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ABSTRACT OF THE DISSERTATION

A Distributed Expert System for Space Shuttle Flight Control
by
John Joseph Helly, Jr.
Doctor of Philosophy in Computer Science
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Professor Jacques Vidal, Chair

A new representation of malfunction procedure logic, based on the programmable-
logic array, which facilitates the automation of these procedures for real-time
detection and analysis of spacecraft anomaiies using Boolean normal forms is
presented. Processing of anomalies makes explicit use of time to permit non-
monotonic reasoning in the form of partial system resets corresponding to recovery of
system functions through operator intervention. A methodology for the synthesis of
new rules is developed which permits the modification of the rule-base both
dynamicaily, in real-time as part of the systems monitoring function, and statically. as
part of a systems analysis. A distributed architecture for expert systems based on an
extension of the programmable-logic array is introduced . This representation is
discussed in the context of Space Shuttle systems and has general applicability to the

control and monitoring of complex systems.
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Chapter 1
Introduction

This work presents the results of the design and preliminary development of a
rule-based expert system, which introduces novel results in the field of expert systems
in terms of its unique rule-base structure, which represents knowledge in the form of
compiled implications; the explicit incorporation of time in its set of active rules; the
utilization of temporal, non-monotonic reasoning; and the provision of a means of
generating new knowledge through the identification of increasingly complex failure
classes from empirical observations and its existing rule-base. This research was
originally motivated by the need to automate some of Space Shuttle Vehicle (SSV)
flight control team functions to aid in reducing the labor-intensive nature of space
operations. 1t was quickly realized that it also afforded a research opportunity to
explore expert systems probiems in a particularly well-structured problem domain.
The need for good problem domains has been recently identified as an important
feature for basic Al research [McCarthy83 83]. Although developed specifically with
the SSV flight control problem in mind, this approach is applicable to the larger class
of problems addressed by control and feedback systems for the purpose of failure

diagnosis and performance monitoring [Pau 81].

1.1. Organization

"This work is presented in four chapters. Chapter 1 is principally introductory material
describing the problem domain, the goals of the work reported here and providing an
overview of other, relevant work in the field of expert systems. Chapter 2 describes
the structure of the rule-base and particularly addresses the development of the data
representation used as a basis rule-based. automatic detection and resolution of
anomalies occurring during SSV flight operations. Chapter 3 presents the techniques
for implementing an operational system, capable of functioning in rea/-time especially

addressing the introduction of linear time into the rule-base as well as the problems



associated with that capability. Chapter 4 discusses the adaptation of the
time-dependent system introduced in Chapter to the problem ot generating
meta-rules as models of complex failure modes. The identification of such new
modes is considered to be an exampie of automatic learning. Chapter 5 discusses the
issues surrounding the use of this methodoiogy in a distributed environment which
includes not only the conventional notion of distribution among processors but also

the distribution of function between space and ground.

1.2. Rule-based Expert Systems

While there is littie agreement as to what Artificial Intelligence is [Bundy83 83], it
would be generally conceded that research in expert systems has been one of the
most exciting of its subspecialties. It is, however, also true that no precise definition
of an expert system exists, although a great deal has been written about them. A
comprehensive review of the subject as wel! as the entire field of Artificial Intelligence

can be found in [Barr 81]. According to [Barr 81},

{expert] systems are most strongly characterized by their use of large
bodies of domain knowledge - facts and procedures, gleaned from human
experts, that have proved useful for solving typical problems in their
domain.

Such systems differ from conventional programming in that they are intended as a
general-purpose aid to problem-solving \A;rithin a particular domain as opposed to
being dedicated to a particular application within a domain. For example, an expert
system might be used to determine which source of tracking data is the most
appropriate for use in updating a spacecratt state vector given the current ground and
vehicle status. A conventionai computer program could then be used to perform the
computation from the source selected. Table 1-1 lists some well-known expert
systems as well as some obscure but more recent systems with their particular
application domain. These references reflect the diversity of application domains

found in expert system research topics.



Function

Domain System Reference
Diagnosis Medicine CASNET [Weiss 77}
Medicine INTERNIST [Popie 77}
Medicine MYCIN [Shortliffe 76a)
Medicine PUFF fKunz 78}
Engineering SACON [Bennett 79]
Geology PROSPECTOR  [Duda 79}
Search Chemistry DENDRAL [Feigenbaum 71]
Chemistry SYNCHEM {Gelernter 77)
Problem Mechanics MECHO [Bundy 79}
Solving and Programming PECOS [Barstow 79]
Planning Configuring R1 [McDermott 80]
Computers
DEVISER [Vere 83]
Procedures REF-ARF [Fikes70 70]
Measurement Medicine VM [Fagan 79]
Interpretation
Computer-aided Electronics SOPHIE [Brown 74}
Instruction Medicine GUIDON [Clancey 79]
Medicine FLUIDMOD [Deland 74}
Knowledge Diagnosis TEIRESIAS [Davis 79}
Acquisition Diagnosis EMYCIN [Shortliffe 76b]
Diagnosis EXPERT [Weiss 79]
Diagnosis SEEK [Politakis 84]
System ROSIE [ROSIE 81]
Building AGE [Nii 79]
HEARSAY III  [Balzer 80]
XPLAIN [Swartout 83]
Temporal General CHRONOS [Bruce 72j
References Robots [Hendrix 73]
Table 1-1: Some Existing Expert Systems



1.2.1, General Features

Research in this area has resulted in the generalization of some of the major features
or properties of expert systems. Rule-based systems are a type of the larger class of
Pattern-Directed Inference Systems (PDIS's) characterized by the separation of data
examination, corresponding to antecedent terms of a rule, and data modification,
corresponding to the consequent terms of a rule [Waterman 78]. One of the unique
features of rule-based systems is that they are primarily event or data-driven as
opposed to procedurally-driven. The description of the behavior of rule-based
systems in terms of a recognize/act cycte [McDermott78a 78] emphasizes both the
data examination and data modification aspects of such systems. This characteristic
is the direct result of the representation of knowledge in decl/arative form. This is

uniquely the domain of Al research as pointed out by [Nilsson83 83] in the remark that

There are component pieces, however, for which Al has no competition.
These pieces are at the core of what might be called high-leve! reasoning
and perception. this core is mainly concerned with the collection,
representation, and use of propositional or declarative knowledge. (Such
knowledge is of the type that can be stated in sentences of some form, as
contrasted, say, with knowledge that is implicit only in procedures or in ad
hoc data structures.)

The rules, which declare knowledge, are compared to data to determine via the
pattern of the antecedent terms, which rules apply to the observed data. The
identification of such a conflict set [McDermott78a 78] is then resolved by some
decision or control process to determine which of the consequents holds for the set of
data. Rule-based systems are attractive because of their modularity, uniformity and
ability to express human expert knowledge in a natural manner [Barr 81]. Expert
knowledge can frequently be expressed in the form of IF-THEN relations: rule-based
systems are designed to take advantage of this characteristic. In particular. IF-THEN
information can be satisfactorily represented as production rufes. Production rules
are a computational formalism which can be used to define relationships among
variabies. The refationships are structured such that the satistaction of preconditions,
called antecedents, produce results, called conseguents. Antecedents and

consequents are generally expressed using symbolic variables and logical operators.



1.2.2. Production Systems

Production system is an ambiguous term in the literature used to indicate that a
system, whatever it may be, is based on production rules. in general, a production
system makes use of a production memory and a working memory [McDermott78a
78]. The working memory has also been referred to as short-term memory [Zisman
78]. Essentially the production memory is what we refer to as the rule-base. In the
particular implementation presented in this work the rule-base consists of implication
tables or implication relations (cf. section 2.5.4). Through some form of pattern.
matching, rules stored in production memory are copied into working memory as part
of the active set of rules which, presumably, reflect the current state of the system
from which the data are derived.

1.2.3. Advantages and Disadvantages of Production Systems

The use of production rules permits us to express some kinds of expert knowledge in
a formal way and aids in the articulation of that knowledge. This formalism is also
well-suited to expression in programming languages and in the first-order predicate
caiculus [Nilsson 80]. The first-order predicate calculus is based on first-order
propasitional logic (FOL) which, as the name implies, is a formal system of logic. Use
of this system permits us to manipulate expert knowledge according to logical
principles and to obtain inferences from known rules. A powerful result of this
approach is the ability to form hypotheses (or theorems) and test {cr prove) them as
well as to ask questions about the validity and satisfiability of subsets of rules [Nilsson
80]. This is not to say that production systems are without their critics. These
limitations are well known, however, and have been previously noted by some of the
principle proponents of logic programming. For example, [Kowalski79 79] points out
such fimitations, though not in great detail. in the context of Horn clauses versus
non-Horn clauses. [Nilsson83 83] raises some of these issues in the context of current
challenges to Al research posed by Minsky's dead duck challenge which also
overtaps the problems of non-monotonic reasoning (Waldrop 84]. In spite of its
particular limitations, the use of propositional logic has proved to be a powerful and
general method for the purpose of implementing human knowledge in machine-

processable form.



1.2.4. Suitability to the Flight Control Problem

The representation of malfunction procedures, or for that matter any procedures, in

the form of production rules is useful to us here for the following primary reasons:

1. It provides a standard, formal structure which is easily transiated into
programming languages. A familiar example of this is the IF-THEN syntax
of FORTRAN although more sophisticated programming languages are
generaily used for implementation of rule-based systems.

2. 1t is compatible with the constructs of first-order logic and therefore first-
order predicate calculus. These formalisms have desirable properties for
the development of automatic, rule-based deduction systems.

The subsequent discussion will focus on some early work done at Johnson Space
Center, and then discuss how procedural information can be expressed using

Boolean functions and describe two methods of impiementing this representation.

1.3. Flight Control Team

As described in [NASA 78], the modus operandi of the flight control team can be
summarized, with respect to responsibilities and activities during the operations

phase of a space shuttle flight, as follows:

1. The fundamental role of the flight control team is to monitor and analyze
Space Shuttle systems for anomalous behavior, to analyze anomalies
when they occur, to determine corrective action, and to coordinate this
action with the flight crew.

2. Most of the data from which these determinations and analyses are made
are based on computer processed. telemetry data originating from
sensors on-board the SSV and transmitted to the ground processing
system.

Table 1-2 provides an abbreviated list of activities for which the flight control team is

responsible for during an SSV mission.



Table 1-2: Flight Controller Functions

Flight Dynamics Prelaunch Analysis
Trajectory Monitoring
Spacecraft Tracking
Aerodynamics and Structures
Monitor Onboard Navigation State

SSV Systems Prelaunch Analysis
Manage Spacecraft Systems
Consumables Analysis
Fault Detection and Isolation

Fault Recovery

SSV Data Acquisition Manage Communication and Data Systems
Manage Flight Data

Payloads Manage Payload Activities

Manage Payloads and Support Equipment

Operations Management Policy Making
Ground Network Management
Coordinaté Crew Activity Plan
Landing Operations
Medical Support
Supplemental Technical Support

1.3.1. Organizationa! Structure

The SSV flight contro! team is organized as a hierarchy as depicted in figure 1-1,
This organization reflects both the diversity and the discrete compartmentalization of
SSV system disciplines. In general. SSV flight operations and procedures reflect a

high degree of structure and definition in that they are:

1.precise . operational procedures are developed. tested. and reviewed
under simulated mission conditions to achieve high precision.

2. deterministic : the SSV is a well understood. although complex. finite
system. On-board computers and sensors provide telemetry data. These
data in combination with SSV system design information, make possible
the determination of the global state of the vehicle,



3. documented : Operational procedures are catalogued in printed form.
SSV system performance is analyzed in detail both during and after a
mission. Problems and corrective action (successful and unsuccessful)
are reviewed and documented.

1.3.2. Task Complexity and System Reliability

The SSV is significantly more complex than prior United States manned space
vehicles, primarily due to high redundancy of vehicle subsystems and the
implementation of designs which reduce single point failures within any single
subsystem. While, in terms of system design, subsystem redundancy can greatly
improve overall system reliability it also means that a system can have a larger number
of states. The number of states is directly proportional to the degree of redundancy.
The number and characteristics of these states must be known and considered in the
analysis of known or possible system or subsystem failures. In addition to the
increase in complexity introduced through redundancy, compiexity is increased
through the use of interdependent subsystems such that failure of a single component
can affect the performance of several different subsystems both instantaneously,
through total functional loss, and over time, through degraded performance. The
detection, isolation and correction of any fault in the SSV systems is extremely
important in terms of both crew safety and mission success. Not only is the detection
and correction of real failures necessary but, as pointed out in [Pau 81), to maximize

system availability, unjustified system shutdown or pufidowns must also be minimized.

1.3.3. Analyiical Tools for Fiight Control

The detection, analysis and recovery of faults is the responsibility of the flight control
team and the flight crew. The principal tools available to flight controllers and crew to
assist them in these tasks are either pocket checklists (small binders designed {0 hold
all the responses to any problem that requires crew action within five minutes) or large
books containing several hundred procedures. each comprising instructions to be
executed when a fault arises which does not require immediate response. These more
involved directions, known as malfunction procedures {or simply. malfs) are critical

to accurate and speedy fault detection and isolation.
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1.3.4. Malfunction Procedures

In the current method of fault isolation, the flight crew and flight control team consult
malfunction procedures and reach a conciusion based on selected telemetry
measurements and on-board observations of switch settings (i.e., the vehicle state).
Simitar procedures are used to reestablish full or partial system or subsystem function

once an anomaly has been analyzed.

1.3.4.1, Types

Four basic types of malfunction procedures are used by the flight teams [JSCMALFS
82]. Although they serve differing functions they are coliectively referred to as
malfunction procedures. While this work focuses primarily on system or block
malfunction procedures, the methods presented in this paper are applicable to all of
the types of procedures described below.

1. System or Block Malfunction Procedures:The system malfunction
procedure is a deterministic representation of yes/no questions and crew
procedures in the block and line format of a flow chart. This form ideally
lends itself to expert systems-type programs due to its rule-based, "if-
then" tree structure. Figure 1-2is a representative block procedure.

2. Special Subroutines (SSR): These are procedures that are accessed
by many different malfunction procedures. Also, the SSR is in more of a
checklist format in contrast to the block type used in the system
malfunction procedures. Figure 1-3is a representative SSR.

3. Failure Recovery Procedures (FRP): The FRP is a non-deterministic
procedure used when a General Purpose Computer (GPC) failure has
already been determined and certain steps must be taken to reconfigure
the orbiter to take advantage of any remaining capability in the failed
GPC. Normaily, FRP's are lengthier than the other malfunction
procedures. Figure 1-4 is a representative FRP.

4. Super Malfs: The super maif acts as a transition aid from the checklist
to the malfunction procedure itself. These procedures must be executed
within five minutes of the annunciation of an alarm and are critical to crew
and mission safety. The wording and format are identical to the ORB PCL
(orbit pocket checklist) carried by the flight crew. Figure 1-5 is a
representative pocket checklist procedure.

10
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1.3.4.2. Development

Each malfunction procedure is the product of hundreds of man-hours of design,
validation, and verification. Typically, a maifunction procedure is initially designed by
one or more engineers. After the basic design has been determined, the procedure is
then critiqued at a 'desktop’ review where the malfunction procedures book manager,
the author of the procedure and at least one crew member review the procedure and
check its feasibility for use on the SSV. The next step is for the procedure to be tested
by using both the Single System Trainer (SST) and the Shuttle Mission Simulator
(SMS). Both the SST and the SMS provide a simulated SSV environment in which the
procedure ¢an be tested. In this way, simulated failures can be input into the system
and crew and flight team response to the procedure can be evaluated through

integrated simulations.
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Chapter 2
Rule-Base Structure

This chapter presents results describing the construction of a rule-base suitable for
the representation of procedural logic in a declarative, representational form. The
results presented here provide a method of literally compiling expert knowledge into a
rule-base for use by a variety of possible software implementations which might need
to use this rule-base.

2.1.Expert Systems and the Representation Problem

A key problem in developing an effective expert system, as pointed out by [Nilsson

80]?

is how to represent and use the knowledge that human experts in these
subjects obviously possess and use. This problem is made more difficult
by the fact that the expert knowledge in many important fields is often
imprecise, uncertain, or anecdotal {though human experts use such
knowledge to arrive at useful conclusions).

Not only is the characterization of human expertise a problem in developing a
machine-processable form but the manner in which it is implemented is a limiting
factor in the efficiency of an implementation. [McDermott78a 78]found,
experimentally, that the cost of running a production system is directly proportional to
the product of the size of the rule-base and the number of the currently active rules.
Clearly, the size of the rule-base is affected by the manner in which human rules are
converted to machine-representation. A representation which keeps the total number
of rules smali will, all other things equal. reduce the cost of operating the ruie-based
system,
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2.1.1. Rule-Base Representations

The rule-bases of expert systems are typically composed of conditional relations in
the form of implications although their logical and physical forms vary. PROLOG, for
example, constructs relations from data entered into the database and computes
relations [Dahi82 82]. While not a rule-base in the usual sense [Dahl83 83], PROLOG
treats conditional relations as Horn clauses such that the antecedent terms are
considered to be procedure calls and the consequent is the name of the procedure
composed of the procedure calls [Dahig2 82]. A PROLOG query is a request to the
database to find a constructive proof that satisfies the antecedent terms which may,
themselves, be constructed as procedure calis, in the form of database queries. In
this sense, PROLOG has deductive, backward-chaining capabilities typical of query-
oriented database systems. As a result, it has features very much like what is usually
meant by an expert system. DEVISER [Vere 83] and MYCIN [Shortlitfe 76a], on the
other hand, incorporate rules directly as LISP expressions. MYCIN [Shortliffe 76a]
also uses backward-chaining to perform its diagnoses but represents its rules as LISP
functions according to a BNF grammar. This is more typical of current rule-base
implementations.

2.1.2. Knowledge Compilation

The knowledge compilation concept was apparently first introduced in the ARPA SUR
project [Barr 81]. The basic idea is that valid information about recognizing
sentences is contained in a singie, pre-compiled decision table. The resulting table or
knowledge source then was uéed to analyze voice signals. This concept is not very
different from the use of syntax tables in a programming language compiler. A major
advantage of this approach is that it is fast and efficient since all possible legal
patterns exist for, essentially. pattern matching to the observed voice signal. Thisisin
contrast to other systems such as HEARSAY, pointed out by{Barr 81], which
determines valid sequences on the fly. Another example. more recent. is PROLOG
which also computes the valid set of instances satistying a query. One could argue
that such difference between, for example, SUR and HEARSAY and PROLOG are
really a matter of degree inasmuch as the extent to which rules are pre-defined they

are, in a sense, pre-compiled. The distinction is clearer if one considers the
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disadvantages of compiled knowledge. Again, as pointed out in [Barr 81)], compiled
knowledge, as implemented in SUR, is relatively inflexible and changes to the rule-
base require complete, and time-consuming, recompilation. This is due to the use of
a singe data structure for the rule-base in SUR and, in HARPY, to the explicit
connection between the decomposed network used by that system. We will show that
this is not a fundamental limitation to the use of compiled knowledge. A second
disadvantage, although perhaps more appropriately described as a characteristic, of
compiled knowledge rule-bases is that they are constrained to a particular syntax.
This characteristic is truly a fundamental limitation since the compiled knowledge
must be stored and the data structure selected to represent that knowledge limits the
way in which the data it contains is interpreted. It is the interpretation of the data
contained in the data structure which constitutes the knowledge within the system.
This interpretation must be based on some assumptions about how the data is stored
in order to understand it syntactically. We will demonstrate this syntactic limitation in

section 2.5.4 in the context of our use of Disjunctive Normal Form.

2.1.3. Validity of the Ruie-Base

Since the correctness and validity of the analyses performed by the system is based
on the correctness and validity of the r_uie-base there must be mechanisms for
verifying that the rule-base is Jogically consistent. This is similar to the problem of
integrity constraints [Uliman 80] well-know in database research. This area has not
received a great deal of attention in Al research, however. Most systems rely on the
human operator, the source of the rules, to maintain the consistency of the rule-base.
Methods like evaluative tests [Shortliffe 76a], which can never be exhaustive, Part of
the reason for this is that the method of verifying consistency or detecting
inconsistency is dependent of the representation of the rules themseives. Rule-base
validity is reaily two problems under one name. One of the problems addresses the
question of logical consistency in the expression of, for example, production rules
based on propositional logic. The second problem is essentially a configuration

management problem. This could be stated as

. Given: all production rules in the rule base are logically consistent.

- Question: do all production rules in the ruie base belong there?
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An example which illustrates the difference between these two problems can be taken
from the SSV problem domain. !f we have, by a means to be described, assured that
the Boolean expressions used to described a malfunction procedure are consistent
(ignoring for the minute the problem of completeness), how do we know that only
those for the right SSV are contained in the rule-base. Right now there are two SSV's,
Columbia and Challenger. The second problem is a genera! database problem which
we will not specifically address here. We will show, however, how the rule-base
representation presented here permits the verification of logical consistency. |t is
asserted that this is a significant advance in the available methods for verifying the

integrity of expert system rule-bases.

2.1.4. Qverview of the Current Approach

The method of representing rules presented here offers significant advantage in
contrast to the storage of ruies as expressions in a programming language such as
LISP, or constructing them in the form propositional queries as in PROLOG. Since
malfunction procedure logic is expressibie in Boolean form and in the form of
relational tables, as will be shown, redundancy and logical inconsistency in the rules
may be eliminated automatically through the use of relational normalization and
Boolean minimization and variable substitution. Using the current approach, it is also
possible to define logical relationships among the production rules in the form of
equivalence classes such that each production rule is a member of an equivalence
class. We will show that these relationships can be described in terms of functional
dependencies [Ullman 80] and logical implications thereby permitting both forward

and backward chaining using the same data structure.

2.2. Representation of Procedural Logic

A few prototype systems were developed to examine the feasibility of automating
malfunction procedures. These systems provided a good basis for experimentation
and gave those involved in the project good demonstration tools. The initial thrust
was to pick different malfunction procedures from various SSV disciplines and. by
coding them in Fortran 77, determine commonalities in format, syntax, logical

structure, and so forth. The goal was to define a small family of logical operators with
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some type of logical array as operands. A minimum of one type of operator was
envisioned for each of the four types of malfunction procedures. Initial work was
begun in June, 1982 by analyzing the systems drawings of the SSV Pressure Control
System (PCS) and constructing functional foss logic diagrams. By combining the
drawing, logic diagram, and malfunction procedure for the PCS, EXPRES was horn in
October, 1982. The malfunction procedure provided the rule-based logic and
interpretation of the drawing and diagram supplied the basis for an extensive guery

structure,

2.2.1.EXPRES

EXPRES served its purpose as a demonstration tool gquite well, but had two major
shortcomings. First, EXPRES acted as if the only inputs it had were provided by
human operators, whereas, eventuaily a system was hoped for which could be linked
to a data bus and thereby access vehicle telemetry directly. In other words, the
human had to do a large amount of data checking in order to answer the questions
posed by the procedure. A computer shouid be able to do the monitoring itself.
Secondly, since it was a demonstration tool, EXPRES had the PCS maifunction
procedure logic procedurally programmed or hard-coded. This meant that if another
malfunction procedure were to be implemented the EXPRES program would reguire
modification. This type of maintenance and modification is costly and error-prone as
well as difficult to control.

2.2.2. CRYEX

In February of 1983, CRYEX, another demonstration expert system which used the
cryogenic hydrogen pressure matfunction procedure, was designed to remove one of
the shortcomings of EXPRES. CRYEX differed from EXPRES in that CRYEX aliowed
the user 1o define the symptoms of the problem prior to the program execution by
changing the values of certain parameters. This feature made the program act as if
the computer were interfaced with a data bus thereby accessing data directly from the
vehicle. This showed that the computer could make many decisions without the

assistance of a human. it stili had the disadvantage of being hard-coded, however.
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2.2.3. GENEX

As a response to the second criticism, GENEX was conceived. GENEX was builtas a
generic expert system operator. In other words, it was built to process any systems
malfunction procedure. Benefiting from the experience gained from EXPRES and
CRYEX, GENEX proved more efficient and shorter than the previous demonstration
products but only partially realized its goal. The major problem remained that each
procedure had to be uniquely coded; therefore generalizing the representation of the

four types of procedures to reduce the complexity of the software was difficult.

2.2.4. Derived Requirements

Experience with EXPRES, CRYEX and GENEX resulted in the identification of a
number of reguirements for an expert system to be used to support the flight control

team. The system shouid

1. be based on existing system diagrams, procedures and functional loss
diagrams and, to the extent possible, be traceable to these source
documents.

2. make maximal use of telemetry data to reduce operator interaction with
the system.

3. not require the integral hard-coding of SSV subsystem logic.

2.3. Development of a Boolean Representation

To satisfy these requirements, the approach was developed that represented the
procedures as sets of Boolean functions. Table 2-1 depicts the relationship of the
source document, the original malfunction procedure, to its Boolean equivalent.

Because the procedures are generalized as Boolean functions, one can

1. apply the techniques of automata theory, switching theory and abstract
algebra [T. L. Booth 67].

2.take advantage of two methods of implementation software and
hardware, as depicted in table 2-1.

The first point will be discussed in greater depth in the next chapter. With regard to

the second point, not only does this approach provide a standard data structure it also
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provides the system architect the ability to selectively migrate processing between
software and hardware using a single common representation, thereby offering
tremendous flexibility in the design, development, testing and implementation of
automated malfunction procedures. One of the malfunction procedures, CRYO 6.3a,

has been implemented in both modes as a proof-of-concept demonstration.

2.3.1. Mailfunction Procedures as Graphs

The malfunction procedure itself can be thought of as a directed graph or digraph, G
=(V,E), where V={vv...v}, a set of vertices and E'is a set of arcs such that each
element of E is an ordered pair of vertices, (v;v;,,). An arc from v; 1o v;;, can be
denoted as v/~ v, [Hopcroft 79]. In this terminology the boxes in the malfunction
procedure are vertices, and the connecting lines represent arcs. A path in the graph
is a sequence of vertices v.V,.....v. k> 1, such that an arc, (v/—v;, ), exists for each i

1<i< k. The path is said to be from v; to v;. For any vertex, v;in a path, vertices v;

j<iare referred to as predecessors of v; while vertices v,. k> i are the successors
of v, The numbering of the vertices used here should not be confused with the
numbers used to name the boxes in the malfunction procedure. The numbering of the
vertices is used to indicate order; the numbering of the boxes is used as identification
and not necessarily order. An interesting note is that maffunction procedures are not

trees. As defined in [Hopcroft 79], a tree is a digraph with the properties that:

1. There exists a vertex, the root, without predecessors. from which there is
a path o every vertex.

2. Each vertex other than the root has exactly one predecessor.

3. The successors of each vertex are ordered from the left.
Malfunction procedures fail to satisfy properties two and three, as seen in figure 1-2.
We introduce the concept of graphs here to permit us to be more precise in our

subsequent discussion as well as to establish the groundwork for the application of

other analytical methods.
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2.3.2. Generation of Boolean Funciions

The translation of block malfunction procedures to Boolean functions is
straightforward. Failure Recovery Procedures (FRP) present a somewhat less direct
transiation but are nonetheless convertible to the representation described below tor

block malfunction procedures. As an example, consider the following expression:
6329 = 63ale A ~63a3 A ~63a5 A 63a8 (2.1)

Referring to figure 1-2, note the heavily bordered box labeled with the number, 9, in
the upper left-hand corner of the box. This box, as do others with the heavy black
border, represents a termination or diagnostic state within the procedure. When a
user of the procedure reaches one of these boxes by following the logic of the
procedure, a conclusion about the state of the subsystem of interest has been
reached.

2.3.3, Assignment of Variable Names

To represent the logic leading to the conclusion named 9 in figure 1-2 in machine-
processable form we have assigned a Booiean (binary-valued) variable named 6329 to
the vertex iabelied 9. In the context of discussion in section 1.2.1 this variable is the
consequent of the antecedent conditions on the right-hand side (RHS) of equation
(2.1) in section 2.3.2. When the consequent has the vaiue 7, the proposition within the
box is true, when it is 0, the proposition is false. Since antecedent and consequent
terms are assigned names in an identical manner we will present an example ot
naming only a single variable. Each vertex within a procedure is assigned a variable
name composed of the procedure name, for example 63a, and a numeric suffix which
is the label of the vertex. This process can be summarized by the following
production or rewriting rules.
0] S=A4BAC

] 4—1]213}415/6}718]9
[2] B—alble]..txlylz
3] C—B|A

These rules specify a string of literals of length four or five. The first literal,
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represented by the first A in rule [0], indicates the chapter in the malfunction
procedure handbook where the procedure can be found. The second A indicates the
page in the chapter. The third literal,8, indicates the procedure within the SSV
engineering discipline. The fourth literal A, specifies the vertex containing the text of
the proposition. Finally, the fifth literal. C, specifies subpropositions which may be
posed in association with any single proposition as in the case of 63a7a, 63a1b, 63a’c
of figure 1-2. When no subpropositions are represented, this literal evaluates to nulf
represented by A. The application of these rules is illustrated below in the generation
of the variabie name 63a9. The selective application of these rules at each step
beginning with the start symbol, S, rewrites the literal string, AABAC, to the variable
name 63a¥.
S= AABAC [0]

AABAC—6A4BAC 1]
6ABAC—63BAC [1]
63BAC—6324C [
63aAC—6329C 1]

63a9C—63a% {3}

The bracketed number after each step is the number of the rule applied at that step.
The use of rewriting rules provides a systematic method of assigning names to
variables the number of which wouid rapidly become unmanageabile if variable names
were assigned in an ad hoc fashion. These conventions assure that each variable will
have a unique name and that every reference to any given proposition {associated
with a vertex) within a matfunction procedure will be made by the same name. This is
especially important since there are cross-references to the same vertex between the

malfunction procedures whereby one malfunction procedure branches into another.
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2.3.4. Procedural Logic in Boolean Form

With a method of assigning variable names, capturing the logic of the procedure as a
Boolean function is trivial. Realizing that a Boolean function is equivalent to a path
through the graph of the malfunction procedure makes this immediately apparent.
The number of antecedent terms in the resulting Boolean function is k=1 where k is
the number of vertices in the path; the path length is k—1. Note that the consequent
term of the function is an element of the path and contributes to the size of k. The
enumeration of a set of functions which covers or spans the malfunction procedure

can be accomplished by the simple recursive procedure described below.
GENERATE(FUNCTION)
v «+ NAME.OF(vertex);
N « GET.NUMBER.QF.QUTPUT.ARCS;
if FUNCTION ~ = nif then LOGIC-AND « A « nif
case 1. if N = Othen
do;
FUNCTION « vl = I FUNCTION;
output FUNCTION,;
end;
case 2: else do until (N = 0);
N« N-1;
if VALUE(arcy) = 'yes' or ni/ then FUNCTION « FUNCTION ILOGIC-ANDiIlv;
if VALUE(arcpy) = 'no’ then FUNCTION«FUNCTION ILOGIC-AND~liv;
calt NEXT.VERTEX;
call GENERATE(FUNCTION);
end;
return:
end GENERATE;

If this procedure is applied at the root of each malfunction procedure the result is a
set of Boolean functions like that in Table 2-1. We assume the existence of some
other functions to service the GET.NUMBER.QF . OUTPUT.ARCS, NAME.OF. VALUE,
and NEXT.VERTEX calls. In particular, GET.NUMBER.OF.QUTPUT.ARCS returns 0.
1, or 2 for the various aiternatives of nil, yes, or yes and no. NAME.OF assigns a
variable name to the vertex consistent with the rules of section 2.3.3, NEXT.VERTEX
follows the arc v,—v,., to the next vertex. This procedure is executed manually at
present although it could be implemented on a computer to support the automated

design of malfunction procedures.
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63alE= ~ (63ala A ~63albA ~63alcV ~63alaA6lalb A
~63ale
V ~63alaA ~63alb A 63alc)
63a2=63ala N\ ~63alF
634 =({63alc) A(63a3) A ~63alE
63a6=(63alc) A (~63a3) A (63aS) A\ ~63alE
63al =(63a6)
63a89=(63alc) A (~63a3) A (~63a5) A (63a8) A ~63alE
63al0=(63a9)
63ald = (63a12) V (( ~ 63al12) A (63al3))
63al5=(63alc A ~63alE) A (~63a3) A(~63a5) A (~63a8) A{A

~63all)(63al2) A (63ald)
63al8=(63alc A ~63alE) A (~63a3) A (~63a5) A (~63a8) A(63all)

A (63a16) A (63al7)

63a19=(63ale A ~63al E) A (~63a3) A(~63a5) A (~63a8)
A (~63all) A (63al6)

63020 =(63alc A ~63al E} A (~63a3) A(~63a5) A (~63a8) A(63all)
A (63a16) A (~63alT)

63421 = (63419) V (63420)

63a24=63a22 A (~63a14) A 63al2 A (~63all) A { ~63a8) A

(~63a5) A\ (~63a3) A63ale A ~63alE
63a25=(~63a22) A {~63al4) A63al2 A (~63all) A(~63a8) A (~63a
A{~63a3} A63alc A ~63alE
63627 =(63a26) A\ 63a23 A 63alb A\ ~63alE
6328 ={63a25) V 63als
63a30=63a29 A ( ~63a26) A 63a23 A63alb A ~63alE
63a33=(~63a32) A63a3l A(~63a29) A (~63a26)

AN 63a23 A63alb N\ ~63alE
63a35=63a32 A 63a31 A~ 63a29) A (~ 63426)

AN 63a23 A63alb A ~63alE
63a36=63a34b A (~63a31) A (~63a29) A { ~ 63a26)

A63a23A63alb A ~63alE
63237 =63a30V 63233 V 63a35V 63a38
63a38=63a3da A {~63a31) A (~ 63a29) A\ ( ~63a26)

A 63a23 A 63alb A ~63alkE
63a39=63a36
63a42=63a41 A 630N (~ 632 A (63alt) A ~63all
63ad3={ ~ 63a41) A63ad0 A (~ 63a23) A (63alBY A\ ~63alE

Tabie 2-1: CRYQ 6.3a (figure 1-2) as Boolean Expressions
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The conversion of the malfunction procedure to a set of Boolean expressions is
equivalent to the enumeration of the possible paths through the graph. While
enumeration problems are associated with classes of problems considered intractable
[Garey 79] we are not faced, here, with the full enumeration problem since the set of
paths for conversion to Boolean form is small and well-defined by virtue of having
been written down. This is the same as saying that the search space of the algorithm
of 2.3.4 is small.

2.4. Prototype Implementation in a High-Level Language

The approach described above was validated through the deveiopment of a prototype
including the entire set of CRYO malfunction procedures as well as several Failure-
Recovery Procedures (FRPs). Using the approach to variable naming and logic
representation described above, these procedures were implemented in a convenient
high-level language (HLL), ROSIE (Rule-oriented System for impiementing Expertise)
[ROSIE 81]. The primary goal of this implementation was to verify that all of the
implicit logical relationships contained in the malfunction procedures could be
mapped, one-to-one, into the Boolean representation and that this representation
could accurately the analysis normally performed by a human, flight controller. As
used in this work, ROSIE is implemented on a VAX 11/780 running the UNIX operating
system. It should be noted that ROSIE was selected primarily as a matter of
convenience and that this work does not require its use. Any programming language
could be used to implement the methods presented here. The principal advantages of
ROSIE are the interactive nature of the system, the existing system utilities for string
manipulation, and the relational structure of the underlying database system. These
features present a powerful development environment. The principal disadvantage is
the large system overhead associated with the interpretive ROSIE language which is
itself based on a dialect of LISP, INTERLISP-D. The dependency on INTERLISP-D

atso limits the variety of systems on which ROSIE may be hosted at present.
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* Documentation

Pocket Checkiists
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Figure 2-1: Equivalent Representations of Procedural information
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2.4.1. Structure of the Rule-Base: Software Implementation

To retain the terminology found in existing malfunction procedures and, at the same
time, retain the Boolean representation common to both the software and hardware
implementations, the information contained in malfunction procedures was
conveniently organized into three components. This decomposition was suggested
by the form of the Boolean functions as shown in figure 2-1. As an example. for the
malfunction procedure, CRYQ 6.3a, the rule-sets contain the following three

components:

1. 63arhs - Antecedents. Contains the logic necessary to determine the
binary value of the consequents of the Boolean expression. In general,
this represents information which must be requested from the flight
controller or the flight crew. The value of these Boolean variables are
potentially ascertainable from telemetry data. Grouping the variables into
this category essentially constructs the set of data which must be
obtained from some source external to the maifunction procdure itselt.

2. 63alhs - Consequents. Contains the inferential logic which determines
the binary value of the consequents as a function of the antecedents.
Consequents are associated with either or both

a. diagnosis - the detection of a condition associated with the heavy,
black bordered bhoxes displayed in the original malfunction
procedure document reproduced in figure 2-1.

b. action - the detection of a condition associated with a box in the
original procedure which requires human intervention or a change
of vehicle state necessary to provide further information or ensure
vehicle safety before executing the rest of the procedure.

3. 63aexp - Explanation. Contains the logic to interpret the values of the
Boolean variables into English text for presentation to the flight
controllers or crew. This category uses exactly the wording of the original
malfunction procedure itself. This ability is a major advantage in
eliminating problems associated with introducing new terminology to a
highly specialized application.

This decomposition provides a strong organizational structure or paradigm for
converting these rule-sets into compiled. high-level languages such as FORTRAN or
PASCAL as well as interpreted and compilable languages like LISP. Tables 2-2, 2-3.
2.4 show the form each of these categories takes when constructed as ROSIE rule-

sets.
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Table 2-2: Partial Listing of 63aRHS

B2 Press is true obtain 63ala of "H2 P Normal".
63ala is true go 63alhs.

63ala is false obtain 63alb of "HZ P High".
63aib is true obtain B83a23 of

"TK3 and/or TK4 the affected tk".

63aib is false obtain 63alc of "HZ P Low",.

Table 2-3: Partial Listing of 63aLHS

(63ala is true) assert 63a2 is true.

(63aic is true and 63a3 is true) assert 63a4 is true.
(63alc is true and 63a3 is false and 63ad is true)
assert 63a6 is true.

(63a6 is true) assert 63a7 is true.

Table 2-4; Partial Listing of 63aEXP

63ala is true send {"* A11 H2 P norm”,returnj}.
63alb is true send {"* H2 P High",return,

ACTION: Deact htrs in affected tk(s).".return,

(R1) H2  TK1{2,3) HTRS A,B - OFF and/or",return,
(A11) CRYOD TK4 HTR H2 A,B - OFF",RETURN}.

[10] if 63alc is true send {"* HZ P low",return}.
[11] if 63a2 is true send {"* DIAGNOSIS: C/W Failure”,retu
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2.5. Programmable Logic Array Model of the Rule-Base

Although the HLL implementation was successful, it was obvious that the rule-base
would grow quite large very quickly, It was apparent that a more efficient
representation of the same logical relations could be achieved by representing the
Boolean expressions as bit vectors.

2.5.1. Hardware Equivalence

Although it is unlikely that malfunction procedures would ever be implemented in
hardware, one of the principal results of this work is the concept of
hardware-equivalence. By hardware equivalence, we mean the ability to use the
Boolean formalism to represent the compiete logic of the malfunction procedure as if
it were a programmable logic array (PLA). This means that procedural logic
contained in the malfunction procedures can be transformed to a bit-map which is
literally a form of compiled knowledge, independent of any software implementation,
programming language or host machine. Since the bit-map is essentially a truth-table
with a standard structure, described below, a single processor or program can be
constructed which processes these tables. By adopting this representation we
eliminate the need for a large software system, consider the problems of EXPRES and
CRYEX, which wouid be necessary to capture and process the logic of a large
number of malfunction procedurss and permit the processing of the same procedural
logic at the level of register-register operations. This implies not only significantly
reduced storage requirements but also very high processing speeds. The next few
sections describe the steps necessary to convert Boolean expressions to their PLA
form and present the results of an actual PLA synthesis and the resultant truth-table

which will be the prime example used throughout this work.

2.5.2. Generation of the PLA Description

Once a malfunction procedure has been specified in Boolean form, the process of
creating descriptions of hardware which are functionally equivalent to the malfunction
procedure is straightforward. and almost entirely automatic. A set of Boolean

equations is transformed into PLA descriptions through an automated series of
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transiations involving different intermediate representations. Each of the
representations is a description of a different aspect of what would, if a physical
circuit were to be manufactured, be the implementation process. The Boolean
equations are converted into a truth-table; sometimes referred to as a personality
matrix. The truth table will be transiated into an architecture known as an AND-OR
programmable logic array (AND-OR PLA). (in the remainder of this discussion, the
term PLA will be used to mean AND-OR PLA.) The PLA can be implemented as a
custom integrated circuit. Figure 2-2 summarizes the sequence of steps leading from
the Boolean functions to the manufacture of the hardware device. Most of these steps
are implemented using programs developed in the University of California, Berkeley,
Computer Science Division [Mayo 83). The names of the major programs involved are
listed in figure 2-2 according to their role in the sequential design and manufacture ot
a VSL! device. Although one can actually generate a semiconductor device which
executes the logic of the malfunction procedure, as shown below, to do so probably is
impractical for most of the kinds of procedures currently existing, due to the volatile
nature of these procedures and the consequent frequent changes made to them.
While the redesign of these devices would be trivial, the manufacture and integration
of the resultant devices would not be generally cost-effective. A small subset of highly

stable procedures could conceivably be identified for hardware implementation.
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Figure 2-2: Design and Manufacture Sequence for VLS Devices



2.5.3. Reduction of Boolean Functions to Normal Form

The design automation program egntott generates a personality matrix suitable for
PLA programming from a set of Boolean functions that define the PLA outputs in
terms of its inputs. Table 2-1 displays the input to egntott while figure 2-3 shows the
resulting personality matrix and the PLA resulting from that matrix as described in
section 2.5.5. A personality matrix is a representation of a set of Boolean tunctions in
disjunctive normal form (DNF) that defines a template for a circuit implementation of

those functions.

2.5.4. Minterms, Truth-tables and PLAs

Disjunctive normal form (DNF) expresses Boolean functions as sums of products or
minterms [Thomas 79]. One method of organizing information contained in Boolean
functions in general and functions in DNF in particular is through the use of a truth-
table. Each in the truth table is a minterm. A truth table serves to enumerate the
output values of a set of Boolean equations for a given set of input values. For

example, the truth table for the Boolean function a A {6V ¢} is
out

e el ol = = = = ) -
- OO O o O
OO OO0

|
I
|
|
I
I
I
I
I

P N == I == B == ) o i o

Each minterm is the conjunction (logical AND) of one or more terms. The second row
of this truth table is a minterm whose valueisOifaisOandbisQOand cis 1. A truth
table can be reduced in size by the use of don't care terms. A don't care term is
represented by -’ in the truth table. One possibie truth table for a A (bV ¢) using

don't care terms is

abc | out
6 --1 0
1001} 0
11 -] .1
1-11] 1

The use of don't cares is a form of data compression and is entirely equivalent to a
fully enumerated truth-table. There is no loss of information due to the introduction of

don't care terms.
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2.5.5, Interpretation of the Personality Matrix

The personality matrix consists of a line for each sum of products term, implicant,
which begins with that implicant followed by the values of the various outputs. The
implicant is composed of a single character (0, 1, or -) for each input variable in the
conventional fashion described in section 2.5.4. The output values are represented
by one of three characters (0, 1, or x). The PLA architecture is physically similar to
the truth table, in addition to implementing it functionally. The AND-OR PLA has two
parts that are each implemented as planar portions of the (planar) integrated circuit.
These portions are called the and-plane and the or-plane. The and-plane lies
adjacent to the or-plane in the same way that the input portion of a truth table lies
adjacent to the output portion. The and-plane and or-plane have the same number of
rows. Each row contains the circuitry to calculate one of the minterms from the truth
fable.

2.5.6. Comparing Logical and Physical Domain Formats

The reduction, by egntott, of the set of Boolean functions into disjunctive normal form
creates a matrix (bit-map) describing the normai form which is directty comparable to
the physical realization of the PLA in terms of integrated circuit mask layers. To
illustrate this, figure 2-3 displays both the truth-table for maifunction procedure CRYO
6.3a and the resulting PLA. They have been lined-up to show the data tormat of the
disjunctive normal form of the truth-table juxtaposed with the corresponding circuit
topology of the PLA. The ones in the left-hand part of the matrix are reflected in a
connection to the true input column in the circuit, the zeros in the left-hand part of the
matrix are reflected in a connection to the complemented input column in the circuit,
and the ones in the right-hand part of the matrix are reflected in a connection to the
output column in the circuit. The zeroes in the right-hand part of the matrix specifies

no connection to the physical output column in the circuit.
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2.6. Equivalence Classes

Equivalence classes are introduced to provide a common denominator for the
discussion of functional dependencies and equivalent fault states. Their importance
is associated with the fact that fault states may be entered in a variety of ways and yet
result in the same functional loss. The relationship between causes of faults and
faults themselves is, therefore, many-to-one. Some interesting work has been done
on the definition and identification of fauit equivalence in sequential machines [Boute
71] and we will discuss this later in the context of finite state automata. In the
meantime we will develop a description of equivalence classes relevant to the
malfunction procedure problem. To aid in this development, the following theorem is
reproduced from [Dean 66], without proof, for convenience since we will refer to it
later.

Theorem 1: Let A be a nonempty set and let o denote an equivalence
relation on A. For all x€4 let S, ={y|yox}. A is the set sum of the set of
mutually disjoint, nonempty subsets S,; A={x{x€4}. S, is calied an
equivalence class of A under o.

To complete the description of equivalence class, we require that equivalence

relations exhibit the properties of reflexivity, symmetry, and transitivity [Kemeny 66].

2.6.1. Construction of Fault Equivalence Classes

Because malfunction procedures describe anomaly conditions and these anomalous
states may be sometimes entered in a variety of ways, it is useful to consider the
characteristics of the states. Equivalence classes provide a construct to do that. To
construct these classes based on the data representation developed in this work, we
define equivalence classes over the set of implicants. I, corresponding to the tupies or
rows of the relations corresponding to malfunction procedures. From our previous
discussion it is clear that each tuple can be considered to be a bit-vector with each
bit-position corresponding to an attribute of the relation. Each attribute corresponds
to a single Boolean variable in an antecedent term of a production rule. As first
described in section 2.5.4, implicants compose the AND-plane of the PLA personality
matrix and, consequently. also the left-hand part of the relational table. as seen in
figure 2.7. In order to construct equivalence classes over the set of implicants for a
relation we must show that the relation composed of the implicants satisties the
properties of reflexivity, symmetry and transitivity.
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2.6.1.1. Reflexivity

The refiexive property is simple to satisfy in the PLA by introducing a feedback term
equivalent to the production, A— A. These are not necessary nor normally carried in
the relation nor in the PLA since it is wasteful of storage in the case of the relationai
table and chip space on a PLA. [t is reassuring, however, to see that its
implementation is straightforward and consistent with the development presented so
far.

2.6.1.2. Symmetry

Symmetry requires that, for the production A— B, the relation, B— 4 aiso holds. This
is easy to prove using our definition of conditional relation. First, transform 4— B and
B— A to clause form, ~4V B and ~BV 4. Symmetry is satisfied if and only if
(A= B) A (B— A4). Manipulation of this expression using the axioms of Boolean
algebra leads to

[(~4AA ~B)V(BA ~BIV[(~AA AV (4A B)

inspection of the relational table in figure 2.7 shows that each column or attribute in
the right-hand side of the table can be represented in the form A=>B where, in
general, B is a set of implicants whose composition is indicated by the position of 1 in
the appropriate row of the column corresponding to B. Conversely, since the table is
produced from expressions of the form B=> 4 we know that those relations also hold
in the table. This demonstrates that the relations realized as rows and columns of the
PLA personality matrix and the resultant relational table are symmetric and that the
tabies preserve symmetry. Since the columns of the right-hand side of the table
represent the disjunction of the implicants on the left-hand side of the table, the tabie

is symmetric over the set of implicants.
2.6.1.3. Transitivity

Transitivity requires that relations of the form A— B and B—(C aiso result in A=, As
under reflexivity, this condition can be assured by the use of feedback, which resuits
in the inclusion of tuples which explicitly record the A— ( relation or through variable
substitution. Variable substitution has the effect of substituting for B the Boolean
variabies (attributes) of which A is composed. This is realized as a new tupie in the

relation table which is equivaientto A A B.
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2.6.2. Example of Equivalence Classes in CRY06.3a

Equivalence Class: 63a43
63043 = ~ 63041 A 63240 A\ ~ 63223 A 63ald

Equivalence Class: 63a44
63244 =63a42
63ad4 = 63047

Equivalence Class: 63a47
63047 =63046 A 6345 A ~ 63240 A ~ 63423 A 63ald
63047 =63a46 A 63045 A 6358

Equivalence Class: 63a48
63048 = ~ 63a46 A\ 63a45 N\ ~ 6340 A\ ~63a23 A 63ald
63048 = ~ 63046 A 63a45 N 6358

Equivalence Class: 63a50
63a50=63049b A ~ 63045 A ~ 63040 A ~ 63423 A63alb
63a50=63a49b A\ ~ 6345 A\ 6358

Equivalence Class: 63a51
63a51 =63a50

Equivalence Class: 63a52
63a52=63a49a N\ ~ 63285 A\ ~63a40 N\ ~ 63223 A 63alb
63a52=63a4%a A\ ~ 63245 A 63bx8

Equivalence Class: 63a52
63ad3 =63a52

Table 2-5: Equivalence Classes Within CRYO 6.3a

Equivalence classes, as defined above, are common occurrences in malfunction
procedures. Table 2.6 dispiays some of the more interesting, non-trivial, equivalence
classes within CRY06.3a. Trivial classes are defined as those classes which are

subsets of A with cardinality of one.

2.6.3. Generation of Disjoint Subsets

The requirement of disjointness is not a restriction for our purposes since can
decompose non-disjoint elements of A, corresponding to paths, as necessary in the
following manner. For arbitrary elements of A taken pair-wise, (B— A4.C— 4 ). such

that {(B— DN(C— =@ perform the following decomposition. Create the new
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production, D— A4, such that B={DUB} and C={DUy} and BNy=@. This
decomposition can aiways be performed unless B= C in which case 8 and C are
redundant and one of them can be eliminated. An example of this decomposition

using one the equivalence classes of Table 2.6 is shown below.

Equivalence Class: 6£3a48
63a48= ~ 63a46 A 63a45 A ~ 6340 A\ ~ 63a23 A 63alb
63048 = ~ 63246 N 63245 A 6358

We re-write these expressions in the more common form of productions and
according to the previous definition of production rules:

(~63a46 A 63a45 A\ ~63ad0 N\ ~ 63423 A 63alby—63a48
(~ 63246 A\ 63245 A 6368)— 63048

Then we define:

B={~63a46.63a45. ~ 63240, ~ 63a23,63a1b}
C={ ~ 63046, 63045, 6358)

and then:

D={ ~63a46,63045}
B={ ~63a40. ~ 63a23.63alb}
y={6368}.

This results in the generation of a new equivalence class, D, which may be considered
to be a subproposition of the parent, 63a48, for the purposes of variable naming as

discussed in section 2.3.3.

2.7. Relational Model: Malfunction Procedures as Relations

The relational model [Codd 70], [Ullman 80], [Date 77}, provides a convenient and
powerful method of manipulating data which is constructed in the form of tables. !f we
view the personality matrix of section 2.5 as a relational table, as it is represented in
Figure 2.7, then we, de facto, have constructed the corresponding malfunction
procedure as a refation. In Figure 2.7. the names of the antecedents shown in Table
2-1 are the atiribuies of the left portion of the relation and the consequents are the
attributes on ths; right part of the relation. In the discussion of functional
dependencies we will show that the antecedents are the atiributes composing the

refational key. Each row of the table is a tuple in relational terminology.
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2.7.1. Relational Description of the Rule-Base Derived from the PLA Model

The rule-base may be defined as the set, S, of malfunction procedures, 3y, such that
S={M..... M)}. Each matfunction procedure, M, is a relation with its tuples
corresponding to a path through the malfunction procedure digraph, as described in
section 2.5.4, and is one of the implicants in the personality matrix of the malfunction
procedure. Each tuple, therefore, is composed of antecedent terms, corresponding
to the AND-plane of the PLA, and consequent terms, corresponding to the OR-plane
terms of the PLA. We write each tuple in the form ¢;= (4, ..., 4.B41... . .By). The 4;
are the terms of the antecedents and the B; are the terms of the consequents.

2.7.1.1. Integrity Constraints Implicit in Disjunctive Normal Form

Because the implicants are in DNF, the relation Af; implies the following logical

relations:
! m
[T4= > B, (2.2)
Jj=1 J=l+1

n

m !
> B 2> (IT4), (2.3)

i=1 J=i+r =1

The first equation states that a functional output is true if and only if a// of the
antecedent conditions for that tuple are satisfied as well as the converse. This
equation is said to be row-oriented or tuple-oriented. The second equation states that
an output term is true if and only if the antecedent terms of some tuple are satisfied. as
well as the converse. These may be considered integrity constraints in the sense that
every relational table corresponding to the PLA format is constrained to satisfy these

expressions.

42



66B6666666666666666666666666666666666666666
3333333333333333333333333333333333333333333
43a343442233233338823322332233423a333a322ab

11113568011111111222222333333332344444444558

12345679023560012344566B80125679902
Eabe ab ab

666666665666666666666666666666666
333333333333333333333333333333333
aaaaaaazaaaaaaasaaaaalaaaaaaazaaa
124679111112222223333333444445555

045890145780356789234780123

0--100-0-0nmmmn]=wm=m=-wmemcmammeoo oo oooiaan
0--100-0-01-0----- Q==rmmmmmmmmre s oo
0--100-0-01-0-=--~ 1mmmeemmmmmmm e
0--100-0-01-1==-=========rc=c====—-emmemno-
0--100-0-1----10=========--cc---ammmemsooo-
0--100-0-1===1]1-sn=mm===oncommoo—emmrmoo -
0~=100-f-===mmmmmmmmmmmmomeo oo oseemmaeaoos

000000000013000000000000000000000
000000000000001000000000000000000
000000000000010000000000000000000
060000001000000000000000000000000
000000000001000000000000000000000
000000000100030000000000000000000
00000100000000000000CC00000000000
000100000000000000000000000000000
001000000000000000000000000000000
000000000000000000000000000001000
000000000000000000000006000000010
000000000000000000000000000010000
000000000000000000600000000100G00
000000000000000060000000010000000
000000000000000000000000100000000
0000000000000000000010000000060000
000000000000000000000010000000000
£00000000000000000100000000000000
000000000060000000010000000000000
0000000600000600001000000000000000
00000000000000010000¢000000000000
160C00000000200000000000000000000
100000000000000000000000000000000
0100000000000000000C0000000000000
1000000000000000000000C0000000000
1000C00000060000000000000006000000
1000000000000000000600000000000000
1000000000000000000000006000000000
100000000000000000000000000000000

hEABEOAEREBEEE666666666666666666666666666666
3333333333233332333333333332333333333333333
aaaaaaaaazaaadaasaajaaaaaaazaaaaaaaaasaaaaab
1111356861111111122222233333333344444444558
123456790235690123445680125679902
Eabc ab ab

6666666666666665666666666666666666
333333333333333333333333333333333
aaaaasadsdaaadddaadaaaaaaaazdaaaa
12467091111122222233333334444455355

045890145780356789234780123

Figure 2-4, continued



2.7.1.2. Buried Functional Dependencies

These equations are very interesting because they imply functional dependen;:fes
which are a direct result of the representation of the PLA model in disjunctive normal
form. From the definition of the biconditional, =, the Equivalence Theorem of [Fagin
77] for functional dependencies and logical implications and equations (2.2), (2.3), we
can write, for values of z‘ilg i{nand i i<k{m

[T4,~8,

J=1
This expression is an immediate consequence of equation (2.2} since it is the special
case where the sum of the B’.j is such that m=j. This can be stated by saying that

each functional dependency corresponds to a single term in the sum on the right-
hand side of equation (2.2).

2.7.2. Functional Dependencies as Implications

Functional dependencies (FD's) are logical implications of the form Y==Y.! This
expression is read as X functionally determines Y. This notation is different from that
used for productions as a result of the fact that FD's are statements about the
relationships of subsets of attributes within a relation. These relationships are
independent of the truth-value of the attrib‘utes. As specified in definition 2.5.4, FD's
are implication relations. Remember that attributes correspond to the Boolean

variables in figure 2.7.

1A|though this definition is identicat to that of [Uliman 80] the notation ditfers.



Chapter 3
Real-Time Analysis of Malfunctions

Results from section 2.2 provide the basis for the generalization of the problem of
representing and executing automated maifunction procedures in real-time to that of
procedures of a more generic nature. This chapter presents the methodology and
results of an approach which adapts the knowledge representation of section 2.210 a
control strategy suited to the problems faced by the flight control team. There are

minimum, fundamental requirements that an automatic system must meet. It must

1. Monitor and validate nominal SSV system functions. That is, the
automated system must be aware of the state of the SSV by the time-
sampling of telemetry data.

2. Identify the subset of malfunction procedures relevant to the current
vehicle state. This process is sometimes referred to as conflict resolution
[Georgeff 82].

3. Detect and annunciate the violation of nominal conditions; referred to as
limit-sensing.

4, Invoke and control the execution of malfunctions procedures, with or
without man-in-the-loop, for anomaly resclution.

5. Provide an explanation for the actions of the control process and the
resulting analysis.

3.1. Introducing Time into Rule Processing

One of the most difficult problems in the field of expert system research has been the
incorporation of a sense of time into the analyses provided by expert systems. The
difficulty is related to the many ways in which time is used by humans as well as the
diverse vocabulary for describing different aspects of time. Work by [Kahn 77]
resulted in the description of three constructs for the organization of temporal

knowledge. These constructs included a simple, temporal sorting using date-fines;
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special reference events, and before/after chains. This work concluded that the
date-line construct was simplest and most efficient unless temporal information was
sparse or a wide, and unspecified, range of time-related queries were expected. In
either of the latter situations, date-lines were less desirable than the other constructs.
Most recent work which makes use of time is related to the dévelopment of planning
systems such as that of [Vere 83]. Earlier, and related. work on planning systems for
robots resulted in PERT-like scenarios for robot time-lines [Hendrix 73]. In particular,
[Hendrix 73] used time both as a measure of location with respect to a robot time-line
as well as an interrupt to initiate and terminate robot activities. The most systematic,
and probably most general, approach to the description of time-concepts has been
exhibited by the work of [Bruce 72]. This work attempts to define a formal description
of time-concepts (e.g., before, after, during) using first-order logic. This approach has
the advantage of providing a mapping, through the use of propositional definitions,

between natural-language syntax and the syntax of propositional iogic.

3.1.1. Relationship of Time to Causality

The distinction between implication and conditionai relations, introduced in section
2.6, is important both in describing the domain features as well as in the development
of the notion of causality which is fundamental to the analysis of anomalies. The
purpose of analyzing malfunctions, the largest part of the flight controllers’ job. is to
determine the cause of failures. It is fortunate that this probiem domain is strictly
monotonic in time. This eliminates much of the ambiguity associated with time-
concepts and permits fairly simple assumptions in the determination of causal
sequences. [t is important to note that although the physical system represented by
the set of implication relations is time-monotonic, the analysis of failures is not. As
described later, non-monotonic reasoning is reguired both in real-time analysis and

rule-synthesis.



3.1.1.1. Domain Features

To facilitate our discussion of causality, we introduce a classification of domain

features according to the foliowing definitions.

Definition 1: A first-order, domain feature is any production-rule
contained in the set of implication tables. These features are defined
apriori during the knowledge compilation process (cf. section 2.1.2).
These features correspond to the set of rules sometimes referred to as
production memory [McDermott78a 78]. The major distinction of these
features is that they are static.

Definition 2: A second-order, domain feature is the resuit of the dynamic,
(i.e., time-dependent) satisfaction of production rules. This is
correspondent to the notion of working memory also used by
[McDermott78a 78).

Definition 3: Zeroth-order, domain features are the lowest level (closest
to physical systems) and consist of variables and logical connectives used
to construct first-order features and which are directly determined by
external data (e.g., telemetry parameters) or directly computed in the
process of determining second-order features.

The definitions used to describe the domain features can be summarized by thinking
of implications as first-order domain features as the abstractions determined by the
logical structure of the domain. They are static, structural features since their validity
is not affected by the truth-vaiue assumed by any subset of the conditional refations at
any point in time. The realization of the dynamic, time-dependent character of the
domain constructs the second-order features. The logical structure of the domain is
the set of logical statements, composing the conditional relations. which are
constructed constructed from variables and connectives. As such, these statements

are zeroth-order or atomic domain features.

3.1.1.2. Causality

Causality is a slippery subject and has been much discussed in philosophy
[Armstrong 71] as well as computer science [Barr 81), [Hofstadter 79]. Fortunately,
our situation is relatively simple. Given that we are dealing with a time-monotonic

system, the S8V, the criteria for establishing causality are:

1. the cause of an anomaly must be a member of the equivalence class of
that failure

2.the antecedents (first-order features) of the cause must have been

47



realized as second-order features before the realization of the
equivalence class.

While these seem like obvious, and innocuous requirements for the establishment of
causality, they are both necessary and sufficient conditions analyzing causes. f
either of these conditions is not examined or is unsatisfied in the isolation of causes,
the result is merely a correlation rather than a cause. This will be shown in the

example presented later.

3.2. A Description of R/T Processing Based on Levels of
Abstraction

Viewing the problem of monitoring the SSV through the artifact of levels of
abstraction, figure 3-1, is useful for a variety of reasons. The decompaosition of the

overall problem of monitoring the system into various levels

1. provides a view of the system architecture as it currently operates

2. identifies the interconnections in the communications paths required for
the identification and resoiution of anomalies

3. establishes a baseline against which progress in automating the entire

process can be measured.

The salient features of each level is described below.

3.2.1. Level 0: SSV Systems

The SSV systems are monitored through instrumentation at the level of switch and
valve, temperature sensors, pressure sensors and, in general, chemo, and electro-
mechanical devices. There are also a large number of crew-controlied, manual
switches which are important to higher-level processing and interpretation of
telemetry.
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Figure 3-1: Levels of Abstraction in SSV Monitoring
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3.2.2.Level 1: On-Board Data Processing and Telemetry

Level O data is interfaced to the on-board data processing systems and this is made
available both to the flight crew and the ground controllers. Limited data processing
is performed on-board although much of the flight critical processing ts availabie
directly to the crew if necessary to support emergencies.

3.2.3. Level 2: Flight Control Team and Flight Crew

This is the level at which operational decisions are made. Data passed to the flight
control team is interpreted by the controllers both in the Flight Control Room and the
Multi-Purpose Support Rooms, figure 1-1, and resultant actions are coordinated with
the flight crew through the use of voice circuits. The flight control team has the

primary anomaly processing responsibility.

3.2.4. Level 3: Decomposition into SSV Systems

Although leve! 2 is the primary interface to the crew and the SSV, this level is the first
functional decomposition of responsibility into SSV systems and subsystems;
sometimes referred to as disciplines. At this level, malfunction processing first

becomes compartmented into distinct first-order domains.

3.2.5. Level 4: Super-Malfs and Pocket Checklists

Level 4 is included because it corresponds to a higher level of logical processing than
that of the malfunction procedures themselves. For example, super-malfs provide the
interface between the human controllers and any single malfunction procedure. By
analogy with programming. the super-malfs are the main procedure from which the
malfunction procedure subroutines are calied. Based on currently available
documentation, this is the lowest-numbered level which is mapped into first-order

features.
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3.2.6. Level 5: Matfunction Procedures

Lavel 5 is the level of the documented, malfunction procdedures discussed
extensively already in section 1.3.4. This level represents the lowest level of
documented information used to compose the rule base directly. The bulk of first-

order features reside at, but are not limited to, this level.

3.3. Constructing Real-Time, Second-Order, Domain Features

To perform the construction we must further describe the operating environment. As
depicted in figure 3-1, telemetry data is passed to the ground system, and eventually,
to the flight control team in the form of time-sampled. parametric observations of
on-board sensors. Via data processing, limit checking can be pertormed for the
purpose of setting a bit in the status vector which is shown in figure 3-2. When this
status vector is altered, a process is initiated which performs a controlled search of
the library of first-order features which we also refer to as the set of implication

relations.

3.3.1. Forward Chaining: Data Driven Analysis

By performing a pattern match of the status vector with the first-order tables, the
process, called FSCAN in figure 3-2, finds the refevant rules and copies them into the
second-order set which is a time-ordered. PLA-table structured in the same manner
as the first-order table. That is. all antecedent zero-order terms in the first-order table
are present in the left part of the second-order table and all consequent zero-order
terms are included in the right hand part of the second-order table. The resultant
second-order table can be thought of as a state-table which defines the state of the
SSV system or subsystem described by the first-order tables which are considered in
the pattern-match performed by FSCAN. For example, CRYO63a is a malfunction
procedure within the Cryogenics system of the SSV. Therefore. the corresponding
state-table generated by FSCAN. when it has been applied to the entire CRYO63
library, describes the state and chronology of the cryogenics subsystem of the SSV.
Since the state-table preserves the DNF of the first-order tables it is possible to

summarize this table operations. by mapping the time-dependent tuples contained in
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the state-table into a single, new status vector. This process is described in section
3.3.4.

3.3.2. Backward Chaining: Hypothesis-Driven Analysis

While FSCAN performs the data-driven analysis. BSCAN performs the what-if type of
analysis necessary to explore possible causes of anomalies in the face of anticipated
failures or incomplete data. BSCAN functions by constructing the eguivalence
classes corresponding to selected failures. A good example of the utility of this
method of analysis is the identification of the set of next-worst failures. This type of
analysis is critical to contingency planning as well as the elimination of irrelevant
information during the analysis of anomaly processing. BSCAN operates in exactly
the inverse manner of FSCAN. This is accomplished by performing the pattern-match
on the right hand part (OR-plane) of the first-order tables rather than the left-hand
{AND-plane) of the tables. By performing a similar copy operation into a virtual
state-table, since BSCAN performs hypothetical or virtual analyses, it is possible to
collect the set of potential causes of various system anomalies. As in the case of
FSCAN, a single status vector can be generated as the basis for reporting the possible
causes back to the operator, however uniike FSCAN, this method of hypothesis
exploration has the potential of generating /ogical inconsistencies in the resultant
virtual state-tabie. In other words, the virtual. second-order set may contain mutually
exclusive rules which cannot be collapsed into a single virtual status vector without
loss of information and. therefore, introducing an error. This will be discussed turther

in the example below.

3.3.3. Semantic Attachment

Since the processing of the first-order tables is entirely bit-vector oriented. it is
necessary to perform semantic attachment to the resultant second-order tables and
status vectors for human interpretation when that is needed. Note that the ultimate
goal of automation of malfunction processing is to minimize human involvement and
that the burden of processing associated with semantic attachment, while small. can

be expected to decrease as the system becomes smarter, as describe later,
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3.3.3.1. Storage of Semantic Values for Zero-Order Features

Zero-order features are the variables and logical connectives composing the rules
(first-order features). Variables correspond to the boxes in the source malfunction
procedure document as shown in figure 1-2. The text associated with these boxes is
the semantic value of the zero-order variables. These can be stored as simple
sequential lists, as shown in table 2-4. Note that this association of text to the zero-
order variable was used in the high-level language implementation described in
section 2.4. |

3.3.3.2. Retrieval of Zero-Crder Semantic Values

A major advantage of the use of the PLA model is the fact that there is a fixed meaning
to the rule structure. That is, all first-order features (rules) have antecedents which
are conjunctions. The equivalence classes, which are composed of first-order
features, have a disjunctive relationship between the members of any given
equivalence class. Therefore the construction of the explanation of a malfunction
analysis merely requires the insertion of and and or in the proper place during the
retrieval of the semantic values for reporting to the human operator. This is shown in

table 3-3 for a hypothetical state vector resuiting from the analysis of CRYO6.3a.



63ala = Hydrogen Pressure Normal

63alb = Hydrogen Pressure High
63alc = Hydrogen Pressure Low
63alE = Hydrogen Pressure Sensor Error
{(more than one indicator set)
63a2 = C/W Failure
63a3 = Pressure in all tanks < 153 psi
63a4 = System Leak
63a5 = Both P and TK P of affected tk low?
63a6 = leak between affected tk and check viv,
leak cannot be isolated.
63a7 = Deact htrs in affected tk.

{(R1) H2 TK1(2.,3) HTRS A,B - OFF
or {A11) TK4 HTR H2 A,B - OFF
63a8 = Also get 02 Press Alarm and/or S68 H2 Press
and S68 02 Press msg lines?
63a9 = Loss of ESS bus, common to both affected 02 and
HZ HTR cntirs.
Affected TK qtys also lost.
If ESS1BC 013 & R15 Jost, then only msg lines with
no F7 1ts will resulit.
63al0 = Reconfig htrs per BUS LOSS SSR.
If pri ESS bus lost, other alarms will be present.
If not pri bus, subbuses are:
TK1: ESS2CA 013 & R15
TK2: ESS1BC 013 & R15
TK3: ESS31B ML868
TK4: ESS1BC MLB86B

63al11 = 1is TK3 and/or TK4 the affected tk?
63al2 = are TK3 and TK4 depleted, QTY < 10 7
63al3 = operate on TK3 and TK4 until QTY < 10 then:

(R1) H2 TK3 HTRS A,B (two) - OFF
and {(A17) TK4 HTR H2 A,B {two) - OFF
63a14 = Is cntlr cb of affectk (TK1 and/or TKZ) on
Pnl 013 open?

B83al5 = Possible electrical Problem,
Do not attempt to reset cb.
63al6 = Is CNTLR cb of affect tk on Pnl ML8BB open?
63al7 = Continue to monitor. Do TK3 and TK4 Hirs cycle
on when pressure in both TKs= 217-223 psia?
63a18 = P transducer failed low. Continue to operate
TK3 and TK4 in auto.
63a19 = Possible electrical problem.
Do not attempt to reset chb.
63220 = PWR failure in affected htr cntlr,
63a21 = Deact htrs in affected tk(s).

(R1) H2 TK3 Htrs A.B {two) - OFF
and/or (A11) TK4 HTR H2 A.B (two) - OFF

Table 3-1: Some Semantic Values of Zero-Orgder Features for CRY06.3a
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Tabie 3-2: A Single Rule from the CRYO 6.3a First-Order Table

63alE = Hydrogen Pressure Sensor Error

(more than one indicator set) and
63alb = Hydrogen Pressure High and
63a23 = Deactivate htrs in affected tks.

TK3 and/or TK4/5 affected. and
63a26 = TK3,TK4/TK5 htrs deactivated.

A11 htr switches off when problem occurred.and
63a29 = Pressure in both TK3, TK4/5 > 293.8 psia. and
63a31 = Both P and TK P of affected tk high. and
63a32 = MANF Ps agree with P and TK P of affected TK and
63a35 = Diagnosis: AUTO PRESSURE CONTROL OR RPC FAILURE.

Table 3-3: Retrieval of Semantic Values of Zero-Order Features Table 3.3.4
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3.3.4. Propagation of Status Vectors Between Leveis

As previously stated, the tables of first-order features are in DNF and, this structure is
preserved throughout the second. and third-order features. A very useful result of
this form is that the state table can be summarized into a singie, time-independent
status vector which can be propagated across the levels of abstraction both as a

means of communication as well as input data to higher level processing.
3.3.4.1. Boolean Summation

This process of summarization is called Boolean Summation is accomplished by
simply OR-ing the rows of the status tabie into a single status vector. This results in a
singie status vector for each system discipline as depicted for three particular
disciplines in figure 3-3. Figure 3-3 demonstrates the receipt, at level 5, of an input
status vector. After processing by FSCAN/BSCAN, an updated status vector is

generated which is the result of Boolean Summation.

3.3.4.2. Constructing State Tabiles from Summed Status Vectors

The summed status vectors represent all known information about system and
subsystem states to the extent that telemetry parameters have been mapped into
first-order features. In general, these vectors are time-tagged to permit temporal
considerations to be introduced both ih real-time analysis and rule-synthesis.
Summed status vectors cannot preserve time-information since the are the result of
summation over some time-window. represented in figure 3-3, as the state tables.
These status vectors can, however, be agsembled into higher-level, time-independent
state tables. This process is discussed in chapter 5. An overview of the use of these

time-independent, state tables is shown in figure 5-1.

3.4. Non-Monotonic Reasoning

If we consider monotonic reasoning to be the methods of reasoning by which the
cardinality of the set of theorems derivable from a given set of axioms is a monotonic,
increasing function of the cardinality of the set of axioms [Barr 81}, much of the
confusion about the nature of nen-monotonic reasoning can be eliminated. For

example, if we consider the entries in the state table of figure 3-2 to be axioms, then
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the theorems, derivable from these axioms, correspond to the diagnoses implicit in
the set of table entries. This is the same thing as saying that the set of axioms impiies
the set of theorems.

3.4.1. Logical Inconsistency and Imperfect Data

Brief reflection on the possibility of randomly occurring, non-mutually exclusive
failures, suggests that the addition of entries to the state table may either increase or
decrease the possible diagnoses with time as the table grows. This is due to the fact
that, barring logical inconsistencies in the first-order tables, the second-order table
may contain logical inconsistencies as the result of imperfect data or incomplete
system knowiedge reflected in the first-order tables. One consequence could be the
introduction of an additional second-order feature, or axiom for the purpose of this
argument, would increase the number of possible diagnoses while in another

situation, the addition of a second-order feature would decrease the number.

3.4.2. System Reset as Non-Monotonic Reasoning

Another, perhaps more common, conception of non-monotonic reasoning is that of
backtracking during a search for a solution or proof. In fact. this situation is essential
to the real-time processing of malfunctions since it is necessary to be abie to restore
partial or full function to a previously failed or degraded system or subsystem and that
the restoration be reflecied in subsequent analyses. This corresponds to
backtracking, or non-monotonic reasoning, in the sense that du{'ing the entire
processing which leads up to the state at time 1, the expert reasoning process has
been watching a certain logical path through the entire space described by the first-
order feature set. When this process identifies a correctable failure, this corresponds
to a fault state which is equivalent to the state table structure at that time. When the
identified fault is full or partially corrected it is as if the finite-state machine,
implemented by the state table. were reset to a non-fault state. In this sense,

non-monotonic reasoning is equivalent to a fulf or partial reset.
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3.4.3. Implementing N-M Reasoning with the PLA Model

Using a pattern-matching mechanism similar to that of BSCAN and FSCAN. the state-
table entry which triggered the diagnosis, or fault state transition, is found in the
state-table. There are two methods of handling full and partial resets which do not
require altering the form of the table by using, for example, extra bits to indicate
deletion.

3.4.3.1. Entry Deletion

One method is to delete the oftending entry from the table. Note that, since the table
is time-ordered, this has no effect on the chronology and, therefore, the implicit
causality of events but alters the record of the time-sequential events. This can, of
course, be overcome by the maintenance of a separate log as a record. This is an
important issue for analyzing system performance after a mission, for example,
and/or the appropriateness of human or machine corrective action to a fault but it is
more advantageous to keep the state-table small so that the deletion of corrected
failures is a desirable method.

3.4.3.2. Set to Null

Setting the corrected failures to don't care conditions in the state-table entry, using
the same pattern matching facility to locate the proper entry used above, is another
approach although there is littie to recommend it. Once reset has been
accomplished. the table entry contains no information since all its positions are set to
don't cares. The table grows monotonically larger. A variation on this theme would
be to keep the table entry around and selectively reset first-order features as they are
corrected until the entry is entirely nulled. This is inconsistent with the simple notion
that each state-table entry is identical to that of a first-order table. In addtion to
violating that ground-rule it adds a substantial amount of housekeeping to pattern-
match for partial resets which require deletion and is significantly more difficult to

program and maintain.



Chapter 4
Rule-Synthesis

The goal of rule-synthesis is to articulate the heuristics used at levels 2 and 3 depicted
in figure 3-1 through the rule-base structure of chapter 2. This can be thoughtof as a
methodology for the reduction of human participation in the malfunction detection
and analysis process as well as @ method to extend the scope of the degree of
determinism, realized at levels 4 and 5, to levels 2 and 3. There are two basic types of
rule-synthesis which are important to the processing of malfunctions. The first type

we will call time-correlation and the second type, structural integration.

4.1. Static and Dynamic Rule-Synthesis

This division of types of learning reflects a recurring theme in this work. Time-
correlation addresses the problem of the identification of causal sequences of
predefined events, Structural integration, on the other hand, addresses the problem
of identifying hidden, or buried failure modes. Since learning can take many forms,
we limit the scope of our discussion to the generation of new, first-order features, and
we will call this rule-synthesis. All subseguent discussion of learning will be made in
this context. Rule-synthesis via time-correlation and structural integration are both

based on the methodology of fractional-domain features which is introduced beiow.

4.2. Fractional-Order Domain Features

Fractional-order features are based on a relaxation method for the generation of new
equivalence classes from the set of first-order teatures. QOur use of equivalence
classes was described in section 2.6. We extend this concept to permit us 10 make
use of the imperfect information contained in our ruie-base to ¢construct new rules and
to permit the monitoring of incipient maffunctions in a manner which is analogous to

the concept of pipefining used in some computer architectures [Tannenbaum 76].
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4.2.1. Relationship to First- and Second-Order Domain Features

The construction of the second-order features requires compiete-matching of the
first-order features to the input, status-vector as depicted in figure 3-2. If we define
second-order features to be the set resuiting, in real-time, from a relaxation factor of
zero, then we are able to define new equivalence classes. These new classes are
intermediate between the set of static, first-order features and the dynamic, second-
order features and correspond to relaxation factors greater than zero. This

relationship is depicted in figure 4-1.
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4.2.2. Relaxation by Partial-Matching

Partial matching is a refaxation technique which is implemented using a relaxed
version of FSCAN. The degree of relaxation is treated as a global search parameter
which sets the minimum number of antecedent terms which must be matched in any
given first-order feature for that that feature be copied into the resultant, new,
equivalence class composed of the set of partial-matches. This process also
suggests a metric for assessing the goodness-o‘-fit, a concept from statistics, of the

first-order feature to the system status.

4.2.3. Relaxation Factor Determines Fractional-Order of Partial-Match

Figure 4-1 shows how partial-match equivalence classes refate to first and second-
order features. The equivalence class corresponding to a relaxation factor of one
contains all first-order features whose antecedent terms match the status vector on all
but one term (zero-order feature). Likewise, the equivalence class corresponding to a
relaxation factor of two is composed of all first-order features whose antecedent terms
match the status vector on all but two zero-order features. Note that, in general, these
new equivalence classes have members which compose first-order equivalence
classes. Since these equivalence classes are intermediate between first and second-
order feature sets we refer to them as fractional-order features using a notation

similar in appearance to real numbers but with a different interpretation.

4.2.4. Notation of Fractional-Orders and Problems of Scale Normalization

For the fractional-order set of feature, or equivalence class, with retaxation factor of
one, we write 1.1; for relaxation factor of two, we write 1.2 and so on. in general, we
write 1.<relaxation factor>. Note that this is merely a naming procedure and not a
scale. Since the number of antecedent terms contained in first-order features is
theoretically unbounded there is no way to normalize the relaxation factors into a
scale without other constraints on the number of fractional-order, equivalence classes
possible. Also note, that the .fractibnal-order of a class does not convey any
information about the severity or criticatity of that class or members of that class in the

sense of next-worst failure.



4.3. Rule-Synthesis by Time-Correlation

Time-correlated learning is probably the conceptually simplest to understand. Since,
in general, we are dealing with systems which are continuous in time but which have
been sampled or discretized, for convenience we will first describe the rationale
behind the method using the notation of continuous function. Later, we will show how

this is mapped into the domain of the first-order features described previously.

4.3.1. Reiationship to Next-Worst Failure Analysis

Time-correlated, fractional-order generation is similar, but not identical to, next-worse
failure analysis. The major difference is that there are no weights provided to permit
the quantitative assessment of the qualitative concept of next-worst. However,
structural integration facilitates the construction of an ordered list of incipient failures
based on the completeness of the partial-match of the antecedent conditions. This is
more powerful than the next-worst type of analysis in the sense that the controller is
provided with a more complete picture of where any given system stands, in

functional adjacency, to another failure.

4.3.2. Multipie Dependent Failures

A basic premise to the construction of the Boolean expressions, which define the
first-order features of the rule-base, is that each expression is a stand-alone, path
through the digraph of the malfunction procedure. A consequence of this fact is that
any first-order feature can be removed without disturbing the rest of the rule-base
since there are no implicit interdependencies between the expressions. More
precisely, from any set of Boolean expressions it is possible to generate another set,
equivalent to the first, such that no zero-order feature. which appears in the set as a
conseguent, appears in the set as an antecedent. |f this were not the case then it
would be possible that the deletion of a first-order teature would make another first-
order feature non-executable since the deleted consequent wouid be contained in the
antecedents which are, by definition of DNF, in conjunctive form. However, it is
important to remember that the set of first-order features is only an incomplete model

of the physical system. It commonly occurs that the set of second-order features.
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generated in reai-time, are in fact related; sometimes in ways that were not known or
realized until they were observed to occur together. Since the we are fundamentally
concerned, in malfunction processing, with failures we refer to these related, second-

order features as muitiple, dependent failures.

4.3.3. Third-Order Features Are Time-Dependent

The mere inciusion of two, or more, first-order features in the second-order set does
not mean that those features are interdependent. Furthermore, we have insured, by
means of conversion DNF as well as via the integrity constraints described in section
2.1.3, first-order features which are mutually independent. The result of this is that the
only possible relationship between members of the set of second-order features,
which is not merely the consequence of a structural, first-order relationship discussed
in section 4.4, is that of a time-correlation. Stated another way we can say that it is
probable that there are third-order features which are functions of second-order
teatures and time. Such third-order features are a special case of multipie, dependent
failures since the dependency is via time in the sense of ...if A and, then B, then C. We
would say that ( A and then B } is a third-order feature rather than A is a third-order
feature and B is a third-order feature.

4.3.4. A Third-Order Temporo-iogical Operator

Third-order logical operators can be constructed very simply using the explicit time-
tag attached to second-order features and simpie logical operators. An exampie of
this is the THAND, then-and, which can be used to evaluate the sequential nature of
on otherwise simple conjunctive expression like if A and 8 then C. If A and B have an
order-dependency (if A and. then B. then C), this can be restated if A thand B then C.
Parentheses can be used to control the precedence order for the purposes of
evaluation making it possible to subset conjunctive expressions based on

requirements for time-sequential occurence.



4.3.5. Identification of New Rules through Empirical Analysis

Time-correlation is fundamentally an empirical method for the synthesis of new rules.
It is, in a sense, rule-synthesis by example if one allows that empirical observation may
be described as example. Construction techniques range from simple pairing of
events; as in A always is observed before B, to sophisticated methods of cluster
analysis. This is the most promising approach since it is a multivariate, statistical
technique suited to the analysis of large datasets. The set of second-order features
over the course of a single mission may be analyzed for recurrent failures whose
time-relationship remains obscure under the current methods of mission management
as well as the analysis of system behavior between missions. This approach offers the
potential for detection of previously unrecognized failure modes which can then be

represented as new equivalence classes.

4.4. Rule-Synthesis by Structural Integration

Structural integration corresponds to the construction of new, eguivaience classes
through the process of partial matching of the antecedent conditions of first-order
features during a a systems analysis. This analysis corresponds to processing the
entire first-order ruie-base for the purpose of detecting implied relationships which
have been previously unrecognized, or otherwise obscured. by the
compartmentalization of system disciplines. Structural integration is based on the
method of fractional-aorders but does not incorporate. nor depend on. information
contained in the real-time generated status vector. It is a static form of learning as
opposed to time-correiated rufe-synthesis which is based on fractional-orders

determined by the status vector and is, therefore, a dynamic method of ruie synthesis.

4.4.1. Fractional-Orders in Structural Integration

The philosophy of structural integration is to grow the tree up from Level 5 in the
direction of Level 0. This is accomplished using equivalence classes generated by the
method of fractional-orders in a manner different than that used for time-correlation.

The difference is simpie but quite important.
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4.4.1.1. Difference Between Time-Correlation and Structural Integration

The fractional-order generated by time-correfation constructs equivalence classes
which are similar in the sense of requiring satisfaction of the number of antecedent
terms equal to the fractional-order for the first-order feature to be mapped into the set
of second-order features. On the other hand, the equivalence classes generated by
structural integration have their fractional-orders assigned as a function of the
commonality of antecedent terms between first-order features. For example, consider
the first-order features below taken from table 2-1,

63a52=63a49a A ~63ad45 A ~63a40 A ~ 63423 A 63alb
63a52=63249a A\ ~ 63045 A 63bx8

A fractional-order of 1.2 is assigned to the equivalence ciass 63a4%a A ~63a45 since
this class has a commonality of two. Note that this interpretation of fractional-order
does not require that the two zero-order features be the same for all equivalence
classes with equal fractional orders. This means that there can be many equivalence
classes with the same fractional-order but with commonality on different zero-order

features within an equivalence class.

Equivalence Class: 63a4%a A ~ 63ad5

635x8
~§3gd0 A ~63a23 A 63ald

4.4.1.2. Structura! Integration Produces Meta-States Rules

The creation of new equivalence classes changes the meaning of our earlier use of
'equivalence classes with respect to the interpretation their logical meaning. The
equivalence class. 63a49a A ~ 63045, does not correspond to the implication 63a51=
632492 A ~ 63345 since the antecedents are not compiete. These new equivalence
classes really are meta-states without a convenient name but with, obviously. similar
dependencies within the physical system they correspond to. Their usefulness is
derived from the information they provide about commonality within the system they
correspond to. The meta-states require the introducﬁon of new zero-order features to

maintain consistency with the implicational interpretation of first-order features.



Chapter 5 |
Distributed Architecture

Previous sections have concentrated on the representation and implementation of
procedural logic using new approaches and new technology. Greater benefits may
be realized from these techniques than from simpie machine processing. We have
demonstrated the equivalence of hardware representations to the logical
representation of the original maifunction procedure. Based on these discussions the
benefits such an approach may have for the increasing distribution of mission
processing between space and ground as well as between hardware and software,
are apparent. In particular, this approach makes it practical to distribute processing

function in ways previously prohibited by technology.

5.1. Characteristics of Distributed Architectures

Distributed processing architectures have general characteristics which can be seen
to be lacking from the current SSV ADP architecture, although most of these
characteristics can be found in the operations network as a whole. Discussion here is
limited to the characteristics of the ADP architecture for mission support. As
discussed in [Davies 83), these include:

- processing supported by a network which provides high-level control
over inter-process communication in a standard. network-wide protocol.

. communication strictly between asynchronous processes as opposed to
mere remote data access. '

- data access accomplished via inter-process communication.

- resource sharing not limited to data-sharing and especially including
sharing of processing in support of a single task.
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5.2. Limitations of the Current Communications Architecture

in the past, unless a space vehicle was in view of a ground-based tracking station,
which was only 15-20% of the time during an orbit for manned space flights.
space/ground communication was not pessible. During the time when spacecraft
were blacked-out of communication with the ground, all of the data which the craft
may have been collecting regarding its on-board systems, experiments or external
sensors had to be stored on-board. Only when communication was re-established
could data be communicated (transmitted/received) with the ground. This situation is
changing inasmuch as the Tracking and Data Relay Satellite System (T DRSS) is
anticipated, when fully operational, to permit communication with the ground for
80-85% of a given flight.

5.3. Limitations of Current On-board Processing Architecture

Historically, the tasks performed in support of manned space flight have been
distributed between the on-board General Purpose Computers (GPCs) and the
ground computers. This physical separation was aiso a logical separation of
processing responsibility, largely the result of the limited space-ground
communication. Tighter logical sharing of processing was restricted not merely by
the physical separation of the processors but fundamentally by the isolation resuiting
from low transmission speeds and irregular opportunity for communication due to
limited ground coverage. This approach has been perpetuated in the SSV data
processing systems. Within the current system architecture, the on-board General
Purpose Computers (GPCs) perform these major functions [JSCDPS 84]:

1, guidance, navigation and control of the S8V through ascent, on-orbit,
and landing,

2, systems management which includes software to acquire, process and
route data for systems evaluation and management,

3. payload software which permits the modification of the contents of mass
memory units (MMUs}, and loading of the software to support display
electronics units (DEUS).

The software to support these functions must be completely prepared and loaded on

the MMU prior to launch. There is extremely limited variation of system processing
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once a launch has been executed. Alteration of the MMU processing sequence can
be accomplished only through the use of single commands to the processor in the
form of GPC instructions or data. These commands must be buiit manually by either
the flight crew or the controliers on the ground. For the purposes of malfunction
procedure processing, the GPCs act only as the interface between the flight team and
the vehicle systems and subsystems. The GPCs themselves do not have the capacity

to support extensive anomaly processing.

5.4. Effect of Limitations on SSV Autonomy

These two factors, limited communications and limited on-board processing, apply
opposing forces in attempts to achieve increased SSV autonomy. On the cone hand
limited communications makes it desirable to provide as much stand-alone capability
on-board as possible. On the other hand, the desire for high reliability of the SSV
systems, in the face of high SSV system compliexity, requires the expertise of more
than just the flight crew for both nominal and off-nominal operations. The addition of
computers and software to support increased vehicle autonomy is not simple. Since
the existing computer systems are flight-critical, the alteration of their operational
capabilities is an expensive undertaking, and also subject to high schedule risk due to
the nature of software development. This is not, however, an impossible or even
impractical goal. One method for additional processing on-board, without requiring
the alteration of existing on-board systems, is through the use of carry-on
microcomputers. If we assume that the problem of additional processing is solvable,
and it is, still to be faced is the more difficult problem of capturing the collective
expertise of the flight control team in a computing system. The improvement in
space-ground communications represented by TDRSS makes this expertise more
accessible to the flight crew but does change the very labor intensive character of

mission monitoring nor does it alone increase vehicle autonomy.
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Figure 5-1: Prototype Distributed Processing Architecture
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5.5. Architecture and interconnections

The prototype architecture depicted in figure 5-1 makes use of the basic first-order
feature construct as its fundamental, or atomic piece of information. it is, however,
manipuiated in a number of ways some of which, for example the status vector, were
introduced in section 3-2. The architecture itself introduces some new arrangements
of the first-order features which are discussed below. The organization of these
arrangements are driven by the boundary thresholds represented by the heavy,
horizontal lines separating space and ground as well as front room and back room in

figure 5-1.

5.5.1. Major Distributed Components

Before discussing the rationale for these boundaries we introduce major constructs
and processing used in the architecture; the summed state table, the instantaneous
state table, Boolean summation, and the history table. These are the major

components used to organize and distribute information within the system.

5.5.1.1. Instantaneous State Table

This tabie represents the coilection of time-tagged, status vectors. Each row in the
table is the status vector of the first-order features for a single. SSV system or
subsystem. This is represented in figure by the labels for two of the systems, ECLS
and BOOSTER. in the complete SSV table there would also be rows for all of the
other flight control disciplines as depicted in figure 1-1. This table is instantaneous
because it represents a time-tagged sample for a specific time, t and is memory-less
in that it is re-written every time SSV systems are polled. The polling process is
equivalent to a digitization process and results in the setting of the first-order features

in the status vector for each table row.

5.5.1.2. Summed State Table

This table is the result of the logical-OR of all occurrences of the instantaneous status
vectors. by discipline, over time. Because the rows of this table are Boolean sums
over time, time-tags are dropped. The result is a state table which summarizes the

current condition of each system and subsystem regardiess of when any given zero-
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order feature was set. It is important that the values of this table be explicitly reset
when a condition corresponding to an antecedent, and its consequent, is reset since
the process for generating the row entries is a simple OR-ing with the instantaneous

state table. This requires a separate process which is not depicted in figure 5-1.

5.5.1.3. Instantaneous Status Vectors

These are the row entries of the instantaneous status tables. These vectors are
communicated to the ground via telemetry. They are the primary method of
communicating system status information. These vectors are collected in a common
table, a copy of the instantaneous state table on-board, for distribution to the
responsible back-room positions.

5.5.1.4. Summed Status Vectors

These status vectors, like the summed state tables, are independent of time and,
consequently, do not retain time-tags. They are constructed by the logicai-ORing of
the history tables, which are themselves composed of instantaneous status vectors.
The summed status vectors are used to maintain, through Booléan summation, an
independent, ground-generated, state table.

5.5.1.5. History Tables

These tables are the complete record of the history of the SSV states and are critical
to the process of time-correlated rule synthesis as well as to the determination of all
time-dependent processes. These are essentially a log corresponding to a complete
time-history of system and subsystem states. They are available for both real-time and

non-real-time processing and analysis.

5.5.2. Space-Based Processing

Space-based processing is focused on the generation and parameterization of sensor
and other instrumentation data. Because the size of the data processing system
on-board a spacecraft is limited by both weight and volume it is best if the amount of
storage on-board is kept to a minimum. On the other hand, time-delays. obscuration,
loss-of-contact events all make it desirable for the system status to be determined,

through the computation of instantaneous status vectors on-board for transmission to
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the ground. It is also desirable to keep a /ocal copy of the spacecraft summed state
table on-board for two reasons. First, it makes possible the implementation of self-
monitoring, and self-correcting functions without dependence on the ground. These
functions may be limited, at least initially, to the processes described as real-time
malfunction processing in section 3-2 and not extend to rulé-synthesis due to the
additional processing and validation required to develop reliable new rules. This may
be uitimately desirable, however, for long-lived spacecraft such as those transitting
deep-space.

5.5.3. Ground-Based Processing

The development of nearly continuous communications makes it possible to view the
ground-based data processing system, the system used by flight controliers, as the
host computer system and that of the spacecraft, in a sense, as a user. Although
most of the monitoring and analysis is performed on the ground, if the spacecraft is
capable of maintaining the summed state-table and generating instantaneous status
vectors then the ground system can evolve into a development environment for the
synthesis of new rules which can be incorporated into the on-board rule base using
the methods described in chapter 4. Given this kind of an architecture, what is then in
place is a kind of knowledge-funnel for the organization and articuiation of flight
controller expertise developed with the aild of the extensive computing resources
available on the ground, translation into first-order form and incorporation into the
rule-base of the spacecraft. The system can evolve during the course of many

missions in the case of the SSV, or during the lifetime of the spacecraft for other types
of vehicles.
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Chapter 6
Summary and Conclusions

This work has presented an integrated approach to the development of an expert
system for real-time malfunction processing. The fundamental new concept is the
use of the programmable logic array (PLA) as a data structure incorporating a
disjunctive normal form (DNF) of logical information. This technigue represents a
new type of knowledge compilation which takes advantage of advances in VLSI
research and suggests the future ability to actually build a custom, hardware, expert-
system using techniques similar to the ones represented here. There are, at least at
the present, few expert systems which have attempted real-time processing of data
although some of the work which is currently underway in the field seismic analysis
for oil-exploration is focused in this direction. '

6.1. Utilization of Existing Knowledge

This application is apparently one of the first in the field of expert systems to take
advantage of a major source of existing. documented human expertise. This puts this
system in position to make major experimental advances through devetopment and
operation. Not only is there a wealth of existing information for the development of
the first-order rule-base, but there is aisoc a wealth of observational data with which to
test and operate the system as a result of the well-developed data processing
environment for Space Shuttle operations. The difficulty of extracting human
expertise. as well as observational data is significantly reduced given the opportunity

to estabiish an initial rule-base of malfunction procedures.
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6.2. Future Extensions

The mechanism introduced here for processing time as an explicit zero-order feature
points out, indirectly, the power of semantic attachment which was also the
mechanism for attaching humaniy interpretable meanings to the zero-order features.
The attachment of other zero-order features to consequents and antecedents of first-
order features provides a mechanism for incorporating the particular semantics
necessary for many types of analysis. An exampie of this is the next-worse failure
problem. The process of semantic attachment permits the association of a zero-order
feature containing the criticality value of that first order feature through a compietely
natural extension to the use of semantic attachment for the association of English
text. This is a very powerful result since these zero-order features can be stored, for

example, as attributes in a relational database.

6.3. Uses for System Design

This methodology was developed largely as a means of supplanting the limited human
resource represented by the flight control team. It has become apparent in the course
of the work, however, that this approach, has great promise in the area of system
design. Consider that the use of fault equivalence classes provides a mechanism for
describing existing failure modes through the implementation of malfunction
procedures. 1f a schematic diagram, which can be frequently represented using
logical operators, could be implemented using the PLA representation developed
here, then the opportunity exists for the analysis and monitoring of failure modes
(equivalence classes) which are introduced into the system design during
development. This appears to be a powerful method of controlling and documenting
the failure modes of systems during the development cycle which simuitaneously

establishes the ruie-base for use in operational monitoring of the completed system.
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Appendix A
ROSIE Implementation of CRYO63a

A.1.63aRHS

[: 63arhs parsed Tue Oct 11 17:50:38 1983 by Helly 3}
To 63arha:

[1] Send {retum,"' IS NSRRI R RN SRR S R R RO R R RS RN RS IR RZE DR ] )

=" return}.

{2] send {"* ECLS 6.3a CRYO H2 PRES OV102/BAS E: Malfunction Proc (pg. 6-30}", return}.

[3] send {"= *=*===esesmsaniersasmatmrtnnasuninatnsnntnsananatan s nnaane o o)
[4] if H2 Press is true obtain 63ax1a of "H2 P Normal”,

[5] if 83axia is true go 63alhs.

[6] if 63ax1a is false obtain 63axth of "H2 P High™.

[7] # 83ax1b is true obtain 63ax23 of "TK3 and/or TK4 the affected tk".

[8] if 63ax1b is false obtain 63axtc of "H2 P Low".

[9] it B3axic is true obtain 63ax3 of "Press in all ths < 153 psia™.

[10] if 63ax3 is true go 63alhs,

[11] if 832x3 is false obtain 63ax5 of "Both P and TK P of atfected tk low".
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[12] if 83ax5 is true go 63aths.

[13] i 63ax5 is false obtain 63ax8 of "Received 02 PRESS Alarm and/or $68 CRYQ H2 PRES and 568
CRYQ 2 PRES msg lines".

[14] if B3ax8 is true go 63alhs.

[15] it 63ax8 is false obtain 63ax11 of "TK3 and/or TK4 the affected tk".

[16] if 83ax11 is true obtain 63ax 16 of "CNTLR cb of affected tk on Pnl MLB68 open”.

[17] it 83ax11 is false obtain 83ax12 of "TK3 and TK4 depieted, QTY < 10%".

[18] it 63ax12 is true obtain 63ax14 of "CNTLR cp of affect tk (TK1 and/or TK2} on Pni 013 open”.
[19] if 63ax14 is true go 63alhs.

[20] i 63ax16 is false obtain 63ax17 of "TK3 and TK4 Htrs cycle on when press in both tks = 217-223

psia”.
[21] if 83ax17 is true or 63ax17 is false go 63alhs.

[22] if { B3ax23 is true or 63bx7 is true) obtain 63ax26 of "TK3 and TK4 hirs were deactivaled (all htrs

switches in OFF when problem occurred)”.

[23] if 83ax23 is false obtain 63ax40 of "Pressure in both TK1 & TK2 > 293.8 psia”.
[24] if 63ax26 is true go 63alhs.

[25] if 63ax26 is false obtain 63ax28 of "Press in both TK3 and TK4 > 293.8 psia”.
[26] it 63ax29 is true go 63aths.

[27] if 63ax28 is talse obtain 63ax31 of "Both P and TK P of affected tk high”.

[28] if 63ax31 is true obtain 83ax32 of "MANF Ps agree with P and TK P of atfected TK".
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[29] i B3ax31 is faise obtain 63ax34a of "P High™.

[30] if 63ax34a is false obtain 63ax34b of "TK P High".

[31] if 63ax34a is true or 63ax34k is true go 63alhs.

[32] it 63ax32 is true or 63ax32 is talse go 63aihs.

[33] i (63ax40 is true or 63bx8 is true) obtain 63ax41 of “Alarm on next hir cycle™.

[34] it 63ax41 is true or 63ax41 is false go 63aths.

[35] i {(63ax40 is false or 63bx8 is talse) obtain 63ax45 of "Both P and TK P of affected tk high™.

[36] it 83ax45 is true obtain 63ax46 of "MANF Ps agree with P and TK P of affected tk™.

[37) if 83ax46 is true or 63ax46 is faise go 63alhs.

end,
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A.2.63aLHS

[: 63alhs parsed Thu Oct 6 01:19:31 1983 by Helly ;]

To 63alhs:

[U Prreraraesepaeppaeperrr T Y FEY TR LR TR NSRS E A S A A A E A E R A AL LA AL A -] [- ECLS 6-38 CRYO

H2 PRES *] [* computes truth/falsehood of left-hand side (Ihs) *]1 [* and displays the nominal assumptions

0' themalf :] [- e T L TR R T E RV R R R A AL L R L N L L Ll t}

[1] if (B3ax1a is true} assert 63ax2 is true.

[2] # (63ax1c is true and 63ax3 is true) assert 63ax4 is true.

[3] if (B3ax1¢ is true and 63ax3 is false and 63ax5 is true) assert 63ax6 is true.

{4] it (63ax6 is true) assert 63ax7 is true.

[5 # (63ax1c is true and B3ax3 is false and 63axS is talse and 63ax8 is true) assert 63ax9 is true.

[B] i (63ax9 is true) assert 63ax10 is true.

{7] it (83ax12 is true or (63ax12 is false and 63ax13 is true }) assert 83ax14 is true.

[8] if (B3ax1c is true and [Possibie electrical problem] 63ax3 is talse and £3ax5 is faise and 63ax8 is talse

and 63ax11 is false and 63ax12 is true and B3ax 14 is true) assert 63ax15 is true.

[9] i (63ax1c is true and [P 63axducer failed low] 63ax3 is false and 63ax5 is talse and 63ax8 is false and

83ax11 is true and 83ax16 is true and 63ax17 is true) assert 63ax18 is true.

[10] if {63ax1c is true and 63ax3 is false and 63ax5 is false and 63ax8 is false and 63ax 11 is true and 83ax16

is true) assert 63ax19 is true.

[11]if {63ax1c is true and 63ax3 is false and 63ax5 is false and 63ax8 is false and 63ax 11 is true and 83ax16

is true and 63ax17 is false) assert 53ax20 is true.
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{12] if (63ax 19 is true or B3ax20 is true) assert 63ax21 is true.

[13] # {63ax22 is true and 63ax14 is faise and 63ax12 is true and 63ax11 ig false and 63ax8 is false and

63ax5 is false and 83ax3 is faise and 63ax1c¢ is true) assert 63ax24 is true.

[14] i (63ax22 is false and 63ax14 is faise and 63ax12 is true and 63ax11 is false and 63ax8 is false and

63ax5 is faise and 63ax3 is false and 63ax1c is true) assert 63ax23 is true.
[15] if (83ax26 is true and ((63ax23 is true and 63ax1b is true) or (63bx7 is true))) assert 63ax27 is true.
[16] # (63ax25 is true or 63ax15 is frue) assert 63ax28 is true.

[17] # ( {B3ax1b is true and 83ax23 is true) or (63bx7 is true)) and (63ax26 is faise and 63ax29 is true) assert

63ax30 is true.

[18] i (B3ax32 is false and 63ax31 is true and 63ax29 is false and 83ax26 is false and 63ax23 is true and

B3ax 1b is true) assert 63ax33 is true.

[19] it {63ax32 is true and B3ax31 is true and 63ax29 is faise and 63ax26 is false and 63ax23 is true and

63ax1b is true) assert §3ax35 is true.

[20] # (63ax34b is true and 63ax31 is false and 63ax29 is false and 63ax26 is taise and 63ax23 is true and

63ax1b is true) assert 63ax36 is true.
[21] if (63ax30 is true or 63ax33 is true or 63ax35 is true or 63ax38 is true) assert 63ax37 is true.

[22] if (B3ax34a is true and 6§3ax31 is false and 63ax29 is false and 63ax26 is false and 63ax23 is true and

B63ax1b is true) assert 63ax38 is true.

[23] i (63ax36 is true) assert 63ax39 is true.

[24] if (63ax41 is true and 63ax40 is true and 63ax23 is talse and 63ax1b is true) asser B3ax42 is true.
[25] if (63ax41 is false and 63ax40 is true and 63ax23 is faise and 63ax1b is true) assert 63ax43 is true.

[26] if (B3ax42 is Irue or 63ax47 is true) assert 63ax44 is true.
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[27] it (63ax486 is true and 63ax45 is true and 63ax40 is faise and 63ax23 is false and 63ax1h is true) assert

B83ax47 is true.
[28] if (63ax456 is true and 63ax45 is true and 63bx8 is true) assert 63ax47 is true.

[20] if (B3ax46 is false and 63ax45 is true and 63ax40 is false and 63ax23 is faise and 63ax1b is true) assert
63ax48 is true.
i

[30] it (B3ax46 is false and 63ax45 iz true and 63bx8 is true) assert 63ax48 is true.

[31] if (63ax48b is true and B3ax45 is false and 63ax40 is false and B83ax23 is faise and 63ax1b is true)

assenrt 63ax50 is true.
[32] ¥ (63ax49b is true and 63ax45 is faise and 63bx8 is true) assert 63ax50 is true.
[33] it (63ax50 is true) assert 63ax51 is true.

[34] it (63ax49a is true and B3ax45 is false and 63ax40 is false and 63ax23 is false and B83axth is true)

assert 83ax52 is true,

[35] if (63ax49a is true and 63ax45 is faise and B3bxB is true) assert 63ax52 is trye.
[36] if (63ax52 is true) assert 63ax53 is true.

[37] go 63aexp. [provide explanation and diagnostics)

end.



A.3.63aEXP

[: 63aexp parsed Sun Oct 30 00:53:10 1983 by Helly ]
To 63aexp:

[t LR TR AT N PR N s R VAR R R R LR R R NI R YL LS L] l] [. exﬁains cu"ent

globai database state *] d

(Y R Y Y R R R L N R L R R R R R S R LR R L R S R Y] -] I1l SBﬂd{ ->> ECLS

63.a : Summary and Diagnostics S>>0 00000055005 " return}.
[2] send {return," * NOTE: The following nominal conditions are assumed: " return}.
13] send {"* Backup C/W Alarm light on if:" return, " P> 293.8 psia” return, " P < 153 psia”,return}.

[4] send {"* NOMINAL CONFIGURATION:".return, " (013:D) cb ESS 2CA CRYO CNTLR H2 TK1
- c1" return, " cb ESS 2CA CRYQ QTY H2 TK1 - ¢1" return, " {013:8) cb ESS 18C CRYO CNTLR H2 TK2
- ¢1" return, " ¢b ESS 18C CRYO QTY H2 TK2 - ¢1" return, " (ML868:G) cb ESS 3AB CRYD CNTLR H2
TK3 - ¢1" return, " cb ESS 3AB CRYO QTY H2 TK3 - c1" return, " cb ESS 1BC CRYO CNTLR H2 TK4

- c1” return, " cb ESS 1BC CRYO QTY H2 TK4 - ¢1" return}.
[5] send {"* (R1) H2 MANF VLV TK1.2 - ctr {tb - OP)" return}.

[6) send {"* If TK gty > 10% then:" return, " {R1) H2 TK 1.2,3" return, " (A11) CRYO TK4 H2 HTR A

- OFF" return. " B - OFF " return}.

[7] send {"* If TK gty < 10% then:".return, " (R1) H2 TK 1,2,3"return, " (A11} CRYO TK4 H2 HTR A

- OFF” return, " 8 - OFF " return}.
[8] it 63ax1a is true send {"* All H2 P norm™ return}.

[9] if 63ax1b is true send {"* H2 P High".return. "= ACTION: Deact htrs in atfected tk(s}).".return, " (R1} H2

TK1(2.3) HTRS A.B - OFF and/or" return. " (A11) CRYO TK4 HTR H2 A.B - OFF" RETURN].

[10] if 63ax1c is true send {"* H2 P low" return}.



[11] i 63ax2 is true send {"* DIAGNOSIS: C/W Failure" return}.

[12] it 63ax3 is true send { "* Press in all tks is less than 153 psia” return}.

[13] if 63ax3 is talse send { "* Press in ail tks is greater than or equal to 153 psia” return}.

[14] if 63ax4 is true send { "* DIAGNOSIS: System leak. Execute ECLS SSR-1 (7)" return}.

[15] if 63ax5 is true send { "= Both P and TK P of affected tk are low™ return},

[16] if 63ax5 is talse send { "* P and TK P of affected tk are not both low" return}.

[17] it 63ax6 is true send {"* DIAGNOSIS: Leak between affected TK and check valve. Leak cannot be

isolated” return}.

[18] if 63ax7 is true send {"* ACTION: Deact hrs in atfected tk."return, * (R1) H2 TK1(2,3) HTRS A.B
. OFF" return, " (A11) CRYQ TK4 HTR H2 A B - OFF " return}.

[19] it B3ax8 is true send {"* Also got O2 PRESS alarm and/or" return, ” $68 CRYQO H2 PRES and” return,
" §68 CRYQ 02 PRES msg lines" return}.

[20] if 63ax8 is false send {"* Did not get O2 PRESS alarm and/or"return. ™ 568 CRYO H2 PRES

and” return, " 868 CRYC Q2 PRES msg lines™ return}.

[21] # 632x8 is true send { " DIAGNOSIS: Loss of ESS bus common to both affected” return, ™ O2 and H2
htr cntirs.” return, " Affected tank quantities are also fost.” return. " #f ESS1BC 013 & R15 are lost then only

msg lines with" return, * no F7 lights will result”™ return}.

[22] if B3ax3 is true send {"* RECOVERY: Reconfig htrs per BUS LOSS SSR. " return. ™ I pri ESS bus lost.
other atarms will be present.”.return, " If not pri bus. subbuses are:"return. " TK1: ESS2CA 013 &
R15" return, " TK2: ESS1BC 013 & Ri5"return, * TK3: ESS3AB MLBE8" return, TK4: ESS1BC

ML.BB8" return}.

[23] if 63ax11 is true send { "~ Either or both TK3 and TK4 are atfected” return}.

{24] if 63ax 11 is false send {"" Neither TK3 nor TK4 are affected” return}.



[25) f 63ax12 is true send{"* TK3 and TK4 are depleted. QTY < 10%" return}.

[26] if 63ax12 is false send{"* ACTION: TK3 and TK4 are not depleted.” return, ™ Operate on TK3 and TK4
untit QTY < 10% then:".return. * {R1) H2 TK3 HTRS A.B (two) - OFF and" return, " (A11) CRYC TK4 HTR

H2 A,B (two) - OFF" return}.

{27 if 63ax14 is true send {"* CNTLR cb of affected tk (TK1 and/or TK2) on Pnl 013 is open”.return}.

[28] if 63ax14 is false send {"* CNTLR cb of atfected tk (TK1 and/or TK2) on Pnl 013 is closed” returm}.

[29] it 63ax15 is true send {"* DIAGNOSIS: Possible electrical problem. Do not attempt to reset circuit

breaker"” return}.

{30] it 63ax16 is true send {"~ CNTLR cb of affected tk on Pnl ML68E is open” return}.

{31] if 63ax16 is false send {"* CNTLR cb of affected tk on Pnl MLE86 is closed” .return, return}.

[32] if 63ax17 is true send {"* Continue to monitor. TK3 and TK4 Htrs cycle on when pressure in both TKs

= 217 - 223 psia" return}.

[33] it B32x17 is talse send {"* Continue to monitor. TK3 and TK4 Htrs do not cycle on when pressure in

both TKs = 217 - 223 psia” return}.

[34] if 63ax18 is true send {"* DIAGNOSIS: P 83axduce failed low. Continue to operate TK3 and TK4 in

AUTO" return}.

[35] it 63ax19 is true send {" DIAGNOS!S: Possible electrical problem. Do not attempt 1o reset circuit

breaker” return}.

[36) if 63ax20 is true send {"* DIAGNOSIS: PWR tailure in affected HTR CNTLR" return, return}.

[37] it B3ax21 is true send {"* ACTION: Deact hirs in affected tkis)." return. * (R1) H2 TK3 HTRS A.B (two)

- OFF and/or” return. " (A11) CRYO TK4 HTR H2 AB (two) - OFF " return. return}.

(38} if 63ax22 is true send {"~ TK1 & TK2 hirs cycle on when press in both TKs = 200-206 psia”.return}.



[39] it 63ax22 is false send {"" TK1 & TK2 htrs do not cycle on when press in both TKs = 200-206

psia".return}.
{40} if 63ax23 is true send {"* TK3 and/or TK4 are affected.” return}.
[41] if 63ax23 is false send {"* TK3 and/or TK4 are not affected.” return}.

[42] # 63ax24 is true send {"* DIAGNOSIS: P Xducer failed low. Continue to operate TK1 & TK2 in
AUTO" return}.

[43) if 63ax25 is true send {"~ DIAGNOSIS: PWR failure in affected hir entir™ retumn, return}.

[44] i 63ax26 is true send {"= TK3 ang TK4 hirs were deactivated (alf htr switches in OFF when problem

occurred"” return}.
145] i 63ax26 is false send {"* TK3 and TK4 hirs not deactivated when problem occurred” return}.
[46] if 63ax27 is true send {" * DIAGNOSIS: Instrumentation failure. No action required” Jreturn}.

[47] if 63ax28 is true send {"* ACTION: Operate TK1 & TK2 htrs in manual mode. (R1} H2 TK1,2 HTRS AB

- ON/OFF (as reqd)" return}.

[48] if 63ax28 is faise send {"~ Pressure in both TK3 & TK4 {= 2338 psia”,return}.

{49) #f 63ax29 is true send {"* Pressure in both TK3 & TK4 > 203.8 psia”.retumn}.

[50] # 63ax30 is true send {"* DIAGNOSIS: Auto pressure control failure” return}.

[51] it 63ax31 is true send {"~ Both P and TK P of aftected tk is high"” retumn}.

[52] if 63ax31 is false send {"* Both P and TK P of aftected tk not high" return}.

[53] it 63ax32 is true send {"* MANF Ps agree with P and TK P of affected tk" return. return}.

[54] it 63ax32 is talse send {"* MANF Ps do not agree with P and TK P of affected tk” return. return}.
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[55] it 63ax33 is true send {"* DIAGNQSIS: Line blockage in tk reading high™ return}.

[56] if 63ax34a is true send {"= P high" return}.

[57) if 63ax34b is true send {"* TK P high" return}.

{58] if 63ax35 is true send {"* DIAGNOSIS: Auto pressure control or RPC failure” return, return}.

[59] if 83ax36 is true send {"* DIAGNOSIS: Instrumentation failure” return}.

[60] it 63ax37 is true send {"* ACTION: Leave affected hirs deactivated until MCC" return, " develops

consumables management plan® return}.

[61] if 63ax38 is true send {"* DIAGNQSIS: Instrumentation failure”.return}.

l62] if 63ax39 is true send {"* ACTION: Activate htrs." return, " (R1) H2 TK3 HTRS A.B - AUTO" return, *
{A11) CRYO TK4 HTR H2 A.B - AUTO" return}.

[63] it 63ax40 is true send {"* Pressure in both TK1 & TK2 > 293.8 psia" return}.

[64) it 63ax40 is false send {" = Pressure in both TK1 & TK2 ~> 293.8 psia” return}.

{65] it 63ax41a is true send {"* ACTION: When P < 220 psia, activate htrs.".return. ” (R1) H2 TK1.2 HTRS
AB- AUTC .return}.

[68] if 83ax41b is true send {" = Alarm obtained on next hir cycle” return}.

{67] it 63ax41b is false send {"* Alarm not obtained on next htr cycle™.retumn}.

[68] if 63ax42 is true send {"* DIAGNOSIS: Auto pressure controi failure” return}.

[69] if 63ax43 is true seng {"* DIAGNOSIS: Pressure overshoot caused original alarm™ return, return}.

[70] it 63ax44 is true send {"* ACTION: Operate hirs in manual mode.” return, ™ {R1) H2 TK1.2 HTRS AB

- ON/OFF (as reqd)” return}.



{71] if 63ax45 is true send {"* Both P and TK P of affected tk is high" return}.

[72] if 63ax45 is false send {"* Both P and TK P of affected tk not high".return}.

(73] it 63ax46 is true send {"* MANF Ps agree with P and TK P of aftected tk",return}.

[74] if 63ax46 is faise send {"* MANF Ps don't agree with P and TK P of atfected tk” return}.

[75] it 63ax47 is true send {"* DIAGNOSIS: Auto pressure control or RPC failure™ return, return}.
[76) if 63ax48 is true send {"* DIAGNOSIS: Line blockage in tk reading high™ return}.

[77] it 63ax49a is true send {"* P high" return}.

[78] # 63ax49b is false send {"* TK P high" return}.

[79] if 63ax50 is true send {"* DIAGNOSIS: instrumentation faiture” return}.

{80] if 63ax51 is true send {"* ACTION: Activate htrs.” return, ™ {R1) H2 TK1,2 HTRS A.B - AUTO" retum}.
[81] if 63ax52 is true send {"* DIAGNOSIS: Instrumentation failure” return}.

[82] it 63ax53 is frue send {"* ACTION: Operate hirs in manual mode when TK3.4 depleted (QTY <

10%)." return,

" (R1) H2 TK1,2 HTRS A,B - ON/OFF (as reqd}" return}.

[n AR R A AR e R A NN A P AN R E N RN A A A S U RS RN E RN E N E AR AN A I AR TR N ANE T AR R R a] I- lDotnot&s -] [.

Pt Y L s T T PN R E R R R AN R R R LR Ll bl bl g .} [83] if 633X28 iS true or

63ax44 is true or 63ax53 is true send { "= NOTE: When operating in manual mode, reset pressure annun
limits” return, " limits to alert when htr cycle read.” return, “ P transducer (C&W) should be used in
preference 1o “return, " TK P (SM Alert) when possible. Hirs in both ths” .return, " should be turned ON
when P or TK P in either tk decreases” return. " to 180 psia. and OFF when P or TK P in either tk

increases” .return. " to 250 psia.".return}.

[84] if B3ax48 is true send {"* NOTE: Even with htrs OFF, environmental heat leak will eventually cause tk

relief viv to crack.” return}.



[85] it 63ax52 is true send { "* NOTE: Failure of the P transducer high will prevent AUTO htr ops. ", return}.

[88] send{ "¢ ECLS 63.2 : Finished <{{{{LLLLLLLLLLLLLLCLLLKLL return),

end.



Appendix B
rosie2eqn

/* rosie grammar %W% %G%
This grammar is used 1o syntactically recognise rosie rules.
These rules are translated 1o the input format for the eqntott program.
Eqntott is part of the cad tool package from Berkeley.
»/
%{
# include "utility.h"
SYMBOLREF yysymbol,
%}
%union { struct nodE * nodetype;
int inttype;
}

%left or-symbol

%lett and+symbol

%nonassoc is+symbol

%right notesymbaol /* take priority declaration for unary not */

%token <inttype> To+«symbol and+symbol assert'-syrﬁbol

%token <inttype> close+symbol colon+symbol comma+symbol

Atoken <inttyped> end «symbol talse~symbol go+on+«symbol go+symbol if «symbol
%token <inttype) is+defined~as+~symbol is+~symboi not+symbal open+symbol
%token <inttype> or+symbol period « symbol true+symbol

%token <nodetype> tag+-symbol

%type <nodetype> assertion boolean «denoter boolean+expression tag

%%

/* production ruies */
rosie
initialization destination actions end;

action :
error .
| goto
| rule;
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actions :
aclion
| actions action ;

assertion :
assert+symbol tag is+symbol boolean+denoter
{ IF $4->sym->Symbol+~Token«Type = = true+symbol
THEN /* assert tag is true */
$$ = 82, /* return the tag =/
ELIF $4.>sym->Symbol+Token+Type = = false+~symbol
THEN /™ assert tag is false */
/* return ‘not tag' "/
$$ = monad(not+symbol~entry, $2);
ELSE yyerror{"unknown Boolean value\n")
Fi

S

boolean+~denoter :
/* return a node with a representation of TRUE or FALSE */
taise+symbol
{$% = leaf(yysymbol);
}
| true+~symbaol
{ 8% = leaf(yysymbol};
I

boolean+expression :
boolean«denoter
| boclean+~expression and «symbol boolean+expression
{ %% = dyad(and«symbol+~entry. $1. $3};
}
| boolean+expression is«~symbol boolean «expression
{ IF$3->numenodes == 0
THEN IF $3->sym->Symbol«Token+Type = = true~symbol
THEN $% = §1; /* reduce 'x is true' to 'x' */
EL|IF $3->sym->Symbol < Token+Type = = false+~symbol
THEN /* reduce ‘xistrue to 'not x” */
$$ = monad(not<symbol~entry, $1);
ELSE yyerror("unknown Boolean type™)
Fi
ELSE $$ = dyad{is~symbol+entry, $1, $3);
Fl
}
| boolean+expression or+symhol boolean+expression
{ $$ = dyad(or~symbol~entry. $1. $3);
}
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| not~symbol boolean +expression
{ $% = monad{not~symbol«entry, $2);
}
| open«symbol boolean+expression close+symbol
{ $$ = monad{open+symboi+-entry, $2);
}
ttag

1

destination :
To+«symbol tag colon+symbol,

end:
end+symboi period+symbol;

goto:
go«symbol 1ag period «symbol;

Herule :
if+symbol booiean+expression assertion period+symbol
{
IF $3->sym->Symbol+Token+Type = = not~symbol
THEN printf("r%s = ~(", §2->node1->sym->Symbol);
print~inorder($2);
printf("};\n"™)
ELSE printl{"r%s = ", $3->sym->Symbol);
print=inorder($2);
printf(";\n"}
Fi
h

initialization :
{
initialize »symbol + tabie();
yyterminit{);
}

rule :
if+rule ;

tag:
tag*+symbol
{ %% = leaflyysymbol); /* return the pointer to the symbal */

}
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