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ABSTRACT OF THE DISSERTATION

Algorithms for Queueing Network Analysis
of Distributed Systems
by .
Edmundo Albuquerque de Souza e Silva
Doector of Philosophy in Computer Science
University of California, Los Angeles, 1984
Professor Richard R. Muntz, Chair

Recently there has been an increasing number of large distributed com-
puter system implementations based on local ares networks. In these systems a
number of resources (CPU’s, file servers, disks, etc) are shared among jobs ori-
ginating at different sites. Evaluating the performance of such large systems
typically requires the solution of a queuneing ;etwork model with a large number
of closed chains, precluding the use of exact solution techniques. Therefore, it is
important to develop accurate and cost effective methods for the spproximate -
analysis of closed queueing networks with many chains. We praént an
approach based on the clustering of chains and service centers. The method is
applicable to queueing networks with single server fixed rate, infinite server and
multiple server service centers. . We present the results obtained when the
method is used to solve large queueing network models.  Extensive comparison of
this method with existing approximation techniques indicates that the approach

has better accuracy/cost characteristics.



™

We study the problem of solving queueing network models with simul-
taneous resource possession. ‘Thae models violate product form requirements
and cannot be solved exactly unless the network has a very small state space.
We developed a technique to approximately solve this class of models. We
evaluate the accuracy of the approximation by comparing the analytical results

with those obtained from simulation of several models found in the literature.

:-\‘Ne investigate the load balancing problem in distributed systems formed
by heterogeneous compute} sites connected by a communication network and
supporting multiple job classes. Jobs arriving at a site may be processed locally
or sent to a remote site for execution. Restrictions may apply in the remote
dispatcher, so that a class of jobs may be allowed to run only in a subset of all
sites in the network. We assume that the communication network as well as
each of the computer sites can be modeled as product form queueing networks.
Our goal is to find the optimum assignment.vof jobs to sites so that a weighted
sum of response times over classes is mininiized. We propose an efficient algo-

rithm for finding the optimum load balancing strategy.



CHAPTER1
INTRODUCTION.

The past few years have witnessed an increasing number of distributed
systems implementations. These systems consist of several processor-memory
pair units to entire computers connected to form a cooperating system under a
decentralized control scheme. In the past decade we have seem the evolution of
multiple processor architectures {Baer76, Ensi77, Saty80]. In these systems,
several processor-memory units cooperate under “integrated control®. In a typi-
cal configuration a multibroeasor s.ystem has a single operating sjrstem, the pro-
cessor units lsha.re a global memory, they are not very specialized and can per-
form significant computation individually. The continuous decrease in the cost
of processing power and the advances in VLSI design make cost effective the
development of powerful computers for individual use. In the late seventies and
in the eighties we have seem an increasing use of personal computers, work-
stations and medium size computers designed to satisfly most of the needs of a
single or a small group of users. In parallel, the existence of inexpensive
transmission media capable of supporting high data transfer rates (e.g., coaxial
cables which can support point to point or broadcast communication in the
range of 1 to 10Mbit/sec over a distance of 1 to 10 kin without repeaters, and
more recent, fiber optic technology) make viable the interconnection of such
work-stations and/or more powerful computers forming a local area network.

There is a number of applications for local area networks. One such application



with ap enormous market is in the ares of office automation.

The main goals to be obtained with a distributed system configuration
are: (a) Performance improvement: which can be achieved, for example, by
efficiently partitioning the work to be done into tasks which can be executed in
parallel; by balancing the load in the system; by sharing programs and costly

hardware equipment among users, ete. (b) Increase flexibility: usually a distri-

buted system can be easily reconfigured by increasing or decreasing the number ':':

of processing units to increase or decrease the capacity of the entire system .
according to the demand. (c) Reliability and availability: which Ais achieved by
the inherent redundancy of the configuration. The major issues facing the
designers of these systems are: task decomposition, interconnection structures,
addressing mechanisms, sottware. system structure, interprocessor interface,

deadlock avoidance, fault tolerance.

Distributed processfing- is an area of current strong research interest as we
can observe by the numerous articles in -;he fleld (e.g., [Thur?9, Mari79a,
Walk33b]). The potential advantages of distributed processing (high reliability
and availability, easy system growth, performance improvemext, etc) by far jus-
tify the interest in the area. However, as larger and more complex systems are
being developed, in general there is also an increa.-;e in the complexity of the
problems to be solved, and it becomes more difficult to understand and evaluate
the performance of the overall system. As a consequence, there is an increasing
need for tools and techniques which can help in understanding the behavior of
such systems. One such technique is the modeling of the system. A model is an
abstraction of a system and attempts to ca'ptnre in s simplified way the essential

attributes of the system being studied. Modeling is in several cases a much



cheaper alternative than performing measures in the real system, and the only

alternative in the design stage. Among the modeling techniques, queueing net-

work modeling is a particular approach in which the system is represented as a

network of queues which is evaluated by simulation or analytically. It has been

la.lf;ely used with success to model computer systems. In these cases, the net-

work of queues is a collection of service centers which represents the system -:

resources and customers or jobs which represent users or transactions.

The most widely used tool for computer system analysis is still discrete
event simulation. The main reason for that is the capability of representing
details of the system being studied. Recently simulation packages were imple-
mented specifically to handle queneing metwork models [SaueSle, Saues4,
Berr82]. These packages have begn widely used with success. A more recent
implementation incorpofaté queueing network a.:ialysiﬁ capabilities in a simula-
tion package which uses a formal graph model to describe the behavior of the
system [Vern83|. As computer time gets clleaper we should expect that simula-
tion will continue to be s widely used tool. However, the analytical solution of a
model is always more attractive whenever the assumptions used to make the
model mathematically tractable do not oversimplify the final model to the point
of jeopa.rdfzing its accnracy: This is true since an analytical solution is usually
several orders of magnitude cheaper than simulation. For large systems, it may

be the only alternative.

‘One of the most used class of analytical models is product form queueing
networks. Unfortunately, the existing solution techniques for solving closed
chain product form networks exactly are impractical for very large systems, since

the computational requirements of these techniques grows comb:matorically with



the number of closed routing chains and customers in the network, unless the
petwork has a special sparseness structure [Lam83]. Therefore, it is important
to develop cost effective and accurate techniques for the approximate solution of
such large models. Furthermore, there is no exact solution technique available
to handle queﬁeing petworks which violate product from requirements except for
Markov chain a.pproa.cha (which are impractical even for moderate size net-
works). It is therefore equally important to develop accurate and cost effective

approximate methods to ‘handle those cases as well.

The work presented in this dissertation was motivated by our interest in
analyzing queueing network models of large local area networks, in particular
the LOCUS local area distributed system [Popesl, Walk83b, Walk83a]. Locus is

“a distributed operating system developed and currently in use at UCLA on a

network of VAX11/750 and 780 computers connected by an Ethernet channel.
It provides a high degree of network transparency so that, for the user, the sys-
tem appears as a single computer. Knowlédge of the network and the interac-
tion among the several sites is completely hidden above the operating system
level. Files and processes can be transferred dynamically between machines in
the network. Processes originating at one site may rim in another site and pro-

cess interaction is the same, independent of the location.

Most of the modeling of local area networks has concentrated on the per-
formance of the communication network. In [Gold83] a model was proposed .
that focused more in the individual sites and their interaction in the network.
This model was simply a composition of several "central server models with ter-
minals [Lave83], whxch have been successfully used in the past to represent the

behavior of a single computer system. These "central server models” were inter-



connected through a simplified representation of the communication channel, in
order to maintain product form characteristics. Limited comparison with meas-
urements in the LOCUS system for :a four site network showed the validity of
the model as a first approximation. The current LOCUS configuration running
a.tUCLA is composed of sixteen VAX computers and there are plans to add -
m#ny more sites. The large number of '--'!;-.s preeludé the use of any exact solu-
tion technique to solve a model of the sy "a'em as proposed above. Furthermore,
the introduction of more details in the n;odel are‘ likely to violate product form

requirements.

In this dissertation, we focus our study on the development of accurate
and cost effective algorithms to approximately solve large queueing network
models and in particular, the one proposed to model the LOCUS distributed sys-
tem. We also investigate the problem of balancing the load in a distributed sys-
tem environment and propose an exact algorithm which finds the optimum load
balancing strategy. All the algorithms developed were implemented as interac-

tive tools and currently run on our LOCUS environment.
, o
In chapter 2 we overview some of the approximate methods proposed to
solve product and non-product form queueing petwork models. We try to
present the techniques in an unified view by identifying a common ground in

which most of the methods are based, hopefully simplifying the understanding

of several methods found in the literature.

In chapter 3 we propose an spproximation technique to solve product
form queueing network models with single server fixed rate, infinite server and
multiple server service centers. This technique was initially developed having in

mind the solution of large distributed systems models, in particular LOCUS type
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of models. We have extended the approach to handle general product form
queueing models as well. Extensive empirical studies demonstrate that the
approach has better accuracy/cost characteristics when compared to other

methods.

Chapter 4 is devoted to non-produ t Iorm networks. We first address the
problem of introducing a more detailed I raentatxon of the Ethernet channel
in 3 LOCUS type of model. Furthermore vwe address the problem of simultane-
ous resource possession, i.e., networks in which customers contend for resources
while holding others scquired in a different stage of execution. We developed an
approximation technique to handle non-product form networks where each
simultaneous held resource is dedicated to a single type of user or shared among
different types of users.

In chapter 5 we investigate the load balancing problem in distributed sys-
tems. We again use a LbCUS type of model to represent the system. We
develoﬁ an efficient and exact algorithm fciir the optimum solution of a very gen-
eral class of load balancing probiems sup“ttorting multiple class of jobs and site
constraints. The algorithm is based on a downhill procedure to search for the
global minima.

Chapter 6 extends the algorithm of chapter 5 in order to handle cases
were jobs are composed of multiple tasks which can only be executed in a subsét
of all the sites in the network. We also propose an efficient approximation algo-
rithm to solve the rﬁuting problem in a multiple closed chain network model,
which reduces the computatio_nal complexity of the oriéinal exact algorithm pro-
posed in [Koba83].



CHAPTER 2

OVERVIEW OF APPROXIMATE METHODS FOR SOLVING
QUEUEING NETWORK MODELS.

2.1. Introduction.

The exact analysis of general closed queueing networks is typically too
costly due to the large size of the state space, even if the usual Markovian
assumptions are made. The most general method is to determine the Markov
process representation of the network, which is feasible only if the network has a
small number of service centers and jobs. A clever way to attack the problem is
described in [MollSlI. However, if the network has product form solution
[Jack63, Bask75] efficient algorithms were developed to exactly solve for these
models [Reis78, Reis80, Reis81]. Unfortunately, these algorithms have computa-
tional requirements that grow combinatorially with the umber of closed chains
in the network. Therefore, for muitiple chain networks with say five or more
closed chains and a few customers per chain (say ten) the analysis of closed pro-
duct form networks can be prohibitive, unless the network has a special sparse-
ness structure, e.g. Lam and Lien [Lam83]. The high cost of existing algorithms
for product form networks and the lack of efficient exact algorithms for non-
product form networks are the main reasons why it is important to develop
accurate and cost effective methods for the approximate analysis of closed

queueing networks.



Most of the methods that have been proposed for the approximate
analysis of closed queueing networks fall into one of the following three classes:
(1) non-iterative methods based on heuristic extensions to the equations of Mean
Value Analysis (MVA); (2) non-iterative methods based on hierarchical decompo-
sition and/or Norton's theorem and (3) iterative methods. Non-iterative MVA
based methods require a recursive solution over all network population vectors
ranging from the all zero vector up to the population vector of interest aand,
therefore, have the same multiple chain computational limits as exact MVA.
Nop-iterative methods based on hierarchical decomposition/Norton’s theorem
typically involve solving a subnetwork for all possible population vectors in
order to obtain 3 "Jow equivalent® server representation and then solving an
aggregated network consisting of the flow equivalent server and the rest of the
petwork. These methods are more suited to single chain than to multiple chain

networks due to the cost of solving the subnetwork and aggregated network.

The majority of the appmﬁmate methods described in the literature does
not give error bounds for the resuilts obtained. In general the accuracy of the
method is evaluated empirically by comparing the results of the approximate
algorithms, obtained after analyzing a large number of networks, with the
results obtained by analyzing the same networks with an exact algorithm, if the
network is product form, or by simulation or Markov analysis, otherwise.

In this chapter we mainly concentrate on itérative methods, since the
solution technique we will propose in future chapters is also iterative. We
present an unified view of many of the iterative methods proposed in the litera-

ture, which hopefully will simplify the understanding of the approaches.
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Many of the approximate methods for solving closed queueing networks
are based on the MVA equations due to the simple nature of these equations and
the physical interpretation they provide. Below we present the equations for

closed product form networks for reference.

We define the following notation that will be used throughout the next

three chapiers:

total number of service centers.

J -

K =  total number of chains.

W =  population of chain &k

N _ =  population vector = (M,,...,Ng).

(V) = mean throughput of chain & with population ¥.

8y = visit ratio of a chain k customer to center ;. .

L(N) =  mean number of customers at center j with population N.

Ly(N) = mean number of customers of chain & at center ; with

- population N. :
oV =  mean number of customers in the queue of center j (excluding
. customers in service) with population N.

(V) =  mean number of customers of chain & in the queue of center j
- (excluding customers in service), with population N.

W,(N) = mean waiting time (queueing time + service time) of a chain &

customer at center ; with population N.

2y =  mean service time of a chain ¥ customer at center j.

By =  service rate of chain i customers at center ;.

oy = relative utilization of a chain k customer at center j, = 4,2,

M, - number of servers at center ;. '

P(iilN) =  probability that there are i customers at center ; given that
. the population vector is N.

A\HN) =  throughput of chain & in a network with center j removed
- when the population is N.

PB{N) =  probability that all servers of center j are busy, when the

population is N.
e =  bdimensional vector whose i-th element is one and whose
other elements are zero.

Let J denote the number of service centers, the first J, of which are single
server fixed rate (SSFR), centers J;+1 to J, are load dependent and the

remainder are infinite server (IS) service centers. Fork =1, ., K.
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Equation (2.3b) reducu to:
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W, - 1+ - Syl J
n{N) 3&;[ J 1 £ (23d)

for multipie server (MS) service centers, where PB(N) is caiculated from (2.4a)
which, after simplification, gives:

‘ - -y b -y -
L 5 A May[PBAN-E,) + P(M,-1|N=e,) |M>M

f hawl

PBAN) = o N <M, (2.4¢)

" where |N| = N+ -+ + Nx.

These equations express an exact reh.tioﬁship between the performance
parameters and can be used recursively for an exact solution of the network. For

petworks with SSFR and IS service centers only, the compufational require-
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ments to solve the above equations are O(Jﬁ {Ny +1)). To solve networks with
b=l

multiple server service centers or general load dependent service centers, the
computational requirements increase considerably due to equation (2.4b). In this
case 2% loed depaademt mrv petworks have to be solved, each with some of the load
dependent service centers removed from the network [Tucc82]. It is easy to see
then that for networks with a few closed chains, this recursive computation can
be prohibitively expensive. Our experience indicates that networks with more
than five chains and ten customers per chain can be impractical to solve in a

medium size computer, (say, VAX11/750).
2.2. Non-Iterative Methods.

Most of the non-iterstiv§ methods proposed in the literature are based on
heuristic extensions to the MVA equations and hierarchical decomposition

and/or Norton'’s theorem.
Based on heuristic extensions to the MVA equations.

~ It is known that for first come first serve (FCFS) service cexiters, the pro-
- duet form solution holds only if all jobs belonging to different chains have the
same erpbnentia.l distribution. Reiser [Reis79] proposed a heuristic modification |
to the MVA equation_ for the mean waiting times (i.e., equation (2.3a)) for FCFS

service centers with different service demand distributions for different chains.

Observing equation (2.3s), we see that the waiting time observed by a job
of a chain & at center i has three components, namely: (1) the mean service time
of the arriving job at service center i, z,; (2) the mean backlog of jobs waiting

in queue; (3) the residual service time of the job in service on arrival of a chain

11



k job. Reiser assumed that: (1) the arrival theorem still holds for non-product
form networks with FCFS service center with general service demand distribu-

tions; (2) the flows in all chains are sufficiently randomized.

Using the above assumptions and standard renewal theory to calculate (3)
above, the following equation was obtained

W =+ aFE) + PRANN 5 Dl B
=t [ELED 33 V) =AH (2.5a)

tml

which simplifies to

Wi} = 20 + 5 2ula(N-50)
. {m) (2.5b)

for exponential service time distribution.

Reiser did limited comparison with simulation, with good results. Equa~
tion (2.5a) is applieable_ to single server service centers only. In chapter § we
extend this result to handle multiple server service centers as well.

Another approximation that falls into this first category is the receat pro-
posed approximation for pre-empt resume priority queues with exponential ser-
vice demands [Brya83, Chan82a], (in [Brya83] it is also proposed and approxima-
tion for pre-emptive head of line discipline, but no error analysis was done). Like
in Reiser’s approximation for FCFS queues it was assumed that the arrival
theorem holds for non-product form networks with priority queues. Again, under
the light of equation (2.3a), the expected time of a tagged job in a priority queue
is given by three components: (1) the mean service time of the arriving job at
the priority center; (2) the mean backlog of jobs in the priority queue with
equal or higher priority than the tagged job, (3) the work brought by the higher

12



pﬁoﬁty jobs which arrivé while the tagged job is in queue. "n [Brya83| extensive

studies were done to evaluate the accuracy of the approximation.
Based on Hierarchical Decomposition and/or Norton‘s Theorem.

In these methods the network is decomposed into subnetworks which are
solved independently. The results are then aggregafed to obtain the solution of
the original network [{Cour?5, Cour77].

Most of the decomposition methods are based on the Chandy-Herzog-
Woo theorem [Chan75] which is also called Norton's theorem. This theorem
states that s subnetwork of queues can be replaced by a single center which is
the "low equivalent” of this subnetwork. This replacement is exact for product
form networks and is used hen{ntiea.lly for non-product form networks. In

[Laves3] and [Saue8la] we find a brief discussion on the justifications for this

heuristic decomposition and .aggregation. One of the justifications is based on .

weakly coupled subnetworks [Cour75] which does not Adepend on the product

form conditions.

' This approach has been successfully used in modeling some queueing net-
works with simultaneous resource possession [SaueSlbl. A typical example is
shown in Figure 2.1 where a memory partition has to be allocated to s job
before being allowed to compete for the CPU and DISKS. In this Figure the
allocation of memory is represented by an "allocate node” [Lave83, Sane84]. Fig-
ure 2.2 shows how Norton’s theorem can be used to approximately solve the
model of Figure 2.1. In Figure 2.2a, the subsystem with memory constraint is
~isolated” and solved by "shortening” its paths to the remainder of the network

(Norton’s theorem). This subnetwork is solved for-all possible customer popula-
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Figure 2.1. A central server ma ‘el with memory constraint.

tions, in this case, the number of memory partitions. The throughputs A(n) for
all » obtained are then used as the service rates (n(n) = N\(n)) for the flow
equivalent server in Figure 2.2b. The solution of this last model gives the final

Flow squivalens

Terminsi

b
MN) o

8 ®

Figure 2.2. Application of Norton's theorem to solve the network of Figure 2.1.

result.
Sauer [Sa.uesvlb] presents a study of the accuracy of this decomposition
approach. Unfortunately the method presents difficuities for mulitiple chain net-

works with shared memory constraints [SaueSlb, Lave83]. There are other

approaches based on Norton's theorem. The iterative ones will be mentioned in
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the next section. .
Other Non-Iterative Methods.

Recently, 2 new approach has been proposed [McKe81, McKe82, Rama8?,

McKe83|, to handle large closed queueing networks. The general idea bebind the
method is to substitute Euler’s integral for a factorial term in the equation for :
the normalization constant [Laves3] for a network. Then Laplace’s method is

applyed to make asymptotic expansions of the integrals obtained.

The major features of this approach are: (1) the algoritbm is cheap, 0(J/K")
where ¢, the number of terms in the asymptotic expansion of the first and
second moments of the quantities of interest (utilizations, etc), is experimentally
chosen to be four for accurate results; (2) bounds are obtained for the results;

* (8) second moments can be obtained for queue lengths.

However, the method pment:s some drawbacks: (1} as reported in
[Rama82}, slow convergence occurs for "small” problems; (2) up to the date this
dissertation was written, the method is restricted to networks in which all chains
visit an IS center and (3) all other service centers have utilizations that are not
too large, e.g., less than .85. These limitations may be severe for a large number
of applications. Fﬁrthermare, no extensions were published to handle networks

with load dependent service centers.
2.3. Iterative Methods - a Unified View.

Iterative methods in general have the property that a set of non-liner
equations is developed that-relates, in an approximate way, unknown parameters

of the network under investigation and iteration is used to solve the equations.
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Often there are two sets of equations and two corresponding set of parameters,

say X and Y. The two sets of equations take the form:

Y = X) aad X = G(Y)

These equations can be reduced to a single set of fixed point equations, e.g.,

X = G(F(X)) .

In general it is difficult ‘to establish existence and uniqueness of solutions of
simultaneous non-linear equations and to establish that a particular jterative
solution method converges. In [DeSo83] we find a brief discussion concerning

this issue.

A variety of iterative methods have been described in the literature.
Many of these methods can be viewed in the following unified way. The
metbods invoive analyzing an interrelated collection of subnetworks. Each sub-

" petwork is analyzed with the remainder of the network (the subnetwork’s com-

plement) represented in a simplified way. The methods are iterative in that the
parameters of the simplified complement of a subnetwork are modified after the
other subnetworks are analyzed. These modifications reflect the latest solution
of the subnetworks in the complement. The subnetwork is then reanalyzed with
the modified parameter values for its complement. This is continued until some
convergence criterion is satisfled. As an illustration, consider Figure 2.3. In this
Figure a queueing model is broken into three subnetworks (Figure 2.3a). An
approximate solution to the network may be obtained by analyzing “indepen-
dently” the three subnetworks, with a simplified representation for its comple-
ment, as shown in Figure 2.3b. For instance, subnet.wbrk i is analyzed after the
parameters of its complement a;re updated with the previous solutions of subnet-

WOrKS (5 - 1)moduie s 304 {i = 2)updnia s
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Figure 2.3. Example of an iterative procedure.

The main reasonsrto partition a queueing_network into subnetworks are:
(1) for product form networks, to cbtain subnetworks which are much less costly
to analyze than the original networks. Hopefully, the sum of costs of solving
each subnetwork times the number of iterations is significantly less than solving
the whole petwork. (2) for non-product form networks, to obtain subnetworks
with product form characteristics, or subnetworks that are otherwise simple
enough to be analyzed. In addition to the simplified nature of the subnetworks,
it is desirable that the parameters of the complement be efficiently calculatable

from the analysis of the other subnetworks.

In this section we present an overview of iterative methods for product
and nom-product form networks emphssizing the a.bove unified view where
appropriate. We present some examples from the literature and discuss some
general issues such as accuracy and cost. Finally we discuss issues related to the
partition of a queueing network and the possible representations of the comple-

ment of a subnetwork.
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2.3.1. Some Existing Iterative Methods.

Bard‘'s Approximation.

Bard [Bard8l} presented an approach that is closed related to MVA and
includes several examples from the literature as special cases. The approach is
based on the first two MVA equations ({2.1) and (2.2)) and the following equa-
tion which replaces (2.3): "

W:,("N) = F, b(-x:- z:) (2 5)

where X, is the vector of throughputs for each chain at center j and I, is the vec-
tor of mean queue sizes for each chain at center j. " Equation (2.8) gives an
approximate functional relstionship among the. performance parameters that
have to be specified based on the nature of the ;-4 service center. Bard con-
sidered several non-product featur;n that appear in performance modeling. He
used several of lus spproximations in a model of VM/370 and found errors
within 20% for mean response times when <compared to system measurements.
However, the accuracy of the sbove spproximation has not been a"dequately

assessed.

One way to view Bard’s approach is that (2.8) represents the effect of the
rest of the network on the mean waiting time of service center j. The effect is a
function of the throughputs (arrival rates) and the mean queue sizes (popula-
tion). Equations (2.1) and (2.2) give constraints that these parameters must
satisfy.

In the above, the approximation for a service center, or more generally a
subnetwork, depends only on the arrival rates and mean populations at that

center, rather than on any more detailed representation of the effect of the

18



remainder of the network. Presumably, more detailed representations could lead

to more accurate approximatidns.
Schweitzer's Approximation.

A widely used approximation for product form netwof]#s with SSFR and
IS service centers, which falls into the categbry of the above approximation-, pro-
posed by Schweitzer is: '

L = [6® Lk b |
e (N"” Lo(M) [ -k (2.7)

This approximation removes ti:e recursion in equation (2.3a) and greatly
reduces the computational complexity necessary to exactly solve a model. As we
will see in chapter 3 the errors obtained are typically less than 20% for mean
queue lengths and waiting times and less than 10% for throughputs. However,
large errors may be found in some cases, which motivatefi the development of
the next algorithm we describe. A proof that the non-linear equations that
result from using Schweitzer's approximsation in (2.3a) have a solution in the

feasible region can be found in [DeSo83].
Linearizer.

Chandy and Neuse [Chan82b] proposed an algorithm called Linearizer,
which is based on refinements to Schweitzer's spproximation and was also pro-
posed to approximately soive networks with SSFR and IS service centers only.
This approximation is very accurate but more costly. In this method it is
assumed that the error made with Schweitzer's approximation is known. It

starts with the assumption that the error is zero and then successive iterations
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refine the value of this error. The estimate value of the error is obtained by
approximately solving K networks identical to the original one, but each network
with one less job at chain k. Schweitzer's approximation is used for solving each

network.

Reducing the equations obtained by this method to a set of simultaneous
non-linear equatic{ns [Lave83], I + K(J - 1) sets of such equations must be solved,
where [ was heuristically found to be equal to 3 in [Chan82b]. Therefore, this
algorithm is considerabiy more expensive than Schweitzer’s approximation where
only one set of simultaneous non-linear equations must be solved. On the other
hand, exteusive tests reported in [Chan82b] and in chapter 3 of this dissertation
have shown that, in the average, Linearizer is one order of' magnitude more accu-
rate than Schweitzer’s approximation. As we will see in the next chapter, the
use of the Linearizer algorithm can be prohibitive for networks with a large

number of chains.

Neuse and Chandy [Neus81] proposed..an extension to the Linearizer algo-
rithm to approximately solve product form queueing network models with load
dependent service centers. The approsch uses additional heuristics for load
dependent centers. They chose to estimate the probability density of the queue

lengths as:
P/LL,(N<e)J| N-e)) = L (N-a)] +1 - L{N-ey)

(2.8a)
PIL(N-e)l+1|N-¢;) =1 - P( U-,(R-T.)Jif\"-?.)

(2.8b)
P(i|N-¢) = 0 tor i <LL(N-&)) ori > LL(N-e)) +1 _

(2.8¢)

(where LL] is the greatest integer less or equal to L).



The above equations indicate that the probability demsity of queue
lengths at a load dependent service center for population (¥ -¢,) will be different
than zero at most in two points around the average queue length. However,

there is no theoretical support for this heuristic choice.
Marie's Method.

Marie’s method [Mari79b] is sn iterative algorithm for single chain net-
works of FCFS service centers with general service time distributions. It has
been extended for multiple chains by Neuse and Chandy {Neus82|. Each step of
the iteration involves J substeps where J is the number of service centers violat-

ing product form requirements.

The method can be easily expla.med in terms of our "unified view". Each
iteration involves analyzing 3 set -otsubnetworks and its complement. In .this
method, s subnetwork is simply formed by one of the FCFS queues in the origi-
nal petwork which violates product form -tequirements (say queue j). Marie

~assumed that Norton's theorem was valid for non-product form networks.
Then, the complement of center j's subnetwork was simply formed by the flow
equiva.lt of the remaining of the network, obtained after (1) replacing each of
the remaining FCFS centers with general distributions, by an “equivalent”
center with exponential service times and state dependent service rates (thus,
the remaining of the network has product form) and (2) appiying Norton’s
theorem to the remaining of the network. The model formed by a subnetwork
and its simplified complement is not prddnct form, but it has the solution of an
M/G/1 queueing model with state dependent arrival rates (hence the solution is
costly, particularly for multiple chain networks). After solving for the subnet-

work containing center j, the parameters of the "equivalent® exponential center j
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* are determined and used in subsequent substeps.

As pointed out in [Lave83] we have a number of ways to determine the
performance measures for a center, because the resuits for each substep are
tikely to be inconsistent. In [Mari70bj the performance measures for a FCFS

center are obtained when the center is in the subnetwork.

Jacobson and Lasowska‘'s Methods for Simultaneous Resource Poases-
sion.

There are several modeling cases where we must impose restrictions on
the number of jobs in some subnetworks, because these jobs can only wait for
some resources if they have already obtained other ones. This is the case, for
instance, when we want to represent memory contention in a central server
model, as previously illustrated in l-“igura 2.1. We have already mentioned one
method to solve the example of Figure 2.1 which uses Norton’s theorem. |

Receatly, Jacobson and Lazowska prol;osed two different methods to deal
with simultaneous resource possession: [JacoS2, JacoS3]. Although the methods
can be used to solve more sophisticated queueing models than the one presented
in Figure 2.1, we will use this networks for illastration purposes.

The first of the methods proposed by Jacobson and Lazowska is called
the "Method of Surrogate Delays" [Jaco82). It is applicable to models which can
be framed in terms of s set of prima.ry resources snd a secondary subsystem.
The 'a.pproa.eh; applied to the network of Figure 2.1, requires that two interre-
lated product form subnetworks, shown in Figures 2.4a and 2.4b, be solved.
The subnetwork in Figure 2.4 explicitly represents the terminals and memory

partitions. The server representing the memory partitions is a multiple server
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Figure 2.4. The method of surrogate delays. '

(MS) service center with M servers, where M is the number of memory -parti-
tions, and service time equal to the response time a job would experience in the
I/O subsystem if no contention for CPU and disks occurs. The complement is
formed by a pure delay or infinite server, which represents the total queueing
delay {excluding service) in the I/O subsystem (call this delay X). The subnet-
work in Figure 2.4b explicitly represents the terminals and I/O subsystem.
However, the I/O subsystem is represented by a "How equivalent” center. The
service rates for this center are obtained after applying Norton's theorem to the
I/O subsystem, and limiting the maximum service rate to the rate obtained

when M jobs are present. The complement of the subnetwork of Figure 2.4b is



formed by an infinite server center which represents the total queueing delay
(excluding service) due to memory contention (call this delay Y). Finally, delay
X is obtained after solving the submetwork of Figure 2.4b and delay Y is
obtained after solving the subnetwork of Figure 2.4a.

The surrogate delay method is not readily extendible to multiple chain
networks since ii; involves introducing a FCFS center with queue size dependent

rates [Jaco82].

The second (and newer) approximation for dealing with simultaneous
resource possession was presented in [Jaco83]. In this method simultaneous
resource possession is represented as a population constraint in a subnetwork.

The approach, applied to the network of Figure 2.1, requires that two interre-

b
a) (b)

Figure 2.5. "Population constraint™ method.

lated product form subnetworks; shown in Figure 2.5a ‘a.nd 2.5b, be solved. The
subnetwork in Figure 2.5a is formed by the terminals and memory partitions

which are represented by a MS service center with M servers. The complement
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is represented by the average delay a job experiences in the I/O subsystem.
This delay is used as the service time for the MS center (call this delay X). The
subnetwork in Figure 2.5b explicitly represents the I/O subsystem. The comple-
ment is represented by the population size which is chosen equal to the mean
aumber of used memory partitions (call this number 2). The mean number of
used memory partitions Z is obtained as a function of the mean delay in the 1/0
subsystem by solving the network of Figure 2.5a. The delay, or service time X,
. obtained as a function of Z by solving the network of Figure 2.5b. Since Z
needs not to be an integer, an approximation is needed to solve the subnetwork
in Figure 2.5b for population 2. In general, Schweitzer or Linearizer approxima-
tions can be used to approximately ooive product form networks with noa-

integral population.

This second approiixﬁation method is intended for multiple chain net-
works. However, in this case, an sdditional approximation is required to handle
FCFS centers with multiple servers and chain dependent mean service times,
even if the original network does not have such centers. For example, if the net-
work of Flgure 21 has more than one chain with different population or
different service requirements in the I/O subsystem, then theé mean memory ser-
vice times in Figure 2.5a will be chain dependent. For single server FCFS
centers there is Reiser's approximation presented in section 2.2 (see also
[Laves3]), but, to our kﬁowledge, there is no such approximation in the litera-
" ture for FCFS with mulitiple servers. In chapter 4 we present a new approxima-

tion to haodle these cases.

25



N

Modeling Asynchronous Tasks.

Heidelberger and Trivedi [Heid82] proposed an iterative approach to solve
queueing network models with “split nodes” [Laves3], i.e., service centers where a
task is split into another independent one. In this method, a subnetwork is
formed by the orligina.l network with the split nodes replaced by an equivalent
service center wifﬁout the "splittii!g' fai._cility.' The complement is formed by a
Poisson source representing the effect of the secondary task. The arrival rate of
this Poisson source is equal to the throughput of the chain which split the job at
the split node.

2.3.3. Discussion.

The following discussion is based partly on {Zaho83] and partly on our
own research. We have presented a number of methods that involve analyzing a
collection of subnetworks. Informally a subnetwork is a cl‘letailed representation
of a set of resources. The complement is typ.i.cally represented by an approxima-
tion of the effect of the remainder of the network. Each subnetwork is analyzed
in isolation with a simplified representation of the effect of its complement. In
general, the pa.raméters of a complement are function of the performance param-
eters of the other subnetworks and are determined by iteration (in [Heid82| how-
ever, the parameters of the complement is a function of the only existing subnet-
work). As pointed out in the beginning of this section, the main reasons to par-
tition a queueing network into subnetworks are fundamentally related to the
cost of solving exactly the original network. Therefore, it is desirable that the
subnetworks obtained be simple and the parameters of the complement be

efficiently calculatable from the analysis of the other subnetworks.
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Throughout this chapter we have seen several ways to repraént the effect
of the complement of s subnetwork. For example, Marie [Mari79b] used queue
size dependent arrival rates; Jacobson and Lazowska used IS centers [Jaco82|
and .reduged customer population [Jaco83]; Heidelberger and Trivedi [Heid32)
used Poisj.qon a.rnvals The aceuracy of these methods must be evaluated empiri-

cally sinc; so far :érror bounds have not been obtained.

For mﬁltiple chain networks, the effect of a complement can be
represented differently for different chains. For example, with regard to one
chain the effect of the complement can be represented as Poisson arrivals, i.e.,
the chain is open; with regard to another chain, the complement can be
represented as an infinite server and with regard to another chain as a reduced
population. This general framework permits numerous possibilities and little is
known about how to utilize these possibilities. Fignre 2.8 illustrates a subnet-
work and its coniplement. The following are some of the choices that are avail-

able:

-

1) The choice of subnetworks. Each subnetwork may contain a disjoint
set of resources or they may overlap. (see for example, Marie's method [Lave83|,
Jacobson and Lazowska [Jaco80|, snd chapter 3 of this dissertation.

2) The choice of the way in which the final estimates of the performance
parameters of the original nefwo:k are obtained. This choice arises because the
same performance parameters, e.g., & chain throughput or s mean queue size,
may be represented in more than one subnetwork. Thus, when the iteration is
terminated, there may be more than one value for the same parameter. The final

estimates could be a function of these values.
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Figure 2.8. A subnetwork and possible representations of its complement.

3) The choice of the complement of a subnetwork for each chain. Only

some of the possibilities have been mentioned above.

4) For a given chain and representation of the complement for this chain,
the choice of how the parameters of the complement are determined. For exam-
ple, for a Poisson arrivals represeatation the arrival rate must be determined.
Some of the choices are: (1) set the arrival rate equal to the throﬁghput. for that
chain that was computed on the previous iteration; (2). set the arrival rate equal
to the value that yields the same mean population in the subnetwork for that
chain as was caleulated on._the previous iteration; (3) set the arrival rate for a
chain in a center according to some characteristics of that center, and/or to
yield the same mean population of that chain in that ceater as caleulated on the

previous iteration. Note that the second method above requires an additional
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iterative step while the first does not.

Zahorjan [Zaho83] considered a few representations for the complement of
" a subnetwork. In his paper subnetworks are disjoint and the representation is
the same for each chain. The representations he considered were Poisson
arrivals, infinite server, first come first serve single server and reduceé! popula-
tion. He considered two alternatives with regard to how the parameters of a
complement are determined: matching the through;ut and matching the mean
population in the subnetwork (choices (1) and (2) mentioned above in item 4).
For example, when matching the mean population is used with open representa-
tion, the arrival rate of the complement of a chain in a subnetwork is chosen so
that the resulting mean number of customers from that chain in the subnetwork
is the same as calculasted in the subnetwork where that chain is explicitly
represented. As Za.horjaix pointed out, the-open representation with population
match requires an iterative step when solving a subnetwork, in order to deter-
mine the right throughput that matches the population. The reduced popula-
tion, on the other hand, requires iteration when throughput matching is used
and FCFS and IS representations requires iteration if any of the above two

matches is used..

If only one match is performed in a subnetwork, and if the subnetworks
are very cheap to solve, the extra iteration mentioned above may not increase
the overall cost significantly, but we will be limited to the representation of only
one chain per submodel. However, if more than ome representation is used, the

submodel iteration is not trivial and the cost may increase considerably.
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Zahorjan conclusions based on analytical results for single chain networks
and on empirical results for small multiple chain networks are that the IS and
FCFS single server representations with parameters determined from either
throughput matching or population matching were the most accurate. These
methods however require additional iterative steps. He found the Poisson arrival
representations with throughput matching the least accurate with extremely

large errors possible.

We argue that for solving large networks we should search for simple
parametrizations and avoid extra iterative steps in solving for a subnetwork,
since for large networks the subnetworks may be large or there may be a large

number of these subaetworks. .
2.4. Conclusions. . -

We presented an ovemew of some approximate methods for solving pro-
duct and non-product form queueing network models. With the exception of
the method of the integral representation and asymptotic expaasions, which has
some limited applicability for product form networks, all the other methods do '

not give any error bounds, and so their accuracy must be empirically evaluated.

For product form networks, Schweitzer and Linearizer approximations
have been largely used and are by now standard approximations for networks
consisting of only SSFR and IS service centers. Schweitzer’s approximation is
very cheap, but may present large error in some cases. Linearizer approximation
on the other hand is more accurate, but much more expensive as well. There are
no generally accepted MVA based approximations available for product form

petworks having queue size dependent rates, although one such approximation
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was proposed in [Neus81]; as discussed in section 2.3.

For non-product form networks we overviewed several methods proposed
to solve particular cases that violate product form requirements, some of them
with some overlap in the set of problems they can solve. For example, both
Marie’s method. mc ﬁ'e:ser s approximation are proposed to solve networks with
FCFS centers } ,‘ eneral service times. The second method proposed by
Jacobson and inizow‘ska. for queneing networks with simultaneous resource pos- |
_ session seems to be able to solve all cases solved by the method of surrogate
delays.

We have presented a unified view of several proposed iterative methods,
with the purpose of highlighting some common ground most of these methods
are based on. It is interesting to observe that, in the majority of these methods,
subnetworks with product form characteristics are obtained, which simbliﬁ
their individual analysis. Some of them, however, still obtain non-product form

subnetworks hk? Marie's method.
l. er

Finally, in Fldure 2.7 we summarize in a diagram the methods overviewed

-

in this chapter, indicating their applicability.
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Figure 2.7. Some approximate methods for the analysis of queneing network
models.

32



CHAPTER 3

A CLUSTERING APPROXIMATION TECHNIQUE FOR PRODUCT FORM
QUEUEING NETWORK MODELS WITH A LARGE NUMBER OF CHAINS.

3.1. Introduction.

There are many applications which require the analysis of closed queueing
networks models with a large number of chains. For example, in modeling a dis-
tributed computer system different chains might be used to model workloads
generated at different sites [Gold83| and in modeling a packet switching net-
works different chains might be used to model traffic in different virtual channels

{Reis79]. However, the exact analysis of such closed queueing networks is usu-

ally too costly. ' s

The two major algorithms that nave been widely used to solve exactly
product form queueing network models are the convolution algorithm [Lave83,
Reis76] and the mean value analysis algorithm (MVA) [Reis80, Reis81]. If only
mean values are computed and there are no load dependent service centers
present in the network, both algorithms have approximately the same cost
requirements. Nevertheless, MVA has two significant advantages over the con-
volution algorithm: it presents no numerical problems; the equations obtained
are extremely simple and have a physical interpretation. Unfortunately, the cost
requirements of these algorithms are extremely high for large number of chains.

: x _
MVA for example requires O(JTJ(N, + 1)) operations and the memory require-

k]
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ments are in the same order of ma&nitude if no load dependent centers are
present in the network. As pointed out in chapter 2 this high cost imposes a
severe limitation in the size of the networks that can be solved. As an example,
in 8 VAX11/750 computer, networks with more than a few customers per chain
(say ten) and a few chains (say five) may be too costly to solve. When load
dependent service centers are present and the MVA algorithm is used, the mar-
ginal queue length distributions appear in the equations for these centers.
;&ithough the simple interpretation is still present, the computational complexity
grows combinatorially with the number of load dependent service centers. The
very high cost of the algorithms to solve exacily large product form queueing
networks and the growing need to soive larger and complex models are the
motivation toward the development of accurate approximate techniques for

these queueing models. -

The work presented in this chapter was motivated by our interest in
analyzing queueing network models of large local area networks, i.e., networks
with dozens or even hundred of sites. As an example we mention the model of
the LOCUS local area distributed system preseated in [Gold83|. In that model
each site was represented by a “"central server model® [Lave83] with terminals
linked by a representation of the communication channel. The behavior of cus-
tomers from different sites was represented by associating ome or more closed
chains with each site. A large number of chains can result from this model. The
LOCUS network at UCLA has curreatly 16 sites and more sites are planned to
be added, which means that a model of this network would require at least 18
closed chains. Therefore, an approximate solution is required, even if the result-
ing model is product form. The problem gets considerably more complex if we

introduce multiple server service centers in the model (for instance, to model a
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muitiprocessor computerf, by the reason we have already outlined above.

We mention three approximate techniques that have been proposed to
handle large closed queueing networks, which are described in chapter 2: the
" method of integral representations {McKe82, Rama82], Schweitzer’s approxima-

tion [Schw79] and Linearizer {Chan82]. The method of integral representations, -

unlike the other two methods, obtains lower and upper bounds on performance
measures. However, its applicability is restricted to networks in which all chains
visit an IS service center, all other service centers have utilizations that are not
too high, e.g., less than .85, and there are no load dependent service centers. In
general, 3 CPU center in a computer works with high utilization, thus the res-
triction on utilization values imposes a severe limitation concerning the use of
this method to solve the models we are interested in. Schweitzer’s approxima-
tion is very cheap, but as we vnll show in the next sections large errors can be
found (see also [Chan82]). Linearizer, on the other hand, is a very accurate
approximation, but much more expensive than Schweitzer's approximation. We
will present an example which shows that this approximation may be too expen-
sive to solve a large local ares network. Finally, there is no widely accepted

approximation technique to haadle muitiple server service centers.

In this chapter we present a new approximate technique for closed pro-
duet form queueing networks with SSFR and MS service centers. This tech-
nique extends previous methods and may prove to have better accuracy/cost

characteristics.



3.2. A Simple Homogeneous Network.

We consider a single LOCUS type distributed local network. In this net-
work, the behavior of customers from one site is represented by associating a
closed chain to that site. This closed chain will be referred as the loeal chain of
that site. All the other chains are referred as foreign chains to that site. This
ndta.tion is adequate to a LOCUS type of model since customers logged on to a
particular site (i.e., the loeal customers of that'site) can request service at other
sites (ie., a foreign site). When these customers are executing in a foreign site

they become foreign customers to the current foreign executing site.

Let S denote s particular site. LO(S) is the local chain for S and FC(S) the

set of foreign chains for $.

Definstion 3.1

" We define a homdgeneous network as the one in which:

a. All sites are identical and the beh‘a.:vior of all customers executing at their
respective locﬂ sites is the same, as well the behavior of customers in any
foreign site. We use the notation z, 4, for the mean service time and
mean visit ratios respectively, of a customer of chain /¢ LC(S) at center
ieS. 3, and ¢, are identical for all sites S in the network. Similarly, we

use 34, #; for chain /¢ FOIS),icSor f¢LCIS), i (S. 34 and d; are identical

for all sites s.
b.  All sites have the same number of customers, say N.
c. All visit ratios of a customer from a particular site are relative to a desig-

nated service center in its local site.
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Customers from one site may request service from any foreign site with
equal probability. We use the notation ¢, = 8/,/(M -1) where M is the

number of sites in the network. Note that o7, = ¥4, 7 ¢ LC(S)j ¢S and
1 .

the sum is over all correspondent centers in sites different than s.

The queueing network resulting from the definition above possesses a

strong symmetry. In fact, each chain is an exact replica of each other chain.

Therefore, the following statements are true:

For any population vector, if two or more chains have the same number
of customers, the mean quene lengths of corresponding service centers at
the sites local to these customers are identical:

L{Nyyery Nppeor Noeecr Nig) = LNy Niesy Nopecry N

ieT,jeV, 0 e LCIT), v ¢ LC(V), for Ny = N,.

For any population vecton-', if we permute the number of customers of two
chains, the mean queue lengths of corresponding service centers at the
sites which are local to these two chains are also permuted. The mean
queue lengths of the service centers in the remaining sites remain the
same: |

L{Nyeees Nisoows Nopeos Naa) =8 L{Nypeeey Noperoy Niyer Nag)
ieT,jeV,1eLCIT), ve LOV).

These two statements follow from the fact that customers from chain ¢

behave exactly as customers from chain » (by a.,. ¢ and d in definition 3.1).
Therefore, if the number of customers in these two chains are the same, the
chains are indistinguishable from each other, which implies statement 1. State-

ment 2 is true since, because of the symmetry, all sites different from sites T and
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v will not be affected by the permutation of the number of customers of chains ¢
and » Again, because of the symmetry, site T will "see” the remaining of the
petwork that site V was “seeing” before the permutation and vice-versa. In
other words, site T will behave as site V before the permutation and vice-versa.
We can take advantage of the symmetry to reduce the computational require-
mént.s necessary to calculate the resuits of a network defined in 3.1, using MVA.

In fact, we can show that these computational requirements are o[[” MJ] To

show this we first note that, by statements 1 and 2 above, once the results of a
homogeneous metwork with population N = (M, .., Ny) are calculated, all the
results for the same network with population N*, obtained by permuting the ele-
ments of vector N, are immediately known. Therefore, only the results for popu-
lations that can not be obtained by permuting the elements of N of a previous
calculated permutation vector needed to be obtained. This implies that the

computational requirements are 0{/,{.V)) where:

N 4% e
=3 8 0 L o M21
Gelegml el

flN) =1 [0} =0

The above summation can be easily evaluated by the recursive relation,

fdn) = 3 Sl

1=l
Now, taking the z-transform of /,{n)

Fue) = & fudok = £ Tt = 7 Deald)

which by induction gives



Folz)

= o

where

2 rin)e = =i
Fls) = T flm)s" = 7

Therefore,

1

Fudz) -m A

and so

fde) = (45N

As we would expect, the above result indicates that'considerable savings
in computation can be obtained for networks with a large number of sites and a
few jobs per sites. For instance, if M =50 and N = § the original MVA algo-
rithm would have computationai re-qnii'ementé on the order of 10 but,. by taking
advantage of the homogeneity of the netwo.rk, the computational requirements

are in the order of 10°. However, it is still not feasible to find the exact solution

for very large problems.

Throughout the remaining part of this section we will develop an approxi-
mation technique suitable for networks with properties defined by 3.1 and with
a very large number of sites (and, so, chains). Let N(S,s) be the population vec-
tor where all chains foreign to site S have the full population and the local chain
of S has population n. The approximation we will develop is based on the three

assumptions stated below:
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Assumplions 3.2

a. The mean number of customers in a service center j of site T is not
altered if the number of customers of a chain k¢ LC(S) is decreased to =,
S #% T. In our notation:

L{(MSn) =L{N) jeT

b. The mean number of customers in a servic; center j of site S, when the
population vector is N(S.s), is not altered when the number of customers

of a chain & ¢ FC|5) is decreased by one. In our notation:

L{MS,n)-e)) = L{N(S,n)  jeS ke FOIS)

c. The mean throughput of a chain & ¢ FO(S) is not altered is the number of

customers of a site S is decrgased to n. In our notation:

MMS,n) = (M) ke FOS)

We now show that these three assumptions are exact in the limit as the
number of sites grows to infinite. Without loss of generality, let us assume that .
there is only one service center per site. Therefore, by the symmetry of the

problem:

LN)=N Vj

Now, letting the number of customers of chain & ¢ LCS) decrease to », we have:
L(N(Sn)) = N-o(n) j(S

L(MSn)) = b(n) jeS

where a(n) and ¥=n) are functions of », s(n) £ N. The above is true since, by the

" symmetry, the average number of customers in all service centers j (S will suffer

the same perturbation a(n) when the pumber of customers of chain keLC(S)
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decreases to n. The total number of customers in the network must sum to

(M - 1)N + n, s0:

(N -o(n))(M -1)+ ¥n) = (M-1)N+n

If 4(n) € C (where C is a constant that does not increase ﬂ:thiu), i.e., u’
the average number of castomers in the service center of site § do;: ﬁot in.‘crea.se
with M without bound when the number of customers of chain &e LC(S)
decreases, then a(n) € C'AM-1). Therefore, if ¥n) < C, s =0 a3 M — 0, ie, the
average number of customers of a site T g 5 is not affected when the population

of chain & ¢ LC(S) decreases.

To show that ¥(a) is indeed < 2N, we note Fhat, by the symmetry of the
network, the maximum perturbation will occur when n =0, ie.,
(6(7))ens = 6(0) = HOVIM-1). This implies that-}n) < 0) + N. We now show that

50) < N. The average utilization of center i ¢ S when the population is N(5,0) is

4l

given by:

U{MS,0)) = Ex,(-N(S.O))cg ieS kelC(S)
ik
=\ (NV{S5,0))as(M - 1) J ¢ FOS)

= Noaf

where of = 9/,34, Ao = 2{M5,0)) for any /¢ FC(S). For eénter jeT%S

U(FS0)) = g;x.(ﬁ(s.ons,, j S, keLOTS)
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= A {MS.0))ay{M - 2) + A{N(5.0))e jeT,1eLCIT), [ ¢ FOT)

Therefore,

U(MS0)) - UAFIS.0)) = hoty - Do 1 - T’:—?]

Q-Xo o --"J-Ll-]

As M=o U(MS0) > U{MSQ)) jeTy S ieS which, by the symmetry of the
network, implies that L(N(s.0) > L{M(5.0)) = ¥0). Therefore, ¥0) < N.

We have just shown that assumption 3.2a is exact as M — . Assumption
3.2b can also be proven to be exact in the limit as M — oo by showing that a
unity vatiation in the nuinb& of customers of s chain ¢t ¢ LC{T) produces a O(M)
variation in the mean queue length of a cénter j ¢ T. We leave this proof to
Appendix 1 (*). Assumption 3.2¢ follows from equation (2.1) and assumptions
3.2a and 3.2b, i,

Y Wa(MS,n)) = § swfl + L(V - + 7‘{—1(1 + L{MS.n) - &) ie$,

by assumptions 3.2a and 3.2b
- g:W.(N) + O(M)

Using equation (2.1), A(M(S.n)) = 2(V) a8 M — oo for k¢ FCIS).

(*) An alternative proof of assumption 3.2a follows from assumption 3.2b. From
assumption 3.2b for =N, Wwe have (see proof in appendix 1):
L{N(S,N-1)) = L(N) + O(M), Ly(N(S,N-2)) = L(N) + 20(M},
L,(MS,n)) = L{N) + (N-n)O(M) = L,(N) + O(M), if N is finite.

’
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We now apply assumptions 3.2 to the MVA equations. We further
assume that all the service centers in the network are single server fixed rate

(SSFR) or IS. From equation (2.2} and (2.3a), for a site s:

L(MS,n)) = TA(NSn)ay]t + LiMS.n)-e) jes

-:igtx,(m.,,u + L{MSA) + 2MSa, Wy(MSa))  jeS kelClS),

bf assumptions 3.2.b and and 3.2.¢

A,z + AMS,n))0y, Wi {M(S,n))

L{N(S,n)) =

1 - A3 A5 ges (3.2.1a)
and similarly, using (2.3¢) instead of (2.3a)
LANM(S,)) = Az + M(NSa) W, Wy (MS,n) =S, jeS
: . (3.2.1b)
where - 7 ) -
A = NWGM-1)  [eFOS)jeS
= \{(Mey, EeLOIS),jeS
. (3.2.2)
by the symmetry of our problem. From equation (2.1)
AN S,n)) = — — —
{MSm) TouW (NS + T aufl + L{MS ) -] + T o
s 1{s (s
I IS Y
and by assumption 3.2 and the symmetry of the network
AN 5.n)) = .rl .
) = S rew i) + 0, ' (3.23)
where

Dym T i+ LN+ T o
1¢S 1¢S5
19[S s=is



(3.2.4)

Equations (3.2.2) and (.3.2.3) have an intuitive explanation. When equa-
tions (3.2.1) are compared to the exact MVA equations for mixed networks
[Zaho81, Lave83], we can conclude that the combined effect of all foreign arrivals
to a service center j of site § is Poisson with fate A,. Furthermore, equations
(3.2.3) and (3.2.4) indicates that a customer of a site § “sees” the complement as
an infinite server with mean delay D,. Therefore, the whole homogeneous net-
work can be reduced to the solution of a single site 5 as indicated in Figure 3.1.
In this Figure, all foreign arrivals to site § are represented by a Poisson arrival

with rate A. A customer from site § which goes foreign visits an infinite server
. SITE § |
A J—-
-
MM

Dy

Figure 3.1. The approximate solution of a homogeneous network with many sites.

delay before returning to its local site.



The solution of s homogeneous network as defined in 3.1 with a very
large number of chains can be easily obtained by solving recursively the equa-
tions obtained above. Below we briefly outline the iterative algorithm. More
details will be given in the next section where the algorithm is extended to gen-

eral queueing networks.

Step 1. Estimate the value for the mean throughput A.{Fr): of site sand -,

dehy Dy.

Step 2. Use equations (3.2.1) through (3.2.4) and (2.3), obtaining the
resuits for site S using MVA.

Step 3. Compare the current estimates of queue lengths with previous
estimates using the equation below and terminate if this result is less than
a specified threshold. Otherwise go to Step 2.

‘Ln‘j_Li-l)

N < threshold - .

(where the superscript indicates the number of iterations.)

The computational costs of a single iteration is O(/'N) where J’ is the
number of servi;:e centers in a site a.nd. N is the number of customers per site.
The convergence of this iterative procedure is very fast (in the order of ten itera-
tions when the threshold is chosed to be 10~), but gets worse when there is a

service center whose utilization approaches one (say greater than .99).

Figure 3.2 shows the response time obtained after solving a homogeneous
petwork exactly using MVA, versus the number of sites in the network. In this
Figure the limiting result obtained by using the approximation developed in this

section is also shown. The parameters for the example are shown in Table 3.1.
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From the Figure we note that the response time quickly approaches its limiting
value. This behavior was typical for several tested cases. In fact, the limiting
behavior seems to be a very good apﬁroximation for five or more sites. These
results suggest that we may be able to use similar development to solve non-

symmetric networks. In the next section we present such development.

5
Pef),2 | N=10
4.5 /
&
/ $=0.9 A= ————
3-5 / / -

RESPONCE TIME (sac)
~ r
\

/ ped.2 N=2 .
1.5

0 1 2 3 4 5 6
WMBER OF SITES

Figure 3.2. Response times versus the number of sites and the limiting result.

3.3. A Clustering Approximation Technique for Product Form Quene-
ing Network Models with Single and Mulitiple Server Service Centers.

In the previous section we developed an approximation technique suitable

for large homogeneous LOCUS type of networks, given that a jdb that requests



B
W

Service Times (sec)

job executing 'job executing

in 2 local site in a foreign site

CcPU 0.05 0.1

disks (2) 0.06 : 0.06
terminals 3 -
probability of executing at diskl: 0.5
average number of local CPU/disk eyeles: 10
probability of requesting a service at a
foreiga site after a disk service: o
aumber of customers local to a site: ’ N

Table 3.1. Parameters for an homogeneous network.

service in a foreign site ra.n&om.ly chooses the processing site among all foreign
sites. In that method the whole network is collapsed to a siﬁgle subnetwork

which represents the resources of a site (all sites are identical). The complement

of this subnetwork is represented by Poissoa arrivals and by an infinite server

service center. Although the method is efficient it can solve only a very limited
class of queueing networks. In this section we extend the approach used in the
previbu; section and develop an approximation technique for gemeral queueing
network models, suitable for networks with a large number of chains.

We start our development by considering again LOCUS type queueing
petwork models. We divide the entire network into subnetworks, each one
representing the resources of a particular site. Consider s particular subnetwork
S. The chains representing the behbavior of diﬂ'erent. classes of customers fall
naturally into two categories. One category consists of the chains that represent
customers logged on at site represented by subnetwork S. These customers tend

to have much higher resource utilizations at the site than do customers logged
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op at other sites. The other category consists of the chains that represent custo-
mers logged on 3t other sites. As in the previous section, we refer to the two

categories of chains by calling the former loeal chains and the latter foreign

chains.

For illustration purpose, let us consider a LOCUS distributed system con-
sisting of 6nly two sites (referred as site A and B respectively). A queueing
model of this system is shown in Figure 3.3. In this example, the behavior of
customers logged on site A (B) is represented by chain A (B). Therefore, we
refer to chain A (B) as the local chain of site A (B) and chain B (A) as the
foreign chain of site B (A). To apply our approximation technique, we divide
the network in subnetworks. In this example s subnetwork will be formed by

“clustering” the resources of s site and the local chains of this site. Therefore,

SITEA : SITE B

Chain A 1. Chain B
e (O Disks A p m Dsks B )
CPUA p—/ u CPUB
————— A S
To Site B To Site A

Figure 3.3. A distributed system with two sites.

the network of Figure 3.3 will be divided into two subnetworks. It remains to
be found a representation of the complemeant of these subnetworks. This is the
subject of the development shown in the next paragraphs. As we will show, a
representation will be found from the MVA equations after simple algebraic
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manipulations.

The clustering of service centers and local chains into subnetworks is
appropriate to LOCUS-type of queueing networks. However, we can extend this
approach to be a general method for large muitiple chain product form queueing
petworks. In the extension a network is still partitioned into subnmetworks
representing s subset of the resources of the entire network. Furthermore, we
still have two categories of chains for each subnetwork. Although the adjectives
"local” and "foreign” have lost some of their original meaning, it is convenient to
retain the terminology. We wish to choose the subnetworks and their local and
foreign chains so that it remains true that the set of local chains with rap&t to
a subnetwork contributes more to the total utilization at the service centers in
the subnetwork than those chains that are foreign with respect to the sui:net-
work. In other words, chains and ;ervice centers are clustered into subnetﬁorks

according to the contribution of the chains to the total utilization of the centers.
3.3.1 Product Form Networks with SSFR and IS Service Centers

We consider product form queueing networks consisting of only SSFR
and IS service centers. (In the next section we extend the analysis to account
for muitiple server service centers.) We divide the network into subnetworks
which need not be disjoint, but whose union includes all service centers. There-
fore, 3 subnetwork may represent resources already represented in any other
subnetwork. For each subnetwork we designate a subset of the chains that visit
the subnetwork as local and the remaining chains that visit the subnetwbrk as
foreign. The subset of local chains of a subnetwork may overlap with the subset
of local chains of another subnetwork. We allow a set of local chains of a sub-

network to be empty. Furthermore, the union of all sets of local chains may not
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include all chains. We refer to the set of chains that do not belong to any set of

local chains as the local chains of an "empty subnetwork".

(1)

(2)

(1)

(2)

Our approach consists of:

preserving the recursion in the MVA equations involving the effect on the

mean queue sizes in 2 subnetwork of removing s local chain customer..

approximating the effect on the mean queue sizes in a subnetwork and its

complement of removing foreign chain and local chain customers, respec-

tively.
We base our approximation in the following assumptions:

the throughputs of all foreign chains are not affected if an arbitrary

pumber of local chain customers are removed from the network.

the mean waiting times of a local chain at ﬁy service center in the com-
plement is not affected if an arbitrary number of local chain customers

are removed from the network.

Note that these assumptions are identical to the ones used in the previous

section, when a homogenecus LOCUS type network was considered. They are

reasonable if local chain customers contribute little to the utilization of service

centers in the complement and if foreign chain customers contribute little to the

utilization of service centers in the subnetwork.

In analogy to the previous section, let S denote s particular subnetwork,

LC(S) the set of local chains for S and FC(S) the set of foreign chains for S.

N(S,n) is the population' vector where all foreign chains have the full population



and the local chains have population n. Now, using equations (2.2) and (2.3a)

for subnetwork S:

L. (N(S,n)) = \ (N{S,n))a,,]1 + ‘f; Ly(M(S/n)-¢.)] j=L.,hy je5, ce FC(S)
-]

Applying assumption (1) about the throughputs of foreign chains and

Schweitzer's approximation yields:
- - - o = L {NS;n
LofFST) = N {Fey |1 + LRts.7) - 222l

from which

k,(f\.f)cg

L:;(F’(-s' l;)) -

y e, TN, + LN 3 = L G S e ¢ FAS) (3.3.1a)
Similarly we can obtain:
Yy ‘ }'t(m‘h T § - Y N .
""“.“ T nVen N, {1+ L,(N)j j=,..,A0J(S ke LCS) (3.3.1b)

We write -
L(MsA) = © LAMSa)+ ¥ Ly(Msn)
L FQS) ke LOTS)
Substituting (3.3.1a) into the first sum and (2.2) into the second sum yields

L(MSR)) = Ut + L(NMSa)] + W2 axmss)m, Wy (N(S,5))

from which it follows that

| U+ T MMS)M,W,(M5n)
L(MSn)) = Lo b — oty jeS
! (3.3.2)

where:
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Xf(m‘fj . .
U = — -1,..,0,7cS
! m;cm 1 + \{N)e, / N ! v/ (3.3.3)

Using assumption (2) about the mean waiting times of a local chain in the com-

plement and equation {2.1) yields

Ry i

A{MS.n)) = e e . kelLC(S
{MS,n)) ) o,,w.,(N(s,n));;r 0 Wy{N) + 3 ; oy ¢ LC(S)
1¢8 J_Jl!h | J-‘;'.-.; "

Using Schweitzer's approximation and equation (2.3#) yields
0y Wy(N) = oy [1 + LM - 'L"M&] im .., i(S kelC1S)

Substituting equation (3.3.1b) into the above equation yields

= ol ) T e
8y Wy(N) = 1+ 2eMan/Ny 1+ L;(N)l_
Therefore,
- - ny -
b S,n)) = e kel
HMSm) E’ 8y, Wi (N(S,n)) + Dy « LGS " (3.3.4)
1t : b
¥
where
) [ -
D, = S} + L + - kel
b J_’l;‘ , TIVIIV A AN J_}%{_:h e LC(S) (3.3.5)

Equations (3.3.2) - (3.3.5) and for j ¢ 5 equations (2.3a), (2.3¢) constitute
the set of equations for subnetwbrk § that we wanted to obtain. When compar-
ing these equations with the exact MVA equations for mixed networks {Zaho81]
it is easy to see that in terms of mean values (1) a foreign chain / effects service
center j ¢ S as if it were an open chain, i.e., Poisson arrivals, with arrival rate to

center j given by
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and (2) a local chain k customer that leaves the subpetwork “sees” the comple-
ment as an infinite server with mean delay D,. Thus when we solve a particular
subnetwork we reduce the network to that shown in Figure 3.4. In that Figure

all foreign chains are represented by open chains and the delay when a local

Foreign

I SUBNETWORK

j

Delay

Figure 3.4. Rep;g:eﬁmu:: dO';' gll.:es éﬂc m’?he complement

chailn customer leaves the subnetwork is represented by an infinite server. The
effect of the complement of a subn‘etwork is then represented differently for the
local and foreign chains. For local chains the complement is represented as an
infinite server while for foreign chains the complement is represented by Poisson
arrivals. It is worthwhile to observe that, for homogeneous networks defined in
definition 3.1, the equations obtained above reduce to the ones obtained in sec-
tion 3.2, when the number of sites grows to infinite. It should also be noted that
the open chain arrival rate for foreign chain ! at service center ; in the subnet-
work is. less than the throughput (AW, of the corresponding closed foreign
'cha.in. As proved in [Zaho83] if in s single chain closed network the closed chain



£

is replaced by an open chain leaving the same throughput then the mean queue
sizes increase, possibly substantially. (This result also appears to hold for multi-
ple chain networks). The reduced arrival rate we use tends to compensate for
the larger mean queue sizes that result from replacing foreign closed chains by
open chains. Later we will pmenf results of extensive empirical tests that

demonstrate the accuracy that is achieved.

Let us return to the example of Figure 3.3. In Figure 3.5 we show subnet-
work A (representing the resources {rom site A) and its complement. The IS ser-
vice center sdded to the subnetwork represents the complement of the local

chain A. The complement of the foreign chain is represented by a set of open

SUBNETWORK A
- Chsa A\
n
e PR ]D-\
O ews
. CPUA
_
complement
for chain A

Figure 3.5. Subnetwork A and its complement.

chains. Each open chain in this set represents the effect of foreign chain B to a
particular center in subnetwork A. Note that the chains have different arrival

rates.
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3.3.2 Product Form Networks with Multiple Server (MS) Service
Centers. |

For networks with MS service centers, we apply the same assumptions
used in the previous section. The development is sumla.r, but for MS centers
equation (2 3d) is used instead of equation (2.3a). We also assume that for MS

service centers:

o (MS7)-) + PB(MS.n)-¢) = ¢{M(S,A)) + PBMS)) - -!ﬂ"‘N—:“ﬂ jeS, le F(g(g’s)
This assumption is similar to Schweitzer's approximation, since

(M) = Ly(M) - A\{N)ay,, and was found to work well in our empirical tests.

Using equations (2.2} (2.3d) and (3.3.8) and applying assumption (1)
about foreign chain throughputs w2 obtain:

- A Mag, [ (s:3) + PB(N(S,) .
& s, - - 4 ’
1AMSA) = T R, / (Vo) | M, JeS: et FAS) 52y

which is similar to equation (3.3.1a).

Following the same steps leading to equations (3.3.2) and (3.3.3) we

obtain:
UM, PB(N(S AWM, + %ﬂuﬁlsﬁ})ﬂ,l%(ﬁ(&il) - 2]
3{(N(S5,n)) = % ¥y eS
, 1- UMJM, B CX Y
where:
)‘I(M'I'r - ‘
UM, = S joumhtldy i S
1= T T+ MMy N, 1Thdn g e (3.3.9)
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Similarly, we obtain the expression for the throughput of loeal chains:

By

N s,-. - T — kel
M) X, WolMSH) + Dy + DMy «Las) (3.3.10)
where
) . [q,(m + PB,(Fnl
I v a1

1= IR ldy

As in the previous section, equations (3.3.8) - (3.3.11) have the same form
as the exact equations for a mixed network with MS service centers. Therefore,
the same interpretation holds, i.e., a foreign chain 1 effects multiple server center

j as an open chain with arrival rate
MMy /{1 + (N MN) -

and s local chain customer that leaves the subnetwork “sees” the complement as -

an infinite server with mean delay D, + DM,.

In order to complete the set of equations for subnetwork 5 we need an
expression for PB(NSA)), j ¢ S, which is the probability that all servers are busy
at MS center j ¢ § considering all chains in the network. Rather than derive an
approximate expression for these probabilities we will solve the above mixed net-
work. These subnetworks are the ones obtained after the clustering of chains
and service centers. The Poisson arrivals represent the complement of the
foreign chains. It is well known that the solution of a mixed network can be
reduced to the solution of a corresponding closed network {Lave83|. The solu-
tion is obtained by recursively solving a corresponding closed petwork with the

degraded service rates [LaveS3, Saues83j:
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i) = a2

a:(“)
where
( M:lj--l I
atn) = X Usy)
S { /M)
\ ‘::?I‘F!
‘4 ?:3
157 fi+n)t ) S 1 ~
M ,E, an M T Mt M+ frn 2 441 (3.12a)
II a® 11 s®) s '
FE R osl & = abl
1
-~ f <M -1
) = - uMM) S (3.12b)
and
n itn < M, -
V=1, otherwioe

Note that the average queue lengths (not including the customers in service) of

foreign chain customers at center j ¢ 5 are obtained from [Laves3]:
A
4 (Mg | M G+1)PGIF

'ﬂ(m-& *_l J'e J’+1'""J=. jts, cls

1...&1\('_-% y=o KAL) (3.3.13)

!

where |Ng| = Ny+ ... +Ny, L., L ¢ LOIS).
3.3.3. The Algorithm.

The following algorithm can be used to itera.tivély solve the equations
obtained for all subnetworks.

Step 1. Obtain an initial estimate of the throughput of all chains and

the mean queue sizes of all service centers. Obtain an initial estimate for
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the equilibrium marginal queue size probabilities of all multiple server

centers.

Step 2. Loop through the subnetworks and for each one solve the

corresponding mixed queueing network recurswely New estimates for

{0}, {oM.}, {U}, {us} and {a,(n)} are obtained jus: efore calculating the

performance measures for a subnetwork, using ( .35), (3.3.11), (3.3.3),

(3.3.9), (3.3.12). (Note that for a particular subnetwork this recursion is

only over the population of local chains. The populations of all foreign

chains are fixed. Furthermore the only MS service centers involved are

those belonging to this subnetwork).

Step 3. Compare the current estimates of mean queue lengths with the

previous estimates using (3.3"al) below, and terminate if this result is less

than a specified threshold. Otherwise go to Step‘ 2).

LF’ - LP—I) . o
—"——"—N <thresbold . j=1..J, =1 . K
' . (3.3.a1)
. b
(where the superscript indicates the number of the curreniiiteration.)
As initial estimates in step 1 we used:
[ ] Nt . .
Ly(F) = 2= i lend: k=1,.K
2 on (3.3.a2)
(X 1)
. N,
M) = —

1=t

kwl. X

E-.,h + L(N) - Ly(NYNy * ; .,,[1 + (LM - Ln(WMVJ“l* ): o[3-3-33)



1itim| § LMl jeS j=i+ionh
PR = o ctormive

(3.3.a4)
Instead of using exact MVA to recursively solve a subnetwork, we can use
_any existing approximation for product form networks. For example,
Schweitzer’s and the Linearizer approximations can be used when there are no
MS service centers in the subnetwork. It is easy to show that if Schweitzer’s

approximation is used in all subnetworks, the results are identical to using

Schweitzer’s approximation on the eatire network.

As pointed out in section 2.3.2, when there is overlap among subnetworks

(i.e., the same service center is represented in different subnetworks) and/or 2

chain is included in more than one set of local chains of different subnetworks

(e.g., {€LC(S) and ¢ LC(S;) S, 9 S,) the performance values of the elements
represente(i more than once may differ. For example, if a chain ! belongs to the
set of loeal chains of subnetworks 5 aand s, the throughput of that chain calcu-
lated when subnetwork §, is solved may differ from the throughput of the same
chain calculated when subnetwork 5, is soived (*). Thus, the algorithm has to
"decide which value to use. In our empirical tests we observed that the difference
among the values is small and the choice is not critical. The following heuristic
choice is used by the algorithm: (a) whenever a service center ;j is represented in
more than one subnetwork, the value used for the total queue length of ; is the
one calculated when subnetwork Sy is solved so that, among all subnetworks

S, j e S, the local chains of Sy are the ones who give the highest contribution to

the total utilization of j ¢ Sy; (b) whenever a chain / is in more than one set of

(*) These multii:»le values also appear in other methods where overlaps among
??bl‘x)eslg;r)ork occur {e.g., Marie’s method [Lave83|, the method of surrogate delays
ac .
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local chains, the value of the throughput used is the one calculated when sub-
network Sy is solved so that, among all subnetworks S, { ¢ LC(S,) chain ! gives the
highest contribution to the utilization of all centers j ¢ Sy, s IS. For the final
estimates, the values used for queue lengths of customers of a chain / at service
center j are the ones calcﬁlated for subnetwork S so that, [ ¢ LC(S) and j ¢ S, ie,
the preference is given for parameters calculated locally to a subnetwork, if pos-
sible. The reasoning behind this choice is based on our initial assumptions
which imply that the approximation should be reasonable if chains and service
centers are clustered so that the local chains of a subnetwork s contribute to

most of the utilization of a center in .

Although the development presented in this section is based on the MVA
algorithm, any solution technique can be used for the approximation algorithm
we described above. Furthermore, different solution techniques can be used to
solve different subnetworks. This is true since each subnetwork is solved in iso-

lation and its complement has a very simple Tepresentation.

The cost of the algorithm depends on the solution technique used to solve
each subnetwork and the way the subnetworks are chosen. The cost per itera-
tion is equal to the sum of the costs to solve each subnetwork. For example, if
MVA is used in all subnetworks and there are no MS centers, the cost per itera-

tion is O(X[Js II (Me+1)f), where Js is the total number of centers of subnet-
5 r L@

work S. The total number of iterations is small, typically around 10 iterations
for the tested cases. The memory requirements of the algorithm are on the
order of the memory requirements of the subnetwork which used the largest
amount of memory. For example, if MVA is used in all subnetworks, the

meniory requirements are O(max [Js [] (N +1)]).
L LOYS)
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3.3.4. The Choice of Subnetworks.

There are many ways to choose the subnetworks and the locﬂ ¢hains for
each subnetwork. For each choice the final results and the t;otal cost of each
iteration will differ. In general, larger subnetworks with more local chains yield
more accurate but more costly results. As we have mentioned our approxima-
tion should be reasonable if the main contributions to the utilization of service
centers in a subnetwork are from local chains. However, it was determined aiter
extensive tests that the approximation can be used even if the foreign chains are
responsible for up to 50% of the total utilization of a service center. Further-
more, this constraint can be relaxed for service centers with low to moderate

total estimated utilization, say less than .6.

We developed a heuristic search algorithm to divide a network into sub-
networks and choose the local chains for each subnetwork. The choice of sub-
petworks and local chains is based on the estimated utilizations of each chain at
a service center, obtained from (3.3;3.2) and (3.3.&3). The goal of the algorithm

can be described as follows:

Given:
1. The estimated utilizations of each chain at each service center.
2. The maximum cost per iteration of a subnetwork.

Find:

A minimum covering set of subnetworks (the subnetworks need not be

disjoint), and for each subnetwork a subset of the chains (the local chains).
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So that:

1. For each subnetwork, the sum of utilizations of local chains at each ser-
vice center of that subnetwork is greater than 50% of the total utilization

of that center.
2. The cost of each subnetwork is less than the given cost.

3. For a subset of chains, a subnetwork is formed by adding all possible ser-

vice centers so that the constraints 1 and 2 above are not vioiated.

4, Constraint 1 may be relaxed if the total utilization of a service center is

less than .8.

The user is prompted for the maximum total cost (defined below) per
iteration of a subnetwork and an initial number of local chains (INC) per sub-
petwork. This number v'vill.be used as the starting point for the search pro-
cedure, i.e., the algorithm starts searching for subnetworks with INC local
chains. This number can be decreased or incressed automatically to adjust the
total cost of a subnetwork up to the maximum allowed cost. The objective of
each step of the algorithm is to find subnetwork that containQ at least one ser-
vice center with moderate to high estimated utilization, which does not violate
the cost constraint. (Note that a service center can belong to a subnetwork if its
local utilization is higher than .5). The algorithm takes into account that over-
lap can occur among subnetworks and that there can be subnetworks with no

local chains or no service centers (*). The cost function of a subnetwork used by

(*) Chains that do not belong to any set of local chains are clustered in a
subnetwork with no service centers. These chains will be the local chains of an
empty subnetwork. Therefore, they visit only an IS center representing their
complement. This case results from networks which contain chains that do not
contribute much to the total utilization of any center. From the set of equations
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the algorithm, when MVA is used to solve a subpetwork, is JI (N, + 1)2#M8 =
{ ¢ LOLS)

vl cmiem gince this function provides an estimate of the computational costs to

solve each subnetwork exactly using MVA. Other functions may be used as

appropriate.

We classifly the centers in the network into critical and non-critical. Criti-
cal service centers are SSFR or MS service centers that have total estimated util-
ization greater tham or equal to .6. We also define two functions:

1) "Usage value” (UV) of a chain:

- Yy
S = 5 V- tw)

2) "Local usage” (LU) of a center:

Uy -
- bt Lga .
LS =577y o,
t LOS)
where: .

U, = total estimated utilization of center ;.

U, = estimated utilization of chain k at center ;.

C(S) = critical centers in subnetwork S.

Note that UV,{S) is a measure of the contribution of chain & to the utilization of
critical centers in subnetwork 5, and LU,(S) is a measure of the contribution of

“the local chains of subnetwork S to the utilization of a center j¢S5. A detailed

description of the algorithm is given in appendix 2.

obtained above we see that the effect of these chains is approximated by a
reduction in the capacity of all the centers they visit.
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In the tests we will report on next, we did not make use of the sutomated
choice of subnetworks in the first series of experiments. Instead, we based our
choice on the estimated utilizations. We then repeated all tests with the subnet-
works chosen automatically. For the automated clustering we tried to maintain
the same total cost as the manual choice. In the majority of the cases the
automated choice was different than the manual choice of subnetworks. How-
ever, in some cases the automated choice produced slightly better results and in
other cases slightly worse results, for approximately the same cost. Overall, the
automated choice produced results with accuracy comparable to the manual

choice.

It is important to note that the cost of clustering was negligible compared

to the actual computation of the performance measures in all cases.
3.3.5. Empirical Results

We have tested our method on more than 180 queueing networks consist-
ing of randomly selected networks, networks of the type proposed to model
LOCUS [Gold83] (e.g., see Figure 3.8) and networks of the type proposed to
model packet switching networks [Reis79] (e.g. see Figure 3.9). We divided our

tests into two sets of experiments with identical numbers of networks.

The first set consists of networks with SSFR aud IS service centers only.
We varied the number of chains from 3 to 9 and the total number of customers
from 6 to 50. In the majority of the cases at least one service center had utiliza-
tion greater than .8. For the LOCUS type of models we varied the mean think
time from 1 to 20 seconds: the mean local CPU service time from 1 to 100 msec

and the mean foreign CPU service time from 1.5 to 150 msec. The average



number of local CPU-diSk cycles was varied from 1 to 10; the avérage disk ser-
vice time was varied from 35 msec to 150 msec; the probability of making a
request to a foreign site (after a CPU service) was varied from .1 to .9. Message
sizes varied from 1K bytes to 10K bytes and were transmitted over a 1 to 10M
bit channel. For the packet switching network models, the packet size varied
from 250 to 2K bytes, and channel speeds from 20 kbps to 100 kbps (both half
and full duplu}. The window size varied from 1 to 15.

The second set of experiments consisted of networks with at least one MS
service center. More than half of the networks had the visit ratio of their chains
and service times of the centers'ra.ndomly selected. The aumber of chains varied
from 3 to 6, the maximum total number of customers was 50, the number of MS
service centers varied from 2 to 5 and the maximum number of servers varied
from 2 to 15. For the rest of the networks we chose, from the first set of tests,
several networks that produced some of the Jeast accuraie-raultg and replaced
one or more of the centers by a multiple server center. For these networks, the
number of chains varied from 4 to 8, the number of MS service centers varied
from 1 to 3, the number of servers varied from 2 to 3 and the maximum total
pumber of customers was 50. It is worthwhile to comment that in the second
set of tests the exact solution using MVA was very costly and several of the tests
took s few hours of CPU time in the VAX11/750, even for networks with a small

number of chains. Below we present the results of our experiments.

In the first set of experiments (ie., for networks with SSFR and IS service
centers only) each queueing network model was solved exactly using MVA and
approximately using exact MVA to solve each subnetwork (MVASUB) and

approximately using Linearizer to solve each submetwork (LINSiJB). For com-



parison with existing approximations we also solved the entire network using
Schweitzer's approximation (SCH) and Linearizer approximation (LIN). In the
second set of experiments (i.e., for networks with at least one MS service center)
each queueing network model was solved exactly using MVA and approximately

using exact MVA to solve each subnetwork.

Table 3.2 and Figure 3.8 summarize the errors obtained Ior the first set of
experiments. Table 3.2 gives the average absolute value of tile percent errors
and the average of the maximum for each network. Separate results are given
for mean queue sizes, mean waiting times and throughputs in the cojumns
hesded L, W and ) respectively. Figure 3.0 shows densities of the absolute value
of percent errors for L, W, and . We found virtually the same errors were
obtained when we used exact MVA or Linearizer to solve each subnetwork. Since
LINSUB is less costly than MVASUB we only plot the results for LINSUB in Fig-
are 3.6. We found that for LINSUB 73.7% (74.5%, 88.7%) of the errors for mean
queue sizes (mean waiting times, throughputs) were less than two percent com-

pared with 28.8% (43.8%, 26.9%) for SCH and 99.6% (99.2%, 100%) for LIN.

" From Table 3.2 and Figure 3.8 it is clear that Linearizer applied to the
entire network is the most sccurate approximation. However, as we will illustrate
in two large LOCUS examples below, it is by far the most expensive of the
approximations and it cost becomes prohibitive for networks with many chains,
Schweitzer's approximation applied to the entire network is less costly, but it
can yield large errors. It was not uncommon to get maximum errors around 20%
and in one network we found a 30% error for a throughput and a 43% error for
a mean waiting time. The maximum errors found in our subnetwork approach

were 8% for throughputs and 14% for waiting times (with automatic clustering,
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Figure 3.8. Densities of absolute value of perc;ant errors for LINSUB (1),
LIN (2) and SCH (3). All-axes in percent.

Average Average of Maxima

L w b L w A
MVASUB | 1.44 138 81 | 537 532 210
LINSUB |154 144 38| 567 619 211
SCH 441 356 348 | 1068 1329 6.56
LIN Al =53 26 112 1.34 49

Table 3.2. Absolute Value of Percent Errors. First Set of Experiments.
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with very cheap cost specified and in metworks with also contain MS service
centers). Note that with larger subnetworks (and more costly solution) the
errors may be decreased. Our subnetwork approach provides favorable

accuracy/cost characteristics, particularly as the number of chains increases.

‘ Table 3.3 and Figure 3.7 present ruults for the second set of experiments.
We note that the results are slightly worse than the results obtained for the first
set of experiments. This can be explained by the fact that, for this second set,
we chose several networks that produced some of the least accurate results in

the first set of experiments.

We next present four networks with many chains to illustrate the poten-
tial of the approximation technique we have described. Since our initial research
goal was motivated by the LOC'US system, we chose as the first two petworks
LOCUS types of models, as illustrated in Figure 3.8.

The first network is a model of LOCUS with 10 computer sites connected
by a slotted ring communication channel modeled as proposed in [Bux81]. Each
site has 1 CPU (modeled as processor sharing queue), 2 disks (modeled as FCFS
queues) and only one type of job (thus only 1 chain per site is needed). The slot-
ted ring is modeled by a processor sharing service center and a closed 'chain
visiting only this center. This closed chain has only one job and models the time
periods of one cycle during which the slot is empty (see [Bux81]). Therefore we
have a network with 11 chains and 41 service centers. For each site we ran-
domly chose from the following parameter values: |
- mean think time: 2 to 15 seec.

- mean local CPU service time: 50 to 100 msec.
- mean foreign CPU service time: 7% to 20% greater than local service time.
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Figure 3.7. Densities of absolute value of percent errors for MVASUB,

Table 3.3. Absolute Value of Percent Errors. Second Set of Experiments.

0. 15

pat| 25

for networks with MS centers.

Average Average of Maxima
L w A L w )
MVASUB | 198 174 117 | 6768 743 24

cycle: 0.1 to 0.4.

message size: 1000 bytes.
channel speed: 10 Mbps.
jobs from one site may be restricted to run at only some of the sites.

average disk service times: 50 to 80 msec.
av number of local CPU-disk cycles: 8 - 10.
- probability of making a request to a foreign site after a CPU-disk
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- number of jobs ger chain: 6 to 12 (except for the chain of the slotted
ring model which has 1 job).

The second network is a much larger one and reflects the large number of
sites and types of jobs that would be found in a LOCUS network. The model is
for .a glte site computer network, again connected by a slotted ring. Eaﬁh site has
2 or -; different typeés of jobs (thus 2 or 3 chains per site). Each sit 1as 1 CPU

and?.-.;;disk.-.. The total number of chains and service centers is 41 a.ri-ir i35 respec-
; ] .

tively.
We randomly chose from the following parameter values for each site:

. mean think time: 1 to 15 sec.

- mean local CPU service time: 10 to 120 mseec.

. mean foreign CPU service time: 10 to 75% greater than local CPU

service time.

- average disk service time: 40 t0.90 msee.

- av number of local CPU-disk cycles: 2 to 10.

- probability of making a request to a foreign site after a CPU-disk

cycle: .1 to .8.

message size: mm%ta. -

.channel speed: 10 Mbps. -

jobs from one site may visit-a subset of sites or all the other sites.

mumber of jobs per chain: 1 to 10. Al
i

W d

Site 1

Communication network

Figure 3.8. A queueing model of a distributed system.
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The networks are too large to solve exactly using MVA and we only
solved them approximately using LIN, SCH and LINSUB. When LINSUB was
used, the first network was manually di_vided into 11 subnetworks, 10 of them

representing the sites and 1 representing the communication channel. Similarly,

the second network was manually divided into 17 submetworks, 16 of them .
representing the sites and 1 representing the communication channel. The CPU !

times to approximately solve the networks on a VAX11/750 using LINSUB, SCH

and LIN were for network 1: 32 sec, 23 sec and 164 sec respectively and for pet-
work 2: 171 sec, 123 sec and 1 hour and 15 min respectively (*). In Table 3.4 we

give the absolute value of the percent differences between the LIN solutions and

Average Maximusm
L W A L W)
11 Chain getwork- .
LINSUB 9 18 04| 12 130 8
SCH 354 244 209|153 20.9 5.75
41 Chaia network ~
LINSUB 38 53 Al 4.61 4.95 39
SCH 400 321 338 | 158 248 10.3

Table 3.4. Comparison with LIN Solutions -
Absolute Value of Percent Differences.

the LINSUB and SCH solutions for the two networks. Our LINSUB method
provides close to the accuracy of Linearizer applied to the entire network at

close to the cost of Schweitzer’'s approximation applied to the entire network. It

El) In eSoSﬂNwe reported higher CPU times to solve these examples with
NSUB and . The reason was that we implemented the Linearizer algorithm
as suggested in the original paper [Chan82, i.e., with the core algorithm costing
0(JK?). However, it can be shown that the core algorithm necessary for Linearizer
can be implemented with a cost of only 0(JK). T%Dae new CPU times reflect the
new implementation.
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appears to be the method of choice when Linearizer is too expensive to apply to

the entire network.

The third network is a model of small packet switching network with

Figure 3.9. A small packet switching network.

window flow control as illustrated in Figure 3.0. There are five virtual circuits,
esch modeled as a closed chain as proposed in [Reis79]. All the‘ links are half-
duplex. Centers 1 to 5 represent groups of links 1 to 5 respectively and éenters
6 to 10 represent the sources of virtual routes 1 to respectively. In this example
there are two identical links connecting node 2 to node 3 and three identical
links connecting node 4 to node 5. We assume that the switching node 2 (4) has
only one internal queue to route packets to node 3 (5) and chooses the first
available free link for that. Therefore, we model the multiple links 2 and 4 as

MS service centers with 2 and 3 servers respectively.

Table 3.5 presents the parameter values for this petwork. The automated
clustering algorithm divided the network into four non-overlapping subnetworks

as shown in Table 3.8. Note that subnetwork 4 has no local chains which means

that the complement for this subnetwork is represented only by Poisson arrivals.
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Table 3.7 gives the absclute peréent errors for the solution obtained when

LINK CAPACITY (Kbps) | Meaa Service Time {msec)

1 70 29

2 50 40

3 30 66

4 40 50

5 40 50
VIRTUAL WINDOW ROUTE MEAN SERVICE TIME
CIRCUIT SIZE (Switching Nodes) AT THE

SOURCES (msec)

1 10 1=2—3 50

2 s 1=2=w4d4=f 200

3 8 1=2-3 " 100

4 5 2w dq=5 100

5 5 4=5—3 50

Table 3.5. Parameters of Example 3.

SUBNETWORK | LOCAL | CENTERS
- | CHAINS
1 1,3 1,68
2 2, 4 3,79
3 5 5, 10
4 2 4

Table 3.6. Grouping of Example 3.

MVASUB was used in comparisbn to MVA used for the whole network. The

CPU times to solve this network in a VAX11/750 using MVASUB and MVA

were 12.7 sec and 2.86 hours, respectively.
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Average Maximum
L w A L w )3

MVASUB | 075 068 .29 | 213 211 .34

Table 3.7. Comparison with MVA. Third Example.

Finally, the fourth network is also a model of small packet switching net-
work taken from an example presented in [Reis79]. We transcribe the parame-
ters for this example in Table 3.8. However, we modify center 1 and 2 so that
they have tﬁo servers, instead of one in the original network. All other service
centers have only one server. We used the automated clustering algorithm with
the maximum cost (defined above) per iteration of a subnetwork (MCIS)
specified as 100 and 180. The two partitions in subnetworks obtained are shown

All centers are processor sharing. Centers 1 and 2
have two servers, all other centers have one server.

L —M ]

Table 3.8. Parameters of example 4.

in Tables 3.9a and 3.9b, respectively. Note that in Table 3.9a there is an over-
lap between subnetworks 1 and 3. Furthermore, chain 3 belongs to the set of
local chains of both subnetworks 1 and 3. Tables 3.10a and 3.10b give the abso-
lute percent errors for the solution obtained when MVASUB was used in com-
parison to MVA used for the whole network. The CPU times to solve this net-
work in a VAX11/750 using MVASUB were 35 sec for the first clustering and 42
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MCIS Subnetwork | Local Centers MCIS
specified { chains obtained
#

1 2,3 2,67 90

(a) 100 2 4 43 18
3 1,3 1,357 70

. 1 2.4 46, 8 162
(b) 180 2 L3]|1,2357T 140

Table 3.9. Clustering of example 4.

see for the second clustering. The CPU time was 33.67 min when MVA was

Average Maximum
MVASUB | L w A L w A
(s) 205 -249 099 | 3.69 642 157
(b). Jos6e 070 032|300 348 044

Table 3.10. Comparison with MVA. Fourth example.

used for the whole network. The maximum space allocated to solve this net-
work with MVASUB and the first and second clustering and using MVA was
approximately 1.92K bytes, 4.06K bytes and 358K bytes, respectively. From the
results we note that the second clustering involves larger subgroups than the
first one. It produces more accurate resuits, but is also more expensive than the
.ﬁrst clustering {*). The first and second approximate soiutions are 58 and 48
times faster than the exact one and require 185 and 88 times less storage, respec-

tively.

(*) More expensive clustering does not necessarily produces more accurate
results. It depends on how the network is clustered. However, if the more
expensive clustering is formed by the union of subnetworks of a less expensive
one, the more expensive cluster gives better results in general.
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3.4. Conclusions.

We presented an iterative approximation technique applicable to queueing
network models with a large number of closed chains. The method applies to
product form networks with single server fixed rate service centers, infinite
server service centers and multiple server service centers. The approach cap he
easily extended to support the class of queue dependent servers described i
[Hef32). Extensive empiricsl results ‘indicate that this method bas good
accuracy/cost characteristics when compared to existing methods, particularly
for networks with many chains. The approximation involves partitioning a
queueing network into subnetworks. A critical part of applying the algorithm is
the "clustering” of chains and service cemters to form the subnetworks. An
efficient and effective heuristic was deseribed to automatically perform the clus-
tering based on the computational -cost that is specified. The approximation also
provides the flexibility to trade off increased cost for increased accuracy by.

choosing larger subnetworks with more local*chains.
. {9!
The physical interpretation obtained with this technique provides a way

of using it in a broader class of problems. In particulaz, in the next chapter, we
described a simple heuristic application for a non-product form network. Furth-
ermore, in chapter 8 we use the Poisson rates implied by equation {3.3.3) in an

approximate solution for the load balancing problem with muitiple chains.
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CHAPTER 4

A CLUSTERING APPROXIMATION TECHNIQUE FOR
NON-PRODUCT FORM QUEUEING NETWORK MODELS.

4.1. Introduction.

There are many applications which require the analysis of queueing net-
work models which do not have product form solution. In the previous chapter
we solved a LOCUS network model assuming the channel was slotted ring and
used Bux’s model [Bux8l] for the ring, which does not violate product form
requirements. Goldberg et al [Gold83] used a FCFS service center to model the
channel. However, the present LOCUS network n;nning at UCLA uses an Eth-
ernet channel. A more accurate representation of this channel would probably
violate product form requirements. Other examples include FCFS nodes with
different service times for different chains in the network and/or non-exponential

service times and models with simultaneous resource possession [Sauesle].

Unfortunately, the only exact method available to solve general networks
with non-product form characteristics is to determine the Markov process
representation of the network, if this is possible. A clever way to attack the
problem can be found in [Moll81] where Petﬂ nets are used to simplify the
description of the model, and the correspondent Markov chain is automaticaily
obtained. Even if the Markov process representation of the network can be
found, the solution is ususlly too costly unless the network has a small state

space. This is not the case for the majority of practical problems.
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In chapter 2 we summarized several methods proposed to solve particular
models which do not have product form solution. We overviewed Reiser’s
approximation [Reis79] and Marie's method [Mari79] to solve FCFS service
centers with general service times, approximations to solve service centers with
non-preemptive resume priority discipline [Brya83, Chan82|, decomposition

methods [Saue8lc] and the Jacobson and Lazowska's methods [Jaco82, Jaco83)

rfd':x_' networks with simultaneous resource possession, Heidelberger and Trivedi's

_method [Heid82] for solving models with the so called "split nodes®, and other

methods. The methods proposed in the literature for simultaneous resource pos-
session seems to be more suited for closed networks with a single chain [Saues8le,
Jaco82, Jaco83, Agras3]. The methods proposed in [Saue8lc] and [Jaco83| can
be used to solve multiple chain networks if jobs from different chains do not
share the same passive resource (for a definition of passive resources and the
associated allocate nodes the reader should consult [Laves3] or [Saue8la] or
[Saues1b] or [Saues4]). Sauer [SaueSlc] proposed a very expensive solution to
solve networks with multiple chains wher; heterogeneous jobs can share the
same passive resources. Another solution can be found in [Bard78], but the

results are not as accurate [Saue8lc].

In this chapter we use the results obtained in the previous chapter to deal
with the problem of using a more accurate representation of the Ethernet chan-
nel in a LOCUS.type of network. The major part of this chapter addresses the
general problem of simultaneous resource possession. We propose a clustering
approximation technique to solve multiple chain queueing network models with
simultaneous resource possession. The method we present is able to handle
more general forms of simultaneous resource possession than previoﬁs methods.

It is applicable when joBs from different chains share the same passive resources.
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Furthermore, customers are allowed to contend for resources while holding more
than one passive resource acquired during different steps of execution. In other
words, the use of passive resources can be nested. The technique requires an
additional spproximation for FCFS service ceaters with multiple servers and
different service requirements for jobs belonging to different chains. Since no
such approximation for this type of server in closed Queueh;g networks has lé'een

published, we developed a new approximation to handle this problem.

4.3. A Representation of a CSMA-CD Channel in a LOCUS-type
Model.

This section illustrates the application of the clustering technique '

' developed in chapter 3 to an approximate solution for a non-ﬁroduct from net-

work. Many local computer networks uses a CSMA-CD protocol to access the
bus connecting the different sites in the network. . In the examples of the previ-
ous chapter, we assumed that the communication channel was a slotted ring and
used Bux’s model for the ring. Therefore the whole network model was product
form. In [Gold83] a FCFS single server center was used to model the effect of
the Ethernet communication channel in the LOCUS network. We now address
the problem of introducing s more detailed representation of the Ethernet chan.

nel in a LOCUS type model.

In the first two examples presented in section 3.3.5, we applied the
approximation developed in chapter 3 to solve s model of LOCUS with several
sites. The network was divided into several subnetworks, one for each site and
one ‘repraenting the communication channel (subnetwork S$,,..). For subnet-
WOPK 5.,0eq We sssumed that all chains modeling customer behavior were foreign,

and so the effect of customers in the rest of the network was represented as
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Poisson arrivals. Furthermore, the effect of the communication channel on the
different sites was represented as an infinite server delay. In this section, instead

of using a FCFS center for the channel or Bux’s model, we choose to solve sub-

. DetWOrk S, DY using the a.nalyticall results obtained by Lam [Lam80] for a

CSMA-CD protocol, with the minor heuristic modification introduced in {Bux8l]
for a nonslotted channel. Lam obtained a formula for the ;a.vera.ge delay for a
packet in 3 CSMA-CD channel, assuming Poisson arrivals. Since, for subnet-
WOTK S.esus 31l chains are foreign, we use the arrival rat& implied by equation

(3.3.3) as input to Lam'’s formula. The mean delay obtained is used in (3.3.4).

Figures 4.1, 4.2 and 4.3 show the results obtained for a model of LOCUS
with identical sites, when 3 FCFS center was used for modeling the channel and

when Lam's average delay formula was used. The parameters for each site are:

mean think time: 4 sec.

mean CPU service time: 8 msec.

average disk service time: 10 msee.

ave number of local CPU-disk cycles8.

pro!b ility of making a request to a foreign site after a CPU-disk
cyele: 3.

channel speed: 1 Mbps. .
jobs from one site may choose any foreign site to run, with equal
probability.

Figure 4.1 shows the average message delay in the Ethernet chaanel for a
network with five sites when the population of each site increases from 1 to 50,
the message size is 2000 bits and the maximum propagation delay (MPD) is .1
msec {thus the ratio « of the MPD over the mean message transmission time is
.05). Also shown are 90% confidence intervals obtained from a simulation of
this model. It is worthwhile to mention that the CPU time to simulate each of
the four points indicated in the Figure were 1 hour, 1.24 hours, 2.23 hours and
2.51 hours, respectively using RESQ in an IBM 4341. On the other hand the
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Figure 4.1. Average delsy in the channel. Message = 1000 bits, MPD = .1 msec.

CPU time to analytically solve each of the fifty-one points using our approxima-
tion was between 8.1 sec and 9.2 sec in & VAX11/750. Figures 4.2 and 4.3 show
the average response time when the number of sites increases, when Ethernet
and FCFS models are used for the channel. We did not simulate the networks
for these two Figures due to the cost of simulating such large networks. In Fig-
ure 4.2 the message size is 4000 bits and the maximum propagation delay is .1
msee (¢ = .025). In Figure 4.3 the message size is 500 bits and the maximum
propagation delay is .05 msec (s == .1). In both cases the population of each site
is 10. Observe that a FCFS service center for modeling the Ethernet channel
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| provides a good approximation only when the channel is not near saturation.
The sharp knee in the response time curves indicates that a threshold model
[Klei76] would be a good approximation for these systems.
4.3. Simuitsneous Resource Possession. Dedicated Passive Resources.
In this section we address the problem of solving a non-product form net-
work with single or multiple chains when customers from different chains do not
share the same passive resources (i.e., passive resources are dedicated to one
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type of customers only). Approximation techniques for solving this problem
have been proposed with good results [SsueSle, Jaco82, Jaco83]. However we
will show in the following sections that the algorithm proposed here (unlike
those mentioned) can be easiiy extended to handle shared passive resources as

well.

Let us consider the example shown in Figure 2.1 transcribed to Figure 4.4
for easy reference. In this example a job has to acquire a memory partition

(token), reprueﬁted by the passive resource "memory”, before requesting service
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Node CPU

Terminals

Figure 4.4. A central server model with memory constraint.

from the CPU and disks. The queue for the memory partitions is represented in
the Figure by the "allocate node”. The maximum number of jobs contending for
CPU and disks are the number of memory partitions or tokens in the memory
passive quene. Consider a saturated system where the utilization of the memory
passive queue approaches one. In this limiting case, as soon as a job leaves the
CPU/disks subnetwork another one is iﬁ:mediately allowed to enter this subnet-
work sil_lce there will be always jobs waiting in the memory passive queue.
Therefore, the CPU/disks subnetwork can be exactly represented by a closed
network with P jobs, where P is .the number of tokens in the memory passive
queue. Figure 4.5a illustrates the subnetwork in thjs limiting case. In the
saturated system, all the performane; measures can be easily calculated as fol-
lows: (1) the average queue lengths, waiting times and throughputs for the
CPU/disks subnetwork are calculated by solving the closed network of Figure
4.5a3. (2) the limiting system throughput ), is also calculated from Figure 4.5a.
(3) once the limiting throughput ), is known, the remaining performance meas-
ures can be calculated from Figure 4.5b. (For instance, the response time is sim-

ply N/, - think time, where N is the total number of jobs in the network.)
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Figure 4.5. (a) The CPU écilxsks subnetwork when the memory passive queue
saturat
(b) The entire network in the limiting case.

Now let us consider a central server model with terminals and memory
constraints gnd with X type of jobs, each type-of job represented by a single
closed chain. Let us further assume that the memory is organized in P parti-
tions and that P, partitions are dedicated to chain 1 jobs, P, partitions are dedi-
cated to chain 2 jobs and so on so that P+ P+ -+ + Py =P As in the
preceding paragraph, in the limiting case where all the passive queues are
saturated, the CPU/disks subnetwork can be exactly represented by a closed
queueing network with X chains, where chain i has P, jobs. Again, the perfor-
mance measures for the saturated system can be calculated by solving the closed

subnetwork with X closed chains.

Returning to Figure 4.5, we note that the network of Figure 4.4 was
clustered into two subnetworks: the first subnetwork (5;) represents the termi-

nals and the passive queue of the original network and the sec_ond subnetwork



(S,) represents the CPU and the disks. The notion of local and foreign chains of
a subnetwork introduced in the last chapter may not be directly applicable to
the class of non-product form networks we are going to study, since it may not
be possible to cluster the original network in order to satisfy the assumption
that foreign chains contribute little to the atilization of local resources, espe-
cially in smalil networks. However, from the previous chapter; we note that if a
chain contributes significantly to the utilization of cen_ter_.-.- in two or more
different subnetworks, that chain would beiong to the set of local chains of each
of these subnetworks. This situation will occur in several examples we are going
to study and so, we concentrate on local chains only. Due to the population
constraint enforced by the passive resources, we introduce the terms uncon-
strained and constrained. We use the term "local unconstrained chain”
(LUC) for a local chain whose customers visit the centers in the subnetwork
without holding any passive rm&ce, and "local constrained chain” (LCC), oth-
erwise. (We generalize this notion in the next section.)} Similar notation can be
used for foreign chains as well. Therefore, in Figure 4.5, the only chain in the
original network (chain ¢) constitutes the single local unconstrained chain of
subnetwork 5, and the single local constrained chain of subnetwork s, ie,
¢ ¢ LUC(S,) and ¢ ¢ LCC(S,). In chapter 3 we represented the complement of a
subnetwork s for -a. local chain by an exponential infinite server center whose
average delay was the response time of customers from that chain in all the

centers that do not belong to 5. Using the infinite server representation for the

complement of S, for chain ¢ ¢ LUCS,), subnetwork 5, and its complement is

reduced to Figure 4.8a. It is easy to see that the network in this Figure is
equivalent to the one in Figure 4.8b, where the allocate node and the infinite

server center (with mean service time X,) were collapsed into a FCFS multiple



Figure 4.8. Subnetwork 5,.

server service center with P servers (recall that P is the number of tokens in the
corresponding passive queue) and mean service time X, (*). For the complement
of subnetwork S, we also use an infinite server center 'repmentation, as in
chapter 3. However, due to the population c_onstraint, the maximum number of
jobs allowed in S, is the total number of tok;ns in the passive quene. Therefore,
we represent the complement of the subnetwork for the local constrained chain
¢ ¢ LCC(S,) not only by an inflnite server center with average delay D but also by
the number of jobs of chain ¢ « LCC(S;) which is equal to the number of tokens in
the passive quene. Note that, using this representation for the complement of

S, the arrival rate of jobs into the subnetwork S, (given by (VDYP - Ns) where

Ng, is the population of subnetwork S) is assumed to be linear with N; and goes

(*) We should point out that, for subnetwork S, we are using a similar
re%renta.tion for the complement as used in [Sauesﬁ where the CPU/disks
subnetwork and the passive resource were represented by a load dependent
service center. In fact we are "linearizing” the load dependent center into a
muitiple server center. As we will see, this simplification also produces good
results and permits the exiension of the method to handle the case of shared
passive resources as well.
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to zero when N;, equals the maximum population P.

In order to solve subnetworks §, and S, we need to determine the vaiue of
the average service time X, and average delay D. We can define relationships
between the parameters X, and D of subnetworks S; and §,, respectively, as fol-
 lows:

(1) X, is equal to the response time of jobs in subnetwork 5. Therefore, 1t can

be calculated by equation {4.1a) below.

X, = 3 8,W,(N) ¢ e LCC(S,)
168, ' {4.1a)

or alternatively from Figure 4.7

X, =%-p
CoA ) (4.1b)

where ) is the throughput of the network, which is equal to the throughput of
subnetwork 5, or s,.' | |

(2) D is found by noting that the total population of the closed queueing net-
work of Figure 4.7, P, is the sum of the population in the infinite server center
representing the complement of subnetwork $; plus the number of customers in

the subnetwork s$;, Ny
P =)D+ Ns.

But from Figure 4.8b, Nj is the utilization U, of the multiple server center

representing the complement of subnetwork 5,. Therefore,
or, alternatively,
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Figure 4.7. Subnetwork S,

which is equation (4.1b) in a different form.

e

Equations (4.1b) and (4.2) have the form Y = A(X) and X = G(Y) and can
be solved by iterating over subnetworks 5, and 5, We have just outlined the
steps necessary to approximately solve a non-product form petwork with simul-
taneous resource possession and dedicated resources. To conclude this section
we consider the case where jobs from a single closed chain visit different passive
queues as exemplified in Figure 4.8a. In this Figure, jobs from closed chain ¢
visit allocate node 1 with probability ¢ and allocate node 2 with probability 1-¢.
The number of paﬁsive resources available are P, and P;, respectively. We label

jobs visiting subnetwork 5 while holding passive resource P, as class ¢, jobs. In

the same way, we say that jobs which hold passive resource P, while visiting

subnetwork S belong to class ¢c,. We use the same assumptions described above,

91



;
[

i.e.: (1) the waiting time of class ¢, (¢,) jobs in subnetwork S is exponential, and
(2) the arrival rate of class ¢, (¢,) jobs at subnetwork 5 is linear with respect to
class ¢, (¢,} population in 5. Note that, by assumption (2), the complement of

subnetwork S for chain ¢ is represented by two closed chains, one for each class.
Therefore, the original network is clustered into two subnetworks as shown in

Figures 4.8b and 4.8¢, and the approximation developed above can again be

P, 1 tokens q

-G oo U

(a)

P3 jobc

Q-0

(e)

Figure 4.8. A single chain visiting 2 passive resources.

applied. Below we give the details of the general algorithm.
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4.3.1. The Algorithm.

In order to describe the clustering of the original network into subnet-

works, we need the following definitions:

Definition §.1: Resource set (R-set).

Let ¢, be the class of customers from chain ¢ which visit an allocate node for
passive resource p.

SH, = { resource r | r is held by class ¢, jobs }

Note that r can be a passive or active (*) resource.

Definstion 4.2 Maximum resource set (MR-set).

The MR-sets are disjoint sets of resources of a subnetwork. They are formed in
the following way: 7

(1) start with the set of all R-sets of the model.

(2) replace any pair of sets whose union is“non-empty with the union of these
two sets.

(3) repeat step (2) until all set are disjoint.

Definition 4.2 Primary passive resource.
A primary passive resource is any passive resource which is not included in any
MR-set. (In other words, a primary passive resource is a passive resource which

is not "requested” by any job which holds another passive resource.)

The algorithm we describe next can be used to iteratively solve non-

produci form networks with dedicated passive resources, i.e., a passive resource

{*) "Active” resources are all resources which are not passive.
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is dedicated to a single chain and a single class of customers. (Note that this
implies that no class changes are allowed while a customer hoids a primary pas-
sive resource. This restriction will be relaxed in the next section.) The algorithm
can be applied to networks containing passive resources such that:

(1) If a customer holds more than one passive resource at a time, these resources
have to be released in the reverse order in which they were uqﬁhed, i.e., the
first passive resource allocated for a customer is the last released.

(2) Define a relation among passive resources by P, > P, iff passive resource 7, is

requested before P. We require that the relation be a partial ordering.

Step 1; Cluster the network with passive resources into subnetworks
as follows:
s. Form one subnetwork which contains all the resources (including pas-
éive resources} which are not in any MR-set. (Note that the only passive
resources in this subnetwork will be prima.ryrpassive resources.) The set of
local unconstrained chains for this- subnetwork is the set of all chains in
the original network that visit the resources in this subnetwork.
b. Form one subnetwork for each MR-set. The local unconstrained chains
of these subnetworks will be the set of chains whose customers do not
hold any primary passive resource while visiting the centers in the sub-
network. This must be true for all classes associated with this chain. All

other chains will be local constrained.

Step 2. _
a. For each subnetwork formed in Step 1a or 1b, the complement of a
subnetwork for a local unconstrained chain ¢ is represented by an infinite

server service center for each resource in the complement. Therefore, as
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Step 6. Compare the current estimates of mean queue lengths with the
previous estimates using (3.3.a1) in section 3.3.3 and terminate if this

result is less than a specified threshoid. Otherwise go to Step 5.

i
Local constrained o o
chain N -
', |
i
.
" ] SUBNETWORK
Local unconstrained
chain visiting »
passive resource
—

Figure 4.9. Representation of the effect of the complement

for local unconstrained and constrained chains. 1

In the examples we solve next, we use exact MVA to recursively solve a
subnetwork. Therefore, the cost per iteration is equal to the sum of the costs to

solve each subnetwork, which is O(Y /s I (N + )N, + 1) X 2? "s']),
5

U
gt c';'-f(c??cqsa

where J; is the total number of centers in subnetwork s, N, is the number of

jobs of closed chain ¢, representing the complement of subnetwork S for chain

¢ ¢ LCCS) when visiting the passive resource p in the complement of 5, i.e., N is

equal to the number of tokéns in the passive resource p, apd # MS; is the total

pumber of MS service centers in subnetwork S, including the ones representing
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passive resources. The memory requirements of the algorithm are on the order
of the memory requirements of the subnetwork which requires the largest
amount of memory. Our empirical tests have shown that the convergence is
very fast. In general the algorithm terminates in five iterations, when the thres-

* hold used in Step 6 is 10~ '

Finally we should point out that, when the number of tokens: ’ the pas-
ine resource is identical to the number of customers of the chain that visits the
resource and each chain visits no more than one passive resourée,-the network
will be product form and the approximation proposed in this section collapses to
the a.p_proxjmation proposed in chapter 3, with all the chains in the network

belonging to the set of local chains in all subnetworks, i.e.,, ¢ ¢ LC(S) Y e, Vi,
4.3.2. Empirical Results. -

In this section we apply our approximation technique to two examples
found in the literature. 'i‘he first Mple is’a central server model with termi-
nals, taken from [SaueSlc]. There are two types of jobs repraent-{ged by two
closed chains and for each chain there is a separate memory constfaint. The

parameters for this network are:

- mean think time: chain 1 - 5 sec, chain 2 - 10 sec.
(exponential distribution, IS discipline.)

- mean CPU service time: chain 1 - 10 msec, chain 2 - 100 msec.
(exponential distribution, processor sharing discipline.)

- mean number of CPU-disk cycles: chain 1 - 10, chain 2 - 20.
(geometric distribution.)

- four identical disks with the same parameter for each chain: branching

robabilities from CPU to a disk: 0.25. Mean disk service time: 35 msec.

rexponential distribution, FCFS discipline.)
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Applying our approximation technique to this example, the network is

SUBNETWORK 1 O
terminals .

O e O

dchﬁnz

SUBNETWORK 2

Figure 4.10. Subnetworks for the first example. Dedicated passive resources.

clustered into two subnetworks as shown in.i"igure 4.10. In this Figure, subnet-
work 1 represents the terminals snad the memory passive queues, and chains 1
and 2 are in the set of local unconstrained chains of this subnetwork. The com-
plement of subnetwork 1 for chains 1 and 2 is represented by an infinite server
center which is equivalent to two MS centers due to the memory constraints.
The mean service times of these centers are given by equation (4.3). Subnet-
work 2 represents the CPU and the disks. Chains 1 and 2 are in the set of local
constrained chains of this subnetwork. The complement of subnetwork 2 for
chain 1 and 2 is represented by: (a} limiting the pumber of customers in each
chain to the pumber of memory partitions allocated for each chain, and (b) an
IS service center whose mean service times for each chain is given by equation

(4.4).
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Sauer chose three pair of values for the total number of jobs for each
chain (N, and N;). For each pair, he chose three pair of values for the memory
partitions P, and P, dedicated to each type of job, in order to provide low,
moderate and high memory contention. He simulated the network using RESQ
and 5% confidence intervals were obtained for the mean response time of all

jobs at 90% confidence level. Table 4.1 presents the rult§ obtained with our

Ny chain 2 response time
4 2| 0642 (0.80,063) | 0717 (0.77,080) | 480 (449, 5.09)
0 2|3 1] os0e (059,081 | 088 (090,095 | s04 (471,531
1 1| o487 (048,050 | 483 (es8 493) | 400 (338 431
7 2 | 0837 (0.83,085) | 0955 (1.03,1.08) | 72 (870, 7.84)
30 3 L 1 0.308 {(0.79, 0.81) 1.08 (1.13, 1.19) 92.19 (8.42, 9.89)
2 1 0.8995 {0.80, 0.71) 4,1 (3.97, 417} 8.49 (.08, 8.95)
14 4 | 0968 (098,097) | L&z (147,154 | 1338 (1215, 14.10)
0 4|9 3| oser (085098 | 158 (187,174 | 1228 (1198, 13.28)
5 1 0.874 {0.87, 0.58} 2.31 (2:30, 2.42) 14.53 (13.48, 15.15)

Table 4.1. First example. Dedicated memory partitions.

-
L

approximation and using simulation. As we can observe from Table 4.1, all but
“one approximate va.lﬁe for the CPU utilization is contained within the
confidence intervals. This one value falls only 0.7% outside the interval. Two
thirds of the values for the response time for jobs of chain 1 fall outside the
confidence intervals but the maximum reiative distance of this interval is only
7.3% (for pairs (30,3) and (7,2)) when the contention for memory is low. All
values for the response time of jobs of chain 2 fall inside the conﬁdence interval.

The achieved accuracy seems to be very good.

The second example is taken from [Jaco83]. This example models a com-
puter system with passive resources. The system is shown in Figure 4.11 in a

RESQ type diagram. The branching probabilities are indicated in the Figure.
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Figure 4.11. Second example (one chain network). Dedicated passive resources.

Note that, in this network, there is only one chain with three different classes.
Each class models the behavior of customers when they visit the CPU and disks
while holding passive resource P, P, and whithout hélgling any passive raourée,
respectively. The CPU mean service time is 0.2 for all classes and the disks
mean service times are 0.04 for all disks and for all classes. Applying our
approximation technique to this example, the network is clustered into two sub-
Inetworks as shown in Figure 4.12. Note that subnetwork 2 (in Figure 4.12) con-
tains three closed chains representing the complement of this subnetwork for the
single local constrained chain. The visit ratios and service demands of closed
chain 1, 2 and 3 correspond to the ones for the three different classes in the ori-
ginal network. The population of these chains is 3, 1 and 1 respectively, which
correspond to the maximum number of jobs that can be present in each class
(job visiting the CPU and‘diaks without holding any passive resource, holding

passive resource P, or holding pasﬁive resource P,). Table 4.2 showns the visit
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SUBNETWORK 1

e

o/ |
g/ SeG

Figure 4.12. Subnetworks for the second example.

" SUBNETWORK 2

.:_.‘ ]

ratios for each chain at each center in the two subnetworks. Table 4.3 shows

the results obtained with exact analysis, our approximation and the approxima-

Sebaetwork 1 - Sabaetwork 2

| MS1___MS2 MS3 disk3 | IS __CPU__disk 1 disk 2
1 04478 04179 01343 11 1403 0209 0.1344 | chainl

1 1 0.48 0 chain 2

1 1444 O 1.083 | chain 3

e

| " Table 4.2. Visit ratios. S.econd example.

W
tion proposed in {Jaco83]. As we can observe, the accuracy of our method is
comparable to the accuracy of the method proposed in [Jaco83!. For low conten-
tion in the passive resources the method in [Jaco83| gives slightly better results.
For moderate to high coptention our method gives slightly better results. Note

that in the last four results (high contention) the error is less than 1%.

We have tested our method in other networks. The results have accuracy

comparable to the one obtained in the examples above.
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Popuiation Throughput % Ertor
Eact ghm 5 HASQS:!I gl_natmn' |JA§083!
3 15.88 14.93 16.52 6 4.2
4 16.68 16.1 17.1 3.5 2.3
5 17.15 16.78 17.5 22 240
é 17.42 17.19 17.7 1.3 1.5
7 17.58 17.45 178 0.57 1.5
8 17.62 176 17.8 0.11 1.1
20 17.8 1785 18.0 0.3 1.1
50 178 1779 . 180 0.08 1.1

Table 4.3. Second example. Results.

4.4. Simultaneous Resource Possession: Shared Passive Resources.

In the previous section we proposed an approximation technique for non-

produet form networks with simultaneous resource possession when the passive

~ resource is dedicated to jobs of a particular type. However, the same technique

can be used to approximately solve the problem of simultaneous resource posses-
sion when a passive resource is shared among jobs from different chains and/or
different classes. Let us consider again the network of Figure 4.4. We assume
that there is more than one type of jobs sharing the memory partitions before
requesting service from the CPU and disks. Note that the maximum number of
jobs allowed to contend for the CPU and disks is the number of memory parti-
tions in the memory passive queue. Consider a saturated system where the utili-
zation of the memory passive queue approaches onme. In this limiting case, as
soon as a job leaves the CPU/disks subnetwork another one is immediately
allowed to enter this submetwork. Therefore, the CPU/disks subnetwork
behaves like a single chain closed network with P, jobs, where P, is the number
of partitions in the memory passive queue ». However, unlike the dedicated

resource case, the jobs in this chain may have different behavior in the subnet-
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works, since in the original network there is more than one type of jobs visiting
the subnetwork. We choose to represent the behavior of different types of jobs
by different classes in the subnetwork. Similar to the dedicated resource case,
the network of Figure 4.4 is clustered into two subnetworks: the first one (5}
represents the terminals and the passive queue of the original network and the
second one (S5;) represents the CPU and 1I:he disks. The multiple chains in the
original network belong to the set 6( local unconétra.ined chains of subnetwork
5,. The complement of subnetwork 5, for these chains is represented by an IS
center which, combined with the allocate node, collapses to a FCFS multiple
server centelf. The local constrained chains of subnetwork S, are the ones that
visit the passive memory queue before visiting the CPU/disks centers, i.e., all
original chains in this example. The complement of subnetwork S, for these
local constrained chains is represented by a single closed chain (say chain 5)
with P, jobs and mulitiple classes. Each class corresponds to a local constrained
chain. As in the dedicated passive resource case, we also use an infinite server
center as part of the representation of the complement of a subnetwork for a
local constrained chain. The mean service times of the FCFS multiple server
center and the IS center in the complement of subnetworks 1 and 2 respectively,
can be obtained in the same manner as for the dedicated passive resource case.
It remains to specify how to determine the probability Pf of a job belonging to a
particular class ¢ of closed chain f, when it enters a subnetwork (subnetwork s,
in the example of Figure 4.4). We assume that the flows in all chains are
sufficiently randomized so that Pj is proportional to the throughput of the

corresponding local constrained chain, i.e.,
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P} = et LCO(S), ke LC
I gkl’h cée C(S), k¢ c(s) (45)
This assumption is similar to the one proposed by Reiser [Reis79| for approxi-
mately solving non-product networks with FCFS centers with different service
times for different chains. Note that, in equation (4.5) class ¢ of closed chain /,
represents the complement of subnetwork S for a local constrained chain ¢ which

visit passive resource ».

In sﬁmma.ry, the algorithm for the shared resource case will be identical
to the algorithm of section 4.3 for the dedicated resource case, with a slight
modification in Step 2 to account for the shared passive resources. Below we
generalize Step 2:

Step 2. |
a. For each subnétwork formed in Step la or 1b, the complement of a
subnetwork for a local unconstrained-chain ¢ is represented by an infinite
server sel_'vice center for each resource in the complement. Therefore, if a
set F of { local nnconstrainéd chains ¢,, ..., ¢ visits an allocate node for a
primary passive resource », p is equivalent to a FCFS multiple server ser-
vice center with as many. servers as the number of tokens in the passive
resource. The mean service times for each chain visiting these MS service
centers are given by equation (4.8a) or (4.8b), which is identical to equa-
tion (4.3) but includes the case where different chains visit the same pas-

sive resource.

X, = % W g, m8
o J‘%’ gLy Iy ] ( 4‘53).

where the superscript ¢ identifies the class of closed chain 7, which
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represents the complement of subnetwork § for tﬁe local constrained
chain c. (§is the subnetwork which contains resource j.) If subnetwork §
is product form, Wj, can be obtained by solving an equivalent closed net-
work without classes [Lave83]. If this is the case, the equation above
reduces to:
LALLD!

&, TPty e | (4.8b)
b. For each subnetwork formed in Step 1b, the complement of subnet-
work § for local constrained chains is represented by one or more.closed
chains. If a local constrained chain ¢ visits allocate nodes for P distinet
primary passive resources, the compiement of subnetwork $ for this chain
is represented by P closed chains, each one (e.g., chain ¢,) corresponds to

local constrained chain ¢ when customers associated to this chain hold

primary passive resource p. The number of jobs in each of these chains

will be equal to the number of to].:ens in the corresponding j:a.ssive
resource. If a set F of / local constrained chains ¢, ..., visits allocate
nodes for the same primary passive resource p, the complement for set F
is represented by only ome closed chain 7, with ! classes, each one
corresponding to a particular chain in F. The number of jobs in 7, will be
the number of tokens of passive resource p. All chains {5} or {c},
representing the complement of subnetwork S for one or a set of local
constrained chains, visit an infinite server center whose average service
time is given by equation (4.7) (the same equation holds for chains ¢,):

P
D -x,[—l- -1] ‘
P, (4.7)
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where P, and U, are defined.in equation (4.4) and X, is the total mean ser-
vice time of passive resource p considering all chains visiting p, i.e.,

X, = s idaXs
E*t‘» (4.8)

The algorithm deseribed above and in the previous section does not
include the following cases:
(1) A passive resource » may be allocated to customers which belong to the same
chain e,. but are in a different class.
(2) The class ¢ of a customer from chain ¢ upon releasing passive resource p is
diﬂ’erent from the class { of this same customer when he acquired ,.
In general, customers from different classes may have different soujourn times in
the subnetwork SH., We spproximately model case (1) above by:
(a) Assigning a different service time for each claas at the multiple server service
center representing passive resource p. Equation (4 B8a) above is still valid, but a
new index should be used to represeat a pa.rtlcula.r class of customers.
Case (2) is modeled by:
(b) Associating a new class {, for each pair of classes </,d> and assigning
different service times for each class as in (a) above. Note that the routing pro-

babilities of the new class [, can be easily obtained from the original classes.

Unfortunately, some of the subnetworks obtained after applying Steps 1
and 2 to a network with shared passive resources will not be product form
because, for these subnetworks, we will need to solve a queueing network model
with FCFS multiple server service centers with diﬂ'e;rent service demands for
each chain (and/or each class). This is true since, as shown in Figure 4.6a, the

complement of a subnetwork for a local unconstrained chain is represented by
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an IS service center which, tﬁgether with the passive resource, results in a multi-
ple server center. If multiple chains (and/or classes) share the same passive
resource and these chains [a.nd/or classes) have different load requirements in
the complement, the value of the mean service times of the IS center represent-
ing the complement will probably be different for each chain (and/or class),
resulting in different mean service times at these multiple server centers. To our
knowledge there is no published approximation technique for solving closed
queueing network models with MS service centers with different service demands
for jobs from different chains (and/or classes). We propose such an approxima-

tion in the next section.

4.4.1. An Approximation for Closed Queneing Network Models with
FCFS Multiple Server Service Centers and Exponential Service Times.

Reiser [Reis79] pfoposed an approximation to handle queueing network
models with single server FCFS with different service demands for jobs from
different chains. Unfortunately, the results can not be easily extended for MS

centers. However, we will use some of the assumptions proposed in [Reis79]. -

Our approximation is based on three assumptions:

1 The arrival theorem [Reis80, Lave80| is valid for this kind of non-product

form networks.

2. The flows in all chains are sufficiently randomized so that, at an arrival
time of a customer of chain i,. the probability mass function that the
servers of center j are serving », customers of chain 1, ..., n, customers of
chain & given that all servers of center -j are busy is multinomial, and

given by equation (4.9) below:
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A ‘(N,N—e!) . - -
e =M n<(N-
C,(n. N-ey) if |n}] ; B3 (N-€)

PS,(n|N, sll busy) = |, otherwise (4.9)

where 7 = (ny, .., ny), [B] = ny + ng + ... + ng s0d the notation n < (N-¢)
means that the operation "<” is applied element by element of vectors n
and (N—:g)-

A,(R‘N e.) ﬂ‘t-.-ux! .Izlp.:;‘N-‘.) l (4.10)

P = o
T A N-e)s, (4.11)

cwml
C,(N-%,) is a normalization constant given by:

N = 5 AfrN-a) .
L : (4.12)
15(3-1‘) .

From this secona assumption, the probability mass function that, at an
arrival time, the servers of center j are serving n, customers of chain i, i = 1. K
given that all servers of center j are busy and at least one of the servers of

center j is busy with a customer of chain !/ is given by:

- -

A ,N" - - -
—‘(:—:# if |n| = M, B2
PS, (RiN, all b > 1) GolnN-0)
By, asy, n = - .
0 otherwise (4.13)

where
0,,(1-\7—-;.) - _z A;(;vﬁ:;i)l .

o (4.14)

[ (ﬁ'—l.)

n21

3. At the time when customer [ starts service at center j, a customer ¢ who
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arrived at center j while customer { was in queue sees the customers in
service at j distributed with probability mass function PSy(n|N, all busy,

n>1) given above.

From the assumptions above we can find an equation analogous to equa-

tion (2.5b). For that, we note that the mean waiting time observed by a chain &

customer at center j has three components, namely:

The mean waiting time of the arriving customer, z,.

It all servers are busy when chain k customer arrives, the average elapsed
time until the first customer leaves, =, (W)

Given that all servers are busy and there are n, customers of chain i,
iml, .., K, in.service when .cha.in k customer arrivé, by the memoryless
property of the exponential distribution, the elapsed time from the arrival
of this customer until the next departure is simply the minimum of the

service times of customers in service” For exponentially distributed ser-

vice times, this minimum has mean

(Byphy; + napay + .o + ngpx)?
(4.15)

Therefore, unconditioning and using assumption 2:

:r,,(f\.l) - Eu PS.,(;]R. all busy{(mpsy, + ngpay + ... + nxpp)”

| = M,
(N-%)

(4.18)

1A

The mean “effective backlog” of customers in queue when a chain & custo-
mer arrives. This "effective backlog” can be calculated by noting that,
whenever a customer [ which is in queue in front of customer & enters in

service, the elapsed time until the next departure (call the mean of this
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elapsed time z¢,,(V)) is simply the minimum of the service times of custo-
mers in service. Conditioning on the number of customers from each

chain at the servers and using assumption 3, we get:

(M) = % PSy(RIN, all busy, oy 2 (mpy + ngpyy + o+ Axi)
i 1

N L

| i
s v

r.-

Therefore, fne "effective backlog"” for customer & at center j is:
b .

L e e
Y 2, (Mgy(N-e))
fa1 (4:18)
Combining componeats 1, 2, and 3 we finally find an expression for the
mean waiting time of a chain k customer at a FCFS center with exponential ser-

vice times, when the population of the network is N:

W =y + £ enul (50 + PBEZ)rl ) )

It remains to find an expression for PB (N) which is the probability that all
servers of service f ‘i;nter j are busy, when center j is s FCFS center. We approx-
imate PB,(N) by the expression used for this probability considering center j as a
processor sharing center. Therefore, PB(N) can be calculated by equation (2.4¢)
and (2.4a). However, equation (2.4b) for P,(0|N), the probability of zero custo-
mers at service center j, is no longer valid. The original approach to calculate

P,(0{N) [Reisg0],
— | -
POIR) = 1- B PR

is known to fail numerically as P,(0|N) tends to zero ([Laves3, Chang0]), since the

sum Y P(i|N) may result in values slightly greater than one. Therefore, we
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choose to use, as an approximation, the following equation:

- [N -
P(0o - g,1- Pl
(0 N) = max é‘l (1R w0

(max{A.B) &4 if A > B or B otherwise.)

which results in a numerical stable algorithm (*).

From equations (4.9) through (4.20) we can observe some interesting pro-

perties:

(1)  if all mean service times at service center j are identical, equation (4.19)
reduces to equation (2.3d) which is the exact equation for MS service

centers in a product form network.

(2)  if the number of servers at service center ; is equal to one, equation (4.19)
reduces to the approximate equation obtained by Reiser [Reis79| for a
FCFS center with different exponential service times for differeat chains.

-

(3) for certain particular cases, the equations obtained above converge to the
exact result: For instance, consider a very simple network which has only
one FCFS center with two servers and two chains. Chain 1 has two custo-

mers and chain 2 has only one customei. Assume the mean service time

(*) Although the use of equation (4.20) results in a numerical stable algorithm,
its use in a product form network may give values which present small errors
when P(0{N) spproaches zero. For instance, utilizations slightly over one may
result in the final answer. However, although the use of equation (4.20)} may be
unacceptable for exact MVA, our empirical tests indicate that the resuits
obtained are very reasonable as an approximation and the small errors obtained
do not significantly affect the accuracy of the overall approximation for FCFS
centers. As a consequence of these errors, the ratio P/U, in equation (4.7) may
be slightly over one for particular cases. This would result in a negative value
for D;. To avoid this problem the ratio P/U, is truncated to one whenever its

value is greater than one.
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of customers from chain 1 equal to 1. If we let the mean service time of
customers from chain 2 grows to infinity, the solution of the network for
‘chain 1 customersl converges to the solution of the same network with
only chain 1 customers and the FCFS center with only one server. This
is the exa;:t solution since, as the mean service time of chain 2 customers
grows to infinity, once this customer acquires one of the servers he never
releases it, leaving only one servef' for chain 2 customers. The utilizations
obtained in the limit are 1.0 for both chains. Note that using & processor
sharing center instead of a FCFS center the utilizations wouid be 1.333
and 0.8687, respectively.

4.4.1.1. Empirical Results for FCFS Muitiple Server Centers.

We have done several tests.to validate our approximation for multiple
server service centers. In this section we present only a subset of the tests which
seem to stress our approxnnatlon We choose to present the results obtained for
two chain, two center networks, similar to those in [Bryas3] (*). Onme of the
centers in the network (center pumber 2) is s multiple server FCFS service
center, The other (center number 1) is an IS center or a processor sharing
center. For the first set of experiments, center number 1 was chosen to be an IS
center and the following parameters were used for the network:

. mean service times: z;, = 6, zn = 3, 53 = 1, 2 = variable.
- number of customers: N, = 5, Ny = 2,
number of servers of the FCFS center: M, = 2.
We choose a small customer population for one of the chains to stress assump-
tion 2. The mean service time of customers from chain 2 at the FCFS multiple

server center was varied from 2 to 20, so that the total average utilization of this

(*) For a discussion of the choice of this kind of networks refer to [Bryas83).
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FCFS center varied from moderate to high and the percentage of the utilization
used by the chain with small number of customers also increased. We simulated
the network using RESQ and the regenerative method. Approximately 5%
confidence intervals were obtained for the mean waiting time of customers at the
F_C'FS center at a 90% confidence level. Table 4.4a presents the results obtained
fof the FCFS center using our approximation :mdui using simulation. Table 4.4b

presents the results for the same network, but with the number of customers of

Chain 1
T utilization mesn waiting time
approx. | _simal. approx. | simul.
2 0.33 {0.322, 0.338) 1.58 (1.81, 1.59)
] 0.28 (0.281, 0.289) 2.93 (2.69, 2.80)
8 0.239  (0.246, 0.252) 4.48 (3.98, 4.1)
11 0.207  (0.221, 0.226) 608  (5.11,53)
14 | 0183 (0.198,0201) | 765  (6.42 6.58)
17 | 0164 (0.179,0182) | 923  (7.75,7.93)
0.149 0.163, 0.185 0.8 9.08, 9.25
Chain 2
Ta utilization mean waiting time

app ] simul. approx. I simul.

2 | 0377 (0.368, 0.388) | © 2.30 (2.30, 2.41)
5 0.587 (0.571, 0.532) 5.51 (5.67, 5.87)
8 0.689 (0.663, 0.671) 361 (9.0, 9.27)
1 0.749 {0.714, 0.72) 11.68 (12.0, 12.3)
14 0.79 (0.755, 0.76) 14.72 (15.2, 15.6)

17 | 082  (0.783,0.788) | 17.75  (18.43,18.79) |
20 | 0841  (0.807.0.81) | 2077 (2156 21.97) |

Table 4.4a. Results for FCFS multiple server center.
First set of experiments (N, = 2). :

chain 2, N, decressed to 1 (*).

(*) In this case as z increases, the probability that the customer from chain 2
will be at one of the servers from center 2 also increases. The other server will
be {ree for customers {rom chain 1.
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Chaia 1
y PO utilization mean waiting time
approx. | simal rox. simui,

2 | 0346 (0.341,0358) | 122  (1.2,1.27)

5 | 03% (0.332,0344) | 137 (L35, 1.41)
8 | 033 (0328,0338) | 145  (1.44,1.51)

11 | 033¢ (0.328,033%) | 15  (1.51,1.57)

14 | 0332 (0325,0332) | 133  (1.56,1.62)

17 | 0331 (0.33,0337) | 155  {(1.84,1.9)

' 2 0.331 [0.326I 0&2' lISB “.ﬂﬁl }7“
g Chain 2
Ta utilization mesa wiiting time
approx. |  simal | sporox. | _ simul
2 | 0196 (0.184,0201) | 21  (1.98,2.13)
5 | o308 (03020319 | 51 (5.0, 5.39)
8| 038 (0.349,0384) | 81  (7.95 8.55)
11 | 03  (0283,0208) | 111 (107,115)
14 0.409 (0.401, 0.412) 14.1 (13.32, 14.3)
17 | 0423 (0.414,0.424) | 171 (16.54,17.3)
o0 | 0433  (0.43,0438) | 201 (195 209) |

Table 4.4b. Resuits for FCFS multiple server center.
First set of experiments (N; = 1),

For the second set of experiments, center number 1 was chosen to be a
processor sharing center and the following parameters were used for the net-

work:

- mean service times: z;, = 1, 2 = 2, 33 = 1, 2 = variable.

- pumber of customers: Ny, = §, Ny = 2.

- number of servers of the FCFS center: M, = 2.

Again, the mean service time of customers from chain 2 at the FCFS multiple
server center was varied from 2 to 20. We simulate this network obtaining
confidence intervals similsr to the previous set of experiments at 90% confidence
level. Table 4.58 presents the results obtained using our approximation and
using simulation. Table 4.4b presents the resuits for the same network, but
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Chain 1
Tz utilization mean waiting time
rox. simul. approx. | simul
2 | 0352  (0.341,0.36) 139 (134, 1.44)
5 | 0353 (0.349,0361) [ 242 (218,239

8 0.331  (0.327,0.337) 3.79 (3.02, 3.28)
11 | 0299 (0.294,0304) | 5.25 (4.0, 43) .
14 | o266 (0287,0217) | 673  (5.08,543)
17 0236  (0.247, 0.285) 8.22 (5.97, 6.34) -

A 0. 0. . 8.93. 7.31)

Ta utilization mesn waiting time
approx. | simul. approx. I simul.

2 0.145  (0.142,0.160) | 2.4 (2.35, 2.57)

5 | 0307 (0.0, 0.344) 580  (5.77, 6.24)

8 0.423  (0.418, 0.459) 83 (8.94, 8.53)
11 0.507  (0.509, 0.547) | 11.95 (12.5, 13.2)
14 | 0572 (0.58,0614) | 1508  (15.72, 16.65)
17 0.621  {0.622,0.652) | 13.14 (18.8, 19.86)
20 0.661 (0.669,0.693) | 21.21  (21.52, 22.4) |

Table 4.5a. Raults for FCFS multiple server center.
Second set of experiments rN, -2).

From the results shown in Tables 4.4 and 4.5 we can observe that all the
utilizations obtained with the approximation are in close agi'eement with the
results obtained with simulation. That is also true for the waiting time of chain
2 customers and the majority of results for chain 1 customers. However, we
observe that the approximation overetiniatu the values of the mean waiting
time of chain 1 customers when the utilization of chain 2 customers at the FCFS
is high and when N, = 2. Note that, in this case, a small error in the estimates
of the probability distribution of chain 2 customers at the servers of the FCFS
center can cause large errors in the mean waiting time of chain 1 customers since
chain 2 customers have much higher service demands than chain 1 customers
and the chain 2 population is identical to the number of servers at the FCFS

center. Furthermore, the low number of customers should stress assumption 2.
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Chain 1
T utilisation mean waiting time
approx. | simul. POX. simul.
2 | 041 (0.399, 0.419) 1.31 (1.26, 1.35)
5 | 0419 (0.412, 0.429) 157 (1.55, 1.65)
8 | 0.42¢4 (0.412, 0.426) 1.74 (1.73, 1.84)
11 | 0.427 (0.42, 0.43) 1.87 (2.0, 2.12)
14 | 0.429 (0.413, 0.423) 196  (2.09, 2.21)
17 | 0.431 (0.414, 0.424) 2.02 (2.1, 2.21}
0.43 0.413. 0.423 i .2 2.31
Chain 2
Tx utilization mean waiting time
approx. ] simul. approx. ] simul.
2 | 00844 (0.0742, 0.0983) 228 (2.19, 2.43)
5 | o.es (0.148, 0.182) 528  (4.87, 5.52)
8 | 0.22¢4 (0.203, 0.243) 8.28 (7.79, 8.65)
11 | 0.264 (0.253,0203) | 1128 (111, 12.34)
14 | 0.204 (0.297,0333) | 1428  (14.52, 16.17)
17 | 0317 (0.293, 0.333) 17.28  (15.78, 17.64)

20 | 0.335 {0.312, 0.35) 20.28  (18.69, 20.77}

Table 4.5b. Resuits for FCFS multiple server center.
First set of-experiments (N; = 1)

4.4.2. Shared Passive Resources. Empirical Results.

In this section we apply the algorithm of sections 4.3.1 and 4.4 to net-
works which possess passive resources shared among customers from different
chains. We use the approximation developed in section 4.4.1 whenever any of
the subnetworks obtained contains FCFS service centers with multiple servers.
The first example is a central server model with terminals taken from [Saue81c].
Like the first example of section 4.3.2, there are two types of jobs represented by
two closed chains. However, in this case, both jobs share the same memory par-
titions. The parameters for this example are identicdl to the ones for the first

example in section 4.3.2.
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Applying our approximation technique to this example, the network is

P jobs gl chain with 2 classes

’ D e r— .
SUBNETWORK 1 U
ﬂ
terminals

.thliﬂl
Och&in2

SUBNETWORK 2

Figure 4.13. Subnetwork for the first example. Shared passive resources.

clustered in two subnetworks as shown in Figure 4.13. In this Figure, subnet-

work 1 represents the terminals and the memory passive queue, and chain 1 and -

chain 2 are in the set of local unconstrained chains of this subnetwork. The
cdmplement of chain 1 and 2 is represented by an IS service center which col-
lapses to one FCFS multiple server center due to the memory constraint. The
mean service time of customers from each chain at this center is give by equa-
tion (4.8b). Subnetwork 1 is not product form since there are two chains visit-
ing a FCFS multiple server center with different service demands. Therefore,
this subnetwork will have to be solv?d using the appmﬁmation developed in sec-
tion 4.4.1. Subnetwork 2 represents the CPU and the disks. Chain 1 and 2 are
in ‘the set of local constrained chains of this subnetwork. The compiement of

both chains is rei:resented by: (a) a single chain f, with P jobs where P is the
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number of memory partitions. This chain has two classes. Each one
corresponds to one of the local constrzined chains. The probability of a job of
chain f, belonging to one of the classes is given by equation (4.5). (b) am IS

center whose mean service time is given by equation {4.7).

Similar to the example with dedicated resources, Sauer chose three pairs
of values for the total number of jobs for each chain. For each pair, three
values for the memory partitions were chosen in order to provide low, moderate
and high memory contention. - Sauer simulated the network using RESQ and 5%
confidence intervals were obtained for the mean response time of all jobs at 90%

confidence level. Table 4.8a presents the results obtained with our approxima-

NN P chain 2 response time
simgl. . simul.
é 0.623 (0.60, 0.63) | 0.633 (0.73, 0.78) 477 (4.34, 4.93)
20 2 4| 0621 (0.60,0.62) | 0.304 (0.91, 0.95) 4.49 (4.48, 4.88)
2 | 0527 {0.53, 0.54) 2.75 {2.35, 2.47) 4,38 (4.85, 5.12)
9 0.844 {0.82, 0.84) 0958 (1.00,1.04) | 7.65 (6.95, 7.92)
3 3 8 0.832 (0.83, 0.85) 1.28 - (1.20, 1.26) 8.97 (6.87, 7.47)
3 0.681 (0.69,0.71) | 4.15 (3.44, 3.62) 8.99 (6.69, 7.01)
18 0.952 (0.95, 0.96) 1.42 (1.47, 1.54) 14.3 (12.41, 14.0)
0 4 {12 0.956 {0.95, 0.96) 1.54 (1.64, 1.71) 13.24 (11.63, 12.74)
8 0.885 (0.90, 0.90) 3.45 {3.19, 3.35) 9.43 {9.23, 9.81} |

Table 4.8a. First example. Shared memory partitions.

tion and using simulation. As we can observe from Table 4.6a, almost all the
approximate values for the CPU utilizations and response times for the second
chain are within the confidence intervals. The worst error falls only 1.7% aand
3.99% outside the confidence intervals for CPU utilization and response time of
chain 2, respectively. Although all the approximate values for the response time
of chain 1 fall outside the confidence iﬁterva.ls, these values are very close to the

simulation results and the worst error is only 14.6%. Table 4.6b shows the CPU
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times in seconds spent on the simulation on an IBM 370/168, as reported in

[Saue8lc]. For each of the cases, the CPU times for the approximate solution

N; | N3 | P | approximation simnlatioa
50 o]
] 14 379
2 2 4 14 733
2 11 : 977
9 - 40 " 422
30 3 o 37 876
3 20 1,394
18 82 L)
40 4 |12 08 1,185
8 37 1343
Table 4.6b. CPU times (sec).

using & VAX11/750 is also shown (*). "For the approximate solution we use 10~
as the value for the threshold in St-ep 8 of the algorithm. .

.
;/’ T

For the second example we chose to ufodel a system wheré, in addition to
memory contention, there is also contention. for peripheral processors (1/OP}). A
job must have an I/OP continuously while doing I/O. Assume that the operat-
ing systems reserve a pool of I/OP for user I/O commands. The I/OP are ident-
jeal. For this example we use the parameters of the first example of section
4.3.2, seventh case. Therefore, there are 40 jobs of type 1 and 4 jobs of type 2.
Each type has a separate memory constraint (P, = 14 and P, = 4 in this exam-
ple). Furthermore, & job has to acquire any of the I/O processors before con-
tending for the disks. We assume that there are four I/O processors available.

Figure 4.14 shows the three subnetworks obtained after applying our approxima~

(*) For comparison we point out that in our VAX11 /730 a two chain two single
server center network, with 40 and 4 jobs respectively, takes approximately 8 sec
to be solved using MVA.
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tion technique to this example. In this Figure, subnetwork 1 represents the ter-
minal and the two memory passive queues. Chain 1 and chain 2 are in the set of
local unconstrained chains for this subnmetwork. The complement of chains 1
and 2 and the passive queues collapse to two FCFS muitiple server centers.
Subnetwork 2 represents the CPU and the I/OP passive queve. Chains 1 and 2
are in the set of local constrained chains as well in the set of local unconstrained
chains for this subnetwork. Therefore, the complement of chains 1 and 2 is
represented by: (a) the number of jobs in two closed chains which is equal to the
memory partitions for chain 1 and 2, respectively; (b) an IS venter whose mean
service time for each chain is given by equation (4.7) and {c) an IS service center
which collapses to one FCFS mulitiple server center due to the 1/OP constraint.
The mean service times of each chain in this center are given by equation (4.8b).
Subnetwork 3 represents the disks only. Chains 1 and 2 are in the set of local
constrained chains of this subnetwork. The complement of both chains are
represented by: (a) a single chain with as many jobs as the number of 1/O pro-
cessors. This chain has two classes. Each class corresponds to one of the local
constrained chains. (b) an IS service center whose mean service time is given by

equation (4.7).

Table 4.7 present the results when the approximation solution was used.
The network was simulated using RESQ and the regenerative method. 5%
confidence interval were obtained for the mean response time of all jobs at 90%

confidence level.
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Figure 4.14. Subnetworks for the second example.
Dedicated and shared passive resources.
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CPU utilization chan 1 response time chain 2 response time
T0X. | simul. APProx. simul. approx. | simul,

0.939 (0.918, 0.930) 1.74 (1.91, 1.96) 13.14 {12.89, 13.06

Table 4.7. Second example. Shared I/O processors.

4.5. Conclusions. .

We spplied the algorithm developed in previous chapters to approxi-
mately solve a non-product form LOCUS type of model with a detailed represen-
tation of an Ethernet communication channel. We presented examples showing
" the influence of the Ethernet channel on the response time of customers in the

petwork and compared the results with those obtained when a FCFS service

center was used to model the channel. The same approach used to solve this _

LOCUS type of model could be spplied to other problems with similar charac-
ter'mtics_. For instance, we could apply th?_ same algorithm to approximately
solve a communication network with window flow control where each channel
uses 3 CSMA-CD protocol. (Other type of channels, e.g.f I,a. slotted ring, may also
be present in the network.) However, empirical studies must be done to validate

the approach in these cases.

The main part of this chapter was devoted to develop an approximation
technique for non-product form queueing network models with simultaneous
resource possession. We developed an accurate approximation algorithm to solve
networks where the passive resource is dedicated to each type of job. The algo-
rithm is based on the clﬁstering technique of the previous chapter. Empirical
results have shown that the algorithm has accuracy comparable to other

approsches proposed in the literature. However, as pointed out by Sauer
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[Sa.ué&lc], the cases where heterogeneous jobs share both simuitaneous held
resources seems to be more important than the dedicated resource case, but is
also more difficult to solve. This is confirmed by the lack of cost efficient and
accurate algorithms in the literature. We have extended the algorithm
developed for ihe dedicated resource case to handle networks with passive .
queues shared by different job types. In'the extension, non-product form net- -
works with FCFS muitiple server service Acenter with differeat service times for |
different type of jobs need to be solved. Unfortunately, to our knowledge, there
is mo publishe;i spproximation technique to handle these networks. We pro-
posed an accurate approximation to solve this problem. Empirical studies have
shown that the overall algorithm for solving non-product form networks with

shared passive resources is very efficient and gives accurate results.

We have concentrated our studies on the case of subnetworks with local
chains only. However, it is possible to use the notion of foreign chains if the
assumption that they comtribute little to the utilization of the resources of s
subnetwork can be satisfied. In this case, the Poisson an:ival representation for
the complement would be used. Although we haven’t presented any result for

these cases we have done preliminary tests with good results.

Our approximation techmique can be easily extended to solve mixed

queueing networks where the open chain customers also share a passive resource

'with closed chain customers. This is true since an open chain with rate X may

be considered the limiting case of a closed chain wit_h a bottleneck node with
mean service time 1. The modifications necessary inciude: (a) substituting =, in
equations (4.9), (4.13) and (4.19) by U if & is an open chain. This is motivated by
the arrival theorem for open chain networks [Laves3]. (b) PB,(mlis still approxi-
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mated by considering center j a processor sharing center and so degraded service

rates from equation {3.3.12a) should be used to account for the open chains.

We may also extend the above technique to handle cases where the
scheduling discipline at the passive resources is ngn-preemptive priority instead
of FCFS. For this case equation (4.19) would be :podiﬁed as in to the approach
proposed in [Bryas3]. Needless to say, validation: experiments must be done to

evaluate the accuracy of the above extiensions.
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CHAPTER 5
LOAD BALANCING IN DISTRIBUTED SYSTEMS.

5.1. Introduction.

The principal motivation for the research done in the preceding chapters
was to find an accurate and cost effective spproximate solution technique to
solve for large @ﬁehg petwork models of the LOCUS distributed computer
system, since exact solution techniques are by far too costly to handle problems
of this size. We developed such. technique for product form networks and
extend the resuits for non-product form networks; Our appyoa.ch, albeit general
so that it can be spplied to any queneing networks model, m particular suited to
solve large LOCUS type of models. In this chapter we continue to focus our
research on issues related to cﬁstributed computer systems. In particular we
address the load balancing problem in distributed systems. In these systems a
number of resources (CPU's, file servers, disks, etc) are shared among jobs ori-
ginating at different computer sites. Under the LOCUS operating system, for
example, processes generated by users at one site in the network are ailowed to
run on other sites. In gemeral, in a distributed system environment it is desir-
able to equalize the usage of resources (balance the load) in order to reduce the

response time of jobs and improve the utilization of the resources.
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The load balancing problem in a distributed resource system is not new

and can take different forms for different problems. For example, in a long haul

packet computer network (where the resources are the channels), load balancing

becomes the routing problem. The goal there is to find optimum paths on which

to distribute the packets, so’ that some well defined performance criterion

(overall delay, for instance) is optimized.

In a distributed computer system, the load balancing problem may be for-

mulated as the problem of distributing the ‘execution of processes throughout

the network in order to minimize overall user response time. This load balane-

ing problem is in general more complex than the routing problem for the follow-

ing reasons:

(a)

(b)

()

bptima.l selection of the execution site and optimal routing from the
originating site to the execution site must be simuitaneously accomplished
(although the routing problem may become trivial if a bus or ring net-

work is used).

Maultiple job classes must be considered (e.g., interactive, batch, ete.)
with drastically different resource usage characteristics. In particular,
some classes behave as "closed” classes, in that their population remﬁs
constant during the life of the system (e.g., the number of batch jobs in a
multiprogrammed system). Other classes are best modeled as "open”, in
that the number of users in the class fuctuates statistically due to ran-
dom inputs (e.g., database inquires originating from a very large terminal

population).

Some classes may be restricted to run on a subset of sites.
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Most load balancing problems can be formulated as non-ﬁneu, multicom-
modity flow problems. Downhill search techniques can be efficiently used for
their solution. If the system includes only open classes and does not pose site
restrictions, then any of the methods available for routing optimization in com-
puter networks can be successfully used. In particular, the Flow Deviation
method, a downhill search method specially déighed for open queueing net-
works may be employed [Frat?3, Klei76]. If the di'sf;ributed system has a special
structure (namely, there is only one class of customers and the local network can
be modeled by a single quene) the optimal equilibrium point may be obtained
directly by solving (numerically) a set of non-linear equations, rather than using
an iterative procedure such 2s Flow Deviation. An elegant "direct” solution
method for this special structure was presented in [Tant84]. Unfortunately, the
direct solution does not easily extend to muitiple classes, site constraints, and

general interconnecting networks.

If the distributed system under consideration includes ouly closed chains
(i.e., closed classes), then a recent extension of the Flow Deviation method due
to Kobayashi and Gerla [Koba83] can be efficiently used. Onme must bear in
mind, howeves, that the routing problem with multiple closed chains typically
leads to local minima. Thus, a further search for the minimum of the local

minima is required.

In this chapter we consider the more general situation of multipie mixed
classes of customers. The open classes may correspond to interactive jobs sub-
mitted at terminals or work stations. These jobs m;y be permitted to execute
remotely. At issue is the 6ptimal selection of the remote site, and the optimal

path to it. Restrictions may apply in the remote dispatcher. The closed classes
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may correspond to batch jobs running locally on a computer site or to interac-
tive users running local application programs. The computer site is itsell
modeled as a network of queues (central server model). Our goal is to minimize
a weighted sum of delays (over open and closed chains). Note that only the
open chains need to be‘reroﬁt:éd for load balancing. Routing is fixed within the
closed chains. It can be shown that this guarantees the existence of only one

local minimum, which is also the global minimum.

The main contribution of this chapter is to provide an efficient exact algo-
rithm for the optimum solution of a very general class of load balancing prob-
lems. The algorithm can be viewed as an extension of the approach in [Koba83].

In the following, in section 5.2 we describe in detail the problem to be
solved. In section 5.3 we present the model. Section 5.4 contains the develop-
ment of the solution and section 5.5 gives the proposed algorithm. In section 5.6

we present some examples. Section 5.7 conclydes the chapter.
5.2. Problem Deseription.

We consider s distributed system as shown in Figure 5.1. In this system
each site is composed of a number of resources (CPUs, disks, etc), which are
used by processes that run in that site. Sites may not be identical, i.e., they may

have different resource configurations and resources with different capacities.

Each site is connected to a large number of terminals. These terminals
generate jobs that may have different processing reﬁuirements. For instance,
some jobs may request more CPU time than others. Furthermore, a class of jobs
may be restricted to run only in a ;ubset of the sites in'th;. network. This res-

triction may arise from security considerations, or {rom the fact that a site may
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‘not possess all the resources required by the class.

JoBs

Figure 5.1. A distributed system.

We assume that a job may run until completion in its "local” site (which
is defined to be the site connected to the terminal that generated the job), or
may be transferred via the communication network to a "foreign” site. Once
transferred to a foreign site, the job runs until completion and no further

transfers are allowed.

This type of configuration may arise in a database application such as an
airline reservation system where the requests of hundreds of terminals connected
to different sites may also be processed at foreign sites. In addition, some or all
of these sites may also be processing local application programs. We assume that
these latter programs cannot execute in a foreign site. We refer to this type of
programs as the "background load” of a.site.

Our goal is to balance the load in the computer petwork, so that the
overall delay is minimized. As a byproduct, the model will permit us to investi-
gate several performance issues. For instance, we will be able to study the
influence of the background load at a site on the assignment of database

requests to sites, the effect of the speed of the communication network, etc.
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5.3. The Model.

We model a distributed system as a collection of "central server models”,
one for each site, plus a queueing model for the communication network. This
representation is identical to the one used in the preceeding chapters. It was

first proposed in [Gold83] to model the LOCUS distributed system.

Local a.pplica;tion programs, or ba.ckg_rbund load, are modeled by a closed

chain for each site, as indicated in Figure 5.2. (In this figure we assume that

r—p GComolete Open Chaln Jobs

Jobs ! Site
Arriving
at Site |

Jobs Tronsferred
b tp Site |

_'4—': :

SITE !l . Ccmnunlcutlon‘
Network

Figure 5.2. The model.

these local jobs are interactive.) We assume that thé remaining jobs are gen-
erated by a large number of terminals, and so can be modeled as open chains
with Poisson arrivals and total throughput A*. Upon arrival at site i a request r,

can be either executed locally, or immediately transferred to one of the other
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sites in the system that belong to the set of sites where r, can be executed.

We assume that the service demands at each queue in the network are
exponentially distributed. Each queue is either processor sharing (PS}), or first-
come-first-serve (FCFS) with fixed capacity, or "infinite server” (IS) (at FCFS
queues it is assumed that different classes of jobs have the same service
demands). Furthermore, the decision of transferring a job to another site is
independent of the state of the network. In summary we have a product form

mixed queueing network model.

We define the following notation, where superscrip‘ts ¢ and o represent
closed and open chain respectively (when the superseript is omitted in the table

below, the parameter miy refer to either an open or closed chain).

-

K* = total number of closed chains 'reprenting background jobs
at computer sites.
total number of open chains.

K -

J =  total number of service centers in the network (imcluding
the communication network).

Ny = population of the closed chain at site &

N =  population vector == (M,.....Ny).

A{¥) = mean throughput of the closed chain at site i for population
N

mean throughput of open chain .

Ay -

' = visit ratio of a chain k to service center j.

2y =  mean service request of a chain i job at center ;.

By - 1!:,,.

oy, = relative utilization = 4,2,

I = total utilization of open c‘Lain jobs at center ;.

YA = throughput (or flow) of open chain v at center j (= 2i4}).

A’ = total open throughput == 7).

Ly(N) = mean number of chain k jobs at center j with population

- (N).

total mean number of closed chain jobs at center ;.

L)y =
_[:j:(m =  total mean number of open chain jobs at center ;.
P - unit multidimensional vector in the direction k.
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We define the overall delay D(N) as the following weighted sum of all

chain delays:

X - X - -
@ T 20uf + ot B PN

=l

D(N) = .
w' E A+ of E ) ) (5.3.1)

vas ] t=1l

where: (1) DYN) and DYN) represent the r;ﬁponse time of open chain v and closed
chain k, respectively; (2) AY4(N) represents the *pominal” throughput of a closed
chain k obtained when all open chain throughputs are set to 2ero; (3) v’ and v’
are arbitrary constant weighting factors for open and closed chains, respectively.
Note that if the nominal throughput for a closed chain is replaced by the actual
throughput, and the weights are set to 1, the expression above gives the total
_average delay. However, using total average delay as the objective function
leads to unfﬁmm to closed chains, since an increase in open chain utilization at
a site causes an increase in local chain delay, but also a decrease in local chain
throughput (the product remains constant by Little's result). This implies that
at heavy load the impact of closed chain delays onm the objective function
becomes negligible with respect to the open chain delays. For this reason, we
chose to assign a fixed coeficient, the nominal throughput, to each closed chain.
In addition, we introduced the weighting factors {w} to reflect the relative impor-
tance of open and closed chains in the model. Without loss of geherality we

assume o’ = w* = | throughout the rest of the chapter.

From Little’s result:

! -
% LolM . -
- = » Ny - 2M(N)zh
* X e AN : (5.3.2)

where zi, is the average think time of an interactive closed chain & job at the
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terminal, and \{M)z4 gives the average number of closed chain k jobs at the ter-
minals (for batch jobs, sf = 0).

Substituting (5.3.2) into (5.3.1),

¥ L+ f: A NUNAS - sh)
D(m - + =l tgl_

A+ BT (5.3.3)

k]

Our goal is to minimize the non-linear function D(M by optimally distri-
buting the opea chain trafic among the various sites. This is equivaleat to

oi)timizing D(N) with respect to the open chain fows {A2), ¥ o, j.
§.4. The Solution Approach.

We define our load balancing problem as follows:

" Given:

- The service demands of jobs from all-chains at all service centers in the
network.

- The visit ratios of the closed chain jobs (background jobs) of a site at
each service center at that site, as well as the visit ratios of open chain
jobs at centers of a site.

- The aumber of background jobs at each site.
- The throughput rate of each open chain v.

- The set of sites where open chain v jobs can execute.
- The "local” site of each opean chain job.
Minimizse: The overall delay D(V).

With respect to: The open chain flows at each service center {re)

The solution method we use is & downhill technique based on the "flow
deviation” method [Frat?3, Klei78]. The development we present below parallels
the spproach used by Kobayashi and Gerla [Kobas3) to find the optimum rout-
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[Laves3]:

ing in a closed queueing network. In this chapter we restrict the development to
a single closed chain per site as indicated in section 3. However, the ap;iroach

can be directly extended to multiple closed chains at each site.

T6 compute the steepest descent direction for the downhill technique we
N
peed to compute the (partial) derivati i of the overall delay function with

respect to each open chain flow at each a;e“;'ice center.

First, we should observe that a mixed product form queueing network
with PS, FCFS fixed rate service centers and IS service centers can be reduced
to an equivalent closed queueing network where the service requests z',, of closed

chain & jobs at center j (PS or FCFS) is given by the following expression

3y - _’!'.'_:
1-# _ . (5.4.1)
" Second, we note that in our model, closed chain jobs (background load)
§
at a site do not interfere with closed chaij jobs from another site. Therefore, we
can decompose our model into X* independent mixed network models each with

one closed chain, plus the queueing model of the communication network.

Finally, we recall that in a mixed network_the open chain population at

center i, L!, can be expressed in terms of the closed chain by [Laves3:

&
"—ll p,p' 1 + LN i € site k or communication network, i »¢ /S centers.
-t

LiN,) = H i ¢ site & or communication aetwork, i = IS cenmrs 4.2)

where the vector notation was dropped due to the reduction of the problem to

K° + 1 independent single chain mixed networks.
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in Figure 4.8, if ¢ visits an allocate node for a primary passive resource p,
p is equivalent to a FCFS multiple server service center with as many
servers as the number of tokens in the passive resource. The mean ser-
vice time of the MS service center for passive resource p is giveh by equa-
tion (4.3)_ mhich is a generalization of equation (4.1a):
X, -“\%‘ LW

dn
M

(4.3)

where SH, is the R-set visited by customers of chain e simultaneously
holding the passive resource » (i.e., customers from class &)y 0. ','is the
visit ratio for class ¢, at resource j and W, n is the waiting time from class
¢, customers at ceater j.

b. For each snbneﬁork formed in Step 1b, the complement of the sub-
petwork for a local constr;ined chai:.'l ¢ is repmente& by one or more
closed chains. Each of these closed chains corresponds to a class ¢, of
chain ¢ (i.e., they correspond to local-tonstrained chain ¢ when customers
associated! with this chain hold a primary passive resource ;). For con-
venience,“we introduce a fictitious primary passive resource which con-
tains the same number of tokens as the number of chain ¢ customers, to
model the case where customers of this chain also visit resources in the
subnetivork without holding any primary passive resource {*). These

chains have as many customers as the pumber of tokens in the

corresponding passive resource, and each such chain visits an infinite

(*) For illustration, consider the example in Figure 4.8a and suppose that there
is 2 third class of chain ¢ customers (class ¢, ) that visits subnetwork § without

holding any passive resource. This' model is equivalent to a model where chain ¢
customers also visit a third passive resource P, with the same number of tokens
as the number of chain ¢ customers. This is true since there will never be a
queue of customers waiting for passive resource P,
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server service center whose service time (delay) is given by equation (4.4)

which is s generalization of equation (4.1a):

P
D; - x’ [# - 1]
’ » _ (4.4)
where P, and U, are the number of tokens and the average utilization *),

respectively, of the passive resource p ¢ 5,.

Step 3. If a subnetwork S found in Step 1b still contains a passive
resource, go to Step 1 using subnetwork § as the new network. Otherwise

go to Step 4.

After Steps 1 through 3 are completed, a network is reduced to subnet-
works of the form shown in Figure 4.9. Note that, due to Step 3, a chain ¢ may
belong to the set of local unconstrained chains of subnetwork S and to the set of
local constrained chains of this same sabnetwork.

Step 4. Obtain initial estimates for mean service times X, of all passive

L3

resources p¢ S, The estimates of all performance measures can ;-‘lwe
. ¥

obtained by sssuming that the network is unconstrained and using the

estimates of the clustering algorithm of chapter 3, i.e., equations (3.3.a2)

and (3.3.33). Then, estimates of X, are obtained from equation {4.3).

Step 5. Loop through the subnetworks and for each one solve the
corresponding closed network. New estimates for {x,} and {D.} are

obtained just before calculating the performance measures for a subnet-
work using (4.3) and (4.4).

(*) The average utilization of the passive resource is the number of busy servers
in the corresponding MS center.

06



. 4

\

Therefore, equation (5.3.3) can be rewritten as:

E s L+ ¥ £ o+ 5 M) NALN - 2d

D(m - :;!Ef s-lS
a4 T MM (5.4.3)
b=l .

"

’@_;

~ The mdependent vm ;.-. in our optimization problem are the (o)

Recalling that o} = 2)\,,::,, we note that we can also use the {»;} as independent

variables.- In the following, for convenience, we take the derivative of D(N) with
respect to the total utilization of open chain jobs at center ; (o;). In this compu-
tation we exploit the fact that: (1) the performance measures of site (or com-
munication network) s are not aitered when we vary the open chain throughput
at & center j in site (or communication petwork) k, k & u; and, (2) the total open
throughput remains constant as do the nominal throughputs of the closed
chains. For convenience of notation, we label the centers belonging to the same

site (or communication network) as center ; YA

)]
u Al

a—-g!'TNl- ‘(juitaid;é‘_eomuieaﬁolamﬂ)
p)

1+ L;(Na i ILAN) _o AYNN: DAN)

=2 ’ Neg'”l i # Is
A* + ATN)
1 ) |

A* + AM(N) =B Ba4)
where

~ANYUAN = x N
AY(N) = 3 MM

[ B Y
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and

) 1 jd communication network
&) = Yo otherwise

It remains to find the derivatives of the closed chain throughputs and

queue lengths in relation to the utilization of opeﬁ chain jobs at center ;.

To this end, we first introduce the normalization constant for the
rresponding closed petwork. with service requests given by (5.4.1). Therefore,
for site & [Bask75}:

t { & | ., ~
GiN) = _ T l;[ [-1':7‘-] x I(m)
pr

ol =, b= (5.4.5)
 where S -
- £ ['ﬂ ]" - -
It(l'lt) - =t n, = (Bh---.l'l[,). ‘“!l -yt +
l': lff -
aud the equilibrium probability of the state e
Pﬂ ) * L [ I ]" 1 —
u E——
' GﬂN.) _H o) < (5.4.6)
Now, taking the derivative of (5.4.5) ﬁth respect to o}, gives:
3 : L R U
Gﬂl.v" -t T a1l [-if‘—] X I{m) ivls
¥p; 1-0] 3imm  oxb 1-"p; (5-4.7)
GH{N .
SN 5w
Py Inyi = X, - (5.4.8)
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The summation on the right hand side of (5.4.8) is by definition the aver-

age queue length of closed chain jobs at service center j, therefore:

aﬁ'ﬂﬂt) GﬂNg)
dp; 1-

LYN
’1 ) (5.4.9)

Equation (5.4.@) is similar to one obts.inedf by Kobayashi and Gerla
[Kobas3]. :

In order to proceed with the development we need to take the second

derivative of (5.4.5) with respect to p;,

#oiNy _ _GIN) GaN) o
Ay (- |=.1§u, ) 1- n')';.,;z.n,n 7P
Gﬁ”&)
LNy + SN,
- prp AN+ S ) (5.4.10)

where 5{V,) is the second moment of queue }engths of the closed chain jobs at

center j of site k.
Similarly, taking the derivative of (5.4.7) with respect to o/, ¢ 6 j, ¢ 96 IS

ajesl  (1-e1- mh.,Eu, wePim)

GHN)

(1 P.,')ll ’) :l( t)

(5.4.11)

where Ji(N,) is the joint moment of queue lengths of the closed chain jobs at

center j and ¢.

The second derivative of G{N,} with respect to ,; and the derivative of

aGY{NVdp! with respect to p{ can also be obtained by taking the derivative of

138



equation {5.4.9) with respect to o/ and o}, respectively. We obtain:

FGUNY) 1 1 9GHN) 1 3
a(p;)z (1 - p;)z GﬂNk)L:‘(NI') + 1- p;_ ap; L;(Ni) + 1- ﬂ; ﬂNl') ap; L;(Nk)

GﬁN 1)

e + () +a- siru .)]

(5.4.12)

PGHN) -l dGHN:)

. LAN,) +
ol  1-0 AN+ 7

‘ J
e G N =L Ny)
-9 aﬂt

Gﬂ”b) [} )
—"'""_'_u oK1 - #0) [LﬂNt)LﬂNt) +(1- h)‘a"?LﬂNt)] (5.4.13)

Now, equating (5.4.10) with (5.4.12) we obtain:

L) + ) = L) + (L)’ + @ - ol em)
7 R

VAN = (1 - oL AN
' e - (5.4.14)

where Vi{N,) is the variance of the queue length of closed queue jobs at center j

of site .
Similarly, equating (5.4.11) with (5.4.13) we obtain:

JAND = LN * (1 - ol AN

VAN, = (1 - p:)a—‘:-;L:(N.) 5419

where Vi({N,) is defined as the covariance of queue lengths of closed queue jobs at

centers j and ¢ of site &
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'We note that a similar development can be used to obtain higher
moments of queue lengths as a function of the derivative of lower moments with
respect to an input parameter of the system. In appendix 4 we derive expres-

sions for the variances in a queueing network model with multiple closed chains.

In order to find the derivatiis;of the closed chain throughput of site &
(>ENy)) with respect to the open chain atilization at center j in & (#!), we express
A{N,) in terms of the normalization constant [Laves3]:

GH{M - 1)
GiM) (5.4.18)

AN,) =

Now, taking the derivative of (5.4.16) with respect to ,; and using {5.4.9),

- DAN) _ IGHN -1)/3s  GAN, - 1) IGAN
( 25! GiN)  (eam) i’ 2;

GiNy -1) LN -1) GiM -1) LAN)
GilM) 1-20  GIN) " 1-9

AN MN)
- s L N - -L N
1-.;-(”‘ SR (5.4.17)

where service center j is assumed to be in the same site of closed chain k.

Finally, substituting (5.4.14), (5.4.15) and (5.4.17) into (5.4.4) and noting
that 3D(N) /7 3%, = (V4 )aD(N)/ 3p;, we obtain:
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2 NAZ 0 N A2/ 2D o) - LN - 1)

1-p; 1-9) =1 1-p] ANy
- JNL ¥ J'#IS
uy (1= 0]) (A* + AY(N))

j=IS : (5.4.18)

1
asia” + AT

Equation (5.4.18) is given in terms of mean values of throughputs and
queue lengths, variance and covariance of queué lengths. In the appendix we
show that this equation can be easily obtained using mean value analysis (MVA)

recursion.
5.5. The Algorithm.

The key to the flow deviation method is to associate a length or weight

for an open chain job to each queue, given by:

- 3D(N) j=l...J

= Ay

{5.5.1)

However, due to the particular characteristics of our problem, we can
further simplify the solution by noting that, once a job is assigned to a site, its
behavior is preestablished by the routing probabilities given as input parame-
ters. In other words, the "route” of jobs within a site is fixed. This observation

allow us to define a "site” weight, as:

loit, A T 051, .
1ek ) : (5.5.2)

where the index k represents the site and index v, a particular open chain. In

the same way, the weight of the communication network (inet,) can be defined.
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The weight given by (5.5.2) repfeuents the linear rate at which D(M)
increases with an infinitesimal increase of the flow of open chain v at site & We

also define lsit,, & oo if jobs of chain v are not allowed to visit site k.

We outline a flow deviation algorithm for load balancing (FDLB) in a dis-
tributed computer network of the type described in section 3. The algorithm is
similar to the ones described in [Klei78] and [Kobas3).

We define the assignment matrix 4 where element 4,, gives the percen-
tage of jobs of type v assigned to site k. Similarly we define the network vector
7 where element F, gives the percentage of jobs of type v assigned to a foreign

site, Lea., F, = p A
kyl homs sis of v

We assume that we have an initial feasible assignment, i.e., initial values

for A so that p! <1 for all service centers in the network which are not IS

centers. | o
FDLB algorithm (*):
Step 1: let n =0 and let 2™ be an initial feasible assignment.
Step 2: Compute weights {, using MVA snd equations (A4.2.3) and

(A4.2.4). Compute the weights of each site (init,,) and the weight of the

. network (Inet,) using equation (5.5.2).

Step 3: For each class of open chain jobs, find the cheapest way to
execute the job, ie., find the matrix A° so that element A, -1 if

laity, + nety, < lsity, + nety, for all ¢ »é k, Wwhere

(*) The description of the algorithm follows similar descriptions given in ;K.lein]
and [Koba83]. However, in the implementation, we deviate the flow for one
chain at a time, since it was observed that this equivalent approach tends to
reduce the overall number of iterations.
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0 if k is the local site for & job of class v
Ret = |inet, otherwise

Find 7 as defined above.

Step 4 Compute the incremental delay % and »° for the assignment

A and cheapest assignment 4°, respectively: o

) = 3 [)3 lrity, X ALY + lne:,xf","l
v ] i
V= [z Isit, X Apy + :na,xf':]
v t

Step 5: St;opping rule:
if 16 -3°| < ¢, where ¢ > 0 is a properly chosen tolerance, stop. Other-

wise go to Step 8. v \

Step 6: Find the value a in the range 0 < a < 1 such that the assign- -
ment A’ = (1 - aJA(™ + a4’ minimizes B(N).

Let A*Y = 4",

Step 7: Let n = n + 1 and go to Step 2.

In order to find a feasible initial assignment or, more generally, to deter-
mine whether a feasible solution exists we can apply one of the several methods
already developed for routing in open networks [Klei78, Cant74]. We briefly
describe here the method in [Klei76]. |

Step 1. Initially we assign all requests to their local sites. If, for all
service centers ; in the network, the flow due to open chain jobs at center
j (0!) is less than one, we have a feasible assignment. Otherwise let n =0

and got to Step 2.
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Step 2. Scale down all open chain requests uniformly until the assign-

ment above is feasible. Let this scale factor be (.

Step 3. Find a new assignment using one iteration of the FDLB algorithm.
(Note that at this point there is no need to find the optimum solution,
since we only want to find an assignment that can possibly handle more
requests.)

Step 4. Seale up all open chain requests by an amount
o = C(1 ~ (9 )mea)y Where (s} is the maximum among all open chain fows

at centers in the network and C is an appropriate chosen constant

0<C <1l Let gf* = ,,("[1 + m ‘)'_] be the new scaling factor. (Note
) .

that the scaling factor n increases monotonically at each iteration.)

Step 5. If the pi=*¥ conv;rga to & value less than one, the problem is
unfeasible. If »**" becomes greater or equal than one then set it to one
and we have a feasible assignment. ©Otherwise, n = n + 1 and go to Step

3.

The FDLB algorithm finds the global minimum for D(N) due to the con-
vexity of D(V) with respect to the open chain flows and the convexity of the
space of the feasible flows. The convexity of D(N) can be deduced from the fact
that the function D(¥) in (5.3.3) is s sum of convex functions over the open
chain flows. An intuitive (but not rigorous) explanation for that can be given as
follows: we observe that equation (5.3.3) can be decomposed into 3 weighted sum
of the number of open chain jobs in a site plus the rélponse time of the closed
chain jobs in that site. We can verify that both the number of open chain jobs

in a site and the response time of closed chain jobs in that site are increasing
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without bound (and with a non-decreasing rate) as a function of the open chain
flow at that site. Thus, the delay of each site is a convex increasing function
over the open chain flows, and the weighted sum of these delays is also convex.

In appendix 3 we present more rigorous arguments in favor of the convexity of

D(N).

Convergence is guaranteed by the fact that each iteration provides an.

improvement in the objective function. It is worthwhile to note that if the
background load is reduced to zero (no closed chain jobs) this algorithm is ident-
ical to the flow deviation algoritbm reported in [Klei76], adapted for our load
balance problem.

The amount of computation required by each iteration of the FDLB algo-

_rithm is only O(#nies X #open ehca‘n':) for Step 3, since the computation of the

“cheapest path” is trivial, and O( 3 (# centers of site )X (# background jods of site i) +
B

com. net.} for th; MVA algorithm, since the model consists of X* independent sin-

gle closed chains plus the model of the communication network. Note that in
Step 6 the MVA algorithm is repeated several times, and the MVA computation

becomes the dominant term.

5.8. Examples.

In this section we apply the FDLB algorithm to a distributed computer
system consisting of 3 sites linked by a slotted ring, as illustrated in Figure 5.3.
For the slotted ring, we used the closed chain model proposed by Bux [Bux8l].

There are 2 classes of open chain jobs ¢1 and o3 arriving at sites 1 and 3,
respectively. Class o1 can request service from any of the 3 sites, but class o3

can only request service from sites 2 and/or 3. Sites 1 and 2 have background

145

-~



24

SITEL ! ' SITE 2

¢l

DSK_J

CPU ]O"—-n ' [
1] ' ;
— ;
]
SITE 3 (e
DISKS Communication
]O—" AT Network
, (slotted ring)
o—
03 ﬁ

Figure 5.3. Example. A distributed computer system with 3 sites

o
load, modeled as closed chains ct and c2 respectively. Table 5.1 shows

DISKS “
O- I
okl |Liglele

the visit

ratios and service requirements for each class of job at each service center in the

network, as well as other input parameters.

As an illustration, let us consider the behavior of jobs o1 and el at gite

pumber 1. A job of class o1 spends an average of 30 msec at the CPU before

issuing an I/O request. The service time of each 1/0O device is 50 msee.

On the

average, a job of class o1 visits the CPU 5 times and the I/O devices 4 times

before completion. On the other hand, s background job of class cl spends an

average of 90 msec at the CPU and 50 msec at each I/O device, and it visits the
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JOB SITE CENTER | TYPE | VISIT SERVICE
CLASS RATIOS | TIMES (msec)
ol 1 CPU PS 5 30
6 jobs/sec disk(1 or 2) | FCFS 2 50
2 CPU PS 5 21
disk_ FCFS 4 15
3 CPruU PS 5 30
disk(1 ... 4) | FCFS 1 140
com. net. PS 10
03 1 CPU Ps 5 50
3.5 jobn/sec * disk{1 or 2) | FCFS 2 50
2 CcPU PS 5 35
disk FCFS 4 15
3 cPU PS 5 50
disk(1 ... 4) | FCFS 1 140
com. net. PS 10
el i terminais IS 1 4000
5 jobe CPU PS 10 90
disk(1 or 2) | FCFS 5 50
2 2 terminals s 1 3000
X jobe CPU PS 10 40
{_(varisble) disk{1 or 2} | FCFS 10 15
(*) To illustrate the case where class 03 is not restricted to run at site 1.

Table 5.1. Parameters for the example.

CPU and 1/O devices 10 times before a visit to the terminals.

Figure 5.4 shows the percentage of foreign jobs processed at site 2 (after
balancing the load) when the number of background jobs at site 2 (N,) varies
from O to 20. When N, = 0, site 2 processes 80% of the jobs of class o1 and 36%
of the jobs of class 3. When N, = 20, site 2 processes only 37% snd 4% of the
jobs of class o1 and o3, respectively. It is interesting to mention that when jobs
of _clau o3 are allowed to be p@d at site 1, and load balancing is applied,
929% of these jobs are processed at site 1 and 15% st site 2 (whea N, -{-J).
Furthermore, all jobs of class o1 are sent to site 2.
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Figure 5.4. Percentage of forequn jobs processed at site 2.
W

Figure 5.5 shows the effect of load balancing on overall delay as a func-
tion of the number of background jobs at site 2. The effect is illustrated by
plotting the relstive difference between the delays when load balancing is not
used and when it is used (*). For instance, when N; =0 and load balancing is
used the average overall delay is .05 sec in contrast with 9.2 sec when load
balancing is not used (the relative difference is 870% in this case).

(*) We define relative difference of the delays as: (Delay without load balancing -
Delay with load balancing) / Delay with load balancing.
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5.7. Concilusions.

We have presented an efficient method for balancing the load in a distri-

buted system with heterogeneous computer sites and multiple classes of custo- '

mers. Jobs of a particular class may be restricted to run only on a subset of the
gsites in the network. Each site, as well as the communication network, are

represented as product form queueing networks.
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We took into consideration the effect of the background load at each site,
modeled as closed chain jobs. The effect of the communication delay incurred

when 3 job requests service at a foreign site was also considered.

Our approach is based on a downhill search technique known as the Flow
Deviation method. We have defined weights for each site in the network which
allow the computation of the assignment which wIII reduce the overall delay
D(N). The parameters necessary for the computation of these weights can he

easily obtained using the MVA algorithm.

The definition of the delay function presented in equation (5.3.1) is suit-
able for studying the behavior of the network under different minimization
requirements. In particular, by setting v’ =0 (w* = 0) we can study the effect of
load balancing when the object is' to minimize the delay of the open (closed)

chain jobs only.

The method developed in this chapter can be easily extended to account
for multiple closed chains at each site, by using the results presented in appen-
dix 4. Furthermore, the method is not restricted to the function defined in
(5.3.1), and can be used to minimize other objective functions as well. More
complex communication network structures can also be considered. In the next

chapter we explore other applications.
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CHAPTER 6
EXTENSIONS TO THE LOAD BALANCING ALGORITHM.

8.1. Introduction.

In the previous chapter we developed an exact algorithm to balance the
load in a network of computer systems. We assumed that the network could be
modeled as a mixed network of queues where transactions were modeled as open
chain jobs and any background losd was modeled as closed chain jobs. We con-
sidered the case where only the open chain jobs could (possibly) execute in a-
foreign site. Furthermore, once an “execution site” is chosen for a job, it runs on
that site until completion. In this chapter we investigate several extensions to
the basic approach developed in the previous chapter. In section 6.2 we extend
our approach to account for jobs that request service in more than one site
before compietion. In section 6.3 we propose an approximate algorithm to‘ solve
for a general multiple chain closed network where closed chain jobs can be
rerouted. Finally in section 6.4 we describe other possible extensions of the algo-

rithm and conclude the chapter.
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6.2. Jobs with Multiple Tasks.
6.2.1. Problem Description and Model.

We again consider a distributed system as shown in Figure 5.1, where
sites may be different, i.e., they may have different resource configurations and
resources mth different capacities. Each site is connected to a large number of

terminals which generate jobs that may have different processing requirements.

Unlike the problem of chapter 5, a job may be composed of several tasks.
Each site in the network may run a subset of the tasks of a job. These restric-
tions may arise from the fact that s site may not possess all the resources
required by a particular task. Tasks are executed in sequence and, for each task
of a job, a “run site” is chosen. A job completes execution after all individual
tasks are executed. Similarly to chapter §, our goal is to balance the load in the

computer network, so that the overall delay is minimized.

-

The model we will use for a distributed system is the same as in chapter
5, i.e., it is formed by a collection of central server models with terminals plus a
model for the communication network. Local application progfams or back-
ground load are modeled by a closed chain for each site and the remaining jobs
are modeled as open chains.

Jobs representing local application programs are restricted to run on the
site where they were generated, ie., their local site. All the other jobs in the
model .(the open chain jobs) may execute in more thian one site. These jobs
require the execution of several tasks in sequence before completion. Suppose
that a request r, is composed by tasks ¢, ..., ty. Upon arrival at a site i, the first

task of r (t) may be executed locally or the request may be immediately
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transferred to one of the other sites in the system which can execute task .
Task ¢ runs until completion in the chosen site. Then, a new site is chosen to

execute task &, and the job completes when all tasks are executed.

We use the same assumptions stated in section 5.3 to obtain a product
form mixed queueing network. Furthermore, we use the same overall delay
definition as _giv_en by equation (5.3.1). Our goal is to minimize the non-linear
function D(N) by optimally distributing the open chain traffic among the various

sites. -
8.2.2. The Solution Approach.

Similarly to chapter 5, we deﬁne our load balancing problem as follows:
Glven: '
- The number of tasks of esch job.

- The service demands of jobs (and their tasks) from all chains at all ser-
vice centers in the network. ‘

- The visit ratios of the closed chain ;obs (background jobs) of a site at
je:lc)ix :tel::ncte e::g:e: :.it:hat site, as well as the visit ratios of open chain

- The number of background jobs at each site.

- The throughput rate of each open chain v.

- The set of sites where task ¢, of open chain » jobs can execute.

- The "ocal” site of each open chain job.

Minimise: The overall delay D(N).

With respect to: The open chain flows at each service center {3;,}. (Where the

subscript ¢ identifies a task of an open chain v job.
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We show that the solution method used to solve this problem can be
easily mapped to the approach used in chapter 5, with only a minor
modification. In the previous chapter each open chain job was composed of only
one task which could be assigned to ome of the sites that was able to execute
this task. Therefore, the "routing” of a job through the network was very sim-
ple since, once assigned to a site, a job executes until it completes. Figure 6.1

shows the possible paths for a job of an open chain v in a distributed system

COMPLETION

_Figure 6.1, Possible paths of chain v jobs with only one task.

with three sites (1, 2 and 3) and a communication network. We assume that site
1 is the local site of chain v jobs and that they can be executed in any of the
three sites. In this Figure, we see that only three paths are possible: a job may
execute in its local site (1) or it may be sent via the communication network to
foreign sites 2 or 3. If a job has multiple tasks to be executed, the route of this
job through the distributed system is more complex, since the job can visit
several sites before completion. The route of a chain v job through the system

can be modeled by introducing classes for that chain, with one class mapped to

154



each task of a job. Since a queueing network model with chains having mulitiple
classes can be solved by an equivalent system with the same number of chains
but with only one class [Lave83}, the introduction of classes does not increases
the computational complexity of the model. However, the algorithm has to take

COMPLETION

Figure 6.2. Possible paths of chain v jobs with two tasks.

into account s more complex routing structure. This is illustrated in Figure 6.2.
In that Figure, we assume that chain » jobs are composed of two tasks (¢, and
t,). Task t, can only be executed in sites 1 or 2 and task t, can only be executed
in sites 2 or 3. We see that there are four possible paths of execution for a job.
In one of these paths, a joB is sent through the communication network to have

" jts first task executed at site 2. Then the job is sent again through the com-
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munication network to have its second task executed at site 3.

From the sbove discussion we can identify the changes that have to be

made in the solution approach of chapter 5. These are:

1. Equation (5.18) is replaced by 3D(V)/ax;, = (Up3,)8D(N) / 3p; where the
subscript ¢ identifies a class of open cham v, and aD(NYap! is the same as

before.

2. A length or weight is associated for a class of an open chain job to each

queue:

, & 220 i led
e, | - (8.2.1)

- Similarly a site weight is defined:

leity, & 3 03,0,
Jek

(6.2.2)
as well as the communication network weight:
net, & 35 0
i (8.2.3)

The weight given by (8.2.2) represents the linear rate at which D(V)
inereases with an infinitesimal increase of the low of open chain v, class ¢,

at site k. We also define lsit;, & 00 if task ¢ of chain v jobs can not be exe-

cuted at site k.

3. The asiignment matrix of chapter 5 is replaced by s tri-dimensional
matrix A where element A,, gives the percentage of jobs of type v, class ¢

assigned to site & The network vector in chapter 5 is replaced by 'th;a

network matrix 7 where elements F, gives the percentage of jobs of type
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v, class ¢ assigned to a foreign site.

Once the above minor modifications are introduced, the algorithm of sec-
tion 5.5 remains basically the same. The modifications necessary are related to
the search for the optimum execution path. In this way, Step 1 has to include
the identification of all possible execution paths for jobs of a particular chain.
This is easily accomplished since tasks run until completion in their assigned site
and in sequence. Therefore, the possible execution paths can be built in a tree
structure. Step 3, which computes the assignment matrix of the open chain jobs
has also to be modified to find the optimum path taking into account a more
complex structure as illustrated by the example of Figure 8.2. Any known algo-
rithm to find the optimum path can be used (e.g., see [Klei78}).

In summary, the only modifications in the algorithm of chapter 5 are the
introduction of classes and the search for the optimum path. Tﬁe function D(N)
remains essentially the same since, as we have already pointed out, the introdue-
tion of classes can be mapped into a single class problem. Therefore, the con-
vexity of D(N) can be deduced from the convexity of the delay function of
chapier 5, which implies that the algorithm of this section also finds the global

minimum for D(N).

The amount of computation required by each iteration of the algorithm is
essentially the same of the algorithm of chapter 5 since the introduction of
classes do not increase the computational requirements to solve the model. How-
ever, additional effort has to be spent in the wmput;tion of the shortest path,
although efficient algorithms exist to soive this problem. The computation of all
| possible paths for the jobs is trivial and it is done only once at the initialization

of the algorithm.
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6.2.3. Example.

In this section we apply the new FDLB algorithm to the same distributed
computer system of section 5.8. In this example we assume that there is one
class of open chain jobs correspondent to chs s, in the example of section 5.6.
However, each job from this class is formed by two tasks which have to be exe-
cuted in sequence before completion of this job. We assume for this example
that the two tasks have identical computational requirements, however the first
task (¢,) can only be executed in sites 1 or 2 and the second task (%) can oniy be
executed in sites 2 or 3. The possible paths of execution for a chain o, job is
illustrated in Figure 6.2.

Table 8.1 shows the optimum load balancing strategy for the network
described above for three cases: when the number of background jobs of site 2
(N,) is equal to 1 and the time to transfer a task over the communication net-

work is sssumed to be 10 msec; when N, is_equal to 20; and when the transfer

Percentage of tasks of jobs of | commua. net. overall
class o, processed at a site throughput delay
tasks | site 1 site 2 site 3 (jobs/sec) (sec)
¢s: 1 job h | 339 86.1 7.08 1.92
comm. net. delay: 10 maec [ 48.2 51.8
cg 20 jobs y | 673 327 6.96 5.95
comm. net. delay: 10 msec ty 17.2 823
ey 1 job fy 42.4 57.6 6 8.75
comm. net. delay: 160 muec () 57.6 42.4

Table 8.1. Optimal load balancing for the example of section 8.2.

time over the communication network is increased to 160 msec, for N, equal to I.
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As we can observe from the resuits, in the first case site 1 processes 13.9% of
tasks ¢, since it has a considerable amount of background load. Site 2 processes
the majority of tasks #, and almost half of tasks t,. As the background load of
site 2 increases to 20 jobs, we see a decrease of the percentage of tasks processedA
at this site. Now the maj'ority of tasks 4, is processed at site 1 and the majority
of tasks t, is processed at :;ite 3. In the third case, when the communication
delay increases significantly (N, is equal to 1 in this case), we observe that tasks
are migrated so that the cﬁmmunication network stays with the minimum utili-
zation possible as we can observe by the value of the throughput in the com-
munication network, which is equal to the value of chain o, jobs. Finally it is
interesting to observe again the importance of losd balancing. For the first case
above, (N, equal to 1 and the communication delay equal to 10 msec), if all tasks
t; are executed in the first site and tasks t, are split equally between sites 2 and
3, the overall delay is 12.8 sec, a 556% increase in relation to the same network

when load balancing is used. -

8.3. An Approximate Algorithm for the Routing Problem in a Queueing
Network Model with Multiple Closed Chains.

8.3.1. Problem Deseription.

Kobayashi and Gerla [Koba83] proposed an a.lgorithm for the optimum
routing of traffic in a closed queueing network. The algorithm is computation-
ally efficient for single chain netv-vorks. Furthermore, the algorithm finds the
glo.ba.l minimum since the object function to be minimized (D(N)) is convex with
respect to the visit ratios of the single closed chain jobs to the service centers in
the network. Unfortunately, for multiple cha..in networks the computational

complexity of the algorithm increases drastically mainly due to Step 6 of their
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algorithm, i.e., the step where the amount of ﬂr;)w to be deviated to the shortest
path is found so that D(V) is minimized. This is true since the MVA algorithm
for multiple closed chain networks has to be executed several times in this step.
Moreover, a search for the global optimum wéuld have to be done since it was
shown that D(N) is not convex with respect to the visit ratios, so the algorithm

finds only a local minima.

In this section we propose an approximate algorithm to solve the routing
problem in s multiple closed chain queuing network model. The slgorithm
reduces the computational complexity of the original algorithm by reducing the
amount of c;nnputation required in Step 6 of this algorithm. Although we
haven't done extensive tests to evaluate the accuracy of the approximate algo-
rithm, limited studies seems to indicate that the sceuracy of the final result is

good.
8.3.2. The Approximste Algorithm. .

In the original algorithm proposed in [Kobas3] for multiple closed chain
networks, K "flow deviations” must be performed, one for each chain. In order
to find the amount of chain k flow to be deviated to the shortest path in the
current iteration step, the value of a; in the range 0 < a; < 1 has to be found so

TN
that 7, = (1 - ay)d,™ + a,d; minimizes D(N) = ﬁ: as defined in [Koba83|, where

1

7. = (6D, ..., #i7) are the visit ratios of chain k jobs in the current iteration step
« and 7 are the visit ratios obtained when all the chain k flow is deviated to the
shortest path. As we have already mentioned, the determination of the a,'s
requires the execution of the MVA algorithm for the multiple closed chain net-

work several times. These steps contribute most to the overall execution time of
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the algorithm.

For the approximate algorithm we propose, we use the notion of foreign
chains as in chapter 3 and 4. Our basic assumption is that the value o, for a
closed chain k can be approximately calculated by solving a subnetwork S, which
contains all th(:‘ ‘__ernters in the original network, but chain k is the only local
chain in this su .I'r.letwork and the remaining chains are in the set of foreign
chains of S, Usf;g our approximation of chapter 3 we recall that the combined
effect of all foreign chains.at service center j is Poisson with total utilization U
given by equation (3.3.3). Using these results, the value of a, is calculated so
that the average delay of all chains, i.e., all open chains and the single closed

chain & in S, is minimized. In summary, we reduce the routing problem of a net-

work with X closed chains to the routing problem of X mixed single closed chain
networks where the object is to minimize the delay of the closed and open

chains.

-

Before ou&hmng the approximation algorithm, we need to find the path
lengths for a chiiin & For that, we first define the average delay DM} for sub-
network S, which contains all centers of the original network, chain k¢ LC(S)
and the remaining chains are foreign.

% 307 + MMDHN)

D - FE_B |
HM) X+ AN (8.3.1)

where the {/} are the open chain rates to center ; inferred by equation (3.3.3),
the summation is over all centers in the network and A’ = f: M{n). By Little’s
- tyk k

result:
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m and DEN) =

N
D -
i A NN (8.3.2)

The average number of open chain jobs at center j, L)(N) can be obtained from

the average number of closed chain jobs at the same center Lave83]:

’ (8.3.3)
where p{is the total utilization of open chain jobs at center ; and is equal to U,

defined in equation (3.3.3). Substituting (6.3.2) and (8.3.3) in (8.3.1) we obtain:

2;—"'{1 + LN + Ny
DuNy = A+ AN _ (6.3.4)

Taking the derivative of Dy(N) with respect to 4, and following similar steps to

obtain the results shown in a.ppendu 4, we obtain:

3DYN)
a0y

L

[B&:L_ ! %@.] (ar+2gm)+ [ : M-m.]kﬁm (LotM-LyN-1))

' J

fy(A° + 2{N)Y (6.3.5)

where V,(N) and CV,,(N) are the variance of queue lengths at center ; and the
covariance of queue lengths at center i and j, when the subnetwork k is being
solved. In appendix 4 we have shown that the variance and covariance of queue
lengths can be easily calculated recursively using (A4.2.3) and (A4.2.4), therefore
(8.3.5) can be obtained using MVA.

-

In order to apply th flow deviation method we associate a length or

weight to a-chain & job at center j given by:
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b (8.3.8)

The weight i/, above represents the linear rate at which the delay DN} of sub-
network S, increases with an infinitesimal increase of the chain & flow at center ;.
We also define f,, .0 if ¢, = 0 and #, & o0 if jobs of chain & are not allowed to

visit center ;.

The algorithm we describe nest is similar to the one described in
[Koba83]. The main differences are:
(1) we perform K flow deviations of X single closed chain mixed networks.
(2) the queue weights I, are calculated for each single closed chain subnetwork
S,, taking into consideration the approximation of the effect of the remaining

closed chains in the network.
The Algorithm.

Step 1. Let n =m0 and # = (%, >, x), 9 = (8, .. #) be the initial

feasible flow. Let k = 1.

Step 2. Compute the throughputs A{¥) v ¢ by solving the entire net-
work with MVA or an approximation algorithm, using the current visit

ratios @,

Step 3. Form a subnetwork S, which contains all centers in the net-
work, chain & is the only local chain in 5, and all the other chains are

foreign. Compute the weights i, (j = 1, ..., J) using equation (6.3.6).

Step 4. Solve the shortest path problem with the above weights. {Note

that only the single closed chain i in S, may be rerouted.) Let 4, be the



an

%

flow vector obtained by sending a unit flow on the shortest path.

Step 5. Compute the incremental delaj (per unit of Alow) A" and f; for

the flow ®” and the shortest flow _'9", respectively:

A = L))
H
fi = Tty
H

Step 8. Find the value o, in the range 0 € a; £ 1 such that the flow

7, = (1 - a8 + a3 minimizes DN) given in (8.3.4). Let F™ =7y
Step 7. Let k= &+ 1. If k< K go to Step 2, otherwise go to Step 8.

Step 8. (Stopping rule). If |AY - /1] <¢V¥ i Where ¢ >0 is a properly
chosen tolerance, étob. Else go to Step 9.

Step 9. Let n = n + 1 and go to Step 2.

This algorithm finds a local minima for D(M} since this function was
demonstrated not to be convex by an example in [Koba83]. This approximation
algorithm requires much less computational effort than the algorithm in
[Koba83] since Step 6 (the most time con;mming Step in the original network} is
reduced to a single chain MVA calculation. Furthermore, an approximation
algorithm can be used in Step 2, eliminating the need to use exact MVA for a

multiple chain network.
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8.3.3. Example

In this section we apply our approximation algorithm to the same muiti-

ple chain network example presented in [Koba83]. Figure 6.3 shows this net-

ehaiq 1
: Ilt '
P, |
sourcs 1 l—Pl
-Pz
* soaree 2
" chain 2

Figure 6.3. A multiple chain closed netf_vork. Example of section 6.3.3.

work. There are two source queues and two channel queues, whose service rates

are given in Table 8.2. The population vector N was chosen to be (3,3). As

il 2 3 4

Table 6.2. Service rates for the example of Figure 5.3.

shown in Figure 6.3 there are two possible paths for each chain. Following what
was done in [Koba83] we start from four different initial routing patterns as
shown in Table 8.3. Like in [Koba83], these four initial routing patterns con-

verge to two different local minima having different delay values. Table 6.4
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presents the values of these two local minima. Initial patterns #1 and #2 con-

verge to local minimum #1 and the others lead to local minimum #2. Also

#1 #2 #3 4

2 |1 0 0 0.5
P, o 0 1 ‘0.5

D(M) | 3173 | 3.214 | s.016 [ 3309
MM} | 1891 | 1867 | 0.997 | 1.813

Table 6.3. Initial routing pattern for the example of Figure 6.3.

' B #2
approx. | [KOBAS3| | spprox. [KOBAS3|
i P, 0.4332 .0.544 1 1
£ P o 0 1 0.975
. D(N) | 2828 2304 | 20667 2.666
’ MN) | 2122 2.140 2.25 2.28

Table 8.4. Two local minima for the example of Figure 6.3.

shown in Table 6.4 the two local minima found by the algorithm in [Kobasg3}.
As we observe from the Table, the values of D(V) and AN} in the two cases are

extremely close.
6.4. Other Possible Extensions _a.nd Conclusions.

We have extended the results of chapter § to account for jobs with multi-
ple tasks. We have shown that the same algorithm of section 5.5 can be applied
with only minor modifications. We have proposed an approximate algorithm for

solving the routing problem with multiple closed chains. The computational
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requirements of our approximate algorithm are considerably less than the origi-
nal "exact” algorithm in [Koba83| since it reduces the problem to the solution of
several single closed chain mixed subnetworks. Our preliminary tests seems to
indicate that the algorithm is accurate. However, much more tests need to be

done to fully evaluate the accuracy of thu approximation.

There are several possible applications and extensions that could b;.
developed based on the results of chapters 5 and 8. One such application is the
routing of packets through gateways of interconnected packet switching net-
works. Each network could be modeled as a muitiple closed chain queueing
model. The packets which have to travel {rom network to network through
gateways may be modeled as open Poisson sources to these networks. The prob-
lem is to choose the routing of packets ‘through the gaf.eways so that an objec-
tive function is mm:mlzed Another possible extension is to investigate the rout-
ing of tasks which are generated from other ones in a distributed system. These
"split” tasks were modeled by Heidelberger and Trivedi [Heid82} as opea Poisson
sources with rate dependent on the closed chain rate of the jobs which gen-
erated. the task. In a distributed environment similar to the one portraited in
Figure 5.1, these split tasks may represent the background load generated by
interactive users. As an example, in our current LOCUS configuration some
batch jobs generated by interactive users (e.g., compilation, nroff and others) are
routed to a couple of "server nodes” which are assigned primarily to handle this
backgronnd load. It seems that this situation could be accurately modeled by a
queueing model similar to the one in Figure 5.2 pll;s fhe split tasks. Presently
little is known about the efficiency of the heuristic strategy currently imple-
mented at UCLA-LOCUS. An interesting problem would be the study of the

optimum routing strategy for these background jobs so that the overall delay is
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minimized and the comparison of the results obtained with the current imple-
mentation. We note that the resulting model is a mixed queueing network simi-
lar to the one described in chapter 5, but with a key difference, since the open
chain rates are dependent on the closed chain rates. However, we believe that
the same approach used in chapter 5 and 6 could also be used to solve this prob-
lem. Other extensions include the study of distributed routing algorithms simi-
lar to what was proposed in {Galn84).

Finaily, we point out that all the results presented in chapter 5 and 6 can
be easily extended to account for queueing networks with centers that have the
type of load dependent service rates studied in [Hef82].
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CHAPTER 7
CONCLUDING REMARKS.

- The research presented in this dissertation was motivated by our interest
in analyzing queueing network models of large distributed systems, in particular
the UCLA-LOCUS system. The basic representation used for each site was a
central server model with terminals. These models were interconnected to
represent the interaction among sites [Gold83]. Our main contribution was the
development of efficient algorithms which can solve queueing models of moderate
to large systems. The eﬁciency of the algorithms allows the analyst to include
more detail in a model and provide the possibility to investigate many design

L Y

alternatives.

We have proposed an iterative approximation technique to solve queueing
network models with & large number of closed chains. The method is applicable
to product form queueing network models with single server fixed rate, infinite
server and multiple server service centers. It can also be easily extended to sup-
port the class of queue dependent service centers described in [Heff82]. Exten-
sive empirical results demonstrate the good accuracy and cost effectiveness of
the method. We have applied this technique to solve a large LOCUS type
queueing network model with 41 closed chains and 85 service centers, represent-
ing a distributed system with 18 sites. The results show that the accuracy

obtained is comparable to a costly solution method but with computational
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requirements comparable to a cheaper, less accurate method. A critical part of
the solution method is the clustering of chains and service centers to form the
subnetworks. The clustering is natural for the LOCUS type of distributed sys-
tems. For general networks we developed an efficient heuristic search algorithm
to perform the clustering automatically. An ixﬁportant feature of the approach
is the ability to combine different solution techniques due to the simple physical
interpretation obtained. In particular we have shown an example which com-
bines an analytical solution for a subnetwork representing the Ethernet channel
in a LOCUS type of model. Furthermore, by preserving the MVA recursion for
the solution of a subnetwork, MVA based approximations for non-product form
networks (e.g., priority queues, FCFS muitiple server service centers with
different service service times for different types of customers, as proposed in
chapter 4) can be easily incorporated. Needless to say that validation experi-

ments must be done to eﬁlﬁate the accuracy of the possible extensions.

We have used a clustering techniqué to solve the class of non-product
form models with simultaneous resource possession. For the dedicated resource
case empirical results have shown that the accuracy is comparable to other
approaches proposed in the literature. For the more important case of shared
passive resources, comparison with simulation showns that the accuracy as well
the efficiency of the algorithm remains robust. We have presented an example
which applies the algorithm in the case of nested passive resources, when the
release of passive resource is done in the reverse order of acquisition. We have
not solved the general case of nested transactions when the release of passive

resources is done in an arbitrary order. Further investigation is necessary.
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We have done extensive tests to evaluate the accuracy of the clustering

approximation for product and non-product networks with simultaneous

resource possession. However, we did not evaluate the accuracy obtained when.

several non-product form features are combined into 3 distributed system model.
Although the level of dlﬁculty in a rigorous evaluation procedure would increase
l

with the complexity of the model, it is extremely important to a.ve a better

understanding of the type of errors that will be encountered in pra iice.

We have investigated the load balancing problem in a distributed system
environment where multiple classes of jobs are present and restrictions may
apply in the remote dispatcher. We have proposed an exact aigorithm to find
the optimum load balancing strategy in a LOCUS type of model. We have also
extended the approach to handle jobs with muitiple tasks as well, where each
task is executed in sequence and may be restricted to run in a subset of all the
sites in the network. The definition of the delay function in equation (5.3.1) is
suitable for the study of the behavior of the-network under different minimiza-~
tion requirements. In particular, it would be interesting to study the effect of
the weights attributed to different classes of jobs in the optlmuni‘ load balance
strategy. Furthermore, the same approach could be used to minimize other
objective functions. As we have already indicated, the algorithm of chapter 5
and 6 could be easily extended to handle queneing networks with the type of
load dependent centers studied by Hefes [Hef82]. Another interesting problem
{which apparently requires a more elaborate extension in the basic algorithm) is
the investigation of the optimum load balancing strategy when batch jobs are
generated by interactive users in a distributed environment, as indicated in sec-
tiot: 8.4. As a byproduct of the development of chapter 5 and 8 we have shown

that the variances and covariances (and larger moments) of queue lengths in a
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queueing network model can be easily obtained directly from the MVA equation.

In summary, the theoretical performance study of distributed systems is
in the early stages and we hope that the tools developed during this research
facilitate the better understanding of these systems. We believe that it is impor-
tant to develop Queueing packages which include several approxi'.*‘ﬁxtion stra-
tegies to allow the analyst to’ get an idea of the behavior of the s tem being
studied and to explore large design spaces. Therefore, it is mporta.nt to con-
tinue the research in the area of approximstion techniques for queueing net-
works in order to solve more complex models analytically. Finally, several load
balancing . problems in distributed systems remain unsoived. In particular
approximations should be developed to allow the analysis of non-product form
networks. The algorithms we developed may prove to be useful in this direction.
Furthermore, much has to be learned in the area of distributed algorithms. A
promising approach can be found in |{Gafn84)], where a distributed routing algo-
rithm was proposed which combines the results of [Kobag3] and [Gall77]. It
would be interesting to investigate if s distributed load ba.lancizl,lg algorithm
could be developed by using this approach and the results of cha.pters 5 and 6.
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APPENDIX 1
PROOF OF ASSUMPTION 3.2b.

In this appendix we prove assumption 3.2b. We do that by showing that
for any population vector N the average queue length of center ;¢ T is not

altered when a chain i ¢ LC(T) is increased by one.

We assume that there is only one center per site and that N is bounded.
The proof is by induction on |N. We will show that the above is true when
|M =1 and if our hypothesis is true when |N =4 it is also valid when
{N] = e+1. For [N =1

L{0+%) = A {0+c)ey FT, teLO(T)

and from (2.1)

- g
A{D+e,) = ™ _1'. o = finite ieT

Therefore, L{0+2) = O(M), i.e., L{0+%) is not altered in the limit as & — . By
the symmetry of the problem (statements 1 and 2), this is valid for all popuia-

tions so that |[N] = 1.

Now, by induction hypothesis, the assumption is true for all populations
so that |V = a. Let us increase by one the number of customers of a chain

t ¢ LC(T). Therefore,
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e+ LT + £ gL+ (a0 + i LR35
el =
Jki

A c(R’ +-;f) -

leC celLO(C)ieT, telC(T), Co% T

But |N+¢-¢,| = & so, by induction hypothesis,

Ll(ﬁ"':!:‘.:) - LI(N‘:e) + 0(M)

L:(‘-N."l'-‘.i':i) - Lj(ﬁ-:t) + 0(M) Viyhi
Therefore,

- N‘
A(N+e,) = — . —_ ¢ % LOIT)
a1+ LR+ 0 + T Sifr+L,(R3)+ o)+ Ot
B

N,
Tanlt + LR + 0 + LE=T o) + ouey
2

N, -
- — - A :
g‘q‘ W4(N) + O(M) . (Al.1)
From equations (2.2) and (2.3)
L(N+¢e) = > AdN+e)egll + L(N+e2,)] + MN+e)ay[1+L(N) teLO(T), (T
cpht .

By induction hypothesis and by (Al.1) above,

- iv-‘ "_" " N' + 1 ‘c -
=§0204W,;(m+0(m l:;[1+L,{N Gc)"’O(MlT E‘uwu(f-v+-¢.,) -1 11+L:(N)l
{
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Equation (Al1.2) is valid for any population vector X. Thus, Assumption 3.2.b is

proved.

ol

In the proof above we 11 -hcxtly assumed that L (M) is bounded for any
population vector N, i.e., L{M aim not grow with M. We pow prove that this is
indeed true. The proof is by contradiction. 1f we assume that L(N) is not
bounded that means that center i is the bottleneck in the network. Therefore,

we have:

N J '-i’gz‘:—'}l feFC, il

This is true since, if center $ ns the bottleneck the capacity of this center will be
divided proportionally to the J 'stomers of each chain and their service demands.

(Note that if of = gy = 932, 1 ¢ LCU), A = T du - s = p.)
k
The utilization of a center j ¢ J & I will be:

UM =3 AN, + MNay + \{Mey =~ EeLOU) LelCD)
. it

I

M-1) Y N ;
- iy | of N Sy o (M - 1)
aoN, M-1 «LN M-1 a]EN "

Ng N! N; gy +
ENL' EN 'IIZN: M-1 fZNg

£

uf,(M 1)
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Ny af M |y
=ITEIN [“ = -T) " TN, [‘.}‘W""‘]

21+ C; - 0(M)

where

C, = Ny &y

Nowa of

and Ny, = max(Ny .., Nu). Therefore, U{M)—=(1+C)>1 as M—co, which
implies that center i can not be the bottleneck (for any i), otherwise all other
centers would have average utilization greater than one. So, none of the centers

can be the bottleneck of the network and L(N) is finite v i.

Z
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) APPENDIX 2
THE CLUSTERING ALGORITHM.

We describe the heuristic search algorithm developed to divide a network
into subnetworks and choose the local chains for each subnetwork. The algo-
rithm is based on the requirements presented in section 3.3.4. However, any
other algorithm satisfying those requirements should work. The algorithm uses
the functions UV,{S) and LU,(S) defined in section 3.3.4. Two main subsets are
also used during the algorithm:

NAG =  subset of all centers not yet assigned to any subnetwork and all

chains not yet assigned to be local to any subnetwork.
AG = subset of all chains and centers already assigned.

The the algorithm searches for a subnetwork so that:
1. At least one new local chain is present.
2. At least one critical center not yet used is present.

Initially NAG is set to contain all centers and chains and PRCS (present
number of local chains per subnetwork) is set to the initial number of local
chains per subnetwork. Below are the details of the algorithm in a C-like
description. The words in upper case letters followed by a parenthesis represent

subroutines.
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?M-IN()
vhﬂe &_g crmcal centers in NAG is >0){
NETWORK _S();
1f (S is fo un?
- REMO UN _ CHAINS();

- update NAG aad AG;

- Remove any subnetwork covered by other.

- Form a subnetwork containing o centers and
whose local chains are the ones in ‘

- Form a subnetwork containing oaly centers in NAG.

FIND _A_SUBNETWORK _S()

- Take PRCS chains from NAG which greater UV {(NAG)

and store in LC(S).
- FIND _CENTEI ();

wlnle # of critical centers in S not yet present in another subnetwork === 0) {
ochamsmLC(l)<PR S) {
- Take a new set of (PRCS - # chuns in LCL‘P chains
from the original network with

value and store in LC(S);
- FIND _ ENTERS();

else |
J {more than 1 eham in LC(S) have npot yet been replaced &%
'REPLACE P == YES) {
- FIND _ CENTERS

else

if (PRCS k t been d ted
{P:tcrem:;tngflg‘ ccremented) {
- Arn;

else ‘

B '{Caat is too low. Can't cluster®;
- return;

}

}}

if (cost(S) < given cost) L
- S is a new sabnetwor
- mm,

clse { EMOVE_UN_ CHAINS();
lf(cost.(S) > ﬁ’en cost) {

S service centers in S (one bsy one) tuml
cost is samﬁed or at least 1 eritical
center remains (if there is any).

else S is a new subnetwork return;
if (cose(S) > ost)
f (more t an 1 cham in LC(S) has not yet been replaced) {
- Replace a chain in LC(S w:t.h smal{e
by a chain in the original network (wtuc oes
not. belong to LC{S)} wlt.h the highest UV(S)
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AND less number of customers than the chain to
be replaced. The replacement takes place only if
there is at least 1 non-critical center (in the

new formed subnetwork S) not yet assigned

to any other subnetwork.

}

ise S is a new subnetwork; return;

if (cost(S) > given cost

(cii'( ;iCS as not lt{ been incremented) {
- Detrement PRCS;
- return;

else _{ .
- "Cost is too low. Can't cluster”;
- return;

=301 Bt

else S is a new subnetwork; return;

}

}
fmn_cmrznso

- Find all centers from the original network so that
constraint | above is satisfed for the set of local
chains of S. )

Store these centers in S.

OVE_UN_CHAINS()

- Remove any chain in LC(S) which is 'l;nnece?:l-y'.
A unnee chain [ is the one that, jf removed,
do not alter tLe number of critical centers in §,

LU(S) - LUS without local chaia [)
1¢ 5) LU!(S)
This last condition avoids the removal of local chains

that contribute significantly to the total utilization
of centers in S.

<€

LACE _ CHAIN()

- Replace a local chain of S with smallest UV,LNAG)
ue by a chain in the original network wit

) ter UV,(M_IGJovalue (if possible);

if (replacement is done)

ret :
}else return(NO);
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APPENDIX 3
THE CONVEXITY OF THE DELAY FUNCTION OF CHAPTER 5.

In chapter 5 section 5.5 we presented an intuitive explanation for the con-
vexity of D(N), given by equation (5.4.3), with respect to the open chain flows.
In this appendix we make that argument more rigorous. From (5.4.3) we see
that D(N) can be written as:

D(M) = S{C\TUNs) + CsRYNs)} + CTHNN
s (A3.1)

where C, are constants, TYNs) is the total open population of site 5, R{(Ns) is the
response time of closed chain jobs ;t a site 5 and T(Ny) is the total open popu-
lation in the model of the communication network. Therefore, if we prove that
TYNs) and RYNg) are convex with respect to'the open chain flows, D(N) will also

be convex since it will be a sum of convex functions (*).

We start by proving that R{N;) is convex with respect to the open chain

‘flows. For that we need the {ollowing theorem:

Theorem AS.1.

In a product form network with a single chain, the variance of queue
lengths of a center ;j is a non decreasing function of the number of customers in

this network, i.e., V{N) 2 V(N-1}) VY N.

(*) Since the model of the communication network is any product form queueing
network model, proving that T¥Ns) is convex will also prove that T{Ny) is
convex.
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Proof;

Kobayashi and Gerla [KOBAS3| proved that the inverse of the
throughput in a single chain closed queueing network is convex with respect to
the visit ratios of customers in the network at a center j, 4. But this is.
equivalent to show that the second derivative of UA(N) with respect to 4, is
greater or equal than zero, i.e.,

FM o ,
(@, ~ (A3.2)

From the results of appendix 4 it is easy to show that:

AN L e LN
and
P _ L LIN- L(N- _V(N-
r T (H14LAM-L (N-DNLAN)-L,(N-1)+ V() V,(N-1)) 434

In [REIS81] it was proven that 0 < L(N) - L,(}'\-l-l) < 1, so the two terms in brack-
ets in equation (A3.4) are greater or equal to zero. Since, from (A3.2), equation
" {A3.4) is non negative, the difference V,(N) - V,(N-1) has to be non negative for all
N.

We now can prove the following.

Lemma A3.2

In a product form mixed network with a single closed chain, the response
time of the closed chain jobs is convex with respect to the open chain flows.

Proof:
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The response time for a site § is:

Ns
In

MNs) ' (A3.5)

RYNs) =

Taking the first and second derivatives of (A3.5) with respect to 5/, jesite 5 and
using the results of appendix 4 yie{ds:
(we drop the subscript § to simplify the notation.)

RN N ___any -
ap! (1 - SN LAN-1) - L (A3.8)

and

ERN
(303F

Tl—_-m[u + LYN) - LAN-DJILAN) - LAN-1)] + VN) - VAN-1)) A3
Since L,(N) 2 L,(N-1), the two terms in brackets in equation (A3.7) are positive.
From theorem A3.1 we have shown that.-.in a single chain closed network,
V,(N) 2 V/{N-1). But any mixed network with one closed chain can be reduced to
an equivalent single chain closed network. Therefore, in a mixed netwo;k, it is
also true that V}{N) 2> Vi(N-1) and so equation (A3.7) is non negative. Since

PBRYNHNL P = (Vul PPRYN:N3p!F the Lemma is proven.

To complete the proof of the convexity of D(N) we need to prove that the
total open population in a site is convex with respect to an open chain flow (1)
Intuitively, as the throughput of an open chain to a site increases {recal that a
site is a product form queueing network model with single server fixed rate and
infinite server service centers and a single closed chain) the total number of open
customer should also increases with an increa'sin’g rate, and thus THN) should be

convex. We have been able to prove that TYN;) increases with the increase of an
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opén chain throughput to site 5, but unfortunately, we haven’t been able to
prove that the rate of increase is positive for a general situation. We were able
to prove that the rate of increase is positive only in the very particular case
when site § has only two queue independent service centers and one closed chain
job. In what follows we prove that ar;(N,)iax' is always positive and that
a'-'r;(N,;?(ax-)' is positive in th:'e particut_ir case nfen_fioned above. We also present
plots showing that THNs) is convex for the example of chapter 5.

Theorem A3.3.

ITYNs)

an' 20

where )\’ is an open chain flow into site S.

Proof:

For notational convenience we assume that there is no IS center in site §.

From the results of appendix 4 and observing that s, = \'a}, it is easy to show

that:
N o b o
a’ 1-p Vi .§,1_- [ ) (A3.8)

where J; is the total number of centers at site 5. From [LAVES3| (we drop the

subscript S to simplify the notation)
/ "
T(N) = B 77500 + L)
] - ]

Taking the derivative of (A3.9) with respect to »* and using (A3.8) and, for con-
venience, using the notation CVi{N} & VI{N), CVi(N) = VI{N) = V{N), yields:
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AL -3 .,,11 * LN + MA(N)

az’ {A3.10a)
where
AN) = EE (1- ,,;)(1 - of) V) (A3.10b)
But since VI{N) = Vi(N),
(o] 4 ajaf
L1 .
AN = ,z.:,(x- ')’V;(N)+2;§1¢-J+l(1 TR (A3.11)

From equations (A4.2.3) and (A4.2.4) in appendix 4, it is easy to shown that:

AN) = -3 Vi
K i§: @) (A3.12)

Substituting (A3.12) into the first term of (A3.11), and using again the fact that
Vi{N) = Vi{N), we obtain: ‘

Mo (e (aF g g s

A(N) - -ngt-ﬂ'l (1 - P;)z (1 - FI’)‘ VJ‘"M * -21§u -E,-ﬂ (l ﬁ;)(l - J‘( ’)
a8 [ U s ]av-
= -,gl IE-I-I 1-9 T1-4 AN (A3.13)

From (A4.2.4) it is easy to shown that Vi(N) is always negative for j » t. There-
fore, A(N) above is always positive which implies that (A3.10a) is also positive.

For a simple queueing model with only two sites and one closed chain
jobs it is easy to show that #TYN;M\'} is always positive. To show that we

observe that, for this simple case:
Vi(1) = Vi(1) = - Vis(1) = - V(1) = Li{2)L3(1)

(A.14)
and )
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Li1) = 1 - Li(1) = Zof A3.15

where B = a{(1 - p§) + ai(1 - p{) and C = (1 - 5{)(1 - p3)
Substituting (A3.14), (A3.15) and (A3.13) into (A3.10a) and taking the deriva-

tive of ATYNsVa\’' with respect to )\*, we obtain after simple algebraic manipula-

tions:
#TH1) : g%
v BT T at
sfestef - o (1 - ofel) | 1, Defe} + eiai] L]
*=3c Bc 87" ) + (A3.16)
Clearly PTHNMNNS 2 0.

For the general case, we haven't been able to prove that FTHN MNP is
always non negative. Therefore we choose to plot Ti{Ns) as s function of an
open chain throughput for the example of chapter 5. Figures Ad.1, A3.2a and
A3.2b show the results. For Figure A3.1 the site chosen is site 1 and the open
chain jobs have the same service requirements of jobs o. The open chain
throughput was varied from 0.1 jobs/sec to 6.0 jobs/sec {in steps of 0.1). For
Figures A3.2 the site chosen is site 2 and the open chain jobs are assumed to
have the samé service requirements as jobs o,. Figure A3.2a (b) shows the
results when the number of closed chain jobs at site 2 is equal to 2 (5). For both
Figures the open chain throughput was varied from 0.1 jobs/sec to 9.0 jobs/sec
(in steps of 0.1). From the Figures it is easy to see that T3Ny) is indeed a func-

tion which increases with the open chain throughput with a positive rate.
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Figure A3.2. Number of open chain customers at site 2
as a function of open chain throughput
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APPENDIX 4
MOMENTS OF QUEUE LENGTHS IN QUEUEING NETWORKS

A4.1. Introduction.

In this appendix we show that the moments of queue lengths of a mixed
queuneing network model with multiple closed chains can be easily solved recur-
sively. Heffes [HEFF82] has already observed that the moments of queue lengths
can be obtained recursively in terms of lower moments. To demonstrate that, he
used the recursively formula for the marginal probability distribution given in
[REIS20|. In what follows we show that the recursion for calculating the vari-
ances can be obtained directly from the MVA equations by using results similar
to the ones obtained in equation (4.14) and (4.15). We first obtain a recursive
equation for the variance and covariances m equation (4.18). Then we extend

the approach for a closed queneing nei.work with multiple closed chains.

A4.2. Recursive Expressions for the Variance and Covariances in Equa-
tion (4.18).

We show that the recursion for calculating the variances in equation
(4.18) can be obtained directly from the MVA equations. We prove the resuit for
single closed chain networks, but the same approach can be used for multiple

chain networks.
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The well known MVA equation which relates the mean queue leagths of
closed chain jobs at a service center as a function of queue lengths of closed

chain jobs with one less closed chain job in the network becomes, for mixed net-

works:

L) = MMt + LN - 1) (Ad.2.1)

where the superscript ¢ was dropped to simplify the notation, and ;j is a PS or

FCFS service ceater.

Taking the derivative on both sides of equation (A4.2.1) with respect to o}

gives:
AW _ N &y v+ 208y vy + 2 R
ap! ! 1-p} 7 (197 1-5; 39 (A4.2.2)

Now, using (4.14) and (4.17) in (A4.2.2):

8 -
V(N) =) 1+ L(N-1) - L{N)|[t + L(N-1)] + V(N-1
AN = N 12 + L(N-1) - LAY + L{N-1) + V/(N-1}) AL23)

Similarly an expression for the covariance V,(N) can be obtained:

'y
1=

(ILAN-1) = LM + L(N-1] + V,(N-1) ) i oh

V,(N) = X\(N) J (Ad.2.4)

where V,(0) = V,(0) §0.

Clearly, equations (A4.2.3) and (A4.2.4) can be solved recursively in N.
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A4.3. Moments of Quene Lengths in a Queueiﬁg Network with Multiple
Closed Chains.

We start by proving the following theorems.

Tﬁeorcm A4.1.

In a product form network, the variance of the number of closed chain &
customers at center j is related with the partial derivative of the average queue

lengths of chain k customers at the same center with respect to the visit ratios of

_ these customers at that center:

- L. (N
W =0, | (Ad.3.1)

~ Proof:

We assume that the network is formed by single server fixed rate service

centers and IS service centers. The equi.libr'i.um probability of state Se¢ {n.} so0

J
that Eﬂg-Ng V‘,iﬁ

{=}

PLS) = ?‘}-\-n-‘illﬂ(ﬁr) Ay (o )

where

ﬂ. .
P{n) = n{ ‘ﬁ‘%’ { ,‘-IS service center

- X (‘u)"

-~ | == IS service center
tm] "M

n, = |n,) and G(N) is the normalization constant of the network, ice.,
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5Ats) =10 o EURS> 11 P(7)

Sim]

Let the first /, centers be single server fixed rate service centers an the remaining
IS service centers. Taking the derivative of G(N) with respect to the visit ratio

of chain i customers at ¢enter j gives:

a_g‘m 24[‘ ":’H(‘u).'] [ f[('u)"]
h

=1 t=l =it .l (A4.3.2)
- %ﬂgu.,ﬁs')
h s
- QELL N
8y oot (A4.3.3)

by definition of the average queue length of a éha.in k customer at center ;.
Equation (A4.3.3) was first obtained by Kobayashi and Gerla [KOBAS3|. Taking
the derivative of (A4.3.2) with respect to #, gives:

(30, &, § 2,}’(3) ;3 g vP1)

where the second equality is obtained from the definition of the second moment
of queue lengths of a chain k customer at center j (S,(M). Since equations
(A4.3.2) and (A4.3.3) are identities, PG(NWN30,,P can also be obtained by taking
the derivative of (A4.3.3) with respect to 4,,.

= "—"'z'—‘a(a(?,: @) 8y, - GINL,(N)

£em
(30, &
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0, 280 1 %) + 0, (R _ GML,(F)
a9, 3,
4,

-S| + aba—f;iiﬂ - z-f,(m]

where the last equality was obtained by using (A4.3.3). Now equating (A4.3.4)

(A4.3.5)

and (A4.3.5) and using the definition of the variance of queue lengths of chain &

customers at center j, V,(N) (A4.3.1) is obtained.

Theorem Af.2.

For a product form network the covariance of queue lengths of chain &
and chain v customers at center j is related with the partial derivative of the
average queue lengths of chain & (or v) customers at the same center, with

respect to the visit ratios of these customers at that center:

Vol ) = 0,228

v d, (A4.3.82)
- ,h.‘%:!_*”!).
by (A4.3.8b)

Proof:

We first prove equation (A4.3.8a). Taking the derivative of (A4.3.2) with

respect th 4, gives:



- .@ Dol N
Bty | (A4.3.7)

where the second equality is obtained from the definition of the joint moment of
queue lengths of chain & and chain v customers at center j. ‘Taking the deriva-
tive of {A4.3.3) with respect to ¢, we obtain:

26 1 (e, .. M]
330y - Oy [ 2, wtW) + G5

= SB[ Ry, + o, 2t T\'f)]

Biy0sy oMLy *+ 8,5, (A4.3.8)
Equation (A.3.6a) is obtained by equating (A4.3.7) and (A4.3.8) and by the
definition of the covariance of queue lengths of chain  and chain v customers at

center j, i.e.,

CVinB) = Sl = LIl

Equation (A4.3.6b) can be easily obtained by following the same steps above, or

simply by exchanging indexes k and » in (A4.3.6a) and noting that
CVim(N) = CV ()

A recursively formula for the variance of queue lengths of chain  custo-
mers at center j (V,(V)) and covariance of queue lengths of chain & and chain v
customers at center j (CVy,(N)) can be easily obtained from theorems (A4.1) and

(A4.2) above and the MVA equations as shown by the following Lemma.

Lemma A4.3.

Vi(F) = 4L (R)-Lu(MIL) + M(Fep | Viy(F-20) + };:',.CVm(R-:t)] ils (Ad308)
‘ .0.94
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- N 1+L' N<ey) - Ly{N =[S
UNJaL + Ly(N-e)) - Lo(N]  J (A4.3.9b)

CVi(N) = [Ly(N-2}) - Ly(NIL,(N) + ANay[Vi(N=6;) + & CVip(N-cs)] (9 £, j 9 IS
. .t (A4.3.10)

V,{0) &0 CVin(0) 40
Proot:

For single server fixed rate service centers the average number of chain &
jobs at center j is given by the MVA equation (2.2) and (2.3a), i.e., -

Ly(N) = 2Nay[1 + Z‘LU(N‘:EH

| (A4.3.11)
Taking the derivative of the above equation with respect to ¢,, gives:
3Ly(N) -
4y
M - - - Ly(N-2))
a‘h Cg,[l + L,(N-G;)l + XE(N)S”II + L’(N-C')I t_k.{m‘hz‘ a‘b (A4.3.12)

The derivative of ) (NV) with respect to 4, can be easily obtained by noting that

o G{N-e)
b - ——
M 0
and thus
AN G(N-&), = -, GlN-&) GIN), <
0, oy N Tawm ey W

- l;MU-n(N:;t) - Ly(M)
. - (A4.3.13)

Using (A4.3.13) in {A4.3.12) and using theorems {A4.1) and (A4.2) yields:
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V() - )
0y, oy

(Lo(R20) - Lo(Plenlt + L{F-G) + =521+ LR-e)

+ 3—'(‘&"1-['/.,(1?-?.) + T CVi(N-e)]
- Z, (Ad.3.14)

Finally, equation (A4.3.9a) is obtained by substituting {A4.3.11) into (A4.3.14). .

For IS service centers the average number of chain k customers at center ;

is given by the MVA equations (2.2) and (2.3¢),

Ly(N) = ANy,
(A4.3.15)
Taking the derivative of (A4.3.15) with respect to ¢, and using (A4.3.13) and

theorem (A4.1) yields (A4.3.9b).

To prove (A4.3.10) we take the derivative of (A4.3.11) with respect to 4,
Y

3Ly(N) - AR) 1+ L{N-¢ ;x N LyFe)
24, ¥, it + L{N-al "N""g 4, (A4.3.16)

3\ (NYas, can be easily obtained in the same way equation (A4.3.13) was
obtained: ' '

NN N, = - -
L L L P S AR
f f (A4.3.17)

Substituting (A4.3.17) in (A4.3.16) and using theorem (A4.2) we get (A4.3.10).

Next we find s recursive formula for the variance of the total queue

length at center j. First we need the following theorem.



-

Theorem A4.4.

For a product form network the variance of the total queue length at a
center ; is related to the partial derivative of the total mean queue length with

respect to the capacity of that center:

(N)
Y. -
M =4S (A4.3.18)

where ¢, is defined to be the capacity of center ;.
Proof:

Up to now we have assumed that the capacity of all service centers in the

network where equal to one. In general, for ¢, » 1, the equilibrium probability of

a state 5 (P(S)) is given by

D S
AS) = s L P{)

where | -

P.(u,)-—;ﬁ!T { 36 IS service center

_LE )

{ == IS service center
¢ fm1 Ml

and G(N) = E H Prubi(n).

Sim}
The proof follow- similar steps used in the proof of theorem A4.1. Taking the
derivative of G(N) with respect to the capacity of center ; gives:
OG‘E[ o h "r! ‘ (‘u).' ! 1 X (e)™
de, =% e n ""T' I;It nyl

s & :-1°t l-l "ﬁ! A

(A.3.19)



- -S=AS)G)
5%

- __G"(E. L u'(()
6 : : (Ad.3.20)
. b :
where the last Tequa.lity is obtained by ti %deﬁnition'of the total average queue
length at center ;. '\;. |
Taking the derivative of (A4.3.19) with respect to ¢, gives:

Fm E-‘-P(S)G(M + SEAGE +

- Egl‘i-%(m * L:(Ml
1 (A4.3.21)

where, again, the second eﬁnality is obtained by the definition of the second
moment of total queue lengths at center j (S5(N)). Taking the derivative of

{A4.3.20) with respect to ¢, gives: -
f
‘ IGIM L;!N) .
#oy _ oy LM+ M | gem
(@e =T e 2

N a™
_£3M'[ LW - =5 ac,

}

+ L,(N)]
(A4.3.22)

Equating (A4.3.20) and (A4.3.22), (A4.3.18) is obtained.

A recursively formula for V,(N) can be easily oﬁtained {from the theorem
above and the MVA equations (2.2), (2.3a) and (2.3c) as shown by Lemma A4.5

below. !
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Lemma A4.4.
— ‘ v N N N ' N-¢, ]
ViR = 5 1+ L) - L) + 3dFe'n VIFR) G 1S conter (A4.3.23a)
X - - - -
- ' = - - Is
t{:).(N)d g,[l + L,(N-¢;) L}(MI J ceater (A43-23!”) i
where o', = 4, /¢, :

Proof: i

The proof is analogous to the proof of Lemma A4.3. For single server
fixed rate service centers the MVA equation for the total average queue length

.
is:
:

L) = £ MRl + L(RG)

(A4.3.24)
Taking the derivative of {A4.3.24) with respect to ¢, gives:
LM '
c’ - ) -
!
x (M - - MN - - o, L (N-e) W
"ull * L(N-ty)] « =—==g’,[1 + L(N-e;}]] + ) !y ——

3 (NYae, can be easily obtained in the same manner as in the previous lemmas,

i.e., by taking the derivative of G(N-¢,YG(N) with respect to ¢, We obtain:

MM MM o
3e, ¢ IL,(N) - L(N-er) (A4.3.26)

Substituting (A4.3.268) in (A4.3.25) and using theorem A4.4 gives {A4.3.23a).

For IS service centers the MVA equation for the total average queue

length is:
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- X -
L - A !
AR = T MMy (A4.3.27)

Taking the derivative of (A4.3.27) with respect to ¢, and using (A4.3.268) and
theorem A4.4, (A4.3.23b) is obtained.

The same method used above to obtain the 'va.rianca and covariances of
queue lengths can be used to obtain higher moments as well. In particular we
outline the development for obtaining the third moment of queue lengths at a
center ; (T,(N)) for a single chain network. However, the extension for multiple

chain networks is straigthforward.

Theorem A4.6.

For a product form single chain network, the third moment of queue
lengths at a center j (T,(N)) is related to the partial derivative of the second
moment of queue lengths with respect to the visit ratios of customers at that

center:

a
T4 - S(NIL, (M) = —‘ﬂs,ﬁ A

Proof:

Analogously to what was done in the proof of the previous theorems, the

third derivative of G({N) with respect to 4, gives:

Zam _ oy - )
(a0, o 1 35N + 2N | (A4.3.29)

PG(NYa(s,* can also be obtained by taking the derivative of equation (A4.3.4) -

(simplified for single closed chain networks) with respect to 4;:
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26 _ S (4 avmsr o - 3l 4oL m]
o = e VAVIBLN - 3] + LML - 3] + 2L, () + =5 A43.30)

Equating (A4.3.29) and {(A4.3.30) and using our previous results yields (A4.3.28).

A recursively formula for T,(N) can be obtained by taking the derivative
of (A4.3.23a) or (A4.3.23b) with respect to ¢; and using theorem A4.6.

A4.4. Conclusions.

In this appendix we have shown that, for product {orm networks,
moments of queue lengths of a service center are related with the partial deriva-
tive of lower moments with respect to a parameter (e.g., visit ratios, capacity,
etc) of that center. This relation is important since optimization problems may
require to obtain the derivative of queune lengths with respect to an input param.
eter (as in chaptei' 4) or even the derivative of higher moments. The relation
obtained also provides an easy method to obtain a recursively formula for
moments of queue lengths by simply taking the derivative of the main MVA
equation.

The same relation could be heuristically used, in principle, to calculate
moments of quene lengths in a non-product form network. For instance, for
networks with FCFS service centers with different chains, a recursively {formula
for the variance of queue lengths could be heuristically obtained by taking the
deriva.ﬁve of the approximate formula obtained by Reiser [R.EIS7.9] (see equatioﬁ
(2.5b)) with respect to an input parameter of the center. Needless to say that,

in this case, validation studies must be done.
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Finally it is interesting to point out that the theorems proved in this
appendix provide a method of proving some important relations in queueing net-

works. In particular, we shown three examples.

(1) We shqw’tha.t the following well known relationship for average queue
lenghts of open a i c!osed chain jobs in a mixed queueing network,
L) = T2 + L4y
which has previously been derived from the artival theorem, can be easily
" obtained by taking the derivatives of the normalization constant:

The normalization constant for a mixed network, G(N) is given by:

(nf+nf) Y
(W) = EII |"' f[ ‘u)
e)” 11 (Ad.4.1)

where the superseript ¢ or ¢ indicates =open” or "closed” chain, respectively, and
we assume that all center are single server fixed rate to simplify the notation. It
is known that G(,qn can also be obtained from the normalization constant of an
equivalent closed" hetwork, G(N) [LAVES3] (this can be easily shown by a simple
manipulation of equation (A4.4.1)).

1-pf

[I’I _] a1 = G o™ (Ad.4.2)

where

e(fy = T2 1

si=l tml

)
X \1-pf
ni

Now taking the derivative of (A4.4.1) with respect to the open throughput at

center j, o/, we obtain:
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Gy = GulF) + £ wGiRE)

SB _ o
aﬂ] F’ (A4-4-3)

Taking the derivative of (A4.4.2) with rapéct to »; gives:

M —G(N) + G‘[ $ LM

a’; ;i-l

- Ay 4 iy
-9

(Ad.4.4)
Equating (A4.4.3) and (A4.4.4) gives:
LN = 1—-’1'—,{1 + L{N)
- o (Ad.4.5)

which is the desired result.

(2) We next show that the main MVA equation can be easily proved,'by
taking the derivatives of the normalization constant. Again, assume that the
centers in the network are single server fixed rate. A recursive expression for the

normalization constant of a closed queuneing network is [LAVES3]:

(Ad.4.8)

where the subscript / in G{N) indicates that G(N) is the normalization constant
of a network with centers 1 to [ only. Equation (A4.4.8) is the key expression for
the convolution algorithm [LAVES3]. Assuming { = J = ; and taking the deriva-
tive of both sides of (A4.4.8) with respect to 4, yields:

3GAN) o K 3GA{N-¢)
a0, = 2, GA{N-¢,} + ¥ ‘"T

tam]

(Ad.4.7)

where 3G,,(NVa3s, = 0 since center j is not present in the network when the nor-

malization constant is G, ,(N). Using the theorems of the previous sections we



obtain:

G;(:’N] Ll’l(m = shG;(N-e.) +* 2 "J'GAN-GJL.,(N"GQ)

and so,
- GAN-¢) X GAN=e)

L@ = i+ B gl

- o (V) + ‘{:‘%’H(Wh{ﬁ-:t)

(A4.4.8)
which implies that
L{N) = 'zlc.,x.(m + E e MLAN-¢)
£ aorMiL + LF2)
- By - .
LELE T (A4.4.9)

since L(N) = i Ly(M. This last equation is the MVA equation for the total
k=]

number of jobs at center j.

The form of equation (A4.4.0) suggests that

Ly(R) = ap ML + L,(N-2y) (Ad.4.10)

which is the main MVA equation. To prove that this is indeed true, substitut-

ing (A4.4.10) into (A4.4.8) should lead to an identity. From (A4.4.10) we have
that

P TR LU A & '
" N)ag R (Ad.4.11)

Substituting (A4:4.11) mto_ (A4.4.8) we get

N



Lh(m - a,,x,(N) + E ,,x,(N) :"(M -1- f} L,,.(FI-'E,)
tm1 ¢(N) vkt

- (F) + L(F) - 'E‘«,xm - énf:lof,xxm.,m-?o
Y T 3}
= e} + L - 5 M) - 3 (L) - el
- - X - - - X -
= o)+ LT - 5 D) - LE) + L)+ 5 el

= Ly(M)

where the third equality follows from (A4.4.8). This is the identity we needed to

obtain.

(3) Finally, we show that another recursively relation for the variance of
queue lengths of a queneing network with multiple chains can be obtained only
in terms of the same variance for lower populations, without the need to calcu-
late the covariances as in Lemma A4.3. To see that we take the derivative of
equation (A4.4.8) with respect to 4, (instead of using equation (A4.3.10) as in
Lemma A4.3). Following the same steps used in Lemma A4.3 we get:

V,,(m - x,(f\'l)ahll - Lh(m + uh(ﬁ‘:k)]

X - - - - - - P ’
- ¥ M{Meoy [Liy(N) = Ly N-er)lLij{N-e;) + Viy(N-2,)
R o (1L RN (R2) + V(R3] (A4.4.12)
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