VIASTER COPY

DISTRIBUTED COMPUTER SIMULATION OF DATA
COMMUNICATION NETWORKS: PROJECT REPORT |

Shun Cheung August 1984
Jack W.Carlyle Report No. CSD-840037

Walter J. Karplus

Acknowledgment of Support

Work leading to the preparation of this report was supported jointly by the
State of California and by Doclz Networks, Inc. under the UC-MICRO grant
“Distributed Computer Simulation of Data Communication Networks.”

Abstract

This is the initial report on a continuing study of the development of
methodologies for implementation of distributed simulation, with application to
the problem of estimating the performance of data communication networks, and
with particular reference to an extended slotted ring architecture for
communication. Items discussed include simulation modeling considerations,
timing/synchronization among the processors, deadlocks, and preliminary
experiments which have been carried out.

4 L2

. Introduction

Table of Contents

1.1 Long-Range Project Goalsccceceeemmmmmenniecniieniciesinsisianinn
1.2 Ava:glablc %Zuoumes ..
1.3 Summary of Initial Studies and Resultsccceeeeienceiiannninnnii.
1.4 Organization of this Reportcccoevieiiniinniiiiiiniiccninae.

. Overview of Technical ISSUESccccerreereriniirieiiiacieretiereccsceccraanans
2.1 The Selection of a Suitable Simulation Language
2.2 Simplification of the Simulation Modelcccoiciniiiiiinnnnne
2.2.1 Flow equivalent SErvice CENtErScicecveerrccaresasennaseenes

2.2.2 Primary/background service centersccccoeiieinninnne

tion and AllOCAtIONcceveceenenssvoscccccccncsssssssssassassnsssanss

2.3
2.4 The lmplcmentation of Distributed Simulationcccccceeveeaeennn
. Synchronization Methodsccciereirieiicinrininiiiiiie..

. Probl

ems of Asynchronous Distributed Simulationccccceciieenniens
4.1 Deadlockorveiiiiiiiereriiiiiiateiiiieratatesetatetnsnsnsnssssssasasens

4.1.1 The Null Message Methodccoveviimiiiiiiiinnniirennnnee.
4.1.2 The Virtual Ring Method cveeiieiiiiiiiniiiiiiiiiianne,
4.2 Collection of StatiSticsc..ccecereriarinrceiciiiarenssoniasancansenaarenss

. References

. The Processing Environment at UCLAc.ccciviiiiiiiiinniiiniiiinin..,
Experimental WOrkccciieieeimeccirciesiniieininiiiiiiie.
. Conclusions and Future Directionsccceeeeeeenieiciciiiiiraincisesicens

page

VO-I~IANE L WRWWRIN -

1. Introduction

This is the first in a projected series of reports on work-in-progress,
supported by the research grant “Distributed Computer Simulation of Data
Communication Networks” (DCSDCN), sponsored jointly by the State of
California and by Doelz Networks, Inc., under the University of
California/Microelectronics Innovation and Computer Research Opportunities
(UC-MICRO) program.

Research being initiated in the DCSDCN project is broadly directed toward
understanding and implementing discrete-event systems simulation via distributed
processing in networks of computers, with application to the simulation of data
communication networks, using a particular DCN as a source of examples and a
test case in our development of simulation tools. This model DCN is based on an
extended slotted ring architecture (ESRA) for communication [DOEL 84] and
will be referred to here as the Doelz network.

1.1 Long-Range Project Goals

A principal long-range objective of our project is to develop a methodology
for application of distributed simulation using networks of microcomputers or
workstations as the distributed processing resource with which to carry out the
computations in the simulation runs. With reference to data communication
applications in particular, a long-range goal is to develop simulation tools,
running in this distributed processing environment, which may be of use in field-
engineering situations where performance of proposed data network installations
must be estimated.

We use the term “simulation” here in its broad sense to mean computer-
assisted modeling of physical systems, incorporating appropriate analytical
techniques and results as well as actual simulation computations using random-
number generation and simulation software systems. Simulation is not regarded
as a goal in itself, but rather as one tool useful in, ¢.g., estimating performance
of a complex system such as a data communication network.

Our decision to focus upon a distributed processing environment in which
to carry out simulations is motivated by pragmatic considerations, rather than by
any desire to establish that simulations can be done “more efficiently” in some
absolute sense when distributed instead of being done on a single large processor.
The latter is a current research issue over which there has been some controversy.
Our point of view is that networks of microcomputers or workstations are rapidly
emerging as a medium-scale computing resource which will be very widely

available in the near future (accessible to field enginecers, for instance), that
complex simulation applications may be beyond the capacities of individual
stations in such networks but within the capabilities of the network as a whole,
and therefore that distributed simulation in these computing environments can
and should be contemplated as a practical matter, with attention to efficiency of
execution within the stated environment.

1.2 Availnble Resources

At UCLA, within the Computer Science Department, computing resources
available for research use are centered upon a network of minicomputers (Digital
Equipment Corporation VAX machines) with a UCLA-developed network-
transparent operating system, LOCUS, whose facilities for distributed processing
are of particular interest to our project. This environment will be enlarged in the
near future in several directions, with microcomputer workstations a projected
feature, again with LOCUS available as the distributed operating system. This
provides a very appropriatec computing environment in which to develop and test
ideas and techniques applicable to our project.

1.3 Summary of Initial Studies and Results

In this first phase of the project, we have kept the LOCUS operating
system features in mind and our initial experimentation in simulation software
systems development is being carried out on the minicomputer network, since the
results will be transportable to workstations in the near future.

Specifically, our initial studies have been directed toward understanding
and controlling the consequences of time-asynchronous operation in carrying out
distributed simulations, and some very preliminary systems experiments have
been carried out as an aid in identifying the issues.

We have concentrated on timing and synchronization problems at the
outset because they arise immediately when experimentation is attempted, even
on idealized models. Other issues, including details more specific to our data
communication network application, will be treated in future reports.

In summary we have:
e examined some timing problems of distributed simulation

e proposed some methods for addressing preemption and deadlock
problems

° carried out preliminary experiments in distributed simulation to
verify feasibility and identify problems.

1.4 Organization of this Report

An overview of several technical issues concerning distributed simulation is
given in Section 2. Synchronization methods, deadlock problems, and possible
solutions are presented in Section 3 and 4 respectively. Section 5 contains further
details on the computing environment and the LOCUS operating system currently
available at UCLA for our use in research. Section 6 describes the preliminary
experiments we have carried out recently and some of the problems identified in
the course of the cxpcnmcntatlon - Conclusions and possible directions to be
taken in continuing this work are enumerated briefly in Section 7.

2. Overview of Technical Issues

Before distributed simulation can be implemented, a number of problems
introduced by the new processing environment must be resolved. As in other
multiprocessor applications, in distributed simulation it is important in general to
be able to divide the load on the processors in such a way as to optimize the
computation time, or at least to improve the time in comparison to single-
processor implementations, even if complete optimization is not attempted.
Moreover, there are specific problems to be considered, such as process
synchronization, deadlock and collection of statistics for the results of distributed
simulation being conducted.

2.1 The Selection of a Suitable Simulation Language

Before any simulation can begin, a model for the application to be
simulated, such as a communication network, must be specified in a computer-
readable form. Specification through the use of general-purpose discrete-event
simulation languages is a widely used approach. Many such languages are
available; GPSS and SIMSCRIPT are among the most popular ones. There are
also several newly developed languages specially designed for the simulation of
communication networks [BALA 84]. Although these languages are very useful
tools, they are intended for use on target computer systems with one CPU. For
example, SIMSCRIPT is compiled into Fortran, which is not in itself suitable for
distributed processing.

In order to take the full advantage of the processing power of a distributed
computer system, significant portions of the inherent parallelism in a model must
be preserved by the simulation language and its implementation. One alternative
is to select a suitable existing simulation language and develop a new compiler for
distributed simulation; significant modification of the syntax of the language may
also be necessary. Another alternative is to design a special language for
distributed simulation of data communication networks. Much additional
investigation is needed in this area, which is part of current research in
distributed processing in general. A third alternative is to develop software
modules in an existing general-purpose programming language, such as C, and to
implement the distributed features of the overall software simulation package by
exploiting distributed processing features of a network operating system. This is
the approach we have chosen for the initial stage of our work; the operating
system is LOCUS, a network-transparent extension of UNIX, and C is the
language we have used in implementing preliminary experiments (see Sections 5
and 6 further details).

2.2 Simplification of the Simulation Model

A fundamental problem in any complex application of discrete event
simulation is the substantial amount of computation time required by simulation
runs. For-a large model, the time needed to reach steady state may be
prohibitively long. It is then necessary to reduce the execution time by simplifying
and approximating the behaviors of portions of the model, as a substitute for the
computation-intensive task of simulating every node, queue and buffer in the
physical system being modeled. From a basic modeling point of view,
introduction of such simplifications is part of the effort to ‘“‘reduce
dimensionality,” and has sometimes been referred to as “aggregation” in the
literature of queueing networks.

In recent years, two approximation methods for the simulation of
communication systems have been studied: flow equivalent service centers (FESC)
[SAUE 81] and primary/background service centers [OREI 84).

2.2.1 Flow equivalent service centers

The simulation model of a communication network-may be simplified by
replacing one or more subnetworks by FESCs [SAUE 81]. A typical FESC has
one server and a single queue. As the name implies, a FESC behaves exactly
like, or at least very similarly to, the (sub)network it represents. Usually, this
type of service center has a variable service rate which is a function of the
number of customers in the corresponding subnetwork. For example, the two-

queue system in Figure 1 may be replaced by a FESC.

0.5

0.5

Figure 1: A Closed Two-queue System and its corresponding FESC

Referring to Figure 1, if there is only one job in the system, clearly, only
one of the servers will be busy and the mean interdeparture time is 40 msec. If
there are two jobs, when they are in the same queue, the mean interdeparture
time is still 40 msec. Otherwise, it becomes 20 msec. Since the probabilities of
the two cases are the same, the overall interdeparture time is 30 msec and the
throughput is 33.3 jobs/sec. When there are many jobs in the system, the
probability that both service centers are busy is very high and the mean

.5.

interdeparture time will approach 20 msec. (throughput = 50 jobs/sec.) from
above.

In this simple example, the load-dependent service rate is straightforward
to calculate. However, when the subnetwork to be replaced is complicated, the
service rate function may become very difficult to evaluate and is not always
analytically solvable. A possible alternative is to simulate the behavior of the
subnetwork separately with varying numbers of customers. The service rate
function can then be derived or tabulated from the statistics obtained.

2.2.2 Primary/background service centers

A primary/background approximation technique has recently been
developed [OREI 84] for the simulation of local area networks (LAN) with
CSMA/CD access protocol. This method classifies the network stations into
primary stations and background stations. Primary stations are simulated
precisely while the collective effects of the background stations are approximated
- using a separate background algorithm. The main function of the background
stations is to provide an environment to approximate the interactions among the
primary stations and the other stations. Experimental results indicate that this
method provides a good approximation of the behaviors of the primary stations.
However, since the events in the background stations are not actually simulated,
no results can be obtained for these stations. Currently, this method is developed
only for the simulation of LAN with CSMA/CD but may be generalizable for a
larger class of networks.

2.3 Partition and Allocation

Ideally, a multiprocessor system for distributed simulation might be set up
in the same manner as the graph of the application model. In this case, each
processor (workstation) represents a node (service center) in the model, and the
virtual connections among the processors are identical to the arcs in the graph. In
other words, there is a one to one correspondence between the model graph and
the multiprocessor network. The advantage of this arrangement is that the
relation between the model and the real system is clear so that information such
as queue length and deadlock can be obtained relatively easily. However, the
number of processors available is in general not equal to; and may be far less
than, the number of nodes in the model graph, even when simplifications and
approximations have alrecady been introduced to reduce the model’s
dimensionality. If there are more nodes than processors, it will be necessary to
combine some of the nodes together and assign more than one node to certain
processors. Clearly, there are many different ways to combine nodes, and some

of them will have better utilization of the computation power. It is then necessary
to develop a method for assigning the work load to the processors which is
advantageous in terms of processor cycle utilization.

2.4 The Implementation of Distributed Simulation

Once the partition and allocation of the model is completed, actual
simulation may be carried out. In a distributed environment, there are several
approaches which deal with the problems of synchronization of the processors. A
taxonomy tree which classifies the synchronization methods may be found in
[PEAC 79]. Moreover, there are problems with deadlocks and collection of
statistics which are very different from their counterparts in conventional
simulation. These issues will be discussed in Sections 3 and 4 respectively.

3. Synchronization Methods

Discrete event simulation is usually classified into two types: time-driven
and event-driven. Time-related problems arise in both, as follows.

In time-driven discrete event simulation, the simulated clock is advanced
by a constant amount every time; that is, the interval is of fixed length. After
each advance, the simulator will check every part of the model. If there are
events which should take place in that interval, they will be simulated. After all
event simulations have been carried out, the clock will be advanced again. A
dilemma for time-driven simulation is that if the time increment is large, many
events will occur in each interval and, depending on the order in which the nodes
are inspected, some of the events may be simulated out of order and hence the
correctness of the simulation is violated.* If the time increment is very small, only
a few events will occur in each interval and the portion of computation time
wasted on overheads such as checking each node in the system will increase.

*Here we refer to the correctness of the simulation in the sense of exact
reproduction of event sequences as they would occur in the system being modeled;
it may be, in a particular application, that some out-of-sequence behavior in the
simulation is not harmful because the performance of the physical system is
relatively insensitive to sequencing. For instance, in our data communication
network application, the actual system may implement virtual circuits and
incorporate sequence numbers or time stamps as tags. However, the distinction
between a systemn behavior and artifacts of the simulation must be kept in
mind, with the objective of eliminating artifacts which would actually be
misleading in terms of performance prediction.

-

In event-driven simulation, the events are sorted into an event list
according to their time of occurrence. When an cvent-driven simulation is carried
out, the event which has the earliest occurrence time (top of the list) will be
simulated next. When a new event is generated, it will be inserted into the right
place on the list. The concept of event list is very suitable for realization on
conventional computer systems.

In distributed simulation, it is still possible to be in a time-driven mode,
" but it is then necessary to have centralized or distributed control which detects the
termination of a simulation time interval (increment) for every processor and then
enables each processor to start a new time interval. If a centralized controlling
processor is used, this processor has to communicate back and forth with each
processor at every time step, so it may easily become a bottleneck when the
number of processors is large. Moreover, the problems with large and smail
increments remain in a distributed environment and affect the efficiency of the
simulation.

In a distributed environment, the method of event lists is less suitable for
two reasons. First, since each processor is contributing new events to the list, it
becomes difficult to sort the event list in a distributed manner. More
importantly, after an event has been initiated, it is not always appropriate to
initiate the next event on the list even though the second event may be executed
on a different processor. The reason is that the first cvent may generate a third
event which should be simulated before the second. This situation is called
preemption. As a result, if pure event-driven simulation is implemented, even in
a distributed environment, it is possible to simulate at most one event at a time
and hence only one processor may be busy. Clearly, under these circumstances, a
processor network would provide no improvement over a single-processor system
as far as execution time is concerned. An alternative is to save the current state
of the system and then simulate the second event. If a preemption occurs, the
simulation of the second event is aborted and the previous state is restored. This
method has the drawback that a significant amount of memory and computation
overhead is required to save the states of the system.

For both the time driven and event driven methods described above, the
processors are synchronized because each one of them has approximately the
same simulation time. On the other hand, the main advantage of asynchronous
simulation is that it allows a higher degree of concurrency. Since the events in a
simulation run are in general only partially interdependent, that is, there is a
large amount of inherent concurrency, some events may be simulated in a
different order from that in which they actually occur in the actual system without
violating the correctness of the simulation. As a result, unnecessary processor

8-

idleness may be reduced. The correctness of the simulation is achieved by
preventing preemptions completely. Preemptions may be caused by messages
coming from the same arc or a different arc from which the message being served
arrived. The requirement that messages passing through each arc must have an
monotonically increasing simulation time avoids preemptions by messages from
the same arc. Strategies to avoid preemptions by messages arriving from a
different arc are discussed in Section 4.1.

The trade off for this high concurrency is that the correspondence between
the actual system and the simulation becomes less clear. Since different parts of
the model have different simulation times, it is no longer possible to take a “snap
shot” of the model and relate it to the corresponding snap shot of the actual
system. (In a sense, a model being asynchronously and distributively simulated is
in a world with four dimensions. Various values of the fourth dimension, namely
time, may exist “simultaneously” in different parts of the model.) As a result, the
collection and merging of statistics becomes very different from conventional
practice.

4. Problems of Asynchronous Distributed Simulation

In asynchronous distributed simulation, the strategies which prevent
preemptions introduce an unfavorable side effect, namely deadlocks as artifacts of
the simulation which are not necessarily present in the physical system being
modeled. Deadlocks in simulation can also be caused by deadlocks appearing in
the actual system being simulated, as well as by deadlocks arising from the
operating system being used. It is important to distinguish these different types
of deadlocks. (Ideally, a good simulator should also be able to detect deadlocks in
the actual system, rather than to “hang up’’ without controllable recovery in these
situations.) In this section, our discussion is centered on deadlocks as artifacts of
simulation, and on problems of collection of statistics from the simulation runs.
Some possible operating-system problems are mentioped in Section 6.

4.1 Deadlock

One of the major problems in asynchronous distributed simulation may
arise when a node has more than one incoming arc as shown in Figure 2.

lc

Figure 2: A Node with Multiple Inputs

In simulation, the simulation time of a message should be approximately equal to
the time when this message is generated in the actual system. The simulation
time of a node is defined to be equal to the simulation time of the last (most
recent) message generated by this node. In time-driven distributed simulation
and event-driven synchronous distributed simulation, a message which arrives at
node A in Figure 2 (in the simulation) from either one of the arcs is guaranteed
to correspond to the next arriving message in the actual system. This is not true,
however, in asynchronous distributed simulation. For example, assume a
message is sent from node B to A in Figure 2. Let the simulation time of this
message be tg, which is also the simulation time of node B when this message is
generated. If #5 is ahead of ¢, the simulation time of node C, it is possible that
node C will send a message with a smaller simulation time to A later on in the
simulation. Therefore, in order to maintain the correctness of the simulation,
node A should not consume the message from B until C also has a message ready
to be sent to A. This requirement further guarantees the absence of preemption
by messages from different arcs. When node A has one or more empty incoming
arcs, it is said to be blocked. When there is at least one message at each input
arc, a comparison can be made on the simulation times of the messages and the
one with the smallest time should be consumed first. Unfortunately, the
requirement that there is at least one message at each arc is likely to cause
inefficiency and even deadlock during a simulation run. For example, if there is
a large number of messages sent from B to A but only very few from Cto A,
messages sent along the BA arc will be unnecessarily delayed due to the lack of
messages at the other arc for simulation time comparisons. A deadlock occurs if
there are no messages being sent from C to A in the actual system so that
messages at the BA arc will be waiting forever.

-10-

Two approaches to avoid such deadlocks are the Null Mcssage Method and
the Virtual Ring Method, both of which will be discussed here.

4.1.1 The Null Message Method

A simple example of deadlock is shown in Figure 3.

Figure 3: A Deadlock

Again, at node C, there is the trouble-causing situation where a node has multiple
input arcs. If we make the simplification that there may not be any queues at the
arcs, and each node has storage for at most one message, three consecutive
messages from A through B to C will create the situation shown in Figure 3.
(Assume that no message is stored in D initially.) C cannot accept the message
from B because there is no incoming message from D for simulation time
comparison. Meanwhile, B cannot accept the message from A because it is
already occupied by a message. For the same reason, A cannot accept the
message from E. Hence no message can be sent from A to C through D either.
As a result, the message B intends to send to C can never get a simulation time
comparison with a message from D. The system is deadlocked! (If there are
queues along the arcs, deadlock is still possible when both queues in the ABC
path are full.)

-11-

Chandy and Misra [CHAN 78] have suggested the use of null messages to
solve this type of deadlock problem. At node A where there are two outgoing
paths, whenever a message is sent from one outgoing path, a null message should
be sent to the other path. The null message has the same simulation time as the
“real message” but contains no other information. In the example in Figure 3,
when two consecutive messages are sent form A to C through B, two null
messages should be sent from A to B through D. With null messages,
comparison of simulation times of messages going into C becomes possible and
deadlock is prevented. A formal proof of the absence of deadlock can be found
in [CHAN 79¢]. Although the null message method guarantees that no deadlock
will be caused by the asynchronous simulation technique, deadlocks in the actual
system will still be reflected in the simulation.

There are several drawbacks of the null message method as described
above. One or more null messages are always generated whenever a real or a
null message leaves a node with more than one outgoing arc. However, these null
messages are never consumed or destroyed except at sinks in the model. Worst
of all, if there is a feedback path from node C to node E in Figure 3, new null
messages will be generated in an unstable manner. As a result, the simulation is
dominated by processing the null message overhead. Morcover, if there are
multiple classes of jobs which require different service times, the null message
method becomes even more complicated.

4.1.2 The Virtual Ring Method

In conventional event-driven simulation, the event which has the smallest
simulation time can never be preempted. The same concept may be applied to
asynchronous distributed simulation to resolve deadlocks. Let M be the message
which has the smallest simulation time among all available incoming messages to
a blocked node N. If the simulation time of M is smaller than that of any other
node in the network, clearly, no node will be able to send a message to preempt
the message M. Therefore, even though N is blocked, this message may be
consumed by N without the risk of violating the correctness of the simulation.

The requirement that M has a smaller simulation time than any other node
in the network is a sufficient but not necessary condition for the absence of
preemption. In other words, this method is expected to be pot the most efficient
strategy. However, it has the significant advantage of being simple to determine.
Tighter bounds may be obtainable but probably not without a large amount of
overhead. If there are only very few messages in the network, many nodes will
become blocked, and the simulation will be slowed down because it is time
consuming to ““unblock” these nodes.

-12-

The remaining problem is to find an efficient method to determine the
node (other than the destination of the message) which has the smallest (earliest)
simulation time in the entire system. In other words, it is desired to find the
node which has the second smallest simulation time because N, the destination
node of message M, always has a smaller simulation time than that of M.

In the null message method, additional null messages traveling along the
arcs in the original network are used to resolve the deadlock problem. To
determine the smallest simulation time among the nodes, it is easier to use
additional data paths. A simple approach could employ a centralized controller
which collects the current simulation time from all nodes and determines the
smallest two. Again, a centralized controller may become a bottleneck when the
number of processors is large.

A second method of determining the smallest simulation time among nodes
is to map the processors on a virtual ring in addition to the arcs in the network.
A single special message which contains the simulation times of each node and
the identifications of the two nodes which have the smallest simulation time is
sent around the ring. The length of this message is proportional to the number of
processors in the network. When a node receives this message, it updates its
simulation time in the message as well as the identifications of the two nodes
which have the smallest simulation time. If the node is blocked, it also checks the
simulation time of its message M to determine whether it may be consumed or
not. :

4.2 Collection of Statistics

Since a ‘‘smap shot” in an asynchronous distributed simulation is
meaningless, the collection of statistics becomes difficult; for example, it is
inappropriate to “measure” the actual length of a queue simply by counting the
number of customers in it, as is shown by the following illustration.

h>0

Figure 4: Queue Length in Asynchronous distributed simulation, ¢, > ¢,

In Figure 4, there is a queue which connects service centers 1 and 2.
Customers joint the queue at center 1 and leave at center 2. If the simulation
time at service center 1 (t;) is greater than that of center 2 (t,), the simulated
queue tends to contain more customers than the corresponding queue in the
actual system.

The second case (Figure 5) is ¢, > ¢;. The effect of this situation is just
the opposite; i.e., the queue being simulated tends to be shorter than the actual
queue.

L2t

Figure S: Queue length in Asynchronous Distributed Simulation, ¢; > ¢,

Since it is impossible to predict the arrivals between ¢; and ¢, before service center
1 has been advanced to ¢,, a simpl¢ way to keep track of the queue length is to
save the customers which have departed at center 2. That is, it is necessary to
extend the tail end of the queue. When a customer departs at a time < ¢4, the
customer must be ‘“‘duplicated” in the simulation and a copy remains in the
extended part of the queue. It remains there until ¢; has been advanced to a time
greater than the departure time of that message. The length of the actual queue
at t, is simply the sum of the lengths of the simulated queue and the extended

part.

Since the queue in the simulation tends to be longer than or at least equal
to the corresponding queue in the actual system, it is necessary to reserve more
memory space in the simulator than the actual queue length or the queue in the
simulation will become full prematurely. The farther apart #; and ¢, may become,
the more extra room must be reserved.

5. The Processing Environment at UCLA

The Center for Experimental Computer Science, a support unit attached to
the UCLA Computer Science Department, maintains a system of 20 VAX
computers interconnected by Ethernet. The operating system on these machines
is LOCUS, a network-transparent extension of UNIX.

In LOCUS, as in UNIX, a process can create pipes, which are uni-
directional communication links between two processes. After pipes have been
set up, a new process may be forked, and the parent and son processes can
communicate with each other. This procedure may be repeated so that a collection
of processes with arbitrary pipe connections may be created. Finally, under
LOCUS, these processes may be migrated to different sites (different machines in
the network) so that a real distributed processing environment is created. In our
simulation application, such processes and pipes may be considered as the analogs
of nodes and arcs in a graph model.

6. Experimental Work

We have carried out some preliminary experiments on the computing
facilities described above. The model used is a simple slotted ring architecture for
communication, incorporating some of the basic features of the Doelz network,
and extensible to incorporate further features in future experiments.

-15-

Keeping the dimensionality (and hence the complexity) low initially, we
chose to implement for demonstration purposes a ring of four nodes and siding
queues as shown in Figure 6. Only the siding queue of node B is shown in the
figure; the others are identical.

Figure 6: A Four-node Ring Network

As in the Doelz network, the nodes are connected conceptually by a
conveyor belt representing the slotted ring (time slots in the actual system are
defined through specification of the fixed length of a basic message packet and by
the controlling clock rate). The distance between two adjacent nodes is measured
by the number of slots between them. At each node, new messages are generated
for the simulation with exponential inter-arrival times. The simulated destination
of a new message is sclected randomly among the other three nodes. The
simulated network provides priority to messages already on the ring. When a
message arrives from the neighboring node and needs to be forwarded to the next -
node, it is always transmitted to the next node even if a new message may be
waiting at the siding queue. A new message is accepted only if an empty slot is
reccived or if the incoming message leaves the network at the present node.
Processes representing nodes may, under LOCUS, be migrated to different

processors to investigate the effects of distributed processing. *

In these simulation experiments, the basic feasibility of distributed
simulation using LOCUS (or a similar distributed operating system) was
confirmed qualitatively, and a number of issues to be addressed were uncovered
as anticipated. These issues are largely connected with problems of time-
asynchronous distributed simulation; hence we have concentrated upon this area
in the discussion of the preceding sections.

There are related issues arising more specifically from characteristics of the
operating system being used. In particular, it should be pointed out that in UNIX
and in LOCUS, pipes are designed for one-way data transfer from one process to
another, and are not intended for bi-directional communication between two
processes, although it is possible to create two pipes, one for each direction,
between two processes. At the input end of a pipe, the source process can use
write system calls to send data to the pipe. At the other end, the destination
process can use read system calls to remove data from the pipe. The current
implementation of LOCUS allows a maximum of 4096 bytes of data to be stored
in a pipe. If a process writes to a full pipe, it will wait until a read appears at the
other end so that there is room in the pipe to complete the write. Similarly, when
a read is attempted to an empty pipe, it will also wait until something has been
written at the other end. These propertics open the possibility of another type of
deadlock when bi-directional communication is implemented.

Figure 7: A Three-Node Network Connected by Pipes

*Software modules needed in implementing this simulation were written in C, the
primary high-level langnage support under UNIX and LOCUS, from which calls
to the operating system are most easily made.

-17-

To illustrate this possibility, consider three processes A, B and C
connected together by three pipes as in Figure 7. If all three processes happen to
be attempting reads and all threc pipes are empty, the processes will be waiting
forever because nothing can be written to any one of the pipes to break the
deadlock. A similar situation occurs if all three processes are trying to write
when the pipes are full.

In continuing our experimental work, we must take such phenomena into
account in the system design and in the modeling techniques to be developed. Of
course, such a software-system-related deadlock problem is not unique to
LOCUS, but is encountered frequently in distributed systems implementations
generally.

7. Conclusions and Future Directions

Some of the major problems of distributed simulation, such as
preemptions, deadlocks, collection of statistics, and the need for model
simplification, have beecn identified and addressed within the framework of the
intended application to data communication networks with slotted-ring
architecture, and experimental implementation has been initiated.

In the next phase of the project, we plan to pursue further details
concerning simplification of the simulation models and to expand our
experimental work to test some synchronization methods; it may be necessary to
combine several methods to resolve the synchronization problem before
proceeding to implement application models of greater complexity.

8. References

[BALA 84]

[BRYA 77]

[CHAN 78]

[CHAN 79a]

[CHAN 79b]

[CHAN 79c¢]

[CHAN 81]

[CHAN 80]

Balaban, P., K.S. Shanmugan and B.W. Stuck, “Computer-
Aided Modeling, Analysis, and Design of Communication

Systems: Introduction and Issue Overview,” IEEE Journal on
' Selected Areas in Communications, Vol. SAC-2, No. 1, pp- 1-7,

January, 1984.

Bryant, R.E., “Simulation of Packet Communication
Architecture Computer Systems,” MIT/LCSTR-188, MIT,
November, 1977.

Chandy, K.M. and J. Misra, “A Nontrivial Example of
Concurrent processing: Distributed Simulation,” TR-82,
Department of Computer Science, University of Taxes in
Austin, September 1978.

Chandy, K.M., V. Holmes and J. Misra, “Distribution
Simulation of Networks,” Computer Networks, pp. 105-113,
March, 1979.

Chandy, K.M. and J. Misra, “Deadlock Absence Proofs for
Networks of Communication Process,” TR-105, University of
Taxes at Austin, June 1979.

Chandy, K.M. and J. Misra, “Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs,”
IEEE Transections on Software Engineering, Vol. SE-5, No. 5,
pp. 440-452, September, 1979,

Chandy, K.M. and J. Misra, “Asynchronous Distributed
Simulation via a Sequence of Parallel Computations,” Comm.
ACM, Vol. 24, No. 4, pp. 198-206, April, 1981.

Chandy, K.M. and J. Misra, “Termination Detection of
Diffusing Computations in Communication Sequential Process,”
TR-144, Department of Computer Science, University of Taxes
at Austin, April, 1980. :

[CONC 82]

[DOEL 84]

[LAVE 83]

[LOCU 84]

[MARI 79]

[OREI 84]

[PEAC 79]

[PEAC 80]

[SAUE 81]

[SAUE 83]

Conception, A.L and B.P. Zeigler, “Distributed Simulation of
Distributed System Models,” SC-82-016, Department of
Computer Science, Wayne State University, Detroit, MI, 1982.

Doelz, M.L. and R.L. Sharma, *“Extended Slotted Ring
Architecture for a Fully Shared and Integrated Communication
Network,” To be presented at the MIDCON 1984 Conference
to be held in Dallas on September 12, 1984.

Lavenberg, S.S., e&., Computer Performance Modeling
Handbook, Academic Press, 1983. ’

Locus Computing Corporation, “Locus Distributed Unix: A
Comparison with Unix,” May 1984.

Marie, R.A., “An Approximate Analytical Method for General
Queucing Networks,” [IEEE Transection on Software
Engineering, Vol. SE-S, No. 5, September, 1979.

O'Reilly, P.J.P. and J.H. Hammond, Jr., “An Efficient
Simulation Technique for Performance Studies of CSMA/CD
Local Networks,” IEEE Journa! on Selected Areas in
Communications, Vol. SAC-2, No. 1, pp. 238-249, January,
1984.

Peacock, J.K., J.W. Wong and E.G. Manning, “Distributed
Simulation Using a Network of Processors,” Computer
Networks, Vol. 3, No. 1, pp. 44-56, February, 1979.

Peacock, J.K., JW. Wong and E.G. Manning,
“Synchronization of Distributed Simulation Using Broadcast
Algorithms,” Computer Networks, Vol. 4, pp. 3-10, 1980.

Sauer, C.H. and K.M. Chandy, Computer Systems Performance
Modeling, Prentice Hall, 1981.

Sauer, C.H. and E.A. MacNair, Simulation of Computer
Communication Systems, Prentice Hall, 1983.

