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I. INTRODUCTION AND SUMMARY

During the past year, we have focused our research efforts in the following areas:
concurrency control for replicated shared files in BMD systems; heuristic task assignment
for BMD applications; resilient commit protocol for shared files; and the fault-tolerant
locking for shared-memory systems. Each of these is briefly discussed below.

1. Concurrency Control for Replicated Shared File in BMD Systems

We have developed the exclusive-writer protocol (EWP) for concurrency control
for replicated shared files in BMD system. EWP avoids inter-computer synchronization
delay and requires low implementation cost. However, when there are conflicting
updates, EWP accepts only one update and discards the others. For many BMD
application files (e.g. track files), this is acceptable. But, certain files may not tolerate
with discarding of conflicting updates. To remedy this, the EWP is extended with a
locking option to avoid discarding of conflicting updates; the new protocol is called EWL.
Intercomputer synchronization delay is incurred when such an option is activated. The
EWL works exactly like the EWP when there is- no update conflict. When any update
conflict exists, EWL behaves like the Primary Site Locking (PSL).

To compare the performance of various concurrency control protocols, we study
the response delay in terms of the execution response time and update finalization
response time of EWP, EWL, PSL, and basic timestamp. The key parameters are update
conflict probability, cost of locking, sizes of control message and update message. The

comparison results are presented.
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EWP has no transaction restarts, database rollbacks, or deadlocks due to shared
data access. But EWP ensures only a limited form of serializability. EWL is an extension
of EWP that ensures full serializability. EWL has no database rollbacks, either. Also,
EWL guarantees that a transaction will be restarted at most once. To further reduce
restarts, cach site can independently and dynamically switch between primary site locking
and EWL.

We conclude that if limited serializability is acceptable, EWP should be used due
to its simplicity and short response time. Otherwise, EWL has much appeal since it has
good performance over a wide range of parameter values and permits dynamic switching
with PSL to further improve performance.

2. Henristic Module Assignment

Our previous research rcsults on measurement and estimation of intermodule
communication (IMC) provide us important insights into the task assignment problems.
Module assignment problems usually require excessive computation and exact solution for
a large number of modules (e.g. 25) and a large number of computers (e.g.10) is
computationally infeasible. This motivates us to propose a heuristic technique for module

assignment.

An objective function based on the concept of minimizing boitleneck (the
utilization of the most heavily loaded processor) is proposed as a criterion for module
assignment to achieve minimum port-to-port time. This function has been used to find a
good assignment for the DPAD system, via an exhaustive search through the entire space
of all possible module assignments.
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To reduce computation, a technique based on IMC data is proposed to combine
modules into clusters. Using the UCLA DPAD simulator we compare the module
assignment generated from the heuristic algorithm with that generated from the
exhaustive search. We noted that the heuristic algorithm yields good assignment.
Currently, we are further investigating the effect of precedence relationship on port-to-
port time and developing techniques to incorporate the precedence into our heuristic
module assignment algorithm.

3. Resilient Commit Protocol

Thcpmofpostinganupdatcisknownasoommit. Two phase commit is a

during update. This protocol is classified as blocking commit because when a coordinator
site (the site that originates the update) fails during the update broadcast, other sites are
blocked from using the file copies until the failed coordinator recovers and completas the
unfinished commit work. This technique has been implemented in several systems.
However, for real-time systems, blocking commit is not acceptable. Therefore we propose
a low cost non-blocking protocol that is resilient to multiple failures. In the proposed
commit protocol, sites are linearly numbered and updates are broadcast in one phase
according to this number sequence. Failures are recovered by the smallest numbered
surviving site. Further, we also show how to incorporate this commit protocol into the
existing concurrency control techniques such as EWP and PSL, and discuss the site

recovery procedure.
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4. Fault-Tolerant Locking Protocol For Shared-Memory Systems

To provide fault tolerance for shared-memory systems, the Fault-Tolerant Locking
(FTL) protocol has been proposed. FTL maintains the mutual consistency of replicated
file copies and the internal consistency of all shared files in the event of failures of
computers, shared memory modules, and/or communication links. An implementation of
FTL for the ARC multi-pprocessor testbed is presented. This implementation is based on
the copy of the testbed application program dated November 4, 1982. Four experiments
are proposed to assess the performance of the FTL protocol in the testbed. These
experiments are currently being evaluated by the System Development Corporation (SDC)
at Huntsville, Alabama.
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THE EXCLUSIVE-WRITER APPROACH TO UPDATING REPLICATED FILES IN
DISTRIBUTED PROCESSING SYSTEMS

1. INTRODUCTION

Distributed processing has commonly been used because of its flexibility,
reliability, and cost effectiveness. Distributed processing has many design implications.
One of these is preserving file consistency, which arises when two or more transactions
(or transaction modules, TM) concurrently access the same file in a conflicting manner
(i.e., at one access is a write). This problem is further complicated since files may be

replicated to reduce read access times and to improve reliability.

To preserve file consistency, consistency control protocols (CCP) are used (see
surveys in [BERNS81] and [LIN83]). Distributed processing systems need CCP with
short response times. Such response times are measured from the transaction's arrival to
when its file updates are available. In some applications, file updates need only be
tentative (e.g., radar tracking in which object positions are continuously changing). So,
we use the following response time measure.

Ezecution Response Time (Tg): the time from the transaction’s arrival until it

has completed its first execution, thereby making available tentative file updates.
For other applications (e.g., banking transactions), a transaction must be assured that
previous updates to its input files are finalized (i.e., will not be undone due to database

rollbacks) before the files can be used. Here we use,

Update Finalization Response Time’ (Ty): the time from the transaction's arrival

! The site that first knows an update is finalized depends on the CCP. In particular, for
some CCP this site may not be the tranmsaction’s execution site. Qur reason for not
always using the transaction’s execution site relates to the fact that distributed
processing applications are often performed by a sequence of transactions (e.g.,
[GREE80]). So, communication delays are reduced by assigning a transaction to the site
which first knows that the updates of its predecessor have been finalized.
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until its update is known to be finalized at some site.

CCP can be characterized by whether they check for conflicting file accesses
before or after transactions access shared files. Protocols that check after shared files are
accessed (e.g., [KUNG79], Basic Timestamps {BERN81|, and the majority vote algorithm
[THOMTS|) are seen as optimistic since they are optimistic that a conflict will not occur.
Conversely, protocols that check before permitting shared file accesses (e.g., primary site
locking [STON79|, SDD-1 timestamp protocols [BERN78|, and centralized locking
[GARCT8]) are called pessimistic. Pessimistic protocols delay completing a transaction’s
first execution, or execution response time, Tz, until messages are exchanged for conflict
checking which causes inter-computer synchronization delays (ICSD). Optimistic
protocols avoid such delays for Tz But existing optimistic protocols repeatedly restart a
transaction uantil it executes without conflict, which can cause long delays to finalize a

transaction’s update, T, and saturate the computing and communication resources.

In this paper, we present two new optimistic protocols: the exclusive-writer
protocol (EWP) and the exclusive-writer protocol with a locking option (EWL). We
describe the operation and implementation of EWP in section 2 and EWL in section 3.
In section 4, we study the response times of EWP, EWL, primary site locking (PSL), and

basic timestamps (BTS). Our conclusions are presented in section 5.

2. The EXCLUSIVE-WRITER PROTOCOL (EWP)

The ezclusive-writer protocol (EWP} is a low-cost and special-purpose optimistic
protocol for updating replicated files. Under EWP, each file has a single designated
ezclusive-writer (EW), and all copies of a file have the same EW. Only a file's EW can
write (update) the file. Other transactions send to the file's EW an update-request
message which includes the proposed update (see fig. 1). Conflicts are detected by the
use of update sequence numbers (SN). An SN is attached to each file copy, and update-
requests include the SN of the file copy read. If an EW accepts an update-request, it
increments the SN of its file copy, and distributes the update with the new SN (see fig.
2). Updates are written in order of their SNs. A file’s EW accepts an update-request if
the SN in the update-request is identical to the SN of the EW's file copy, since the
requesting transaction read the most current file copy. Otherwise, a conflict occurred,

II1-2
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and the transaction is said to have "lost the conflict”. An update-request that loses a

conflict s discarded, and, if required, the requesting transaction is notified.

Fig. 3 presents an algorithm for EWP operation at site i for file F;. Let EWg be
Fy's EW, SN, ; be the SN of F at site 5, and RMSG be an update-request message. We
use the programming language notation for records to indicate fields in messages;
RMSG.SN is the SN field in the update-request message and RMSG.UP is the proposed
update. UMSG is defined similarly for an update message. The symbol =" is used to
indicate an assignment statement, and text enclosed in '+ ... *)' are comments. The
algorithm operates under the following assumptions: transactions only access F which is
both read and written; at each site, transaction and protocol control processing are
performed atomically (i.e., conflicting file accesses are prevented by using local
consistency control techniques such as semaphores); SN fields have a sufficient number of
bits so that an update to F, will be written at all sites before the same SN value is
assigned to another update for F; there are no site failures; the network guarantees that
messages are eventually received without error; and when the system begins operation,

copies of the same file are identical and their SNs have the same vale.

EWP preserves mutual consistency and the serializability of successful

transactions (i.e., those whose updates are distributed). The latter property is called

limited sersalizability’, since it is limited to transactions whose updates are distributed.
We note that consecutive updates to F, are assigned consecutive SNs. This is due to
EW; always incrementing its SN for F; before a F, update is broadcast. Mutual
consistency follows from the fact that consecutive F; update messages receive
consecutive SNs, and updates are written in order of their SN. Hence, the same updates

are written in the same order to all copies of F,.

To establish limited serializability, we present a serial order for executing
successful transactions which results in the same values for F; as when transactions
execute under EWP. Let TM{m) be the m™ successful transaction for F. We show that

TMm+1) read a copy of F; to which TM{(m)'s updates were the last to be written, or

! Limited serializability implies internal consistency, if the database is initially internally
consistent and each_tra_.nsactton preserves internal consistency, since: only transactions
whose updates are distributed affect the database, and these transactions are serializable.
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TRANSACTION TM HAS JUST COMPLETED ITS EXECUTION
1. RMSG.SN := SNy,
2. RMSG.UP := TM's update to F;
3. send RMSG to EW,

AN UPDATE MESSAGE (UMSG) WAS RECEIVED

1. once UMSG.SN = SN;;+ 1
(* Wait until in sequence *)

a. SN‘E',' = UMSG.SN
b. update F, ; based on UMSG.UP

AN UPDATE-REQUEST MESSAGE (RMSG) WAS RECEIVED
(* EW, resides at site 5. *)

1. if RMSG.SN = SN, (* No Conflict #)
a. SNyii= SNy +1
b. update F}; based on RMSG.UP
c. UMSG.SN 1= SN ;
d. UMSG.UP := RMSG.UP

e. broadcast UMSG to all other sites with a
copy of F}
2. otherwise (* Conflict *)

a. discard RMSG

b. if required, notify the requesting transaction

Fig. 3. EWP Operation at Site & for file F}
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TMm+1) read from TMm). (This is equivalent to a serial execution in which TM{m)
executed to completion then TMm+1) began execution and read TM{m)'s updates.)
Since UMSG(m+1) (TM(m+1)'s update message) is the m+1* F, update,
UMSG(m+1).SN = m+1. So, TMm+1)'s update-request message (RMSG(m+1)) must
have had RMSG(m+1).SN = m. Since a copy of F, with an SN of m was last written
by TM(mj), TM(m+1) read from TM{m). Hence, EWP preserves limited serializability.

EWP has much appeal for distributed processing systems. Foremost, EWP is
simple to implement. Since it does not use locking, EWP has no deadlocks due to shared
data access. Also, because an update is not written until the EW accepts it, EWP has
no database rollbacks. Since update-requests that lose a conflict are discarded, EWP has
no transaction restarts. EWP has no ICSD for T since EWP is optimistic. In addition,
T{EWP) is small even when conflicts are frequent since: the only source of ICSD is
checking update-requests at the EW's site; and Ty, never includes a wait for transaction
restart. However, EWP is not a general purpose protocol since it only ensures a limited

form of serializability.

2.1 EWP Application Areas

For many applications, discarding update-requests that lose a conflict is not
acceptable. However, EWP has much appeal for applications such as: real time feedback
control in which a conflict occurs only when a real time constraint has been violated, and

data collection in which occasionally discarding an update-request has little overall effect.

For example, EWP is currently used in the Distributed Processing Architecture
Design (DPAD) [GREE80] for updating radar tracking data. In the DPAD, a record is
maintained in the track file for each object detected by radar. Tracl:c file records are
updated only as a result of radar returns for the object. The real time constraint of
concern here is that updates to an object’s track record must be completed before a new
radar beam is sent for the same object. (The intent is to direct a radar beam based on
the object's most recent sighting so that the beam encounters the correct object.) Thus a
conflict occurs only when the real time constraint is violated (e.g., track processing for

record k was not completed prior to scheduling a radar beam for the object associated




with record k). By discarding an update-request that loses a conflict for the track file,
system load is reduced which facilitates meeting real time constraints. Of course,
information is lost when an update-request is discarded. However, this information can
be recovered from future radar returns which, hopefully, will arrive when the system is
not so heavily loaded. Thus, under the very extreme conditions of violating a real time

constraint, discarding update-requests that lose a conflict has appeal.

2.2 EWP With Basesets That Have Multiple Files

The files a transaction reads and writes are referred to as its baseset. When a
transaction’s baseset consists of several files which have the same EW, the update-
request should include the SN for each file in the baseset. The EW accepts the update-
request if the SN for each file in the update-request is identical to the SN of the EW's
file copy; otherwise the update-request is discarded. When an upd-ate—request is

accepted, the SN of each file written is incremented, and file updates are distributed.

If a transaction’s baseset includes files with different EWs, a separate .update-
request is sent to cack EW. An update-request is accepted only if the SN for each EW's
file copy is the same as the file's SN in the update-request. For real time applications,
the communication costs and time delays required for EWs to inform one another that
an update-request has been accepted may be excessive. Thus, it is desirable for the

transaction’s entire baseset to have the same EW.

2.3 EWP Implementation Considerations

When a transaction accesses a file that is not replicated at its execution site, a
copy of the required file data must be obtained along with the file copy’s SN. The SN of
the remote copy is inserted in the transaction's update-request in the same manner as if

the site had a local file copy.

How transactions should be assigned to sites (referred to as task assignment in
[CHUS80]) is aflected by utilization due to transaction executions and inter-transaction (or
intermodule) communication [CHU84]. Assigning an EW to a transaction’s execution
site increases the site's utilization due to EW executions. However such an assignment

can decrease communication overhead, since a transaction does not send an update-
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request message for a file whose EW is assigned to the transaction’s execution site.

In EWP, non-EW transactions can not directly modify files. Instead, writing
updates is deferred until the EW has checked them for conflicts. Referred to as deferred
update writing, this approach requires: providing a transaction with a temperary copy of
the file data it modifies, and writing a transaction’s update to the site's permanent file
copy once the EW has accepted the transaction’s update-request. Deferring file updates
can be accomplished with little additional overhead if shadow file copies are used for site
fault tolerance [GRAY81]. With this technique, the operating system creates a
temporary copy of file data whenever a transactior first writes the data; after the
transaction finishes executing, the temporary copy becomes the site’s permanent file
copy. Deferred update writing can be achieved by not modifying the permanent file

copy until the EW has accepted the transaction's update-request.

Interrupt scheduling affects a transaction’s ability to read a file copy at any time.
For example, if ipput messages preempt transaction executions, receiving an update
message might cause a file copy to be written while some transaction was reading it. In
the DPAD, this problem is resolved by using a cyclic dispatcher which ensures non-
preemptive execution of transactions. Systems that permit preemption require
synchronization techniques such as semaphores to preserve data consistency during

transaction execution.

EWP message volume can be reduced as follows. Site ¢ retains a copy of all
update-request messages it sends. If an EW accepts a site ¢ update-request, an update-
accepted conirol message is sent to site i (instead of an update message), and site ¢
writes the update based on its saved update-request. Thus, message volume is reduced
since update messages should always be larger than control messages. This approach
can be applied to broadcast networks by having requesting sites broadcast their update-
requests (which are saved at all sites), and EWs broadcast an update-accepted message

when an update-request has been accepted.

Since sites may fail, it is desirable that EWP: 1) preserve database consistency
when sites fail; and 2) permit resumption of database operations at sites that have

recovered. Regarding 1), if sites write updates atomically, only the failure of an EW site
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affects consistency, since the EW site for F could fail before an update message has been

sent to all copies of F;. This can be resolved by having for each EW a backup that

assumes control if the current EW site fails.! For 2), we can either: maintain a log of
updates missed by the failed site; or the site can, after recovery, obtain (via a remote

read) a current copy of the data it requires.

3. EXCLUSIVE-WRITER PROTOCOL WITH LOCKING OPTION (EWL}

We extend EWP so that it does not discard update-requests that lose a conflict,
and this is done in a way that minimizes transaction restarts. Our approach is to add a
locking option which is used only when a conflict occurs. In essence, we combine EWP

with primary site locking - PSL [STONT9).

We begin by describing the operation of PSL. PSL ensures serializability by
requiring transactions to get permission from the file's primary site (PS) before accessing
the file as shown in fig. 4. Specifically when the transaction arrives, a lock-request
message is sent to the file’s PS. The transaction waits until the PS replies with a lock-
grant message. This message includes the SN of the most current copy of the file. After
the transaction executes, the file's SN is incremented, and the transaction’s updates are
distributed with the new SN. Updates are written in order of thetr SNs. The PS treats

an update message as an implicit lock-release.

EWL combines EWP and PSL as shown in fig. 5. When a transaction arrives, it
executes under EWP. EWL's operation is the same as EWP's if the transsction’s
update-request is accepted. Otherwise: 1) the file's EW site becomes its PS; 2) the

update-request is treated as a PSL lock-request and is placed in a lock queue; and 3) the

transaction is restarted under PSL.?> The criteria for accepting an F update-request are:

1. The SN for F; in the update-request is identical to the SN of the file copy at
EW's site.

! A single backup can be extended to N-site resiliency as in [ALSB78].

% A site learns that a transaction will be restarted as follows. If transaction TM executes
at site f and updates F; with SN == n, then site + knows that TM will be restarted if site
f receives an update for F; with SN = n+1 but the update was not made by TM.
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2. F is not locked.

Fig. 6 contains an algorithm for EWL operation at site ¢ for file F;. We use the
same notation and assumptions as for the EWP algorithm with the additional

assumption that a transaction's baseset does not change when it is restarted.

We show that the algorithm in fig. 8 preserves mutual consistency and
serializability. First note that consecutive updates to F are assigned consecutive SN,
This is a consequence of: 1} at most one transaction has the authority to distribute
updates at any instant (i.e., the EW distributes updates if F; is not locked and the
current lock holder distributes updates if Fy is locked), and this transaction keeps update
distribution authority until its updates have been received by EW}; 2) a transaction with
update distribution authority does not execute until its copy of F; (and hence Fy’s SN) is
identical to EW)'s copy; and 3) Fy's SN is always incremented before its updates are
distributed. Mutual consistency follows since updates are written in the same order to

all copies of a file.

To establish serializability, let TMm) be the m* transaction for F} to have its
updates distributed. We show that the same value for F; would have been obtained by
a serial execution of the transactions in the order in which their updates were
distributed. Specifically, TM{m+1) read a copy of F} to which TM(m)'s updates were
the last to be written, or TMm+1) read fron; TM(m). Let RMSG(m+1) be TM{m+1)'s
update-request message, UMSG{m+1) be its update message, and ¢ be its site of
execution. By definition of TMm+1), UMSG(m+1).5N = m+1. If TM(m+1) was not
restarted, EW; distributed UMSG(m+1). So,

RMSG(m+1).SN = UMSG(m+1).SN- 1 = m

So, TM{m+1)} read from TMm). Now suppose that TM{m+1) was restarted. Let
SMk,i,t) be the SN of F; at site § when TMm+1) was scheduled for execution. Since
Fy's SN is incremented after TM m+1) executes and before UMSG(m+1) is distributed,

m+ 1 = UMSG(m+1).SN = SMk,i,f) + 1

Hence, SMk,i,t) = m. So, TM{m+1) read from TMm).
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TRANSACTION TM HAS JUST COMPLETED ITS EXECUTION

1. if TM was restarted

a.

SﬁﬁJZ== Sﬁhgi'l

b. update F}; based on TM's update

c. UMSG.SN = SN,

d. UMSG.UP := TM's update to F,

e. broadcast UMSG to all other sites with a copy of F}
2. otherwise

a. RMSG.SN = SN;;

b. RMSG.UP := TM's update to F}

C.

send RMSG to EW,

AN UPDATE MESSAGE (UMSG) WAS RECEIVED

1. once UMSG.SN = SN;;+ 1
(* Wait until in sequence *)

a.

b.

SN, ;= UMSG.SN
update F, based on UMSG.UP

2. if EWj resides at site ¢
(+ F; is currently locked #)

A.

b.

remove the first entry in Fy's lock queue and unlock F

if Fi's lock queue is not empty

1. lock F

ii. LMSG.SN = SN, (* LMSG is a lock-grant message #)

iil. send LMSG to the transaction )
with the first entry in F}'s lock queue
(* Delegate Update Distribution Authority *)

Fig. 8. EWL Operation at Site i for file £}
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AN UPDATE-REQUEST (RMSG) MESSAGE WAS RECEIVED

1. if RMSG.SN == SN, ; and F} is not locked
(* No Conflict *)

a. SN = SN+ 1

b. update F;; based on RMSG.UP
c. UMSG.SN = SN,

d. UMSG.UP .= RMSG.UP

e, broadcast UMSG to all other sites with a
copy of F

2. otherwise (* Conilict *)
a. put RMSG at the end of Fi's lock queue
b. if RMSG is the first entry in F}'s lock queue
i lock F} '
ii. LMSG.SN := SN, ;

iil. send LMSG to the transaction
with the first entry in F}'s lock queue
(* Delegate Update Distribution Authority *)

A LOCK-GRANT MESSAGE (LMSG) WAS RECEIVED FOR TRANSACTION TM

1. once LMSG.SN = SN;,'
(* Wait until £} ; is current *)

a. schedule TM for restart execution

Fig. 6. Continued
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EWL is more difficult to implement than EWP. However unlike EWP, EWL
ensures serializability. EWL has no database rollbacks. Since it restarts transactions
under a pessimistic protocol, EWL restarts a (ransaction at most once if the
transaction’s baseset does not change when it is restarted. Tz EWL) has no ICSD. The
ICSD for T EWL} are similar to those for T EWP) if the transaction is not restarted,

and similar to those for T((PSL) if the transaction is restarted.

3.1 EWL With Basesets That Have Multipile Files

The criteria for granting a lock must consider the possibility of deadlock. Thus
some form of deadlock management, such as avoidance, prevention, or detection, is

required.

There may be files in a transaction’s baseset that are read but not written. If
the transaction is restarted, the EW for such a file will not receive an update to indicate
that the file's lock should be released. So, after a transaction completes its. restart
execution, a lock-release message should be sent to the EW of each file which is read but

not written.

If all files in the transaction’s baseset have the same EW, the EW accepts the
update-request if for each file: the SN in the update-request is identical to the SN of the
EW’s file copy, and the file is not locked. If' a transaction's baseset includes files with
different EWs, a separate update-request is sent to each EW. An update-request is
accepted only if for each file in the baseset the file’s EW has the same SN for its file
copy as the SN in the update-request, and the file is not locked. For real time
applications, the communication costs and time delays required for EWs to inform one
another that an update-request has been accepted may be excessive. Thus as with

EWP, each file in the transaction’s baseset should have the same EW.

3.2 Dynamic Switching Between PSL And EWL

EWL’'s performance can degrade due to transaction restarts which increase load
and lengthen T, EWL improves on existing optimistic protocols since EWL can

guarantee that a transaction will be restarted at most once. However when restarts are
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frequent, pessimistic protocols are preferred since they have no transaction restarts.
Ideally, we should use an optimistic protocol when restarts are rare and not too costly
and use a pessimistic protocol when restarts are frequent and/or costly. A very
appealing aspect of EWL is that each site can independently and dynamically choose
whether to execute a transaction under EWL (whick is optimistic) or PSL {which is
pessimistic). Further, unlike other approaches to dynamic protocol selection (e.g.,
(BERN78] and [MILES1)}, dynamic switching between EWL and PSL is done without
addstional messages or delays to aynchronsze protocol selection. This feature results from
being able to use EWL and PSL concurrently for the same shared file (see fig. 7). Recall
that EWL already requires implementing PSL. So, a PSL lock-request is treated as a
rejected EWL update-request. Specifically, a lock-request received by EW, is placed in
Fy's lock queue until EWj selects it. Then, EW; sends a lock-grant to the requesting
transaction, and the transaction executes. EW, treats the transaction's update message
as an implicit lock-release. While switching between PSL and EWL requires no message
or delay to synchronize protocol selection, overhead may be required for sites to gather

the information necessary to choose which protocol to use.

3.3 EWL Implementation Considerations

Except for fault tolerance, the same implementation considerations mentioned for
EWP also apply to EWL. In addition, using EWL has implications on transactions

whose basesets change when they are restarted.

EWL can be made fault tolerant by employing an existing scheme for fault
tolerance which is applicable to PSL (e.g.,, [WALKS83]). The EWL update-request is
viewed as a PSL lock-request. If the update-request is accepted, this is immediately
followed by a lock-release. If the update-request is not accepted, EWL's operation

becomes the same as that of PSL.

In general, a transaction’s baseset may be different when it is restarted, since file
access patterns can be data dependent. This can be resolved by the transaction sending
a lock-release message to all EWs from which it received a lock-grant and sending an
update-request message to the EW of each file in its new baseset. Thus, if there is a

high probability that a tramsaction’s baseset changes when it is restarted, EWL might
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perferm poorly since it would have delays for locking and repeated transaction restarts.
Dynamic switching to PSL could alleviate this problem by using PSL for those

transactions that have a high probability of being restarted with a diflerent baseset.

4. RESPONSE TIME STUDIES

Here, we compare the response times of EWP and EWL with two existing

protocols: PSL and basic timestamps, an optimistic timestamp protocol' [BERNS1]. We
first develop analytic models for Tz and Ty, then derive crossover points for the
response times of the protocols, then perform numerical studies, and finally discuss our

results.

Let us describe the basic timestamps (BTS) protocol (see fig. 8). BTS preserves
mutual consistency and serializability by assigning globally unique timestamps to
transactions and their updates and by requiring updates to be written in order of their
timestamp. Since BTS is optimistic, after a transaction arrives it executes without any
ICSD. Then the transaction's updates are written to the database at its execution site.
An update-log is maintained in case updates are not written in timestamp order and
must be removed by performing a database rollback. BTS uses distributed conflict
checking. That is, the transaction's updates are sent to all other sites, and each site
checks that the updates are in timestamp order. If the updates are in timestamp order,
an acknowledgement indicating acceptance is returned to the sending site. Otherwise,
an acknowledgement indicating rejection is returned to the sending site. Transactions
whose updates are rejected are restarted in the same manner as their original execution.
The first site to know that an update has been finalized is the transaction’s execution

site when it has received an acknowledgement with acceptance from all Sther sites.

4.1 Response Time Models

To construct our response times models, we assume an environment similar to

that for the DPAD System in which:

! The algorithm in [BERN81] only applies to single copy database systems. However,
extensions to multiple copy databases are assumed in our analysis.
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1. A transaction’s baseset does not change if the transaction is restarted.

2. All files in a transaction’s baseset have the same PS for PSL and the same EW

site for EWP and EWL.
3. Transaction file requirements are known in advance.

4, The communication network is reliable, and sites do not fail.

Tg PSL) includes time from the transaction’s arrival until its lock-request is
placed in the lock queue; wait in the lock queue; time from lock grant processing at the
PS until the transaction is placed in its site execution queue; transaction’s wait for

execution; and execution of the transaction (see fig. 9). Thus,

Ty PSL;m,i) = Dpy(m,i) + Wi(m) + Deg{m1) + We(m,s) + Xg(m,i) 1)

where:
Te(PSL;m,5) = PSL execution response time for transaction m at site &

Dp;(m;i) = Pre-lock processing delay for tranmsaction m at site ¢ from
transaction arrival at site ¢ to enqueueing all of the tramsaction’s lock

requests

W(m) = Waiting time for file locks for transaction m: starts when the
transaction’s last lock request is enqueued and ends when its last lock is

granted

Dge(m,1) = Delay starting from lock grant processing of transaction m to when

the transaction enters the execution queue at site ¢
Wg(m,:) = Waiting time for executing transaction m at site ¢

Xg(m,1) = Service time for executing transaction m at site

Since PSL is a pessimistic protocol, updates are known to be finalized after the

transaction’s first execution.
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T{PSL;m,s) = Tg PSL;m,i) @)

where:

T PSL;m,s) = PSL update finalization response time for transaction m at site

Next consider the response times for BTS. Since BTS has no ICSD for Tg,
T BTS) consists of only the transaction’s wait for execution, transaction execution time,

and time for update-log maintenance (see fig. 10).
T BTS;m,i) = Wm,) + Xe{mi) + Y, (m,1) )
3

where:

Y){m,s) == Service time for update-log maintenance after transaction m

executes at site ¢

Under BTS, transactions are repeatedly restarted until they execute without conflict.
Let ¢{m,s) be the probability of restarting transaction m at site . The number of times

this transaction executes for each arrival-instance is
1 - Q(m:3) ((4)
where:
¢{m,1} = Probability of restarting transaction m which executes at site 1

To compute T {BTS), note that each time a transaction executes there are delays for
execution response time, conflict checking (i.e., wait for all sites to check the timestamp
of the updates and return an acknowledgement), and database rollbacks if the

transaction Is restarted.

TYUBTSm, ) = N4 m.ﬂ[Tﬁ(BTS;m,f) + max{Dgd{m,ij) + Do.(m. )}
1

+ q(m,1) Yp(m. n')]

where:
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Dg(m,i,5) = Delay from completing the execution of transaction m at site i to

completion of checking the timestamp ordering of its updates at site 5§

Dca(m,j,5) = Delay from checking the timestamp ordering of tramsaction m's
updates at site s until completion of processing of site 4’s

acknowledgment at site ¢

Yr(m,s) = Service time for database roilback of updates made by transaction m

at site ¢

We now consider response times for EWP. T{EWP) only consists of the

transaction’s wait for execution and transaction execution time (see fig. 11).

T EWPm,i) = Wg(m,) + Xg{m,i)

(6)
Ty EWP) has update request processing by the EW. Thus update finalization response
time is
TUEWP;m;) = T EWP;m,i) + Dgg{m,i) 0
where:

Dgg(m,s) = Delay from completing the execution of transaction m at site s until
update request processing has been completed for all of the transaction's

update-requests

From the discussion of EWL in section 3, Tg{ EWL) is identical to T EWP). So,

T{EWL;m,s) = T EWP;m,) . ®)

To estimate T({EWL), there are two cases. If the transaction is not restarted, T { EWL)
is the same as T {EWP). Otherwise, there are delays for: execution response time, time
from the transaction’s execution until update-requests have been placed in lock queues,
wait for file locks, time from lock grant processing until the transaction enters the
execution queue at its site, and another execution response time. {The time components

for the restart case are shown in fig. 12.)
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TAEWL;mj) = T{EWL;m,5) + (1 - ¢(m,¢))Dgg(m,s)

+ dms')[DEL(m!') + WL( m) + DG’E{m:'} + TE(EWerv')] (9)

where:

Dgi(m,s) = Delay from completing the execution of transaction m at site i until

all its lock-requests have been enqueued

4.2 Crossover Points For Protocol Response Times

By comparing the protocol response time equations, we derive crossover points

for the response time measures!. Let us first consider execution response times. From

(8), EWP and EWL have the same execution response times, so it suffices to compare

PSL, BTS, and EWL. From (1} and (8), we have Tg{ EWL;m,i}) < TgPSL;m,s) when
0 < Dpi{myi) + Wi(m) + Dge{m,) (10)
From (3) and (8), we have Tg{ EWL;m,1) < Ty BTS;m,i) when
0 < Yidmy) (1)
Comparing (1) and (3), we have Tg(BTS;m,3) < Tg(PSL;m,i) when '
0 < Dpy(m,i) + Wi(m) + Dge(m,i) - Yy(m,i) (12)
We observe that optimistic protocols have much appeal for execution response times.

Specifically, EWP and EWL have the smallest Ty, Tg{BTS) will also be small if the cost

of update-log maintenance, Y, is small.

Next, we consider update finalization response times. By comparing (2) and (9),

we have T((EWL;m,i) < T {PSL;m,s) when

DPL( mr'.) + WL(m) + DGE{mv') - DER(mr’)

) <
Am) < Dgy(m.1) - Dgg(myi) + W (m) + Dgg(my) + Welm,) + Xgm,i}  (13)

For EWL and BTS, we obtain a quadratic equation when comparing (5) and (9). Solving

! The parameters should be qualified by the protocol. For example when restarts are
frequent, Wg{BTS;m,5) may be considerably larger than W EWL;m,1) due to the
additional site utilization caused by BTS repeated transaction restarts.
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for both roots, we determine that T((EWL;m,i) < T,{BTS:m,i) when either {14a) or
(14b) holds.

& m,i) - [62(":,:] - 4a(m,:')c(m,t')] e

Am i < Zdm7 (142)

b m,s) + [bz(m,f) - 4@(m,a’)c(m,i)] Ve

amd 2 2d(m,) (14b)

where:

o m,i) = Dgy(m,i) -~ Dgp(m,s) + We(m,i) + Xe{m,i} + Wy(m) + D m, 1}
Hm,i) = Wi(m) + Deg(m,i) + Dgy(m,i} - 2Dgp(m,i) - Yr(m,1)
e(m,) = Yy{m,) + m;;x{DEc(m,i,') + Doa(m.g,9)} - Dgp{m,s)

Comparing (2) and (5), we have T((BTS;m,s) < T {PSL;m,s) when

Dpy(my3) + Wi(m) + Dgg(m,i} - Yy m,i) - m?x{DEc(m;"J) + Dey(msi)}
Dpy(m,i} + Wi(m) + Dgg(m,s) + We{m,i) + Xg(m,1) + Ye{m,1) (15)

dm,i) <
From (7) and (9), we have T({ EWP;m,i) < TEWL;m,i) when
0< dm:")[DEL(mii) - Dgg(m,s) + Wi (m) + Dl mys) + We(m,i) + Xi(m")] (16)
We observe from (13) and (15) that Ty{PSL) is smaller than T (BTS) or T{EWL) when
the restart probability, g, is large, since BTS and EWL have restarts but PSL does not.
From (14b), T(/EWL) is smaller than TBTS) for large g, due to BTS repeated
transaction restarts. Since Dg; == Dgp, (16) indicates that T(( EWP) < T EWL).

4.3 Numerical Studies

To better illustrate the interrelationships of parameters for Ty, numerical studies
are presented. To simplify our studies, we make several assumptions. First, all sites are
identical, and all transactions are identical. Thus, Wg = Wgm,), Xg= Xg(m,),
¢ = ¢(m,i), and W, = W;(m). Second, the delay for communicating and processing an
update message is the same for all types of update messages.  Thus,

D = Dgp{m,i) == Dgy(m,s} = Dg{m,i,j). Third, the delay for communicating and
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processing a control message is the same for all types of control messages. Thus,
D = Dpi(m,i) = Dgg{m,5} = D¢y(m,5,5). Fourth, the time for update-log maintenance
is the same as the time for database rollbacks. Thus, ¥ = Y,{m,) = Yg{m,i). Fiith,
we define R, ., as the relative delay for conflict checking of the slowest site and assume
that Ry, is the same for all transactions and sites, Let Dg- be the average value for
Dgdm,i,j) and Dy be the average value for Dp{m,js). Since D = Dg; and
m?x{DEc(m:",J) + Dea(m,j,i)}
D+ D

sum of the waiting time for transaction execution and the transaction execution time.

D s Doar Brax ==

. We define site response time as the

To further simplify our studies, time is normalized with respect to site response time.

Fig. 13 presents Ty as a function of restart probability, ¢, for selected values of
the times for processing and communicating update messages, D, and the times for
processing and communicating and control messages, D' . T{PSL) is unaffected by g
since PSL has no restarts. Also, PSL is not affected by D, since under PSL no update
message is sent prior to the update being finalized. Ty(PSL) increases linearly with D'
at a rate of 2, since for each transaction two control messages are required (i.e., lock-
request and lock-grant). T (BTS) increases geometrically with g due to repeated

max
-9
both D and D' due to distributed conflict checking and repeated restarts. T, (EWL)

with

transaction restarts (see (4)). Also, T (BTS) increases linearly at a rate of

increases linearly with ¢ T {EWL) increases linearly with D at a rate of 1, due to the
update-request message. T {EWL) increases linearly with D' at a rate of g since a

control message (i.e., lock-grant) is required only when a transaction is restarted.

We consider four cases for comparing T (PSL), T((BTS), and TAEWL) in fig.
13. When D and [ are both small, T is primarily affected by the other parameters.
If D is small and I’ is large, EWL has the smallest T}, since EWL has the lowest rate of
increase with D' . For D large and D' small, PSL has the smallest T, since T {PSL)is
unaffected by D. When both D and [ are large, T({ EWL) is the smallest for small g
and T{PSL) for large q.
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Fig. 14 plots Ty against q for selected values of the wait in the lock queue, Wy,
with four selected pairs of D and D' values. T\{BTS) is unaffected by W,; T,{PSL)
increases linearly with W, at a rate of 1, since all transactions wait in the lock queue;
T(EWL) increases linearly with W, at a rate of g, since locking is used only when a
trapsaction is restarted. Thus, BTS is preferred when W, is large but ¢, D, and I are
small, since BTS is unaffected by W, but Ty(BTS) grows rapidly with the other
parametex;s. Of the three protocols, PSL has the lowest Ty when W, and D' are small |
and ¢ is large, since both T({BTS) and T, {EWL) increase with ¢ and D, but PSL is
unaffected by either g or D. EWL has a lower T, than BTS for larger values of ¢ and

has lower T than PSL for larger values of W;.

Fig. 15 plots Ty against ¢ for selected values of update-log mainterance and
database rollbacks, Y, as well as the relative delay for conflict checking of the slowest
site, Rp,,, With four selected pairs of D and D’ values. PSL and EWL are unaffected by
Y and Rp,, and thus are preferred as Y and Rp,. increase. T {BTS) increases with
both Y and R,,, especially with larger ¢ (due to repeated restarts). Further, the effect
of Ry, is greatest with larger D and D' , since the cost of distributed conflict checking

increases with longer delays for message communication and processing.

4.4 Discussions

We observe that optimistic protocols, such as BTS, EWP, and EWL, have
smaller execution response times, Ty, since they have no ICSD before the transaction’s
first execution. However, optimistic protocols which require an update-log, such as BTS,

lengthen T for update-log maintenance (i.e., Y.

For update finalization response times, Ty, BTS performs poorly for several
reasons. First, BTS has overhead for update-log maintenance and database rollbacks.
Second, BTS uses distributed conflict checking, so T({ BTS) grows with the relative delay
of conflict checking for the slowest site (i.e., Ry,). Finally, BTS has repeated
transaction restarts which further lengthens T((BTS) and can saturate the computing

and communication resources,
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Choosing between EWL and PSL for T, depends on several parameters.
TAEWL) increases with delays for communicating and processing update messages, D,
since EWL's update-request message contains the proposed update. Also, T (EWL)
increases with g, the probability of a resta.rt'. T((PSL) is unaffected by both D and gq.
However, T{PSL) increases more rapidly than T, {EWL) with delays for communicating
and processing control messages, [ , since PSL exchanges two control messages (i.e.,
lock-request and lock-grant) and EWL only requires a single control message (i.e., lock-
grant) when a transaction is restarted. Also, T;(PSL) increases more rapidly than
TAEWL) with waiting times for file locks, W;, since PSL always has such waits while

EWL incurs them only when a transaction is restarted.

Since EWP is a simplification of EWL, EWP’s response times should never be
larger than those for EWL. Specifically, T{EWL) increases with ¢, W,, and [ while
T{ EWP) is unaffected by these parameters.

Choosing among PSL, BTS, and EWL requires knowledge of the relationships
between the waiting times for file locks, W;, and the probability of a transaction restart,
¢. Intuitively, BTS provides a distributed queueing system in which transactions are
queued at their execution site but are delayed (via restarts) by transactions at other
sites. Because a transaction accesses the same files regardless of the protocol used, one
might expect a transaction in this distributed queueing system to wait for as many other
transactions as if PSL had been used. However, the site waiting times, Wy, for BTS will
be longer than those for PSL due to BTS repeated transaction restarts which increase
site loads. Thus in general, T/ (BTS) will be larger than T {PSL). EWL has restarts
but car guarantee that a transaction will be restarted at most once. Hence, site waiting
times for EWL will be lower than those for BTS but higher than those for PSL.
However, EWL waiting times for file locks may be smaller than those for PSL. Let A gy,
be the external arrival rate of transactions and A, be the arrival rate at the lock queue.
Under PSL, A (PSL) = A1) since all transactions enter the lock queue. However, for
EWL locking is required only when a transaction is restarted, so A (EWL) = g\ .
Thus the utilization of the lock queue under EWL may be smaller than that for PSL, as
a result W (EWL) may be less than W,(PSL).
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5. CONCLUSIONS

Optimistic protocols have appeal for distributed processing systems since they
avoid inter-computer synchronization delays (ICSD) for execution response times, Tp.
However, existing optimistic protocols have repeated transaction restarts which lengthen
update finalization response times, T, and can saturate the computing and

communication resources.

EWP and EWL are optimistic protocols that avoid repeated restarts. EWP has
no restarts or database rollbacks and avoids deadlocks due to shared data access.
However, EWP is not a general purpose protocols since it preserves orly a limited form
of serializability. EWL is a fully serializable extension of EWP. Although deadlocks are
possible under EWL, EWL has no database rollbacks. EWL restarts a transaction at
most once if the transaction’s baseset does not change when it is restarted. To further
reduce restarts, each site can independently and dynamically switch between primary
site locking, PSL, which has no restarts and EWL. Such switching requires no

additional messages or delays to synchronize protocol selection.

Analytic models were developed to study the response times, T and Ty, of
EWP, EWL, PSL, and basic timestamps (BTS). The performance of these protocols
depends on several parameters: ¢ (the probability of restarting a transaction), D (delay
for communicating and processing an updaté message), D' (delay for communicating
and processing a control message), W, (waiting time in the lock queue), Y (time for
update-log maintenrance and database rollbacks), and R, (relative delay for the slowest
site to do conflict checking). EWP and EWL have the smallest Ty, since neither requires
update-log maintenance {unlike BTS) or has ICSD for Ty (unlike PSL). Unless D is
quite large, T {EWP) is smaller than Ty for the other protocols, since EWP has no
transaction restarts or lock queue waits. T (PSL) is unaflected by ¢, but it increases
linearly with W, and ! . T (EWL) grows linearly with ¢ and D, but is less affected
than Ty(PSL) by either W, or D' , since these costs are incurred only when a
transaction is restarted. T {BTS) grows geometrically with ¢ due to repeated
transaction restarts, increases with Y since update-log maintenance is required for each

transaction execution and database rollbacks occur whenever a transaction is retarted,
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and increases with D, D' and R,,, due to distributed conflict checking. Although
T BTS) is unaffected by W,, in general delays due to repeated transaction restarts

exceed those for W;.

We conclude that if limited serializability is acceptable, EWP should be used due
to its simplicity and short response times which have great appeal for distributed
processing systems. Otherwise, EWL has much appeal since it has good performance
over a wide range of parameters and permits dynamic switching with PSL to further

improve performance.
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HEURISTIC MODULE ASSIGNMENT

We have documented our research results on the measurement and estimation of
intermodule communication (IMC) in our previous annual report [CHUS2). During the
year of 1983, we continued the study on module assignment problems. The results are
reported here in this chapter. Section 1 reviews existing methods for module assignment.
Section 2 identifies key parameters that should be considered in a module assignment.
Next, the concepts of module assignment tree and enumeration procedure are described
(Section 3). An objective function based on the concept of minimum bottieneck is
proposed as a criterion to be used in the search for good module assignments. Then an
example is presented (Section 4) where the objective function was applied to the DPAD
system to select good module assignments. Those selected assignments were simulated via
the UCLA DPAD simulator and they did yield excellent port-to-port time performance.
However, due to the complexity of the problem, an optimal solution is difficult, if not
impossible, to obtain. A heuristic algorithm for module assignment is thus proposed in
Section 5 and it is shown to generate good assignments. .

1. EXISTING MODULE ASSIGNMENT METHODS

We can divide existing module assignment methods into 4 categories: queueing
model approach, graph theoretic approach, integer 0-1 programming approach, and
heuristic approach. Existing queueing models do not consider IMC and therefore do not
provide good assignments.

1.1 Graph Theoretic Approach

In general, this approach can handle only 2-processor module assignment
problems. Each module is represented by a node in a graph and IMC cost between each




pair of modules is represented by the weight of a nondirected arc conmnecting the two
nodes [JENN77, RAO79, STON77, STON78). The arc weight then becomes the
interprocessor communication (IPC) if the pair of modules are not coresident on a
processor. Any pair of coresident modules is assumed to have zero IPC cost. An
additional node is also provided for each processor; an arc between a module node and
one of the two processor nodes represents the processing cost of running the module on

the other processor.
The module assignment strategy in this model is to minimize total cost, defined as

the sum of processing cost and IPC cost. In order to represent the assignment of modules
to processors an assignment matrix X is defined such that

1 if module M, is assigned processor P;

ik = 10 otherwise

Processing cost is given by the () matrix,
Q= {qi,k}. i=1,...m, k=1,...n

where g, ; represents the processing cost for module M; on processor P;. A value of
infinity, g; x = %, implies that module M; cannot be executed at processor Py.

Let v;; represent the IMC valume between M; and M;. The total cost for
processing a given task can then be expressed as an objective function of the assignment
X.

Cost(X) = Ek‘. E{qs,m,z +2 Ewi.f"i.kxf.l}

1%k j<i

1)

The first term of eq. (1) represents the processing cost for each module on its assigned
processor. The second term represents the IPC cost between non-coresident modules.
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The normalization constant w is used to scale processing cost and IPC cost to account for
any differences in measuring units. The minimum-cost module assignment is obtained by
performing a min-cut algorithm on the graph [HARA69).

While this method is conceptually simple, it has several limitations. First, an
extension of the min-cut algorithm to an arbitrary number of processors quickly becomes
computationally intractable. An extension to four or more processors has been proposed
for cases where the IMC pattern can be constrainted to be a tree [STON78]. Sccond, this
method provides neither a mechanism for representing limited resources in memory size or
processor capacity, nor a mechanism for load balancing among processors. It might result
in a quite unbalanced module assignment where one processor becomes the bottleneck and
the response time becomes unacceptable. Third, the method assumes static or one-time
execution of modules. But, in almost all real-time systems, program modules reside in the
systems during entire mission time and a module is invoked (i.c., enabled) to execute by
cach occurrence of certain type(s) of events. Finally, an assignment with the minimum

cost for eq. (1) does not guarantee a good response time.
1.2 Integer 0-1 Programming Approach

This method stems from the file allocation problem where the model is formulated
as an optimization problem and is solved via a mathematical programming technique
[CHU69]. As with the graph theoretic approach, the goal is to achieve optimal system
performance by minimizing the total cost defined in eq. (1) over the module assignment
X. In addition, the minimization is done subject to some constraints which may be
imposed by a given environment or the design specifications. For example, a limited-

memory constraint is represented by

Esixi,k =Ry, k=1,...n
i
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where 5; represents the amount of memory storage required by module M; and R,
represents the memory capacity at processor Py.

Similar to the graphic-theoretic approach, the integer 0-1 programming approach
has the following disadvantages: it is time-consuming to solve and can only salve problems
of limited size, it assumes cone-time execution of modules, and it fails to guarantee good

response time.
1.3 Heuristic Approach

Gylys and Edwards proposed a heuristic algorithm for module clustering
[GYLY76). The process of assigning two modules to the same processor is called fusion.
The algorithm searches for a pair of modules with the largest IMC and checks to see
whether the fusion of the two modules satisfies the real-time and memory constraints. If
it does, that pair is fused. Otherwise, the pair with the next largest IMC is chosen as a
possible candidate. The fusing process continues until all eligible pairs are allocated.
Although simple and fast, this approach does not yield load-balanced module assignments
and suffers from the bottleneck in the heavily loaded processor.

After examining the above approaches, we are motivated to develop a heuristic
algorithm that can remedy these shortcomings. We shall first define in the following the
key parameters that profoundly affect module assignments.

2, KEY PARAMETERS FOR MODULE ASSIGNMENT

The two parameters that play important roles in module assignment are
accumulaitve execution time (AET) and IMC {CHUB2]. AET for a module M; is the total

execution time of this module within a time interval, (#,¢4+.1). That is,

14



Ti(tnsth+1) = Ni(thotns )X (tn,th41)
where Nj(ty,ty41) = number of times module M; executes during (f4,f4+1), and
X;(tn,t4+1) = average execution time (or average ET) per execution of M; during
(t4sth+1)- Both the average ET and the AET can be expressed in terms of machine-
language instructions (MLI) executed. Although the execution time of one machine-
language instruction varies from instruction to instruction, we can find the mean
instruction execution time given the mix ratios for various different instructions. Our
study shows that both the number of module executions and the AET are almost
independent of module assignments if a fixed offered load is input to the distributed
system. Let us see an example with the Distributed Processing Architecture Design
(DPAD) system which was developed to manage the data processing and radar resources
for a space defense application [GREE80, HOFF80]. This DPAD system will be used as
an example throughout the chapter. A portion of its control-and-data-flow graph is given
in Fig. 1. Fig. 2 shows the number of times module My executes during 100-msec
intervals under a scenario with 40 objects. And Fig. 3 displays the AET for M g during
the intervals. Note that in both Figs. 2 and 3, the five curves corresponding to five
different module assignments are so close to each other. Fig. 4 plots the AET for all 20
modules in the DPAD; this information will be used later as an input to our module

assignment algarithms.

Our second parameter, IMC, is also characterized by little variation for different
module assignments if a constant load is offered to the system. For example, Fig. §
exhibits the measured IMC from Mg to M3 from the DPAD simulation; five curves
representing five different module assignments are almost identical. Fig. 6 displays all
IMC existing in the DPAD. Each plot IMC(i,j) represents the IMC sent from M; to M -
This JMC(i,j) involves all the files which are updated by M, and read afterwards by M e
An alternative way to present the IMC is shown in Fig. 7, where each plot V{i,k) shows
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the amount of updates (in words) to a file F; by a module M;.

IPC, on the other hand, varies closely with module assignments because the
occurrence of [PC between two communicating modules depends on whether these two
modules are assigned to different processors. In the DPAD, modules communicate
through shared files. If two modules reside on different processors, the file is replicated
on cach processor. When a processor updates the file, it updates the copy on its local
processor. It then sends the updates to remote processors, resulting in IPC which
contributes to CPU load on both the sending and receiving processors. The IPC is
eliminated when a pair of communicating modules are assigned to the same processor

because they use the same local file copy.
3. PROPOSED OBJECTIVE FUNCTION

Let us first define the concept of module assignment tree. Consider a software
system which has been partitioned into a fixed number of program modules. Given the
control and data flow graph, the problem of module assignment is to assign the program
modules into a smaller number of processors in a way to meet the performance
requirements. The main design requirement in real-time systems is to meet the response

time constraint, or port-to-port (P-T-P) time in BMD terminology.

Since each module can be assigned to any of the m processors, there are m”
different ways to assign a modules to m processors, assuming that each module is
assigned to one and only one processor. This can be represented by an assignment tree
with m”" leaves, each leaf corresponding to a possible assignment. This tree has n levels,
each standing for a module. At each non-leaf node there are m downward branches, each
representing the choice of a possible processor to host the particular module, Fig. 8 shows

an example withn = 23 and m = 3.
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An objective function for module assignment is a mathematical function which
yields a numerical value when evaluated for a candidate module assignment. This value
might represent a performance measure such as total system cost or expected response
time. The module assignment problem is to search through the leaves of the assignment
tree for the particular assignment which yields the minimum function value (or maximum
values in some cases, €.g., maximum system throughput). An exhaustive search through
all leaves (called an enumeration) is usﬁally undesirable because of the enormous amount
of time involved. For example, cnumeration for a tree with 320 leaves takes around 10

days if each leaf (i.e., each assignment) requires 0.25 msec of evaluation time.

Let us define the processor work load (or simply, “processor load™) as the sum of:
a) load due to program module execution, and b) load due to IPC. These two
components should be expressed in the same measurement unit. We take a simple
approach to this by converting the number of words transferred in IPC into the machine-

language instructions (MLI) spent by the processor for transferring or receiving the IPC.

After identifying the module execution time and IPC as the key parameters for
module assignment, we are motivated to propose an objective function for module
assignment. JPC minimization by itself will not produce a good assignment. In fact, a
minimum-[PC assignment will assipn all program modules to a single processor; this
processor would be saturated while others are idle. According to queueing theory, a
saturated processor results in long, unacceptable delay for the modules running on it. A
saturated processor in a distributed system i3 a bottieneck which causes blockage to overall
systemn data flows [TSUCS0]. This suggests that a 3-processor assignment resulting in
processors being 58%, 60%, and 61% utilized might have a better response time than an
assignment with 20%, 40% and 90%-utilized processors although the former has a higher

tota] processor load (due to more IPC).
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For an assignment, let us call the processor with the highest load a boitieneck
processor. The objective function proposed here is the work load (MLI's) of the
bottleneck processor. And the purpose of the tree enumeration is to find the assignment
with the minimum bottleneck load.

Under a given assignment X, the work load L(s;X) on a processor P, (s = 1, 2,
w,m)is
LeX) = SxT+ 3 [lPC(s,t;X) + IPC(t,:;X)]
j=1

t=]1
¥

@
The first term accounts for each module’s AET for all modules assigned to processor P,.
The second term is IPC overhead which consists of two parts: the first part is the
overhead due to the P ~originated IPC to be sent to other processors, while the second
part is for incoming messages from other processors. In the DPAD example, file-update
messages dominate the IPC traffic. We therefore ignore other types of IPC such as
module enablement messages and system control messages. The total overhead due to
outgoing IPC at P, is thus
S IPC(s,6X) = w3z, ﬁvﬁ S 8y

=1 j=1" k=1 =1 (3)
t#+g t#£s

where K is the number of files used in the distributed system; V; is the M-F IMC

message volume sent from M; to update the replicated file Fy at a remote processor Py;

m

8;, indicates whether a replicated copy of F; resides at P,; the term D, 3, gives the
=1
{#e

number of F;'s remote copies that must be updated; and w is a weighting constant to
convert the message volume into MLDs. Similarly, the total overhead at P; due to

incoming TPC from all remote sites P,’s is
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EIPC(I SX) = Wz Zxﬂ zvjk LT
ot Sl @

In a system with message-broadcasting capability, a file update need only be sent out

once; the term i 8, in eq. (3) then reduces to 1.

=1
i+

The objective function is the load of the bottleneck processor, i.e.,
Bottleneck(X) = ma.x [L(S,X) }

)

The module assignment problem is to search through the assignment tree for the

assignment that yields the minimum bottleneck load among all possible assignments, i.c.,

Miuimize{ Bottleneck(X) }
X (6)

minimize {m:;xi: [PT(s) + IPC(.:)] } o

where PT(s) and IPC(s) are the total module execution time and the total IPC overhead
incurred at site s. Eq. (7) is different from the equation proposed in [STON77] which is
to minimize the sum of processor loads, i.e.,

mim;nize {'§1 [PT(.:) + IPC (s)] } @

4. PERFORMANCE OF PROPOSED OBJECTIVE FUNCTION

In this section we evaluate the performance of the proposed objective function for
selecting a module assignment. A FORTRAN program was written to compute the
proposed objective function for every assignment in the DPAD assignment tree. Ten
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good assignments were selected (sec Appendix A). These assignments were then
simulated with the UCLA DPAD simulator to verify if they yield top port-to-port time

performance.

In that FORTRAN program, values for a module’s AET and the IMC terms used
in the proposed objective function are derived from the measurements shown in Figs. 4
and 7. AET for cach module M; is rcpresented as a single value T in the objective
function (see eq. (2)). IPC information between a module and a file is also represented as
a single value V; ; (see eq. (3)). However, the measurcment results show the AET for
each 100-msec interval and this value varies from interval to interval (see Fig. 4).
Information contained in such a series of time-varying AET must be compressed into a
single value for the objective function. Since we are most concerned with system
performance during the peak-load time, we examine the measurement curves, identify the
peak-load period, and compute an average from all those measured values during that
period. Table 1 shows the average AET obtained in this manner for every module in the
DPAD cxperiment where the identified peak-load period is from 1.0 sec to 2.0 sec of
mission time. That is, each value T; for module M; is an average of ten measured values
T;(1.0sec, 1.1sec), T(1.1sec, 1.2sec), . . . , Tj(1.9sec, 2.0sec).

The same procedure is used to derive IMC information for the objective function
from the IMC measurements. The results are shown in column 3 of Table 2. Column 2
shows the file(s) updated by the write module. Column 4 lists all the modules which read
the updated file. If a read module for a file and its associated write module are separated
on different processors, both processors would have a copy of the file and the IPC occurs
for updating the replicated file copy.
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TABLE 1
ACCUMULATIVE EXECUTION TIME (AET) PER 100 MSEC

(UNIT: MLI)
WModule _ AET ]

M1 8865
M2 2700
M3 1590
M4 10410
M5 1860
M6 1950
M7 1680
M8 32055
M9 18600
M10 3360
Mil 0
Mi2 0
M13 25305
M14 16860
M15 0
M16 4170
M17 6240
MI18 3975
M19 9705
M20 2010
M21 195
M22 16410
M23 10725

MLI = Machine Language Instructions

EACH AET IS AN AVERAGE ACROSS THE PEAK-LOAD PERIOD,
FROM 1.0 SECOND TO 2.0 SECONDS.
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~ TaBLE 2

FILE UPDATE IMC (in MLI) PER 100 MSEC

Write File IMC Read
Module ted Size Modules
M1 none
M2 F114 124 M3
M3 F115 144 M13
M4 F116 112 M13
F117 314 MS, M6, M7
MS F119 68 M7
M6 Fi21 68 M7
M7 F122 67 Mi13
F120 62 M13
MS6, M10, M16,
MB Fi23 1568 MS, M17, M19,
F124 6387 M5, M10, M16
M9 F125 806 M13
F127 1 M8
Mo Fl34 1 M18
(Mi1) Moduie Not Implemented
(M12) Module Not Implemented
M1i3 Fi131 30371 M14
F147 1800 M13
Mi4 F132 5019 M23
(M15) Module Not Implementad
Mi16 Fi135 100 M1i8
M17 F136 100 Mi18
F137 229 M19
Mig F138 36 M8
F139 244 M20
M19 F139 599 M20
M20 F140 62 M21
M21 Fl141 2 Radar
M22 F142 242 M23
F113 4593 M1, M2, M4, M8
M23 F112 5112 Radar
Radar Fl11 14737 M22

* EACH TRANSFERRED WORD = 3 MLIs
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The ten assignments (Fig. 9) selected (see Appendix A) are simulated with the
DPAD simulator and the results are presented here. Figs. 10(a) and (b) show the CPU
utilization for the first two assignments. Note that in each figure, loads of the 3
processors are quite balanced during the peak-load period between 1.0 sec. and 2.0 sec.
Assipnments #3 through #10 in Fig. 9 exhibit similar load-balanced behavior. This
coincides with our expectation and thus suggests that our processor load and bottleneck
model {eqs. (2) thru (5)) is a good approximation to the processor loads under a given
module assignment. On the other hand, Figs. 11(a) and (b) show the processor loads for
an arbitrary assignment and Holloway's knowledge-guessed manually generated
assignment {HOLI82] which up to the time had been the best assignment (for port-to-port
time) known to the author. (The knowledge-guessed assignment is obtained by a
combination of intuitive insight and trial and error.) These last two assignments are less
load-balanced and their bottleneck loads are much higher.

Fig. 12 shows the Precision-Tracking P-T-P time for the top 9 assignments and the
arbitrary assignment. We note that the performance difference between a good and a bad

assignment can be very large.

Fig. 13 compares the port-to-port time for the Detect/Verify thread between the
top 9 assignments and Holloway’s assignment, and Fig. 14 does the same for the Precision
Tracking thread. Our experiments confirm that the proposed objective function generates

good module assignments.
5. HEURISTIC MODULE ASSIGNMENT

In Section 4 we show the minimum bottleneck is an effective objective function for
selecting module assignments that yield minimum P-T-P time. However, an exhaustive

search through the entire tree is prohibitively time-consuming. For example, there are 320
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possible assignments in the assignment tree for the DPAD system. In order to greatly
reduce the computation time, we shall develop a heuristic algarithm for selecting good

assignments from a huge problem space.

As stated in Appendix A, the ten assignments selected from the cbjective function
are not the best ten. A good many more assignments better than the ten selected ones
were left out from the list on Fig. A-1. Although not the best ten, the ten selected
assignments give similar good performance. Therefore, a good heuristic module-
assignment algorithm will be able to find a sub-optimal assignment that yields close-to-
best P-T-P performance.

We have previously identified AET and IPC as two important parameters which
should be considered for module assignment. In the following we propose a heuristic
algorithm for module assignment taking these two parameters into account. This
algorithm consists of two phases. In order to avoid heavy IPC, Phase I merges heavily
communicating modules into groups if the resulting group does not have too large an
AET. This phase can be done in a very short time. Phase IT assigns the module groups -
resulted from Phase I to the available processors such that the bottleneck (in the most
heavily utilized processor) is minimized. Our algorithm assumes that

1. there are n modules, My, M, . . ., M,,, and m processors, P, Pyy.. . Py
2. peak-load average of AET for each module M; is given, denoted as T;; and

3. peak-load average of IMC between each module pair M; and M ; is given, denoted as
IMC; ;.
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ALGORITHM:

Phase I
(Merge modules with large IMC into groups to reduce total system load)

1. Initially list all module pairs along with their associated IMC volume, in the
descending order of IMC volume.

Assign cach program module to one individual group:
Gi - {Ml} i= 1,...,“

Set an upper bound for group s;tze
ideal_processor_load ~ >\ T;/m

=~
threshold ~ ideal_proce;'sor_load X B %

2. If no more pairs exist in the module-pair list, go to Phase IL.
Pick the next pair of modules, M, and M}, and delete this pair from the list.

3. YIMC, ; < ideal_processor_load X a %
(* IMC too small. Won’t benefit from further merging of modules. *)
go to Phase 1L

4. Find the group, G, which contains M, and the group, G,, which contains M.
(.i..c., MaEG: N MbGG‘)

5. Bs=1¢
(* M, and M, were already in the same group. *)
go to Step 2.

6. T, + T, > threshold
(* The otherwise merged group would be too large; it will make the load
balancing impossible in Phase I *)
go to Step 2.

7. Merge G; and G
G, - G, UG,
T, « T, + T,
T‘ b O
go to Step 2.

Phase II
(Assign merged groups to processors to minimize the bottleneck)

1. (* We now have g groups, g < n. Therefore, we have a2 much smaller assignment
tree with m?, instead of m”", possible assignments. *)

Perform a search through the tree using a slightly modified version of the

exhaustive search method (described in Appendix A) to find good assignments —
instead of generating module assignments with strictly decreasing bottlenecks, this
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modified version keeps at any instant the best ten assignments obtained so far
during the search.

2. Stop.

Steps 3 and 6 in Phase I require some discussion. When merging modules, pair by
pair, we might reach a pair of modules with "small” IMC and merging the two associated
modules gives little benefit in terms of the IPC saved. The "small” here is defined as
being less than a small o percentage (ec.g., 5%) of the ideal_processor_load.
(Ideal_processor_load has been defined to be the sum of AET for all modules, divided
by m, the number of processors.) In fact, the entire Step 3 can be deleted from the
algorithm and the merging process continues until all IMC's have been examined. Of
course, this will take a little more time to execute Phase L

Discussion regarding Step 6 follows. We try to eliminate as much IPC as possible,
but we generally can not eliminate all of it. Therefore, when merging modules into a
group, we should leave some room in this group for accommodating the residual IPC (that
IPC still not eliminated). This motivates us to introduce the factor B % (e.g., 75%) into
the threshold. Otherwise, Phase II might not be able to produce a balanced-load

assignment.

Let us now apply this heuristic algorithm to the DPAD module assignment
problem. Information in Table 2 is reorganized into Table 3 which provides clearly the
order of IMC size among module pairs. (Table 3 can also be obtained from Fig. 6 by the
compression method described previously.) This table makes Phase I of the algorithm an
easier task. (Phase IT will stll use Table 2). Fig. 15 shows the merging process of Phase
I where 5% and 75% are adopted for the @ and B respectively. Column 1 is the
descending IMC selected from Table 3, columns 2 and 3 are the associated module pairs,
column 4 displays the modules merged into one group, and column § calculates the total
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TABLE 3

FILE UPDATE IMC (in MLI) PER 100 MSEC FOR MODULE PAIRS

Write Files IMC Read
Module Involved Size Module :
M2 F114 124 M3
M3 F115 144 Mi3
M4 F117 314 MS
M4 F117 314 M6
M4 F117 314 M7
M4 F116 112 M13
M5 F119 68 M7
M6 F121 68 M7
M7 Fl22 67 Mi13
M8 F123, F124 7955 Mb
M8 F123 1568 M9
M8 F123, F124 7955 M10
M3 F120 62 Mi13
M8 F123, Fi24 7955 M16
M8 F123 1568 Mi7
M3 F123 1568 Mi19 -
M8 F123 1568 M20
MS F125 806 M13
M10 F127 1 M8
M10 F134 1 Mi18
M13 F131 30371 Mi4
Mi4 F147 1800 M13
Mi4 F132 5019 M23
M16 F135 100 Mi18
M17 F136 100 Mi18
Mi18 F138 36 M8
Mi8 F137 229 M19
Mi18 F139 244 M20
M19 F139 569 M20
M20 F140 62 M21
M21 F141 32 Radar
M22 F113 4593 M1
M22 F113 4593 M2
M22 F113 4593 M4
M22 F113 4593 M8
M22 F142 242 M23
M23 F112 5112 Radar
Radar Fl111 14737 M22

* EACH TRANSFERRED WORD = 3 MLIs
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AET for all modules within the group.

Since we have three processors in this example, the ideal_processor_load is

23
S.T;/3 = 59555 MLL Phase I finishes when it reaches IMCyq 3 because this IMC

i=1

(1800 ML) is smaller than 5% of the ideal_processor_load. The resultant groups are:

Group Modules Group Modules Group Modules

— AR G S i APy Sy — — b e — o — — ———————— —— ity ——

1 1,2,4,22 6 9 11 20

2 7 13, 14 12 21

3 5 8 17 13 23,(11,13,19)°
4 6,8,10,16 9 18

5 7 10 19

* These 3 modules are not implemented in the DPAD,; each has a zero AET, T;.

We have merged 20 modules into 13 groups. This means a reduction from 320
possible module assignments to 313 possible group assignments for Phase II. The savings
is 37 = 2187-fold, reducing the algorithm’s run time from approximately 3 days down to
2 minutes on a VAX-11/780.

Twa of the three best assignments obtained from Phase II are among the ten
assignments shown in Fig. 9, which were obtained previously by the exhaustive search
method:

a. The first assignment — identical to the fourth assignment in Fig. 9
b. The second assignment — identical to the fifth assignment in Fig. 9

c. The third assignment was never selected before. It is 11212 31333 00220 33211
212 (see Fig. 9 for notation), with 3 processor loads being 74522, 74521, and
74023.
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To evaluate the cffectiveness of our heuristic algorithm, we compare the best
assignment obtained by this algorithm with the best assignment obtained by the
exhaustive secarch. The performance of these two assipnments, along with eight other
assignments, have been shown in Figs. 13 and 14. For clarity we show these two
assignments alone in Figs. 16 and 17. We note that the proposed heuristic algorithm
generates module assignments about as good as those generated by the exhaustive search
method.

6. CONCLUSIONS

We have proposed and verified a good abjective function for selection of module
assignments. This objective function is to minimize the CPU load on the most heavily
utilized processor (i.c., minimize the bottleneck). We have also presented a beuristic
algorithm as a quick approach to finding a good module assignment. Simulation
experiments indicate that our heuristic algorithm produces very good module assignments
in terms of the port-to-port times of the Detect/Verify and Precision Track threads.
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APPENDIX A. MODULE-ASSIGNMENT SELECTION PROGRAM

The program selects the module assignments from the enumeration tree according
fo the objective function of eq. (5). Variable MINMAX keeps the minimum “bottleneck
load" evaluated so far in the tree search. It is initialized with a large value, 999999
MLIs. Whenever a module assignment is evaluated to have a bottleneck smaller than
MINMAX, the bottleneck value replaces the old MINMAX value and a line is printed to
log this particular assignment. Fig. A-1 shows the printout from this program.
Progressively better assignments are obtained. The first column displays the module
assignment with the minimum bottleneck found so far and the pext column shows the
associated bottleneck value. Of the 23 numbers shown in the assignment, the j-th number
with a value of 1, 2, or 3 means module M being assigned to processor 1, 2, or 3 in the
particular assignment. Within each row, the bottleneck is the largest of those three load
values in columns 3, 4, and S, each column representing a processor in the distributed
system. The rightmest column shows the total load of the 3 processors, i.e., the total

system load.

As mentioned in section 3, it takes several days to enumcrate the entire tree. So
the program is designed to have a checkpoint written out in a temporary output file for
every 31! assignments evaluated. When a computer system failure occurs, it can continue

the enumeration from the most recent checkpoint.
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From the program output we picked the last ten assignments (shown in Fig.9) and
simulated each of them with the DPAD simulator. See Section 4 for the results.

Although the 10 selected assignments have progressively smaller bottlenecks, they
are not exactly the 10 assignments in the search tree which have the 10 smailest
bottlenecks. For example, after the assignment with the bottleneck 74308 was printed on
Fig.A-1 (the 3rd line from the bottom), an assignment with a bottleneck 74310 was not
printed. Nor was an assignment with a bottleneck 74400. But, both 74310 and 74400
might well be among the 10 smallest bottlenccks. Therefore, there are many more
assignments that have better (or comparable) performance than the 10 selected ones.
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A RESILIENT COMMIT PROTOCOL FOR REAL TIME SYSTEMS

1. Introduction

The survivability of distributed systems can be improved with multiple copies of
files. When an update is performed at a site, this update should be delivered to those
sites that have a replicated file. All file copies should be identical referred to as mumal
consistency. File copies may differ temporarily during update propagation. If a site fails
during an update broadcast, only a part of file copies may be updated, resulting in mutual

inconsistency.

Posting a file update in a system is known as a commir which implies that the
posted update will not be backed out [GARC82]. The site that broadcasts an update to
other sites is known as the coordinator and the recciving sites of the update are the

participants.

Two-phase commit is a well known method which ensures mutual consistency
among file copies in case of failures [KOHLS81]. It is also called a blocking commit
because when a coordinator site fails during an update broadecast, other sites are blocked
from using the file copies until the failed coordinator recovers and completes the
unfinished commit work [SKEE81]. The time interval required for the commit process is
relatively short as compared with the time needed to prepare update data at a coordinator
site, thus it is less probable that a failure occurs during the commit interval resulting in
blocking to the file. This technique has been implemented in several prototype systems
such as INGRES [STON79] and LOCUS [WALKS83]. Both of these are non-real time

systems.



For a non-blocking commit, Skeen [SKEES81] proposed a three-phase commit
protocol by adding another buffer state to the two-phase commit. When a coordinator
fails, one of the participants is elected to be the new coordinator and completes the
suspended commit process based on its local state. In the back-up coordinator method,
introduced by Hammer [HAMMSO0], each file has a preassigned ;ct of back-up
coordinators. These back-up coordinators communicate with the coordinator during
commit processes and take its place in case of coordinator failure. Both of the above
methods require excessive communications and therefore are not suitable for real time

applications.

In this chapter, we present a low cost resilient commit protocol that is non-biocking
and ftolerant to multiple failures. In this commit protocol, sites are linearly numbered and
updates are broadcast in one phase according to this number sequence. Failures are
recovered by the smallest numbered surviving site. Next, we show how to incorporate
this commit protocol into existing concurrency control techniques such as EWP [CHUS2]
and PSL [STON79]. Finally, we discuss the procedure for site recavery.
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2. Assumptions

We restrict our discussion to distributed systems that consist of multiple computers

connected via an interconnection network. Further, we assume the following:

2.

The topology of the communication network is designed such that site partitioning

does not occur even in the presence of link failures.

A message sent by a site will eventually be received by a destination site as long as
the destination is alive. This can be assured by exchanging a positive
acknowledgement in the network subsystem for every message delivery. Based on

this assumption, there would be no lost or ocut-of-sequence messages.

"I am alive” messages are periodically exchanged among the sites for failure
detection. With this assumption, acknowledgement messages and time-out

detection mechanisms are eliminated from our resilient commit protocol.

Failed sites are not allowed to rejoin the system. In real time systems, files are
usually stored in volatile memories (e.g., MOS dynamic RAMs) and a site failure
causes a total loss of data, making the site recovery infeasible within real time
constraints. However, in section 5, the site recovery issues will be addressed

under the assumption that all files are stored in non-volatile media.




3. Resilient Commit Protocol

The basic concept of our resilient commit protocol is that if an update is posted at
any operating site all other operating sites that keep a copy of the file will eventually
receive the update regardless of multiple failures. Thus mutual consistency among the file
copies is preserved for an update. (When more than one site perform updates
simultaneously, the commit protocol does not necessarily maintain mutual consistency.
Concurrency control protocols provide file consistency by controlling simultaneous updates
from different sites.)

In the commit protocol, sites are numbered for a given file. Updates are broadcast
according to this number sequence. If only a subset of operating sites receives an update
after a failure occurs, mutual inconsistency is resolved by having the smallest numbered
operating site retransmit the last update received from the failed site. This retransmission
must be done in the number sequence so that a failure of the smallest numbered site will
have the next smallest numbered site redo the retransmission. Thus the commit protocol

is resilient to multiple failures.

In the commit protocol, exchanges of acknowledgement messages are eliminated
by relying on the network subsystemn at each site for failure detection. However, network

subsystems require an acknowledgement for every update delivery.
Let us now summarize the operation of the commit protocol:
1. For each file, sites are numbered and updates are sent in this number sequence.

2. Updates are posted immediately after being received. Further, each site should
save the last updates from all other sites for update retransmissions in the event

that it should become the smailest numbered surviving site.
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3. When a site failure is detected, the smallest numbered surviving site retransmits
the last update received from the failed site in the number sequence.

During the recovery from a failure, duplicate updates may be sent to a site, which

would be detected by examining the update sequence number (SN). ! The operations for
the SN are listed as follows:

- For each file, every copy maintains a SN. Initially, all copies have the same SN
(e.g., SN=n as shown in figure 1).

- When a coordinator finalizes an update, it increments its local SN by one and
broadcasts the update with the new SN to other sites.

- An incoming update with SN less than or equal to the local SN of the receiving site
is discarded.

- When an update is posted, the local SN is replaced with the new value.

Figure 1a shows the no-failure case where site 3 broadcasts an update according to
the number sequence. Note that no extra communication is required. In figure 1b, site 3
fails after sending an update to the first two sites. At the detection of the failure, the
smallest numbered site (site 1) retransmits the update. By comparing the SNs, site 2
detects and discards the duplicate update.

1 The SN concept was used in the EWP to detect conflicts among concurrent update
requests (refer to chapter II).
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Reducing Messages for Failure Recovery

Suppose a site fails after all other sites have received its last update. Our commit
protocol requires that the smallest numbered surviving site always retransmits the last
update from the failed site. In this case, all sites will receive this update twice. To
eliminate these duplicate updates during the recovery, a coordinator could indicate the
completion of each update broadcast. This procedure is described as follows:

1. A coordinator sends an update-complete (UC) message to the smallest numbered
site after completing an vpdate broadcast.

2. When a site receives the UC message, it discards the saved update.

For systems with infrequent updates, the above approach is appealing since the
additional overhead due to UC messages will be small and it is less probable that a site
fails during an update broadcast. Moreover, real time systems usually require that real
time constraints should be met even when failures occur and therefore it is desirable to

reduce unnecessary overhead during a recovery.



4. Resilient Concurrency Control Techniques

For a set of concurrent updates generated from different sites, the commit protocol
itself does not necessarily maintain mutual consistency. Concurrency control produces the
relative order for multiple accesses to a file and provides internal and mutual consistency
among file copies {BERN81].

Many concurrency control protocols have been introduced. The primary site
locking (PSL) protocol [STON79] is accepted to be a low cost locking method. The
exclusive writer protocol (EWP) has a very low overhead with no transaction restarts,
database rolibacks, or deadlock. Although it provides limited serializability, the EWP has
great appeal for distributed real time systems since strict serializability is usually not
required in real time systems (refer to chapter II).

In this section, we shall discuss how to incorporate the resilient commit protocol
into EWP and PSL to preserve internal and mutual consistency in the presence of failures.

4.1 Resilient Exclusive Writer Protocol

In the Exclusive Writer Protocol (EWP), a file is written by only one predetermined
site, called the exciusive writer (EW), which does not change during system operation.
Non-EW sites send update-request messages to the EW. Then the EW broadcasts the
update to all other sites. (sec figure 2a)

For the EWP to be resilient, sites are numbered and the site with the smallest
number is designated as the EW. Since updates are broadcast only by the EW site,
failures of non-EW sites do not cause any file inconsistency. When the EW site failure is
detected, the nextrsma.llest numbered site becomes the new EW and retransmits the last
update received from the old EW since the old EW may have failed during the broadcast
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of the last update.

The operations for the resilient EWP are summarized as follows:
1. Sites are numbered and the site with the smallest number is selected as the EW.

2. EW sends an update to other sites in the number sequence (i.e., lowest numbered

site first, highest numbered site last).
3. Each non-EW site should save the last update received from the EW.

4, When EW fails, the site with the next smallest number becomes the new EW and

retransmits the last update received from the old EW in the number sequence.

Figure 2a shows the no-failure case. Site 3 sends an update-request message to
the EW which then broadcasts the update. The EW site fails during an update broadcast
in figure 2b. The next smallest numbered site (site 2) becomes the new EW and resends
the last update. A duplicate update is received and discarded by site 3.

If the EW site fails right after receiving an update-request but before sending out
the update, the update-request will be lost. This is similar to a conflicting update request
that is discarded in the EW site.

As explained in section 3, to eliminate unnecessary update retransmissions during
the recovery from the EW failure, the EW may send an UC message to the next smallest
numbered site after each update broadcast.
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4.2 Resilient Primary Site Locking Protocol

In the resilient PSL protocol, similar to the resilient EWP case, sites are numbered
and the smallest numbered site is designated as the primary site (PS). When the PS fails,
the next smallest numbered site becomes the new PS. Since the new PS does not know
whether the lock was being held by any other site and whether any lock-request was
queued in the old PS, the new PS requests the file status of all other site. Also a site that
issued & lock-request but has not reccived a lock-grant from the old PS must resend a
lock-request to the new PS.

In contrast to the EWP case, failures of non-PSs must be considered since non-PSs
broadcast updates directly. In addition, non-PSs may fail while holding a lock or while its
lock-request is being queued in the PS, which must be resolved by the PS. The operations

for the resilient PSL protocol are summarized below:

1. Sites are numbered and the site with the smallest number is the PS.
2. Updates are broadcast in the number sequence.

3. Each site saves the last updates from all other sites.

4, When a non-PS failure is detected: if the failed site is holding a lock, the lock is
released by the PS; if the failed site has made a lock-request, the lock-request is
discarded by the PS; otherwise the PS broadcasts the last update received from the
failed site in the mumber sequence.

5. When the PS fails: the site with the next smallest number becomes the new PS; the
new PS broadcasts the last update received from the old PS in the number sequence
and requests the lock-status of other sites; if a site was waiting for a lock-grant

from the old PS, it makes another lock-request to the new PS.
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Figure 3a sbows the no-failure case for the resilient PSL protocol. Site 3
issues a lock-request to the PS (site 1). After receiving a lock-grant, site 3
broadcasts an update. Figure 3b depicts the recovery procedure when a non-PS
fails while broadcasting an update. The last update from the failed site is re-
broadcast by the PS to ensure mutual consistency among the file copies. When the
PS fails in figure 3c, site 2 becomes the new PS and requests the lock-status of
other sites and site 3 responds that it is holding a lock. The dotted lines show the
case where another site (site 4) which has made a lock-request to the old PS makes
another lock-request to the new PS. After receiving an update from site 3, the
new PS grants the lock to site 4.

In the resilient PSL protocol, the update-complete (UC) message can also
be employed to reduce messages for the recovery from a failure. The non-PSs
send an UC message to the PS each time an update broadcast is completed and the
PS sends the UC to the next smallest numbered site.
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5. Site Recovery

So far, we have assumed that failed sites are not allowed to rejoin the
system. In this section, we introduce a method for having failed sites rejoin the

system, assuming that all files are stored in non-volatile media.

In our commit protocol, failures are recovered by the smallest numbered
surviving site. The recovering site should not be the smallest numbered surviving
site until it is fully recovered. Thus the recovering site is given a number larger
than any of the surviving site number. The operating sites should also buffer
updates to be sent to the failed site.

When multiple failures occur while an update is being broadcast, the
update may be sent only to failed sites, but not delivered to any operating site.
During the site recovery, the last update must be undone even though it was
completely posted in that site. Therefore, all sites should save previous values of
the last posted update.

The detailed procedure for site recovery is given in the following:

1. The recovering site undoes the last update (whether or not it was

completed) along with the SN, and broadcasts an T am up’ message.

2. When the smallest numbered site receives the message from the recovering
site, it determines the site number which is larger than any of the surviving
site number. The new site number is then sent to all other surviving sites
in the number sequence. The list of surviving sites and the new site

number are sent to the recovering site.

3. When the recovering site receives its new site number with the list of
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operating sites, an operating site is selected to recover all lost updates.
The posting of newly incoming updates is postponed until all lost updates
are reccived. The ’I am up’ message is broadcast repeatedly if the new site

number is not received within a certain time interval.

Since a recovering site can not send any update until all missing updates
are received and posted, a failure of the site during its recovery does not affect file
consistency. However, the failure of the smallest numbered site may delay the site

recovery until the next smallest numbered site takes over.
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6. Conclusions

We have presented a commit protocol which ensures mutual consistency
among file copies in case of multiple failures. Since the proposed protocol requires
additional overhead only when a failure occurs, it has much appeal for real time

applications.

The commit protocol can be incorporated into concurrency control
techniques, such as the EWP and the PSL protocol, with little additional overhead.
Since the EWP only requires the EW site to broadeast updates and does not need
locking, the recovery procedure for the EWP is much simpler and has less
overhead than that for the PSL protocol.
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CHAPTER V

AN IMPLEMENTATION OF FAULT-TOLERANT LOCKING FROTOCOL
FOR SHARED MEMORY SYSTEMS







An Implementation of Fault-Tolerant Locking
Protocol for Shared Memory Systems

1l. INTRODUCTION

The fault-tolerant locking protocol (FTL) maintains the
mutual consistency of replicated file copies and the inter-
nal consistency of all shared files in the event of failures
of computers, shared memories, and/or paths in the intercon-
nection network. Sect{on éﬂprodides an overview of the FTL
protocol, and section 3 presents an implementation of FTL
for the ARC multi-microprocessor testbed. (This implementa-
tion 1is based on the testbed application program dated
November 4, 1982.) In section 4, four experiments are sug-

gested to assess the performance of the FTL protocol imple-

mentation in the testbed.

2. DESCRIPTION OF THE FTL PROTOCOL

The FTL protocol requires that shared files be repli-
cated to ensure file accessibility in the event of a

failure.



2.1. Handling a Computer Failure

A computer failure during a file update may result in

the 1loss of internal and/or mutual consistency. To avoid
this, the FTL protocol requires that computers complete

their modifications to one file copy before starting to

modify another copy {(see figure 1). Thus, at most one copy
will lose internal consistency when a computer fails. A

computer failure can be detected by a timeout on how long a

computer holds a lock. To recover from a computer failure,
lock words are used to determine which file copy is incon-

sistent (figure 2). The inconsistent file copy can be
recovered by using the contents of a consistent copy of the

same file.

2. Handling Memory Module and 1Interconnection Network

2.
Failures

Memory module and/or interconnection network failures

can make file copies inaccessible. 1If a region of shared

memory containing a file copy becomes inaccessible, the copy

should be discarded.



TASK FILE X FILE X*
AT SH; AT SM,

LOCK D Li=1 © SM: SHARED
REQUEST 2) L’ o= ] MEMORY
READ
CREATE
& UPDATE 3
TEMPORARY
FILE
4) L := 2 UPDATE
UPDATE

5) L’ := 2 yppaTE
LOCK 6 L:=0
RELEASE 70 — L' :=0

—

L: O = FREE 1 = LOCKED, 2 = UPDATE INITIATED
PROTOCOL: =

1) LOCK FILE X

2) LOCK FILE X*

3) CREATE AND UPDATE TEMPORARY FILE IN LOCAL MEMORY
4) MARK LOCK BIT (L := 2) AND UPDATE FILE X

5) MARK LOCK BIT (U'.:= 2 AMD UPDATE FILE X*

6) UNLOCK FILE X

7) UNLOCK FILE X

<Figure 1> Fault-Tolerant Locking (FTL) Protocol




LOCKS RECOVERY  INCONSISTENT UPDATE
L L' REQUIRED? ~ FILE COPY COMPLETED? .

0 0 NO N/A N/A
1 0 NO N/A NO
1 1 NO N/A NO
2 1 YES X NO
2 2 YES X' YES
0 2 NO N/A YES

<Figure 2> Lock State Table

Such failures can be handled in the following way.
Each computer maintains a table in its local memory that
dindicates which file copies ére accessible. This table i;
consulted before retrieving a file copy. When a file copy
becomes inaccessible (which will be detected by a computer
trap), the detecting computer updates its local table and
notifﬁes the other computers. This notification process
itself must be fault-%olerant. We recommend a message pass-

ing technique in which copies of the message are placed in

two or more memory modules.



3. An Implementation of the FTL Protocol

The FTL protocol can be applied to the testbed applica-
tion by duplicating the object track file. Here, the lock
unit is a record instead of the entire file. The following
sections describe the necessary data structures and the PDL

code to implement the FTL protocol.

3.1. DUPLICATED RECORDS OF TRACK FILE AND A RECORD STATUS

TABLE

Records of the track flle are duplicated and a lock

word is attached to each record copy. A record status
table, which indicates the accessibility of each record copy

of the track file, is maintained in the local memory of each

computer (Figure 3).

Figure 4 shows the PDL TYPE declarations for the data
structures, A new state 'INACC' is added to the lock word
to indicate that the record copy is inaccessible due to

error.



REC LOCK DATA REC LOCK DATA

No . No.
11 I _l 1 I |
2 | | ! 2 | | !
3 | | 3| I l
4 | | | 4 | I i
. l - Ic ) - . - I L] | . I- . - . . i
L ) I - I. L] - - . I - ‘ - |. L] > - - I
. | l I . | I I

128 | I | 128 | I |
copy #1 in shared copy #2 in shared

memory module i memory module j

a) Duplicated Track File
in shared memory modules

for for
REC copy 1 copy 2
No.
107 . i |
2 | I R
3] | |
4 | | |
! - | e |
[
| ! f
128 | ] !

b) Record Status Table
in each computer

<Figure 3> Duplicated Track File and
Record Status Table



TYPE

TRACK DATA = RECORD

OBJECT STATUS : OB STAT;
PULSE TYPE : OB STAT;
RETURN COUNT : INTEGER;
XTR LIFE : INTEGER;
KOR LIFE : INTEGER;
POD LIFE : INTEGER;
IPP_LIFE : INTEGER;
RTE LIFE : INTEGER:;
STATE TIME : INTEGER;
THREAD TIME : INTEGER;
PULSE TIME : INTEGER;
END; -
LOCK_STAT = (FREE, LOCKED, UPD_INITED, INACC);
LOCK WORD = RECORD
~  LOCK FLAG : LOCK STAT;
LOCK_COUNT : INTEGER;
END;

TRACK_RECORD = RECORD
REC_LOCK: LOCK_WORD;
REC_DATA: TRACK_DATA;
END;
TRACK FILE = ARRAY [l1..128] OF TRACK_RECORD;

REC_STAT = (FAILED, GOOD);

<Figure 4> Type Declarations for FTL



3.2. INITIALIZATION OF RECORD STATUS TABLE AND USE OF A

FILE RECORD

As shown in figure 5, the Record Status Table is ini-
tialized with all record copies accessible. Track file

copies in the shared memories are addressed indirectly

through local variables TRACK COPY (1) and TRACK_;OPY(Z).

A record in the Track File should be updated in the

fellowing way:

1) Call RECORD_LOCK. RECORD_LOCK returns status
indicating the accessibility of record copies
(see figure 6).
2) Make a copy of the accessible record in local
memory. )
3) Update the local copy.
4) Call RECORD UPDATE to update the record copies
in shared memory (see figure 7).

5) Call RECORD_UNLOCK {see figure 8}.



VAR

REC STAT TABLE : ARRAY [1..2, l..128] OF REC_STAT;

TRACK_COPY : ARRAY (1..2] OF "TRACK_ FILE;
TRACK_REC : TRACK DATA;

REC_ID : INTEGER;

RSTAT : INTEGER;

I,J : INTEGER;

BEGIN

{initialization of Record Status Table}

LOCP FOR I:=1 TO 2:
LOOP FOR J:=1 TO 128:

REC_STAT _TABLE(I,J) := GOOD;

ENDLOOP;
ENDLOOP;

{init

TRACK_COPY (1)
TRACK_COPY (2)

{The
loca

i1alization of pointers to Track File copies}
INTEGER := MSGADDR"(1):

INTEGER := MSGADDR™ (2);

- -
- e
» »
- e

following shows how to lock a Track Record, update
11y, update shared memories, and unlock 1t.

The Track Record is identified by 'REC_ID'}

RECOR

D LOCK (REC ID,RSTAT);
{lock the record}

IF RSTAT=-1 THEN ERR _ROUTINE;

TRACK

{both copies are inaccessible}

REC := TRACK COPY(RSTAT} (REC ID) REC DATA;
{get a local copy of the record}

WITH TRACK REC DO

<<U

PDATE THE RECORD LOCALLY>>;

ENDWITH;

RECORD_UPDATE (REC_ID,TRACK REC);

{update cGpies in The shared memory}

RECORD_UNLOCK (REC ID);

END

{unlock the record}

<Figure 5> Initialization of the Record Status Table and
Use of a Record of the Track File




PROCEDURE RECORD_LOCK (REC_ID: INTEGER, VAR RSTAT: INTEGER);

{RSTAT : return status
1,2 ) successful lock and use REC #1 or REC #2
-1 ) unsuccessful return}

CONST
MAX TRY = 100;

VAR
I : INTEGER;
STAT : INTEGER;

BEGIN
START:
RSTAT :=-1;
LOOP FOR I:=1 TO 2:
IF REC STAT TABLE(I,REC ID)=GOOD THEN
CAPTURS (TRACK_COPY (I)™(REC_ID) .REC_LOCK,
MAX TRY, STAT); -
IF STAT=0 THEN flocked successfully}
RSTAT:=I;
ELSEIF STAT=-1 THEN {the copy is inaccessible}
REC STAT TABLE (I,REC ID):=FAILED;
ELSEIF STAT=-2 THEN {the copy has been locked for too long
a time period by another computer}
RECONF$ (REC ID, STAT);
IF STAT=-1 THEN ERR ROUTINE; ENDIF;
Tboth copies are inaccessible}
GO TO START;
ENDIF;
ENDIF;
ENDLOQP;
END;

<Figure 6> Subroutine RECORD_LOCK
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PROCEDURE RECORD_UPDATE (REC_ID:INTEGER, TRACK_REC: TRACK_DATA);

VAR
I: INTEGER;

BEGIN
LOOP FCOR I:=1 TO 2:
IF REC_STAT_TABLE (I ,REC_ID)=GOOD THEN
WITH TRACK COPY(I)"(REC ID) DO
REC LOCK.LOCK FLAG:=UPD INITED;
RECDATA:=TRATK REC; =
ENDWITH;
ENDIF;
ENDLOOP;
END;

<Figure 7> Subroutine RECORD UPDATE

PROCEDURE RECORD_UNLOCK (REC_ID:INTEGER);

VAR
I: INTEGER;

BEGIN
LOOP FOR I:=1 TO 2:
IF REC STAT TABLE(I,REC ID)=GOOD THEN
TRACK COPY(I)"(REC ID).REC LOCK.LOCK FLAG
:=FREE; - - -
ENDIF;
ENDLOQCP;
ENDs

{Figure 8> Subroutine RECORD_UNLOCK
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3.3. SUBROUTINE CAPTURS

CAPTURS reads the lock word of a given record copy and

locks that copy if it is free. CPATURS returns status indi-
cating that: (1) the record was locked successfully, (2) the
record was inaccessible, or (3) the computer that holds the

lock has failed.

A simple timeout mechanism is used for failure detec-

tion as follows:

1) An integer COUNT 1is attached to each lock word

and 1is increased by one each time the copy is

locked.
2) CAPTURS repeatedly tries to lock the record copy.

3) If the COUNT remains unchanged for too many tries,

the current lock hoider is considered to have

failed.

Since problems can arise if more than one computer con-

currently detect the failure of another computer, exactly

one computer is allowed to detect the failure.

v-12



PROCEDURE CAPTURS (VAR LOCK: LOCK WORD, TIMES: INTEGER,
VAR RSTAT: INTEGER);

{RSTAT: return status
0) successful return

~1) not done due to inaccessible record
-2) not done within the given no. of tryl

VAR

NO LOOP : INTEGER;
CUR_COUNT : INTEGER;

BEGIN
RSTAT := -2;

WITH LOCK DO
START:

CUR_COUNT := LOCK_COUNT;
LOOPS :

LOOP FOR NO_LOOP :=1 TO TIMES:

<< EXCULSIVE ACCESS TO LOCK_WORD >>;
CASE LOCK FLAG OF
INACC: BEGIN

<< RELEASE EXCLUSIVE ACCESS >>;

RSTAT:=-1;
ESCAPE LOOPS;
END;
FREE: BEGIN

LOCK FLAG:=LOCKED; {lock it}

<< RELEASE EXCLUSIVE ACCESS >>;
LOCK_COUNT : =CUR_COUNT+1;

{increase LOCK_COUNT by 1}

RSTAT :=0;
ESCAPE LOOPS;
END;

OTHERWISE {LOCKED or UPD INITED}:

<< RELEASE EXCLUSIVE ACCESS >>;
ENDCASE;

<{ DELAY >>;
{if LOCK _COUNT has been changed, start from the
beginning}

IF CUR_COUNT <> LOCK_COUNT THEN GO TO START; ENDIF;
ENDLOOP;

<Figure 9> Subroutine CAPTURS (continued...)



{Let only one computer detect the failure and
let others keep requesting of lock}
IF RSTAT=-2 THEN
<< EXCLUSIVE ACCESS TO LOCK WORD >>;
IF CUR COUNT<>LOCK COUNT THEN
<< RELEASE EXCLUSIVE ACCESS »>;
GO TO START;
ELSE
LOCK COUNT:=CUR COUNT+!;
<< RELEASE EXCLUSIVE ACCESS >>;
ENDIF;
ENDIF;
ENDWITH;
END;

-<Figure 9> Subroutine CAPTURS

3.4. SUBROUTINE RECONFS$

When a computer failure is detected, the record copies
locked by that computer must be: (1) made internally and
mutually consistent and (2) released so that other computers
can use them. RECONFS executes a recovery procedure accord-
ing to the states of the lock words of the record copies

(figure 10).
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PROCEDURE RECONFS$ (REC_ID: INTEGER, VAR RSTAT: INTEGER);

{RSTAT: return status
0) successful reconf.

-1) unsuccessful reconf.}

VAR
STAT: ARRAY [l..2] OF LOCK_STAT;
I : INTEGER;

BEGIN

{get the states of the lock words of the given record copy}
LOOP FOR I:=1 TO 2:
STAT (I) := INACC;
IF REC STAT TABLE (I,REC ID)=GQOOD THEN
STAT{I):= TRACK COPY(TI)"(REC_ID).REC_LOCK.LOCK_FLAG;
IF STAT (I)=INACC THEN - -
REC_STAT TABLE (I,REC 1ID}:=FAILED;
ENDIF; - -
ENDIF;
ENDLQOP;

WITH PRI LOCK FLAG =
TRACK_COPY (1)~ (REC_ID) .REC_LOCK.LOCK FLAG,
SEC LOCK FLAG =~ .
TRACK_COPY (2) " (REC_ID) .REC_LOCK.LOCK_FLAG,
PRI REC DATA =
TRACK COPY (1)~ (REC ID).REC DATA,
SEC REC DaTA = - -
TRACK_COPY (2) " (REC_ID) .REC_DATA DO

RSTAT :=-1;
IF STAT (1)=INACC THEN
IF STAT (2)=FREE OR STAT (2)=LOCKED THEN
{copy #1 inaccessible, copy #2 €free or just locked}
SEC_LOCK_FLAG:=FREE;
RSTAT : =0
ELSEIF S5TAT (2)=UPD INITED
{copy #1 inaccessible, copy #2 being updated}
SEC LOCK FLAG:=INACC;
REC™ STAT TABLE (2,REC ID):=FAILED;
ENDIF; - -

<Figure 10> Subroutine RECONF$ (continued...)
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ELSEIF STAT (2)=INACC THEN
IF STAT (1)=FREE OR STAT (1)=LOCKED THEN

{copy #2 inaccessible, copy $#1 free or just locked}
PRI_LOCK FLAG:=FREE;
RSTAT : =0

ELSEIF STAT(1l)=UPD_INITED THEN

{copy #2 inaccessible, copy #1 being updated}

PRI LOCK FLAG:=INACC;

REC STAT TABLE(l REC_ID):=FAILED;

ENDIF-

ELSEIF STAT (1l)= UPD_INITED AND STAT (2)=LOCKED THEN

{copy #1 being updated, copy #2 just locked}
{make copy #1 identical to copy %2}
PRI_BEC_DATA 1= SEC REC DATA-

PRI LOCK FLAG: -FREE

SEC LOCK FLAG: —FREE-

RSTAT:=03;

ELSEIF STAT (1)=UPD INITED AND STAT (2)=UPD INITED THEN
{copy #1 completely updated, copy #2 being updated}
{make copy #2 identical to copy #1}

SEC REC DATA := PRI REC DATA'
PRI LOCR FLAG:=FREET
SEC“LOCK"FLAG--FREE-
RSTAT:=07;

ELSE .
{two copies are already consistent}

PRI_LOCK_FLAG: =FREE;
SEC_LOCK_FLAG: =FREE;
RSTAT:=
ENDIF;
ENDWITH;

END:

<Figure 10> Subroutine RECONFS
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4. EXPERIMENTS

Here, we suggest experiments to assess the performance

of the FTL protocol implementation in the testbed. The
first three experiments deal with the FTL protocol in the
absence of failures: 1) overhead of the FTL protocol, 2)
choice of lock-request retry period, and 3) choice of time-

out period for computer failure detection. Experiment 4

studies the FTL protocel 1in the presence of computer

failures.

4.1. Experiment 1: QOverhead of the FTL Protocol

The FTL protocol requires more processing than when
fault-tolerance is not considered (i.e. the baseline sys-

tem). The purpose of this experiment is to compare port-

to-port times and computer utilizations of the FTL protocol
implementation with those of the baseline to determine the

magnitude of these additional processing requirements.

4.2. Experiment 2: Choice of Lock-Request Retry Period

When a computer can not lock a TRACK record, it retries

repeatedly until: (a) it succeeds or (b) a failure is

detected. If the period between retries (retry period) Iis
too short, shared memory conflicts increase; if the retry

period is too long, computers may wait for a lock even

though the record is free. A set of experiments should be

conducted to see the effect on system performance of



different values for lock-request retry period. Measure-
ments of port-to-port and computer utilization should be

taken.

4.3. Experiment 3: Choice of Time-out Period for Computer

Failure Detection

The time-out period for detecting a computer failure

during database wupdate should be longer than the maximum

time tasks may hold locks. Thus, experiments should be con-
ducted to determine how long tasks hold locks. Since lock

holding times may vary with tactical time, the data should

be collected in appropriate time intervals.

4.4. Experiment 4: Performance of the FTL Protocol with

Computer Failures

This set of experiments studies the behavior of the FTL
protocol when computers fail. Some technigues are needed to

simulate computer failures during database update (e.g.

forcing a computer to get into an infinite loop while it
holds a lock}, and the times at which failures occur should

be logged. In addition to port-to-port times and computer

utilizations, the following data should be collected:

1) time to detect a computer failure, and

2) time to recover from a computer failure

v-18



ACKNOWLEDGEMENTS

The authors would like to thank Joseph Bannister of UCLA for his discussions
and carefully reading a draft of this report, and Aeri Lee for her secretarial and

administrative support in preparing the report.






DISTRIBUTION LIST

Director

BMD Advanced Technology Center
ATTIN: ATC-P

P. O. BOX 1500

Huntsville, AL 35807

HQDA (DACS-BMT)
Alexandria, VA 22333

Ballistic Missile Defense Program Office
ATTIN: DACS-BMT

AMC Building, 7th Floor

5001 Eisenhower Avenue

Alexandria, VA 22333

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

TRW, Incorporated
ATTN: Earl Swartzlander
One Space Park

Redondo Beach, CA 90278

General Research Corporation
ATTN: Dave Palmer

P. O. Box 6770

Santa Barbara, CA 93105

Stanford University

Stanford Electronics Laboratories
ATTN: Mike Flynn

Standford, CA 94305

McDonnell/Douglas Corporation
ATTN: Gale Schiuter

5301 Bolsa Avenue

Huntington Beach, CA 92647

University of California/Berkeley

Dept. of Electrical Engineering and Computer Science
ATTN: C. V. Ramamoorthy

Berkeley, CA 94720



10.

11.

12.

13.

14.

16.

17.

18.

19.

System Development Corporation
ATTN: SDC Library

4810 Bradford Blvd. NW
Huntsville, AL 35805

System Development Corporation
ATTN: W. C. McDonald

4810 Bradford Blvd, NW
Huntsville AL 35805

General Research Corporation
ATTN: Genry Minshew

307 Wynn Drive

Huntsville, AL 35808

Optimization Technology, Inc
ATTN: Paul McIntyre

20380 Town Center Lane
Suite 160

Cupertino, CA 95014

Auburn University

Dept. of Electrical Engineering
ATTN: Dr. Victor Nelson

207 Dunstan Hall

Auburn, AL 36830

University of South Florida
Computer Science Program - LIB 630
ATTN: K. H. Kim

Tampa, FL. 33620

TRW, Incorporated
ATTN: Wayne Smith
213 Wynn Drive
Huntsville, AL 35805

Carnegie-Mellon University
Department of Computer Science
ATTN: Daniel P. Siewiorek
Scheneley Park

Pittsburgh, PA 15213

The University of Connecticut
Computer Science Department
ATTN: E. E. Balkovich
Storrs, CT 06268

Systems Control, Inc.

ATTN: Hank Fitzgibbon

555 Sparkman Drive, Suite 450
Huntsville, AL 35805



20.

21.

TRW, Incorporated
ATTN: Mack Alford
7702 Governor’s Drive W
Huntsville, AL 35805

Carnegie-Mellen University
Department of Computer Science
ATTIN: Zary Segall

Pittsburgh, PA 15213






