nodes of the computation graph belonging to this hyperedge. Figure 2.4

contains such a graph for the example of Figure 2.3. The branch nodes are blank and the crossing nodes

14



have crosses.

Figure 2.4 A planar embedding of the Hypergraph of Figure 2.3

It is possible to define for each FP e;prusion (with the restrictions outlined in the previous
section) such a planar graph along with its embedding. In particular it is possible to use FP objects in
representing this "structure.” To obtain fixed geometry, some type of compaction tool must be employed.
Although the exact positions of elements are unknown, the fixed geometry obtained will still reflect the
"topology” of the FP expression. Thus algebraic transformations on the FP expression can predictably
affect the positions in the "real layout” of nodes of the computation graph. An implementation in which
thistypeofstrucmreisextractedandthenmappedtoﬁxedgeometryisdescribedinmenextsecﬁon.
This is still a high level representation of the dircuit but it provides a floor plan from which size, shape and

wire lengths can be estimated.
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3. Implementation

In these sections an implementation of a system generating sketches from FP expressions is
described. A format for representing "topological” structure which will be referred to as the Intermediate
Form (IF) is given, followed by a description of an interpreter generating this format and then a procedure

for-obtaining geometry from this format.
3.0 Representing Structure with FP Objects

The intermediate form represents the "topological” structure described in the last section; the
structure of an FP expression is defined to be a planar graph and its embedding. A planar graph and its
embedding is represented by dividing the plane into horizontal slices (cross-sections), and for each cross-
section, listing the elements of the graph within or spanning the cross-section from left to right. Absolute
vertical coordinates can be assigned to elements by allowing elements of the graph to inherit their vertical
position from the cross-sections containing them. The horizontal coordinates, however, are not explicit;
el:’ements sharing the same vertical coordinates are only ordered‘horizontally. Since the vertical coordinates
are explicit in this data structure, this IF is not purely "topological.” However, whether this IF is in fact
purely "topological” depends on how it is interpreted to obtain the actual coordinates of elements. In
Figure 3.1 horizontal lines are imposed on the graph of Figure 2.4 to divide it into cross-sections. Notice

that the elements within each cross-section can be ordered from left to right.

16



Figure 3.1 The graph of Figure 2.4 divided into Cross-sections.

This IF can be represented by FP objects. The use of FP objects to represent structure, allows the
derivation of structure to be implemented within the FP framework. The IF is a list of ;:ross-secﬁons with
the symbolic output object (of the FP expression) tagged on to the front. The symbolic output object is
provided for the traversal of the computation graph. As the graph is traversed, the symbolic output object

is removed, new cross-sections are added to the front, and the new symbolic output object is put on the

front.
Formally, the IF consists of FP objects of the following form,
<PS CS, CS; + -+ C§,> forp=0,

where PS is' an FP object not containing the atoms, $,%,+,", and t (these atoms are reserved for use as

delimiters) and each CS, is a cross-section. A cross-section is a list of FP objects each corresponding to

17



elements of the graph.

or,

or,

CS;=<x; X; *** Xp> where x; is a,

Free wire
An atom (not. $,%,+,5t).
Flements of this type are wires which traverse the cross section without being crossed by any other

wires.

Crossing

<*w*g, 0, -+ u,> such that exactly one uy is + and at least one is * .

This type of element represents the wire crossings and branchings necessary for realizing the
connections of the computation graph. The atom 'w’ is in the position corresponding to *+’ and
must be distributed to each position W&Mg to a '. The other atoms are wires which

traverse this cross-section.

Box

<$ level #evels id label $ I, I; * <+ L, $0,0; < 0 $>

Elements of this type correspond to the primitives which are to be drawn as boxes. The format
allows the specification of how many cross-sections a box will occupy. In a strictly "topological” IF
this is not necessary since the dimensions of the elements are not relevant, However if the cross-
sections are used to assign vertical coordinates to these elements, this format is necessary to allow
boxes to have varying sizes. The level is f, 1, i or b, indicating whether this is the first, last,
intermediate or both (when a box is wholly contained within one) cross-section which the box

occupies; an element of this type is instantiated for each cross-section in which it appears. The

18



next three atoms are, respectively, the number of cross-sections occupied by this box, a unique
identifier (which can be used to distinguish a box from others with the same label), and a label to
be displayed with the box. The $ signs act as delimiters between these atoms, the input atoms,
iy,i; -+ + I, and the output atoms 0,,0; * ** Op.

Graphical interpretations of these three types of elements are illustrated in Figure 3.2,

a
Free Wires : a

b
Crossings : < *a®*bec "d+e" "> I
b

ab
Boxes :
<$17gl6HADD $cs$Sab$> :l :l
<$i5gl6 HADD $cs$Sabs$> i :
<$12gl6HADD $cs$Sab$> i :I
cs
ab
<$b1gl6HADD $csSab$> |1
HADD
T
cs

Figure 3.2 Graphical interpretation of the three element types.
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Example:

The following FP object is the structure of an exclusive-or function (mxor) implemented with four
nand gates.
FP definition of mxor:
nandg@[nandg@(1,2],nandg@[2,3]}@(1,nandg @23 4}@concat@&fid,id]
IF generated for mxor applied to the symbolic input, (a b} :

((ab)

((*a*+"N(b*+"Y)

(aabb)

(a($f2g6nand$ab$g7 ) b)

(a($12g6nand$ab$g7$)b)

(a(*g7*+")b)

(ag7g7b)

($f2g8nand$ag73g9 %) ($f2gl0nand $ g7 b $ gll §))

g;12g8nand$ag7$g9$) ($12gl0nand $ g7 b $ g11 §))
gll)

(($f2gl2nand $ g9 g11$ 813 §))

((§12 g12 nand § g9 g11 § g13 $))

(813)

)

Figure 3.3 illustrates how this FP object could be interpretated graphically. The dashed lines separate the
cross-sections.

20



The representation of FP functions defined by Backus is as follows,

1. If f is an FP primitive then the atom F represents it.
(Capitals are used to distinguish the actual function from the atom representing it.)
Examples: CONCAT for concat, TRANS for trans (selectors are unchanged)

2. If h is a functional form then <H,F, F; - -+ F,> represents the FP function obtained by

applying form htofy,f; <+ I,

The functional forms provided by this interpreter are,

compose
<COMPF, F, -+ F>=t@h@ - @f,
consiruct
<BUILDF, F; - -+ F>={f,f -+ L
apply to all
<APALL F; +-->=&f,
constant function ¥y
<KONSF; - - >=%{,
right insert
<RINSF{ -+ >=“1
tree insert
<TINS F; --:>=f
conditional

<CONDL F, F; Fy "'>=(fl*f2;f3)

The map p is used to map the representations of FP functions into FP functions; p is a mapping from FP
atoms to FP functions. The interpretation is obtained from the function u. Backus uses the following

notation for expressions.



o " - — o
s, | ) |
g6

Cw ___ . | ------ -—--NAND»—---——---l --------
CS, | |
CSs . T g
CSG gs glo

----- L - NAND - e b e - —--NAND- - - {-----
CSs
CS; g12

-------------- L e - NAND- - - v eccmec e -
CS,
Cs, |

gl3

Figure 3.3 The graphical interpretation of the IF for mxor.
3.1 Using Formal FP Systems to Construct FP Interpreters

In a Formal FP system the interpretation of FP functions is embedded.within the FP framework.
Since the value of an FP expression is independent of its computation environment, an FP interpreter can
be viewed as a function mapping FP expressions to FP objects. To formulate an FP interpreter as a
function, FP functions are first represented by FP objects and then two maps, p and p, defined in [Ba78],
are introduced. |
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1. Any FP object is an expression.
2. If x and y are expressions then <x:y> is an expression.

3. If x;,x, * * * X, are expressions thensois < x; x; « -+ x,>.

The second type of expression is used to denote the application of x to y. Up till now, only FP
expressions of the second type in in which both x and y are FP objects have been mentioned. However, to
define an interpreter a broader class of expressions is used. The map w evaluates FP expressions; it is
defined as follows in [Will82]:
1) w(?) =2
2) w(a) = aif ais an atom
3) po(<x x50 0 0 p>) = <p(xy) plx) - - p{x)>
4) w(<xiy>)=T7if x="7
5) r(<xiy>)=plp(x)(n(y))) if x is an atom
6) p{<xy>)=p(<x;<x,y>>) if x=<x1 X3+ * * X,> 021
7 r(<xiy>)=p(<p(x):y>) otherwise
In addition a new function, apply, is used to create expressions,
apply(<x,y>) = <xy>.

Examples:
In the following F;, F,, F;, and x are atoms.



The form compose (@) which forms the composition of functions can be defined as follows,

p(COMP) = (eq@{length@1,%2] - apply@[2@1,2];
apply@[tlr@1,apply@[last@1,2]]).

w(<<COMPF, F, Fy>x>)
= u(p{COMP)(<<COMP F, F; F;> x>))

p(f:(n(<<COMP F; F;>x>)))

The form build (] ... ]) is defined,

p(BUILD) = &apply@distr@[1@1,2]

w(<<BUILD F, F, F;>x>)
= u(p(BUILD)(<<BUILD F, F; Fy> x>>))
= w(&apply@dist@[1@1,2](<<BUILLD , F; F; F;> x>))
= p(&apply@distr(<<F, F, F;> x>))
= w(&apply(<<Fi, x> <F5,x> <F;, x>>))
= w(<apply(<Fy, x>) apply(<F,, x>) apply(<F;, x>)>)
= p(<<F x> <Fx> <Fx>>)
= <u(<Fx>) p(<Fx>) p(<Fx>)>
= <plpEFy(r(x))) wlp(F((x))) wlpFs)((x)))>)
= < fi(x), £2(x), £3(x) >
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An implementation of the maps u and p is an FP interpreter; it traverses the expression, operating
as the identity on FP objects and applying p(x) to y when it encounters <x:y>. The actual computation is
performed by the functions which the map p retrieves. An interpreter could be defined in FP by simply
defining p(F) to be itself for each FP function and defining each of the forms as in the examples.
However, for efficiency, the computations performed by p(F) are written in Lisp. The selection of Lisp is
a natural one since FP objects exist in Lisp and many of the FP primitives have counterparts in Lisp. To

‘implement an FP interpreter three things must be done:

1. FP expressions must be represented.
2. p(F) must be defined in Lisp for each FP function and form.
3 The evaluation of FP expressions, the map i, must be implemented.

To facilitate steps 1 and 3 short cuts are taken. The FP expressions to be evaluated are assumed to
be of the type <x:y> where x and y are both FP objects. The distinction between <x,y> and <x:y> is
made by context; <xiy> occurs as w(<x,y>). Under these conditions the rules for evaluating FP

expressions can be simplified as follows;

1) p(x)(y) =2if p(x)=?

2) p(<x,y>)=p(x)(y) if x is an atom

3) p(<x,y>)=p(x)(<x,y>) if x=<x;X; * ' * x> n=]
Apply, is now defined by , apply(<x,y>) = u(<x,y>).

This simplification is realized by observing that p is the identity on FP objects, that a
representation of an FP function is either an atom or its first element is an atom, and that rule 7 is

unnecessary if apply(<x,v>) is replaced by w(<x,y>) whenever it occurs. To implement . it now suffices



to che& if x is an atom and accordingly retrieve p(x) or p(x;). The major part of the interpreter is the

definition of p. Two different methods are available for defining new functions and forms. The map p can

be extended to new atoms by either providing a Lisp definition, or in FP, by using string replacement:
p(NAME) = apply@[%F.id],

where F is the representation of the FP definition of NAME.

'Ihem:ip u obtains the value of the FP expression <x:y>, but the same technique can be used to
interpret other properties of <x:y>. In particular, a map p’ from FP expressions to FP objects which

yields the structure of the FP expression can be defined in the same manner as y by substituting p’ for p.
1) 'O =ifp'(x)=2

2) p'(<x,y>)= p'(x)(y) if x is an atom

3) w(<x,y>)=p (x)(<x,y>) if x=<X; X3+ * * x> n=1

For p', y is assumed to be of the form <PSCS$; CS; --- C§;> (n=0 is allowed). I F
represents an FP function and PS is the symbolic input to be operated on, then the initial input to u’ is <F
<PS>>, The Lisp definitions retrieved by p’(F) are more complicated than those of p. For computational
primitives, cross-sections containing a8 box are generated. For routing primitives cross-sections with
crossings are generated to route any atoms which change position or branch. In either case the output is,
<PS' CS; CS; -+ €8, CS; CS; -+ CS;> where, PS’ is the symbolic output object of F applied to PS

and C8,,CS; - - - CS_, are the cross-sections corresponding to the structure of F applied to PS.

Examples:

In the following session with an FP interpreter, the structure of various FP primitives is extracted.
The Lisp prompt is ~ and the pplint2 is the Lisp function which corresponds to p.. The angle brackets (
'<’'>") are replaced by parentheses. The input FP expression appears in bold type. New symbols
generated by the interpreter are labeled gN where N is some integer. pplint2 formats the IF, printing
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each cross-section on a separate line, omitting the top level of parentheses, and flattening the final

symbolic output (i.e. removing its structure).

E'gs(l)’l’ﬂntz *(andg ((a b))))
(($12g4and$ab$gs$))
(($f2gdand$ab$g5s))
(ab)

~ (ppiint2 *(notg (¢)))

(g6)
(($b1g7not$c$ghs))
(©

These first two primitives are computational and generate boxes. The first cross-section generated

for a box is a cross-section in which the inputs appear as free wires. This provides a gap between boxes.

~ (pplint2 *(apndr (((a b ¢ d ¢) 0)))
(@abcdef)

The apndr is a routing primitive in which the relative positions of the atoms do not change. In this

case no routing is required so no cross-sections are generated, but PS is replaced by PS'.

~ (pplint2 *(trans ((x1 x2 x3) (y1 y2 y3) (z1 22 23)))))
(x1ylzl x2y2 22 x3y3 23)

(x1(*x2* +ylzl")y2 2 x3y323)
(x1x2(*x3*+ylzly222") y323)
x1x2x3yl (*y2* + 121" 22y323)
(xIx3yly2(*y3*+21227)23)

]

Several cross-sections are generated for trans in order to realize the new positions of the atoms in

the output object. The actual symbolic output of this applicaion would be
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((x1 y1 z1)(x2 y2 22)(x3 y3 23)) instead of the flattenmed version, (x1ylzlx2y2 22 x3y3z3). The
predefined Lisp functions retrieved by p’ generate these routing patterns. These functions can take i.ﬁto

account the size and structure of the particular object they must route.

p' must also be defined for each of the functional forms. A line which is indented is the

continuation of a cross-section from the previous line.

~ tgpplhltz *((comp notg andg) ((a b))))

)
%Sblg‘?nothSSﬁS))
(g5)
((812g4and3ab$gs$)
(($f2g4and$ab$gss))

(ab)
The definition of composition is the same as for p.

~ (pplint2 ’((build andg org norg nandg) ((c d))))

(29 gl1 g13 gl5)

(($12g8and$cd$gfs)($12g100r$cd$gll )
($12g12nor$cd$g138) ($12gldnand$cd$glsy))

($f2g8and$cdSg98)($£f2g100r$cdfgll$)
($f2gl2nor$cd$gi3s) ($£2gldnand§cd$ gl5$))

(cdcdcdcd)

((*c*+°"d*"d"d"d

(c(-d.+ﬁﬁhﬁ))

Build is one of the more complicated forms to specify. It takes the list of objects (IF) returned by
its sub-functions applies a spedial transpose (which extends the objects to make them all the same length)
and then it must route each atom in the input object to the sub-functions which require it. In this example,

the four sub-functions generate the same number of cross-sections and the atoms ¢ and d are routed to

each of the four.



- (pplint2 *((kons ((new object))) (anything)))
(816 g17)

(($ b 1 g18 new object $ $ g16 g17 §))

nil

The constant form generates a box with no inputs and whose outputs are a symbolic
representation of the object it is applied to. The empty list is generated as the first cross-section. The input

abject including any cross-sections is discarded.

~ (pplint2 *((apall andg) (((al b1) (a2 b2) (a3 b3) (a4 bd)))))

(220 g22 24 g26)

((512g19and$al b1 $g208) ($12g21 and$ a2 b2 $ 822 §)
($12g23and$a3b3$g248) (51225 and $ad b4 § 226 8))

($£2g19and$albl$g208) ($f2p21 and$ a2 b2$ g22 9)
($£2g23and$a3b3$g248) ($£225and $ a4 b4 $ 226 8))

(al bl a2 b2 a3 b3 ad bd)

Apall is similar to bulld in that the list of IFs of each of its sub-computations is obtained and then

an extending transpose is applied. It differs in that no routing of the input object is required.

- 12 *((rins andg) (a1 a2 a3 a4 a5 a6))))

(836)

(($12 g35and § al g34 $ g36 %))
(($£2g35 and § al g34 $ g36 9))

(al g34)

(al ($12g33and $ a2 g32 $ g34 5))

(al ($£2g33and $ a2 g32$ 834 §))

(al a2 g32)

(al a2 ($12g31and $ a3 g30 § g32 3))
(ala2 ($£2g31 and § a3 g30 $ g32 9))
(al a2 a3 g30)

(al a2 a3 ($12 g29 and § a4 g28 § g30:8))
(ala2a3($f2g29and$ ad g28$ g30°$))
(al 22 a3 a4 g28)

(al a2 a3 aé ($12g27 and § a5 a6 $ g28'$))
(al a2 a3a4 ($f2 g27and $ a5 a6 $ 228 $))
(al a2 a3 a4 a5 ab)
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The Lisp function retrieved for Right Insert obtains the IFs of the sub-function inserted on the
symbolic input object. Routing is provided by adding each input atom to the cross-sections up until the

. cross-section in which it is consumed by the sub-function.

- (pplint2 *((tins andg) ((b1 b2 b3 b4 b5 b6 b7 b8 b9 b10))))
(854)
(($12g53 and $ g44 g52 § g54 $))
(($£2g53and § gdd g52 § g54 $))
(244 £52)
(312 g43and $ g40 g42 $ 244 $) ($12 51 and § g48 g50 $ g52 §))
((3£2g43and$ 4042844 $) ($£2 51 and $ gd8 SO § g52 3))
(g40 g42 g48 g50)
(51239 and $ 38535 240 $) ($12g41 and$ b4 b5 § g2 §)
($12g47and $ g46 b8 $ g48'$) ($ 12 g49 and § b9 b10 § g50 $))
(($£2g39 and § g38 13 $ g40 $) ($£2 g41 and $ b4 bS § g42 )
($£2g47and $ g6 b8 $ g48$) ($ 2 g49 and $ b9 b10 § £50 §))
(g38 b3 b4 bS 46 b8 b9 b10)
((512 g37 and § bl b2 § g38 $) b3 b4 b5 ($12 g45 and $ b6 b7 § g46 ) b b9 b10)
((S £2 g37 and § b1 b2 $ g38 $) b3 ba bS (§ £ 2 g45 and $ b6 b7 $ gd6 $) b8 b9 b10)
(b1 b2 b3 b4 bS b6 b7 b8 &9 b10)

Tree insert is similar in its p and p” definitions. The latter differs only in that atoms which are not
consumed at a particular level must be routed to the next level by adding them to intervening cross-
- o

sections.
As discussed earlier, certain restrictions must be placed on the use of the conditional. It is assumed
that only structural predicates occur when p’ encounters a conditional. The Lisp function retrieved by p’
evaluates the predicate by applying w to the FP expression formed with the predicate and PS. This Lisp

function then applies u' to the FP expression formed with the selected sub-function and the input object.

- (pplint2 *({cond] atm notg nandg) ((a b))))
(856)

(($12g55nand $ ab $ g56 3))
E($f)2g55nand$ab$g56$))

ab



- t2 '((condl atm potg nandg) (a)))

(857)
E(§b1358not$a$g§7$))
a

p’ can be extended to new functions by the same two methods as p: by providing either a Lisp or

FP definition. The former method provides a mechanism to direct functions to be represented as a boxes.
A function may have a different definition with respect to p and p’. This mechanism is used to deal with
conditionals which are not directives but rather part of the computation. A simple switch can be defined in
FP by,

eq@[1,%1]~2;3,
and represented as a box with three inputs and one output or it can be implernented with gates,

org@&andg@([1,2],[notzg@1,3]). .

Figure 3.4 illustrates these choices. Of course the correspondence between a function’s behaviour and

structure is no longer assured if the definitions provided to p and p’ are not the same.

a b ¢
.=
abe und nd
ll | —————
SWITCH or
|
out out

Figure 3.4 Two representations for a conditional.
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3.2 Graphical Interpretation of the Intermediate Form

To obtain a visual representation of the structure of an FP expression, the IF must be mapped to
fixed geometry. The procedure detailed in this this section is designed to produce a picture efficiently. It

does not attempt to optimize the placement of the boxes.

Elements can be assigned the vertical coordinates of their cross-sections, but obtaining horizontal
coordinates is more involved since conflicts with elements in adjoining cross-sections must be resolved.
Fach element has a geometrical interpretation within its cross-section (as illustrated in Figure 3.2). To
position the elements, spacing constraints between adjacent elements in a cross-section and possibly
elements in the cross-sections immediately above and below, must be respected. To find horizontal
positions, the IF is examined cross-section by cross-section to build a horizontal constraint graph
encompassing these spacing constraints, Horizontal positions can then be obtained by manipulating this

graph.

In a horizontal constraint graph two nodes are connected by a directed edge reflecting a constraint
between these two nodes. An edge of length d from node m; to node n, corresponds to the constraint

expressed by the inequality,
pptd=p

where p; and p; are the positions (coordinates) of my and n, respectively. If d is non-negative then n, must
be to the right of m, by at least d. If d is negative then n; cannot be to the right of n, by more than —d.
The horizontal constraint graph reflects the interactions among these inequalities and provides a convenient

data structure for resolving them.

The constraint graph is constructed by traversing each cross-section. Spacing constraints are
generated for each element with the elements to its left and in the cross-section above. The type and
number of constraints depends on the elements involved and is detailed below. Nodes in this graph will

correspond to vertical line segments or boxes. For each node, the list of its outgoing edges, its indegree,
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its vertical coordmat&s and its connections to other nodes is recorded. For boxes, the width, rightmost

output and input are also recorded. As each cross-section is traversed, the list of nodes connecting to

elements in the next cross-section is maintained. This list will be simultaneously traversed with the next

cross-section to establish connections between elements in these two adjacent cross-sections,

Free Wires

A free wire can have a horizontal jog in the cross-section since it is not crossed. The node for this
wire in the cross-section above is extended halfway down into the current cross-section and then a
new node is created for this wire. This new node is not directly constrained to the previous one,
enabling this wire to jog either to the right or left. Constraints with nodes to the right and left in

this cross-section will determine the direction of this jog.

Crossings : <* w*nm; 03, ..., Uy™>

Boxes

For a crossing the list of u;'s is traversed. Each u; which is not a '+’ or a '™ corresponds to a wire
segment which traverses this cross;-section and cannot have a vertical jog since it is being crossed.
(It is assumed that both u; and u, are either '+’ or '”.) 'fhe node in the previous cross-section
corresponding to this wire is extended down through this cross-section. For each ' encountered, a
new node is created which corresponds to a segment extending from the middle of the cross-
section downward. For the ’+’, its node in the previous cross-section is extended halfway into this
cross-section. Connections between the new nodes and the node corresponding to '+’ are

recorded with these nodes.

A single node is used to represent a box. If this is the first level of this box then a new node is
generated. The nodes in the cross-section above corresponding to its inputs are not extended. The
position of a box is its leftmost edge. The width of the box is set to,

1 + max{# inputs, # outputs}.
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For an intermediate or the last level, the node in the previous cross-section corresponding to this
box is extended down through the cross-section. For the last leve]l new nodes are created for each
of the outputs. These nodes correspond to vertical segments of length zero which sit at the bottom
of the cross-section. (These nodes will be extended down when the next cross-section is

processed). The rightmost input and output nodes of the box are recorded.

Figure 3.5 illustrates the general scheme for generating constraints. There are three possible

constraints to be generated when node ny is processed (n, may be the same as nj).

Figure 3.5 Constraints generated when node ny is processed.

Constraints are unit distance unless a box is involved. Constraints of length one are generated
between & box and its leftmost input and output, however spacing constraints between a box and other
nodes use one plus the width of the box as the distance. The constraints that have been mentioned so far,
all have positive distances and result in an acyclic graph. Negative constraints are needed to preserve the
width of the boxes. The inputs and outputs of a box can be 1o further right from the box node than its
width minus one. The length of these edges is one minus the width of the box. Figure 3.6 shows the

constraints between a box node and its input and output nodes.



Figure 3.6 Constraints generated for node n;, a box.
Example:

Figure 3.7 contains the elements of the graph for the example in Figure 3.3 and Figure 3.8, its

constraint graph.

1112 13
14 BN 16
17|1s 1920

21122 2312
25 | 26 L—I
i

Figure 3.7 Elernents for example of Figure 3.3.
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Figure 3.8 Constraint graph for example of Figure 3.3.
o

To facilitate the following discussion, an additional node, designated as the root, with an edge of
length zero to every other node, is added to the graph. In an acydic constraint graph, the unique optimal
solution to the constraints is obtained by assigning to each node o the length of a longest root to n path as

its position. This solution is optimal in that no other set of positions satisfying the inequalities can assign a
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smaller position to any node. In [LiWo83], it is shown that this result can be extended to an arbitrary
digraph as long as the digraph does not contain a positive cycle. This is a natural restriction since a positive
cycle corresponds to an inconsistency in the inequalities. In this case the constraints involved need to be

adjusted to make the graph consistent.

In an acyclic constraint graph, longest paths can be obtained by traversing the graph respecting the
inherent partial ordering of the nodes. (The nodes can be ordered so that no edge connects a node with
one that precedes it in the order.) When a node is visited, its outgoing edges are examined to determine if
theirinequalitiaaresatisﬁedandifnemsary,‘theposiﬁonsofthenodaatthcothermdofthacedgu

are adjusted to satisfy the constraints.

™ py ~ max{p;, p +d}

In the algorithm proposed by Liao and Wong the negative edges (back edges) are treated separately. Since
the only edges of length zero are from the root, and the graph has no positive cycles, the subgraph
induced by the non-negative edges is acyclic. The positions of the nodes obtained in this subgraph are
obtained and then the back edges are examined. If a back edge is not satisfied, then the position of the
node is adjusted as in (*). The acyclic subgraph is traversed again updating positions as in (*). This
procedure is repeated until all the back edges arc satisfied. After repeating this process

1 + # of back edges times, if the back edges are not all satisfied, then the graph is inconsistent.

This algorithm is appropriate when the graph is consistent. However when the graph is not
consistent, the positions obtained are distorted, since they maybe the result of traversing positive cycles
several times. In this application the constraint graph is often not consistent and this case must be dealt
with. A heuristic algorithm is used which attempts to identify inconsistencies early and adjust them before
the positions of other nodes become distorted. As in the algorithm of Liao and Wong, the acyclic subgraph
induced by the positive edges is traversed repeatly and the back edges are adjusted in between each
traversal. However not all the back edges are respected. The algorithm examines the back edges in the

order imposed on them by their destination nodes. The first back edge which is not satisfied and was not
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previoﬁsly adjusted is recorded and its destination node is adjusted as in (*). If this back edge is again not
satisfied after subsequent traversals, the algorithm ignores it. Ignoring a back edge corresponds to
widening a box. Unfortunately, adjusting the position of the destination node to satisfy a back edge, may
violate previously satisfied back edges causing tilem to be unnecessarily widened after the next traversal.

This heuritic algorithm does not guarantee the optimal solution when the graph is consistent, but it
deals with inconsistent constraint graphs, yielding a reasonable though not perfect solution. To obtain the
optimal solution when the graph is consistent, Liao and Wong's algorithm is attempted first and heuristic

algorithm is resorted to only when the graph is found to be inconsistent.

By using the constraint graph to obtain positions, the wires and boxes are pushed to the left as
much as possible. Although this minimizes the area, it has the undesirable effect of routing the wires with
unnecessary detours and bends. To remove this effect, the wires are sorted from right to left, and each is
pulled back to the right to straighten it out as much as possible. An example of the routing before and

after "straightening” the wires is shown in Figure 3.9.
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— I 1 [ | ] lj | ll 1 1|
AND | [anD | |anxD | [AND | |AND | [AND | | AND | | AND
ll —r
D0 D1 D2 D3 D4 DS D6 D7
2 n 10
1T
AND AND | | AND | | AND
AND | |anD | |anD | |anD | |AND | |AND | | AND | | AND
| I l | | I | I
Do D1 17 D3 D4 DS D6 D7

Figure 3.9 Before and after straightening the wires.
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To complete the example, Figure 3.10 is the picture generated for the example of Figure 3.3

A B
NAND
]
—1
NAND NAND
NAND
G00013

Figure 3.10 Sketch obtained for example of Figure 3.3, mxor.



4. Applications

In these sections examples of algorithms written in FP and their sketches are presented to illustrate
the correspondence between programming style in FP and resulting sketches. The performance of the

heuristic compaction algorithm is most clearly visible in the last section (the FFT).
4.0 Introductory Examples

Before tackling "real" algorithms, the sketches of the FP functions presented earlier as examples

are displayed. These correspond to the IFs from Section 3.1.
Examples:

1. ~ (clint2 *(andg ((a b))))

2. - (clint2 *(potg (c)))
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3. - (clint2 *(apndr ({(a b c d e) ))))

>
=
_0
— o
—
—

>
-}
©}
o
tm
-y

4. - (clint2 *(trans (((x1 x2 x3) (y1 y2 ¥3) (z1 22 23)))))

X1X2X3Y1Y2Y3Z1 2 n
| | I l

X1 Y1 Z1X2Y2Z22X3Y323

5, - (clint2 ’((comp notg andg) ((a b))

o

AND

NOT

G00011

6. - (clint2 *((build andg org norg nandg) ((c d))))

C D
AND OR NOR NAND
Gooc14 G00016 G00018 G00020
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7. - (clint2 "((kons ((new object))) (anything)))

ANYTEING
I

NEW OBJECT

G000SS G00089

8. - (clint2 *((apall andg) (((al b1) (a2 b2) (a3 b3) (ad D4))))

Al Bl A2 B2 AMB3 A4 B4
AND AND AND AND
G0002S8 G00027 GO002Y GO00031
9. - (clint2 *((rins andg) ((al a2 a3 a4 a5 af))))
Al A2 A3 A4 AS A6
|
AND
L— 1
AND
—— ]
AND
—_ |
AND
—_ |
AND
|
G00041
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10. — (clint2 *((tins andg) ((b1 b2 b3 b4 bS5 b6 b7 b8 b9 b10))))

Bl B2 B3 B4 BS B6 B7 B8 B9 B10
| |
AND AND
| — [ —
AND AND AND AND
[ —— | —————
AND AND
| —
AND
G00059
Figure 4.0.1

In writing FP programs to obtain sketches, the following two aspects of programming style should be

considered.

Hanging Wires _
Hanging wires occur when arguments are “brought” to a function which does not "need” them.
Examples of FP primitives which may generate hanging wires, are tl, tir and any selector (i.e. 1,
2, 3, etc.). In addition the Kons form generates a function which does not use its input at all. This
may result in a hanging wire as in Example 7. In addition to occupying unnecessary space, hanging
wires present a problem for the compaction algorithm, since wires must be matched from one
cross-section to the next in setting \:p the constraint graph. One solution is to write a post
processor which removes hanging wires, but for the moment FP expressions must be written so
that hanging wires do not occur. This does not mean that #, tir, and Kons, cannot be used. They
can be used within the form Build, as long as each atom in the input object to the Build is needed
by at least one sub-function of the Build. The following example of an FP function with hanging

wires actually occurred in the specification of an algorithm. The 12 rightmost wires are left

hanging.



+

[&tl,1@trans] (build (apall tl) (comp 1 trans))

IODUYIVIYIVIIZIZDZAWMWIW we

DDUIVIYVIZAIIAWMIWIWIII ¢! n wi

Figure 4.0.2 Hanging Wires
The hanging wires are generated by the selector 1, which does not need the remainder of the
atoms in the object produced by trans. In execution, this function is wasteful of time and space by
unnecessarily computing the function trams. A better version is obtained by replacing (comp 1

trans) by (apall 1). -

Routing Functions
The second aspect concerns the routing implied by the FP specification. Build is the only form for
which routing maybe required. The routing pattern currently provided for the Bulild busses one
atom at a time starting with the rightmost. See Example 6. Any other routing is the direct result
of the use of routing primitives. This can lead to inefficient routing when the sub-functions of a

Build are themselves routing functions. For example,
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A C B DA C B D

Figure 4.0.3 [shuffle,shuffle] applied to ((a b) (¢ d))
The atoms are first routed to each of the shuffles and then the routing of each shuffie is
performed. To resolve this problem and fadilitate the writing of efficient routing functions, a new
form, sBuild represented by [ , ], is introduced. It differs from Bufld in that its sub-functions
must all be routing functions and its p’ definition evaluates the sub-functions using p instead of
i'. The effect is to ignore the routing implied by the sub-functions, and route the input object to
the output object using the routing pattern provided with Bulld. sBuild is equivalent to Bufld in

terms of input-output behaviour.

A C B D ACUBD

Figure 4.0.4 [shuffle,shuffie] applied to ((a b) (c d))
In cases where some of the routing can be performed in parallel (using the same horizontal
tracks), Build maybe preferable to sBuild. Two routing functions are presented in Figure 4.0.5,

In the first, sBuild is preferable while Bulld is better in the second.



ABCD E

ABCD E
-
ACDEBCDEABCABDABE ACDEBCDEABCABDABE
a) [distr,distl] vs. [distr,distl]
ABC D ERIJIR]I L
ABC D EH J KIL
ABCABDABEHILJILKIL ABCABDABER ILJILKIL

b) [distl@1,distr@2] vs. [distl@1,distr@2]

Figure 40.5[...] vs. [ ... ]
Since only the input and output objects of sBuild determine its routing, the sub-functions of an
sBuild can produce hanging wires, as long as every input to the sBuild is needed by one of its
sub-functions. This alleviates the burden of writing FP functions which do not produce hanging

47



wires.
In the following sections, the output labels generated by the interpreter (e.g. G00046) have been replaced

with more appropriate ones. In addition, the FP definitions are given in the more compact Berkeley FP

syntax.
4.1 Decoder

The FP specification for a decoder was one of the first algorithms examined and has suffered
numerous examinations since. The original FP specification written by Lahti[La81] is,

{decode !decstage@&onedecode}

{onedecode [notg id]}

{decstage &andg@cncat@&distl@distr}

The function decode first obtains the complements of the inputs and then inserts the function decstage

from the right, consuming one variable and its complement at each stage.

A B C
— 1 —
DECSTAGE
— [ 1 1§
DECSTAGE

(TR

D0 D1 D2 D3 D4 DS D6 D7

Figure 4.1.1 Decoder with Decstage as a primitive.



The input to decstage is, -
<X x><dgd, -+ dy;>> where m=2""1
and the output is,
<ty *++ D> wherefor 0<j<m-1, f=x-4; and, f.,=Xd
This is accomplished by transforming the input object into,
<«<x dp><x > v <X dy < dp><xd> e <xdp >

and applying andg to each pair in this list. The picture resulting from this algorithm is in Figure 4.1.1.

n n 10
[or] | [er] [ror]
AND AND AND AND
AND AND AND AND AND AND AND AND
Do DI m m D4 Ds DE m

Figure 4.1.2 Decoder with andg and notg as primitives.

The compaction algorithm pushes the boxes to the left. In this case the not gates are pulled unnecessarily

to the left. Space would be saved by pushing them back to the right. The format of the intermediate form
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can easily be reversed (i.e. flipped to obtain the mirror image) allowing the compaction to be performed in
the other direction (to the right). Figure 4.1.3 is the sketch obtain by flipping the intermediate form of the

sketch in Figure 4.1.2.

I0 n | ¥

NOT NOT NOT
|
1 u!
AND AND AND AND
T
—_

AND AND AND AND AND AND AND AND
D7 Dé DS D4 D3 D2 D1 Do

Figure 4.1.3 The flipped IF of Figure 4.1.2.

Unfortunately neither of these pictures corresponds to a realistic design since they are based on a
recursive switching function definition. The more realistic designs in Figure 4.1.4 correspond to those of

[MeCo80] but their FP definitions are more complicated.

# Nor-decoder ########AAHHH##HH 444

{ﬁordwode &PU@repeat@[1,split@2)@setup}

{repeat (nul@1->cncat@2 repeat@stage)}

{stage [tlr@1,cncat@&(split@&PT) @odistl@[notg@last@1 ,edisti@[last@1,2]]]}
# Nand-decoder ######AA##H#RESHH#AH
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{nanddecode &PU@repeatpd@stage@(1,split@2]@setup}

{repeatpd (nul@1->cncat@2 xepeatpd@stagepd)}

{stagepd [ﬂr@l,mt@&(split@&l’D)@odisﬂ@[ﬂOtg@last@l,edisﬂ@[laSt@l,Z]]]}
# Functions used by both decoders ####### 44 4R ####

ledist] 1@[encat@&[1@2,disU@[1,2@2]}@dist@[1,pair @2]]}

{odist] 1@[cncat@&[disi@(1,1@2],2@2}@cisti@[1,pair@2]]}

{setup [id, &« GR@expand@[id,[H@[id]]] ]}

{expand (eq!@]Ingth@1, %0]->2;expand @[!@1,ncat@[2,2]])}

{PT org@[notg@1,2]}

{PD andg@{notg@1,2]}

m | [ [ [ | = |

] I 1
(r (e ] (s ] (e J [ J[r ][ ][ =]

51



T g g =R

—11 TL_.IELII—L—[
(& Cnl (=l Crd Ced Cad Cad Ced)

- ‘ ] ]
[(m ][ ][ | |[m |[m[m™]

?ﬁ%

5 [rlr] (2] (e Cn]
G B G E

—

3

! AN
PD l: PU T

Figure 4.1.4
This specification is in terms of non-functional primitives, (i.e. pass transistors, pullups and pulldowns).
However with the knowledge of how these elements are intended to function in this circuit, (their direction
of flow) they can be represented by FP functions. Of course, the programmer is responsible for insuring

that these elements do in fact correspond to their FP definitions in practice.

4.2 Carry-Save Array Multiplier

The following is an FP specification of a carry-save array multiplier. The specification is generic; it
will multiply any two bit vectors of length greater than 3. Basically the algorithm consists of stages, each
of which consumes one bit of the multiplier and performs a row-reduction using full adders on the column

sums of the preceding stages and the multiplicand "anded" by the bit of the multiplier. The output consists
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of two bits per column for the n leftmost columns and a single bit for the m-1 rightmost columns; an adder

should be applied to the leftmost m columns to obtain the final surn.

# Carry Save Array Multiplier

# multiplier multiplicand
# input <<ym y(m-1).....y2 y1> <xn x(n-1) ...x2 x1>> m>3 and n>2.

# output <<s(m+n-1) {m+n-2)> <s(m+n-2) om+n-3)> ...<s(m) c(m-1)> <s(m-1)... s1>>

# ERPRBEER the fumﬁon ARG ELS
{csmult ckstage@stage3@stage2@stagel}

# set up initial structure
{stagel [tr@],cncat@&[1 ,andg]@pair@cncat@{[1@2] ,cncat@disti@[last@1,1@2),[last@1]]]}

{stage2 [1,cocat@[[1,[andg]| @1@2 cncat@&{1,(andg@(1,2),3]@2@2) 31@
1,1@2,&[2@2,1,1@2]@2@2),3]@
[r@1,[1@2,last@1],distl@[last @1, pair@tlr@1I@2]] [lest@2]]}

{stage3 regroup@csavel @setup}

# check for last stage
{ckstage (eq@(Ingth@1,%1]- >laststagesckstage@normalstage)}

{normalstage regroup@csave@setup}
{laststage lastregroup@lastcsave@setup}
{setup [tr@1,
g[;n@m%ﬁﬁl@]ﬁﬁ}gm @disti@[last@1,pair@tr@u@2]},
{align1 [1@2,[1,2@2]]}
{csave [1,mcat@[op0@1,&0p2@2]@2,2pndi@(hadd@1,1])@3]}
{csavel [1,cncat@[op0@1,{opl@1 @2],&op2@1@2]@2,apndi@[hadd@1,1)@3]}
{lastcsave [encat@[[andg@1),&l0p2@2]@2,2pndI@[hadd @1, 4] @3]}
fregroup [1,apndr@[tr @2, [last@2,1@1@3]],aprd@[2@1@3,1@3]) @[1,regp@2.3]}

{regp (eq@[%2,Ingth]->idxencat@[[1,[2,1@1@3]],
regp@cncat @([2@1@3,2@3] t@u@tl]}

{lastregroup [paﬁ@ﬂr@apnd]@[l,c:nmt@tl]@2,apndl@[2@last@2,3]]]}

# FA® op2 : <<ab> <y x>> ---> <<Cx> s> where2c +s=(a+ b + yx)
{op2 [[org@[1,1@2},3],2@2]@[1@1,hadd@[2@1 ,2),3]@[hadd@1,andg@2,2@2]}
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# HA* opl : <<a> <y x>> ---> <<c x> 5> where 2c + 8 = (a + yx)
{op1 [[1@1,2],2@1] @[hadd@[1@1 ,andp@2],2@2]}

# FA** lop2 : <<ab> <y x>> ---> <cs>where2c + s = (a + b + yx)
{lop2 [org@(1,1@2],2@2]@[1@1,hadd@[2@1,2]}@[hadd@1,andg@2]}

{op0 [1,andg]}
{hadd [andg,org]}

Figure 4.2.1 is the sketch obtained of the function csmult with the functions HA®*, FA*, FA**, and HADD

represented as primitives. The internal spedifications of the functions HA®, FA®, and FA** are also given.

YSYSYasy: Yixs x7 x x$ b 7 ) n n
[—  wo] | ] | [w] | [w] | [w]]| [w]| [
SilcIEIEEG
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wo] feof| |[wo]| |[wo]] |[(se]| |[wo] A
R L 1l Ll Ol L ]
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l:[*;‘;] A FA* ras [ Ta* ra A Imm
i i Iy — i .illl_l
E:ﬂ FA* FA* TA* rae A [T A Imm
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AB Y X A Y X AB ¥YX

HADD AND | ‘
— i l HADD AND
AND Lo
HADD
—1 HADD
L"' HADD L
OR T OR
| | |
c XS c XS cSs
FA* HA® FA®*

Figure 4.2.1 Csmult with HA®, FA* and FA®* as primitives.
By defining each FA* directly in terms of badd and gates, vertical space is saved. If instead, FA* were
defined as,
{FA* FA@apndr@{1,andg@2]}

then the andg would have been placed above the hadd. Whenever the form Compose is invoked, the
arguments are brought to the same vertical level resulting in a waste of space. Figure 4.2.2 contains a
sketch of the same FP expression without HA®, FA* and FA®* marked as primitives; the effect is to
"splice” their definitions into the sketch. Notice that the boundaries of the primitives HA®, FA* and FA**

are not respected and their geometry is not always the same; it may adapt to its environment.

The FP specification of this algorithm is one of the most complicated. This is due to the difficulty
in efficiently writing the structural transformations required between stages, and the need to specify each
of the first three stages, the last stage and the other stages separately since they are all slightly different.
The form sBuild was useful in achieving the routing between stages. The difficulty in writing FP functions
is often in determining the exact structure of the object being passed from one function to the next.

Especially when functions are nested several times within Builds.

55



8 CSH M A

Figure 4.2.2 Csmult with andg, org and hadd as primitives.

4.3 Brent-Kung Adder

This algorithm [BrKu80] is designed to add any two bit vectors of size 2°, It determines the carry
for each column. To obtain the sum this carry must be combined with the two input bits of the column.

# input = <<a; by><a; b;><ayby> « - <a, b;>> wheren = 2°

: a; and b, are bits

{bkadd firsthalf @&pg}

{stagel cncat@[&D@1,&D@tr@2,[PG@(last@1,last@2]]1}

{firsthalf (eq@[length,%1]->secondhalf @split@1 firsthalf @ &stagel @pair)}

{secondhalf (eq@[length,%1]@1->done;
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secondhalf @cncat@[split@&D@1 ,stage2]
@apndr@[encat@&[id, last]@tlr,last])}

{stage2 encat@&((apndr@[&D@Ur@1@2,
PG@[1,last@1@2]],
&D@2@2)
@[1,split@2])
@pair@tl}
{done &1}
{pg [[andg,xorg]]}
{PG [org@[andg@[1@1,2@2),1@2], andg@[2@1,2@2]}}

{Did}

The specification is based on three primitives, PG, pg and D. Figure 4.3.1 contains the FP definitions of

these primitives and the computation of the carries for the addition of two 16-bit vectors.

gpg - | a b g pi
—]
and
| —
ar and and xor
gk pk g pi gin
PG Pg D
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Figure 4.3.1 Computation of Carries for n = 16

This example raises the interesting problem of recognizing hanging wires. To obtain the final
result, only the first output of each column G, is required, thus in fact the second output should be
considered a hanging wire. In Figure 4.3.1 this algorithm is sketched with each bit represented as a wire.
However, the basic unit being passed among the primitves are pairs of bits. If each pair is represented by
a wire as in Figure 4.3.2, then in effect there are no hanging wires. Clearly the notion of hanging wire is
one which depends on the level of representation. To write the algorithm so that it has no hanging wires at
a particular level, requires going into the details of this level, usually sacrificing regular patterns at higher

levels and compact FP definitions.
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Figure 4.3.2 Higher level of representation for Figure 4.3.2.
An appealing way to deal with hanging wires, would be to have them recognized and removed
automatically. This is a topic currently being exarmined. This is not as straight forward a task as it seems,
since removing a hanging wire may create new Ones, and make it possible to remove boxes or at least
some of their inputs. It will be necessary to define exactly what is meant by a function "needing” an input
before hanging wires can be removed automatically. For example, in the Brent-Kung adder, a hanging
wire which is the output of a delay, D, can be removed as well as its corresponding input to the delay and
the and gate of the last PG in each column :zn also be removed. Having the hanging wires removed
automatically, might have simplified the definition of the Carry-Save Array multiplier presented in the last

section.
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4.4 Tally

The tally circuit counts the number of 1’s in its input. The i** output is 1 if there are exactly i
inputs which are 1. The definition is recursive; it computes the tally of n-l inputs and then considers the

n** input, adding a 0 to either side of the previous result, according to the value of this n™ input.

# main function

{tally (eq!@[Ingth, %1]->one;more)}

{one [id,notg]@1}

{more. &SFL@distl@[[notg,id]@1,pair@cncat@[[%0],cncat@&[id,id|@tally@t,{ %0]]]}
{SEL wor@&SW@trans}

{wor org}

{SW andg}



XX X4 X3
= Lo
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Figure 4.4.1 Tally circuit with SEL as a primitive.

61



As in the Decoder, a more compact placement can be obtained by compacting to the right instead of the

left. However, this problem dissappears when the sketch of the algorithm is obtained with lower level

primitives in Figure 4.4.2.
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Figure 4.4.2 Tally circuit with SW and wor as primitives.

Again the primitives SW and wor can be represented by gates in the FP definition.

4.5 FFT

This last example is of a higher level algorithm; an algorithm to compute a 2" point FFT. Two
algorithms are presented, the one based on the Butterfly and Bit Reversal permutations and the other
based on the shuffle permutation[Pa80]. Figure 4.5.1 shows the two algorithms with the permutations
represented by boxes. The two functions are written for any 2" point input.

#; 2" point fft

#

# input : (2" complex numbers)

#(z0 z1 22 23 z4 25 26 27 28 29 210 211 212 213 214 z15)

# (or 2" pairs of real numbers)

#((x0 y0) (x1 y1) (x2 y2) (x3 y3) (x4 y4) (x5 y5) (x6 y6) (x7 ¥7)

# (x8 y8) (x9 y9) (x10 y10) (x11 y11) (x12 y12) (x13 y13) (x14 y14) (x15 y15))

#
###################################################
# Traditional FFT Algorithm - Butterflies and Bit reversal

SRR F LA AR SRAFRBRERH B R AR BB S BB HAF RS RS RAR A R HE S S

{tft Bitrv@fftstages}

{fftstages (eql@[Ingth,%2] -> W » &fftstages@split@cncat @Bfly @encat@& W@BAly)}
{Bfly l@ﬁcncat@[shufﬂe@[l,3],shufﬂe@[2,4]]@cncat@&trans@sp]it@pair]]}

{Bitrv (eql@[Ingth, %2}->id;&Bitrv@trans@pair)}
###################################################
# Shuffle - Unshuffle Algorithm
###################################################

{£ft (end->flatten;fft@vunshuffle@stage)}



{vunshuffle {bottom -> unshuffle ; recons@vunshuffle@cncat)}
{unshuffle cncat@trans@pair}

{recons (bottom-> split; &recons)}

{stage (bottom-> split@cncat@&W@shuffle@split;&stage)}
{end (bottom- >eqi@({ngth, %1} end@1)}

# defined for complex numbers
{bottom atm@1}

# defined for real numbers
{bottom atm@1@1}

{flatten (bottom-> id; flatten@cncat)}

FHERRH R LR BH RS RS RAA AP SER B S EHRH SR EH R R RN # S #
# Definition of W

REBERRRBRE AR R AR RERF A A FH R RS REF RS RS R AR F A #
{W [cadd,csub]@[1,cmul@{2,u0]}}

{u0 [u,u}

{u %1}

{cadd &add@shuifle}

{csub &sub@shuffle}

{craul [sub@[mult@[1@1,1@2),mult@2@1,2@2]],
add@[mult@[1@1,2@2] mult@[2@1,1@2]]}}

The shuffle-unshuffle algorithm is more complicated and relies on the function bottom to identify
an actual point. This function would have to change depending on the representation level of the points,
that is, whether an atom corresponds to a complex number or a pair of real numbers for example. The
adjustment of bottom is left to the programmer. Both algorithms for a 16-point FFT are displayed in
Figure 4.5.1. Each wire represents a complex number and the W is marked as a primitive as well as the

permutations.
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In Figure 4.5.2 each wire is also a complex number, but the permutations, Bfty and Bitrv, are no
longer primitives.
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Figure 4.5.2 FFT algorithm of Figure 4.5.1a with only W as a primitive.

Figure 4.5.3 contains the primitives for the sketches in Figure 4.5.1. The primitive W is represented with

complex numbers as atoms.
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wire corresponds to a bit. The same FP code would be used but each time functions at a lower level

would be marked as primtives.

The performance of the compaction algorithm is most visible in this example. The constraint
graphs of Figures 4.5.1a, 4.5.1b and 4.5.2 were inconsistent and required adjustment. For Figures 4.5.1a
and 4.5.1b, the compaction went through two phases. In the first phase, the boxes were enlarged to obtain
a consistent constraint g:raph, and then the wires were fixed. However, after pulling the wires back to the
right, it became possible to retract some of the boxes, so a second compaction was performed, (on a
constraint graph which was now consistent). The sketch for Figure 4.5.2 is not as "nice"; the routing of
the permutations forces this inefficient placement. This problem is somewhat alleviated in Figure 4.5.4

where lower level primitives are represented.



5. Condlusion

The following sections contain impressions of using FP to specify circuits. Disadvantages as well

as advantages are discussed and a few directions for improvements and enhancements are given,

5.0 Advantages
Specifying circuits with FP offers the following advantages.

1. Functionality
It is appealing to specify circuits by function rather than structure and obtain the structure as a
result of the algorithm. Pre-designed components can be stored in a library by their FP code,
providing flexibility to adapt to different environments and technologies. Generic definitions can
be provided making it unnecessary to check size parameters; the designer can retrieve the function

"shift” without specifying the input size.

2, Control over placement and routing
Although a dircuit is specified by function, the designer has a great deal of control over the spatial
organization of the circuit, Specifying with FP also provides the designer with the possibility of
applying "place and route” tools on only selected portions and hierarchically. Placement and
routing are not considered as separate operations; wires are instantiated and positioned as

clements in the same manner as boxes.

3. Turn-around time
The time from specification to sketch is suitable for an interactive design environment. This is

important since the goal is to estimate space and time characteristics before committing to a

20



particular algorithm. Visual feedback is an important feature for a system of design tools.

5.1 Current Limitations
The implementation described in section 3 has the following limitations.

1. Combinational circuits
For FP to be truly useful, the problem of describing sequential circuits must be addressed. From
the geometric point of view, the IF is still suitable for describing these dircuits, since the direction

a signal flows on a wire is irrelevant to the compactor.

2. Uni-directional flow of information
This is the most serious limitation. The flow of data is always scen as moving in one direction;
inputs are always on one side and the cutputs on the other. This is to some extent the result of
human perception of computation. More sophisticated functional forms will be required to
combine functions in more complex ways. Systolic arrays, for example, will require spedial
handling.

3. One-dimensional compaction
The current mapping from the IF to a sketch utilizes the vertical coordinates of the IF. A more
two-dimensional approach might yield better results. This is an enhancement which is being

considered.
5.2 Future Directions
The following improvements and enhancements are being considered.

1. Detection and Removal of Hanging Wires
As discussed in Section 4.0, the automatic removal of hanging wires would facilitate the writing of

FP specifications. This addition is not expected to pose any difficulty.
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More sophisticated mapping of IF

A two-dimensional approach in mapping the IF to fixed geometry would improve the quality of
the sketches and also remove some of the burden associated with specifying circuits using FP. The
cost of this improvement may be in the time required to map from the IF to fixed geometry and

in less control over placement.

Prediction of Placement based on routing requirements

From the IF it may be possible to directly detect the conflicts in routing which result in the
enlargement of boxes and gaps in the placement. These enlargements and gaps would be removed
by adding more horizontal tracks in strategic locations. The FFT in section 4.5 is an example of a

specification whose sketch might benefit from this type of transformation.

Algorithmic transformations

One of the tasks in which algebraic transformations could be used is in the "untangling” of the
placement. Untangling a sketch by transforming its FP specification is possible since the amount of
"tangling” is measurable directly from the IF, without obtaining fixed geometry. The degree of
"tangling” of a placement would be measured from the amount of crossing wires. By flipping
entire functions, at various levels in the hierarchy, the number of crossings would be reduced. This
problem is NP-hard in the general case. By operating on an FP spedification instead of a collection
of boxes and wires, those transformations which would improve the placement might be easier to
identify. Of cﬁurse, the optimal placement may be difficult to obtain or recognize, and might not
even be reachable, using only algebraic transformations.



Appendix: Description of FP

Objects

The set of objects 0 consists of the atoms and sequences <x;, X3, ..., &> (where the
xicf). (Lisp users should note the similarity to the list structure syntax, just replace the
parenthesis by angle brackets and commas by blanks. There are no 'quoted’ objects, i.e., 'abc).
The atoms uniquely determine the set of valid objects and consist of the numbers (of the type
found in FRANZ LISP [Fod80]), quoted ascii strings ("abed”), and unquoted alphanumeric strings
(abc3). There are three predefined atoms, T and F, that correspond to the logical values "true’
and ’false’, and the undefined atom L, botom. Bottom denotes the value returned as the result of
an undefined operation, e.g., division by zero. The empty sequence, <> is also an atom. The
following are exaraples of valid FP objects:

1 147 3888888338888
ab "CD" <1,<2,3>>
<> T <g,<>>

There is one restriction on object construction: no object may contain the undefined atom, such an
object is itself undefined, e.g., <1,0> = i. This property is the so-called “bottom preserving
property” [Ba78].

Application

This is the single FP operation and is designated by the colon (™:"). For a function o and an
object x, ox is an application and its meaning is the object that results from applying o to x (i.e.,
evaluating o(x)). We say that o is the operator and that x is the operand. The following are
examples of applications:

+:<7.8> = 15 #:<123> = <23>
1:<abec,d> = g 2:<agbyecd> = b

Functions

All functions (F) map objects into objects, moreover, they are strict:
og:1 = L, YoeF

To formally characterize the primitive functions, we use a modification of McCarthy's conditional
expressions [Mc60]:



This statement is interpreted as follows: return function e, if the predicate 'p," is true , . . ., e, if
'p,’ is true. If none of the predicates are satisfied then default to e,,;. It is assumed that
X, X3 ¥y Yis Z!Eﬂ'

Selector Functions

For a nonzero integer p.,

pix=
x=<x, % ... 5> A0< pskox,;
x=<x, % o B> A —kSR<O = B s L

pick : <n x> =
X=<X, %5 ..., > A0<nsk-x,;
XECX, X9y oo, X2 A —kER<0 - xp 4413 L

The user should note that the function symbols 1,2,3,... are to be distinguished from the
atoms 1,2,3,....

last : x =
X=CD - <>
X=<X, X9, . .., X2 A k=l -, 1

first :x =
X=CD - <>
X=<X{, X3, ..., 5> Ak=1-x; 10

Tail Functions
th:xm

=<K > - <>

x=<xy, X3, ...,Ik>/\k22*<12.....xk>;.l.
thr :x =

X=X > - <>
XZ<X, X9y e, G A2 <Xy, L, > L

Note: There is also a function front that is equivalent to tir.
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Distribute from left and right

distl : x =
x=<y, K> - <>
Xx=<y, <2, 22 -+ . BT KLY 2120y <Y 2> >3 L

distr ; x =
X=<LD Y>> - <>,
X=<KY, Yo o oo NTEZ = YLy Y25 L

Identity
id:x=x

out ;. x = x

Out is similar to id. Like id it returns its argument as the result, unlike id it prints its result
on stdout — It is the only function with a side effect. Out is intended to be used for debugging

only.
Append left and right

apndl : x =
X=<y,<>> - <y>,
X=<Y, <2, 25, ooy P> <Y 2, 2 s B L

apndr : x =
X=RL 2D - I,
I=CKY L, Y o v v s Ve 2> = <YL Y2+ 00 Vi z>;, 1

Transpose

trans : x =
x=<<>,.,,<>> + <>;
X=X, Xy - X 2 LY, Y L
where x; = <xj1, . X A Y = <Eyp - - Xy,
1=i=k, 1sj=m.

reverse . x =
=L >
X=X, Xy - o s X2 = <Xy .25 L

L] 4



Rotate Left and Right

rotl . x m
I=C> o < x=<n > - <X,
X=CX X2y ooy K> ARZ2 2 <Xy, L. X 5 L
rotr x =
=D - I X=X > - <X,
X=X, Xy - B> ARZLD <K, Xy L K2 B-1 PG L
coneat : x =
X=<KE, - X ST e Xy Kny + - K AR, MR, p > 0-
L PPN JPI N TR ST e

Concatenate removes all occurrences of the null sequence:

concat : <<1,3>,<>,<2,4>,<>,<5>> = <1,32,4,5>

pair : x = _
X=X, X3 v vy X A k>0 A kis even - <<x1 3>, .. ., X 1,022
x=<x1, Xy ooonn s Ik> Ak>0Akisodd - <<x1rx2>: P ,<xk>>;.1.
split 1 x =
I=CI > - <<x >, <>,
X=<X{, X2, . .., xk> Ak>1 - <<Xy, .. .x|'m|>,<x{m'|+1, PR ,Ik>>;_]_
jota ix =
x=0-<>;
xeNt - <12, x>; 1 -
Predicate (Test) Functions

gtom : x = x catoms - T; x#1L-F; L

eq:xmx =<yz>Ay=z-T)x=<yz>Ay#z-F;1

Also less than (<), greater than (>), greater than or equal (>=), less than or equal (<=),
not equal ("=); '=" is a synonym for eq.

pull x = x=<>-T;x#1L -F; L
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length : x = x = <xy, X3, . . . L X 2k x=<> -0; L

Arithmetic/Logical

+ :x m x=<yz> A y,2 are numbers - y+z; L

— :x = x=<y,2> A y,Z are numbers - y—2z; 1 .

* . x m x=<yz2> A Y,z are numbers - yXz; L
/:xmx=<y,z> A y,z are numbers A 2% 0 = y+z; L
And, or, not, xor

and : <x,y> = x=T +y;x=F-F; L

or : <x,y> mx=F «y;x=T-T; L

xor | <x,y> =

x=T A y=T -F;x=F A y=F - F;
x=TAy=F-T;x=FAy=T-T; 1

pot:x = x=T~F;x=F~T; L

Library Routines

sin : x = x is a number - sin(x); L

asin : x = x is a number A [x] = 1 ~sin~ (x); L -
cos : x = x is a number - cos(x); 1

8cos | x = x is a number A [x| = 1 - cos™}(x); L

exp : x = x is a number - e L

log : x = x is a positive number - in(x); L

mod ; <x,y> -xandyarenumbm-x—yXl%I L

Functional Forms

Functional forms define new functions by operating on function and object parameters of the
form. The resultant expressions can be compared and contrasted to the value-oriented expres-
sions of traditional programming languages. The distinction lies in the domain of the operators;
functional forms manipulate functions, while traditional operators manipulate values.

One functional form is composition. For two functions ¢ and { the form ¢ @ W denotes
their composition ¢ °

(@) :x = d:(Yx), V xeld

The constant function takes an object parameter:

b or J



Toxyy my=1 - 1;x, V xyell

The function %L always returns "1".

In the following description of the functional forms, we assume that €, §;, o, 0, 7, and 7,
are functions and that x, x;, y are objects.

Composition

(c @ 7)x = g:(1x)

Construction
[on ... on)x = <oyix,...,0,%>
Note that construction is also bottom-preserving, e.g.,

-

[+/]:<3,0> = <3,1> = |

Condition

¢->o0;7)xm=
(=)=T ~ o3
(¢x)=F - 1x; L
The reader should be aware of the distinction between functional expressions, in the variant
of McCarthy's conditional expression, and the functional form introduced here. In the former case
the result is a value, while in the latter case the result is a function. Unlike Backus’ FP, the condi-
tional form must be enclosed in parenthesis, e.g.,

(isNegative -> - @ [%0,id] ; id)

Constant

TDox:y m y=1 - 1;x, Y xe)
This function returns its object parameter as its result.

Right Insert

lo xm
X=<> = 85X,
X=<X1> - Xy;

X=X, X9, 00, > AP w0i<xy, o<y, ..., 512> L

e.g., |+:<4,5,6>=15,



If o has a right identity element ¢;, then lo:<> = ¢, e.g.,

I+:<>=0and I*:<>=1

Currently, identity functions are defined for + (0), — (0), * (1), 7 (1), also for and (T}, or (F),
xor (F). All other unit functions default to bottom (*L").

Tree Insert

jo:ix =
x=<> -~ erx;
x=<xy > - X3
X=<H), X3 oo > AR>] -
g:<lo:i<xy, .. x> o <spalen B>

e.g.,
|+:<4,5,6,7> m +:<+:<4,5>,+:<6,7>> = 15

Tree insert uses the same identity functions as right insert.
Apply to All

&o:x ™
FECD <>
IR, Xy o, BT LOX, L, O

User Defined Functions
An FP definition is entered as follows:

{fn-name fn-form},

where fr-name is an ascii string consisting of letters, numbers and the underline symbol, and fa-
form is any valid functional form, including a single primitive or defined function. For example
the function

{factorial I* @ iota}

is the non-recursive definition of the factorial function. Since FP systems are applicative it is
permissible to substitute the actual definition of a function for any reference to it in a functional
form: if f = 1@2 then f : x = 1@2 : x, V xefd.

References to undefined functions bottom out:

fx = L Vxefd, fgF



The following table gives the correspondence between the primitives and forms of Berkeley FP
and the ones implemented in the system described in Section 3.

Primitives
Berkeley FP Lisp or TFP__ Berkeley FP _ Lisp or T FP
peZ B pick pick
last last first first
tl ot tir tir
distl distl distr distr
id id out out
apndl apndl apndr apndr
trans trans reverse rvers
rotl rotl rotr rotr
concat cncat pair pair
split split iota iota
atom atm eqor = eql
null nul length Ingth
< Isth <= Iseq
> grth >= greq
‘= neql + fadd
- fsub . fmult
/ fdiv and andp
or orp xOr xorp
not notp sin sin
cos cos asin asin
acos acos log log
mod mod exp fexp

Forms

Berkeley FP - Lispor T FP

[H@f@...@f, (comp fi fr ... fa) |
[f1if2se-ifn) (build £, f5 ... fa)

(p->fig) (condlp f g)
If (tins f)

&t (apall )

I (tins f)
%0bj (kons Ob])

In addition the Lisp and T FP interpreters contain the following primitives.

andg : <x,y> =
x=1Ay=1-1;x=0Ay=0-0;
x=1Ay=0-0;x=0Ay=1-0;1

org ; <x,y> =

x=1Ay=1-1;x=0Ay=0-0;
x=1Ay=0-1;x=0Ay=1-1;1

-



x0rg ; <x,y> ™
x=1Ay=1-0;x=0Ay=0-0;
x=1Ay=0-1;x=0Ay=1=1;L

nandg : <x,y> =
x=1Ay=1-0;x=0Ay=0-1;
x=1Aay=0-1;x=0Ay=1-1;1

porg : <x,y> = 7
x=1Ay=1-0x=0Ay=0-1;
x=1Ay=0~0;x=0Ay=1-0; L

potg : x = x=T - F;x=F -T; L

sqrt : x = x is a number - Vx; L

shuffle : x =
=<, LD - <>y
P~ TR T K 5 2 T b 4 9SS0 S s LI Y>> L
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