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ABSTRACT OF THE DISSERTATION

Integrated Resource Management Algorithms

For Computer Systems
by

John Richard Busch
Doctor of Philosophy in Computer Sciencs
University of California, Los Angeles, 1984

Professor Wesley W. Chu, Chair

This research focused on the integration of computer resource
management algorithms in order to realize significant system level
price/performance improvements from current trends in component
technologies. The research proceeded by building a bread-board kernel
and performénce measurement and analysis tools for a current computer
family, characterizing the workload and system behavior, implementing
popular algorithms and observing their interactions, developing and
analyzing 'improved functional partitions and algorithms, examining
applicability of the principles and algorithms to decentralized system
configurations, and establishing the follow-on research into algorithm

integration for decentralized systems.

Shifting in functional responsibilities and algorithm integration
were found to be needed from the kernel through the data management

subsystems. Integration was found to impact the structure and goals of



resource management, requiring ongoing interaction and unselfish local

management decisions.

Major results in algorithm integration include : a simple method of
expressing performance objectives through external tuning and to have
them reflected in local rescurce management decisions; disc access
scheduling based on a prioritization which integrates the fetching and
posting requirements of transient and permanent objects based on
current system urgency; an integration of file/database buffering,
posting, and locality control with the memory management of transient
objects to provide high performance secondary store caching in the
primary memory of transactional systems; a hybrid clock/working set
replacement algorithm which achieves the advantage of each of the two
known algorithms, reflects process urgency, and adapts well across a
broad range of configurations and workloads; and a background garbage
collectiqn algorithm for segmented memory systems which operates

globally and is distributed in time.

Modelling results are presented on the alternatives for secondary
store caching as a function of processor speed, disc count and speed,

and read hit and write wait probabilities.

Measurements of the bread-board system with the integrated
algorithms demonstrate the behavior and performance potential,
resulting in an order of magnitude improvement in system performance
relative to the pre-integrated system over a broad mix of workloads and

configurations.

xi



Applications of the algorithms and principles to other computer

families and to problems in decentralized systems are examined.
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Chapter 1

Introduction

1.1 Need For Integrated Strategies

In the research and building of computer systems, components are
frequently analyzed, optimized and constructed in isolation.
Requirements, functionality, and interfaces are specified for the
components. Local merit of worth indexes are defined. Algorithms and

implementations are evaluated and develcped to optimize these indexes.

Compon;ents fit together into a system. System objectives are not
necessarily optimized by collecting together 1locally optimized
components. Indeed, the interactions between components frequently
determine to a large extent the success of a system to achieve its

global objectives.

An area of computer research and design in which this principle of
global wversus local optimization is difficult to apply in practice
involves computer system resource m-anagement with the objective of
optimizing system performance. The problems are big, and making
analysis and implementation tractable requires partitioning. Moreover,

the technologies of the components are evolving independently and



there’s a delay until the new improvements are understood and

exploited.

The partitioning of functionality between applications, databases,
file systems and kernels has redundancies that not only cause duplicate
development and maintenance effort, but also limit the performance
z?otential of the system 1in both centralized and decentralized

. configurations.

This research effort takes a fresh lock at computer resource
management by observing the interactions of algorithms and system
components in order to discover some principles and behavior of
algorithm integration, some new improved algorithms, and improved
functional partitioning between system components.

1.2 Research Objectives

The objectives of this research effort include the following :

.

a. construction of a bread-board suitable for analysis of the
L ]

behavior and performance of alternative algorithms for main

memory, processor, disc and semaphore management;
b. workload characterization;

c. implementation and empirical analysis of. the behavior and
performance of popular algorithms in the Dbread-board

environment;



d. introduction and analysis of new algorithms which cooperate to
optimize system performance objectives given current technology

trends;

e. observations on the behavioral and structural impact resulting

from algorithm integration;

f. selective modelling of new results to evaluate their range of

applicability;

g. examination of extensions of the principles and algorithmsg in

decentralized systems.

1.3 Research Approach

In order to discover principles and behavior of integrated
algorithms, it was decided to observe algorithms in action in realistic
situations. For this purpcse, a bread-becard system for a general
purpose computer family was constructed consisting of a custom
operating . system kernel and extensive performance measurement and
aﬁalysis tools. The workload was characterized. Popular algorithms
were implemented in the bread-beoard, and their behavior, interactions
and performance analyzed. Improved integrated algorithms were
developed. The bhehavioral and structural impact due to algorithm
integration for the centralized system was observed. The integrated
algorithms for caching secondary store were simulated and modelled to

evaluate their range of applicability. Extensions to problems in



decentralized systems were considered, and the follow-on research into

integrated distributed transaction management was established.

The Hewlett Packard 3000 family was used for the case study due to
extensive availability of computer resources for the research. A new
operating system kernel, a measurement subsystem, and a set of

performance measurement and analysis tools were designed and

implemented to establish the research base.

The kernel was structured and implemented so as to support easy
incorporation of new algorithms. Extensive measurement support needed
for workload and algorithm charactéfization was designed and
implemented in the kermel. Measurement display tools were developed to
sample, reduce, and display the measured statistics., A trace driven
simulation for detailed - analysis of disc caching strategies and a
system analytic model incorporating disc caching for broad ranges of
system configurations and workload characteristics were designed and
built. Benchmarks and real user sites were selected for workload
generation in algorithm comparison and workload characterization

experiments.

Selected known and iteratively improved algorithms for main memory,
disc, processor and synchronizing resource management were implemented
and analyzed across a range of workloads and system configurations.
External controls to express system performance objectives and
mechanisms to reflect these objectives in local resource management

were examined.



The behavioral and structural impact of algoerithm integration in the

case study were observed.

The simulation model was used to examine locality characteristics of
secondary store referencing and the benefit of various fetch and flush

policies for secondary store caching.

The system model was used to estimate the performagée potential of
alternatives for secondary store caching in light of evolving component
technologies. The impact of configurations with a range of disc and
processor speeds and varying read hit and write wait probabilities was

investigated.

The applicability of the concepts and algorithms to decentralized
systems of current interest was considered. Applications and
extensions of the results to systems with shﬁred storage subsystems,
file servers, discless workstations and concurrent distriyuted

transaction support were examined.

Based on the r=search experience, we set our follow-on research
directions for exploring integrated system architectures and algorithms

to provide efficient distributed transaction processing.



1.4 Research Contribution
1.4.1 Bread-Board Philosophy and Design

The research base was designed for change and measurability.
Performance was achieved through a careful functional split and
parallel, cooperating algorithms. Local optimizations were selectively

. performed only after global optimization had been achieved.

The case study proved to be successful in obtaining a system which
fully exploits the capabilities of the components to maximize <the
system objectives and to allow technological advances to be easily
incorporated. The incremental development cost and performance for

designing for measurability and change were minimal.

Production systems mﬁs’t support a broad range of functions. They
take a long time to build, and a longer time to get reliable and
performing well. New systems can’t be "rolled from scratch” to take
advantage of technology improvements. Exploiting advances in system
components and structure, and integrating them to optimize system

objectives, requires evolution and iteration.

Building and optimizing systems using the design principles and

structure employed in this research could help satisfy these needs.



1.4.2 Workload Characterization of Case Study Family

The more we know about real systems and workloads the better.

1.4.3 Empirical Analysis of Popular Algorithms

Many algorithms in the research literature have never been
implemented or have only been blindly implémented in real environments
Empirically analyzing the algorithms in action disclosed factors which
models and intuition failed to capture. This research disclosed some
interesting results on the behavior and interactions of replacement
algorithms (working set, page fault frequency, and clock), disc head
optimization scheduling, altermative placement algorithms (best fit,
first fit), semaphore management, and file buffering.

1.4.4 New Algorithms

Observations of the characteristics and weaknesses of known
algorithms in action with current and evolving technology suggested
new, impfoved algorithms. The new algorithms forwarded in this
research include : a simple method of expressing performance objectives
through external tuning and tc have them reflected in local resource
management decisions; a modified clock main memory replacement
algorithm which reflects process urgency and adapts well across a broad
range of configurations and workloads; a background garbage collection
algorithm for segmented memory systems which operates globally and is
distributed in time; a dise access prioritization algorithm which

integrates posting requirements of transient data, write-ahead logging,



and files data with the fetching of code, transient data, and file data
based on current system urgency; and an integration of file and
database posting and locality control with the memory management of
transient objects to provide integrated, high performance, cost

effective secondary store caching in transactional systems.

B In addition to the empirical results, simulition and analytic
modelling of the alternatives for secondary store caching was
performed. These modelling results indicate <the importance of
secondary store caching to exploiting technology trends in processors
and memories, and identify the significant performance advantages of

integrated policies for caching of discs in large primary memories.

1.4.5 Principles and Structure of Integrated Algorithms

Integration was found to impact the structure and goals of
algorithms. It was found that integrated algorithms must be structured
for ongoing interaction, and must make unselfish local management
decisions! In order to exploit evolving technology, the partition of
functionality needs to change, and integrated management approaches

applied.



1.4.6 Applicability to Decentralized Systems

The external tuning controls, priority assignments and adjustments,
and tagging of actions with these priorities as hints for local
resource management decisions appear to extend well to decentralized
resource management problems with shared secondary storage subsystems
and file servers. Cur follow-on Tresearch into architectures,
functicnality splits, and integrated algorithms to extend our
centralized system 1results to efficiently suppert concurrent
transactions in decentralized systems may contribute to the performance

of distributed systems.

1.5 Layout of the Dissertation

During the discussions in each major area, an attempt is made to
provide a summary of research in the area along with literature

references.

Chapter 2 summarizes the main features of the case study computer

family. The family’s architecture, configurations, and application mix

are summarized.

Chapter 3 describes the objectives, functions and designs of the
bread-board kernel, measurement support, and simulation and analytic

models which comprise the research base.

Chapter 4 presents a summary of the workload characteristics of the
case study family. The temporal and spatial reference locality of

executing processes for code and data objects and for databases and



file systems for disc domains are presented. Processor, semaphore,
disc and main memory requirements are summarized. Relationships
between workload characteristics and resource management are

highlighted.

Chapter 5 presents the investigation results inte algorithm
integration for disc, processor, main memory and semaphore management.
Findings on the performance and behavior of some popular algorithms as
well as improved, integrated algorithms are reported. Principles and
interactions in algorithm integration which were observed during the

research are described.

Chapter 6 extends the algorithms to integrate data management in
orders to exploit processor and memory technology trends. The need for
secondary store caching is-identified, and altermatives are evaluated
in light of current and evolving technology based on cost, performance,
and reliability. The impact of processor speed, disc count and speed,
read hit and write wait probabilities, and effective multiprogramming
level on the alternatives is modelled. The design and measurements of
our bread-board implementation of one alternative, explicit global disec

caching in the primary memory, are presented.

Chapter 7 discusses extensions of the concepts and algorithms to
decentralized systems. The focus is on examining the potential of the
concepts for improving performance of shared f;le access 1in some
distributed configurations of current interest. Shared storage

subsystems, file servers, discless workstations, and homogeneous

distributed transaction systems are considered. OQur direction for

10






continuing Tresearch into functional partitioning and algorithm

integration for such systems is set.

Chapter 8 discusses conclusions which can be drawn from this

research.

The appendices describe in more detail the measurement subsystem,
kernel tuning commands, instrumentation, disc cache simulator, and

analytic system model built for this research.

11



Chapter 2

The Case Study Computer Family

In order to empirically investigate algorithms in action in
realistic environments, computers are required. The Hewlett-Packard
3000 computer family was selected since extensive computer resources
for this family were available for the research. This chapter
summarizes the main features of this computer family. The family’s
architecture, configurations, and application mix are summarized.
Following chapters describe the bread-board, worklead characteristics,

and algorithmic measurements and analysis.

2.1 Architecture

The HP 3000 architecture is that of a stack oriented, segmented
machine. Stack computers are discussed in general in [Bul 77]. The
stack implementation for the HP 3000 family is discussed in detail in
[Bla 77]. . Segmented architectures are discussed in [Ran 69, Bat T0,Han

73, Hab 76].

The HP 3000 architecture is object oriented to the extent that an
executing process can only address a specific set of objects and not
the entire address space. A process can address its stack, up to 255
code segments, and up to 1024 data segments. Stacks and data segments
are limited in size to 64 kbytes, while code segments are limited to 32

kbytes in length.

12



There are base and bounds registers for the current stack, code
segment, and an extra data segment. The segment base registers contain
physical memory addresses. Address computations are performed relative
to these registers without translation. As a consequence, an entire
code or data segment must be present in main memory for a reference to
it to go through (i.e. no paging beneath the segmentation). A
reference bit is associated with each code and data segment. This Dbit

is set by microcode during instructions which reference the segment.

The instruction set provides move instructions between two data
segments, and transfer of control within and between code segments
through the procedure call instruction. The procedure call instruction
saves the return state in a stack marker, looks up the physical address
of the called procedure in a segment description table, and sets the

current instruction register to this value.

2.2 Configurations

The processing units comprising the HP 3000 family, along with the
family's growth history and directions, are shown in Figure 1 [HP 83al.
The target directions have been towards higher performance at the same
cost on the high end of the family, and lower cost at the same
performance on the low end. The current processors range from .25 to 1

IBM MIPS in performance.

13
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Figure 1: HP 3000 Family of Computers

There are approximately fifteen thousand HP 3000 installations. The
installations have configurations ranging from 1 to 256 terminals, 1 to
8 tape drives, 1 %o 8 line printers, 0 to 8 network communication
lines, .25 to 8 Mbytes of main memory, and 1 to 32 disc drives. Figure

2 depicts the supported configuration range [HP 83a].
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HP3000 Family Profile
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Figure 2: HP 3000 Configurations
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2.3 Application Mix

Figure 3 provides a breakdown of the HP 3000 installed hase in terms
of business classification [Int 8U4]. HP 3000 computers are used

primarily for office and manufacturing applications.

HP 3000 INSTALLATIONS BY BUSINESS CLASS

Figure 3: Breakdown of HP 3000 Installed Base

Figure Y4 provides a breakdowm of programming language usage in by the

installed base. COBOL dominates, with FORTRAN, BASIC, and interpretive

transaction processing languages following.

16



LANGUAGE USAGE IN HP 3000 INSTALLATIONS
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Figure 4: Language Usage With the HP 3000 Family

Extensive application software packages are available for the
family. They are provided by the manufacturer, by software houses, and
by installation programming staffs. Packages are available which
provide database systems and utilities, manufacturing application
packages, and office products including text editing, graphics and

electronic mail.

Many installations are fairly dedicated, with one or two distinct
application packages being used by most of the sessions (e.g. database
or text editing). Many sites are dominated by batch processing during
off-hours, and allow only a few batch jobs at a time to compete in the

background during +the normal work hours. There are however a

17



significant number of sites which are more diverse,

development sites.

18
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Chapter 3

The Bread-Board

In order to use the HP 3000 family of computers for a case study in
analyzing integrated algorithms, extensive qperat ing system
modification and a set of performance measurement and analysis tools
was required. The existing operating system for tghe HP 3000 family
would not accommodate the easy inclusion of neﬁ algorithms nor did
there exist tools for local and global behavior and performance
measurement and analysis. Thus, a new operating system kernel, a
measurement sﬁbsystem, and a set of performance measurement and
analysis tools were designed and implemented to form an adequate

research base.

The kernel was structured and implemented so as to support easy
incorporation of new algorithmg. Extensive measurement support needed
for workload and algorithm characterization was designed and
implemented in the kernel. Measurement display tools were developed to
sample, reduce, and display the measured statistics. A trace driven
simulation for detailed analysis of disc caching strategies and a
system analytic model incorporating disc caching for broad ranges of
system configurations and workload characteristics were designed and
built. Benchmarks and real user sites were selected for workload
generation in algorithm comparison and worklo::;d characterization

experiments.
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This chapter describes the objectives, functions and designs of the
kernel, the measurement support, and the simulation and analytic models

providing the bread-board for algorithm analysis.

3.1 The Bread-Board Kernel

The kernel of an operating syst;m [Cof 73, Han 73, Shaw T4, Hab 76]
ig the level of software, and sometimes hardware or firmware [Dur 79,
Mye 78, Kah 79, Har 83], which provides the high level portions of the
operating system with a virtual interface to the hardware and primitive
system resources. The details of system configuration, of hardware
interfacing, and of controlling access to system resources are all

hidden by the kermel.

The kernel multiplexes the system resources among the competing
processes through the application of service policies, The overall
performance of a general purpose computer system is to a large extent

determined by the effectiveness of these policies.

A new. kernel was required which would support the research
objectives. The major objective of the kernel design was to support
multiple algorithms with minimal development impact. Ideally, the
algorithms could be mixed and matched, and new algorithms could be

plugged in easily.

3.1.1 Kernel Structure and Implementation
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The concept of modularity in system design is discussed by Parnas in
[Par 72]. Parnas recommends that the decomposition into modules be
based on hiding the design decisions, not on steps in processing. A
module should be a responsibility, not a subprogram. He points out the
benefits of the modularization : reduced development time, product
flexibility, and comprehensibility. To save procedure call overhead
due to the decomposition, Parnas suggests that smart tools could be

built to restructure the source or object for efficiency.

Kahn [Kah 81] discusses the extensible operating system design of
iMAX for the Intel U432, The goal of iMAX was to provide the basic
mechanisms in a manner which permitted the flexible implementation of
policy by higher levels of the system. The structure of iMAX is that
of a library set from which application specific operating systems can
be constructed. The basic mechanisms are provided by iMAX, but the

policies are flexibly Emplemented by higher levels of the system.

-~

A hybrid approach to modularization was selected for the design and

implementation of the bread-board kernel.

In order to make it easy to replace the resource managers for main
memory, processor, disc, and semaphores, these functions were
structured as independent modules. Access and control of their
resources is limited to that provided through their explicit

interfaces.

The design objective for the construction of a resource manager

itself was leverage so that alternative resource managers could be
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eagily built. Thus, services within a resource manager were

modularized more on a primitive function basis.

Throughout the design and implementation, efficiency at the

instruction level was of secondary concern.

Thus, the kernel structure is based on decomposing the system into
resource management modules so that they can be easily replaced, while
enforcing within a module strong separation of policy from mechanism so
that new algorithms could be implemented in a leveraged manner.
Performance was sought through good algorithms, not instruction level

optimization.

The bread-board kernel provides full support for all memory
management, processor management, disc access and space management,
ipe, and-semaphore management. It interfaces below to the I/0 drivers
and above to file systems, databases, and applications. The board
kernel consists of roughly 35000 lines of SPL (an Algol-like language),

roughly 25000 instructions.
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3.2 Performance Measurement and Analysis Tools

The literature was researched to aid in determining appropriate
measurement and analysis techniques. Instrumentation was defined, a
statistics updating and reporting subsystem - was designed and
constructed, and display tools were specified and built. Workload
generators were collected, and workload characterizers were
constructed. A simulation was built to analyze secondary store
caching, and a system model was constructed for analysis of the impact
of disc caching across a broad range of configurations and workloads.
Figure 5 shows the relationship of the various performance measurement
and analysis tools which were constructed for this research.
Specifications and sample outputs of the tools are provided in the

appendices. This section provides an overview of them.
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3.2.1 Statisties Support and Display

A Datapro survey of commercially available rerformance tools is
found in [Dat 77]). There are tools to provide information on
processor, memory, disc, and other device utilization for load
balancing and configuration improvement indications (CUE, Sara,Planr,
QCM, Dream). There are tools for displaying the external performance
indices directly (SMF, TSO MON, VS/Insight). There are tools which
identify heavily used pieces of code to indicate where local
optimization will pay off most (QCM, TSA). There are tools which
observe the system and dynamically adjust the external tuning controls
of the operating system (EQULPRTY, OPTIMUS, Regulator). There are
tools for resource consumption accounting and billing (Mister, Cims).
There are tools for database statistics gathering and reduction

(IMS/DC, IMS ASAP).

-

Calloway [Cal 75] discusses the use of IBM 370 VM tools to address
the questions of the user, system operator, system analyst, design

analyst and installation manager.

Techniques of data collection through sampling and event driven
tracing are taught in the performance texts by Svobodova {[Sve T6] and

Ferrari [Fer 78].

The measurement requirements of this research called for thorough
evaluation of the local and global behavior and performance of a

variable set of resource management algorithms. User and installation
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oriented measurement support was not required. Rather resource demand
and wutilization statisties with <the wvarious resource management

algorithms were required.

Statistics inc¢luding resource queue length and service time
histograms, service class compositions, transition distributions, and
resource specific event frequencies were supported by the various

processor, main memory, disc, and semaphore managers.

The approach to kernel support of the statistics was chosen to be
event driven rather than sampled. A sampling approach would have
required that the clock interrupt handler be knowledgeable of the
current strategies and their supporting data structures in order to
find the information required for the enabled statistics. This would
have required enhancing -ana maintaining the sampling clock handler
whenever a strategy was implemented or changed. An event driven
approach in which in-line macros update centrally located event and
time counters was simpler to implement and maintain. The processor
overhead of kern;l instrumentation updating and displaying is less than
3%, so interference of the measurement with the system under test was

not a problem. Interestingly, the current sampling tool for the HP

3000 has a processor overhead of S%.

In order %o avoid having to modify the measurement display tools
when the kernel algorithms were changed, instrumentation updating and
reading was provided independently of both the algorithm
implementations and the measurement display tools. A measurement

subsystem was designed and implemented. This subsystem provides
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functions for the selective enabling/disabling, wupdating, and
delivering of classes of statistics. A specification of this subsystem

and its interfaces is provided in Appendix A.

A statistics display tool was specified and developed. This tool
allowa the measurer to specify the range of statistics to be measured
aﬁd the desired duration of measurement. The todl starts statistics
collection by invoking a measurement subsystem interface routine,
specifying the statistics classes to be enabled. The measurement
subsystem constructs measurement collection data structures and enables
the corresponding kernel instrumentation through the setting of an
enabled measurement class bit-mask. As events occur effecting a
statistic, the instrumentation is updated through a measurement
subs&stem macro. The tool samples the current values of the enabled
instrumentation (sampling interval user specified, normally minutes) by
invoking the measurement interface’s statistics delivery interface
routine. The tool appends the current values of the statistics to a
log file. When the required number of samples of the instrumentation
have been’coilected, the tool formats the statistics on an interval and

cumulative basis. A formatting of a subset of the supported

instrumentation is provided in Appendix B.

3.2.2 Horkload Generators

In order to evaluate different algorithms across ranges of workloads
and configurations, a controllable, reproducible workload generator was

required.
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Workload generators are discussed in [Svo 76, Fer 78]. They can be
constructed from sample programs, traces or synthetic benchmarks which
place a sequence of resource demands on the system to simulate resource

usage behavior.

A seript-driven benchmark workload gerierator was available. It
executes a set of scripts, one per simui;ted session or Jjob, on a
separate computer connected‘to the system under test through terminal
cables. It allows the measurer to specify the number of interactive
and batch sessions, distributions for think times between the session
transactions, and the script that each session is to execute. Several
sets of scripts and configurations which are representative of the user
jnstallations were available. The load generator logs the time of
transaction initiation and completion. A reduction program produces
throughput and response time statistics from this log for each session
and overall. This benchmark system provides a good external load

generation and performance measurement facility.

3.2.3 Disclﬂorkload Characterizer

In order to analyze the disc subsystem in detail, a trace driven
disc workload characterizer was specified and built. This +tool
consumes a disc access trace file as input, where a trace record
contains the time, accessor class, access transfer count, access
function and access location for each disc access initiated by the

system being traced.
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The disc workload characterizer program produces a profile of disc
I/0 workload characteristics. This includes a breakdown of the
workload into its access type components (database, directory,
seguential access, etc.), inter-reference times, distributions of
transfer sizes, active extent sizes, and extent lru (least recently

used) stack reference depth.

The use of the LRU stack depth as a measure of program locality is
discussed in [Chu 76, Tur 77, Spi 77]. This tool applies the principle

to the referencing characteristics of the discs.

Insight into the spatial and temporal locality of reference to
secondary store is provided through the use of the the disc workload
characterizer. The referencing characteristics reported by the disc

access characterizer are used as input to the analytic system model.
A sample of the output from this tool is provided in Appendix C.
3.2.4 Disc Cache Simulator

The disc cache simulator provides insight into the impact on a
workload'’s disc traffic which would be realized with various forms of

dise caching.

The disc cache simulation program simulates disc caching on a disc
I/0 trace file, It allows refined control over cache management
policies (rounding, extent adherence, write handling, fetch sizes for

each access type, and flush control). Any subset of the accessors can
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be cached, so that the localities of the access methods can be

investigated in isolation.

The output of +the disc cache simulator decomposes the dise
references into mode and access function with cache hit information for
each access type. In addition td the cache performancqrinformation for
the access types, the disc cache simulator alsc gives cache behavior
information, including distributionas of cache entry: counts, cache

reference lru stack depths and cache inter-replacement times.

The hit rates obtained from the simulations are used as the
processor to disc and processor to cache transition probabilities in
the system model. By obfaining the hit rates through simulation, main
memory size and contention do not need to be captured by the system

model. This significantly reduces the complexity of the system model.

The disc cache simulation program uses the approach of building an
LRU reference stack for its replacement decisions. The use of an LRU
reference stack and program reference fraces is a standard approach
[spi T77] for analyzing fault rates for global LRU type replacement
algorithms in main memory management. This simulator applies the same
techniques to disc reference traces in order to evaluate alternative

fetch and flush policies in dise caching.

Figure 6 compares simulated and measured cache hit rates for various

workloads. The simulation predictions are consistent with measurement

within 5%.
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Figure 6: Disc Cache Simulator Verification

The dise cache simulation consists of roughly 3000 lines of Pascal.
It requires roughly 1 CPU minute on a 1 MIP machine for each 10,000
trace records processed. Appendix D describes the implementation of

the dise cache simulator, and gives a sample of its output.
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3.2.5 Analytic System Model

A custom analytic system model was built for this research. A
custom model was required in order to explicitly include a disc cache
service station. It allows the wuser to specify the system
configuration and workload characteristics, and produces global
performance estimates as well as resource demand and utilization
statistics. The system model explicitly captures the effects of
alternative secondary store caching mechanisms, including external
caching of discs through an intermediate storége level and internal
caching of discs through file mapping or explicit caching in primary

memory.

The system model queries for worklcad and configurafion information.
These inputs are obtained from knowledge of the installation, from fhe
disc cache simulation, and from the statistics collection and reduction
tools. Inputs are specified for procéssor speed, disc configuration
and speed, channel speed, processor and disc service demand, disc cache
overhead, énd dige cache read hit rate, fetch size, and post handling

method.

Given the input system configuration and workload characterization,
the system model program constructs a closed queueing model. The total
workload is aggregated, and the network is decomposed into a simple
central server model. For internal caching, the disc cache service

station is absorbed into the processor station. The resulting central
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gerver model is solved through a standard iterative procedure [Lav 83]

which iterates on the effective multiprogramming level.

Performance and behavioral characteristics are calculated for each
server, and the system as a whole. For each iteration on the mean
multiprogramming level, the utilization, mean gqueue length, throughput
@nd response time of each server is calculated, as is the overall

system response time and throughput.

Lavenberg and Sauer [Lav 83] provide a handbook on current modelling
techniques. Techniques for handling open networks, general arrival or
service distributions, multiple servers, state dependent queues and
multiple service classes through exact and approximate methods are

presented.

These refinements over the simple central server model are useful in
obtaining accurate performance prediction in general situations. To
obtain approximate insight into the ihpact of disc caching across a
range of system configurations and workloads, the model constructed for

-

this research was adequate.

The impact of serialization is not explicitly captured by the model.
Models capturing workload serialization are explored in [Thom 83].
Serialization due to contention for access control semaphores can have
a significant impact on system performance. Its effects can be

approximated by reducing the effective multiprogramming level.
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The system analytic model consists of roughly 1500 lines of Pascal,
and requires less than 1 CPU second on a 1 MIP machine for calculation.
A description of the system model with sample input and output is

provided in Appendix E.
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Chapter 4

Workload Characteristics

This chapter discusses the referencing patterns and the processor,
semaphore, disc and main memory Tresource usage profiles of
representative workloads for the case study family. Relationships
observed during the course of the research between workload
characteristics and resource management policies are noted. The
resource management policies which are referenced in this chapter are

discussed in detail in the following chapters.

We examined the workload characteristics of the case study family
for a number of reasons. There is a basic need for research data on
real workload behavior. We wished to identify the scope of
applicability of the empirical results on algorithm analysis which we
generated. Knowledge of the workload characteristics helped us to
better understand the behavior of the algorithms we studied. Finally,
an. undersfanding of the workload behavior helped to focus our search
for technological improvements in resource management algorithms and

system components.

The bread-board kernel and measurement tools were used to examine
the workload characteristics of the case study family over a number of

years as the family evolved.
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The memory and processor characterizations reported in this chapter
and the algorithm behavior characterizations reported in the next
chapter were gathered using a benchmark called EDP which consists of 48
sessions and two batch Jjobs. The system under test was running the
bread-board kernel without internal caching of secondary store on an HP
3000 Series 4k with 2 Mbytes of main memory, and 2 HP 7925 disc drives.
The benchmark was running on a separate computer which was generating
the load on the system under test through 48 terminal cables, one for

each session.

The scripts consisted of : a 2500 line Cobol program performing U8
file inquiries, 14 file updates, and T file appends through the
VPLUS/3000 and IMAGE/3000 subsystems; a data inquiry script using the
QUERY /3000 subsystem on a shared database with 10 FINDS and 9 REPORTs
performed on data set containing US55 entries; and a program dévelopment
script consisting of a compile and link of a 1200 line COBOL program.

Each script was being executed by a third of the sessions.

The salient workload characteristics of processcr, main memory and
semaphore usage are similar in most workloads. The disc referencing
patterns however vary considerably between workloads, depending
primarily on the access methods which doeminate in the workload. The
general behavior of the access methods at different installations tends

to be similar though.

The disc spatial and temporal locality characteristics reported in
this chapter were obtained from an HP internal installation used by

product support for manual and training material production and for
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database tracking of operating system bugs. The installation was
monitored for 5 consecutive days during a two hour window each morning.
The disc data presented in this chapter comes a representitive sample
during which 9 users were performing text editing with the TDP utility,
2 users were performing graphics editing using the HFDRAW utility, and
7 users were performing database queries and updates against an Image

database of pending bug reports.

Instrumentation samples of the research lab’s timeshare machines
taken over a number of years are also referenced in and the following

chapters.

The chapter begins with a discussion of transaction behavior. The
chapter then proceeds through a discussion of main memory, processor,
semaphore and disc usage. Object types, their size distributions, ;nd
memory reference localities are described. Processer burst and
semaphore request/block profiles are. presented. Dis¢ spatial and
temporal referencing behavior is characterized as a function of
accessor mode (database, directory, sequential). The chapter concludes

with a summary of the salient workload characteristics.

37



4.1 Sessions and Jobs

A session consists of a user at a terminal carrying on one or more
transactions with the system. A transaction begins with the user
providing input through the terminal. In executing a transaction, the
corresponding process locks semaphores protecting shared data, readg
and writes data in one or more files, outputs to a window of the
screen, and waits for the next input. A job behaves looks a long
transaction to the system, except that it uses disc or tape files for

input and ocutput.

The distributions of think times between transactions tend to be

highly installation and time-of-day dependent.

4.2 Memory Usage

The segmented nature of the HP 3000 architecture and the operating
system and subsystem structure influence the address space
decomposition and referencing behavior of a workload. The memory
obhjects iﬁ the system include stacks, code segments, data segments, and
domains of the disc cached by the kernmel. This section explores the
relative usage of these objects, their size distributions, thei;
system/user decomposition, and the extent of sharing found in the case

study family.

4.2.1 Memory Usage By Objects
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Figure 7 shows the relative partitioning of memory between active
ocbjects based on space occupancy and number of objects in a typical
steady state. The relative space partitioning is more a fumction of
memory size than application mix, with the portion allocated to cached

disc domains falling as memory size decreases.

Memory Utilization by Objects

5% «

wy%e

cache-dggn'ain’i

Figure T: Active Object Occupancy in Memory

4.2.2 Object Size Distributions

Figure 8 presents normalized distributions of the sizes of active

objects in a typical steady state.
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The code distribution is very similar to those reported by Batson
[Bat 70] for the Burrough’s 5500, and Batson and Brundage [Bat 77] for

Algol 60 programs, though the means are somewhat larger.

The distributions are skewed toward the lower range of potential

obhject sizes,

For code and data segments, this is hue to operating system and
program developers taking advantage ‘of the segmentation to group
logical units together into segments that are referenced together,
Infrequently referenced units would be grouped together into one
segment, or placed in segments by themselves, so that they would be in

main memory only on those occasional times when needed.

Such restructuring for improved locality has been recommended by
Hatfield [Hat 81], Ferrari [Fer T4,76], and [Denning 76]. Opale, a
tool for restructuring programs for paged virtual memory asystems
discussed in [Ach 78], claims a reduction of 40 to 70% in the page

fault rate for the Sirus 8 operating system. :

The data segments are used to keep track of process and job state
and accounting information, for file and database buffering, and for

application specific use,

Cached disc domain distributions have two peaks, with their relative
heights a function of the ratio of sequential t; random access for
files and databases. The peak of small cached disc domain sizes is due
to caching of writes and cached reads of randomly referenced domains.

The larger peak 1is due to prefetching of large disc domains on

4o



sequential read access. This peak has low frequency gince these

domains are flushed immediately after use.

The characteristics of the object size distributions are consistent
across workloads and over the years. However, the means of the code
and data segment distributions gradually doubled after thg system’s
sensi£ivity to segment =size went away ihrough improved memory
management and larger memories, and the cached disc domain:mean size
will gradually become larger as subsystem and application designers

feel out the new tradeoffs introduced by disc caching.

These shifts give an indication of the way application and subsystem
designers allow the characteristics of ¢the services they use <o
influence their decisions. This in not uncommon, indeed encouraged.
For example, Paulhamus and Ward recommend specific blocking factors for
programs executing on the IBM 370 under MVS based on their empirical
study of the effect of varying blocking factors using a particular
operating system version and configuration. The benefits achieved by
specific data clustering in the IBM 370 MVS. environment are also

discussed in [Pau T7T].
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Figure 8: Object Size Distributions
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4.2.3 User/System Object Partition

Figure 8 shows the relative partitioning of active code and data
between system and user domains. The high percentage of system code

results from the operating system and subsystems doing most of the

work, while user code just invokes services. In distinction to code,

data object sface.in memory during steady state;processing of a normal

workload is dominated by user data.
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4.2.4 Memory Reference Locality

Figure 10 shows a breakdown of a typical process’ working set based
on measurements made with the bread-board kermel using a per process
working set replacement policy with the working set window at 150k
ipstructions. This does not include cached disc domains. They are

f?ferenced indirectly through the buffers in the data segments.i

_5_63 % 7

BSR—<9ge

Figure 10: Working Set Composition

The memory referencing behavior is similar to that reported for
other systems. The working set characteristies [Den €8, Spi T2] are

evident, as shown in Figure 11. Observe the rapid drop in fault rate
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for code and data objects as the working set window widens, and the
fairly rapid plateauing. The drop in fault rate is much less for the
user code since it accomplishes its work through system and subsystem

services, and so is more compact and tightly referenced.
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Figure 11: Memory Reference Behavior

4.2.5 Object Sharing

All code segments are read only and sharable. All processes share

the code segments comprising the operating and subsystem services, All
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processes executing the same program share the same segments of the

program, and typically many processes are executing the same program.

File and database data segments are shared by all processes
accessing the same file or database. Job related data segments are
shared by all processes which are part of the same job or gession. The
stack and process related data segments are private to the process.

All cached disc domains are globally shared.

This high degree of code and data sharing can be expected to have an
impact on the performance of memory management algorithms. That
sharing and not just process locality need to be considered was clearly

demonstrated when comparing replacement algorithms.

Two versions of the working set algorithm were implemented, one
version ignoring object ;haring, and one version taking working set
intersections into account. The version . ignoring sharing releases the
space occupied by an object immediately when it leaves the working set
of a process in the current multiprogramming set or when it is in the
working sét of a process being swapped out. The version taking sharing
into account releases the space occupied by the object only if the
object is not in the working set of another process in the current
multiprogramming set. Note that an object can be recovered even though

its space has been released until it is actually overlayed in memory.

Figure 12 shows the impact. Observe the high fault and recovery
rates for the data and system code segments when sharing is not

accounted for.
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Figure 12: Effects of Sharing on Replacement Policies

4.3 Processor Usage

Figure 13 shows a distribution of processor service time per visit.

The exponéntial character is classic [Kle T75].
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Figure 13: Processor Burst Distribution

Observe that the presence of jobs in the mix has minor impact on the
characteristics of the distribution. Jobs use the same services that
interactive transactions do. The implementation of these services

dominates behavior, not service class.

The mean of the processor service time distributions shifts however,
based on changes in the algorithms. When disc caching was introduced,
the mean tripled since 90% of the transitions from the processor due to
a disc service wnit were eliminated, thus increasing the service time

per visit and reducing the number of visits required to perform a
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function. Some of the swap and replacement algorithms cause the means

to become smaller due to high fault and preemption rates.

The total processor requirements to perform a functions depend on
the function and how it is implemented. A relational database
implemgntation for the HP 3000 family uses ten times the processor to
perform the same function as a database employing a network

implementation.

4.4 Semaphore Contention

A description of the use of semaphores for synchronization and
mutual exclusion can be found in [Dij 65, Cof 73, Fra 73,5ha 74, Shr
75]. The impact of semaphore contention on performance is modelled in

[Thom 83].

Semaphore facilities are provided at the system and user levels.
The operating system uses over fifty distinct semaphores to synchronize
access to shared resources. These semaphores protect memory and dise
resident data structures, and serialize access tc¢ services which cannot
be provided in parallel. The operating system provides an unlimited
number of user defined semaphores, as well as facilities for their

acquisition and release. The user level semaphores are defined and

manipulated by subsystems and applications.

Contention for operating system semaphores is normally low,
contributing less than 2% to the process stop distribution even under

heavy loads. The probability of finding a system semaphore busy in a
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normal workload is below 5%. A profile of system semaphore usage and
conflict is shown in Figure 1U4. The top graphs show the system
semaphore request/block profile and holding times without batch jobs in
the mix, while the bottom graphs show the impact on the profiles and

holding times due to batch jobs.
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Figure 14: System Semaphore Usage Profile
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The above figure shows the holding time profile of the system
semaphores. It is not a coincidence that the semaphores with long
holding times are infrequently used. The system designers refined lock
granularity to insure that semaphore contention remains low. The
semaphores held for long duration are relatively infrequently used so

the development effort of providing refinement wouldn’t pay off.

The presence of jobs in the mix increases the mean holding time of
the semaphores. This is an indication that semaphore holding time is

load and system policy dependent.

Contention for user semaphores is very high in a significant portion
of the installations. This 1is due primarily to insufficient
parallelism in the database. In installations in which many of the
users are sharing the saﬁe-database, semaphore waits contribute over
50% to the process stop distribution, and over 90% to the realized

response time.

4.5 Disc'Usage

The disc traffic patterns depend not only on memory size but also on
the management policies employed by the kernel, file system and

database.

In small memories (< 2 Mbytes), code and process control structure
traffic can be significant, with the rates and relative mix of objects
flying in and out highly dependent on the memory management algorithms.

This behavior is explored in the next chapter.
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We saw above that the code and transient data objects comprising a
process’ working set can fit in 100 kbytes, The high degree of code
and data sharing makes the memory requirements for transient objects
strongly sub-linear with respect to the number of active sessions.
Thus, in large memories, disc traffic is dominated by file and database

referencing patterns (assuming décent swapping algorithms).

Figure 15 provides a profile of disc reference locality on an
aggregate basis; It shows a typical distribution of inter-extent
reference times and extent LRU stack depths. Notice that although the
mean inter-reference time is often minutes and more, the median is on
the order of milleseconds. The small median and relatively small mean
of the LRU stack depth distribution of inter-extent references indicate
that references are localized to a relatively small subset of the disc

space occupied by files and databases.
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Figure 15: Inter-Extent Reference Locality

These locality distributions normally have very large standard
deviations, consistent with the findings of Smith [Smi 78] on long term

file referencing patterns.

The primary access methods are directory, sequential, and database.
The directory manager maintains a hierarchical disc resident data
structure which keeps track of the security and disc locations of all
files. Sequential access is used primarily in file copies and
compilations. The IMAGE database system presents a network model with
hierachically structured data sets and predicate locking for

concurrency control.
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The disc workload analyzer and disc cache simulator were applied
further to investigate the access methods’ use of secondary store and

their inherent spatial and temporal locality of reference in detail.

Figure 16 shows the cumulative probability distributions and
characteristic means of the disc access transfer sizes made by the
access methods. The read to write ratios_a%'e shown as well. Cbserve
that all the access methods tend to move chunks of about 1 kbyte
between their buffers and their total address space. Directory and
database movement is highly skewed towards reads, while sequential

movement is split evenly between reading and writing.

56



Access Transfer Size Access Transfer Size

MEAN MEDIAN SEOUENTIAL DIRECTORY  DATABASE
120020088 yProbepittyhfer 2= X
1000 )
S00F
600
m b
2 L.

Zj sacpential dirac database o ' 40

Access mfm Transter Sizeibytes)

Access Function
READ WRITE
 —
! bability )

B

B

A

2F

0.0 S B DO
sequential directary database
Access Method

Figure 16: Access Method Use of Secondary Store
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In order to examine the inherent locality of the access methods,
disc traces from large installations were obtained and the disc cache
simulator was run on them with an infinite cache size, caching only one

access method at a time.

Figure 17 shows representative spatial locality characteristics of
the access methods. The cumulative probability distribution funection
of the LRU stack depth references and the means and medians of the
stack depth distributions are shown for directory, database and

sequential access.
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Figure 1T7: Spatial Locality of Reference of Access Methods
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Figure 18 shows representative temporal locality characteristics of
the access methods. The cumulative probability distribution function
and the means and medians of the time between references to blocks of
the address space of the access methods are shown for directory,

databagse and sequential access.
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Figure 18: Temporal Locality of Reference of Access Methods

Sequential access shows a high degree of temporal and spatial
locality within a small portion of its address space at a time. It’s
references are milleseconds apart to its top of stack elements, then
those elements are never again referenced. The large mean in the LRU

stack depth for sequential reference is due to misses on writes which
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are related to data created by the sequential process and being posted

for the first time to previously unused regions of the disc.

Directory access shows a fairly high degree of spatial locality of
reference within its reference space, with 90% of its references
occurring within the top ten LRU stack elements, but a relatively low
temporal locality of reference, with over 50% of its repeat references

to the same block being at least minutes apart.

Databage access shows considerably less spatial and temporal
locality than the other access methods, with one fourth of the
references outside the top 50 LRU stack-élements and over half of the
referenced blocks are never used again for hours or days (thus the

infinite median inter-reference time for database access).

Rosell {Ros 76] reports that in his study of IMS he found the working
set size of the database system was linear with respect to the window

size, indicating poor locality. Sequential access dominated the

referencing patterns in his study.

The IMAGE database locality characteristics presented here do
indicate relatively poor spatial and temporal reference patterns.
However, we will see in Chapter 6 that the database locality patterns
are poor only relatively speaking. Notice that the cumulative LRU
stack depths and cumulative inter-reference time distributions continue
to grow, although slowly, with increasing stack depth and
inter-reference times. This indicates that caching database references

in a high speed memory would continue to provide gradual increases in
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hit rate as the cache size increases, although the inter-reference

times of cached pieces could be minutes or more apart.

4.6 Summary of Salient Workload Characteristics

The worklocad characteristics of th? case study family changed over
time following the evolution of the system hardware and software
components. The workload characteristics depend on the processor and
system architecture, and on the algorithms in compilers, applications,
databases, file systems and kernels. The functions and algorithms of
each of these system components evolved over time, out of phase with
one another, and the evolution of the workload characteristics followed
the evolution of the system components.

The general characteristics of this case study workload are :

a). Most of the work is performed by database and operating system
software on behalf of the applications. This results in system

code dominating the working set of transient objects.

b). Program referencing patterns involving code and transient data
follow the classical working set model of program behavior, with
a working set window of a quarter million instructions providing

adequate locality.

¢). There is a very high degree of sharing of code and data,
resulting in a high degree of intersection between process

working sets.
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d).

e).

f).

g)-

Processor, memory and disc service requirements and
characteristics vary significantly with the structure and
algorithms of the operating system and subsystem. Processor
burst intervals between disc accesses are relatively short, on
the order of 6 kinst without internal caching of secondary

store.

There is light contention for the system semaphores, but there
is heavy contention for application semaphores in database
intensive workloads. The semaphores are often kept locked

during disc accessing.

The access methods move about 1 kbyte between their external and
internal stores per transfer, with a 5:1 read to write ratio for
random type accesé (directories, database) and a 1:1 ratioc for
sequential access. Transfer sizes of segments follow the

segment size distributions.

The locality of reference characteristics of the access methods
differ considerably between the access methods, with sequential
access having extremely high spatial and temporal locality of
reference, directory having high spatial but moderate temporal
locality of reference, and database showing relatively low
temporal and spatial locality of reference. Sequential access
tends to reference the top LRU stack elemeﬁts at milleseconds
apart, then never references them again. 90% of directory
references cccur within the top ten LRU stack elements, but 50%

of repeat references are minutes or more apart. Over 25% of
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h).

network database references are outside the top 50 LRU stack
elements, and over half of the referenced blocks are not

referenced again for hours or days.

Batch jobs generate similar worklcad demands on processor, main
memory, disc and semaphore resources as do interactive

transactions.
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Chapter 5

Basic Algorithms

This chapter presents the research experience into bagiec dise,
memory, processor and semaphore management. Disc access scheduling,
global prierity assignment and reflection in local decisions, processor
and semaphore allocation, and main memory allocation, replacement, and
garbage collection are discussed. Integration of higher level data

management is presented in the next chapter.

Computer literature searches and texts on performance and computer
resource management provided a base for the selection and analysis of
resource policies. The existing system and workload were investigated
to gain an understanding of general requirements and Dbehavioral
characteristics. Algorithms for the various resource managers were
implemented, and their local and global effects investigated.
Principles and improved algorithms were proposed and investigated. The
results of these investigations into resource management policies are

related in this chapter.

The chapter begins with a description of the: investigation into
secondary store access and space management. This study gave the clue

to integrating the basic algorithms : don’t optimize locally, rather
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perform the service request which contributes most towards achieving

the system performance objectives.

Next, the global priority assignment scheme is presented. This
assigns the priority of ©processes based on external policy
specifications., These process priority assignments are then reflected
in the service requests for theivarious system resources so that their

management decisions contribute to the global objective.

Processor allocation is then discussed. The use of idle time for
background garbage collection, and the interactions with the memory
manager to provide protecticn of the urgent processes in the current

multiprogramming set arz presented.

The semaphore allocation policy and priority adjustment of the

holder when a more urgent process requires the semaphore is presented.

Next +the empirical results on alternative memory allocation,
replacement, and garbage collection algorithms are presented. The
importance of parallelism, of taking sharing into accoun¥, of * proper
interfacing with disc and multiprogramming set scheduling, and of

adaptable algorithms is demonstrated.

Finally, the conclusions from this empirical investigation into

processor, memory, disc and semaphore management are summarized.

5.1 Secondary Store Access and Space Management
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The investigation into secondary store management indicated sgome
principles and lead to some interesting algorithmic results. This
section reviews the previous research into secondary store space and
access management, and reports on the findings in these areas uncovered

during this research.

5.1.1 Previous Research

Teorey and Pinkerton compare disc scheduling policies in [Toe T2].
The performance criteria used are expected seek time, expected wait
time, and the variance of wait time. Their cbjective was to determine
the best design of a basic disc subsystem. They do not consider the
nature of the processes generating the requests. Based on simulation
and analytic studies,'tbey conclude that wvariations on selecting the
next request for service to be the one with the shortest seek time in
the current scan direction provide the best service. Further,
different variations are optimal depending on whether the device is

lightly or heavily loaded.

Fuller and Baskett analyze drum storage units in (Ful 75}. They
analyze storage organizations on the drums and scheduling algorithms
for drum access with multi-stage Markov models. The storage
organizations considered are for file and paging support. The access
scheduling algorithms considered are first—in-firft-out and shortest
latency time first. The drum iz analyzed independently of the rest

system. with expected waiting time as the performance measure. They
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conclude that scheduling discipline is more important than drum

organization.

Baudet, Boulenger, and Ferrie analyze drums allowing multiple page
transfer requests in_ the arrival process. The generalization to
include "bulk"” transfer requests is made so that the effects of
cperating systeﬁs which swap multiple pagés of a locality set can be

"

captured. They }eel that "in order to build an operating system, one
must, first éf all, solve the problem of secondary memory access."”

Through analytic and simulation methods, they determine the waiting
time of bulk requests as a function of drum utilization and the
requested transfer size. They conclude that it is important to

distribute the single requests of the bulk requests on adjacent regions

of the disec.

Smith [Smi 78] says that the remaining research problems having to
do with discs involve intelligent discs, discs associated with gap

filler technology, and access scheduling strategies,

Chin [Chi 79] discusses the management of free space within

databases to minimize head movement.

Platz, Blackledge and Hughes describe DEC’s HSCS50 storage subsystem
in [Pla 83]. This storage subsystem provides service for multiple
hosts. It manages up to 24 dises or tapes, providing global sharing of
mass storage resources. The contrel of the s£orage subsystem isg
managed by multiple, parallel microprocessors. The control RAM of the

subsystem maintains the access request queue, which can be as large as
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1000 requests. The cylinder and instantaneous rotational position of
all heads on all drives are kept track of, and requests for a device

are serviced based on minimal seek time.

5.1.2 Bread-Board Results

The wo:kload charipterization indicated that the. processing
requirements of a trgns;ction were small compared to the.disc access
requirements (4000 instructions/file system disc access). Thus, the
performance of the disc subsystem would be expected to be eritical to
the global performance of the system. Optimization of this subsystem
would likely provide the largest payoff. Direct improvements in system
performance would be expected from adding more discs, controllers and

channels for increased parallelism (more servers).

Analysis of the existing system indicated that increasing dise
access capacity provided minimal performance improvement. Further, it
was reported that disc head optimization had been attempted, but had

been demonstrated not to be worth the overhead in software.

After instrumenting and measuring the existing system, the causes
were obvious. The disc queue lengths were skewed toward one device,

and most of the time most of the disc queues were empty.

Further analysis indicated why. The disec space for all the stacks
and data segments was restricted to reside on a single disc, so that
any process swapping would have to queue up at this device. Thus the

disc queue skewing. The problem causing the queues to be empty most of
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the time was that the memory manager was a serial server. Until one
swap-in completed, including all the disc accesses required to
accomplish it, no further swap-in requests could be initiated. Thus,
the service delay for the memory management system was on the order of
hundreds of milleseconds, so that it was impossible to sustain a high

multiprogrammiﬁg‘level under memory pressure.

The method to achieve a disc queue balance was straight forward:
allocate swap space across the discs and spread file extents among the
dise volumes. Keeping disc queues long so that the access to secondary
store is used to capacity requires a memory manager capable of

sustaining a high multiprogramming level through parallel service.

Figﬁre 19 compares the HP 3000 production operaﬁing system in use at
the time {MPE III) with the final breadboard kernel. It shows the mean
queue length distributions in a busy system. The bread-board kernel
has transient object disc space spread across the volumes, provides
parallel memory management service, and has background disec traffic for
data posting. In MPE III, the disc space for system control structures
is centralized on a single volume and the memory manager is a serial
server. Disc queue lengths are long and balanced when the system is
parallel and balanced, and short and skewed when the system is serial
and skewed. This is obvious from gqueueing theory (see Appendix E for
queue lengths as a function of transition probabilities), but it really

can happen.
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Figure 19: Disc Utilization With Seriality and Clustering

Users are normally given control over file placement among volumes
so that they can balance references across the devices to maximally
exploit parallel service between main and secondary store. Optimal

file allocation on disc units is discussed in [Boi 78].

Once the disc queues have some depth, scheduling policies can play a
role. A large number of disc access scheduling policies were
investigated, and their impact on the local and global performance

factors observed.
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The shortest seek time first algorithm did maximize disc subsystem
throughput relative to other policies, but the system performance
effects were disastrous. Certain processes got excellent response time

while the response time of others went to infinity.

The enhanced algorithm of selecting the next request as the one with
shortest seek time in the same direction insured service to all
requests, but it favored processes doing no-wait sequential access.
Such processes are often background jobs. The system level result of
this policy was to give excellent service to the jobs at the expense of
degrading response time for the interactive sessions doing database

queries which require more random disc referencing.

This provided a hint for improving the service policy : take into

account relative system urgency among the service requests.

But, what is the relative urgency among the different memory
management initiated transfer requests {code vs stack vs data segment
fetch and data vs stack stores)? What is the relative urgency of
memory manégement transfers with regard to file transfers. And what is
the relative urgency among the file transfer requests? This called for

experimentation.

The next policy investigated was to service memory management
requests before the file access requests. Memory management is
important, right? This policy favored batch jobs by allowing their

swapping activity to hold off the file accesses for interactive
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sessions, thereby increasing their response times and decreasing their

throughput.

The correct policy was coalescing. The next request to be serviced
should be the request which contributes most to system performance

objectives directly, towards transaction throughput and response time,.
e

The code for the disc access policy was amended to support
combinations of service priorities. It was driven by a bitmask which

gselected the weightings for the varicus access types.

The results of the investigation gave the key to integrating the
policies for all subsystems. The policy that gave the best performance
was to select the request required by the most urgent process waiting

for the transfer to take place.

The determination of urgency and mechanism for expressing it is
simple. Process priorities are assigned and adjusted to optimize the
global performance objectives. These objectives can be reflected in
the disc subsystem by tagging the requests for disc service with the
priority of the most urgent process waiting for the transfer to
complete, and by performing pure priority servicing for each device
based on these priorities. Thus, memory management transfers get
integrated with file system transfers and the transfers for batch jobs

get performed as background activity.

Investigation into further anomalies indicated additional
requirements on disc scheduling. The disc scheduler had to provide

the requestor with on-going status information, allow the issuer to
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change the priority that a request was initially tagged with, and to
allow the requestor to cancel a pending service request. These came

about as follows.

The memory manager, in order to speed up fetch requests later on,
pre-issues disc write requests for data segments which are good
replacement candidates. The writes are issued at a background priority
so that they will be serviced only if the disc would be otherwise idle
since no process currently requires the region in which the segment
resides. If the data segment is referenced before it is actually
overlayed, the memory manager needs to cancel the pending write request
if it has not already completed. On the other hand, the memory manager
needs to increase the priority of the request to that of the process
getting memory scheduling if the region occupied by the data segment is

selected as the target for one of that process’ segments.

Another situation that turned up had to do with processes requiring
a segment for which a fetch had already been initiated on behalf of
another process. The original fetch had been for a background batch
job, and a process servicing an interactive session (mine) required the
segment. The system was busy, and the batch job’s fetch request wasn’'t
serviced for an extended period. The priority of the fetch had to be

inereased to avoid delaying the interactive process for a long time.

Further refinements had minor second order “effects on system
performance. Optimization within an urgency class for minimizing head
movement had a positive effect in some situations, but caused large

standard deviations in others due to capture effects. Performing file
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transfers before memory management transfers of the same priority and
performing requests related to full swap-ins after those requests where
only one segment is required were intuitively appealing variations, but
the effects were found to be negligible. FIFO servicing within a
pricrity clﬁss wag found to provide good stability and high

performance.

The impact of caching of discs is discussed in detail in the next
chapter, and the sharing of discs between systems is discu#sed in the
following chapter. These refinements are not second order. We study
there the impact of integrating database requirements with disc
scheduling by allowing the specification of posting order constraints,

resulting in write-ahead logging without wait.

5.2 Priority Assignment

The principle uncovered from the disc subsystem analysis was that in
order to effectively utilize the capacity of a subsystem, the other
subsystems, must cooperate by generating enough requests to keep the
subsystem busy and informing the subsystem of the relative urgency of
the service requests so that globﬁl performance and not local

performance could be optimized.

The priority assignment scheme is critical. This is to be used as
the guide for all subsystem scheduling policies; The geal of the
priority assignment algorithm is then to assign and adjust priorities

to activities so as to reflect their global urgency. Each subsystem
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uses the priority assignments as indicators so that local scheduling

decisions contribute to the global performance cbjectives.

Scheduling disciples have been well researched over the years.
Coffman and Denning provide a history scheduling algorithm analysis in
- [Coff 73]. Optimal and near optimal schedules for various arrival and
service demand distributions are analyzed by Coffman and Kleinrock in
[Coff 68]. Shaw [Sha 7L] surveys schemes for moving priorities in
multilevel scheduling algorithms employing dynamic priority assignment
and preemption. Ellison [El1l 75] discusses the use of priority
improvement as a process’ resource demand declines and priority

degrading as resources are consumed employed the Utah TENEX scheduler.

A flexible framework for investigating the impact of expressing
priority assignment globally throughout +the management of system
resources was created. 'It consists of an external command which allows
the specification and control- of scheduling classes and priority
assignment. The parameters consist of a base and a limit priority for
each scheduling class and a minimum and a maximum on the filter rate
which controls the drift from the base pricrity to the'limit priority

within a scheduling class.

When a process is created, it is specified as to which priority
scheduling class the process belongs. The process’ priority starts at
the base of the class and drifts towards the limit of the class as

resources are consumed.
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This command allows the simple specification of a number of
different priority scheduling policies. For example, round robin at a
fixed rate can be enforced by setting all the base and limit priorities
equal to one fixed priority, and setting the minimum and maximum filter
equal to the desired fixed rate. Multilevel queueing disciplines are
created within and beﬁ;een service classes through the setting of the

class’ base and limit priorities and filtering values.

This extermal control proved useful not only as a research vehicle
but also as the system tuning control. It allows the system manager to
directly express the system performance objectives. The ongoing
priority assignment and adjustment within the system then uses these
externally expressed guidelines. Process priority assignment and
migration is based on the scheduling class and resource consumpticn,
and all resource service requests are tagged with the priority of the
process requiring the service so that the guidelines are reflected in

local resource management decisioms.

The standard objectives for general purpose, interdctive timeshare
systems are to maximize <the transaction throughput and minimize

transaction response time while providing adequate service to jobs.

A good tuning assignment to accomplish these objectives was found to
be placing the processes relating to interactive sessions into omne
class and those related to batch jobs in a separafe ¢class. The base
and limits of these classes can be tuned to reflect the desired
performance objectives. For example, to give preferential treatment to

interactive sessions, place the base and the limit priorities of the
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interactive class below the base and limit of the batch class. To
filter out the long transactions and jobs, make the range from base %o
limit priorities large, and the filter relatively small. To cause the
batch to compete equally with the long transactions, overlap the batch
class with the interactive class by placing the base of the batch class

near the limit of the interactive class.

It was found to be necessary to reset an intéractive process’
priority to the class’ scheduling base when the related session
completes a transaction. Without this feedback, the wvery short
transactions of a session get prolonged due to previous resource
demands. This is undesirable from both a system throughput viewpoint
and from the viewpeint of the individual session where short
transactions are expecte@ to go through fast whereas delays on long

transactions are less noticed.

Various resource consumption factors were tried ocut to determine an
optimal policy for filtering a process from the base to the limit
priority. . Processor time was found to produce the most stable results,
and the best performance came when the system dynamically tunes the

"filter to the processor time required to complete an average short
transaction. Other estimates on transaction length such as disc

accesses were found teo lack stability.

The danger of such a priority policy is that under a very high
demand situation, the low priority activities could be held off
forever. It was interesting to observe that additional feedback

mechanisms to handle such situations were not required. The
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interactive workload tends to be so bursty that there are plenty of
short intervals for adequate background service of the back- ground
activities. To handle the isolated sites in which the workload is
constantly heavy, the system can be tuned to overlap the scheduling

classes.

A complete description of this tuning command is given in Appendix
F. The command allows the tuning of three scheduling classes, C, D, E.
The scheduling classes A and B are reserved for system process priority

assignment.

5.3 Semaphore Management

Semaphores are non-preemptable resources, and the holding time of a
semaphére is variable. The holder of the semaphore is subject to the
resource management policies of the system. If a high priority process
requires the non-preemptable resource, it must wait until the~ less
urgent process holding the resource gets enough service to release the

resource.

As was found in disc access scheduling, some priority adjustment is
required so that semaphores are freed up at the priority of the most
urgent process waiting for the sémaphore. The required priority
adjustment is to temporarily improve the priority of the resource
holder to the priority of the most urgent procéss walting on the

resource, and to hold it there until the resource is released.
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5.4 Processor Management

Possible activities for processor assignment consist of running
ready processes, swapping in processes requiring main memory
scheduling, performing various background activities, or pausing. The
prigrity assignment algorithm distinguishes the relative urgency among
theigpending activities so that processor allocation among them is

relatively straight forward.

If two processes are ready to execute, the process with the more
urgent priority is given the processor. If a process is ready 1o
execute, but a more urgent process requires memory scheduling, memory
management service is initiated for the more urgent process. If a
process becomes ready while ancother process of iower priority is
executing, the current ﬁroéess is preempted. If a process becomes
ready while memory scheduling is underway for a less urgent process,

the memory scheduling is deferred.

Processor allocation becomes complicated when it comes to deciding
on whethef the processor can safely be applied to swapping in a
process. The decision to apply the processor to attempt to increase
the multiprogramming level must be integrated with the memory
management subsystem. The research experience with alternative load
control schemes is related in the next section which deals with main

-

memory management algorithms.

When it is determined that it is not safe to swap in a process, the

processor can be applied to background activities. A processor pause
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interval distribution is shown in Figure 20. The frequency and
duration of pauses depends on the workload characteristies, resource
management algorithms and system component capacities. The pause
duration and frequency decrease with increasing algorithm parallelism
and resource capacity. The mean idle time on a loaded systems ranges
from 3 to 20 ms with pauses occurring with a 10 to 50 percent fregquency

relative to launches in the case study environment.
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Figure 20: Processor Pause Interval Distribution

A special opportunity for background activity which can be applied

in segmented systems to profitably consume these idle periods is main
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memory garbage collection (combining holes in memory to overcome

external fragmentation). The research experience with background

garbage collection is related in the next section.

A flow chart of the processor allocation algorithm is provided in

Figure 21.
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5.5 Main Memory Management

Main memory management requirements for the bread-board kernel
consist of free space allocation, segment replacement, and garbage

collection.

Free space allocation is required when a segment fetch is to be
performed. The free space allocation algorithm selects the location

into which the segment read should be directed.

Segment replacement must be performed when a hole of adequate size

for a segment fetch request is not available.

Garbage collection may be required in a segmented system to combine
holes into larger holes. A variable sized allocation .strategy may
produce small, unusable hole§ scattered about memory. Garbage
collection attempts to minimize this fragmentation by combining the

small holes into usable large holes.

This section reports on the research into alternative algorithms for
these memory management functions. Special focus is placed on‘ the
interrelationships between the algorithms, and on the relationships

between memory management and other resource management algorithms.
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5.5.1 Placement and Garbage Collection

In a segmented system, the placement problem is to select from the
available holes cne which is at least as large as the size requested.
When no holes of adequate size are available, the replacement algorithm

is invoked.

Randell [Ran 68] analyzes internal and external fragmentati;n
resulting from rounding up requests for storage to reduce the number of
different size blocks in memory. He concludes that as the guantum of
allocation is increased, there is more loss of memory utilization due
to internal fragmentation than is saved through the reduction in

external fragmentation.

Shore [Sho 75] analyzes the external storage fragmentation resulting
from the first-fit and best-fit allocation algorithms. His simulation
studies indicate that the relative performance of the two algorithms
depends on the frequency of requests that are large compared to the
frequency of requests that are small. He finds that first fit
outperformé best fit as measured by storage utilization when the
coefficient of variation of the request distribution is greater than

one.

The buddy algorithm (hole sizes restricted to 2"*k for k=0,1,..)
was introduced by Knowlton in [Kno 65] and analyzed statistically by
Purdom gnd Stigler in [Pur 70]. Variations on the basic algorithm are
discussed by Shen and Peterson [She T74] for a weighted buddy scheme

which decreases the internal fragmentation by allowing hole sizes of 3
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* 2%y as well as 2*"k, and for Fibonnacci buddy systems (holes split
into sizes which are Fibonnacci numbers rather than powers of two) are

analyzed by Hirschberg [Hir 73] and Cranston and Thomas [Cra T5].

Results of an extensive simulation study on alternative placement
strategies are reported by Shore in ([Sho 77]. Memory ordered free
list, LIFO/FIFO free 1list, multiple free lists with a list for each
possible hole size, buddy lists, and size ordered free list schemes are
evaluated based on their data structure overhead, allocation and

deallocation time, and resulting internal and external fragmentation.

Buddy schemes are showm to be very fast for alloéation, and
relatively fast for deallocation with some of the improved
recombination schemes suggested in the literature. However, the
internal fragmentation résulting from the buddy schemes is large,
fullyrcommitting memory while containing only half the segments of some

of the other schemes.

The data structure overhead of the multiple free 1list strategy is
the largest, but it provides improved memory utilization and comparable

allocation and deallocation times.

Size ordered free lists save on the data structure overhead but

increase allocation time ten-fold.

Compaction while allocating or deallocatiné improves memory

utilization but increases allocation/deallocation time.
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The topic of placement algorithms still has current interest, with
fairly sophisticated systems being built with microprocessors having
segmented architectures (e.g. Apple’s Lisa using the Motorolla 68000) .
A paper describing a storage allocation algorithm using a Cartesian
tree [Ste 83) which asserts space performance of the first fit and time

performance close to buddy made it into the most recent SIGOPS.

First fit, best fit and size ordered free list strategies with
memory compaction at allocation, deallocation and as a background
activity were implemented in the bread-board kernel in order to
discover the the significance of their tradeoffs and their interactions

with the rest of the system.

An immediate implementation observation was that it helped to know
the size of the current_lﬁrgest hole. This allows the replacement
algorithm to be triggered without having to go through a costly scan
with possible compactions along the way. The first fit algerithm is
unfriendly in the cost of maintaining this information. Best fit based
on size ordered free lists and multiple free list strategies allow this
piece of information to be naturally kept around. But this is not a

deciding factor.

The impact of the allocation unit size used for rounding is showm in
Figure 22. In agreement with Randell’s findings, the smaller
allocation units reduce the amount of memory .management traffic
required to perform a worklead significantly. As the allocation unit
size increases, the number of memory allocations and segment transfers

per transaction increases rapidly.
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Effects of Allocation Unit
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‘Figure 22: Impact of Allocation Unit Size

Allccation time scales with processor speed, and processor sgpeeds
are increasing more rapidly than disc access times are reducing. Thus,
current technology tradeoffs favor the benefits of reduced internal
fragmentation offered by refined hole sizes over the allocation time
improvement of large allocation units. Allocation time increases with
a size ordered free list as memory size increases since the population
of holes increases, Thus, multiple free list st;ategies with a
reasonably small allocation unit best support current technology

tradeoffs.

A new algorithm for garbage collection was developed to exploit the
pause interval distribution shown in the last gection. The algorithm

is designed to run distributed over time, so that it can give up when
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more urgent activity becomes pending. In order to provide the most
benefit in the shortest time, the algorithm operates globally with the

objective of increasing the size of the larger holes.

The garbage collection algorithm is depicted in Figure 23. The
algorithm begins at the:largest hole and looks above and below it for
the closest holes. .Tﬁe intervening assigned regions are moved to
small hqles unless the move length world be too long (either committing
the system to garbage collection too long or consume an already

sufficiently large hole).

If it iz decided that collecting around the current hole would not
pay off, the next largest hole is checked. Any time a combination is
performed, the algorithm starts over. The algorithm periodically
;hecks for a message fromithe scheduler that a more urgent activity has
become pending. Polling is used rather than straight preemption since
the garbage collector would leave memory in a bad state if suddenly

preempted.
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Figure 23: Global Garbage Collection
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Thiz algorithm has the effect of gradually making the large holes
larger while covering the small holes, all during otherwi;e idle time.
The algorithm is different from algorithms described in the literature
in that it is global in nature and distributed in time. It takes
advantage of the otherwise idle processor cycles rather than combining
holes locally at allocation or deallocation time or all at once as is

conventionally done,

The resulting equilibrium distribution of free hole sizes is shown
in Figure 24%. The distribution with background garbage collection
keeps the distribution from being clustered at the very small heole
sizes, which is what happens without garbage collection. The shift in
the distribution of hole sizes due to background garbage collection
reduces the probability that the replacement algorithm must be invoked,

and does it at near-zeroc cost by using otherwise idle pericds.
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Figure 24: Garbage Collection Impact on Hole Distribution

The background garbage collection algorithm benefits from free space

allocation algorithms which keep track of holes on a size ordered

basis, since they make it easy for the algorithm to locate the largest

holes. Fast allocation and deallocation are also useful. Thus the

multiple free list strategy supports background garbage collection the

best.

This background garbage collection algorithm was found to improve

performance when good replacement algorithms were used, but to degrade
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performance with poor replacement algorithms due to the consumption of

mistakenly chosen overlay candidates.

' 5.5.2 Main Memory Replacement and Load Control

Memory replacement algorithms have been given a lot of attention in

the literature.

Denning introduced the working set model for program behavier in
[Den 80]. Ever sinee then, Denning has been trying to prove that the
working set concept is not just a good model of programming behavior
but that it can he used for memory manaéement to obtain near optimal

multiprogramming.

The worliing set of a process consists of those pages referenced by
that process during its last T instructions, where T i=s the working set
parameter. In working set memory management, a process’ working set
must be in memory for it to be launched. The current multiprogramming

set consists of the processes which have their working sets in memory.

Working set memory management is based on explicit selection of the
current multiprogramming set. The number of the processes to allow
into the current multiprogramming set (the multiprogramming level)
depends on the size of memory and the size of the working sets.
Controls are needed to decide when to increase the multiprogramming
level by swapping in a process requiring service and when to reduce the

multiprogramming level by swapping out a process.
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Badel, Gelenbe and Leroudier [Bad 75] examine the maximization of
system throughput by the regulation of the degree of multiprogramming.
They discuss the structure and implementation of an adaptive scheduler
consisting of an estimator and optimizer. The estimator is invoked by
a watch dog timer, and measures traffic patterns. The optimizer makes
'a decision on adjustments to the multiprogramming set ~ at a certain
frequency based on information provided by the eséimator. The
frequency of invocation of the optimizer determines the sensitivity of

the control mechanism,

Leroudier and Potier [Ler T76] present an adaptive scheduler based
on paging device utilization. They observe the principle that optimum
performance is achieved the access capacity to secondary store is 50%
utilized, 'and that at the optimum point the sensitivity of the degreé
of multiprogramming to the utilization of secondary store is at a
minimum. Their adaptive scheduler uses the utilization of the paging
drum as the estimate, and the optimizer adjusts -the level of
multiprogramming up or down if the current utilization is meore than a

delta off from 50%.

Denning [Den 76] discusses the use of the L
(lifetime=inter-page-fault time) = S (paging device service time) as
the criterion for the cptimizer, with the estimator observing the last
k program lifetimes and averaging them to get the system lifetime.
Their simulations show that this ©produces a near optimal
multiprogramming contrel as long *the system is neither I/0 nor

processor bound.
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Chu and Opderbeck introduced the PFF (page fault frequency) algorithm
in [Chu T72]. They provide simulation results which compares the PFF
algorithm with the LRU and working set algorithms in a uniprogramming

environment, based on fault frequency and space-time product measures.

The page fault frequency algorithm releases pages from a process’
working set only if the time since the last fault exceeds T
instructions, with T being the control parameter of this policy. The
algorithm is triggered at page fault time. If the process’ virtual
time since last fault exceeds T instructions, those pages are released

which were not referenced since the last page fault.

Chu and Opderbeck found that the performance of the PFF algorithm is
comparable to that of the working set algorithm, but that performance
with PFF algorithm is less sensitive to its control'value than is the

working set.

They continue their analysis of the PFF algorithm in [Chu T76] using
a Semi-Markov model to represent the replacement algorithm and 1lru
stack depfh distributions to represent process referencing. In [Chu
76b] they discuss multiprogramming level control policies with the PFF
algorithm. This mechanism requires that to increase the
multiprogramming level there must be a pool of free pages of at least a
critical number and the most recently activated process must have

received a minimum of service.

Ryan and Coffman [Rya 7u4] use a semi-Markov process to represent

main storage utilization and a queueing network model to capture the
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costs of dispatching, paging, and swapping. They conclude that the
swapping rate is sensitive to the margin of free storage, but the

average multiprogramming level is not.

Chow and Chiu [76] employ similar modelling techniques and conclude
that the working set window should be adjusted to adapt to the changing
need of storage demand. If the paging rafe is low, shrink the window
size so that the multiprogramming level can be increased. If the paging
rate is high, increase the working set window size so that the

multiprogramming level will be reduced.

Smith [Smi 76] proposes a modified. ;»rorking set algorithm which
detects major locality phase transitions. The working set size is
increased on a page fault only if the time since the last reference to
the least recently used page in the working set is less than some
fraction of T. Otherwise the new page replaces the least recently
referenced page in the working set. This then keeps a process™ from

requiring excessive memory during locality transitions.

Another class of variable partition algerithms is the global LRU
type. The global LRU replacement algorithm releases the page from
memory that hasn’'t been referenced for the longest time when a

replacement is required.

Maintaining an exact LRU stack of referenced pages would regquire an
update on each reference, so approximations are found in real
implementations. Some approximations are made with an aging bit map

associated each page. The bit map for each page 1is periodically
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shifted, the current value of the page’s reference bit is rolled in,
and the reference bit is cleared. When a page replacement is required,
the bitmaps are compared and a page with the reference bit off for the
longest string in the bitmap is selected for release. The width of the
bitmaps and the frequency of updating control the accuracy of this

approximation to the pure global LRU.

Another approximate implementation of the global LRU replacement
algorithm is the Multics CLOCK algorithm [Hab 75}. This algorithm
maintaine a pointer that it uses to cycle through the reference bits
when a page replacement is required. The reference bhit of the page
with the pointer at it is turnmed off. If the bit was on, the page is
skipped {indicating the page has been referenced since the last time
checked). If the bit was off, the page is selected for replacement.
In some variations, the page is skipped if it is a dirty data page even
though the reference bit was off so that the fetch for the new page
need not wait for the post of the dirty page to complete. The decision
on whether to increase the multiprogramming level is based on the
rotation rate of the "CLOCK arm” cycling among the reference bits. If
the CLOCK arm is going too fast, the replacement is held off for an

implementation dependent amount of time.

Denning writes in [Den 80] :

there is, unfortunately, little published performance data on the
CLOCK and global LRU obtained from real systems. ... The evidence
suggests that CLOCK and LRU do not perform as well as working
set. This is because these global policies cannot insure that
the block of memory allocated to a program minimizes that
program’s space time. ... It is false economy to limit the

96



hardware support for memory management to usage bits and interval
timers, for the savings in hardware are canceled by performance
losses (relative to the working set dispatcher) or by additional
mechanism elsewhere in the operating system.

Having carefully studied this and other literature, We built FPFF,
working set and CLOCK replacement algorithms into the bread-board

kernel.

The working set maintenance is performed on a per process basis by
use of a segment locality list. The list is updated after every
process stop by checking the reference bits of the segments the pfocess
could have referenced. If the reference bit is found on, an entry for
the segment gets inserted into the process’ locality 1list if not
already there, and the current process’ virtual time is recorded in the
entry. Thus, the entry contains the approximate virtual time of the

last reference made by the process to the segment.

A microcoded search and map instruction is used to speed up the
reference bit check. It terminates only for a segment which has the

reference bit set.

After the list has been updated, elements in the list which have
last referenced times differing by more than T ms from the process’

current virtual time are trimmed from the list.

In order to keep from releasing a segment from memory that leaves
the working set of one process but still resides in the working set of
another process, a counter is associated with each segment which counts

the number of processes in the current multiprogramming set which have
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the segment in their locality lists. When a segment is tossed from the
locality list of a process the counter is decremented. The segment is
released to the overlay pool only if the counter falls to zerc. When a
process is swapped out, the counters of the segments in its locality
1ist are decremented, and those that fall to zero are released.

When a segment is released to the free space pool, it is combined
with any adjacent free regions and the new larger free region is placed
on the free space list structure for the placement algorithm. The
segment is not lost track of though. If the segment is referenced
again before it is actually overlayed, the free region of which it is a
part is split, the sub-region occcupied by the segment gets marked

assigned, and the segment flagged present.

The PFF algorithm is implemented using the same locality 1list
structure, but a segment is added to the locality list only on a
segment fault. Elements are trimmed from the list at fault time if
their time since last reference exceeds the FFF critical inter-fault

time. Sharing is not accounted for.

The implementation of the CLOCK algorithm is depicted in Figure 25.
The algorithm is implemented by advancing the CLOCK peinter
sequentially through memory from memory region to region, skipping free
and reserved region, and turning off the reference bits of segments in
assigned regions. When the end of memory is hit, the scan wraps around

to the beginning.
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Figure 25: CLOCK Algorithm in Segmented System

The working set algorithm maintenance required four times as long to

save state as did the PFF and CLOCK algerithms. The working set

specifiec code for tracking sharing and all of its ramifications

99



required 1500 extra lines of code. The implementation of the CLOCK and

PFF algorithms each required less than 100 lines in total.

The behavior of the working set algorithm with respect to the
working set window size is shown in Figure 26. Notice that the fault
rates drop rapidly as the working set window size increases, but the
processor utiliza;ion and transaction rates peak as the memory
management traffic required to support the larger working sets takes
its toll. Although large values of the working set window size result.
in low fault rates, they force a low level of multiprogramming and
require excessive memory management disc activity to swap in and out

the larger working sets.
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Figure 26: Effects Of Working Set Window Size

We tried out many variations with the working set memory management

algorithm. Several things helped, each on the order of 2%.

Two space utilization enhancements were : don’t swap out the
process’ entire working set when deleting a process from the current
multiprogramming set, only swap out the space you need; and perform

local compaction as you release a segment to get the advantages of

localized hole recombinations.
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One surprising enhancement was that when adding a process to the
current multiprogramming set, Jjust swap in its stack, current extra
data segment, and current code segment, rather than its entire working
set. A scatter read facility would have probably eliminated this
benefit, but locality set swapping to a contiguous place on the disc is
hard to implement when data is sh;red. Allocating a dise swap area on
the fly, remapping the objects ?to point to their new homes, and
invalidating the swapped copy when it pgets referenced by another

process is messy.

Another enhancement was %to place explicit load control mechanisms on
the swapping. One mechanism that helped was to delay swapping out a
process when swapping in a process if a if there is currently a higher
priority process waiting for its scheduled disc activity to complete.
This last feature of holding off was needed since the memory manager is
a highly parallel server, with the capﬁbility of releasing segments,
initiating writes, allocating space, and initiating reads of many
segments in a short time ( 9< k inst / memory allocation request
total). ﬁoad control mechanisms were required to keep things ‘from
getting out of hand. Delaying on the order of 50 ms was helpful, but
delays over 100ms degraded performance, except at small working set
window sizes. We’ll see in the next chapter that even in large

memories the parallelism of the memory manager pays off in managing

cached write posting.

The working set algorithm benefits significantly from both background

garbage collection and from local compaction during deallocation. This
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disc drives. They quote access times of 4 ms on a hit, with up to an
85% hit ratio. It is packaged with U4 RAM cards and an LSI-2 I/O

processor.

The use of external caching, either locally or through an
intermediate storage level, reduces the effective secondary store
access time on read hits, and potentially decreases the access time on
writes, provided immediate physical update of the disc media is not
required on a write access before signaling transfer completion to the
processor. The performance impact of external disc caching as a
function of processor speed, disc access time, and number of discs is
shown in the following two figures with and without waiting for write

posting to the disc media.

Without waiting for write posts, effective processor utilization is
achieved with 4 25 ms discs through 8 MIPs, and 10 ms discs and the
dependency on disc access time and number of discs is significantly

reduced over the system without disc caching.

If all writes must be waited on, effective processor utilization is
limited to U4 MIPs with 25 ms disecs and 8 MIPs with 10 ms discs. The
dependency on disc access time and number of discs becomes much more

gignificant.
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Replacement Algorithm Invocation Frequency
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Figure 27: PFF vs WS With Moderate Load

This high recovery rate makes it highly counterproductive to do
background‘ garbage collection with the PFF. As the garbage collection
move threshold (maximum size of assigned space it will move} increases,
the number of moves it performs increases, and therafore the number of
overlays of replacement candidates increases. The background garbage
collection eats up overlay candidates so that the PFF can’t recover
them and must go *to the disc to fetch them in again. With the working
set algorithm, since sharing is accounted for, the replacement

candidates really are not needed. The combining of the scattered holes
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reliance on garbage collection is caused by the opening up of holes
randomly in mezﬁory when a process is swapped out since the segments in
a process locality list are collected based on the process’ referencing

behavior and not for the convenience of the placement algorithm.

The PFF algorithm performs better thag working set under 1light
memory locading. This is because the working set algorithm releases
gsegments from a locality list even though tﬁere is no memory pressure,
and they do get referenced again after some time. The additional

process state save overhead was costing too much, and buying ncthing.

Figure 27 indicates the effect of the PFF’s failing to account for
sharing. The load generator was creating a moderate load. The test
was rerun at increasing memory sizes, once with PFF and once with
working set. Notice the higher fault rate and very high recovery rate
of PFF, even in the larger nmemory sizes. Since a segment is only in
the locality list of the process that trapped on it, and most of the
code segments and a fair percentage of the data segments are heavily
shared, the segments get recovered immediately when released from the
locality 1list of a process. Thus under moderate loading the PFF

algorithm is doing work for nothing.
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replacement, resulting in more combinations of adjacent holes so more
rapid creation of a hole of combinations of adjacent holes so more
rapid creation of a hole of adequate size with fewer replacement
required. This effect is further enhanced through local compaction at
deallocation time, plus background garbage collection accomplishes more
with less work. The swapping out of a working set doesn’t create
opportunities for such a high degree of clustered recombinations. The
allocation time of c¢lock is about 30% longer than working set due to
the moves in combining, bit fewer deallocations, and so eventual

allocations, are required.

Figure 28 compares the CLOCK, PFF and working set (WS) algorithms in
action with a moderate load. Although the fault rates of CLOCK are
twice those of the working set, the number of space allocations and
segment transfers incurred by CLOCK is less even though it performs

more transactions.

Both CLOCK and WS outperform PFF in all measures. PFF is getting

hurt due to failure to account for shafing in a worklocad that shares

heavily.
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created by the random locations of segments selected for replacement

during otherwise idle periods pays off.

It should be noted that a PFF algorithm taking sharing into account
using the mechanism built for the working set algorithm support
produced behavior analogous to the working algorithm. The PFF behavior
cited here is primarily for the comparison of algorithms that take

sharing into account and those that don’t.

The best policy for light or moderate loading of main memory was
found to be the Multics CLOCK algorithm. It has the low cost of the

PFF and accounts for sharing as in the working set, but implicitly.

The CLOCK algorithm has zero cost until a replacement is required,
so in méderate and light 1oading memory management overhead doesn’t get
in the way. When the algorithm is invoked, it flips from one segment
to the next in memory looking for a segment which has its reference bit
off. As segments are encountered with reference bits on, they are
skipped and their reference hits cleared. When a segment is found with
reference'bit off, the segment is selected for replacement, flagged
absent, and the region it covers .combined with adjacent holes and

returned to the free space list. The algorithm is extiemely simple to

implement, and its execution is very fast.

In a segmented system, with the CLOCK algorithm implemented as here
based on memory order, the CLOCK algorithm has a very important
advantage over working set type policies. Unlike working set

replacements, it tends to select segments close to each other for

105



the CLOCK during non-bursty intervals, as well as getting the benefits

of CLOCK’s localized replacements and recombinations,

This new algorithm measures the memory pressure based on the time
since last invocation of the replacement algorithm. When this interval
is large, the simple CLOCK replacement algorithm is used. When the
interval is small (indicating frequent invocation of the replacement
algorithm and therefore heavy memory loading) an interesting

combination of CLOCK and working set principles is used.

When memory pressure is detected, during a process state save the
segments which obviously belong to its locality are added to a mini
working set for the process. This includes the segments required to
relaunch the process (registers point at them), and the next couple of
‘code segments the procesé ﬁill need (found by checking its last stack
markers). Every T ms of virtual time the mini working set is chopped
back to its minimum so that it doesn’'t grow too large. The maintenance
of this mini-working set costs only a fraction of an accurate working

set accounting procedure.

As the processor dispatcher scans its priority ordered queue of
pending activities, instead of just skipping over a process which is
waiting for.a disc access to complete, it first sets the reference bits
of the segments in that process’ mini working set. This prevents the
CLOCK algorithm from consuming the locality of a more urgent process in
the multiprogramming set when it is invoked to swap in a less urgent

process.
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Replacement Algorithm Comparisons
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Figure 28: Comparison of CLOCK, WS, PFF in Action

A tuned per process working set policy taking sharing inte account
performed 'the best among the various replacement algorithms unler heavy
loading. It is a stable algorithm. The CLOCK algorithm was found to
degrade under heavy loading. The fault rate grew to several times that
of the working set policies, and it was difficult to control by

limiting the CLOCK scan rate.

A hybrid algorithm was developed which incorporates the stability of

the working set approach under heavy loading with the low overhead of
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Figure 29: Bread-Board CPU, Memory and Disc Management
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Carr and Hennessy [Car 81] independently developed a hybrid CLOCK
and working set algorithm which they call WSClock. Their version uses
the clock scanning to apply the working set policy by comparing the
current virtual time of a page pocinted at by the clock hand with the
last virtual time of reference of the page by the process that owns the
page. This approach requi}es that a unique association exists between
a page in memory and a process, so sharing is not accounted for. This
looses the advantage of the CLOCK algorithms implicit accounting of
sharing, but it does protect the memory locality of the processes in
the multiprogramming set. The same algorithm is applied independent of

memory loading.

An overview of the interactions hetween processor, main memeory, and
disc management in the bread-board kermel is given in Figure 29. The

resulting production kernel is described in {Bus 82].
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Figure 30: Performance Impact Due to Integrai':ed Algorithms

With the relatively low cost of main memory in relation to total

system cost (1 Mbyte < 1 % of system cost), and the relatively small
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The resulting hybrid replacement algorithm has the stability and
performance of the best working set algorithms under heavy loading, and
the low overhead of the CLOCK under moderate and light loading. Figure
30 shows the system performance improvements realized by this algorithm
coupled with the other integrated algorithms presented in this chapter
relative to the then-current production operating system for the case
study family. Response time reductions to a gquarter and throughput
doubling was found across all family members in the system

configurations then supported.
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It is interesting to note that DEC’s VAX family doesn’t even support
reference bits. This was an overkill probably, and operating systems
designers had to work around it. Babaoglu and Joy [Bab 81] had to
emulate the reference bits by sampling so that memory replacement in a

system with sharing (Unix) would operate efficiently.

The trend though is towards Iéss in hardware to make it faster,
easier to build, and amenable to VLSI implementations. Some RISC
machines [Fit 81] even leave the TLB fault handling to software since

it i3 a low frequency event.

In the next chapter we will see that large memories can be
efficiently exploited by extensive file and database caching through
the memory manager,. Hardware support for working sets in this
environmenf would not pﬁy roff, since the inter-reference times of
cached disc domains are on the order of seconds while those of
transient objects are on the order of ms. Thus, a working set window
choice that would work well would be difficult to obtain, and a low
cost policy that favors the transient objects ( (which occupy a small

total space in a large memory) is just fine.

5.6 Conclusions

In order to address contention by adding capacity, the capacity
needs to be utilized by generating service demand, and the service
demand needs to be kept balanced across the servers. This was seen

especially with disc management requiring parallelism and balance in
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space requirements for code and data objects (100 Kbytes for 1 user,
but highly sub-linear with respect to number of users due to high
degree of sharing), it is cost effective to provide enough primary

memory to‘keep the replacement frequency of transient objects low.

The justifiable overhead to be incurred for supporting a replacement
algorithm- is small under such situations since the frequency of
invocation is normally relatively slow. We don’t want to spend a lot
to perform a perfect job of memory management as measured by space-time
products or fault rates under such stable situations. However, highly
bursty periods still occur during which the memory capacity is too
small to handle the load at the low stable level, and these situations
must be adequately handled.

Denning argues in [Den 80] :
-

Recent technological advances make working set detecting hardware
even more attractive. Such hardware would simplify the operating
system and reduce the overheads of job scheduling and memory
management; it would do this by replacing a considerable amount of
mechanism that would otherwise be in the operating system software.
It 1is questionable whether such hardware support for memory
management is justified from economic or performance perspectives. The
hardware likely slows down the processor instruction rate, adds to the
hardware complexity and cost, and would be present to support a
relatively infrequent event (replacement of transient obiects in large
memories). The cost of the hardware development would be incurred each

time a new family member is added, whereas the memory management code

is developed just once, and is easily fixed and enhanced.
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Idle periods can be applied to constructive activity that would
otherwise have to be done during busy periods. Background garbage
collection was found to be useful in segmented systems, provided the
replacement algorithm was doing a good job in selecting overlay

candidates.

Algorithms for resource management can be integrated by studying
their interactions and maximizing those effects that contribute most
towards system performance. This was found in the study of disc access

scheduling.

Algorithm integration impacts the structure and local goals of
algorithms, requiring them to communicate and adjust in an on-going
manner, and requiring them to perform actions which do net optimize
local goals. For Aexampie,r disc access scheduling needs to¢ support
priority changing, request cancellation, and performing disc accesses
which are not the closest to the current head position. Memory
management and garbage collection need to give up without completing

when more urgent activities become pending.

Assign urgency globally to reflect system objectives, and reflect
locally. We found this to be a useful policy in integrating all local

decisions towards the global goal.

Disc scheduling, memory replacement, memory allocation, garbage
collection, processor and semaphore management need to be integrated,

not just replacement and multiprogramming set control.
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the memory management implementation in order to utilize available

capacity.

Don’t locally optimize blindly. It can cause more damage than it
does good. This was found to be the case with disc scheduling bhased on
minimizing head movement and with memory management based on minimizing

the space-time product.

Go with cheap algorithms if the resource demand is not too heavy.
Support hybrid algorithms to handle bursty situations. The was found
with replacement algorithms, where low cost algorithms performed very
well under light memory loading, while mére expensive algorithms were

beneficial under heavy loading.

Algorithms need to take the workload characteristics into account.
This was especially found with the replacement algorithms, where
performance was degraded significantly when sharing was not accounted

for.

CLOCK type algorithms have a distinct advantage over working set
algorithms in a segmented system due to localized hole creations.
Local pgarbage collection at replacement time supplements this., The
hybrid replacement algorithm introduced here has the advantages of
working set (protection of urgent processes even under loading) aleng
with the advantages of clock {easy implementat?on, low overhead,

localized hole creation).
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data is képt in structured permanent and temporary objects ineluding
files, databases, stacks and heaps. Concurrent data access is managed
through locking or versioning. Recovery from transaction aborts or
system failures is handled through check-pointing, write-ahead logging,

and roll-forward/roll-back recovery.

In ordér to exploit the system price/performance potential offered
by evolving technology, basic kernel management of main memory, disc,
and processor management needs to be extended and integrated with
subsystem and application data and recovery management. This was well
demonstrated in our research with the bread-board system and the case

study family.

After having integratgd ~the management strategies for the main
memory, disec, processor‘an& semaphore resources to produce balanced-
resource utilization and significant performance improvement across the
family, a new high-end system was introduced. The processor was twice
as fast and memory 4 times as large as the previous top of the line.
The system performance improvements realized with this computer were,
however, sub-linear with respect to processor speed relative to the
previous top of the line system. System performance with this high-end
computer was found to be very sensitive toidisc subsystem throﬁghput
and access times, but relatively insensitive to main memory capacity.
In spite of the integrated strategies of the breé@-board kernel, the
system performance was not scaling as fhe family extended to

significantly more powerful systems.
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Chapter 6

Integrating Data Management

The price/perf;rmance of proces;grs and cost of semiconductor memory
have been falling ;apidly, while moving head discs are getting densef
but not much faster. This chapter examines alternatives to exploit
these technology trends to provide significant system level
price/performance improvements. Alternative architectures and
integrated data management and kermel algorithms are examined. Results
from modelling and a bread-board implementation are presented.
Applicability to decentraiized configurations are discussed in the next

chapter.
6.1 Introduction

In the vreceding chapter we examined alternmative algorithms for
processor, main .iemory, disc, and semaphere management. We endeavored
to understand interactions between algorithms managing these basic
system resources, and to determine an algorithm set for these resources

which provides good performance through algorithm integration.

Above the management of these basic system resources, subsystems and

applications manage data to provide extended system functionality. The
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and the interactions between disc cache management and other system
resource management. System level measurements of the bread-board
jnternal disc cache and integrated data management/kernel algorithms
demonstrate the projections of the modelling and the potential of the
integrated approach to exploit current trendé in processor, disc and
semiconductor memory technology to significantly improve system level

price/performance.

The chapter begins with an overview of memory hierarchies to provide
background and perspective. The need for memory / disc balancing is

then discussed in light of evolwving technology.

This is followed by a discussion of alternative balancing
approaches. The approaches considered include extermal caching of dise
stbrage through disc 'buffers' or an intermediate storage level, and
internal caching of discs in the primary store through local or global
file buffering, explicit internal caching, or file mapping. Methods of
improved database concurrency control are surveyed, and limitations
imposed by transéction‘ recovery schemes are discussed. Integrated

kernel and data management algorithms providing recovery support with

minimum performance penalty are presented.

Modelling results are presented which provide insight inte the
relative performance of the alternatives. The variables considered
include processor speed, disc access time and number of discs, read hit

ratios, write wait probabilities, and effective multiprogramming level.
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We investigated this scalability problem, and found it to be due to
a lack of scalability in the algorithms used for subsystem and
application 1level buffering and recovery management. Processor
utilization was limited by subsystems waiting processes for disc
accesses to complete. The disc write accesses were being generated by
local buffer replacement and write-ahead log man#gement. The disc read

accesses were initiated to resolve local buffef read misses.

We wished to extend the basic algorithm integration for processor,
main memory, semaphore and disc management to exploit current
technology trends in order to realize significant improvements in
system price/performance. We examined disc buffering, intermediate
storage levels between primary and secondary store, disec caching in
excess primary memorf °f7th¢ system processing unit, and integrating
kernel resource management with higher level data management. We
modelled the performance of these alternatives with varying processor

speeds, disc speeds, number of discs, and read hit and write wait

probabilities.

In order to gain insight into the interactions and to discover
tradeoffs and improved algorithms, we bread-boarded and analyzed one
alternative : integrated algorithms providing explicit global caching
of discs in excess primary memory.

-

The analysis and bread-boarding effort gave" insight into the
alternatives to exploit processor and storage technology trends, the
differences Dbetween caching discs and caching main memory, the

requirements on disc caching imposed in transaction management systems,
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and transient data objects, degree of parallelism, translation
mechanisms, fetch, replacement, and write handling policies, interfaces
between data management subsystems and the kernel, and external tuning
controls., Measurements from the bread-board are provided which show
the perforﬁance ags a function of processor speed and the number of
dises with and without ;ntern caching enabled, as well as cache

occupancy and read hit rates on a per disc basis.

Finally, the conclusions which may be drawm from this research inte

integrating data management are summarized.

6.2 Qverview of Memory Hierarchies

Storage hierarchies and evaluation techniques for their optimization
are discussed by Mattson, Gecsei, Slutz and Traiger in [Mat T0] and by

Chow in [Cho Th].

-

Figure 31 shows a standard computer system storage hierarchy. A
storage hierarchy provides a cost effective system organization for
computer éystems. FEach successive level of a storage hierarchy uses
lower cost, but slower, memory components. By retaining frequently
accessed code and data in the higher speed memories, the system can
operate at speeds close to the access times of the fastest memories but
at costs approaching those of the slowest memories. The price and
performance of a computer system is often dominated-ﬁy the organization

and management of its storage hierarchy.
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These projections were obtained using the system model described in
Appendix E. The worklocad parameters for the model runs and the
worklocad for the measurement data on the bread-board implementation
were obtained wusing a Production Management (PM) benchmark. HP
Production Management 3000 is an application package which aids
manufacturing in scheduling, fracking. and capacity planning using
workorders for fixed quantities of specific products with individual
start or completion dates. PM 3000 uses one Image database almost
exclusively. The Shop Floor Contreol database consists of 29 datasets,
14 masters, and 15 details. There were approximately 5000 parts, 6000
orders, and 39,000 routings in the database which occupied over 500

Mbytes of disc storage.

The measured processorisérvice requirement of the benchmark was was
192 kinstr per disc reference. The disc subsystem service requirements
were 24 disc references per transaction, a dise¢ read:write ratio of
7:3, disc references distributed unifofmly across the discs, and a mean

transfer size of 1 kbyte.

The overhead for disc access channel program construction and
interrupt handling was assumed to be 1 kinstr in the modelling.
Variations on these disc and processor service demands produce an

analogous family of curves, albeit shifted in one or more dimensions.

Following the discussion and analysis of alternatives, the design
and measurements from a bread-bocard implementation are presented.
Design issues considered include location of cache in main memory,

degree of integration of cache management with the management of code
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COMPUTER STORAGE HIERARCHY
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MAIN MEMORY \
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(tapes, etc.)
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F'igure 31: Standard Computer System Storage Hierarchy

Achievable system performance is a direct function of processor
speed and utilization. Processor utilization ig limited primarily by
its waiting time caused by misses at various levels of the storage
hierarchy. Thus, for optimal system price/perform_a.nce, the processor
speed and the capacity, speed, and management of the levels of the
storage hierarchy must be matched. In order to fully utilize the

processor capacity, the system must achieve a sufficiently high
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These projections were obtained using the system model described in
Appendy E. The workload parameters for the model runs and thy

workload \for the measurement data on the bread-board implementajion

were obtainad using a Production Management (PM) benchmarkd HP
Production Man2gement 3000 is an application package fich aids
manufacturing in heduling, tracking, and capacity plénning using

workorders for fixed duantities of specific products #ith individual
start or completion dates PM 3000 uses one Imag® database almost
exclusively. The Shop Floor Ogntrol database confists of 29 datasets,
14 masters, and 15 details. Thers were approxjmately 5000 parts, 6000
orders, and 39,000 routings in the “Matabasf which occupied over 500

Mbytes of disc storage.

The measured processor service reqyfirement of the benchmark was was
192 kinstr per disc reference. Thefdisc subsystem service requirements
were 24 disc references per trgfisaction, a disc readdwyrite ratio of

T:3, disc references distribujpld unifofmly across the dises\

transfer size of 1 kbyte.

The overhead for gisc access channel program construction \
interrupt handling Jhas assumed to be 1 kinstr in the modelling.
Variations on thgfse disc and processor service demands produce an

analogous fami of curves, albeit shifted in one or more dimensions.

Following the discussion and analysis of alternatives, the design
and measgrements from a bread-board implementation are presented.
Designgfissues considered include location of cache in main memory,

degrffe of integration of cache management with the management of cede

121



Caches between primary memory and discs are discussed in [Kra 82,

Hug 82], and in detail later in this chapter.

Smith [Smi 78] discusses long term file reference patterns and the
use of automatic file migration systems which moves files between the
discs and the next lower level of the storage subsystem. An example of
such a storage level is the 'IBM 3850 [Hem 77] Mass Storage Subsystem.
It consists of two walls of pigeon holes containing tape cartridges, a
cartridge accessor which moves tapes between the pigeon holes and
recording devices, and processors and staging discs which locate and
move the data between the host the host and the storage subsystem using

a virtual address interface.

6.3 Need For Memory/Disc Balancing

Processor speeds are increasing, and costs are dropping. There has
been an order of magnitude improvement in processor price/performance
in recent years. Current 32 bit microprocessors such as the 68020 [Ele
82] and National 32032 [Ele B8lLc] operate at cycle times of less than
100 nanoseconds. RISC architectureg [Fit 81, Wik 82, Patt 82] offer
the potential for significant performance improvements over fhese, with
the direct execution of an instruction each cycle with cycle times

approaching 10 nanoseconds.

These order of magnitude advances in processor épeeds have not been
matched by proportional advances in disc access speeds. There is an
access time gap of four orders of magnitude, and widening, between a

main memory reference and a disc reference in most current computer
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probability of finding data when referenced at the highest levels

rather than having to go to the lower levels of the hierarchy.

Traditional solutions for a low hit ratio at a certain level of the
storage hierarchy include improving the management policies of the
levels, increasing the capacify of the level incurring the low hit
rate, speeding up the access time of the next lower level of the
hierarchy, and introducing a new level into the storage hierarchy.
Cost and technology determine which alternative or combination of

alternatives is optimal.

The advantages of memory hierarchies have been exploited at

different levels of computer systems.

The need for and design of high speed buffer storage between the
processor and primary memory in large scale systems is discussed in
[Con €9, Mea 70, Bel 73]. Processor/main memory caches are now common

in medium and large scale systems.

Clark, Lampson and Pier [Cla 81] discuss the cache design for the
Dorado personal computer. The cache is pipelined, yielding a cache

access each cycle.

Lindsay [Lin 81] discusses the developing need for caches in

microprocessor systems.

Raymond and Pucknell ([Ray 81] discuss extensions of +the cache

concept to the microcode store level.
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This trend in disc technology exacerbates the hierarchy imbalance.
Since the disc subsystem often comprises over 50% of the system cost,
the tradeoff towards a small number of high capacity discs is
attractive. However, the demand for a disc grows with its capacity.
Thus, realizing the cost advantages of a few large capacity discs
rather than several small capacity discs ireduces the potential for
parallel service. This increases the me;; disc queue lengths, and

thereby the expected values for disc service response time.

The IBM 3380 is a current state-of-the-art disc storage device. It
has an areal density of 107 bits/em? with a total multidise capacity of
2 Gbytes, an average seek time of 16 ms, and a data transfer rate of 3
Mbytes/sec. The Gartner Group reported at the recent IBM Large
Computer Conference that IBM will introduce double density versions of
its 33X¥ in 198L providing U4, 6 and 20 Gbyte drives, with quad density
drives expected in the 1987-88 time frame. Furthef, they report that,
due to performance reasons, disc space utilization of IBM 3380 drives

in IBM installations is currently limited to 50-55% of capacity.

Magneto-optic disc storage devices [Tog 82, Bel 83] offer the
potential for significant improvements in read/write disc technology.
The primary limitation on disc density is the loss of signal amplitude
due to inaccuracies in the positioning of the read/write mechanism. In
magneto-optic devices, this is limited only by optical properties.
Current such devices have densities in excess of 108 bits/cm2. The
mean access time of such devices is limited by inertia of the waveguide

positioning, and mean access times will be on the order of 10 ms.
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system storage hierarchies. In comparison to this access time gap
between these storage levels, the access time gap between a processor
cache reference and a main memory reference is normally only a factor

of three to five.

Disc densities are rapidly increasing, and large capacity discs
offer significant price advantages over small capacity discs. As is
shown in Figure 32, large capacity discs cost one fourth as much per

Mbyte as small capacity discs.

Cost/Capacity Relationship for Discs
IBM33XX DECRA8X CDCA7XX FUJITSU

.QostﬂilM bytes)

200

= |
8

0 5001000 800 2000 2500
CapacityiM bytes)

Figure 32: Current Cost vs Capacity for Discs
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This effect is shown in Figure 33. The top graphs show transaction
throughput as a function of processor speed for a fixed number (4) of
25 ms and 10 ms discs. The bottom graphs show transaction throughput
as a function of the number of 25 ms and 10 s discs at a fixed
processor speed of 3 MIPs. A fixed channel bandwidth of 2 Mbytes/sec

is assumed for all the runs.

We see that without secondary store caching and with 4 25 ms discs,
effective processor utilization extends only to 1 MIP, and beyond 1 MIP
performance is linear with respect to the number of dises. With faster
discs (4 10 ms discs), effective processor utilization extends through
4 MIPs with a sharp dependency on the number of 10 ms discs for the

higher multiprogramming levels.

This indicates that in brder to effectively utilize higher speed
processors with conventional storage hierarchies and management
techniques, faster discs, more discs, and higher effective
multiprogramming levels are required. As discussed above, the
technology trends in secondary store devices do not support this

direction.
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Access to tracks within 15 track positions of the current write head
position can be achieved by deflection of the laser beam, providing
access times on the order of 1 ms in this range. Data rates in excess

of 6 Mbytes/sec have been demonstrated with this technology [Bel 83].

Replacing discs with secondgry storage devices employing CCD,
magnetic bubble, or semiconductofﬁRAM technology has shown limited cost
effectiveness. Bubbles and CCD have not been able to keep pace with
the density improvements and resulting drop in cost per byte of
semiconductor RAM, while the cost per Mbyte of semiconductor RAM is
still two orders of magnitude greater than that of discs. Magnetic
bubble memories are beginning to be used however as floppy disc
replacements [Ele 8La], costing twice as much as floppy drives while

providing access times a third of those of floppies.

Recent trends and projections on semiconductors are presented in
[Ele 84b]. CCDs have been falling in consumption and are expected to
continue to do so. Current consumption of magnetic bubble memories is
ten times that of CCDs, but one tenth as much as raﬂdom access
semiconductor memory and dises. The use of magnetic bubble,
semiconductor memory and disc systems are projected to grow at a

similar rate relative to one another over the next five years.

The large access time gap between semiconductor primary memory and
magnetic disc secondary memory in current storage‘hierarchies causes
non-linear system performance relative to processor speed. This limits
the exploitation of high speed, low cost processors and high density

discs to realize improved system level price/performance.
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Utilization of processor capacity depends not only on mean disc
access times and the number of discs, but also on sustaining a high
effective multiprogramming level in order +to exploit processor
multiplexing opportunities when secondary store service delays are
incurred. The effective multiprogramming level is limited by load and

by concurrency control mechanisms.

The impact of concurrency control on the effective multiprogramming
level can 1limit the exploitation of high speed processors with
multiuser database intensive workloads. In transactional database
systems, a transaction commit must transform the database from a
consistent state to a consistent state. When transactions are allowed
to execute concurrently against the same database, consistency is
maintained by share locking the data read and exclusive locking the
data written by each traﬁsaction until the transaction commité. When
popular structures are held locked during secondary storage access, the
effective multiprogramming level is reduced due to the "convoy effect.”
This effect is described by Gray [Fly 78] in his "Notes on a Database
Operating'System." In this state, most of the processes are queued on
the semaphore while the holding process spends its time waiting for
dise transfers. Processor multiplexing opportunities are thereby
reduced, and éystem performance rapidly flattens out with respect to

increasing processor speed.

6.4 Alternative Balancing Approaches
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Figure 33: Conventional Hierarchy Management Performance
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Read Hit Percentages vs Cache Size
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Figure 34: Access Method Hit Rate vs Cache Size

6.4.1 External Caching Techniques

Caching techniques have been applied to the disc subsystem in order
to reduce the effective disc access time to secondary store. Caching
has been implemented in discs, controllers and as a standalone system

component interfacing one or more secondary storage devices to the main

memory.

The use of a local cache per disc is depicted in Figure 35. Smith
[Smi 76] discusses buffering discs using bubbles, "CCDs, or electronic
beam memories. He concludes that three buffers each a cylinder in size
would produce a hit ratio on the order of g6%, with LRU werking well as

a replacement policy. IBM [Com 83] announced an intelligent cached
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As shown in Appendix E, system throughput is directly proportional
to effective multiprogramming level, and inversely proportional to
processor and disc response times and disc visit frequencies.
Consequently, efforts to overcome the limitations in exploiting the
trends in processor and memory technologies have focused on : reducing
the effective séc?ndary stope a;cess time.through external disc caching
techniques; reducing the number of secondary store visits per
transaction through internal dise caching in the primary memory; and
sustaining large effective multiprogramming levels through improved
concurrency management schemes, These alternatives are studied in this

section.

The potential of secondary store caching schemes is indicated in
Figure 3Lk. This figure shows the read hit rates which can be achieved
by the various access methods as a function of cache capacity. The
data for this graph was using the disc cache simulation model on disc
access traces obtained from the marketing support installation. Hit
rates of 85% for the non-sequential access modes are achievabhle. This
correlates with results using trace data from other installations as
well, and is in 1line with hit rates reported in external cache
implementations described below. The mean cache residency time in the
larger cache sizes exceeds 5 minutes. In the comparisons of disc

caching alternatives below, mean read hits of 85% are used. The

dependencies of the alternatives on read hit rate are examined as well.
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Figure 36: External Caching : Intermediate Level

The use and organization of a CCD memory level which could serve to
close the gap between semiconductor and disc access times is discussed
in [Cro 76, Reg T6, and Pan T6], and the use of magnetic bubble memory
systems for this purpose is discussed in [Cha 74, Jul 76 and Chen T8].
But since bubbles and CCDs have not been able to keep pace with the
density improvements and drop in cost per byte of semiconductor RAM,
they have not qualified in gap filling efforts. Rather, the technology
of choice for external disc caches has been semiconductor random access

memory.

Hugelshofer and Schultz [Hug 82] describe such a semiconductor disc
cache marketed by Computer Automation Inc. consisting of 2 Mbytes of

RAM placed between the processing system and up to four moving head
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dise featuring a 384 kbyte microprocessor driven controller that
optimizes seeks as well as caches recently referenced data. Krastins
[Kra 82] discusses a cache which is integrated with the dise controller
consisting of 1-2 Mbytes of RAM. The cache buffers full rhysical
tracks. They report a hit rate of 85% and a mean access time of 8 to 12

ms, with hit précessing time less than 1 ms.

CACHE /DISC

SYSTEM
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DISC Dise DISC
CACKE CACHE CACHE
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Figure 35: External Caching : Buffer Per Disc

The use of a cache front-ending the disc subsystem is depicted in

Figure 36. This can be viewed as inserting a new level into the

storage hierarchy.
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Figure 37: External Caching Without Write Wait
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Figure 38: Extermal Caching With Write Wait
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Figure 39 shows the sensitivity of external caching to the read hit
and write wait probabilities. These are shown for two processor speed
slices, 3 mips and T mips, with 4 25 ms dises. The sensitivity to read
hit and write wait probabilities increases with processor speed, with
rapid loss of performance in high speed processors as the read hit

probability drops and the write wait probability increases.
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6.4.2 Using Large Primery Memories

With the improvements in memory densities and access times, very
large main memories can be cost effective provided they can be
exploited to reduce the traffic between main and secondary store.
Techniques to expleoit main memory for this purpose include auxiliary
local buffering in applications and subsystems and global disc caching

through explicit caching or file mapping.

Systems have conventionally provided limited caching of the discs
in main memory through buffering on a subsystem, file, or application

basis as showm in Figure 40.

LOCAL FILE BUFFERING

Main Mernory

Disc

ALE

Figure 40: Local File/Application Caching

Centralized buffering schemes are employed in the Berkeley 4.2 Unix

141



file system for the DEC Vax computer family [Mck 82] and in a product
for the IBM PC [Tec 83]. As shown in Figure 41, a fixed portion of
main memory is set aside for global file buffers. When a file block
read from disc is requested, the global buffers are checked first. If
the requested block is present in a global file buffer, the read is
satisfied with a move fi‘jrom the buffer to the user’s address space.

Otherwise, a global vuffer is freed up, a disc read of the block is
initiated into the selécted global buffer, and when the read completes

the data is moved into the user’s space. File block writes are

performed through global buffers as well.

GLOBAL FILE BUFFERING

Main Memory Dlge
GLOSAL FILE BUFFERS
€ > FILE
EXTENTS
FLE BLOCKS -

l LOCAL FILE BUFFERS

RECCRDS
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-

Figure Ll: Global File/Application Caching
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locates the required cached disc domain in main memory and moves the
data between the cached region of the disc and the data area of the
access method. This approach was implemented in the bread-board system
for experimentation purposes, as described in later sections of this

chapter.

With architectures supporting large virtual address spaces, pieces
of files or discs or entire files or discs can be mapped directly into
the address space. The location of a piece of a file or disc¢c in main
memory is then handled by the virtual to physical address translation
hardware, and the normal memory management mechanisms handle fetching
and replacing of pages of files or discs. This approach to secondary
store caching is depicted in Figure 43, This approach was first

employed in Multics [Org T3], and recently in [Bas 82, Red 80].
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In global disc caching, main memory partitions disappear and cached
disc regions containing file data are centrally managed with the pieces
of transiemnt objects by the main memory manager. In this approach to
disc caching in main memory, pieces of the disc are mapped as data
objects, and placed and replaced by the normal memory management
algorithms as those used for code, %tacks, etc. This approach is showi;

in Figure k2.

GLOBAL DISC CACHING

Main Memory

Disc
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CACHED D1SC DOMAIN []_: IS
DOMANS
Disc
) |
CACHED DISC DOMAIN je s
DDMAINS

RECORDS

USER
AREA

Figure 42: Explicit Global Disc Caching in Main Memory

Global disc caching in main memory can be either explicit beneath

the disc access interface or implicit through the use of file mapping.

With explicit disc caching in main memory, the access methods

continue to address the discs, but a software translation mechanism
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Figure 43: Internal Caching Through File Mapping

The performance characteristics of file mapping relative to explicit
internal caching are shown in Figure L4, The top charts show the
performance of the two schemes as a function of processor speed for a

broad range of processor speeds, and the bottom charts a blowup for low
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processor speeds. The performance characteristics for the two schemes
are seen to be very similar for higher speed processors where the
translation overhead of explicit internal caching becomes negligible.

File mapping has the advantage for low speed processors.
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Since the perforﬁance characteristics of explicit internal caching
of secondary store and file mapping are similar, only the full
characterization of file mapping is presented here. The performanée
characteristics of file mapping as a function of processor speed, disc
access time, and number of discs with and without waiting for write

posts to complete are presented in the following two figures.

Note that without write wait file mapping provides effective
processor utilization through 16 MIPs with 4 25 ms discs and through 32
MIPs with 4 10 ms discs. Waiting for writes causes a sharp drop in the
effective processor utilization and a sharp increase in the dependency

on the disc access time an the number of discs.
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Figure U7 shows the sensitivity of file mapping to the read hit and
write wait probabilities. These are shown for two processor speed
slices, 3 mips and T mips. The sensitivity to read hit and write wait
probabilities increases with processor speed, with rapid dropping in
effective processor utilization for high spéed processors as the read

hit ﬁrobability decreases and the write wait probability increaseé.
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6.4.3 Improved Concurrency Control

We saw in the preceding graphs that system throughput varies
strongly not only with processor and disc subsystem capacity, but alse
with the sustained multiprogramming level. Conqurrency control
mechanisms can severely limit the effective multiprogramming level
through the convoy effect described earlier. Even with the methods of
secondary store caching to increase parallelism and reduce access time
to disc data, processor utilization of higher speed processors may
still be limited due to the convoy effect caused by read misses and
write waits incurred while holding popular semaphores. Advances in
concurrency control mechanisms to provide maximum concurrency while

gtill guaranteeing data consistency are surveyed in this section.

Eswaran, Gray, Lorie and Traiger discuss the concepts and necessary
conditions for consistency in database systems in [Esw Th].
Transactional database systems guarantee that data which is uged during
a transaction is still valid when the transaction commits. This data
consistency requirement is normally supported by share locking data

which is read and exclusive locking data which is written.

Lock conflict frequencies are a function of lock granularity and
lock bind time. The finer the lock granularity and the later the lock
bind time, the lower the lock conflict frequency. However, refined
locking increases the number of locks which must be obtained, thereby
increasing lock management overhead. Also, the later the lock bind

time, the greater the probability for deadlock.
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In predicate locking [Esw T4], predicate locks correspond to
logically related data items. The predicate locks are not normally
related to the physical location of the data, and frequently cross data
sets. Predicate locking results in the early locking of more data than

is used by a transaction.

Gray [Fly T76] discﬁ#ses the locking scheme in system R. Locks are
accumulated as a tr;ns;ction proceeds, and released at commit time.
All data items which are read during a transaction are share locked,
and all data items written by a transaction are exclusive locked for
the duration of the transaction. Deadlock detection and recovery must
be performed to support this locking scheme. This locking scheme locks
the minimum set of data required for transaction consistency, and waits

to lock the data until the last possible moment.

Low cost deadlock detection schemes are discussed in [Agr 83].
Rather than using watchdog timers to detect deadlocks and to restart
transactions, ‘“waits-for-graphs" are maintained and periodically

.

checked for cycles indicating deadlocks. .

Optimistic concurrency control mechanisms are discussed by Kung and
Robinson in [Kun 81]. They discuss non-locking protocols which
maintain lists of read and modified data, with checking the lists at
commit time to see if the data used in the transaction had been
modified by another transaction. Conflicts are resclved by restarting

the transaction.
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Chan and Gray [Cha 83] discuss the use of old time-stamped logged
versions of data to provide a consistent view of the database without

locking for read-only (query) transactions.

These techniques can help sustain high multiprogramming levels. The

locking can be integrated with the kernel’s management of resources by

applying priority bumping to the holder of a lock when a more urgent

process queues for the lock.

6.4.4 Requirements of Transaction Recovery

Transactional database systems guarantee that the database is left
in a consistent state in the event of transaction aborts or system/disc
failure. The standard mechanism used to achieve transaction recovery

is through the use of a write-ahead log.

Write ahead logging is discugsed in [Gra T76]. Before the data in
the database is modified, a copy of the old image and new image of the
data is written to a log file, along with identification information.
If the transaction aborts, the old images of data madified by the
transaction are read from the log and restored into the database,
thereby "undoing" the actions of the transaction. If the system
crashes, when it is restarted a utility is run which goes through the
log file and undoes any actions of uncommitted transactions. If a disc
fails, the database is restored to its last backed-up state, and the

actions of committed transactions are redone using the log file.
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In order for transaction recovery through write-ahead-logging to
work, the before and after images of the data along with identifying
information must be posted to the disc prior to the update of the
database with the new values. Most database systems issue the log
write, then wait for the physical post to complete before igsuing the

database write.

We saw in the preceding sections the significant impact of having to
wait for writes. In order to minimize the probability of waiting for
disc writes to complete, we developed a special mechanism which allows
the specification of posting order constraints at post time or on a
file basis so that posting can proceed without wait if only a post
order constraint exists. With this facility, the post of the log can
be issued nowait, and the database write can be executed immediately.
The kernel guarantees that posting order within a serial write gueue
matches the chronological order of post initiation. The sequence for

write-ahead log use of this facility is depicted in Figure u8.
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'Figure 48: Nowait Logging via Kernel Serial Posting

In order to insure disc consistency, only one write access for a

serial write queue can be pending at a time. This is depicted in

Figure L49. Since this limits parallel use of available disc drives,

multiple serial write queues for unrelated postings are beneficial.
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Figure 49: Serial Write Queue Management

6.5 Evaluation of Alternatives

In this section we evaluate the alternatives discussed above based

on performance, cost and reliability. We identify complementary
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approaches, and identify workload/configuration sensitivities effecting

the suitability of alternatives.

Evaluating with respect to performance, we saw in the preceding
section that the ability to effectively utilize processor capacity
drops rapidly with increasing processor speed if secondary store
caching is not performed. Faster discs and more discs provide benefit
in uncached systems, but the benefits are not commensurate to those
obtained through secondary store caching. The dependency on disc access
time and the number of dises is dramatically reduced with the secondary

store caching alternatives.

All of the secondary store caching alternatives are able to provide
effective processor utilization at processor speeds several times those
which can be effectively utilized without caching with equivalent

processor/disc configurations.

Note however that when the processor is fully utilized without
caching in a balanced configuration, explicit internal caching degrades
performance relative to no caching. Figure 50 compares the effects of
no caching, external caching, explicit internal caching and file
mapping on the low end of processor relative to not caching. The added
overhead of locating the disc region in memory and moving the data to
the target area does not pay off when the processor utilization is
high. This effect was observed in the bread-board measurements. The
low end family members degraded in performance when explicit internal
dise caching was enabled. External caching out performs internal

explicit in high utilization ranges as well, since the data transfer is
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performed in parallel with processor usage, so the move overhead is not

consuming valuable processor time.

160



NQ CACHE EXTERNAL DISC CACHE WIO WRITE WAIT
4 25 ma Diecy 4 25 me Dlece, RH=58, Ww=0

sonrshout (Trang/Sec)

-
-
.

——

ma

$

pdrdrdt B H

3
&
1

EXPPCE INTERNAECARHE S, WRIESAT FILE %A&FLTSJ‘KE_‘#&H’TE WAIT

Throygh T

bdrdr g

[]
o}

T cou spded iPe) 9 4

T opy Spdad (P9 ° ‘

Figure 50: Alternatives in High Utilization Range

161



Figure 51 compares the performance of the alternative caching
schemes across a broad range of processor speeds. Internal disc
caching, either explicit or through file mapping, is able to provide
effective processor utilization at speeds well above those effectively
utilized by external caching with the same overheads and hit rates
assumed. Tﬁe overhead of internal caching becomes negligible as
processor speeds increase, whereas the overhead in external caches

stays fixed.

Special mechanisms can be employed to achieve high read hit rates
and low write wait rates. Since -the secondary store caching
alternatives are sensitive t¢ these parameters, it is important to

expleit them.

Integrating the cache‘fetch, replacement and write handling with
transaction management requirements is simple with internal caching,
but would be difficult with external caching. Consequently, “cache
memory utilization and the sustained effective multiprogramming level
of intermnal caching can bhe superior to that achievable in extermal

caching.

With internal caching, the size of a fetched disc domain on a read
miss can be tailored to the structure of the data based on knowledge of
the storage layout (e.g. fetch extents vs fetching tracks which contain
unrelated data or only pieces of the required exten;). The replacement
policy can exploit operating system knowledge of access patterns (e.g.

the policy can flush a cached disc domain from the cache memory after

sequential reference and on file purging). Write posting orders and
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write and read priorities can be adjusted to meet the current needs of

transaction management.
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We now compare the alternate methods of internal caching of

secondary store.

Development of multiple local buffer management schemes is
redundant, and the buffering capacity is localized and unresponsive to
current memory loading conditions. The amount of memory devoted to the
buffering ofl a specific file or subsystem would liﬁely' be either
excessive or insufficient at any given moment, depending on the current
memory availability and the current workload demand and priority

structure. Its the old fixed partition problem.

Global file buffers require a fixed partition of main memory between
swap space and buffer space, so are not responsive to memory loading
conditions. They suffer from the fixed partition problem as do local
file buffers. Furthermore, they provide memory management functicns,
ineluding space allocation, replacement, and disc access initiation and
interrupt fielding. Thus, developing efficient algorithms for the
global buffer manager is redundant to the development of the manager of
memory fof transient code and data. Moreover, as is discussed in the
next chapter, they are not amenable to supporting efficient local

caching in decentralized systems.

Explicit internal disc caching and file mapping overcome the fixed
partition problems, so they can be expected to achieve higher read hit
rates. Further, it is easier to integrate disc access post order and

priority adjustments with these schemes.

165



Explicit internal disc caching in main memory requires a translation
mechanism to locate a required cached disc domain in main memory. 1In
large main memories there can be several thousand cached disc domains
present at any moment, and locating a cached domain through a
translation of disg to main memory address can be expensive in
processor cycles. Additionally, if the processor has a cache, the
location sequence can flush a large portion of the cache while chasing
through 1list structures. However, explicit disc caching can be

performed with any processor architecture.

File mapping would appear to offer the best of the alternatives for
caching of discs in main memory. It leverages the main memory
management mechanisms, hasgs no limits on main memory space applied to
file caching, and has no overhead for location of file domains in main
memory. Applicability of this approach is limited however to specific

processor architectures.

Stonebraker [Sto 83] discusses the issues involved in transaction
management in architectures binding files into a user’s address space.
He identifies problems with such systems due to requiring the lock unit
to be page nmultiples, the necessity of limiting mapping-in to only
those pages of a file which are currently locked in order to maintain
consistency maintenance for multiple updaters, and the complication in
page replacement since pages of the write ahead log must precede
permanent file page replacement in order to maintain integrity for

transaction recovery. Stonebraker concludes that '"without hardware
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support specific to a given concurrency control scheme, all options

appear to have substantial performance problems."

These problems are overcome if the processor architecture supports
an address space which is sufficiently large to map in all the files
concurrently and provides capability checking on a per page basis, and
if the operating system and database cooperate to meet the
_tfansactional requirements. Supporting an address space of 64 or 96
bits need not significantly complicate the hardware or increase the
cycle time or memory requirements. For example, hashing intec a cache
of virtual to physical address translations on translation look-aside
buffer misses is performed on the the IBM System 38 {Hou 78] rather
than using page tables to support its 48 bit address space. The
database can invoke post requests of the log, and the kernel can adhere
to post order constraints between the log and the database during disc

scheduling.

Evaluating with respect to cost, using faster discs and more of them
to overcome the performance limitations without caching is clearly not
cost effective. External caching is more expensive than internal
caching since additiocnal power, cooling, cabinetry, and electronics is
required in addition to the extra memory required for the caching.
Also, more memory would be required to achieve the same hit rates in
external caching unless the cache management is }ntegrated with the

operating system policies.
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Evaluating with respect to reliability, internal caching introduces
no new hardware components into the system. The reliability is
identical to the uncached system whereas any of the peripheral cache
architectures necessarily degrade system reliability due to their
introduction of hardware components. The software/firmware complexity
of explicit Tinternal and external caching is roughly the same, so
reliability é;gradation due to cache management is comparable. File
mapping is simpler. Since the posting strategy of the peripheral cache
is not integrated with the system posting strategy, a consistent level

of integrity is not guaranteed for transactional database systems.

6.6 The Bread-Board Disc Cache

The kernel bread-board was used to investigate principles and
integrated approaches to caching discs in the main store. Algorithm
interactions were observed, and improvements developed. Differences
between disc and main memory caching and areas in which architectural
improvements wculd be of benefit were noted. The production disc cache

system is described in [Bus 83].

The kernel resource management mechanisms and strategies presented
in the previous chapter provided an efficient, extensible research
base. These strategies were extended to support explicit disc caching
in primary memory. The resulting mechanisms and §trategies integrate
kernel and data management. Access method knowledge of file structure
and access type are exploited to enhance prefetch and replacement

decisions for disc domains. Data recovery protocols are supported
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without wait for posting fhrough kernel post order constraint
adherence. Priorities of disc accesses are adjusted to reflect the
changing urgency of read and write requests due to data management
locks or commits. Process priorities are adjusted to reflect lock

states.

The overall structure is shown in Figure 52. The user program
requests records. The file system maintains local file buffers, and on
buffer misses or replacements accesses the I/0 system to initiate
buffer reads or writes. Beneath the I/0 interface, pieces of the disc
are cached in main memory. Actual disc transfers are initiated by the

cache manager.
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6.6.1 Read Handling

Figure 53 shows read processing with and without caching enabled.
Without caching, the disc transfers directly to the buffer, but a disc
access delay is incurred. With caching, the disc transfers to an area
of memory reserved for the disc domain, then the data is moved to the
buffer using the processor. On read hits, data access requires
locating the data in memory and moving it, rather than having to incur
a disc delay. This is performed on the current processes stack without

a process switch.
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6.6.2 Locating Cached Disc Regions

The cached disc domain location mechanism employed in the bread-
board kernel is depicted in Figure 54. A separate list is maintained
for each disc which identifies the memory regions corresponding to
currently cached domains from the disc. The 1list is ordered by
increasing disc address, and a microcoded link-list-search instruction

is used to locate a required region in the list.

This location scheme requires about 500 instructions for setup and
cleanup, plus 2 memory references and 2 compares for each cached domain
in the 1list. Thué, the overhead of translation increases with the
memory size. This is not a particularly good feature. Thousands of
domains can be cached for each disc in a large memory, so the overhead
of translation can become significant. In hindsight, more attention
should have been paid to the location mechanism. Architectures
supporting file mapping in virtual space eliminate this overhead

altogether.
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6.6.3 Write Handling Mechanisms and Policies

Write handling with and without internal disc caching is shown in
Figure 55. Without caching, the transfer occurs directly to the disc
from the buffer. The transfer can be initiated with or without wait,
with explicit completion synchronization occurring 1later. With
internal disc baching, a free area of memory is allocated whén the
write is initiated, and the data is moved into that area. A write to
the disc is issued, and the process can continue to execute. The write
is considered complete once the memory move occurs unless the file has
been specified as requiring physical post Dbefore completion

notification.
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If there is currently a write pending against the specified disc
domain, the process’ request is queued until the pending write is
posted to dise. If the disc domain to be written is not currently
cached, an available region of memory is obtained which is used to map
the corresponding disc image - i.e., no fetch of the disc domain to be
written is required. When the move effecting the write takes place
from the process’ data area to the cached image of the disc, a post to
the dise is initiated. Only the portion of the cached disc image which
is modified by the write is posted. After the move to the disc image is
performed and the post to disc is initiated, the writing process is
allowed to continue running without having to wait for the physical
post update to complete. This is all handled on the current process’

stack, without even a process switch.

Precedency queues are provided to control posting order. Through
the use of such queues, disc integrity can be assured without having to
wait for physical posts to complete. Transaction recovery mechanisms
employing write-ahead logging can initiate log posts, and, without
wait, modify the permanent data using these precedency queues. This

provides transaction recovery support with minimal delay.

Smith [Smi 79] discusses alternative write handling policies for
processor caches, comparing swap policies (wait until space is needed
before writing) and write through policies (write operations made
immediately to the cache and memory simultaneously). He recommends

write through over swap, with buffering of the writes to main memecry.
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A write through policy was chosen for our implementation of internal
disc caching. The post request to disc is issued at a background digc
priority. The priority of a pending post request is raised if the
process waits for the post to complete or the region is required by the
main memory replacement algorithm. Thus, issuing a physical post when
the write is performed rather than waifing for replacement has no

negative impact. Only idle disc capacity is used.

Performing write-through is also beneficial since the transaction
recovery mechanisms require synchronization on physical commit at some

point, so performing these early saves delays.

The write protocol is shown in Figure 56.
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Figure 56: Internal Caching Write Protocol

In paged systems employing file mapping, a fetch of the data range
from disc is required on subpage write misses. This fetch is not
required with segmented architectures. The frequency of such write
misses was found to be about 40% of the write attempts with the
workloads observed. The write miss rate depends heavily on the storage

algorithms employed in the access methods.
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6.6.4 Cache Fetch, Placement and Replacement

The kernel’s main memory placement and replacement mechanisms were
extended to handle cached disc domains in the same manner as segments.
Thus, cached disc domains can be of variable size, fetched in parallel
with other segments or cached disc domains, garbage collected, and
replaced in an integrated manner with stacks, data segments, and code
segments. The relative allocation of main memory between stack, data,
code and cached disc domain objects is entirely dynamic, responding to

the workload’s current requirements and current memory availability.

Fetching and replacing differ froﬁ .processor caching of main
memories. Rao [Rao T7B] discusses the impact of replacement algorithms
on cache performance for caching of main memory, finding that the
replacementAalgorithm has a secondary effect on cache performance.
Smith [Smi 75] discusses sequential prefetching of programs for

processor caches.

With internal disc caching, when a request is made to read data
which is not currently cached, the fetch strategy uses knowledge of the
file blocking, extent structure, access method, and current memory
loading to select the optimal size of disc domain to be fetched into
memory. The fetch is performed in an unbloéked manner so that the
requesting process or another process can run in parallel with the
cache fetch from disc. With processor caches, thelbrocessor must idle
on a cache miss since the process switch time exceeds the cache miss

processing time,
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No special treatment of cached domains was required for the
replacement algorithm. It naturally protects the transients objects in
smaller memories due to their smaller inter-reference times, and uses
large memories for extensive write and read caching with the relative
amount of cached disc space per device skewing naturally to the heavily

referenced devices.

Figure 57 shows the cache hit ratiocs across discs, the read to write
ratio across the discs, and the partitioning of main memory allocated
for cached domains across the discs. The normal LRU type replacement
algorithm does fine in responding to the variable demand requirements

of the various disc volumes.
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Explicit prefetching and flushing for sequential access was found to
improve hit rates through simulation studies on standard trace files,
whereas special prefetching and flushing for other access modes did

not.

This policy was implemented in the kermel. When a process completes
referencing a cached disc domain in sequential mecde, the domain is
flushed immediately from main memory since it won’t be needed again.
In this way, memory utilization is improved over that achievable with

the kernel’s standard LRU type replacement algorithm.

6.6.5 External Caching Controls

The external controlé for the caching are shown in Appendix F.
These allow caching to 7be enabled/disabled against specific discs,
display the current status of disc caching, set posting policies on a
system and file basis, and control the roundeff fetch sizes for random

and sequential access.

Defa.ult‘s for the tuning parameters were selected based on
simulations of disc access traces using the simulation model. Good
defaults for random fetch sizes were found to be U4 kbytes and for
sequential 24 Kbytes. Large prefetches were found to payoff big for
sequential, but not for random type accesses. Rounding the fetching
above the requested block was found to be supezrior for all access
methods to fetching below the requested block or centering on the

requested block. The choice of tuning parameters is, as always, an
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adjustment to the access patterns of the particular subsystems and

databacses.

6.6.6 Performance of the Bread-Board Caching

With these mechanisms and .strategies, the bread-board kernel
significantly reduced the traffic between the main memory and secondary
disc storage and significantly reduced delays to read or write disc
information. Read hit rates of 85% are common for file, database and
directory buffer fills. These read hits eliminate roughly 65% of the
disc accesses (5:1 read to write ratio). Due to the caching of writes,
most delays for posting are eliminated. Together, the read hits and
cached writes eliminate 90% of process delays due to disc accessing.

This dramatically reduces semaphore holding times.

The impact on system performance over the non-cached kernel is shown
in Figure 58. Throughput improvements of 50% and response time
reductions of 5:1 are standard on the high-end (Series 6u) while the
mid-end gets about 25%, and the low end degrades, thus demonstrating
the scaling of performance with processor speeds. However, the
mid-range system with the kernel caching outperforms the high end

machine without kernel caching of the discs.
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Figure 58: Kernel Caching Performance Impact

185



Figure 59 compares the kernel with and without caching for
configurations with U 125 Mbyte discs and 2 400 Mbyte discs. The
cached system with 2 disc servers outperforms the uncached system with
four disc servers. Moreover, the cached system performance is the same
with 2 or 4 discs, thereby demonstrating that SPU caching can exploit

the system cost advantages of large capacity dises.

Series 68 Response Time
4 discs vs 2 discs

NO_CAGHE_2_DISCS CACHE_2_DIECS NO_CACHE_4_DISCS CACHE_4_DSCE

INcarmali;ed Response Time

-
-
-
-
-
-
-
-
-

-
-
'_---"
-
-
. - =

Jrrris - e— — ——" ——

Number of Terminals

Figure 59: Effects of Multiple Dises and Disc Caching

A benchmark comparison [HP 83b] was made between an IBM 3033 {S
MIPS) and an HP 3000/64 (1 MIP) with and without the bread-board kernel
applying disc caching in main store. The benchmark ran Compserv’s
Materials Request and Planning (MRP) software developed for both the HP

3000 and IBM 3033 systems. The benchmark consisted of a materials
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request and planning batch Jjob which performs a large database
implosion in order to determine the parts, lead times, and orders to
manufacture a specified set of end-products subject to a master
production schedule. This type of an application tends to be highly
I/0 intensive since it accesses the database in an inverted manner,

starting with schedules and searching for qualifying partsf

The benchmark ran in 28 hours on the IBM 3033, U9 hours on the HP
3000/64 without the kernel’s caching of the discs in excess main store,
and in 27.4 hours on the HP 3000/64 with kernel disc caching. That the
HP 3000/64 could outperform the IBM 3033 -in spite of the 5 x difference
in processor speed indicates that caching by the kernel of disc domains
in excess main store with the cache management policies introduced here
rather than applying locally managed, limited caching of data items by
database or file systems can be constructively apélied to systems
outside the case study family. Database and file system caching is
limited to a fixed capacity and applies policies which optimize for the
standard access approach. When more resocurces are available, as main
memory fof a stand-alone batch job, and access is non-standard, as in
this jnverted access case, localized caching policies do not respond.
In small memory systems under memory pressure and with slow processors,
disc caching degrades performance. The cost of locating the cached
disc domain in main memory and moving the domain gets added to the disc
access time. With low hit rates and slow proceésors this overhead
exceeds the benefits of caching the dises, This overhead is not

present in architectures supporting file mapping.
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6.7. Conclusions

This chapter examined alternative approaches to exploit current
technology trends in processors, discs, and semiconductor memory to

realize significant improvements in system price/performance.

Caching secondary store in primary main memory through explicit
internal caching or file mapping, coupled with integrated kernel and
data management algorithms, was found to provide the most cost

effective and best performing altermative.

External caching of discs by providing dise buffers or an
intermediate storage level using CCD, bubble or semiconductor RAM
technology was found to be inferior to intermal caching of discs in the
system processing unit using large primary memories based on cost,
performance, and reliability measures. Difficulties in integrating
external cache management algorithms with operating system knowledge,
and having to cross the process switch boundary and access through the
I/0 system, causes the performance of external caching to be
significaﬁtly less than that achievable with internal caching
techniques. The additional cost of electronics, cooling, power, and
cabinetry cause the cost of external caching to be greater. The added
components cause the reliability to be less. However, external caching
can be added to existing systems with the minimum of additional

development.

Alternatives for the caching of discs in primary memory include

local buffering, global buffering, explicit disc caching, and file
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mapping. Local and global buffering techniques suffer from fixed
partition problems, and require buffer management techniques which are
redundant to the kermel’s management of transient objects. Explicit
disc caching and file mapping provide disc caching in a manner which
scales with memory size and leverages the kermel managementlalgorithms

for main memory. l

Secondary store cache management can be integrated with data
management to obtain significant incremental performance improvements.
Specific improvemeﬁts were identified by integrating write-ahead
logging with disc access scheduling through the adherence to post order
constraints, bumping the priority of effected disc pest requests at
commit time, and using extent boundary and access type knowledge for
selecting the fetch size.on read misses and flushing on seguential

access.

Utilizing high speed processors requires sustaining a high
multiprogramming level. Improved concurrency control schemes, such as
late binding, granular locking for updates and versions for gueries,
help achieve this. Database locking can be integrated with kermel
resource management by bumping the priority of a lock holder when a

more urgent process gqueues on its lock.

Providing caching of dises in main memory differs from caching main
memory for processors in several ways. The delay-in resolving a read
miss is highly state dependent, requiring disc gqueueing and head
positioning components. Since the read miss resolution time is long

compared with the time to state save the current process and launch
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another process, other ready processes can be run if the effective
multiprogramming level 1is sufficiently high, allowing productive
processor utilization while resolving read misses. Special knowledge
of access patterns can readily be exploited to improve cache fetch and
replacement strategies. Write misses can be resolved without recuiring
a fetch from the backup store if variable sized allocation 'is used,
thereby thereby utilizing large caches to eliminate process waits on
write misses. Special constraints exist on the write handling
policies for updating modifications to the backing store due to the
requirements of write-ahead logging and shadow paging in transactional

systems.

The modelling techniques and algorithms for processor caches supply

a base that is useful when considering other caching problems.

Intuition into the problems of secondary store caching was acquired
through the bread-boarding effort, and the bread-board graphically
demonstrates the results which the analysis predicts. The effective
utilization of higher speed processors and reduced dependency on the

number of discs was clearly demonstrated.

The bread-board demonstrates further that integrated internal
caching of secondary store can be accomplished with conventiocnal
hardware and software architectures. Data management integration with
internal cache management can bYe achieved in ekisting systems by
providing special functions to allow subsystems and applications to
influence the management of caching, disc scheduling, and main memory

management so as to meet their performance and recovery objectives.
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Chapter 7

Further Research

The scope of empirical and analytic research described in the
preceding chapters was restricted to centralized computer systems.
This chapter discusses applicability of the concepts in decentralized

systems, and our current research in this area.

A major goal in decentralized systems is to provide transparent,
controlled sharing of resources among the component computers. In
order to share data amo_ng- computers in decentralized systems, new
problems of security, accesls control, data consistency, reliability and
availability are introduced.__ Various approaches to providing shared
access to files in decentralized systems have been proposed, some have
been analyzed, and some have been built. Alternative conf.igurat-ions
and algorithms differ in terms of their degrees of flexibility,

transparency, performance, reliability, and availability.

We focus on examining the potential of our integration concepts for
improving performance of transactional distributed configurations of
current interest without degrading their availabqility, reliability,
transparency or security. We examine configurations with hosts sharing
a seccndary storage subsystem, file servers, and workstations. We

consider extensions of our integrated resource management algorithms to
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improve the performance of these decentralized configurations by
integrating scheduling and data concurrency, consistency and recovery

management.

7.1 Integrated Resource Scheduling in Decentralized Systems

3

In the previous chapters we discussed the use of a global prieority
and assignment and adjustment algorithms as a means of integrating
local resource management decisions in a centralized computer system.
This mechanism appears to extend well to achieve integrated management

of shared storage subsystems and shared file servers.

An example of an architecture targeted towards providing high speed,
shared access to a common set of discs is DEC’s HSC50 mass storage
subsystem [Pla 83]. The shared storage subsystem manager services the
requests for disc access from a number of hosts, deciding serviée

priorities based on minimum seek time.

We discussed in previous chapters that, within a centralized system,
significant performance improvements can be achieved by priority
servicing of disc requests, where the priority assignments reflect
current system urgency. Rather than having the storage subsystem
locally optimize its throughput by applying 2 minimum-service-time-next
policy, as is done in the HSC50, a protocol and service discipline can
be employed which bhetter supports system perfofﬁance objectives.
Priorities can be assipgned in each system and disc service requests can
be tagged with priorities in a manner similar to that forwarded for the

secondary storage management in this research.
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This scheme would require a global system concept of priority among
the hosts connected to the storage subsystem. Such a requirement is
natural and would be easy teo implement, even if the host operating
systems are non-homogeneous. The expression of performance objectives
through a a global tuniﬁg command and subsequent priority assignments
and adjustments we;e performed with the algdrithms forwarded in this
research, the hos£75torage subsystem protoc§1 would need to support
status checking; cancellation, and priority adjustment of outstanding.

requests.

Some storage subsystems take on responsibility for file or database
access and control. The Tripos filing machine [Ric 83] in the
Cambridge Distributed Computing System [Mit 82] provides such a file
server. It is accessed transparently through local file system stubs
which execute remote procedure calls to invoke file system services. A
small amount of local buffering is provided, with the filing machine

itself performing extensive buffering.

Cheriton and Zwaenepoel [Che 83] describe a network of discless
workstations built on SUN computers connected to file servers., All
secondary storage is provided by back-end file éervers, and general
purpose IPC facilities are used rather than specially tuned file access
protocols. They find that the performance is close to the lower hound
given by the network penalty, so specialized protocols would provide

minimal improvement.
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Tagging service requests for file servers with global priorities
could help to guide the file server's local management decisions on
lock, processor, memory and disc scheduling local management decisions
in the same manner applied in the centralized resource management

examined in this research.

7.2 Integrated Data Management in Decentralized Systems

In the previous chapter we saw the significant advantages of
extensive internal caching of secondary store using integrated data
management algorithms to exploit current trends in processors and
memories. When we consider applying these to decentralized systems in
order to realize concomitant benefits, we must address the regquirements
~of distributed transaction management and solve the problems of

inter-computer cache coherency management.

Consistency and recovery mechanisms for distributed transaction
processing have been given attention in recent years. The approaches
taken to provide decentralized transaction consistency and recovery

have a major impact on system performance in decentralized systems.

Traiger, Gray, CGaltieri and Lindsay [Tra 79] define the concepts of
transaction and data consistency for distributed systems. They show
that consistency management for non-replicated data is amenable to the
techniques used for centralized data. In particular, they show that if
transaction execution is well formed (all data read during a
transaction is shared locked, all data written in a transaction is

write locked) and two-phase (all locks are held until the end of the
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transaction), consistency is guaranteed. Applying this at each node
through a local lock manager for objects residing at that node
guarantees distributed transaction consistency. Transaction atomicity
is guaranteed by following a twc phase commit protocol where all ncdes

must agree to commit before the commit log record is written.

‘Reed [Ree 83]“I discusses distributed transaction management using
intention lists which hide new v;lues of data involved in a transaction
by a version mechanism until the transaction commits. He presents a
distributed synchronization mechanism consisting of a two-phase commit
type protocol for implementing atomic commits. This approach provides

an "update semantic on top of immutable versions.'

Chan and Gray [Cha 84] discuss the use of old versions of data for
read only transactions to minimize synchronization delays while still

providing a consistent view of the database in distributed systems.

Gifford [Gif 83] Qescribes synchronization for commit and abort
processing in decentralized systems using transaction coordinators. He
discusses 'the use of local shadow paging to save new, uncommitted
values for transacticns in progress until commit time. Recovery from
conflicts on commit takes place by discarding the new values in the

shadow pages, then restarting the transaction.

The Locus distributed file system [Wal B3] supports file replication
and nested distributed transactions {Mue 83] in a network of VAX
computers running homogeneous copies of an extended UNIX operating

system. Shadow paging is used for transaction recovery. At commit
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time the changes are first committed to one copy of the file then
replicated to other copies through a centralized synchronization
mechanism. They report that a substantial degree of “performance
transparency” is achieved in the Locus network. Their local
performance equals UNIX in the local case, and is "close enough" in the
non-local case in a 5 computer network with 30-40 users without file

replication or nested transactions.

Exploring alternatives to exploit the performance advantages of
extensive internal caching of secondary store while allowing concurrent
distributed execution of transactions presents a challenge that offers
significant potential. The distribution of functionality between
system components, and the structure and algorithms of subsystems and
applications to accommodate and efficiently exploit such environments,

can be expected to change from those of current systems.

Popek and Thiel [Pop 83] discuss distributed data management issues
in the UCLA Locus distributed system. Popek concludes:
Repeatedly it appears that one can profitably aveid solving the
same problem at multiple levels in computing systems. To do so
however requires understanding the tasks to be accomplished at
each 1level, so that commonality and restructuring can be
accomplished.
We are currently researching functional partitioning and algorithms
for integrated data management in decentralized transaction management

systems. We are bread-boarding and developing analytic and simulation

models to investigate these topics.
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The bread-board configuration is shown in Figure 60. It consists of
a set of shared discs accessible to a number of multiple hosts which
synchronize their access to shared storage structures through a global
shared memory (if available} or through explicit communications. This
configuration allows incremental growth with shared files through the
addition of homoéeneous computers. The goal of resource management in
this system is to provide near linear system performance increase with
respect to total processor capacity. The problem is analogous to

multiprocessors with a common shared main memory.
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Figure 60: Current Research Configuration

The software architecture is shown in Figure 61. Responsibility for
buffering and transaction consistency and recovery ma.ha.gement resgides
beneath the database system and is performed by a cooperative effort of
the file system, kernel, and processor traps. This architecture limits
the problems of data coherency and decentralized locking to the lowest
levels of the system where special components and algorithms can be

used to minimize the costs imposed by decentralization.
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Figure 61: Software Architectural Components

The processor architecture and the kernel provide access to shared
distributed data at processor speed through file mapping and remote
page faulting. Shared files are mapped into a common portion of the
virtual space, while local files and transient code and data objects
are mapped independently in the remainder of the virtual space. This is

depicted in Figure 62.
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Multiple copies of pages are cached for read access, but only one
copy exists when any computer has write access. This cache coherency
‘management is enforced by the use of the read protect bit. To prevent
writers from accessing a page when multiple copies are cached for read
access, the read only bit of each copy is set to fofce a trap to the
kernel on the first write access attempt. The kernel’s distributed
virtual storage manager then has the responsibility to decide when to
invalidate other copies and when to allow the page to float to other

computers.

On top of this cache coherency mechanism, the kernel provides
‘locking on a virtual range basis with distributed queueing and deadlock
detection and recovery. By decoupling locking from cache coherency in
a manner similar to the use of semaphores above basic cache coherency
in a multiprocessor system, cache coherency maintenance is invisible to
data management. Further, since locking is performed by the Kkernel,
decentralized queueing concerns are also transparent to data

management. The kernel can exploit the configuration to perform these

functions most efficiently.

The file system uses the kernel locking mechanisms 'to share lock
data read by tiransactions and to exclusive lock data written by
transactions. The locking is performed implicitly beneath the access
methods. This approach provides maximum concurrency since the binding
is late and the locking is granular. Before and after images of

modified data are logged to a local journal, with data modification
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proceeding without wait due to adherence to posting order constraints

between the log and database objects.

The resulting partition of functionality is showm in Figure 63.
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Figure 63: Bread-Board Partition of Functionality

With this partition of functionality and set of basic mechanisms,
the maintenance of decentralized data ccherency and consistency is
entirely +transparent to the file and database subsystems. The

algorithms for managing locking and inter—compu‘t;er secondary store

cache ccherency are encapsulated.
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Stonebraker [Sto 83] proposes a split in functionality for a
centralized system using file mapping which migrates locking and
logging responsibility to the very lowest levels of the system. In
Stonebraker’s proposal, locking and logging are performed implicitly as
a process invoived in a transaction loads and stores from its address
space. A process’ first read reference to a page since the last commit
increments a shared lock count, and its first write reference to a rage
forces a trap to log the current version of the page and obtain an
exclusive lock for it. Read references to exclusively locked pages and
write references to shared lock pages generate interrupts which perform
deadlock detection and queue the process for the page. A vector of
accessed and modified page bits is maintained for each process, and at
commit time all modifiea pages are forced to the disc and all accessed

and modified pages are unlocked for the process.

Requiring microcode or hardware assist for locking/logging
complicates the hardware, resulting in an inéreased basic cycle time.
The invocation of lock and logging services beneath the file access
methods ié low overhead, requires no additional hardware support, and
provides transparency of distributed locking and cached secondary store

coherency.

When examining alternative algorithms for cache coherency controcl in
decentralized configurations, we can leverage off of the work done for
multiprocessor systems with private caches, since this presents an
analogcous problem. However, the relatively long interconnection delays

in decentralized configurations employing secondary store caching can
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be expected to change the tradecffs between alternative cache
management algorithms from those found in multiprocessor systems. Such
differences were found in the last chapter when comparing processor

cache management with secondary store cache management.

Censier and Feautrier [Cen 78] discuss alternatives for maintaining
cache coherency in multié@che systems. One altermative is to have each
cache broadcast the identification of any cache block which is to be
modifiedJso that the other caches can invalidate local copies. This
approach generates intercache traffic even if only one copy of the data
exists. A second approach which eliminates this unnecessary traffic is
to maintain a private flag with each cache block so that intercache
traffic is only introduced when there is a genuine conflict. If a mask
of processors containing a data block is maintained either in the main
memory or redundantly in each cache containing the block, invalidation
requests and fielding of requests need only be sent and serviced by

caches directly involved in the conflict.

The ELXSI multiprocessor system [Sha 83] uses software convention to
maintain cache c¢cherency. All shared data is delivered through
messages, wWhile semaphores used to control message gqueueing are not

cached.

The Synapse multiprocessor system [Fra B84] uses a distributed

owmership protocol which allows data to shift between caches.

Variations on these apprcaches can apply in decentralized systems as
well. The impact of the interconnect delays and required traffic

patterns influence the algorithmic choices.
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Bitmasks indicating which computers currently have copies of pages
and locking structures can be stored in a shared global memory. Then
inter-computer cocoperation is required only on lock conflicts or when
writes conflict with other cached copies of a page. In the
non-conflicting cases, each computer achieves the performance of the
integrated data managem?nt system employing internal secondary store

caching through file mapping described in the last chapter.

Since the performance of such a system iz dependent on lock and
write conflict frequencies, we expect granular locking, unstructured
storage of permanent data as in relational systems, and dispersed
storage of shared management structures to contribute significantly

towards approaching the performance goal.

Without a shared global hemory, explicit communication between the
distributed virtual space and -lock managers 1is required to maintain

cache cocherency and enforce decentralized locking.

We can leverage the techniques used in analyzing multiprocessor

systems to analyze the alternatives to achieve decentralized caching of

seccndary store.

Sauer and Chandy model the impact of processor service distributions
and scheduling algorithms on multiple processor systems in [Sau 79].
They used a cyclic queue model with common I/0 queues and a central
server model with multiple I/0 queues in their analysis. They compute
the throughput ratics of single and multiple processor systems as a

function of degree of multiprogramming, interference 1level, and
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preemptive scheduling policies. They find that sophisticated processor
scheduling algorithms buy relatively 1little in multiple processor

configurations.

Patel [Pat 81,82] analyzes multiprocessors with private cache
memories usiné an approximate analytic model. His model computes
performance measures including proéessor utilization, average wait -
time, and memory traffic with and without store through and load
through policies. His model does not however capture the impact of

write conflicts between the caches.

Shedler and Slutz [She T6] discuss the use of merged access streams
of multiple programs to predict hit rates in multiple processor
systems. Logical reference streams from multiple computers could be
used to predict (and isolate) conflict frequencies, as well as to

predict hit rates.

Goldberg, Lavenberg, and Popek present a queueing model of a local
area distributed system in [Gol 82]. Terminals, processors, dises and
data network service centers are supported, with processor sharing
discipline for the processors, and first come, first served discipline
for the discs and the network. Background activity such as file
replication is approximated. A closed product form network solution is
employed. Their model was validated using Locus, with measurements

tracking predictions until non-local access exceeds 40%.

We are building trace driven simulation models te predict conflict

and hit rates for alternative data storage and cache cocherency
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approaches. We are building analytic models which capture the
significant configuration and workload characteristics, hit and
interference rates, and overhead of remote operations so that

alternatives can be compared with current and new technologies,

7.3 Conclusions

Several of the concepts and algorithms for integrating resource
management in centralized systems developed in this research appear to

apply well in decentralized system problems.

The use of our global priority assignment and adjustment algorithms
to reflect system urgency in local decisions can be used in a shared
disc server to schedule disc accesses and in a file server in lock,

processor, memory, and disc access scheduling.

" OQur current research is directed at determining architectures,
functional partitions, and integrated algorithms which allow the
benefits of integrated data management and intermal secondary store
caching to he realized in decentralized systems. Mapping shared files
into virtual space, providing multiple system cache coherency of cached
file nages through write protect traps, and providing logging and
locking implicitly through access method invocation of distributed
kernel services on a late binding, granular basis, appears +to offer
good potential of achieving this joal. We can levérage the algorithms

and analysis techniques used for multiple processor systems in

researching this problem.
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Chapter 8

Conclusions

Integrating resource management algorithms is a never-ending, always
expanding problem. It follows the evolution of system components as
technology improves, as new uses of computer systems come into
existence, and as innovative concepts for new ways to build computer

hardware and software architectures are introduced.

This research effort used a conventiona; computer system family in
order to perform a case study in integrated algorithms. The
bread-board constructed for this research effort was used to figure out
the main interactions between the algorithms and some unifying
principles for them. Interesting behavior of some known algorithms was
uncovered. Some new integrated algorithms were proposed, implemented
and analyzed which appear to have the potential of providing improved
performance in other centralized systems. Some of the principles and
algorithms appear to extend well to distributed systems as well. Our
folleow-on research is directed towards investigating architectures,

functional partitioning, and algorithms for realizing concomitant

benefits in decentralized systems.
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The research proceeded by building an operating system kermel and
performance tools that were designed for change. Algorithm
interactions were observed, and improved algorithms were developed to

optimize system performance objectives.

Resource managers were constructed independently of each other, and
internally structured from primitives which make minimal assumptions on
eventual service policies. The system was designed to be measurable
under change by keeping the algorithm implementations, the measurement
subsystem, and the display and analysis teools independent of each

another.

This method of constructing the operating system and performance
tools to accommodate changes in algorithms did prove useful in
examining alternative stratégies. Algorithms were easy to change and
evaluate. The performance and development cost impacts of designing

for change and measurability were minimal.

The major performance benefits came from getting the right split in
functionality, providing parallel service where there is contention,
and having the algorithms cooperate to optimize system, not local,
objectives, Substantial second order improvements were realized

through subsequent, appropriately selected local optimizations.

Designing for change, designing “or measurability, obtaining a
careful_functional split, providing parallel, cooperating algorithms,
and performing local optimizations only after global optimization has

been achieved are all principles which can be applied when building new
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systems so that they achieve their performance potential and evolve as

technology improves.

Workload characteristics change as processor and system
architectures <change and as the algorithms employed in the
applications, compilers, databases, file systems and kernels change.
Algorithms need to accommodate the worklcad characteristics. Further,
workload characteristics c¢an be exploited ¢to select and tune
algorithms, resulting in significant performance impact for a given

system and workload.

For algorithms to cooperate towards system objectives, they need
on-going hints on service priority, and they need to make local

decisions unselfishly.

The algorithms introduced here for expressing urgency and assigning,
adjusting, and communicating priorities in support of the global
objectives, provide a simple integrating factor for cooperative
resource management which appear to extend well to decentralized

resource management.

The need to strive for higher objectives impacts algorithm
structure. Being prepared to change internal service priorities in a
responsive manner, and to submit to global pricrities which limit what
is locally achieved, appear repeatedly. In the res?arch, this was seen
with disc access scheduling, main memory allocation, garbage collection

and replacement.
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Efficiently supporting broad ranges of workload demand and resource
capacity calls for hybrid algorithms which exploit resource
availability tradeoffs. Low cost algorithms win big when resources are
abundant, but more careful algorithms payoff when demand is heavy.
This was seen especially with main memory placement and replacement
algorithms where fast but sloppy or elegant, sophisticated algorithms

can cost considerably more than the benefit they bring.

In segmented systems, variants of the MULTICS clock algorithms have
distinct advantages over working set type replacement algorithms due to
their localized rather than scattered hole creation characteristics.
Local compaction during replacement compounds this effect. Background
garbage collection which operates globally to make large holes larger
by moving small adjacent assigned regions to small holes improves the
free space distribution during otherwise idle time. The algorithm
supplements well a good replacement algorithm, but degrades the
performance of ©poor replacement algorithms due to overlaying

replacement candidates which could be recovered.

A major limiting factor in many systems is the disc access speed,
and improvements in secondary store technoleogy are unlikely to even
keep up with processor speed advancements. Integrated algorithms for
extensive secondary store caching in “he primary memories provides the
best solution for balancing the memory hierarchy with the current

trends in processor, memory and disc technologies.
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Centralizing caching of discs in the primary store managed in an
integrated manner by the kermel, rather than distributing it between
subsystems or providing it in peripheral devices, provides the Dbest
memory utilization, fastest access to the data, and the best
performance for the posting requirements in +transactional database
systems. Such internal secondary store caching, when coupled withi
improved integrated methods of concurrency centrol, can allow us to

realize the advantages of processor and memory technologies to deliver

significant system level price/performance improvements.

The performance of systems employing extensive secondary store
caching can be further improved by having the access methods pass hints

on storage structure and reference patterns.

Exploiting the performance advantages of Vintegrated internal
secondary store caching is desirable in distributed systems as well.
Simulation and analytic modelling will help to determine hit and
interference rates for alternative multi-cache management algorithms
and to evaluate them against current and new technologies.
Bread-boarding will help to discover things our models and intuitions

miss.

Extensive secondary store caching supported through file mapping and
remote page faulting coupled with transaction consistency control on
dispersed data through late binding, granular locking could
significantly reduce communication traff{ic and delays required to
support efficient execution of concurrent transactions in homogeneous

decentralized systems. Our follow-on research is directed at
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investigating architectures, functional splits and integrated

algorithms for such systems.
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Appendix A

Measurement Subsystem Specification

The measurement subsystem consiét; of data structures, mechanism
control procedures, and data access procedures. Kernel code knows
about the current specification of the interface, and supports its
current definition by gathering and storing the supported information
into the appropriate buffers. The information is gathered as events

occur, or during sampling or trace interrupts.

Statistics Updating Procedure

Procedure UPDATESTATISTICS(Class,Subeclass,Subclassentry,Startingitem,
Newvalueflag,Valuechange ,Doubleitemflag);

Interface Control Procedures

Procedure STARTSTATISTICS(Classmask);

Procedure .STOPSTATISTICS(Clas smask);

Interface Access Procedures

Procedure GETSTATISTICS(Class,Subclass,Staringitem,Wordcount,Where));
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Information Structures For Measurement Storage
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Instrumentation Formatting

Appendix B

LOG FILE IDENTIFICATION: dag cache on

LOG FILE CREATION: -

THU, DEC 22, 1983,

1:45 PM

DATE OF DATA REDUCTION: WED, DEC 28, 1983, 10:1L4 PM

PROCESS LAUNCH AND STOP INFORMATION

EVENT IDENTIFICATION
PROCESS LAUNCH

PROCESS PREEMPTION

STOP: SL CODE SEG FAULT
STOP: PROG FILE SEG FAULT
STOP: DATA SEG FAULT
STOP: CACHE DOMAIN FAULT
STOP: BLOCKED DISC I/O
STOP: UNBLOCKED DISC I/0
STOP: TERMINAL READ I/0
STOP: TERM I/0 (NON-READ)
STOP: MISC BLOCKED I/O
STOP: BUSY SIR

STOP: IMPEDED

STOP: QUANTUM EXPIRATION
STOP: STACK OVERFLOW
STOP: PCBX EXPANSION
STOF: DL AREA EXPANSION
STOP: DB-Z EXPANSION
STOP: DATA SEG EXPANSION

280
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MEMORY MANAGEMENT RELATED INFORMATION

EVENT IDENTIFICATION
PROCESS SWAP-IN
MEMORY ALLOCATION

SL CODE SEG RECOVERY
PROG FILE SEG RECOVERY
DATA SEG RECOVERY
CACHE DOMAIN RECOVERY
SEG RECOVERY (SWAP-IN)
SEGMENT IN MOTION IN
FOUND FREE SPACE
MAKEROOM SUCCESSFUL
DEFERRAL: SWAP-IN FAILED
GIVE-UP: MORE URGENT ACT
HARD REQUEST SUCCEEDED
MEM MGMT CLOCK CYCLE
CODE SEGMENT RELEASED
DATA SEGMENT RELEASED
CACHE DOMAIN RELEASED
SEGMENT LOCK REQUEST
SEGMENT FREEZE REQUEST
PCBX AREA CONTRACTION
DL AREA CONTRACTION
DB-Z CONTRACTION

DATA SEG CONTRACTION
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TIME IN CPU STATE INFORMATION

CPU STATE DESCRIPTION
BUSY: PROCESSES

BUSY: SEGMENT MEM ALLOC
BUSY: BKGRND GARBAGE COLL
BUSY: CACHE MGT-PRCS STK
BUSY: CACHE MGT-ICS
PAUSED: USER/CACHE I/O
PAUSED: SEG SWAP I/0 ONLY
PAUSED: USER/CACHE * SWAP
PAUSED: CACHE DOMAIN SWAP
PAUSED: IDLE

GARB COLL AND MEM ALLOC

TIME (SEC)

7.407
0.325
4.405
0.3L5
0.000
0.000
256.01k4
0.338

CPU/DISPATCHER ACTIVITY INFORMATION

EVENT IDENTIFICATION
PAUSE: USER/CACHE I/0
FAUSE: SEG SWAP I/O ONLY
PAUSE: USER/CACHE * SWAP
PAUSE: IDLE

BKGRND GARB COLL ATTEMPT
GARB COLL GIVE-UP

BKGRND GARB COLL MOVE
MEM ALLOC GARE COLL MOVE
CACHE DATA MOVE

% OF INTERVAL

COUNT RATE/SEC

- - - e -

17
1175

CACHE HIT / 10 ACCESS ACTIVITY

EVENT IDENTIFICATION

1/9 READ ATTEMPTS

CACHE READ HITS

I1/C WRITE ATTEMPTS

CACHE WRITE HITS

READ HITS / READ ATTEMPTS
WRITE HITS/WRITE ATTEMPTS
CACHE HITS / 10 ATTEMPTS

- - ————
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DISC ACTIVITY INFORMATION

DISC ACTIVITY DESCRIPTION
CODE SEGMENT READ

DATA SEGMENT READ

CACHE DOMAIN READ
SEGMENT WRITE: BACKGROUND
SEGMENT WRITE: FORCED
DOMAIN WRITE: BACKGROUND
DOMAIN WRITE: FORCED
BLOCKED READ

UNBLOCKED READ: NO AWAKE
UNBLOCKED READ: AWAKE
BLOCKED WRITE

UNBLOCKED WRITE: NO AWAKE
UNBLOCKED WRITE: AWAKE
CONTROL OPERATION I/0
ABSENT BUFFER TRAP

QUEUE ON BUSY CONTROLLER

ALL USER I/0 READS
ALL USER I/0 WRITES
ALL USER I/0

ALL TRANSIENT OBJECT READS
ALL TRANSIENT OBJECT WRITES
ALL MEM MGMT I/0

ALL CACHE I/0 READS
ALL CACHE I/0 WRITES
ALL CACHE I/0

ALL I/0 READS

ALL I/0 WRITES
ALL I/0

QUEUE LENGTH DESCRIPTION

e e S ER A A= — o
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DISC 1
CUMULATIVE
COUNT RATE
6 0.0
15 0.1
ko 0.1
0 0.0
1 0.0
9 0.0
1 0.0
0 0.0
0 0.0
0 0.0
23 0.1
0 0.0
0 0.0
3 0.0
0 0.0
10 0.0
0 0.0
23 0.1
23 0.1
21 0.1
1 0.0
22 0.1
ko 0.1
10 0.0
50 0.2
61 0.2
3L 0.1
95 0.3
CUMULATIVE
COUNT %
94 95.9%
4  4.1%
0 0.0%
0 0.0%
0 0.0%
0 0.0%
0 0.0%



Appendix C
Disc Workioad Characterizer

The disc workload analyzer program gqueries for a string to identify
the run, the name of the disc access trace file, and name of the file
to which the statistical report should be outputted. A description of

‘the output and a sample output follows.
Reference Breakdown

Breaks down the disc access trace into access class and function. The
reference type column breaks the access trace first into overall, read
and write, then into image, ksam, directory, message, other,
sequential, or direct, then into each of these access modes A
independently for read and write. The # Occurrences column gives the
number of trace records found corresponding to the reference type, and

the Prob column gives the fraction of total disc reference in the trace

which the reference type represents.
Transfer Size Distribution

Histogram and moments of the transfer sizes of all non memory mgt dise

accesses in the trace file,

Inter Disc Reference Interval Distribution
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Histogram and moments of the time between disc accesses experienced in
the trace. This indicates how busy and how bursty the disc usage for

file accesses was during the period of tracing.
Extent Size Distribution

Histogram and moments of the size of the extents that were active

during the trace period.
Inter Extent Reference Interval Distribution

Histogram and moments of the time between reference to the same extent.
This measures temporal and spatial locality of reference to the disec.

A mean comparable to the mean inter disc reference interval indicates
that the same extent is refgrenced closely in time so that by caching a
large part of the extent in memory and keeping it there for a while

would result in read hits and thereby avoid disc accesses.
Stack Depth Distribution of Inter Extent References

Histogram and moments of the lru stack depth of interextent references.
The extenfs are kept in an lru stack, and at each reference, the
referenced extent is moved to the head of the stack and the histogram
of its old location is bumped. The mean lru stack depth gives a
measure of the locality of references to extents, with a small mean lru
stack depth (<10) indicating that extents are typically repeatedly
referenced in close time proximity, and that cachiﬁg extents on an lru

basis will be effective in catching most of the references.
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Sample Output
##% njgec Workload Characteristics ***

Reference Breakdown :

Reference Type # Occurrences Prob

any ref ¢ 53000 1.00
read ref : 36773 .69
write ref : 16227 .31
image ref : 0 .00
ksam ref : 0 .00
dirc ref : 0886 .19
msg ref : 3617 .07
other ref : 11341 .21
seq ref : 12646 .24
direct ref : 15510 .29
image read : 0 .00
ksam read s 0 .00
dirc read : 8535 .16
msg read : 3617 .07
other read : 5333 .10
seq read : 6677 .13
direct read : 12611 .24
image write : 0 .00
ksam write : 0 .00
dirc write : 1351 .03
msg write : 0 .00
other write : 6008 W11
seq write : 5969 .11
direct write : 2899 .05
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##% Disc Workload Characteristics (ctnd) ***
Transfer Size Distribution :

Transfer Size # Occurrences Prob
(bytes)

0 813 .02

128 5258 .10

2586 1L492L .28

384 1623 .03

512 . 1333 .03

640 20 .00

768 11086 .21

896 1382 .03
1024 6147 .12
1152 685 .01
1280 6643 .13
1408 3 .00
1536 71 Q0
1664 2 .00
1792 37T .01

>= 1920 2633 .0%

# Samples 53000

784.51 (vytes)
1110.66 {bytes)
T68 {bytes)

Distribution Mean
Distribution Std Dev
Histogram Median

Inter Disc Reference Interval Distribution :

Inter Ref Time # Occurrences Prob
(ms)
0 5394 .10
10 18438 .35
20 7521 .14
30 4119 .08
4o 3285 .06
50 2282 .0k
60 1674 .03
70 1519 .03
80 1084 .02
90 884 .02
100 665 .01
110 543 .01
120 L84y .01
i30 377 .01
140 376 .01
>= 150 4355 .08
# Samples = 53000
Distribution Mean = £f4.31 {ms)
Distribution Std Dev = 279.42 (ms)
Histogram Median = 20 (ms)

224



*#%##% Disc Workload Characteristics (ctnd) **+
Extent Size Distribution :

Extent Size # Occurrences Prob
(sectors)
0 1267 .75
16 , 149 .09
32 61 .04
48 60 .04
64 31 .02
80 : 2 .00
96 ' 7 .00
112 13 .01
128 15 .01
14y ' 10 .01
160 9 .01
176 1 .00
192 0 .00
208 5 .00
224 0 .Q0
>= 240 70 .0b
# Samples 1700

44,72 (sectors)
169.78 (sectors)

0 (sectors)

Distribution Mean
Distribution Std Dev
Histogram Median

HH N

Inter Extent Reference Interwval Distribution :

Inter Ref Time # Occurrences Prob
(ms) '

0 19781 .39

50 6013 .12

100 2652 .05

150 1680 .03

200 1081 .02

250 1100 .02

300 1129 .02

350 841 .02

Loo 662 .01

450 551 .01

500 L8T .01

550 L84 .01

600 455 .01

650 431 .01

700 326 H

>= 750 12821 .25

# Samples 5049k

26318.89 (ms)
158527.06 (ms)
50 (ms)

Distribution Mean
Distribution Std Dev
Histogram Median
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##% Disc Workload Characteristics (ctnd) ***

Stack Depth Distribution of Inter Extent References :

LRU Stack Depth # Occurrences Prob

0 34025 .67

5 L815 .10

10 2434 .05

15 1319 .03

20 987 .02

25 675 .01

30 511 .01

35 413 .01

Lo 359 .01

45 240 .00

50 270 .01

55 2ko .00

60 225 .00

65 23h .00

70 196 .00

= T5 3551 .07
# Samples = 50Loh
Distribution Mean = 28.82
Distribution Std Dev = 112.17
Histogram Median = 0
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Appendix D
Disc Cache Simulator

The disc cachg1simulator simulates various strategies for caching
Pieces of the disc referenced by:the access metheds in excess main
memory. The simulation is instrumented and analysis is performed to
determine the behavior and performance of the specified caching

strategy.
Input

Inputs to the program are disc reference trace files obtained from
trace calls placed in the operating system and run on representative

workloads.

The user selects cache sizes and strategies. Under user control are
: the subset of access modes to be cached, the cache size range, the
fetch size round off policy, the flush policy, and wait for post

control.
The default fetch policies are :

Round Off Above Request (on a disc¢ cache miss, we fetch from the disc
the larger of the requested size or the size specified in fetch
size for sequential or random. We fetch it starting at the

requested location as opposed to rounding around the requested
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location or rounding down to end at the end of the requested

block).

Stop At Extent Boundary in Round (When we fetch on a cache miss, we
normally fetch more than requested. We stop however at the extent

boundary of the related request.)

No Fetch on Write Miss (On a write attempt to a disc domain which is
not currently cached, we just grab a hole in memory, write into it,
and fire off a disc write. There is no need to fetch the domain

before we write).
The default replacement policies are as follows :

Flush After Seq Ref (On sequential access, after the cached portion of
the effected extent has been completely used (ie last block
referenced), we make the cached block available to the replacement
algorithm since the likelihood of the domain being needed ag;}n
soon is low since it is being sequentially referenced. If

referenced again scon, it still has a chance of being recovered.
Output

The characteristics of the reference trace and the werformance and

behavior of the cache under the specified policies are computed.

For each main memory cache size requested, the program cutputs
histograms and moments of the distributions of the number of elements
in the cache, the cache residency time, and the cache lru stack depth.
The hit ratios overall and for each access method and function are also

provided.

228



The cache performance statistics report breaks down the references
into read or write and separately into image, ksam, directory, message,
sequental, direct, and other. The number of each access is given in
the count column, and the portion of the total that the access type
represents is given in the probability column. The number of partial
hits refers to a reference to a disc domain which is only partially
cached. When thesg occur, we flush the cached region and treat it as a
miss. The number of hits and the hit ratio for each access type are

given in the last two columns.

The percent of disc accesses eliminated by caching in the specified
memory size is listed, along with the number of cache replacements
required to perform the simulation. All read hits eliminate disc
accesses altogether. All write ﬁisses eliminate the need to wait for
the disc access from thefiséuing process’ point of view, but the dise
access is still performed in background mode. Most of the write hits
alsc eliminate a wait, unless a write is already active against the
cached disc domain, in which case the write request gets its priority

bumped and the process must wait until the prior write completes,

The cache entry count distribution shows a histogram of the number

of disc domains cached in memory during the simulation.

The cache 1lru stack depth distribution gives a histogram of the
depth of reference into an lru stack of the cached disc domains. When
a disc cached disc domain is referenced, it is pulled from its lru
stack location and put at the head of the stack. The histogram slot

corresponding to its old stack depth is bumped. The simulation also
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gives timing information such as residency times of cached domains and

inter-reference times.
Implementation

The cache is simulated as an lru stack. The real replacement
algorithm (mo@ified clock) is a very close approximation to lru, so the
use of an lru?gtack as the model should be accurate. Although the real
implementation uses a floating virtual boundary between cache and
segment real memory, the approximation of a fixed cache size used in
this simulation is a good first order estimate of the behavior and
performance to be realized by adding incremental memory of the given

cache sizes.

The lru stack simulating the cache is implemented as a doubly linked
list, and a set of general list maintenance manipulation primitive
procedures and functions are provided to test list status, add or
delete entries to lists & to manipulate an auxiliary pointer

associative the list.

The cache contreol block contains pointers to the head and tail of
the 1lru stack, a count of the number of elements in the cache, the
cache size, the amount of valid data in the cache, and an auxiliary

pointer used by the list manipulation primitives.

A cache element contains ficlds identifying the access type, access
function (R/W), device number, base disc address of a cache block, size
of cache block, time of insertion into cache, time of last reference,

and previous and next in lru list cache block pointers.
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The cache is maintained as follows : when a disc block is
referenced, the lru stack is searched to see if the disc domain is
already present. If so, the associated lru stack list element is moved
to the front of the lru stack, and the appropriate distributions and
instrumentation are updated. If the disc domain is partially present,
any list elements partially overl;pping the desired domain are deleted.

The reference is then serviced as .a cache miss.

In the case of a cache miss, the specified fetch policy determines
the fetch size round off policy, and sufficient bhottom of stack
elements are deleted until enough space is made available for the
referenced bleock and its round-off to be placed in the cache. The list
element related to the new disc domain is inserted at the head of the

1lru list,

In the case of sequential access, once a boundary is reached, the
element is deleted from the stack. This flushing is performed to take
advantage of the knowledge that sequentially accessed domains are not

needed after their last block is referenced.

Throughout, effected distributions and instrumentation are updated.
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Sample Output

Simulation ID : lab timeshare machine trace

Trace File Name : smurftr (disc trace file name)

Output File Name : simout (ascii disc file)

Simulation Initialization Values

Specified Digc¢ Cache Size Range :

Initial Cache Size (kbytes) : 1000
Final Cache Size (kbytes) ¢ 2000
Cache Size Increment (kbytes) : 1000

Subset of Access Modes To Be Cached : All

Specified Fetch Policy :

Min Random Fetch Size (sectors) = 32
Min Seq Fetch (sectors) = 96

System Default Fetch Policies
Round-0Off Above Extent
Stop At Extent Boundaries In Round
No Fetch On Write Miss

System Default Replacement Policies :

Flush After Seqg Ref
No Flush On Write Hit
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#4% (ache Performance Statistics

Size of File Cache (bytes) :

Ref Type

any
read
write

image read
image write
ksam read
ksam write
dirc read
dirc write
msg read
msg write
seq read
seq write

direct read
direct write

other read
other write

Count

53000

36773
16227

0
0

0

0
8535
1351
3617
0
6677
5969
12611

2899

5333
. 6008

Prob

1.00
.69
.31

.00
.00
.00
.00
.16
.03
.07
.00
.13
.11
.2h
.0%
.10
.11

1024000

# Part Hits

827
780

Percent of Disc Accesses Eliminated :

Number of Cache Replacements :
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5010

L2 1)

# Hits

LoT1k

Hit Ratio

77
.85
.59

.00
.00
.00
.00
.96
.99
.88
.00
.81
.10
.81
6T
.78
.94



### Ccache Behavior Statistics

LD 2 ]

Cache Entry Count Distribution :

Cache Entry Cnt

0
100 7
200 39
300 6
4o0
500
600
700
800
900

1000

1100

1200

1300

1400

>= 1500

# Samples
Distribution Mean
Distribution Std Dev
Histogram Median _

363
112
179
346

OO0 Q0000000000

# Occurrences

53000
2Lk. 38
L6.31
200

Cache LRU Stack Depth Distribution :

LRU Stack Depth

0 26
5 3
10 2
15 1

75 2

# Samples
Distribution Mean
Distribution Std Dev
Histogram Median

081
gé1
066
305
8L8
635
510
476
366
302
243
236
237
253
204
991

# Occurrences

40714
17.28
39.58
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Prob

.01
.13
.Th
.12
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

Prob

.64
.10
.05
.03
.02
.g2
.01
.01
.01
.01
.01
.0
.01
.01
.01
.07



Appendix E
Analytic System Model

This model calculates performance and behavior statistics for a
computer system with a processor, optionally a disc cache, and a
specified number of parallel disc servers. This model is useful for
examining disc and processor contention and utilization under various

system configurations and workload characteristiecs.

The model calculates performance and behavior statistics for a
computer system with one service class, a processor, a disc cache, and
a specifiable number of parallel disc servers. The workload demands
and system component service rates are specified through the input
parameters. From these, a closed queueing network is constructed
consisting of J service centers and N identical customers. Each

service center has a single server.

Input

Inputs are solicited by the program for the following worklead and

system parameters

Processor Subsystem Parameters
Eff Processor Speed (MIPS)

Mem to Mem Move Rate (Mbytes/sec)
Instructions / Transaction{ x 1 Million)
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cpu<->disc subsystem circulations per transaction
Disc Subsystem Parameters :

disc subsystem visits per transaction

Mean Req Xfer Size

Prob of Disc Read vs Disc Write

I/0 Program Overhead

Number Of Parallel Discs Selectd

Mean Disc Access Times

Channel XferRate

Disc Cache Overhead

Disc Cache Read Hit Ratio

Disc Cache Write Wait Prob

Prob of Wait For Post on Write

Mean Disc Cache Fetch

multiprogramming level

These inputs are obtained as follows :
Effective Processor Speed

This parameter includes typical instructions seen by the cpu and
processor cache and pipeline effects. The processor speeds are stated

relative to IBM MIFPS,
Memory to Memory Move Rate

This parameter is needed since some machines can move blocks around in
memory much faster than by successive load and store instructions and

disc caching uses memory to memory moves extensively.
Instructions per Transaction

This value is obtained from the formatted instrumentation report by
taking the cumualtive cpu time spent on processes and dividing it by
the cumulative number of terminal reads to obtain cpu time per

transaction, then multiply this value by the effective number of
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instructions per second that the processor on which the measurement was
made can sustain (effective processor speed x 1 million). If only one
customer class rather than the aggregate mean for the entire workload,
obtain this value by a similar calculation on the process cpu time
report for a process’he transaction class.

CPU <-> Disc Circulations Per Transaction

This is the number of visits to the disc that would be generated for a

typical transaction without disc caching.

Number of Parallel Discs

The number of master disc volumes on the system. It is assumed that
the disc accesses generated are spread evenly across the volumes. This
tends to favor uncached system performance since it uses the disc
subsystem far more. If the requests are skewed, lower the number of

parallel discs inputted here to compensate.

Mean Disc Access Time

Seek + Rotational latency. Depends on disc type.

Channel Transfer Rata

Mbytes per Second. Depends on channel type.

Mean Transfer Size Without Disc Caching

Obtained from Disc Workload Characterizer.
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Dise Cache Overhead

In kiloinstructions for internal cache (not including the data move) In

milleseconds for external cache

Channel Prggram Overhead

In kiloinstructions. Includes setup and interrupt service time.
Percent of Disc Accesses Which Are Reads

Obtained from disc workload characterizer.

Disc Cache Read Hit Percentage

Obtained from the disc cache simulation performance report.
Write Wait Probability

Determined By Write Ahead Lﬁg Management Policy

Mean Disc Cache Fetch

Minimum amount fetched on a read miss (in kbytes).
Effective Mean Multiprogramming Level

# of processes which can execute in parallel assuming loaded system.
If a serial database, only 1 process can be circulating between the
disc and cpu at a time {the one with the database ;pck). If mere than
one process is mapped to a single effective multigramming level,
response times must be multiplied by number of processes mapped to
obtain correct response times. This approximation is valid only for a

fully loaded system.
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These configuration and workload parameters afe used to construct
the central server model consisting of a processor station, optionally
a disc cache, and the number of specified parallel disc servers. The
service times and transition probabilities for the queueing model are
computed to obtain the central server model parameters., If internal
caching is modelled, the model is reduced to an equivalent model
without an explicit cache. When.a disclcache igs present in the
configuration, it is assumed that all file accesses go through cache,
so the cache service time is added to the disc service time to obtain

the effective miss read time.

Output

The output parameters describe the system performance and behavioral
characteristics. These include the utilization, throughput, steady
state response time, and steady state number of customers at each

-

gervice center.

Uj(i) = utilization of service center j with MPL i
Tj(i) = throughput of service center j with MPL i
E[rj(i)] = response time of service center j with MPL i
E[nj(i)] = mean steady state queue length of service

center with MPL i.
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Algorithm

The input parameters describing the workload and configuration are used

to build a central server model. The setup of this model is now

described.

Calculation of transition probabilities :

[}

pl1] = prob of transaction completion =1 / (cpu_visits_per_trans)

prob of visting disc cache = prob of visiting dise subsystem

It

pf2]
and not generating a read miss

or not generating a write wait

(1-p[1]) * ((read_prob*read_hit_prob)+(l-read_prob)*(1-

writq_wait_prob))

FOR j := 3 TO service_center_ count

plj] = prob of visiting disc j= (1-p{1]-pl[2])/par_disc_count

(Note that these transition probabilities model cached writes
that AOn’t require waits as not causing a physical disc transfer.
This approximation is justified when physical disc posts are not
jssued due to write caching with repeated references fielded

in cache, and when they are performed as background traffic

utilizing otherwise idle disc capacity.)

Calculation of Service Times

[

s[1] epu service time / visit

1]

secs_per_trans / cpu visits_per_trans
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service time of disc cache

s[2]
= IF internal_cache
THEN dc_instr_overhead / cpu_speed
+ disc_req_size / mem_move_rate
ELSE (extermal cache) = dc_ms_overhead
+io_progfam_instr’pverhead/cpu_gpeed

+disc_req_size/eff chan _xfer_rate

FOR j := 3 TO service_center_count DO

s{j] = service time of disc
= IF NOT disc_cache
THEN disc_req_size/eff chan_xfer_rate
+ disc_access_time
+ io_program_instr_overhead/ nm_cpu_speed
ELSE (disc caclie) = dc_fetch_size/eff chan xfer_rate

+io_program_instr overhead/ nm_cpu_speed

+disc_access_time

Construction Of Equivalent Model

IF internal cache THEN Absorb Disc Cache Into Processor Station
BEGIN
{adjust transition probabilities)

disc_visits_per_trans = disc_visits_per trans
-disc_visits_per_trans

*{ (read_prob*read_hit_prob)
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cpu_visits per trans = disc_visits _per trans + 1
pl1] = 1/cpu_visits_per trans (completion prob)

FOR i := 3 TO service_center count

DO p[i] = (1-p[1))/par_disc_count (disc visit prob)

+(1-read_prob)*(l-write_wait_prob})

(adjust cpu service time to include cache overhead for each
disc visit since everything thru the cache, and for the

fewef.# of circulations)
s[1]=(cpu_per trans+s[2]*clddiscvisits)/cpu visits_per trans

END

IF external cache THEN Adjust Disc Service Time For Cache Misses
FOR j:=3 to servicé_center_count

DO s[j] = s[j] + s{2] (suffer cache overhead on misses)

Model Computation

Once the input has been interpreted and reduced to a standard
central server model, an iterative technique presented in [Lav 83] is

used to solve the queueing network.

The queueing discipline at service center 1 (cpu) is processor
sharing. The queueing discipline at server j <> 1 .is FCFS and the

gervice demands are assumed to have an exponential distribution.
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A customer completing service at service center 1 immediately enters
service center j with probability Pj where P1+ ... + PJ = 1. Service
center 1 is the central server. A customer that completes gervice at

service center j for j <> 1 immediately enters service center 1.

The procedure is recursive with respect to the number of customers in

the network. The algorithm is presented below.

1..N

For j=1...Jand i

"
H
ey

E[nj(0)] = 0 for

For i=1 ... N

Rj{i) = E[S§] * (1 + E[nj(i-1)] )
T1(i) = i / (R1(i) + p2R2(i) + + pjRj(d))
Tj(i) = piTi(i)

Elnj(i)] = Ti(1)E[rj(i}]

Uj(i) = Tj(i) E[8]]
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Sample Output

Digsc Cache System Model (V 3.%4)

Model ID 1 ms ext cache, 4 10 ms discs, rh=85, ww=0
Output File Name : *"modelout

Xact Graph File Name : tlellOn

Util Graph File Name : ulellOn

Processor Subsystem Parameters :

Processor Speeds Selected :

0.25 0.50 1.00 2.00 4,00 8.00 16.00 32.00
CPU Speed This Run : 0.25
Instructions / Transaction( x 1 Million) : 0.192000

CPU usage / Transaction (Secs) : 0.T768000
Disc Subsystem Parameters

disc subsystem visits per transaction 24.00
Mean Req Xfer Size (kbytes) : 0.25

Prob of Disc Read vs Disc Write : 0.7000
I/0 Program Overhead (kinstr) :  2.000000
Number Of Parallel Discs Selected : Y
Mean Disc Access Time (ms) : 10.000000
Channel Xfer Rate (Mbytes/sec) : 2.00
Disc Cache Overhead (ms) : 1.00

Disc Cache Read Hit Ratio : 0.85

Disc Cache Write Wait Prob : 0.00

Prob of Wait For Post on Write : 0.0000
Mean Disc Cache Fetch (kbytes): 2.00

Calculated Service Times (sec):
cpu service time per circulation : 0.030720
disc cache service time : 0.009122

disc service time : 0.019C00

Calculated Transition Prob :

prob of transaction comp after cpu : 0.04

prob of disc cache visit after cpu : 0.86

prob of visiting a disc after epu : 0.025
multiprogramming level = 3

2Ly

64.00



###% Output Statistics ***

mpl = 1

CPU Statistics

¢pu response time = 0.031
cpu utilization = 0.742
cpu throughput = 2h4.159
cpu queue length = 0.7k2
Dise Cache Statistics
dc response time = 0.009
dc utilization = 0.189
de throughput = 20.757
dc queue length = 0.189
Per Disc Statistics
disc response time = 0.028
disc utilization = 0.017
dise throughput = 0.609
disc queue length = 0.017

Overall Transaction Response Time : 1.035
Overall Transaction Throughput : 1.0
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1. TUNE

Appendix F

Kernel Tuning Commands

Changes the filter and/or priority limits of the circular subgqueues.

Syntax

cQ
:TUNE [minclockeycle][;{DQ} = [base] [,[1imit] [, [min][, [max]1]]]

Parameters

minclockcycle

base
limit

min

max

Operation

EQ

Minimum value (in milliseconds) for replacement
algorithm cycle through memory. If algorithm
cycles through memory in less time than this value,
memory allocation is delayed. (thrash prevention
mechanism. )

Priority at which C, D, or E processes will begin
in queue.

Worst (highest number) priority C, D, or E
processes can attain.

The minimum value indicating the length of time
(filter value) in milliseconds which a process can
have the CPU before its priority is reduced.

The maximum value indicating the length of time
{(filter value) in milliseconds which a process can
have the CPU before its priority is reduced.

This command changes the filter or priority limits of a ¢ircular
subqueue, and is used primarily in on-line tuning of the system to best
accommodate the current load.

A CS process is given a priority of CBASE when it begins. When a
process stops (for disc 1/0, terminal 1/0, preemption, etc.), a new
priority is determined so that it may be re-queued for the cpu. If the
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process has completed a transaction { a transaction is defined as the
time between terminal reads), the priority become CBASE. The value of
an "average short transaction” is then recalculated. If the CS process
has not completed a transaction, and if the process has exceeded the
average short transaction filter value since its priority was last
reduced, the priority is increased (made worse) by 1.

DS and ES processes begin at DBASE and EBASE respectively, and are re-
scheduled according to the same criteria as used for CS processes, with
the exception that a fixed value (the value of max which has been
specified for the subqueue) is used in place of the average short
transaction value, which is used for CS processes only. :

If the values specified for max in the CS, DS, and ES queues are too
large, system response may become erratic. If they are too small,
excessive swapping may result. Recommended settings for min and max
for the CS subqueue are O and 300, as it is desirable to favor short
transactions in most cases. A value for min and max of 10,000 usually
produces efficient system operation for the DS and ES subqueues.

The minclockeycle parameter is used by the memory manager to determine
when thrashing (excessive memory management activity) is occurring.
Making this value smaller increases the possibility of thrasing.
Recommended value for this parameter is 1000.
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2. STARTCACHE
Enables disc file caching for a logical device.
Syntax
: STARTCACHE ldn
Parameters

ldn The logical device number of a particular disc to have
disc caching enabled.

This command allows a previously uncached disc to be cached in memory
by the kernel.

Example

To enable caching of logical device number 10 to function enter:

: STARTCACHE 10
3. STOPCACHE

Syntax

:STOPCACHE 1ldn

Parameters

ldn The logical device number of a particular disc to have
dis¢ caching enabled.

Operation

If the device is being cached, the :STOPCACHE request will be satisfied
when the last access is complete.

Example
To remove logical device number 20 from the cached disc set enter:

:STOPCACHE 20
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4, SHOWCACHE
Reports on disc caching status.
Syntax

: SHOWCACHE
Parameters
None
Operation
The :SHOWCACHE command reports the following information pertaining to
the state of disc caching in the system: (a) a list of the cached
ldevs, (b) total cache requests, (c) percent of cache hits and reads
(d) thousands of bytes of memory used as cache domains, (e) percent of
memory being used, {f) the total number of cache domains, and (g) the
amount of memory used as overhead to support caching.
Example

DISC  CACHE READ WRITE PROCESS % OF CACHE
LDEV REQUESTS KIT% HIT% READ% STOPS K-BYTES MEMORY DOMAINS

e N - s e A W R W T M R R e A R A R ey T M e MM W MR S e SR SR OB SR Mn AU AR M M M R AR M R Y SR L e

5 56356 82 22 66 7281 0 0 0
1 88328 87 62 84 11195 690 11 154
2 150363 82 LYy 60 22699 1931 32 171
3 21609 78 1L Ly 2068 696 11 41
4 25514 85 9 50 1901 879 1L 48
Total 342170 84 36 66  L51uh L4196 69 Lik

5% of user I/0s eliminated.

Data overhead is 113K bytes.
Sequential fetch quantum is 96 sectors.
Random fetch guantum is 16 sectors.
Block on Write = RO.
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5. CACHECONTROL

Modifies the global caching parameters for the system.

Syntax
{RANDOM = n Y [s--.[3...1]
: CACHECONTROL {BLOCKONWRITE = YES/NO} [;...[5...]]
{SEQUENTIAL = n yols.. 50011
Parameters
RANDOM Assigns the number of sectors read from disc on a cache

read miss of a random access file. The disc read will
stop at extent boundaries and will fetch at least the
amount required. The number sectors must be between 1 to
96. The system default is 16,

BLOCKONWRITE Specifies whether or not to "block” the process until
the posting of cache buffers to disc completes. The NO
option is the default and allows the posting to complete
in the background. This only applies to writes gince
reads do not alter the contents of the cache buffers.

SEQUENTIAL Assigns the number of sectors read from disc on a cache
read miss of a sequential file. The disc read will stop
at extent boundaries and will fetch at least the amount
requested. The number of sectors must be between 1 to
96. The system default is 96.

Operation

This command is used to tune the performance of caching on a running
system.

Example

To alter the number of sectors read on a sequential fetch to be 90, and
the number of sectors on a randem fetch to be 10,the command would be:

: CACHECONTROL SEQUENTIAL=90;RANDOM=10
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