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A new, design-oriented, approach to stress analysis is presented.
This approach is based on the Finite Element Method combined with
self-adaptive mesh techniques. it allows the designer to perform
stress analysis without outside heip and/or any previous knowledge of
numerical methods. A 2-D software system has been developed based
on this approach. Some examples are given to demonstrate the
capabilities of the system. The extension of the system, to perform

static analysis of shells in 3-D, is discussed in some detail.
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Chapter |

INTRODUCTION

The Finite Element Method is not widely used in the design of
structural elements, even though the new interactive systems
(CAEDS, PATRAN-G) developed recently, have greatly simplified the
use of FEM.

The major reason is that FEM, as used today, requires a
specialist, called analyst. The analyst is required to work side by
side with the designer who is normally not trained in numerical
methods. This situation is expensive and time consuming. Whenever
the designer and the analyst try to communicate there is a high
probality of misunderstanding, sometimes with tragic results. In fact
because of their different training, designers and analysts have a
different view of the same world, and sometimes they use a somewhat
different terminology to desc:;'ibe the same problem.

The analyst himself is required to have a significant amount of
experience. However regardless of his experience, the analyst is not
abie to guarantee the reliability and precision of the results he
obtains. There is always a possibility that stresses are grossly
underestimated. This fact strongly diminishes the reliability of FEM,
and is the major reason for structural elements to be double checked

with experimental techniques This is particularly true in cases like



aircraft structures, where safety is a major objective. However
experimentai stress determination is very expensive and time

consuming.



Chapter ||

THE BLACK BOX APPROACH

The objective of this research is to create a soft‘ware system which
will allow the designer to use FEM without any understanding of FEM
or any help from analysts. It should be underlined that such a new
system is not intended to require any change in today's FEM theory
or technology. What is sought is a way of implementing FEM which
makes it easy to be used.

Since this new sytem is going to ?enefit the user it is advisable to
define it first, strictly from the user interface viewpoint. The new
system proposed (black box  approach} should have these
characteristics:

i. The geometry of the structure to be analyzed should be
described with a CAD type of language. I;or example, if
patches are used, the user should use a minimum number of
them to properly describe the structure.

2. The user should be able to specify the precision with which

stresses owe to be computed all over the domain.!' By precision

ail over the domzin we mean that stresses should be

! Precision of displacements might be desirable. However their
numerical values are normally of little interest to the designer. In
any case with the Finite Element Method displacements are aiways
much more precise than stresses.



approximated within a certain error of the exact solution not
only at the best sampling points, but everywhere, without the
use of stress smoothing techniques.

3. The output should be a coior picture showing the stress
intensity using one of the many criteria available (Tresca, Von
Mises) [ 1 ], as specified by the user. The displacement field
should aiso be shown.

4, The user should not need to be aware of what an element or a
node is. The mesh description should not be required of the
user since ail the information that he needs are stresses and
displacements. This means that when displacements or
stresses are shown graphically, the user should not see the
mesh but only those lines that define the structure
geometricaily, such as sharp edges or patch boundaries.

Requirements (1) and {(2) above, imply that there has to be an

algorithm which will automatically discretize the structure (automatic
mesh generation) and will automatically refine the mesh, so that the
specified precision will be reached. While automatic mesh generation
has been successfuily demonstrated, the manner of determining mesh
refinement for a given precision requirement is still the object of
intense research.

In the next chapter (chapter 3) a brief review of these research

efforts is given. In chapters 4 and 5 a 2-D experimental software
system developed during the course of this research and based on the

black box approach, is described. The mathematical theory on which



the sytem is based is presented in chapter 6, while some examples to
demonstrate the system capabilities are given in chapter 7. in
chapter 8 the extension of this system for the static analysis of sheil

is discussed briefly, conciusions follow in chapter 9.



Chapter [II
SELF-ADAPTIVE ANALYSIS PACKAGES

In the fast few years several researchers [ 8-19 ] have studied ways
to create software packages that will automatically increase the
number of degrees of freedom of a mesh in regions where the
precision of the solution is poor. These system are called self-
adaptive analysis packages.

The algorithm devised for such packages are iterative in nature
and they all have the same logical structure. These are the basic
steps:

1. Run a first analysis using a trial mesh supplied by the user.

2. ldentify the regions where the error is too large. If the error

is below the specified value all over the domain, then exit.

3. OQtherwise increase the number of degrees of freedom in the

'regions identified in step 2.

4. Run the analysis using the new mesh.

5. Go to step 2
The only differences among the avaliable self-adaptive analysis
packages are the criteria used in step 2 and the algorithms used in
step 3.

Up to now several criteria have been proposed to determine
automatically the accuracy of the solution. They all belong to one of

the following four groups [ 14 ]:



A posteriori error estimate { 10, 14, 18, 19 ].

This approach allows to determine the error of the solution for
each element. The error in the solution or displacements is
computed for each element in either energy or Sobolev norm.
No equivalent error estimate for the derivative of the solution
or stresses has been proposed. Furthermore an error bound
for the solution in norm for each element does not translate
into a pointwise error bound for the solution within the
element.

Local measurements of residuals [ 15 ,18 ,19 1.

This appreoach does not relate directly to the error in
displacement or stresses either. Furthermore its reliability can
be questioned since this approach is directly related to the
idea that the precision of the solution of a linear system of
equations can be measured by the residual. However it is very
well known that a small residual does not necessarily imply a
small error in the solution itseif.

Local test to determine how much improvement may be obtained

from a new degree of freedom [ 11, 12 ].

In this approach a new degree of freedom is added and a local
sofution is carried out, The improvement in strain energy
density is then computed. |f the improvement is greater than a
specified value, then the new degree of freedom is left in
place, otherwise it is deleted. Again no relation is given

between the error indicator and the precision of dispiacements



and/or stresses. Furthermore as shown in [ 16 ] it is
possible that the existence of an orthogonality condition
between the residual vector and the new degrees of freedom
introduced, will give the false conclusion that the exact
solution has been reached.

4, Measurement of strain energy density gradient [ 17 ].

In this approach an estimate of the number of degrees of
freedom needed is derived by cosidering to the gradient of the
strain energy density. It is assumed that the higher the
gradients the more degrees of freedom are needed. Energy
density however is not always a good parameter to be used
since stress components in a region might vary significantly
without any corresponding variation in stress energy density.
A more appropriate parameter to be used are the stress
components themselves and their gradients. Again no direct
relation is provided between the error indicator and
displacements or stressas.

Only two algorithms have been proposed for increasing the number
of degrees of freedom (enrichment) in regions of the domain where
the solution is poor [ 9 ].

The first is called H-convergence [ 10, 12, 13 ]. In this approach
the elements are subdivided into smaller ones. Cnly one type of
element is utilized, in two dimensions a triangle, in three dimensions
a tetrahedra. The polynomial order of the trial functions or mode
shapes used inside each element never changes (for each trial

function there exists a degree of freedom).



The number of schemes proposed for subdividing eiements is
limitless. The only problem of H-convergence is in dealing with the
transition zone between regions that are subdivided, and those that
are not. Depending on how this problem is solved two different basic
approaches can be defined.

In the first approach triangles in the transition zone are broken so
that no node will be a corner node of a triangle and at the same time
a mid-node of another triangle. |In this way continuity requiremnts
are automatically satisfied without any additional action. H-
convergence is particularly handy when used here, since already
existing analysis packages can be used for the analysis step. The
only drawback is that the transition zone might contain elements
whose shapes is far from optimal, from a computational viewpoint.

In the second opproach no attempt is done to break the triangie in
the transition zone. Continuity instead, is enforced by estabilishing
a set of linear relations among nodes' displacemnts. However very.
few commercial analysis packages can handle these Iinear- relations.

The other way to increase the number of degrees of freedom in a
given region is called P-convergence [ 9, 11 ]. In this approach the
number of elements remains unchanged. The oniy thing that is
increased is the polynomial order of the modes shapes used in the
elements themselves.

There are several drawbacks to P-convergence. The most severe
is that the available mode shapes are limited and might not be

sufficient to satisfy convergence. Also stresses must be computed



using stress smoothing techniques which reliability is not certain.
Furthermore new software analysis packages tailored to this type of
approach have to be developed.

Finally it should be noted that more sofisticated approaches have
been proposed lately [ 16,18 ,19 ]. They combine both H and P-
convergence and several of the criteria listed above to determine

regions which must be enriched.

10



Chapter 1V
A NEW EXPERIMENTAL SELF-ADAPTIVE SYSTEM

In the second chapter specifications were given for a new black box
analysis system. These specifications are intended to shield the user
from the problems facing today's FEM users and at the same time
guarantee a high degree of reliability gigving the user confidence in
the results he has obtained.

In this chapter a new experimental two-dimensional system, tailored
to the biack box approach, will be introduced. This system span
only a fraction of all the possible applications of FEM in linear
structural analysis. Still it should be reaiized that what it will be
said for this small system can aiways be expanded to other more
general systems.

These are the capabilities that the new system offers to the user:

1. It allows him to model 2-D structures (membranes) under plane

stress conditions. Curved trusses are aiso available to model
flanges. For example a wide flange beam can easily be modeied
by using the plane stress capabilities for the web and trusses
for the flanges.

2. 1t uses three and four-sided patches for modeling membranes.

The four sided patches use compiete cubic polynomial

expansion plus two quartic terms. This is the same polynomial

1



expansion used for 2-D isoparametric twelve node elements.
The three-sided patches use the complete cubic expansion
except for the bilinear term.

Each patch must have constant thickness and material
properties. Different patches can have different material
properties and/or thicknesses.

Trusses can only exist on the boundary of a patch. Again
each truss must have constant area and material properties.
Different trusses can have different material properties and/or
areas.

Geometric boundary conditions can only be applied at the patch
vertices and edges. Displacement can be specified to be zero
in the X, or X, direction or both. It is not possible to
specify zero displacements in an oblique direction.

Loads can only be concentrated loads and line loads.
Concentrated loads can only be applied at the patch vertices.
Line loads can only be applied at the patch edges and they

have to be constant along edges.

12



Chapter V
INTERNAL ORGANIZATION OF THE NEW SYSTEM

5.1 ELEMENTS USED
The new system uses onily two different type of elements: constant
strain triangles for membranes under plane stress condition, and
constant strain bars for trusses.

The constant strain triangle (CST) has been sometimes criticized
[ 4 ] for its poor performance in certain situations (e.g. bending of
a beam), when compared to higher order elements. This is true when
the comparison is based only on the number of degrees of freedom
used. However when the overail computational effort [ 6] s
considered (which includes stiffness matrix computation and assembly,
number of degrees of freedom, and most important stiffness matrix
band-width) then the different in performance is not so obvious
[ 5]. Furthermore CST's are very reliable elements which can easily
take any kind of distortion and not give unreasonable stress values at
the nodes like higher polynomial elements do. This last characteristic
was a strong reason for choosing the CST.

The two nodes truss element was an obviouse choice to modei

flanges, since it has to be coupled with the CST.

13



5.2 INITIAL MESHING

The initial meshing is done by approximating four-sided patches by
two triangles and three-sided patches by one triangle. In the case of
three-sided patches the three verteces are connected with straight
lines. In the case of the four-sided patches, first the patch is
transformed into a quadrilateral by connecting the four verteces with
four straight lines, then the closest opposite verteces are connected
with a staright line too. This is done in order to minimize triangles
distertion.

Each flange is initially modeled with a single truss bar.

5.3 ENRICHMENT ALGORITHM

Since the new system uses only one type of element for each type of
structural member, the only enrichment algorithm that can be used is
H-convergence.

In this specific case, the algorithm is identified by the following

basic features:

1. The enrichment is done by splitting already existing triaﬁgles.
Already existing nodes are not relocated or destroyed.

2. The location of any new node wiill be computed in parametric
space and then mapped into real space. The parametric space
is the same parametric space which defines the patch where
the new node beiongs. This feature guarantees that the more
the mesh is refined the better it will be approximating the

patches’ boundaries.

14



The splitting algorithm has been designed so that all nodes wiil
be at the corners of triangles an none at the mid-point of any
triangle edge. Thus no special relation need be imposed

among degrees of freedom.

The enrichment algorithm receives the triangles which, based on

some error indicator, have been already marked when the solution is

not precise enough (see Fig. 1)}. The algorithm then goes through

the following steps.

1.

Split all the marked triangles into four triangles as shown in
figure 2.

Identify all the triangles which have at least one edge adjacent
to two edges of two different triangles (non conforming-edge),
as shown in figure 3, and split each one into four triangles
(see Fig. 4).

Repeat step 2, as shown in figure 5 and 6.

Mark all the triangles which have at least one or more non-
conforming edges such that none of their nodes lie on a non-
conforming edge of adjacent triangles, (see Fig. 7, 9, and

11}. |If none exist stop, else continue.

15



For each triangle marked in step 5 perform the following steps
(see Fig. 8, 10, and 12). |If all the three edges are non-
conforming or if the longest edge is conforming while the other
two are not, then split the triangle into four triangles. (n all
other cases, split the triangle into two triangles creating a
mid-node on the longest edge.

Go to step 4

16



Figure 1: Triangies marked to be split
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Figure 2: Triangles after splitting in step 1
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Figure 3: Triangles marked to be split in step 2

19



Figure 4: Trinangles after splitting in step 2

20




Figure 5: Triangles marked to be splif in stap 3
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+ +
+ +
+ +
+ + +

Figure 7: Triangles marked to be split in step 4 (first pass)



Figure 8: Triangles after splitting in step 5 (first pass)
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Figure 9: Triangles marked to be split in stép 4 (second pass)

25



Figrure 10: Triangles after splitting in step 5 (second pass)
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Figur;e 11: Triangles marked to be split in sfep 4 (third pass)
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Figure 12: Triangles after splitting in steb 5 (third pass)
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In steps 1,2 and 3 the triangles are split in a way that does not
increase distortion. In steps 2 and 3 a buffer zone is created to
make sure that the area initially marked for splitting, will be fully
enclosed in the area of split triangles. A more specific reason will be
given in the next chapter.

" From step 3 on, the transition area is created. The transition
area denotes the area of triangles which are between unsplit triangles
and split ones. This area is mostly composed of triangles which have
been generated by splitting initial triangles into two.

This part of the algorithm has been designed so as to minimize the
increase in triangle distortion within the transition area. For
example, if initially all the triangles_ have angles of 80, 45 and 45
degrees as shown in figure 1, then at the end of the splitting, all
triangles still have angles of 90, 45 and 45 (see fig. 12).

in step 3 the condition that the triangles have to satisfy in order
to be marked for splitting, has been introduced to avoid the
possibility that a non-conforming edge will be facing more than two
triangles as shown in the sequence from figure 13 through figure 15.
If this happens, then the criterion for splitting given in step 4 is no

longer valid.

29
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Figure 13: Non-conforming edge facing more than two triangles
(framel)
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Figure 14: Non-conforming edge facing more than two triangtes
{frame2)
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Figure 15: Non-conforming edge facing more than two triangles
(frame3)
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The algorithm can never come to deadiock. The fact that in step
three triangles which do not have vertices on an adjacent triangle
non-conforming edge will not be marked for splitting, means that they
will have to bé split in coming cycles. It might appear at first that a
circular type of deadlock might happen, in which triangle A is waiting
for triangle B to be split, triangle B is waiting for triangle C to be
split and, triangle C is waiting for triangle A to be split. Such a
' ca.se cannot happen since splitting always takes place at the longest
edge. Thus if the chain of locks starts from a given triangle, it must
start from the longest edge. In order to continue, the longest edge
of the previous triangle must not be the longest of the actual one.
Thus there is no way that the locking chain can travel back to the
triangle it started from.

In general the splitting is done in the patch parametric space and
the distortion of the elements is dependent on the distortion of the
patches themselves. If .the patch is a square then there is no
difference between parametric space and Cartesian space since there
is no distortion. In generali to avoid potential problems, the
distortion of the patches can be checked at the beginning by

computing the Jacobian at some strategically located sampling points.

33



5.4 CRITERIA USED FOR THE ERROR INDICATOR
The criterion which determines the regions where the solution is not
accurate enough is based on a direct calculation of the rate of

convergence of the stresses for each element.

5.4.1 Criteria used for truss bars

Let us consider a single truss bar for simplicity. After the analysis
the bar will have a given axial stress, constant all along its length.
Then the triangles adjacent to the bar will be split which will in turn
force the bar to be divided into two new bars. The stress value of
the new bars will be initialized to the stress value of the old bar.
When the analysis is run again the new computed stress for each new
element will be compared with the old one. If the difference is above
the error tolerance pecified by the user, then the triangles adjacent
to the truss bar will be marked for splitting. The bars themselves
are never marked for splitting since, as previously stated, flanges
can only exist on the boundaries of patches, and never float aione in

space.

5.4,2 Criteria used for triangles

Extending the griterion presented in the previous section to triangles
is straightforward. Again let us consider a single triangle belonging
to a 2-D structure. After the analysis is carried out the triangie
holds the stress values which are constant throughout the triangle

itself. |f the triangle is arbitrarily marked for splitting then the

34



enrichment algorithm will automatically split the triangle into four as
shown in figure 1 and 2. The stress values for the new triangles are
initialized to the stress values of the parent triangie. When the
analysis is carried out again the new stress values of the new
elements can be compared to the old values. This comparison of the
stresses can be carried out in norms. This means that given the old
stresses 1;; and the new stresses 03 it is possible to define a

3|

difference stress tensor §; as

BT O i e e (5.1)

Finaily we can compute the norm I[tsij | of the difference stress tensor

as:

EVY

150 = (8850 o (5.2)

The norm "6-'1 I is invariant with respect to the orientation of the
cartesian axis.

The triangie will or will not be marked for splitting depending on
the value of this norm. If the norm "6'] | will be bigger than the
error tolerance specified by the user, then the triangle will bé

marked for splitting, otherwise it will not.
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It should be noted that the criterion proposed here is completely
different from all previously proposed criteria since it requires the
results of two consecutive analysis. Instead, all criteria proposed
unti! now use the results of only one analysis, and in some cases
require additional local analysis to determine if the element or area

under consideration should be enriched.

5.5 OVERALL SYSTEM ORGANIZATION
The system is composed of three modules: a preprocessor, a self-
adaptive package, and a postprocessor.

The preprocessor reads in the data in card image format; it does
extensive error checking and also ch%cks that the patches are not too
distorted. Finally it reorganizes the data in a new format, ready to
be fed into the self-adaptive module.

The seif-adaptive module performs the actual analysis. It goes

through the following steps.

—

Call the analysis routine for the first analysis.

2. Mark all triangiles to be split.

3. Split triangles that are marked for splitting.

4. Call the analysis routine for the next anaiysis

5. Locate the triangies where the stress wvariation is bigger than
the error tolerance, and mark them for spiitting.

6. Locate the truss bars where the stress variation is bigger than

the error tolerance, and mark the adjacent triangles for

splitting.

36



7. If no triangle has been marked, then exit, else go to step 3.
These steps are shown in the flowchart of figure 16.

The postprocessor generates several pictures. One of these shows
the structure in the undeformed and deformed position at the same
time. Another pitcure shows the color code of stress levels computed
using  either the Von Mises or Tresca criteria. Since no stress
smoothing technique is used, the color remains the same within each

triangte.
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( START }

CALL AMALYSIS

MARK ALL
TRIANGLES TO BE
SPLIT

CALL ANALYSIS

MARK ALL
TRIANGLES FOR
SPLITTING,
WHERE THE ERROR
TOLERANCE IS
EXCEEDED

MARK ALL
TRIANGLES
ADJACENT TO
TRUSS BARS
WHERE THE ERROR
TOLERANCE

IS EXCEEDED

FALSE

NO TRIANGLE

HAS BEEN MARXED

Figure 16: System flowchart
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Chapter VI
ERROR ESTIMATE OF STRESSES

In the introduction we said that one of the most important features of
a self-adaptive system is that it allows the user to specify directly
the precision required for stress caiculations.

In the previous chapter it was said that precision of the stresses
is "acceptabie” once the new criterion presented is met.

In this chapter it will be shown that, if this criterion is met, the
precision of the stresses all over the domain is smaller or equal to the

error tolerance, without the use of any stress smoothing techniques.

6.1 ERROR ESTIMATE OF AXIAL STRESS IN TRUSS BARS

Let us consider a single bar {one dimensional problem) before and
after it has been divided inte two bars. |f the bar is very small it
can be assumed that:

1. The point generated to split the bar, lies in the middle of the
two end points of the bar. This is not normaily true since the
point is generated in the parametric space, however if the bar
is very small compared to the overall patch to which it
belongs, any discrepancy due to the patch distortion becomes

negiegible.
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2. The stress at midpoint, which is the optimum sampling point
for stress evaluation within the bar [ 4 ], is equal te the
exact solution at that point.

3. The exact solution for the stresses will vary linearly along the
bar (see figure 17 top). This means that the error of the
stresses is zero at the midpoint, and is maximal and equal in
magnitude at both end points.

The same assumptions are also valid for the two new bars obtained by

dividing the original one (see figure 17 bottom}.

Based on these assumptions it can be said that after two analysis
the exact solution is known both at midpoint and gquarter points of
the old bar (midpoints for the new ba:rs).

If only one of the two new bars is considered, it is easy to see
that the maximum error in stress is equal to the difference between
the constant value produced from the second analysis and the value
of the exact solution at both end points. In particuiar the error at
the end point, which is also the midpoint of the old bar, can be
easily computed, and is equal to the difference between the stress
vaiue produced from the first analysis in the old bar and the stress
value produced from the subsequent analysis in this new bar. This
difference is exactly the error tolerance specified by the user and
introduced in the previous chapter. Finally since the errors at both
end points are equal, it can be concluded that the error in the stress
in all truss bars is always less than or equal to the error tolerance,

once the criterion presented in the previous chapter is met.



EXACT SOLUTION

MAXIMUM ERROR
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Figure 17: Error estimate in truss bars
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6.2 ERROR ESTIMATE OF STRESSES IN TRIANGLES
6.2.1 Basic assumptions
The assumptions made for truss bars, when they are small enough,
can also be extented to triangles {two dimensional problem), provided
these are also small enough. The assumptions are as follows:
1. The points generated during the splitting effectively lie on the
rﬁidpoints of the sides of the triangle.
2. The stresses at the centroid of the triangle (best sampling
point) are essentiaily equal to the exact solution at that point
[ 4].
3. The functions describing the stress components are ail linear
functions in X, and X,, and can be visualized as planes.
These assumptions are also valid for ‘the four new triangies generated
when the oid one is divided into four triangles, a central one (central
triangle) and three around it (adjacent triangles) shown in figure 18
Furthermore, as long as assumption 1 is true, the three adjacent
triangles are equal, and they are the mirror image of the central
triangle, and stress values for the old triangle are equal to stress

values of the new central triangle since their centroids coincide.
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Figure 18: Error estimate in triangles
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6.2.2 The error stress tensor

The error stress tensor £ is defined as:

(6.1)

- L
£&; = g

i 9

ij o

where o}'; is the exact stress tensor and g; is the approximate value

obtained from the last analysis.

Since each component of g; is the result of the difference of a
planar function and a comstant function, it will be a planar function
itseif within all four triangles. This implies that, within each
triangle, the maximum value in magnitude, of each component of g
will be at one of the corners. Furthermore this function will be zero
at each centroid and have the same slope in the X, and X, directions
in all four triangies since the planar function used in the difference
is the same for all four triangles. Considering these properties and
recalling that all the adjacent triangles are egual, it can be said that
the value of gy at the same corner of all the adjacent triangles is the
~ same. Also since the central triangle is the mirror image of all the

adjacent triangles, the value of g; at any corner of all the adjacent

v'i
triangles will be equal in magnitude and opposite in sign to the value

of g;

i at the mirror corner of the central triangle.

The norm Hs,-j | is defined as:

e

ﬂgq" = (Eqsq) . (6.2)

Its value is independent from the Xi-X2 axis orientation.



6.2.3 Error estimate

et us now consider only the central triangle and any one of the
three adjacent triangies. These two triangies have been drawn with
continuous line in figure 18 Line A has been drawn passing across
the centroids of both triangies. Recailing that one triangle is the
mirror image of the other, it can be seen that:

1. The new line always passes through the opposite nodes of the
two triangle.

2. The distance between the two centroids is one third of the
distance between fhe two opposite corners.

3. The point of intersection of the new line and the edge shared
by the two triangles is also the midpoint of both the opposite
corners and the two centroids.

In figure 18 the approximate value of a stress component,
resulting from the second analysis, and the exact solution are shown
along line A. The approximate value is an horizontal line within each
triangle, while the exact solution is an oblique line.

Both errors at the opposite corners are equal in magnitude (as
stated above). Their value is equal to the difference of the constant
stress compeonent in the two triangles. Combining this and the fact
that the stress components obtained from the first and second
analysis for the central triangle are equal, it can be seen that the
error for each stress component in any adjacent triangle at the corner
opposite - to central triangle is equal to the difference between the

same stress component computed in the two last analysis.
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If norms are considered then it can be stated that the error stress
norm |e; | in any adjacent triangle at the corner opposite to the
central triangle is equal to the norm Hé;j | of the difference stress
tensor.

Furthermore, recalling that for each component of ¢j;
we can say that in each adjacent triangle

e,jsllé.’ll.....(6.4)

where ¢ is evaluated at the corner opposite to the central triangle.
Let us now define 1{6;j | as the largest of the three norms |&;] in
the adjacent triangles (]&; ] in the central triangle is always zero).
Recalling what has been stated in the previous section and because of
equation 6.4 we can say that the absolute value of any component of

g

; in all four triangles is always less than or equal to "5-'5 l,. Also

whenever |[§; |, is larger than the error tolerance, all four triangles

L]
will be split because of steps 2 and 3 in the splitting algorithm.
Thus it can be concluded that if convergence has been reached, then

the error in all stress components will be less than or equal to the

arror tolerance.
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6.3 PRECISION OF ERRCR ESTIMATE OF STRESSES
In the previous two sections the error computations for stresses are
based on several assumptions. The most important are that the exact
solution for stresses is linear in X, and X, within each eiement and
that the error of the stresses at the centroid of any triangle is
neglegible compared to the error at the corners. Both assumption are
never exactly true and thus a certain error exists when € is
estimated.

In the case.of one dimensional problems it is possible, by taking
advantage of superconvergence, to proove that at any point the

asymptotic ratio r between the true error and its estimate is given by

the éxpression (see Appendix A) .
FE(n-De/QR751) L. L(6.5)

where n is the degree of the first non zero poiynomial term of the
Taylor expansion at that point. If n=1 then the the ratio r is one.
This means that at any point which is not a point of stationary value
for the exact sclution of the axial stress the error estimate is
asymptotically exact. [If n>1 then the solution is stationary at the
point under consideration. |In the case n=2 which occurs most often,
the ratio r is equal to 5/3. It should be noted that the number of
points where n>1 is aiways finite.

It is aiso possibie to prove (see Appendix A) that the factor by
which the error estimate asymptotically decreases at each iteration is
2". Thus all points where n>1 can be detected by looking at the way

the error estimate varies from one iteration to another.
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Some numerical tests have also been run for the one dimensional
case. The tests have been carried out by analyzing a truss bar under
several combinations of loads and boundary conditions. The structure
was at the beginning discretized with a single bar and then at each
iteration all the bars were split into two. The exact solution was
always available. The resuits perfectly match with equation 6.5 and
they consistently show that at points where n>1 the ratio r
approaches the values given by equation 6.5 from below as the
element size decreases. This means that values given by equation 6.5
when n>1 can be considered for practical purposes an upper bound.

For example one of the tests consists of a truss bar of length
pinned at both ends and under the distributed load Sin(x). The

governing egaution is
U, = Sin(x) u(@=u(m=0 . . .. ... .. .(6.6)
The axact solutions for the displacements and stresses are
U =Sin(x) . ... . . e e (8T
u,, =Cos(x) . . . . . . . . . .. .. ......(6.8

Becouse of symmetry the analysis has been carried out oniy for
0sx<n/2. Error underestimation has been monitored at x=0, x=n/4,
and x=1/2. The initial mesh consists of two equal length elements
instead of one in order to include the gridpoint x=1/4 from the

beginning. The elements in subsequnt meshes are all of equal
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length. The values of r in the neighbourhood of the three points for

increasingly smaller elements length are listed in table 1.

TABLE 1

Example of Error Underastimation (1-D)

i | 1 1 1
| Length | rat X=0 |[r at X=4 |r at x=7/2 |
! | ) | |
I I | I I
| n/4 ! 1.605 | 1.605 | 1.082 |
| /8 | 1.851 | 1.189 | 1.020 |
| =/16 | 1.683 | 1.078 | 1.005 |
| /32 | 1.666 | 1.036 | 1.001 |
| w/64 | 1.667 | 1.017 | 1.000 |
| w/2048 i 1.667 | 1.001 | 1.000 |
| 1 1 | )

As it can be seen at x=0 r converges to 5/3 from below since n=2.
At the other two points n=1 and r converge to 1. At x=1/2 it does so
faster since the first order term of the Taylor series at that point is
much larger than the higher order terms. In fact the second order
term is zero. A  similar study in 2'-D is not possible since
superconvergence does not exist. However as shown in the next
chapter, it turns out that in practice underestimation of the true
error is not a problem from an engineering viewpoint, and it does not
affect the reliability of the system.

A refinement of the algorithm in order to minimize the possibility
of underestimation of the true error would be to monitor the rate at
which the error estimate decrease for each triangle and truss bar

from one iteration to another. Based on this information a safety
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factor could be introduced when the error estimate is compared to the

error tolerance.

6.4 FALSE CONVERGENCE

False convergence happens when after a few iterations the algorithm
stops and the precision of stresses is far below the one specified.
This might happen for exampie when the new mode shapes introdu;:ed
by splitting the triangles are orthogonal to the [oad vector [ 15].
in figure 19 such a case is show for a one dimensional problem. The
resulting axial stresses in all elements in the first and second
iteration are the same. This is interpreted by the program as the fact
that the exact solution has been r'eacwhed even though it is far from it
since the stress distribution for this case is piecewise parabolic.

Faise convergence has never been noticed during the course of
this research. The reason of this is that the system in its actual
configuration allows only for constant loads along the edges of the
triangles initially used. It is expected that even linearly or
quadratically varying loads along the edges should not give any
problem since these loads have a strong component in the generalized
direction of the new mode shapes created by splitting triangles.

However additional testing is necessary to support this statement.

S0
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Figure 19: Case of faise convergence
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6.5 TREATMENT OF SINGULARITIES

In certain cases, stress distribution in a structure can reach an
infinite value at certain points which are called singularity points.
This can happen because of concentrated loads applied to the
structure, or because of the existence of sharp-reentrant corners in
the structure itself. In either case, regardless of how small the
triangles can be, as long as they have finite dimensions, the error at
singularity points will always be infinite.

This fact is of importance only to mathematicians but not to
designers or engineers since it is very well known that singularity
points are only a mathematical abstraction, as weil as concentrated
loads or sharp reentrant corners. However the system itself is not
aware of these facts and will try to solve the mathematical problem.
it will keep splitting triangles close to the singularity points and
never be able to stop.

To avoid this possibility the user has the option of specifying a
maximum number of iterations. If nothing is specified the default
value of 8 is used. |If this limit is met the user has the option to
restart execution for a new round of iteration. Also to help him
making such a decision the postprocassor has the otion of displaying

the area were convergence has no been reached.
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Chapter V!l

COMPUTER IMPLEMENTATION AND EXAMPLES

7.1 COMPUTER !MPLEMENTATION

The new system described in the previous chapters has been
implemented on the IBM 3033 at UCLA running under the OS/MVS
operating system. The preprocessor and the self-adaptive package
are written in PL|I. The postprocessor is partly written in PL/! and
partly in FORTRAN. The overall size of the three modules is about
4000 lines.

The input to the preprocessor is a card image file. Even though it
is expected thét the input to the preprocessor would be generated
automatically by a CADﬂsystem, the actual input language has been
designed so that it would as user friendly as batch input can be.
The input is free format and comments can be added by putting an
asterisk as the first card-character. The ammount of data that has
to be keyed in has been reduced to a minimum, and extensive error
checking is provided by the preprocessor.

The capabilitias of the system can be best demonstrated through

some examples,



7.2 EXAMPLE NO. 1
The first example consists in the analysis of a rectanguiar plate with
a circular hole under tension as shown in figure 20.
The thickness of the plate is 0.1 inches and the material properties
are:

Young modulus 10,000 ksi,

Poisson ratio 0.25,

yield stress 30 ksi.
Since both the structure and the loading are doubly symmetric, the
analysis has been run only for one guarter of the plate as shown in
figure 21. The same figure aiso shows the patches used for modeling
the structure. The small triangles represent the center point of each
patch in the parametric space. The input file is 25 lines long. The
initial mesh is show in figure 22,

The error tolerance has been specified as 10% of the yield stress
(3 ksi). Convergence has been reached in 7 iterations. The final
meshe is shown in figure 23 and it consists of:

875 nodes,

1706 degrees of freedom,

1611 triangles.
Color coded stress levels based on Von Mises criterion are shown in
figure 24. The lowest stress level is blue, the highest is red.

The exact solution to the problem is avaliable in series form [ 7 ].
The series gives precise results onily at points which distance from

the origin is less than 10 inches. The accurancy of the algorithm has



00

wajqoad ay} jo uondiuosap ‘f ‘ou ajdwex]

HINL/SdLY |

/

107 34nbi4

4009

0c

.o0°of

'

55



woalsAs ayy o) nduy ‘t -ou ajdwexy :|7 2.nSi4

uLmwmwxpANo\\o\\ox\O\\ox\O\\ox\o\xo\vo\\O\\O\
@ N © N O M © N © HAN O

. ) O %
| H R /
' { \ ' 4
| 1 ! Yy - \
- | ! ] \.h.\
1 | .F.\\ | \
' 1 POl | \ ad \
IIIIIII f————-F-—————— t i\ -
-— " “ L VA 7
-
| 1 \ ’ ™
Voo YN S 0V
- 1 — -7 N 4 ! \
| 7y ..v._..u.l.u*.sl N/
nnnnnnn Hiniaiiabaiat Saduinintabe ! / i @
“ ! \ VAR /
o - 4 ’ \
- - ﬂ o e - ¥ SR \..J
. o ST
' | / H 3\
- . : . (\
/
I/ .
/
HINI/SdIN |
\ x

36






L uonesay je ysew

{ ‘ou Q—QEMXW

g7 24nB14

7

/1

58



| uoneaayl je ysaw ‘| -ou ajdwexy

177 @anbiy

57



been check in this example by comparing the close form solution with
the FEM solution in the area where the exact solution is valid. The
comparison has been carried out by computing, for ail triangles within
10 inches from the origin, the error stress tensor norm at each
corner. This procedure was based on years of experience which have
consistently shown that the maximum "'_error of stresses within a
constant strain triangle is at one of the corner. It results that
nowhere in the area under consideration the error stress tensor norm
is larger than the error tolerance (3 ksi). In tabie 2 the four
highest error stress tensor norms found are listed. In the first two
columns the points coordinates are given, in the third column the

values of the norm are given. -

TABLE 2

Exampie no. 1, Highest Error Stress Tensor Norms
(Error Tolerance 3 ksi)

[ I | 1
! Xy ! Xa ! e I !
| 3.536 | 3.536 | 2.544 |
| 2,347 | 4.415 | 2.519 |
| 2.975 | 4.018 | 2.510 |
| 2.874 | 4.081 | 2.504 |
1 i ! |

It can be seen that the error stress tensor norm at all points is well

below the error tolerance.
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The same exampie has also been run by altering the initial meshing
of all the four-sided patches. The guadrilaterals defined by the
patches' vertices were split into triangle along the longest diagonal
instead of the shortest as shown in figure 25. The initiai triangles as
well as those generated by subsequent splitting are more distorted
than those used int the first run.

Convergence has been reached in 8 iterations. One more iteration
than in the first run is needed because the distortion of the triangles
has a negative effect on the precision of the solution. The final mesh
is shown in figure 26 and it consists of:

1277 nodes
2508 degrees of freedom
2397 triangles.

A comparison of the two fimal meshes shows that in some areas
where the triangies are very distorted. additional mesh refinement is
needed. This is consistent with the fact that distortion decrease
precision.

The accurancy of the solution has been checked again to see how
sensitive the aigorithm is to to a change of initiai mesh. The
comparison has been carried out exactly as for the first run. At two
triangles at one corner each the error stress tensor norm was larger
than 3 ksi. The two corners sit on the boundary of the hole. Their
coordinates and distance from the origin is given in table 3. In tables
4 and 5 the value for the exact and approximate stressas as well the

error stress tensor and its norm are given for both points.
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TABLE 3

Corners Coordinates

{ | T B I
| Case no. | Xy ! X, | (Xi*x )‘k!
L | ]
1 |
R | 2.665 | 4.223 | 4.994 |
2 | 2,769 | 4.157 | 4.995 |
| L I | —
TABLE 4

Stresses at Corner, Case 1
(Error Tolerance 3 Kksi)

1]

i --- ii=1, j=2 ii=2, j=2 =1, j=2 i Norm %

1 | | [ 1

| o | 14.797 | 5.975° | -9.405 |  --- |

| oy | 14.260 | 4.114 | -7.600 | —e-

| e | .537 | 1.861 | -1.805 | 3.204 |

| | | } ! |

TABLE 5
Stressas at Corner, Case 2
{(Error Tolerance 3 ksi)

[ ] 1 ] 1 1

| oee- ii=1, j=2 1i=2, j=2 |i=1, j=2 | NORM |

| | [ | | )|
1

| or 113.290 | 5.971 | -8.907 | ——- |

- | 13.016 | 3.984 | -7.259 | -

| e | 274 | 1.987 | -1.648 | 3.075 |

| 1 | ] ! |

As can be seen in the worst case (case 1) the error stress tensor

norm is 3.204 ksi and exceeds the error tolerance (3 ksi) by 7%,
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TABLE 7

Stresses at Corner, Case 1
(Error Tolerance 3 ksi)

i
i c——- ii=1' j=2 1;:2, j=2 Ii|=1, j=2 L Norm |
I { & ! i —
| ef | 14,840 | 35.913 | -9.342 | --- |
{ g | 14.260 | 4.114 | -7.600 | -]
| € | .580 | 1.799 | -1.742 | 3.105 |
1 | Il I {- ]

TABLE 8
Stresses at Corner, Case 2
(Error Tolerance 3 ksi)

| 1 I - l 1
| === Pi=1, =2 .|i=2, j=2 {i=1, js2 | Nerm |
t ! 1 | | |
| of | 13.334 | 5.915 | -8.88 |  --- |
| gy | 13.016 | 3.984 | -7.259 | - -—=
1 £ | .318 | 1.831 | -1.589 | 2.980 |
1 | { | | |

imperfection in the geometric description of the model and and how
much is due to the algorithm itseif.

It can be concluded that this example indicates that the pracision
of the final solution is essentially indipendent from the initial mesh

used.
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This result can be explained in part by the fact that the rim of the
hole, which is 3 circle, was approximated by two spline curves. The
effects of this approximation are that the two points under
considerations lie at a distance from the origin (also the center of the
hole) less than 5 inches.

A more consistent comparison has been done for these two points
by ideally moving them along the line that connect them to the origin
so that they will exactly lie on the rim of the hole. The new
coordinates of the two points are shown in table 6. The results of

the new comparison are shown in tables 7 and 8.

TABLE_ 6

Corners Coordinates

[ l§ ] |

! Case no. ! X, ! X, |l (XXM
L | 2.688 | 4.228 | 5.000 |
2 | 2.772 | 4.161 | 5.000 |
L f 1 | _ |

As can be seen the error stress tensor norm at one of the of the
corners (case 2) is less than the error tolerance. At the other
corner the error stress tensor norm is 3.105 ksi and it exceeds the
arror tolerance (3 ksi) by 3%. Part of this error however can be
justified by the fact that since a thin layer of materiai has been
added to the hole, stresses on the rim tend to be slightly in error. It

is however difficult to say how much of the whole error is due to the
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Figure 27: Example no. 2, description of the problem
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7.3 EXAMPLE NO. 2
The second example consists of the analysis of a thin circuiar disk
with a hole in the middle as shown in figure 27.
The thickness of the piate is 0.1 inches and the material properties
are:

Young modulus 30,000 ksi,

Poisson ratio 0.3

yield stress 21 ksi.
The Jload consisits of a uniform pressure applied to the hole
boundary.

Since both the structure and the loading are doubly symmetric,

the analysis has been run only for one quarter of the disk as ‘shown
in figure 28.
The same figure also shows the patches used for modeling the
structure. Two four-sided patches are used. The small triangies
represent the Center point of each patch in the parametric slpace.
The input file is 24 lines long. The initial mesh is shown in figure
29.

The error tolerance has been specified as 1.5 Kkis which is about
7% of the yeld stress. Convergence has been reached in 7 iteration.
The final mesh is show in figure 30, and it consists of:

1498 nodes,
2950 degrees of freedoms,
2824 triangies.
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Figure 28: Example no. 2, mesh at iteration 1
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Example no. 2, input to fhe system
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Even thougﬁt the solution is point symmetric with respect to the
origin, the final mesh does not have this type of symmetry. This
due to the fact that when the model is initially discretized this type
of symmetry is lost. Still the final mesh is very ciose to be F;oint
symmetric with respect to the.origin.

Color coded stress levels :"based on Von Mises criterion are shown
in figure 31, The lowest stress level is blue, the highest is red.

. Since the exact solution is available [ 2 ], the precision of the
numerical results has been checked as in the previous example by
comparing the exact solution with the numerical one at each corner of
all triangles. It turnes out that nowhere the error stress tensor norm
is larger than the error tolerance (1.3 ksi). |In tablie 9 the four
highast error stress tensor norms found are listed. In the first two
coiumns the points coordinates are given, in the third column the
values of the norm are given,.

It can be sean that the error stress tensor norm is at all points is

well below the arror toleranca.
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TABLE 9

Exampie no. 2, Highest Error Stress Tensor Norms
{(Error Tolerance 1.5 ksi)

| | b 1
IESEETE
| 425 | .904 | 1.299 |
| 904 | 425 | 1.299 |
| 893 | .447 | 1.295 |
| 447 | 83 | 1.295 |
l I {

7.4 EXAMPLE NO. 3
The third example consists of the anaiysis of a thin circular disk
under pinching load as shown in figure 32. The thickness of the
plate is 0.1 inches and the material pr:operties are:

Youhg moduius 30,000 ksi,

PoissonA ratio 0.3

yvield stress 50 ksi.
Since both the structure and the loading are doubly symmetric, the
analysis has been run only for one quarter of the disk as shown in
figure 33. The same figure also shows the patches used for modeling
the structure. Two triangular patches are used. The small triangles
represent the center point of each patch in the parametric space.
The initial mesh is shown in figure 34. The input file is 20 lines
long.

The error tolerance has been specified as 10% of the yield stress

(5 ksi). The maximum number of iterations has been set to 9.
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Figure 31: Example no. 2, color coded stress levels
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76



| XIP

i.00 R

i KIP

Figure 32: Example no. 3, description of the problem

75



As expected, convergence has not been reached due to the
existence of a singularity. Also from iteration 5 on, the value of the
largest norm of the error stress tensor for all triangies has kept
increasing instead of decreasing. This can be explained by the fact
that-,‘i; as triangles become smailer and smaller, the error estimate
becomes more and more precise and gives numbers that tend to be
close.r to the real er'rof which is infinity.

The mesh at iteration.s 8 is shown in figure 35 and and it consists of:
774 nodes,
1504 degrees of freedom,
1438 triangles.
in figure 36 the area where convergence has not been reached at
itaration 8, is shown in vellow, the remaining area is shown in green,

The mesh at iterations 9 are shown in figures 37 and and it
consists of:

1578 nodes,

3099 degrees of freedom,

3032 triangies.
In figure 37 the dark area on the top of the quarter disk is due to
the fact that the triangles size is smaller than the resolution of the
plotter used to generate the picture. In figure 38 the area where
convergenca has not been reached at iteration 9, is shown in vyellow,
the remaining area is shown in green. Color coded stress levels at
iteration 9, based on Von Mises criterion, are shown in figure 39.

The lowest stress level is blue, the highest is red.
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Figure 34: Example no. 3, initial mesh
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Figure 36: Example no. 3, non-converged area at iteration 8



Figure 35: Example no. 3, mesh at iteration 8
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Example no. 3, non-converged area at iteration 9

igure 38
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Figure 37: Exampie no. 3, mesh at iteration 9
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Since the exact solution is available { 2 ], the precision of the
numerical results of iteration 8 and ¢ has been checked for the
triangles not marked for splitting. Before carrying out the actual
calculations all triangles adjacent to triangles marked for splitting
have also been marked.land than the procedure has bean repeated a
second time. This is equivalent to step 2 and 3 of the splitting
algorithm and is consistent with the reason why these steps have
been introduced as discussed in the previous chapter.

In the mesh of the 8th iteration 962 triangles have not been
marked for splitting. For all them the norm of the error stress
tensor computed at each corner is less than the error tolerance.

In the mesh of the 9th iteration. 2043 triangles have not been
marked for splitting. At two of them at one corner each the error
stress tensor norm is larger than the error tolerance (5 ksi). Both
triangles lies in the area that was marked for splitting at iteration 8
and not marked for splitting at iteration 8. Their location thus is
very close to the point of singuiarity. '

In figure 40 the first of these two triangle is shown with the other
three triangles that were generated when the triangies, that contains
them ail (parent triangle), has been split at iteration 8. The actual
triangle is the top one an thus is an adjacent triangle. The corner at
which the error stress tensor norm is larger than 5 ksi is marked
with a small circle. The smail triangular marker indicates the position

of the centroid of the parent triangle.



Figure 39: Example no. 3, color coded stress levels at iteration



Figure 41: Triangle with error stress tensor norm larger than 3 ksi,
case 2

In table 10 the exact, FEM, and error stresses at the first corner
are listed. Also §; and its norm which is the error indicator is
diplayed. In the last line of the table the error in estaimating each
component of ¢; and its norm is given. This error is given as a
percentage of [¢;[. A plus sign means overestimation, a minus sign
means uﬁderestimation. In table 11 the same information is listed for

second corner.
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Figure 40: Triangle with error stress tensor norm larger than 3 ksi,
case | ’

In figure 41 the second triangie is shown in the same manner. It
is a central triangle and the corner at which the error stress tensor
norm is larger than 5 ksi is marked by a small circle.

The small triangular marker indicates the position of the centroid of
the parent triangle. The little square marks the corner at which,
accordiné to the theory exposed in the pr‘eviouAs chapter, the error

stress tensor norm shouid have been detectad as larger than 5 ksi.
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in table 12 the axact stresses at the centroid of the parent
triangle for the first case are listed. Also in the same table the FEM
stresses and the error stresses at the same centroid are shown. In
table 13 the same information is listed for the parent element of the

second case.
TABLE 12

Stresses at the Centroid, Case 1
(Error Tolerance 5 ksi)

| -e= ji=1, et |is2, =2 |ie1, =2

| J | | |

| or | 2.868 [-93.220 | 5.406 |

| ei | 1.521 [-83.210 | 4.058 |

| eq | 1.347 | -.010 | 1.348 |

| | L I J
TABLE 13

Strﬁsses at the .Centroid, Case 2
(Error Tolerance 5 ksi)

f ! . . 1 I K . 1
! --- !:=1, i=1 |L|=2, = !t-‘-], =2 J[
| ot | -2.114 |-74.970 | 19.880 |
| oy | -4.015 |-75.830 | 21.410 |
| ey | 1.901 | .960 | -1.530 |
1 I l L J

A comparison of the numbers in tables 10 and 11 with tabies 12 '
and 13 shows that the error at the centroid of the parent triangle is

strongly linked to the error in estimating = For exampie in the

g .
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TABLE 10

Stresses at Corner, Case 1
(Errer Tolerance 5 ksi)

i =1, =1 |i=2, j=2 |i=1, j=2 | Norm |
| | | | | I}
I

T | 2.296 [-99.701 | 9.388 |  --- |
| 9 | 2.175 |-96.435 | 6.458 | wen |
| £y f L1217 | 3.286 | 2.930 | 5.277 |
| ; | -.654 | 3.225 | -2.401 | 4.728 |
|  Error | I I i i
% Overest. | +8% i -1% ! -10% ! -10% j

|
TABLE 1
Stresses at Corner,-Case 2
(Error Tolerance 5 ksi)

1 ] i ] 1 1
| -——- 1i=1, j=1 1i=2, ;=2 !i=‘l, e ! Norm |
1 | i |
oy | -3.157 |-75.793 | 21.187 | e |
1 oy | -1.463 |-73.729 | 18.855 | ——-
{ £ | -1.694 | -2.084 ! 3.013 | 5.029 |
! 85 | =-2.300 | -1.440 | 2.770 | 4,696 |
| Error | | | | |
| Overest. | +14% | -12% | -6% | -7% |
l | | | | |

As can be seen the error stress tensor norm is underestimated by
about 10% in the first case and 7% in the second case. Percentage of
error underestimation for each component of e; should be used only
for qualitative comparisons since their values depends on the

orientation of the reference axis.
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TABLE 14

Tavyior Series Expansion, Case 1

1
i -—- iConstant i Linear i Residual |
| | | ! ]

I
| e, | 2.88 | -.38 |  -.186 | .
| 0,2 | -93.220 | -6.280 | -.200 |
| Oy | 5.406 | 3.484 | .498 |
1 L | i ]

TABLE 15
Taylor Series Expansion, case 2

| I ] 1 |
| - | Constant | Linear | Residual |
| L ] 1 !
| ey | -2.114 | 1.930 | -.277 |
| Ga2 | -74.970 | -1.800 | .250 |
| 9,a | 19.880 | -3.860 | .240 )
| 1 1 { 1

exists between the actual error underestimation and the values of the

residuat terms.
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first case, &, at the centroid {.010 ksi, see table 12) is negligible
compared with £, at the corner (3.266 ksi, see “table 10) and so is
the underestimation of e, which is 1% of ﬂsq" (see table 10).

Meanwhile, still in the first case, c,, at the centroid (1.347 ksi, see

8-
table 12) is of the same order of magnitude of ¢, at the corner (2.930
ksi, see table 10) and the underestimation of g, turns out to be 10%
of lz;[ (see table 10). This is a strong indication that the accurancy
of the error estimate is strongly dependent on the fundamental
assumption that at the centroid of any triangle the error of the
stresses is negligible compared to the error at the corners.

The other fundamental assumption is that the exact soiution for
stressaes can be assumed to be linear .within each triangie. To see how
correct this assumption is for the first case, the value of c;? have
been computed at the corners marked by tﬁe small circle in figure 40
by taking the Tayior expansion at the centroid of the parent triangie.
In table 14 the constant and linear terms as well as the residual of
the Taylor expansion are listed for each stress component. The same
procedure has been carried out for the second case. For consistency
with the theory exposed in the previous chapte'r, the corner marked
by the little square was use intead of the one marked by the small
circle (see figure 41). The results are displayed in table 15
The residual terms indicates by how much ¢; could be underestimated
due to the nonlinear behavior of c;. In the worst case the value of
the residual terms is about .5 ksi which is of the same order of

magnitude of the error underestimation. However no coorelation
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7.5 EXAMPLE NO. 4

The fourth example consists of the analysis of a beam with flanges
under a concentrated load applied in the center as shown in figure
42. The thickness of the web is 0.5 inches, The area of the flange
is 0.5 square inches. The same material is used for both flanges and
web. Its properties are:

Young moduius 10,000 ksi,

Poisson ratio 0.2

yield stress 10 ksi.
Since both the structure and the loading are symmetric the analysis
has been run only for half of the beam as shown in figure 43. The
same figure also shows the patches u_sed for modeling the structure.
The small triangles represent the center point of each patch in the
parametric space. On the right edge the load has been evenly
ditributed along the web in order to avoid singularities. The left
edge has been left free to move verticailly in order to allow the web
to expand freely, so that the solution is as close as possible to the
beam theory solution. Consequently the reaction on the left edge has
been modeled as a constant shear applied to the web. The pin on the
lower left corner has been added to remove any rigid body motion.
The input file is 35 lines long. The initial mesh is shown in figure

44,

31
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Example no. 4, mesh at iteration 9

Figure 45:



The error tolerance has been specified as 25% of the yield stress (2.3
ksi) for both the flanges and web. Convergence has been reached in
5 iterations. The final mesh is shown in figure 45 and it consists of:

333 nodes,

. 645 degrees of freedom,

58 truss bars,

388 triangles.

Color coded stress levels in the flanges and web (based on Von Mises
criterion) are respectively shown in figures 46 and 47. The lowest
stress level is blue, the highest is red.
It ‘is interesting to note that since the structure shown in figure 43 is
symmetric and the load is antisymmetric the final mesh should be
symmetric. The reason this does not happen is that, after the initial
meshing, the mode! is not symmetric anymore.

To support this conclusion the example has been run a second time
using the symmetric initial mesh shown in figure 48. Convergence
was reached in 4 iterations, one less than in the first run since the
triangle initiaily used in the corners are half in size of those used in
the first run. The final mesh is shown in figure 48 and it is
symmetric as expected. it consists of:

235 nodes,
439 degrees of freedom,
48 truss bars,

392 triangles.
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TABLE 17

Example no. 4, Highest Error of Axial Stress in Bars
(Error Tolerance 2.5 ksi)

1 ] T i
IR
I ] ) 1
| 1.500 | .000 | 1.125 |
| 2.500 | 1.000 | 1.125 |
| 2.500 | .000 | 1.124 |
| 1.500 | 1.000 | 1.124 |
| ! il —

in the truss bars is much less than the error tolerance. This can be
explained by the fact that all the bars were forced to be split by the
triangles adjacent to them even though the error indicator was less
then the error tolerance. -

It should be notad that the beam theory solution is not the exact
soiution for this problem. For examplie the shear distribution at the
web boundaries is constant for this exampie while it is parabolic in
the beam theory solution, Still, since the error tolerance specified is
not too small, the error due to the fact the the solution used for
comparison is not exact, is negligible with respect to the error
tolerance itseif.

in fact the same example has been run for both initial meshes,
with smailer error toierances. As a result it is found that the smaller
the error toler‘at_‘nce, the more numerous are the triangles with an

error stress tensor norm larger than the error toleranca itself. On

the other hand the error in the truss bars is 'always less than the
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The results from the first and second run have been compared with
the beam theory solution. The modality of the comparison is the same
of the previous examples. In both cases, in ail bars and triangles,
the error is less than the error tolerance. This indicates again that
the precision of the final solution is essentiaily independent of the
initial mesh.

'n table 16 the four highest error stress tensor norms found in

corners of triangles are listed.

TABLE 16

Example no. 4, Highest Error Stress Tensor Norms
(Error Tolerance 2.5 ksi)

| T T |
! Xy ! Xa ! "3;',‘" !
! 1 1 1
| 1.250 | 375 | 2.181 |
| 3.875 | .825 | 2.181 |
| 4.000 | .375 | 2.181 |
| .000 | .625 | 2.161 |
| | ) j

In the first two celumns the points coordinades are given, in the
third coiumn the values of the norm are given. It can be seen that
the error stress tensor norm is at all points is well beilow the error
tolerance. In table 17 the four highest error stress found in bars'
ends are listed.

In the first two columns the ends coordinades are given, in the third

column the vaiues of the error are given. |t turns out that the error
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Chapter VIl
EXTENSION OF THE PRESENT SYSTEM TO ANALYZE
: SHELL STRUCTURES
As stated in p;-evious chapters, the sytem presented here has limited
capabilities. It was also said that the generality of the approach used
for this new system made it easy to expand its capabilities. In this
chapter the extension of the present system to perform static analysis
of shell structurss will be discussed in some detail.

The extention of the prasent system to perform analaysis of shell
is straightforward. The shell could be desribed using the same
patches extended to three dimensional space.

The elemenfs used would be the constant strain triangle used in
the present system coupled with any one of the triangular plate
elements with 9 degrees of freedom available today.

Splitting of triangles and error computations would be done exactly
in the same way as done on the present system The only difference is
that there would be two arror computations, one for in-plane stresses
and one for bending, each one with its own error tolerance. The
error measurement for bending moments can be derived directly as it
has been derived for stresses in 2-D, since bending moments are also
2-D tensors, as long as it is assumed that moments are constant all

over the triangle. This assumption is not onea hundred percent
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error tolerance. This is consistent with the fact that the beam theory
solution gives very accurate values for stresses in the flanges but
not always in the webs as in this case.

Finally this example shows how ;imply the new system can handle
structures with discontinuities as wegll as different types of structural

alements.
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Chaptar I1X
CONCLUSIONS

A new, design oriented approach to stress analysis has been
developed. in this approach called "black box approach”, FEM
technology and a new seif-adaptive mesh techniques have been
conbined to allow the structural designer to perform stress analysis
without any knowiedge of FEM. The key to this resuit has been the
formulation of an aigorithm which allows to determine with ease the
error in the stress components for each el;ament. This algorithm has
been tailored to constant strain element.

A 2-D softwars system has been implemented to show how the
black box approach works in practice. Exampies shows that the
system is behaving as expected. In fact the precision of the error
estimate has been shown to be vary accurate from an engineering
point of view, which makes the syst;m quite reliable.

The generality of the approach allows to expand the system with
retative ease. The extension to static analysis of shell structure has
been discussed in detail and it has been shown, that from a
conceptual viewpoint, no additional work is necessary.

Faise convergence which is a potential problem has been discussed

in some detail.
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correct since in 9 DOF plate triangles there are always some modes
shapes that represent linearly varying bending moments. However
these modes shapes are incomplete and they do not contribute
anything to the precision of the analysis.

. From the computer implementation viewpoint the extension would
require a significant amount of changes in the preprocessor and
postprocessor. Relatively few changes would be required in the self-

adaptive analysis module.
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Appendix A
PRECISION OF ERROR ESTIMATE IN ONE DIMENSION

Let's consider the boundary problem in the form
u,,.=f(x)...................(A.l)

where x is such that 0sxsl. Boundary conditions can be any as long
as they keep the problem self-adjoint. - Let's consider now a point X,
such that 0sx <l. The soultion for the first derivative around this

point can be expressed as
n
Moe = 3,73, (8%) . . oo . (A.2)

where a, is the value of u,at x, and a, is the first non zero

coafficient of the Taylor series expansion. Integrating once we get
= cora ( ax)va,axy /() L (A3)

where the constant o.f integration ¢ is the value of u at x,.

Lat's now consider two points at locations x,*d and Xe *2d such
that (x,*2d)sl. |f FEM is used and the points at locations x, and
X, *2d are contiguous nodal points, the solution at these points is
exact because of superconvergence [ 3]. The first derivative

between the two points is approximated by a constant function

s, 2a2tad /) L (A
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It is believed that this research proves convincingly that the black
box approach is a viable way to perform stress analysis and that it
can dramatically increase the reliability and usability of the Finite

Element Method.
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E, = ((n-D2"*Da d/(n*1) ... (A2)

By simple inspection is easy to notice that the point at which the true
error is underestimated by the largest factor is at node x,*2d in the
second element, regardless the value of n. If we define r as the

ratio between the true error and fhe error estimate we havé
P (D201 L (A3

Equation A.13 gives the factor of how much the error s
underestimated as a function of the polynomiai content of the solution.
1¥ n=1 then r becomes 1 and no underestimation takes place. Also it is
important to notic-e that the error astimate of equations A.7 and A.8
is proportional to d and thus it is_szsible to identify the polynomiai
content of the solution by observing how the error estimate changes
when a new nodal point is inserted in the middle of the first element
and the all procedure is repeated again.

It shouid finally noted that this conclusion were reached using the
Taylor series expansion. This reguires that d itseif has to be

reasonably small. When d tands to zero equation A.13 becomes exact.
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If the grid point at location x,*d is inserted, the aproximate

derivative between x, and x,*d is approximated by
s, 3,73,d /(n*1) .. ... ... ... ... .(AS5)
and between x *d and x,*2d is approximated by
el n
s, = a3,*(2 -Nad/(n*1) . .. ... ... ..(A.8)

The error estimate within the elemant connecting x,*d and x,*2d is

also
D, = Is,-s,| = (2 -Da,d /(n*1) . . .. ... .(AD
The error estimate within the element_connecting x, and x,*d is
Lo n
D, = is,-s,| = (2 -Na,d/(n*1) . . . .. .. .(A.8)

It is possible now to compute the true error of the first derivative at
the nodes of the two element. !n the first element at node x, the

arror is
B, =a,d /(1) . . ... (A
In the first element at node x,*d the error is
Ep=nad/(n*1) . ..o . (ALI0)
In the second slement at node xo*d the error is
n n ’ '
E3= {2 -n)a,d /(n*1)| . . . .. ... .. .. (A1)

In the second element at node x,*2d the error is

109



13.

14.

13.

16.

17.

18.

19.

M.S. Shephard, R.H. Gallagher and J.F. Abel, "Synthesysis of
Near-Optimum Finite Element Grids with Interactive Computer
Graphics” International Journal for Numerical Methods in
Engineering, Vol. —15, 1380, pep. 1021-1039.

M.S. Shephard, "Finite Element Grid Optimization-A Review",
Finite Element Grid Optimization (Eds. M. S. Shephard and R.
H. Gallagher), ASME Special Publ. PVP-38, 1979.

G.F. Carey and D.L. Humphrey "Residuals, Adaptwe Reﬂ,nement
and lterative Solution in Finite Element Computations”, Finite
Element Grid Optimization {Eds. M.S. Shephard and R.H.
Gallagher), ASME Speciai Pubi. PVP-38, 1979.

S.R. Gago, D.W. Kelly, O0.C. Zienkiewicz "Adaptive Finite
Elemnt Schemes and A-Posteriory Error Analysis, an Evaluation
of Alternatives.” New and Future Deveiopments in Commercial
Finite Eiement Methods, (Ed J. Robinson), Third World Congress
and Exhibiton on Finite Element Methods, pp. 512-528, 1981.

E.R.A. Olivera, "Optimization of Finite Element Solutions”, Proc.
3rd Conf. on Matrix Methods in Structural Mechanics, Wright-
Patterson Air Force Base, Ohio, October 1971.

D.W. Kelly, J.P. De, S.R. Gago, O.C. Zienkiewicz, L. Babuska
"A Posteriory Error Analysis and Adaptive Processes in the
Finite Element Method: Part |-Error Analysis.” International
Journal for Numerical Methods in Engineering, Vol. 19, 1983,
pp. 1583-1619.

J P. De, S.R. Gago, D.W Kelly, O.C. Zienkiewicz, L. Babuska
"A Posteriory Error Analysis and Adaptive Processes in the
Finite Element Method: Part |i-Adaptive Mesh Refinement.’
International Journai for Numerical Methods in Engineering, Vol.

19, 1983, pp. 1621- 1656.

112



10.

11.

12.

REFERENCES

Y.C"._Fung, Foundations of Solid Mechanics, Prentice Hall, Inc.,
New' Jersey, 1965.

S.P. Timoshenko and J.N. Goodier, Theory of EIasfici‘_cx, McGraw
Hill Book Company, Inc., New York, 1851.

G. Strang and G.J. Fix, An Analysis of the Finite Element
Method, Prentice Hall, inc., New Jersay, 1973.

Q.C. Zienkiewicz, The Finite Element Method, McGraw Hill Book
Company, |nc., New York, 1977.

R.H. Gailagher, Finite Element Fundamentals, Prentice Hall, Inc.,
New Jersey, 19735.

K.J. Bathe and E.L. Wiison, Numericai Methods in Finite Element
Anaiysis, Prentice Hall, inc., New Jersey, 1976.

R.C.J. Howland, "On the Stresses in the Neighbourhood of a
Circuiar Hoie in a Strip Under Tension”, Transactions, Roval
Society of London, Vol. 228, 1930, page 49.

D.J. Turcke and G.M. McNeice, "Guidelines for Selecting Finite
Element Grid Based on an Optimization Study”, Computers and
Structures, Vol. 4, 1974, pp. 499-319.

B.A. Szabo and A.K. Metha, "P-Convergent Finite Element

. Approximations in Fracture Mechanics"”, {ntarnational Journal for

Numerical Methods in Engineering, Vol. 12, 1978, pp. 551-560.

. Babuska and W.C. Rheinboit, "A-Posteriory Error Estimates
for the Finite Element Method", !nternational Journal for
Numerical Methods in Engineering, Vol. 12, 1978, pp. 1597-1615.

A. Peano, R. Ricconi, A. Pasini and L. Sardella, "Adaptive
Approximations in Finite Element Structural Analaysis” Computers
and Structures, Vol. 10, 1979, pp 333-342.

R.J. Melosh and P.V. Marcal, "An Energy Basis for Mesh
Refinement of Structural Continua”, International Journal for
Numerical Methods in Engineering, Vol. 11, 1977, pp. 1083-1092.

111



