UPDATING REPLICATED FILES IN REAL TIME
DISTRIBUTED PROCESSING SYSTEMS

Joseph Hellerstein 1684
Report No. CSD-840030

MASTER COPY

UNIVERSITY OF CALIFORNIA

Los Apgeles

Updating Replicated Files in

Real Time Distributed Processing Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Computer Science
by

Joseph Hellerstein

SO0 50

© Copyright by
Joseph Hellerstein

1984

The dissertation of Joseph Hellerstein is approved.

%%‘ {): L

Milos D. Ercegovac ¥

it A Y80

Sheila A. Greibach

Bennet P. Lientz

/7 Loy et

R. Clay Syf'ow!‘g

W e—

Wesley W. Chu, Committee Chair

University of Califernia, Los Angeles

1984

ii

To

SUZANNE

1t

Table of Contents

page
LIST OF NOTATION cooooireeeercccrercrsssreneenseeasearaessosssrssssassastsassssssssssrsnnassansenssossssases vii
AB S T R A CT ooeeeeeeeeteerrterseeaseeasasarasasarasmasesestsssssssasssssssananmassssossssssasssssusustassessessanes Xiv
1 INTRODUGTION ..ooicivierrrrretenetrereesemomaressosnsasanssesesesssvassbsbssstsassasssassssassasansasansass 1
1.1 CHARACTERISTICS OF EXISTING PROTOCOLS e 8
1.2 CONTRIBUTIONS OF THIS DISSERTATION .o 17
2 THE EXCLUSIVE-WRITER PROTOCOL (EWP) .ccoririrenenreenceneeeneeecas 19
921 EWP OPERATION ooiiorecveriecieniireeeresesentnesisssrnnssassesssasassssnsaenssssssnnserssssasssss 19
2.2 EWP APPLICATIONS AREAS ettt ccistssinsaanes 26
2.3 EWP EXTENSIONS oivriecrercrtersessornsossacsansmesssossammeessosssssanssssessnasessasaseosesss 27
9.4 IMPLEMENTATION CONSIDERATIONS ...t ccisaens 31
2.4.1 UPDATE SEQUENCE NUMBERccoiiiiiiiniccntitensnnres e 31
9.4.2 DEGREE OF FILE REPLICATION ...t ecceccsnianies 31
2. 4.3 DESIGNATING EXCLUSIVE-WRITERS ..o 32
2.4.4 ASSIGNING TRANSACTIONS TO SITES ..o ciitenen 32
9 4.5 OPERATING SYSTEM DESIGN ..ccoviviiiiciienitrenscennninresss e saneas 33
9.4.8 REDUCING MESSAGE VOLUME ...t cireas s 34
2.5 SUMMARY coeeeeeeieereisssemeerererraeenessesanenersssssabatsesassssnaatssassrnsnssssssrnssasassastsenes 35
3 THE EXCLUSIVE-WRITER PROTOCOL WITH LOCKING OPTION (EWL) 36
3.1 EWL OPERATION ooiiiciiieiirnenmmmeenneereesssassessiasasssmensesmemsssssssssassnnsnsnasansassons 36
3.9 EWL EXTENSIONS ooiietieveeetmeecereorieseoserorararessssssinnsssassssssnsnssssssnasssssssnancosns 44
2.3 DYNAMIC SWITCHING BETWEEN PSL AND EWL .. 46
3.4 IMPLEMENTATION CONSIDERATIONS .ot 48
3.8 SUMMARY oot iesisverresrsrneeesessasesssaesesansssbastasstenassnssansasasarannastnssasasens 50
4 RESPONSE TIME ANALYSIS ittt isbasnsassssanseasesssenasrs s 52
4.1 SYSTEM MODELED ...otiviciiiemrereeeeceeaeneniscssssnsssesnmnstesssanssssssssansssssssstacnssasss 54
4.9 APPROACH TO ANALYTIC MODELS ...icceriiininiininieerernreseniamaeaesissese 58
4.3 PSL MODEL oooooreeieeviresreereranrnsssncanmenrnrsisssssererenratssssssistsrntannnsasssasnsaanrassoess 80
4.4 EWL MODEL oot viierieseiesirsnsamraseransesseaereressssstsssnssmensasssissasssssrssrsssastsoses 76
4.5 OTS MODEL ooeeeeeeceieieriresetasrsrsusriassessasssssasnomseoretrstsssssstsssnsrnsnrasssssassrassssssases 98
4.8 NUMERICAL STUDIES ..oocccerieveirersreeacremeesmsssasssansossassresssssiorsnesssanmasnsasmsnnranis 107
4.7 DISCUSSION creeeeceoeitiuerasaesseeressssassstesmmesustaasesenserssssstssisissisnssasmssnanmesnmestorissoss 143
5 CONCLUSIONS AND FUTURE RESEFARCH .o 149
REFERENCES coiiieiiieeeeeieeisisssessasssssrasssasasmasaasaseassssensassansnssssssssiessesassssrsssnsarannansssess 153

v

Figure 1-1:
Figure 1-2:
Figure 1-3:
Figure 1-4:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 3-1:
Figure 3-2:

Figure 3-2 continued

Figure 4.1-1:
Figure 4.3-1:
Figure 4.3-2:
Figure 4.4-1:
Figure 4.4-2:

Transaction

Figure 4.4-3:

Transaction

Figure 4.4-4:
Figure 4.4-5:
Figure 4.5-1:
Figure 4.5-2:
Figure 4.6-1:
Figure 4.6-2:
Figure 4.6-3:
Figure 4.6-4:
Figure 4.6-5:
Figure 4.6-6:
Figure 4.6-7:

Example of a Real Time Distributed Processing System
Need for Consistency Control in Distributed Systems

Timing Diagram For Primary Site Locking (PSL)

Timing Diagram For Optimistic Timestamp (OTS)
The Exclusive-Writer Approach
EWP Timing Diagram
EWP Operation at Site i for file F,
EWL Timing Diagram
EWL Operation at site s for file F,

List of Figures

....................
.......................
..............................

...........................
..
...
...
...
...
..
................
..
......................................
..

....................................

Timing Diagram For EWL Response Times
SN Conflict With The First Execution of a Non-EW Site

..

..

SN Conflict with the First Execution of an EW Site Transaction
SN Conflict with the Second Execution of an EW Site Transaction

Timing Diagram For OTS Response Times

.....................................

Estimating OTS Restart Probabilities

...

Values For Parameters In Baseline

...

Tg For Baseline

...

Components of PSL Response Time For Baseline

...........................

Site and Lock Queue Utilizations For Baseline

Number of Transaction Restarts For Baselineoooooooooeoooeoonnon

............................

..

page

11
20
23
24
38
41
42
49
55
61
64
77

&9

Figure 4.6-8: Components of OTS T for Baselineooveemieiimsiiicie 119
Figure 4.6-9: Components of EWL Ty, for Baselinecooieeirimnnnieceee. 122
Figure 4.6-10: Ty for Background Loadoovvvemmnoomin e, 123
Figure 4.6-11: Site Utilizations for Background Loadc.ccocciiiiiniiicnnnncie. 124
Figure 4.8-12: Lock Queue Utilizations for Background Loadc.covvnienennnne. 125
Figure 4.6-13: Probability of a Transaction Restart for Background Load (.6,.1) 126
Figure 4.6-14: T, for Background Load ...t 128
Figure 4.6-15: Response Times for Transaction Execution Times 130
Figure 4.8-18: Lock Queue Utilizations for Transaction Execution Time 131
Figure 4.6-17: Response Times for Update Processing Timescccocerinennne. 132
Figure 4.6-18: Response Times for Control Processing Times ... 133
Figure 4.6-19: Response Times for Network Communication Times 135
Figure 4.6-20: Response Times for Lock-grant and Lock-release Times 136
Figure 4.6-21: Response Times for Update Log Processingcccocovenienmeneanene. 138
Figure 4.6-22: Response Times for Number of Sitescccvreivinininininvennnn 139
Figure 4.6-23: Response Times for Partitioning of Transaction Load 141
Figure 4.6-24: Effect on Response Times of Increasing Input Parameter Values 144

vi

LIST OF NOTATION

Roman Capitals

AP = Period during which lock queue arrivals can occur

C = Network communication for an update message

C' = Network communication for a control message

CCP = Consistency control protocol

DR = Database rollback

EA = Time from completing transaction’s execution until all update

acknowledgements have been received

ER = Time from transaction completing its execution until update-request
processing has been completed
EW = Exclusive-writer

EW = Non exclusive-writer

F = File

vil

GR = Time from lock-grant to lock-release

H = High priority consistency control work

H = High priority background work

I = Number of sites

K = Number of files

L = Low priority consistency control work

' = Low priority background work

LE = Lock-release

LG = Lock-grant

L@ = lock-queue

LR = Lock-request at a primary/exclusive-writer site

LR' = Lock-request message formatting and transmission

N,, = Number of restarts

PL == Pre-lock processing

PS == Primary site

RP = Remaining period after the period during which arrivals are possible at the

viii

lock queue

RS = Restart (for a transaction)

RS = No restart (for a transaction)

RTDPS = Real time distributed processing system

T = Time period that includes both service and queue waits

Ty = Transaction execution response time

T; == Update Confirmation response time

TM = Transaction module

UA = Update acknowledgement processing

Ul = Update input processing

UM = Update log maintenance

UO = Update output processing

UR = Update request processing

W = Queue wait

W, = Queue wait due to remaining service time

X = Service time

ix

Small Roman

ew, = Exclusive-writer site for F}

+ == Site index

§ = Site index

= File index

! = File index

p(LQ;k,i) = Probability that F is locked by a transaction that executes at site

o{ TM:k,i) = Probability of executing at site ¢ a transaction for F

ps; = Primary site site for F

o k,9) = Probability of restarting a trapsaction for F) that executes at site ¢

Greek

by, = 1if site i is the exclusive-writer’s/primary site for F; 0 otherwise

)\ == Externally generated arrival

A TM:k) = External arrival rate of F; transactions

ML ;i) = Arrival rate of background low priority work at site ¢

MH' ;i) = Arrival rate of background high priority work at site 4

~ = Internally generated arrival

+(L@;k) = Arrival of requests at F;'s lock queue

A{TM:k} = Arrival rate of F; transactions that were externally requested or were

restarted

p(#) == Utilization of site ¢

(L @;k) == Utilization of F}'s lock queue

Miscellaneous

{ = Average residual life of the random variabie t

t"(s) = LaPlace Transform for the random variable t

xi

ACKNOWLEDGEMENTS

This work was supported in part by U.S. Army Contract No. DASG60-79-C-

0087 and subsequent renewals of the same contract.

I would like to express special thanks to my committee chairman, Professor
Wesley W. Chu, for his guidance, friendship, encouragement, and insightful comments.
I also thank Professor Hector Garcia-Molina for thought provoking ideas on the
exclusive-writer protocol and the members of my dissertation committee: Professors
Milos Ercegovac, Sheila Greibach, Bennet Lientz, and Clay Sprowls. Thanks also are
due to Jung Min An, Joseph Bannister, Leslie Holloway, Min-Tsung Lan, and Kin
Kwong Leung for their stimulating discussions as well as Wendy Hagar and Aeri Lee

for their secretarial assistance with preparing the figures.

Additionally, I would like to thank my parents, Edith and Stan, and my in-
laws, Pat and Hersh, for their love and emotional support. Finally, I express special
thanks to Suzanne whose love, sensitivity, and devotion kept my motivation from

waning and, having completed the Ph.D., she makes it all worthwhile.

Xii

VITA

August 24, 1952--Born, Indianapolis, Indiana
1974--B.A., University of Michigan
1974-1978--Software Engineer, Honeywell Inc.

1978-1979--Systems Programmer, Office of Academic Computing, University of
California, Los Angeles

1978-1979--M.S., University of California, Los Angeles

1979-1980--Programmer, ARPA Packet Radio Contract, University of California, Los
Angeles

1981-1984--Research Assistant, Computer Science Department, University of California,
Los Angeles

PUBLICATIONS

Hellerstein, J. and W. W. Chu. "Some Potential Deadlocks in Layered
Communications Architectures”, Proceedings of the National Computer Conference,
May 1981, pp. 137-140

Chu, W. W., J. Hellerstein, and M. T. Lan. "The Exclusive-Writer Protocol: A Low
Cost Approach For Updating Replicated Files In Distributed Real Time Systems”,
Third International Conference On Distributed Computing Systems, October 1982, pp.
269-277

Chu, W. W, M. T. Lan, and J. Hellerstein. "Estimation of Intermodule

Communication {IMC) and Its Application in Distributed Processing Systems”,
accepted for publication in JEEE Transactions on Computers

xiii

ABSTRACT OF THE DISSERTATION

Updating Replicated Files in
Real Time Distributed Processing Systems
by
Joseph Hellerstein
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1984

Wesley W. Chu, Chair

Consistency control protocols either check for conflicting file accesses before
(early checking) or after (late checking) transactions reference shared files. Early
checking protocols (e.g., primary site locking - PSL) delay completing a transaction’s
execution, or execution response time (Tg), until messages are exchanged for conflict
checking. Doing so causes inter-computer synchronization delays (ICSD}. Late
checking protocols avoid such delays for Tz But existing protocols (e.g., optimistic
timestamps - OTS) repeatedly restart a transaction until it executes without conflict,
which can (1) cause long ICSD to finalize a transaction's update (T'y) and (2) saturate

the computers and interconnection network.

xiv

We present two new protocols that have no ICSD for T and avoid repeated
transaction restarts. The ezclusive-writer protocol (EWP) is a late checking protocol
with po transaction restarts, database rollbacks, or deadlock due to shared data access.
EWP discards update-requests that lose a conflict, which is acceptable for some real
time applications, but restricts EWP’s usage. The exclusive-writer protocol with
locking option (EWL) uses EWP when there is no conflict and restarts a transaction
under PSL if it loses a conflict. EWL has no database rollbacks and restarts a
transaction at most once (if the files read and written by the transaction do not change
when it is restarted). To further reduce restarts, sites can dynamically switch between

EWL and PSL without additional messages or ICSD.

To -study the response times (i.e., Tz and Ty) of PSL, OTS, and EWL,
analytical queueing models are developed. Our studies show that OTS is undesirable
unless there are small costs for update log maintenance, database rollbacks, distributed
update validation, and repeated transaction restarts. EWL is preferred to PSL for Tp,

since PSL has ICSD for Ty, but EWL does not. EWL's T, is lower than PSL’s when:

1. Updates are smaller, since EWL includes the proposed update in the update-

reguest message.

2. The cost and/or frequency of transaction restarts is lower, since EWL has

restarts but PSL does not; and

3. The cost of locking is higher, since PSL always requires locking but EWL

requires it only if a transaction is restarted.

Xy

EWP always has lower response times than EWL.

xvi

CHAFTER 1

INTRODUCTION

In real time systems, a program (or transaction) must finish within a specified
time period if the system is to operate properly (e.g., detect and destroy incoming
ballistic missiles). To meet real time constraints, it is desirable to split the processing
workload among several computers. However this technique, referred to as distributed
processing, creates problems with file consistency. For example, if two or more
computers simultaneously update the same file, the logical relationships among file
data, or internal consistency, must be preserved. Additionally when copies of a file are
replicated at multiple computers (to reduce read access times and to improve
reliability), these copies should be identical once all updates have been finalized. This

is referred to as mutual consistency.

Conssstency control protocols {CCPs) are needed to preserve the internal and
mutual consistency of shared files. Commonly used techniques for consistency control
include locking and timestamp protocols [BERN81]. While the processing time,
message volume, and queueing delays of these techniques can be substantial, such costs
may not be significant for general purpose database management systems in which
shared files reside on secondary storage. However, for real time distributed processing

systems (RTDPS) in which files consist of data in RAM, the cost of locking or

timestamps may be prohibitive. This has motivated us to introduce two new low cost
protocols: the ezclusive-writer protocol (EWP} and the czclusive-writer protocol with
locking option (EWL). In this dissertation, we specify the operating characteristics of

EWP and EWL as well as study their performance in terms of response times.

Herein, we consider the type of RTDPS illustrated in figure 1-1 (e.g., the
Distributed Processing Architecture Design (DPAD) System [GREES0]). Transaction
modules (TM), or just transactions, are assigned to computers (or sites) where they
perform time critical functions, such as radar signal processing. More specifically, we

consider a transaction to be the execution of a tramsaction program required to satisfy

a request for that program.! The files a transaction reads are called its readset and
those written are its writeset. A transaction's baseset is the union of its readset and
writeset. When updates are made to a file, they are propagated to replicated copies by
sending update messages through ﬁhe interconnection network. {We assume there is no
shared memory.) Files reside in RAM and are typically accessed by the transactions
without using a high level data model (e.g., relational, network, or hierarchical models).
We assume that no computer fails and the interconnection network guarantees that
messages are eventually transmitted without error (although they may arrive out of

sequence).

1 For example, TM, may be requested to process a record in file F;. Because of
conflicting accesses to this recorj, TM; may be reexecuted (restarted) one or more
times. However, all of these TM, executions are part of the same transaction. On the
other hand, a second TM, request to process a F; record is a different transaction.

FIGURE

1-1:

EXAMPLE OF REAL TIME DISTRIBUTED PROCESSING SYSTEM

COMPUTER 1

COMPUTER 2

™

™

COMPUTER 3

(F1)

™

TH3

™y

GOIGD

s

(D (D) ()

RADAR

INTERCONMECTION NETWORK

TRANSACTION
MODULES

D FILE

CCPs are required when concurrently executing transactions make conflicting
accesses to shared files. Transactions execute concurrently if at least part of their
operations overlap. Their file accesses conflict if some transaction writes (updates) a
file that another transaction reads or writes. The goal of a CCP is to preserve the
internal and mutual consistency of shared files. For example, in figure 1-2 files X, Y,
and Z are replicated at sites 1 and 2 with the internal consistency constraint that
X, + Y;+ Z;=3. (X, is the value of file X at site i) For mutual consistency, we
require that once all updates cease, X; =X, Y, =Y, and Z, = Z,. Initally,
X, =Y, = Z; =1, so both internal and mutual consistency are present. If transaction
TM, at site 1 sets X, to 2 and Y; to 0, then internal consistency is still preserved at
that site (i.e., X; + Y, + Z, =2+ 0+ 1 + = 3). Similarly, if TM, at site 2 sets ¥,

.to 2 and Z, to 0, site 2's internal consistency is not violated. However, when TM; and
TM, execute concurrently without using a CCP, their updates can be merged in a

manner that violates both internal and mutual consistency.

For many applications CCPs must preserve serializability, which is defined as

guaranteeing that the result of concurrent transaction executions is the same as if the

transactions had executed in some serial order without concurrency [ESWAT78|.
Intuitively, a CCP that ensures serializability guarantees that the effect of doing
computations with multiple computers is the same as if only a single monoprogrammed
computer had been used. Serializability implies internal consistency, since if the

database is initially internally conmsistent and each transaction preserves internal

! Indeed, some authors define a transaction as a program whose database operations
have the same the effect as a serial schedule.

FIGURE 1-2: NEED FOR CONSISTENCY CONTROL IN DISTRIBUTED SYSTEMS

o COPIES OF FILES X, Y, AND Z RESIDE AT SITES 1 AND 2.
o CONSTRAINTS
- INTERNAL CONSISTENCY: X, +Y, +Z, =3

- MUTUAL CONSISTENCY: X =X, , Yy =Yy, 2 = Z,

¢ EFFECT OF COMCURRENT UPDATES WITHOUT CONSISTENCY CONTROL

SITE 1 SITE 2
Xy Z XY Z
110D INITIAL VALUES 1 1 D

2 0

)
22 0 FINAL VALUES 2 0 0

o [NCONSISTENCIES
- INTERNAL: Xl"'Yl"'Zl#s, XZ+Y2+22?‘3

- MUTUAL: Y7 # Yy

consistency, then a serial execution of transactions guarantees that the database will

remain internally consistent.

Real time systems require CCPs with low delays. In distributed computer
systems, the largest delays are usually a result of inter-computer synchronization. For
example, the primary site locking (PSL) protocol requires that a transaction’s execution
be delayed until: (1) a lock-request message has been sent to the primary site, (2) the
primary site determines that the tramsaction can access its files {i.e., there are no
conflicting accesses); and (3) the primary site has replied with a lock-grant message. in

geperal, inter-computer synchronization delays have ome or more of the following

components:
1. Communicating a request {e.g., lock-request) to another site. This requires time
for
a. Formatting the inter-computer message
b. Transmitting the message
€. Waiting for processing at the destination
d. Processing the request at the destination
2. Waiting for an acceptance condition (e.g., no conflicting file accesses) to be met.

This typically requires that one or more additional messages be sent.

3. Communicating the acceptance of a request {e.g., lock-grant) to the requesting

site. This has the same delays as item 1.
Inter-computer synchronization delays can be quite large. For example when the
DPAD System is moderately loaded, the time to communicate a request and receive an

acceptance is greater than the average execution time of a DPAD transaction!

Here we consider two measures of transaction response time. In RTDPS, time
critical functions are often performed by a sequence of transactions. Thus, to meet real
time constraints, we need to minimize the time from a transaction’s input files being
available until the transaction’s file updates are available to its successor(s). In some
applications, these file updates need only be tentative (e.g., airline reservations in which
future scheduling changes will cause flight reassignments or DPAD radar tracking in

which object positions are continuously changing). So, we use

Tg: Ezecution Response Time
Definition: time from the transaction’s arrival (i.e., its input files are available)
until it has completed its first execution (thereby making avzilable tentative file
updates).
For other applications (e.g., banking or DPAD final intercept planning), tentative
updates are not sufficient. A transaction must be assured that updates to its input
files are finalized (i.e., will ot be undone due to database rollbacks) before the files can

be used. Here we use,

T Update Confirmation Response Time

Definition: time from the transaction’s arrival until its update is known to be

finalized at some site.!

1.1 CHARACTERISTICS OF EXISTING PROTOCOLS

Consistency control protocols can be classified based on:

1. when inter-computer checking for conflicting file accesses is performed

2. the technique used for serializing conflicting file accesses.

Conflict checking can be performed either before or after transactions access shared
files. The former is called early checking while the latter is referred to as late checking.
Late checking protocols are also called optimistic since they are optimistic that conflicts
will not occur. Conversely, early checking protocols are also called pessimistic.
Commonly used techniques for serialization include: (1) locking, in which the presence
of a lock indicates a reservation for the type of access indicated and (2) timestamps, in
which globally unique timestamps are assigned to transactions and file conflicts are
resolved based on the transaction’s timestamp f{e.g., larger (younger) timestamps

always lose to smaller {older) ones).

Several authors have surveyed CCPs for distributed processing systems (e.g.,
[BERN81], [BERN82|, [GALL82], and [LIN83]). Rather than doing still another survey
of CCPs, we focus on two contrasting approaches that have bad more widespread
acceptance: primary site locking (an early checking protocol that uses locking) and

optimistic timestamps (a late checking protocol that uses timestamps).

! Note that update confirmation response time has assignment implications, since it is
preferable to assign a successor transaction to the site that will first know that its
predecessor’'s update has been finalized.

FIGURE 1-3: TIMING DIAGRAM FOR PRIMARY SITE LOCKING (PSL)
e TM, AND TM, ONLY ACCESS FILE F

SITE SITE 4 PRIMARY SITE
SNK‘I SNK‘J SNK,PS
N N N
TH,ABRIVES: i
My [n+l
SI’L‘"ﬁHJ

N+l

N+l

‘_-——_‘“I_UPDATEB\-

= SN = n+2 +2
SN = My 2 + N

wy
=
i

UPDATE SEQUENCE NUMBER FOR THE COPY OF FILE « AT SITE 1
TRANSACTION (TM) EXECUTION

E TRANSACTION EXECUTION RESPONSE TIME

UPDATE CONFIRMATION RESPONSE TIME

UPDATE IS WRITTEN

L

+
1]

Primary site locking (PSL) has been proposed by [STON79| for distributed
INGRES and a variant of PSL is being used by LOCUS {WALKB83]. PSL preserves a
file's consistency by requiring that transactions get permission from the file’s primary
site before accessing the file. A timing diagram for PSL is shown in figure 1-3, in which
transaction TM, updates file Fj. Before executing TM,, site i sends to PS5, {the
primary site of F;) a lock-request message. PS; puts the lock-request in F}'s lock
queue. Once F} is available (i.e., no other transaction has a conflicting lock for Fy), PS;
locks F; for TM, and sends a F} lock-grant message which contains the update
sequence number of the last update to F;. If site i has not written this update to its
copy of Fj, site i waits until all outstanding F; updates have been written before TM,
is executed. Omce TM, completes its execution, site ¢ increments the update sequence
pumber for F (so that TM,'s update will be uniquely identified), writes TM,'s update
to its copy of Fj, and broadcasts the update to the other sites. PS; treats a Fy update
as an implicit lock-release by removing TM,'s lock-request from F 's lock queue and
unlocking F;. Note that TM, encounters inter-computer synchronization delays for
both Tz and Ty These delays begin when site i sends the lock-request message and do

not end until ¢ receives the lock-grant message.

The optimistic timeatamp (OTS) protocol has been discussed in [BERN81] (who
uses the term nonconservative timestamps) and [LIN83] (who uses the term basic
timestamps). OTS has two sources of appeal: (1} it is relatively simple for a late
checking protocol; and (2) [LIN83]'s simulation studies indicate that OTS performs at

least as well as other late checking protocols such as WOUND/WAIT [ROSE78] and

10

FIGURE 1-4: TIMING DIAGRAM FOR OPTIMISTIC TIMESTAMP (OTS)
o TM, AND TH_ ONLY ACCESS FILE F,

SITE 1 SITE 4
TMa ARRIVES |
T~ T -
I
T, () T ARRIVES . -
+ I THa !
—_ i, Up Tﬁ(B)
T,(A) ”‘TS(A) TMp e 4
c +
™
B
WIS '
+ ACK/A
‘*‘-—--__QQEEI_B_______&_______ _______ I

o W-TS(a) < W-TS(B) < W-TS'(B)

= TRANSACTION EXECUTION
Te TRANSACTION EXECUTION RESPONSE TIME

Ty UPDATE CONFIRMATION REPONSE TIME
UPDATE IS WRITTEN
« = DATABASE ROLLBACK

W-TS = WRITE TIMESTAMP

+

11

optimistic locking [LIN83]. As with other timestamp protocols, OTS requires that
transactions and files have associated timestamps. OTS preserves consistency by
ensuring that updates are written in the order prescribed by the timestamp of the
updating transactions. If an update violates this ordering, it is removed from the
database (or rolled back) and the updating transaction is restarted. Figure 1-4
contains a timing diagram for OTS in which transactions TM, and TM, update file F,.

When a transaction is selected for execution, it is assigned a globally unique write

timestamp (i.e., w-ts(a)).! When TM, first accesses Fy, (the copy of Fy at site), the

current value of F;,'s timestamp (ta(k,7) is saved as TM,’s read timestamp (r-t#(a}) to

indicate the version of F; that TM, read.? The same is done for TM, at site j. After
execution, the transaction’s updates are written to its local file copy (e.g., F ; for T™,),
the timestamp of its local .ﬁle copy is changed to the transaction’s write timestamp,
and a record of these modifications is placed in an update log. (The update log will be
used to remove a transaction’s updates if a conflict occurs.) Then, messages containing
the transaction’s updates, its read timestamp, and its write timestamp are sent to the

other sites. Let TM be either TM, or TM, in figure 1-4, r-ts denote TM's read

timestamp, and w-ts its write timestamp. Since r-ts < w-ts®, four possibilities exist

when site 1 receives this message.

! This can be done by using the curremt time according to site's local clock and
appending to it the site's identifier.

? In general, each F, copy will have both a read and a write timestamp. However in
this example, it suffices to consider a single timestamp for each file copy.

3 This will be the case if durinE the execution of a transaction at site s no update is
written to any file accessed by the transaction.

12

1. ts(k,i) = r-ts
Fy; 1s identical to the copy of F, that TAf read. So TM's update is accepted

(e.g., TM, in figure 1-4).

2. r-ts < ta(kf) < w-ts
A conflict occurred and TM lost, since Fj; has been updated by another
transaction with a smaller (older) timestamp than w-ts. So, TM's update is

rejected (e.g., TM, in figure 1-4).

3. ta(k,5) < r-ts

TM may have read a version of F; to which was written an update that lost a

conflict and hence must be rolled back.! So, the TM's update is rejected.

4. w-ts < ta(k,1)
A transaction with a timestamp larger (younger) than w-ts updated site Fi.
Thus, a database rollback is required to remove the out of sequence update.
The rollback continues until one of 1, 2, or 3 above is true.
If site ¢ accepts TM's update, it sends TM's execution site an update-acknowledgement
message indicating acceptance. If site ¢ rejects the update, it sends a message
indicating rejection. If all sites accept TM's update, TM's execution site removes the
update log entry for TM's update. If any site rejects the update, TM's execution site
rolls back its database to remove TM's update (if it has not already done so), and TM

is restarted in the same manner as it was executed initially. If this restart is rejected,

! Another possibili}y is that site { has not received one or more of the updates that
were accepted for Fy. However, if the network is not too slow this will be rare. So,
we simplify OTS by assuming that a conflict occurred.

13

then TM is again restarted. Note that OTS has no inter-computer synchronization
delay for Tg. However, inter-computer synchronization delays are required for Ty,
since the transaction’s execution site must wait for update-acknowledgement messages

from the other sites with a copy of Fj.

The foregoing discussion of PSL and OTS provides a basis for characterizing
existing CCPs. First, they almost all ensure mutual consistency and internal

consistency, as well as serializability (e.g., PSL and OTS). In the case of locking

protocols, there is concern about deadlocks.! However in real time systems, deadlocks
involving file accesses may not been too troublesome since a transaction's file
requirements are often known in advance of its execution (e.g., DPAD). This permits
using low cost deadlock avoidance techniques. Timestamp protocols require periodic
clock synchronization. The extent of this overhead depends on the degree of

synchronization required (e.g., [LAMP78]), which is an open research area.

Early checking protocols avoid transaction restarts due to conflicting file

accesses, but they require inter-computer synchronization delays for both Tz and T,
since inter-computer messages must be exchanged to do conflict checking (e.g., PSL
lock-request and lock-grant). Late checking protocols can avoid inter-computer

synchronization delays for T, since conflict checking need not be performed until after

1 A deadlock occurs when there is a circular wait among transactions waiting for file
locks. For example, suppose that TM, and TM, both update files F, and F,, TM, has
locked F|, and TM, has locked Fj,. If TM, does not release F; before it locks F, and
TM, does not release F, before it locks F), a deadlock is present.

? Even with an early checking protocol, a transaction could be restarted if deadlocks
are resolved by using deadlock detection.

14

the transaction finishes executing. However if a conflict occurs, the transaction must

be restarted, which increases T

Since T suffices for many real time applications, late checking protocols have

appeal. However, such protocols must:

1. prevent conflicting updates from remaining in the database; and

2. ensure that transactions eventually execute without conflict.

The former is achieved by either (a) keeping an update log and rolling back updates
that lose a conflict (e.g., OTS) or (b) deferring update writing until the update is
confirmed (e.g., the Thomas Majority Vote algorithm [THOM?78] or the optimistic
protocol proposed in [CERI82]). Approach (a) requires update log maintenance and,
when conflicts occur, database rollbacks. Update log maintenance consists of saving
data values in an update log before they are modified. Doing so requires additional
time for buffer management, protocol control processing, and, if the update log grows
too large, secondary storage accesses. A database rollback takes place when an update
that loses a conflict is removed from the database. The update log is read to determine
the data values present prior to writing the update that lost the conflict and these
values are reinstated. A database rollback involves the same types of overhead as
update log maintenance. Approach (b), or deferred update writing, introduces
additional overhead since transactions can not modify files during their execution.
Instead, modifications are deferred until the transaction’s updates have been validated

(i.e., shown not to cause a conflict), thereby requiring additional processing to write the

15

validated updates.

To ensure that transactions eventually execute without conflict, existing late

checking protocols repeatedly restart transactions until they execute without conflict!
(e.g., OTS). Referred to as repeated iransaction restarts, this technique is costly when

conflicts are frequent (which is when real time constraints are most likely to be

violated).2 For example consider a late checking timestamp protocol like OTS. If TM,,

-y TM, with w-ts(1) < - - < w-ts(n) all concurrently read and write F, then only

TM, will succeed®; the other transactions will be restarted (since TM; has the smallest

timestamp). So, for n concurrently executing and mutually conflicting transactions,
1+24+ - +n= ﬂ%ﬂl transaction executions may be required for all n to
succeed. (Even more may be required if new conflicting transactions arrive.) Thus,

when conflicts are frequent, repeated transaction restarts can saturate site processing

capabilities, cause queue overflows, and overload the interconnection network.

! For timestamp protocols, there are two variations depending on bow timestamps are
selected for the restarted tramsaction. Either {1) a new timestamp is assigned (e.g.,
OTS), which permits shorter trapsactions to complete first to maximize throughput
and minimize average r{:‘?rponse time, or (2) the transaction’s original timestamp is
retained (e.g., WOUND/WAIT [ROSE78]) which reduces response time variability.

2 Actually, there are two cases when existing late checking protocols can avoid
transaction restarts: transactions that write but do not reag any shared file and
transactions that read but do not write any shared file. However, we are concerned
with transactions that both read and write s[‘{ared files.

3 Note that this differs from the case of broadcast communication channels using
contention access (e.g., Ethernet under CSMA/CD) in which there is no success when a
conflict occurs.

16

1.2 CONTRIBUTIONS OF THIS DISSERTATION

The goal of this research is to find approaches to consistency control
appropriate for real time distributed processing systems. Existing consistency control
protocols are unappealing since either: (1} they have inter-computer synchronization
delays for execution response times (T); or (2) when conflicts are frequent, they have
repeated tramsaction restarts which cause long delays for update confirmation response
times (Ty) and can saturate the computers and interconnection network. Our
contributions lie in two areas. First, we present fwo new protocols that have no inter-
computer synchronization delays for Ty and avoid repeated transaction restarts: the
exclusive-writer protocol (EWP) and the exclusive-writer protocol with a locking option
(EWL). EWP (see chapter 2) has no database rollbacks, no transaction restarts, no
inter-computer synchronization delays for Tz and small inter-computer
synchronization delays for Ty even when conflicts are frequent. However, EWP
ensures only a limited form of serializability. EWL (see chapter 3) is a fully serializable
extension to EWP that guarantees a transaction will be restarted at most once (if its
baseset does not change when it is restarted). Performance can be further improved by
dynamically switching to primary site locking (PSL) when conflicts are frequent, since
PSL does not restart transactions due to conflicting file accesses. Doing so requires no

additional messages or inter-computer synchronization delays.

A second area of contribution is our responsec times studies of PSL, optimistic
timestampes (OTS), and EWL. While PSL and OTS response times have been studied

previously, omly simulation techniques were used. In chapter 4, we develop and

17

validate analytical models for PSL, OTS, and EWL. One application of these models is

to determine the criteria for dynamic switching between EWL and PSL.

18

CHAPTER 2

THE EXCLUSIVE-WRITER PROTOCOL (EWP)

The ezclussve-writer protocol (EWP} is a new late checking consistency control
protocol (CCP) that has no database rollbacks or transaction restarts and has small
inter-computer synchronization delays even when conflicts are frequent. EWP ensures
mutual and internal consistency, but it provides only a limited form a serializability.
Section 2.1 describes EWP’s operation, and section 2.2 considers EWP application
areas. In section 2.3, we consider some extensions to the algorithm presented in section

2.1. Section 2.4 investigates system design issues related to EWP implementations.

2.1 EWP OPERATION

In the exclusive-writer protocol (EWP), each shared file has a single designated
ezclusive-writer (EW). (All copies of a file have the same EW.) We define EW, as the
exclusive-writer for file F;. The EW is used to: (1) validate updates after a transaction
executes and (2) perform update distribution. This is illustrated in figure 2-1.
Transactions can read file copies at any time. When a non-EW transaction wishes to
update a file, it sends an update-request message (containing the proposed update) to
the file's EW. If the update is accepted, it is distributed by the EW. Such an

approach reduces message communication since: (1) only the EW is required to validate

an update-request (unlike the Thomas Majority Vote algorithm which requires —I-;l of

19

FIGURE 2-1: THE EXCLUSIVE-WRITER APPROACH

o DEFINITION

- EACH SHARED FILE HAS A DESIGNATED EXCLUSIVE-WRITER (EW)
(ALL COPIES OF A SHARED FILE HAVE THE SAME EW)

- ONLY A FILE'S EW CAN DISTRIBUTE UPDATES TO THE FILE

EW Ty

UPDATE

READ
AND
UPDATE

UPDATE REQUEST

UPDATE-REQUEST
MESSAGE

READ
ONLY

SHARED
FILE F

o EW IS THE EXCLUSIVE-WRITER OF F,

o TMg, .1, M, SEND THEIR UPDATE-REQUESTS TO EW
o UPDATE-REQUESTS INCLUDE THE PROPOSED UPDATE

20

the [sites) and (2) the EW’s site, rather than the tramsaction’s site, distributes the
update (unlike [CERI82] which requires sending an update accepted control message
from the validating site to the transaction’s execution site). In addition, database
rollbacks are avoided since an update is not written to a file copy until the file's EW

has validated the update.

To perform update validation, update sequence numbers {SNs) are used to
indicate which updates have been written to file copies. An SN is attached to each file
copy, and update-request messages include the SN of the file copy read. If an update-
request for F} contains an SN identical to the one at EW,'s site, the requesting
transaction read the most current version of Fj; so, the update-request is accepted.
Then, EW, (1) assigns a new update version to F} by incrementing its SN and (2) sends
update messages {with the new SN) to the other sites. For example in figure 2-2, F, ,,
Fy), and Fy ., are, respectively, the copies of F} at site 1, 5, and ew (Fi's EW site); SNy s,
SNiy;, and SNg,, are the SNs for these file copies. TM, reads F, ki With SN, = n.
When TM,’s update-request arrives at the EW’s site, SNi .o = 1; 30 EW, sets SNt ew
to n+1 and sends TM,'s updates to the other sites. However, if the SN in the update-
request differs from its corresponding SN at the EW's site, a conflict occurred (since the
transaction read an old version of F}) and the requesting transaction lost the conflict.
In figure 2-2, TM; at site j reads F, j With SN, ; = n. But when TM,’s update-request
is processed by EW,, SN, = n+l £ n, since E W, had just distributed TM,'s

updates. EWs discard update-requests that lose a conflict.

21

Figure 2-3 presents an algorithm for EWP operation at site s for file F,. An
update-request message is denoted by RMSG. We use the programming language
notation for records to indicate fields in messages: RMSG.SN is the update sequence
pumber field in the update-request message and RMSG.UP is the the proposed update.
UMSQG is defined similarly for an update message. The symbol ":=’ is used to indicate
a programming language assignment statement, and text enclosed in '(* ... *)’ are
comments. The algorithm consists of several routines, each of which is invoked by a

specific event. The algorithm operates under the following assumptions:

1. A transaction’s baseset consists only of F; which is both read and written.
2. Site 1 and EW,'s site have a copy of file F}.
3. At each site, tramsaction and protocol control processing are performed

atomically (i.e., conflicting accesses to shared data are prevented by using local

consistency control techniques such as semaphores).

4. Incrementing an update sequence number never causes it to return to 0 (wrap-
around).
5. There are no site failures, and the interconnectior network guarantees that

messages are eventually received without error.

B. When the system begins operation, copies of the same file are identical and

their SNs have the same value.

22

FIGURE 2-2: TIMING DIAGRAM FOR EXCLUSIVE-WRITER PROTOCOL (EWP)
® TM, AND TM, ONLY ACCESS FILE F,

SITE EW SITE SITE o
TM, ARRIVES SNy, SNk, ew SN,y
N
f " " Th, ARRIVES
Te(A) B
} ™,
Poare., T.(B)
= —_—
TMB e
; N4
+| N+] j e L+

SNy | = UPDATE SEQUENCE NUMBER FOR THE COPY OF FILE Fx AT SITE i

——

= TRANSACTION EXECUTION
¢ = TRANSACTION EXECUTION RESPONSE TIME
= UPDATE CONFIRMATION RESPONSE TIME
= UPDATE IS WRITTEN
= UPDATE IS DISCARDED

T
TU
+

23

Figure 2-3: EWP Operation at Site i for file

TRANSACTION TM HAS JUST COMPLETED ITS EXECUTION
1. RMSG.SN == SN,
2. RMSG.UP := TM's update
3. send RMSG to EW,

AN UPDATE MESSAGE (UMSG) WAS RECEIVED

1. once UMSG.SN = SNE,,' +1
{* Wait until in sequence ¥)

a. SNk,i = UMSG.SN
b. update F; based on UMSG.UP

AN UPDATE-REQUEST (RMSG) MESSAGE WAS RECEIVED
1. if RMSG.SN = SN;; (* No Conflict +)
a. SNij=SN;; +1
b. update F;, based on RMSG.UP
c. UMSG.SN = SN,
d. UMSG.UP := RMSG.UP

e. broadcast UMSG to all other sites with a
copy of F}
2. otherwise (* Conflict *)

a. discard RMSG

24

EWP preserves mutual consistency and the serializability of transactions whose
update-requests are not discarded. The !atter property is called limited sersalizabslity,
since it is limited to transactions that do not lose a conflict. Limited serializability
implies internal comnsistency, since only successful transactions (those whose update-
requests are not discarded) affect the database, and successful transactions are
serializable. We first make a key observation: consecutive updates to F, are assigned
consecutive SNs. This is due to EW; always incrementing its SN for F; before a F}
update is broadcast. Mutual consistency follows from the fact that comsecutive F &
update messages receive consecutive SNs, and updates are written in order of their SN.

Hence, the same updates are written in the same order to all copies of Fy

To establish limited serializability, we present a serial order for executing
successful transactions which results in the same values for F s a3 when transactions
execute under EWP. Let T M(m) be the m™ successful transaction for Fi. We show
that TM{m+1) reads a copy of F; to which TMm)'s updates were the last to be
written, or TM{m+1) reads from TMm). (This is equivalent to a serial execution in
which TM(m) executed to completion then TMm+1) began execution and read
TM(m)'s updates.) Since UMSG(m+1) (TMm+1)'s update message) is the m+1%
successful F, update, UMSQm+1).SN = m+1. So, TM(m+1)'s update-request
message (RMSG(m+1)) must have had RMSG(m+1).SN = m. Note that: (1) a copy of
Fy with an SN of m was last written by TMm), and (2) RMSG{m+1).SN is the SN of
the file copy read by TMm+1!). So, TMm+1) read from TMm). Hence, EWP

preserves limited serializability.

25

EWP has much appeal for real time systems. It is simple to implement,
preserves internal and mutual consistency, and has no database rollbacks. Also unlike
other late checking CCPs, EWP has no transaction restarts. Since EWP is a late
conflict checking protocol, it has no inter-computer synchrorization delays for
transaction execution response time (7g). In addition, EWP’s update confirmation
response time {Ty) is small even when conflicts are frequent, since: {1) the only source
of inter-computer synchronization delay for Ty is update validation (which is done at
the EW’s site), and (2) Ty never includes a wait for restarting transactions that lose a
conflict (see Ty{a) and Ty{b) in figure 2-2). Also since EWP does not use locking, EWP
avoids deadlocks due to shared data access. However, caution is required when

employing EWP, since it discards update-requests that lose a conflict.

2.2 EWP APPLICATIONS AREAS

For applications such as banking and DPAD final intercept planning, discarding
update-requests that lose a conflict is probably not acceptable. However, EWP has

much appeal for applications such as:

1. real time feedback control in which conflicts only occur when a real time

constraint has been violated;

2. data collection in which occasionally discarding an update-request causes little

problem.

26

Because EWP usage is application dependent, we describe a radar tracking
application in which EWP is used (i.e., the DPAD System). A record is maintained in
the track file for each object detected (by radar). Track file records are updated only
as a result of radar returns for the object. The real time constraint of concern here is
that updates to an object’s track record must be completed before a new radar beam 1s
sent for the same object. This constraint ensures that the radar scheduler directs the
beam based or the object’s most recent sighting so that the beam encounters the

correct object.

We observe that a conflict occurs only when the real time constraint is violated
(e.g., track processing for record & was not completed prior to scheduling a radar beam
for the objec't associated with record k). By discarding track updates that lose a
conflict, system load is reduced which facilitates meeting real time constraints. Of
course, information is lost when a track file update is discarded. However, this
information can be recovered from future radar returns which, hopefully, will arrive
when the system is not so heavily loaded. Thus, under the very extreme conditions of
violating a real time constraint, it may be appealing to discard update-requests that

lose a conflict.

2.3 EWP EXTENSIONS

So far, we have restricted a transaction’s baseset (files it reads and writes) to a
single file. Here, we remove this restriction in two stages. First, we consider basesets

with multiple files but assume that all files have the same exclusive-writer. Next, we

27

rd

discuss basesets with multiple exclusive-writers.

Having muitiple files in a baseset affects:

1. the contents of update-request messages

2. the criteria for detecting a conflict

Update-requests must include the readset, the writeset, updates to the writeset, and
SNs for all files in the baseset. The criteria for detecting a conflict must be generalized
as follows: a conflict exists if there is a file in the transaction’s baseset whose SN in the

update-request differs from its corresponding SN at the EW’s site.

If there are multiple EWs for a transaction’s baseset, then each EW must
accept the transaction’s update-request before any EW distributes an update for the
transaction. One approach is to have EWs commuricate among themselves about
whether to accept or reject an update-request. The following is an algorithm using this

approach. The update-requesting transaction is TM.

1. TM sends an update-request to the EW of each file in its baseset. The message
sent to EW} contains: TM's baseset, the SN of the copy of F} read by TM, and

TMs proposed update to F, (if Fiis i TM's writeset).

2. If the SN in the update-request for F is identical to the SN of EW}’s file copy,
a. EW, sends an accept message to the EW of each file in TM's baseset.
b. EW, remembers that update-request checking is in progress.

28

Otherwise,

a. The update-request is discarded.
b. Reject messages are sent to the EW of each file in TM's baseset.
3. If EW, receives an accept message from the EW of each file in TM's baseset,
a. EW, increments the SN of its file copy.
b. TM's update to Fy is distributed (with the new SN).
c. Update-request checking is no longer in progress.
4. If EW, receives a reject message,
a. The update-request is discarded.
b. Update-request checking is no longer in progress.
5. If EW, receives an update-request and update-request checking is in progress,

the update-request is discarded.

6. File updates are written in order of their SNs.

We now present an argument for why this algorithm preserves limited
serializability. Let TMi:) and TM) be two transactions whose updates are
distributed. Suppose that TMy) writes file Fy and TM{4) reads F,. We denote the SN

in TM;)'s update message for Fy by UMSG(k,).SN, and the SN in TM(i)'s update-

29

request message for F; by RMSG(k).SN. TMy) reads from TMj) (denoted by

TM;j)— TM)) if and only if
UMSG(k,j).SN = RMSG(k,i).SN
Further, preserving serializability implies that the following does not occur:

M)~ - - - = TM;)—~TM)

That is, there is no cycle in the serializability graph [BERN82]. Under the algorithm,
TMj)— TM(i) implies that TMj)'s updates were validated and distributed before

TM) read them. Thus,

tpls) < tal(s)

where:

tp(7) = Time at which the first of TM{s)’'s updates was distributed

tp(5,7) = Time at which TM3) first read TM(j)’s update

Also, TMi) must finish executing before its updates can be validated by the EWs. So,

telig) < tpld)

Hence,

tpls} < tglig) < tpld)

Now, if a cycle exists, then the following must hold.

30

i) < e < tpl) < telid) < tpld)

which implies the contradiction that p{s) < t5(f). So, the algorithm preserves limited

serializability.

2.4 IMPLEMENTATION CONSIDERATIONS

2.4.1 UPDATE SEQUENCE NUMBER

EWP correctness requires that F, updates be assigned distinct SNs. Since the
number of bits allocated for an SN field will be finite, incrementing a file’s SN will
eventually cause it to return to 0. Thus, SNs must have a sufficient number of bits so
that an update will be written at all sites before the same SN is assigned to another

update.

2.4.2 DEGREE OF FILE REPLICATION

So far we have assumed that a copy of a file is present where ever it is accessed.
However, this may not be desirable due to the cost of storing and updating replicated
file copies. When a transaction accesses a file that i1s not replicated at its execution
site, the site is responsible for obtaining a copy of that file. Along with the file data,
the site should also obtain the file copy's SN. The SN of the remote copy is inserted in

the transaction's update-request in the same manner as if the file copy had been local.

31

2.4.3 DESIGNATING EXCLUSIVE-WRITERS

Designating EWSs for files affects the frequency of transactions having basesets
with multiple EWs. For example, suppose that in some application a tramsaction’s
baseset either consists of files F, and F, or files F; and F,. Furthermore, suppose that
EW, is the EW for Fy and F; and EW, for F, and F,. Then, validating a transaction’s
update-request requires: (1) sending update-request messages to both EW, and EW,, (2)
EW, and EW, sending one another accept and/or reject messages and (3) broadcasting
the update messages. However, if F, and F, had EW, as their EW and F; and F, had
EW,. Then, there would be only ome update-request message per transaction

execution, and there would be no accept or reject message.

2.4.4 ASSIGNING TRANSACTIONS TO SITES

Three factors affect how t-ransactions should be assigned to sites (referred to as
task assignment in [CHUSO|): (1) transaction execution time, (2) inter-transaction (or
intermodule) communication, and (3) precedence relationships among transactions as a
result of inter-trapsaction control flow. Assigning EW transactions to sites has the

following implications:

1. Site utilizations for trapsaction executions are increased by having an EW

assigned to it.

2. Communication time is affected in two opposing ways. When EW, is assigned
g k g

to a site where there are transactions that update F;, communication time can

32

and g

be decreased since these transactions will not have to send F; update-request
message. However, communication time can be increased by this assignment,
since transactions executing at EW.'s site read the most current copy of F,.
Thus, their update-requests are pever discarded, and so their updates are

always distributed.

A precedence relationship exists if TM, must execute before TM; can execute.
Suppose that this is the case and that TM, can execute only when TM,'s
updates have been finalized (i.e., krown to not be in conflict). For simplicity,
assume that EW is the exclusive-writer for all files in TM,'s baseset, and EW
resides at site ew. Let j be TM,'s site. If j 7 ew, EW must send TM,’s
updates and ; must receive and write them before TM, can begin its execution.

However if j = ew, then TM, can be scheduled for execution immediately after

TM,'s update is validated i)y EW.

2.4.5 OPERATING SYSTEM DESIGN

Operating system design issues include the effect of deferred update writing and

the impact of interrupts on local reads to shared files. In EWP, non-EW transactions
can not directly modify files. Instead, updates are deferred until the EW has validated
them. Deferred update writing requires: (1) providing transactions with temporary file
copies to modify during their execution and (2) writing updates once they have been
validated. Deferring file updates can be accomplished with little additional overhead if

shadow file copies are used for site fault tolerance. *.. ' -his technique, the operating

33

system creates a temporary file copy when ever a transaction first writes a file. After
the transaction finishes executing, the temporary copy is installed as the finalized copy.
Deferred update writing can be achieved by not finalizing the temporary copy until the

EW has validated the proposed update.

The impact of interrupts on EWP operation relates to a transaction's ability to
read a file copy at any time. This is possible only if writing a copy of file F; at site ¢
does not occur concurrently with a site ¢ transaction reading F;. In the DPAD system.
this problem is resolved by using a cyclic dispatcher which ensures non-preemptive
execution of transactions. Systems that permit preemption require synchronization

techniques such as semaphores.

2.4.6 REDUCING MESSAGE VOLUME

For point-to-point networks, EWP message volume can be reduced as follows.
When site i sends to EW} an update-request message with SNy = n+1, the site retains
a copy of the message. If EW, accepts the request, an update-accepted control message
is sent to site i (instead of an update message), and site s writes the update based on
its saved copy. Thus, message volume is reduced since update messages should always
be larger than control messages. Site i detects the rejection of its update-request by
receiving an update message with SNy = n+1, in which case the site discards its saved

message and writes the update message received.

34

A similar approach can be used for broadcast networks. Update-request
messages are broadcast to all sites, and each site saves the update-requests it receives
until the update-request is accepted or rejected. When an EW accepts an update-
request, it broadcasts an update-accepted control message. Sites use the saved

update-request message to write their local file copy.

2.5 SUMMARY

EWP is simple to implement, ensures mutual and internal without database
rollbacks, and avoids deadlocks due to shared data access. Unlike other late conflict
checking protocols, EWP has no transaction restarts and has minimal inter-computer
synchronization delays for T even when conflicts are frequent. However, EWP usage

is restricted since it discards update-request that lose a conflict.

35

CHAPTER 3

THE EXCLUSIVE-WRITER PROTOCOL WITH LOCKING OPTION (EWL}

While EWP has good performance characteristics, its usage is restricted since it
discards update-requests that lose a conflict and so does not guarantee full
serializability. To achieve fuli serializability with good performance, we want to use a
late checking (optimistic) protocol when there is no conflict and an early checking
(pessimistic) protocol when there are conflicts. Our approach is to initially execute
transactions under EWP; if a conflict occurs, the transaction is restarted under primary
site locking (PSL). This hybrid protocol is called the ezclusive-writer protocol with a
locking option (EWL). Section 3.1 describes EWL's operation, and section 3.2 discusses
some extensions to EWL. Section 3.3 describes how performance can be further
improved by dynamically switching between EWL and PSL. Section 3.4 discusses

implementation considerations.

3.1 EWL OPERATION

The ezclusive-writer protocol with a locking option (EWL) is an extension of
EWP in which an update-request is not discarded if it loses a conflict. Rather, the
update-request is treated as a primary site locking (PSL) lock-request message, and the
transaction is restarted under PSL. In the following discussion, we use the example in

figure 3-1 where TM, executes at site i and TM, at site j. TM, and TM, both read and

36

write file F};, and the EW resides at site ew. A copy of F, is present at sites #, 5, and
ew. These copies are denoted by F;; Fy; and F,,, respectively. SN, SN, and

SN} v are their associated SNs. As in chapter 2, we define EW, as the ezclusive-writer

Jor file F.

EWL's operation is identical to EWP's when a transaction arrives (i.e., its
execution is requested). In figure 3-1, after TM, arrives, site s schedules it for execution.
After TM, executes, an update-request message is sent to EW. In addition if there is

no conflict, EW’'s operation is the same for both EWP and EWL. SN; oo 18

incremented and TM,’s updates are broadcast to all other sites with a copy of F}.

However, EWL differs from EWP when a conflict occurs. For example in figure
3-1, TMy's update-request contains an SN of n, but SN, = n+l; so a conflict
occurred, and TM, lost. EW puts the update-request in F}'s lock queue. At this point,

EW’s role changes. Recall that under EWP, an exclusive-writer

1. detects conflicts.

2. distributes updates (i.e., increments F}'s SN and broadcasts F}'s modifications
with the new SN value). This is referred to as update distribution authority
{UDA}

However, under EWL when F}'s lock queue becomes non-empty and until its is once

again empty, the EW

1. considers arriving update-requests to be in conflict;

37

FIGURE 3-1: TIMING DIAGRAM FOR EXCLUSIVE WRITER PROTOCOL
WITH LOCKING OPTION (EWL)

e T, AND TM ONLY ACCESS FILE F,

SITE 1 EW SITE SITE
SN
M, ARRIVES ! N, ew M,

—A = N

rLjﬁ
o |
v SN = RQUEST 4 T.(B)
J N+l |+
) R T | |

(B>

SN, = UPDATE SEQUENCE NUMBER FOR THE COPY OF F AT SITE 1

= TRANSACTION EXECUTION

TRANSACTION EXECUTION RESPONSE TIME
UPDATE CONFIRMATION RESPONSE TIME
UPDATE IS WRITTEN

* = FILE IS LOCKED

** = FILE IS UNLOCKED

—
+
nonoon

38

2. selects a lock queue entry and delegates UDA to the associated transaction until

EW receives the transaction’s updates.

The mechanism for delegating UDA is the same as that used by PSL to graat

file access. Referring to figure 3-1, TM, lost a conflict!, so EW locks F, for TM,, and
sends a lock-grant message to site 5. Included in the lock-grant is the SN for the most
current version of Fj, n+1. Once SN, = n+1, site § can restart TM, Note that the
transaction is assured of not being restarted more than once, since it is not restarted
until its baseset has been locked. After TM; executes, site j distributes TM,’s updates.
When EW’s site receives TM,'s update, EW removes TM,’s entry from F}’s lock-queue.
EW can now assign F; UDA to another transaction. However, since F;'s lock queue is

empty, EW acquires F; UDA.

Figure 3-2 contains an algorithm for EWL operation at site ¢ for file F;. An
update-request message is denoted by RMSG. We use the programming language
notation for records to denote message fields: RMSG.SN is the field for the update-
request message SN and RMSG.UP is the field for the proposed update. (UMSG and
LMSG are defined similarly for an update message and a lock-grant message.) The

" is used to indicate a programming language assignment statement, and

symbol ;=
text enclosed in '(* ... *)’ are comments. The algorithm consists of several routines,

each of which is invoked by a specific event. The algorithm operates under the

following assumptions:

! Site j learns that TM, lost a conflict by receiving an update with SN = n+1 that was
not made by TM,.

39

1. A transaction’s baseset consists of F; which is both read and written.

2. Site f and EW,'s site have a copy of file F}.

3. At each site, transaction and protocol control processing are performed
atomically (i.e., conflicting accesses to shared data are prevented by using local

consistency control techniques such as semaphores).

4. Incrementing an update sequence number never causes it to return to 0 (wrap-
around).
5. There are no site failures, and the interconnection network guarantees that

messages are eventually received without error.

6. When the system begins operation, copies of the same file are identical and

their SNs have the same value,

7. A transaction's baseset does not change when it is restarted.

We now show that EWL preserves mutual consistency and full serializability
(hereafter, just serializability). First note that consecutive updates to F} are assigned
consecutive update sequence numbers. This is a consequence of: {1) at most one
transaction has UDA at any instant, and this transaction keeps UDA until its updates
have been received by EW,; (2) a transaction with UDA does not execute until its copy
of F, (and hence SN,) is current (i.e., identical to EW)'s copy); and (3) Fy’s SN is

always incremented before its updates are distributed. Mutual consistency follows

40

Figure 3-2: EWL Operation at Site ¢ for file F}

TRANSACTION TM HAS JUST COMPLETED ITS EXECUTION
1. if TM was restarted
a. SNpi:= SN;; + 1
b. update F}; based on TM's update

c. UMSG.SN :== SNy

d. UMSG.UP := TMs update

e. broadeast UMSG to all other sites with a copy of F;
2. otherwise

a. RMSG.SN := SN, ;
b. RMSG.UP := TM's update
c. send RMSG to F,'s EW

AN UPDATE MESSAGE (UMSG) WAS RECEIVED

1. once UMSG.SN = SN, ,; + 1
(* Wait until in sequence *)

a. SNy ;= UMSG.SN
b. update F}; based on UMSG.UP

2. if F¢'s EW resides at site f and
F.'s lock queue is not empty
a. remove head entry in F}'s lock queue and unlock F;
b. if F}'s lock queue is not empty
(* Delegate Update Distribution Authority *)
1 lock F;

ii. LMSG.SN := SNy,

iii. send LMSG to the transaction
with the first entry in F)’s lock queue

41

(Figure 3-2: Continued)

AN UPDATE-REQUEST (RMSG) MESSAGE WAS RECEIVED
F}'s lock is empty
(* No Conflict *)
a. SN]:',‘ = SNE',' + 1
b. update F}, based on RMSG.UP
c. UMSG.SN := SN,

d. UMSG.UP := RMSG.UP

e. broadcast UMSG to all other sites with a
copy of Fy
2. otherwise (* Conflict *)
a. put RMSG at the tail of F}'s lock queue

b. if RMSGQ is at the head of Fi's lock queue
(* Delegate Update Distribution Authority *)

L lock Fy
li LMSG.SN == SN*"'

ii. send LMSG to the transaction
with the first entry in F's lock queue

A LOCK-GRANT MESSAGE (LMSG) WAS RECEIVED FOR TRANSACTION TM

1. once LMSG.SN = SN, ;
(* Wait until F; is current *)

a. schedule TM for execution

42

since comsecutive F; updates are assigned consecutive update sequence numbers and
updates are written in order of their SN. Thus, ali file copies write the same updates

in the same order.

Establishing serializability requires a more elaborate argument. Let TM(m) be
the transaction that produced the m® consecutive update to F; under EWL. We show
that the same value for F; would have been obtained by a serial execution of the
transactions in the order in which their updates were distributed. Specifically,
TMm+1) read a copy of F} to which TM{m)'s updates were the last to be written, or
TM(m+1) reads from TM{(m). (This is equivalent to a serial execution in which TMm)
executed to completion then TMm+1) began execution and read TMm)'s updates.)
Let RMSG(m+1) be _TM m+1)’s update-request message, UMSG({m+1) be its update
message, and i be its site of execution. Note that UMSG(m+1)}.SN = m+1, since
UMSG{m+1) is the m+1*" consecutive update to Fy. If TM{m+1) was not restarted,

EW, distributed UMSG(m+1). So,
RMSG(m+1).SN = UMSG(m+1).SN-1 = m

A copy of F; with an SN equal to m was last updated by TM{m), and RMSG(m+1).SN
is the SN of the file copy TM{m+1) read. So, TM(m+1) reads from TMm). Now
suppose that TMm+1) was restarted. Let SN;,, be SN;; when TM{m+1) was

scheduled for execution. Since SN, is incremented before UMSG{m+1) is distributed,

Hence, SN;,; = m. So, TM{m+1) reads from TMm).

43

EWL is more difficult to implement than EWP since EWL requires that both
EWP and PSL be implemented. However unlike EWP, EWL does not discard update-
requests that lose a conflict, and this is achieved without requiring database rollbacks.
As with other late checking protocols, EWL has no inter-computer synchronization
delay for transaction execution response time (Tg). For update confirmation response
time (Ty), EWL's inter-computer synchronization delays are similar to EWP’s, if no
conflict occurs, and are like PSL's when there is a conflict. For example in figure 3-1,
T{a) for TM, is the same as under EWP in figure 2-2; the only inter-computer
synchronization delays result from EW update validation. But TM, is restarted, so
T.(b) has the additional inter-computer synchronization delay of waiting for the F}
lock-grant message. Finally, unlike ezisting late checking serializable protocols, EWL
guarantees that a transaction will be restarted at most once, if its baseset does not

change.

3.2 EWL EXTENSIONS

In section 3.1, we assumed that a transaction’s baseset comsists of a single file
and that its baseset does not change if the transaction is restarted. Here, we remove
these restrictions by considering (1) basesets with multiple files and a single EW, (2)
basesets with multiple EWs, and (3) basesets that change when a transaction i;

restarted.

The following aspects of EWL operation are aflected by baving basesets with

multiple files:

44

1. contents of update-request messages

2. criteria for conflict detection
3. criteria for granting locks
4. criteria for restarting a transaction

Item 1 is the same as for EWP (see section 2.3). As to conflict detection {item 2), an
EW rejects an update-request u ~ ~ file in the transaction’s baseset whose: (1)
SN in the update-request is not identical to ihe corresponding SN at the EW’s site or
(2) lock queue is not empty. With multiple files, the criteria for granting a lock (item
3) must consider the possibility of deadlock. Thus, some form of deadlock
management is required (i.e., avoidance, prevention, detection). As to the criteria for
restarting a transaction (item 4), a transaction may not be restarted until: (1) it has
received a lock-grant message for all files in its baseset; and (2) all outstanding updates

to these files have been written.

Extending EWL to basesets with multiple EWs involves the same considerations
as for EWP (see section 2.3). However instead of being discarded, update-requests that
lose a conflict are are placed in lock-queues for the files they request. Also,
transactions must send a lock-release message to the EW of each file locked in read-

only mode.

In general, a transaction’s baseset may be different when it is restarted, since

file access patterns can be data dependent. For example, when transaction TM at site ¢

45

r

is initially executed, its baseset may consist of file F}. If a conflict occurred, Fy's EW
will send TM a lock-grant for F;, and TM will be restarted. However, during its
second cxecution TM might update file F, rather than F,. Thus, site s+ can not
distribute TM's updates, since TM was not granted a lock for F,. This problem can be
resolved by having site ¢ ensure that TM has the proper permissions for all files it
accesses before its updates are distributed. If it does not, site s (1) sends a lock-release
message to all EWs from which TM had received a lock-grant; and (2) sends update-

request messages to all EWs for files in TM's new baseset.

Whether or not a transaction's baseset changes when the tranmsaction is
restarted depends on the application. Thus, it is difficult to make a general statement
on this issue. However, with specific reference to DPAD track update transactions, the
basesets of these transactions do not change when they are restarted, since they will

still access the same record in the Vtrack file.
3.3 DYNAMIC SWITCHING BETWEEN PSL AND EWL

As with all serializable late checking CCPs, EWL's performance degrades when
conflicts are frequent as a result of transaction restarts (which increase load and
lengthen update confirmation response times). EWL improves on existing late checking
protocols by guaranteeing that transactions are restarted at most once if their basesets
do not change. However, when conflicts are frequent, early checking protocols are
preferred since they have no transaction restarts. Ideally, we would like to use a late

checking protocol when conflicts are rare and not too costly and an early checking

46

protocol when conflicts are frequent and/or costly. A very appealing aspect of EWL is
that sites can independently and dynamically choose between EWL and a low cost

early checking protocol - PSL.

Dypamic switching between CCPs has been proposed by [BERN78] and
[MILE79}. In (BERNT78]'s SDD-1, four early checking timestamp protocols (P1, P2, P3,
and P4) were proposed which were dynamically selected based on a pre-analysis of a
transaction’s baseset. However, this approach is unappealing since (1) protocol
selection is not based on dynamic system behavior; and (2) with the exception of P1,
the SDD-1 protocols have high overhead due to inter-computer synchronization delays
and message exchanges required for dynamic protocol selection. [MILE79] suggested
dynamic switching between the SDD-1/P3 protocol and optimistic timestamps (an
early checking protocol). Unfortunately, [MILE79|'s scheme is unattractive since (1)
SDD-1/P3 has high overhead ‘and (2) additional messages and inter-computer

synchronization delays are required to switch between SDD-1/P3 and OTS.

The appeal of dynamic switching between EWL and PSL is that: (1) both
protocols are relatively low overhead, (2) their performance is optimal in different
regions of conflict rates (EWL for low conflict rates and PSL for high conflict rates),
and (3) for each transaction execution requested, sites can sndependently choose
whether EWL or PSL should be used for consistency control, without additional
messages or inter-computer synchronization delays. This last feature follows because
EWL and PSL can be used concurrently for the same shared file (see figure 3-3).

Implementing this capability only requires treating a PSL lock-request as a rejected

47

EWL update-request. (Recall that EWL already requires implementing PSL.)
Specifically, a lock-request received by EW; is placed in Fy's lock queue until EW;
selects it. Then, EW, sends a lock-grant to the requesting tramsaction, and the

transaction executes. EW, treats the transaction's update as an implicit lock-release.
k P P

Establishing the precise criteria for dynamic switching between EWL and PSL
is beyond the scope of this dissertation. However, our intuitive criteria are that EWL
should be used when the real time constraint depends on execution response time (since
EWL has no inter-computer synchronization delay for Tg) or when conflicts are
infrequent and not costly (e.g., the system is lightly loaded). Otherwise, PSL should be
used. The response time studies in chapter 4 give further insights as to when each

protocol is preferred.

3.4 IMPLEMENTATION CONSIDERATIONS

The same system design issues mentioned in section 3.5 for EWP (i.e., SN field
size, degree of file replication, designating exclusive-writers, assigning transactions to
sites, operating system design, and reducing message volume) also apply to EWL. In
addition, using EWL has implications on transaction scheduling. However, discussing

these implications requires some background.

There are two situations in which a site knows a conflict will occur if the
transaction is immediately executed. Suppose that site ¢ chooses to execute transaction
TM, which modifies F;. The following known conflict situations can occur depending

on where EW, is assigned:

48

FIGURE 3-3: CONCURRENT USE OF EWL AND PSL FOR THE SAME SHARED FILE

o TM, . TM,, ano TM, ONLY ACCESS F,
SITE 1 EW/PS SITE 4
SN, SNy, ew M
N N N
™,
SH 2 NUEST i
N+1 1
T gl SHenef
LOck pm ~ -
N+1 + K-~ - o +i N+l
REOUES]- ;| T
—_ T ™.
T RAN‘_.B‘ C
" ’LDQiéig ntl DATE-REQUEST c
7 SN = N+1 ;
weol Mo |
POATE S, g S S TR, Sewg
T N2 JHoNe2 +1N+2
: - |
+ TMc iN+3
UPDATE c, SN = w+3 M
N3 E e _+[*F*5 UPDATE ¢, SN =N
SNK’I = UPDATE SEQUENCE NUMBER FOR THE COPY OF F AT SITE I
i]= TRANSACTION EXECUTION

+
n

UPDATE ISWRITTEN = EWL
* = FILE IS LOCKED ----=P5L
** = FILE IS UNLOCKED

49

1. EW, is not assigned to site 1.
Suppose that TM; has recently executed at site + and has proposed
modifications to F}, but TM;'s updates have not been received at site 1. Then,
immediately executing TM, guarantees that it reads an old version of F} and

thus will be restarted.

2. EW, is assigned to site ¢
If the lock-queue for F; is mot empty, then immediately executing TM,

guarantees that it will be restarted.

The desirability of executing trapsactions when a known conflict situation exists
depends on: (1) whether Tz or Ty is required for the real time constraint; and (2)
system load. If only Tz is required and system load is not too heavy, the cost of
additional restarts may be more than offset by avoiding the inter-computer
synchronization delays incurred by waiting for the krown conflict situation to end. On
the other hand, if Ty is required and/or load is heavy, a transaction should not be

executed if a known conflict situation exists for it.

3.6 SUMMARY

EWL ensures mutual comsistency, internal consistency, and serializability.
While deadlocks are possible, EWL has no database rollbacks. Also unlike existing late
checking serializable protocols, EWL guarantees that a transaction is restarted at most
once if its baseset does not change when it is restarted. Performance can be further

improved by dynamically switching to PSL when conflicts are frequent, since PSL has

50

Do transaction restarts due to conflicting file accesses. Doing so requires no additional

messages or inter-computer synchrorization delays. (Both types of overhead are

incurred in existing proposals for dynamic protocol switching.)

51

CHAPTER 4

RESPONSE TIME ANALYSIS

A key performance measure for real time distributed processing systems is
response time. Here, we study the response times of PSL, OTS, and EWL. Since EWP
is a simplification of EWL, EWP’s response times can be estimated from EWL's. We

use the following response time measures:

Tg: Ezecution Response Time
Definition: Time from the trapsaction’s arrival until its first execution has been

completed.

Ty: Update Confirmation Responsc Time
Definition: Time from the transaction’s arrival until its update is known to be
finalized at some site.
Ti is useful for real time functions that canr operate on data which change frequently,
and hence updates can be tentative rather than finalized. (For example in DPAD radar
tracking, objects are continuously changing positions.) Ty is needed for real time

constraints which require that updates be finalized (e.g., launching a missile).

Very little work has been done on the response time of consistency control

protocols (CCP) in distributed processing systems. [RIES79] presented simulation

52

———

studies for several variants of primary site locking in distributed INGRES, and came
up with conclusions specific to that primary site locking. [LIN81], {LIN82], and [LIN83]
simulated a large number of CCP (e.g., primary site locking, primary copy locking,
WOUND/WAIT, basic locking), but the system being simulated was never described
(e.g., how transactions are assigned to sites, what transmission delays are required), so
the results are difficult to interpret. Additionally, the simulation data were not
validated (e.g., by an analytical model). [LEE80] developed and validated analytic
models for three CCP: network semaphores, hopping permits, and adaptive hopping
permits. But [LEE80]'s models did not consider contention for physical resources, such
as computers. Probably the most thorough modeling studies have been dome by
[DANTES0] and [GARC78|. Both developed analytic and simulation models that
included contention for computers and disk. [DANT80] studied the Thomas Majority
Vote Algorithm proposed by [THOM?78]) and [GARC79] studied this algorithm and a
centralized locking protocol. However, their models are not directly applicable here

since there were developed for different protocols.

The remainder of this chapter is organized as follows. Section 4.1 describes the
system for which we developed performance models, and section 4.2 discusses our
approach to modeling PSL, EWL, and OTS. Then, analytic models are presented for
these three protocols: PSL in section 4.3, EWL in 4.4, and OTS in 4.5. Section 4.8
contains numerical studies based on these models as well as simulation validations.

Section 4.7 discusses our results.

53

4.1 SYSTEM MODELED

The environment in which we model the protocols is a characterization of the
DPAD system for track update transactions (see figure 4.1-1). The system has the
following characteristics: there are [sites each consisting of a single computer (same as
DPAD); there are K files; each site has a copy of all K files and files reside in RAM
(same as DPAD); a transaction reads and writes a single file, and the file it accesses
does not change if the transaction is restarted (same as DPAD track update
transactions); there is both low (L') and high (H) priority background load to
account for other system processing; the site scheduling discipline is head-of-line non-
preemptive (same as DPAD); high priority work consists of control message processing,
update message processing, and high priority background work (same as DPAD); low
priority work consists of tramsaction executions and low priority background work
(same as DPAD); shadow file coﬁies are used for fault tolerance of site databases; and
externally generated arrivals consist of requests for transaction executions and
background load (good approximation to DPAD). Below we list the input parameters

for the model:
1. Ezternal Arrivals

A(H' ;1) - Rate of external arrivals for high priority background work at site ¢

poisson arrival process

A(L' :1) - Rate of external arrivals for low priority background work at site f;

poisson arrival process

54

FIGURE 4,1-1; SYSTEM MODELED

SITE 1 SITE 1

TR M . [TH

AN

N

N\

INTERCONNECTTON
NETWORK

CONSISTENCY CuUHIROL PROTOCOL (CCP) TRANSACTION FUR F .

LOW PRIORITY BACKGROUND LOAD
HIGH PRIORITY DACKGROUND LOAD
SHARED FILE «

Sk

S

55

A TM:k} - Rate of external arrivals of requests for transactions that access file

F;; poisson arrival process

System Size
I« Number of sites in the system

K - Number of files

Task Assignment

pl TM:k,1) - Probability that a F} transaction executes at site &
ps; - Primary site for file F; (only for PSL)

ew, - Exclusive-writer site for file F} (only for EWL)

1if psy=t or ew,=1
bii- {

0 otherwise

Service Times

{Assume that mean, second moment, and LaPlace transform are available)
X{DR;:k) - Service time for database rollback of F;
X(H' ;i) - Service time for high priority background work at site ¢

X{L' ;1) - Service time for low priority background work at site ¢

56

X(LE) - Service time for lock-release processing
X(LG) - Service time for lock-grant processing

X(LR) - Service time for lock-request processing at the primary/exclusive-writer

site

X(LR') - Service time for formatting a lock-request message and operating

system output processing
X{C') - Service time for network communication of a control message; constant

X{C;k) - Service time for network communication of an F; update message;

constant
X(TM:k) - Service time for executing a transaction for F}
Xt UA) - Service time for processing update acknowledgements (OTS)
X(UC) - Service time for checking an update to see if it conflicts (OTS)

X{ULk) - Service time in operating system input routines for receiving and

writing a F'; update message
X{UM:k) - Service time for maintaining the update log for file F,

X{UO;k) - Service time in operating system output routines for sending a F,

update message

57

X(UR) - Service time for update request processing (EWL)

The system handles transaction arrivals, transaction executions, and file
updates as follows. When a transaction arrives, it has either: (1) a high priority wait
for site lock-request processing (PSL) or (2) a low priority wait for tramsaction
processing (EWL and OTS). When a transaction is selected for execution, an average

CPU time of X{TM;k) is required.

X{TM:k) = Average time for F} transactions to: make a temporary copy of F; (part of
site fault tolerance); execute the transaction; and defer, write, or discard the
updates to F}

Immediately following the transaction’s service is operating system update processing.

X(UO:k).

X(UO;k) = Average time in operating system output routines to format and send an
update or update-request message for F;
When an F, update message is received or an F; update-request message is accepted,

update input processing, X(UIk), is required.

X(ULk) = Average time in operating system input routines to receive an update

message for F, and apply it to the site's database

4.2 APPROACH TO ANALYTIC MODELS

58

The models herein developed estimate Tg{k) and T {k), which are the response

times averaged over all transactions that access F;,. Thus,

TR = 3 o THM DTk
—1

(4.2-1)
where:
T k) = Average execution response time of transactions for F}
o TM:k,i) = Probability of a transaction for F; executing at site s
I = Number of sites
T4 k,5) = Average execution response time of F} transactions that execute at
site ¢
| I
Tdk) = Y p(TM:k)Tl ¢)
=1 (4.2-2)
where:

T {k,5) = Average update confirmation response time of F transactions

T (k,§) = Average update confirmation response time of F} transactions that

execute at site 1

For tractability, the models make a two approximations: (1) internally

generated arrivals (e.g., update messages) are poisson; and (2} each site is an

59

.

independent queueing system. The validity of these approximations is indicated by our

simulation results.

4.3 PSL MODEL

PSL response times have three components (see figure 4.3-1): pre-lock
processing which begins with the transaction’s arrival and ends when its lock-request is
placed in the lock queue; wait in the lock queue for file access; and time beginning with

the lock-grant until the transaction has completed its execution. So,

T k) = T(PL;k;i) + WLQ;k) + M GEk,?)
(4.3-1)

where:

T(PL;k,i) = Average time for pre-lock processing of a tramsaction that

accesses F; and executes at site ¢
W(LQ;k) = Average wait in the lock queue for a transaction that accesses F

T(GE;k,{) = Average time from the lock-grant to completing the execution
and update output processing of a tramsaction that accesses F and

executes at site s

Furthermore, when a transaction executes under PSL, it is assured that there will be
no conflict and hence its update will be finalized (since PSL is an early checking

protocol). So,

60

FIGURE 4.3-1: TIMING DIAGRAM FOR PSL RESPONSE TIMES

o TM ONLY ACCESSES FILE F,

SITE 1 _ PRIMARY SITE
TMARRIVES . | o e -
— —— --4‘— — — — emmm e e — ‘
LOCK-REQUEST
(LR T (PL;K, 1)
’ LR .
Te(k, =Tk, 1) -T9-
€ $ WOLQ;)
- X _ Yo
LOCK-GRANT
(L6
~GRANT
T (GE;K, 1)
T
UPDATE -QUTPUT
_x A1) N T S -
UPDATE T (GR;k, 1)
UPDATE- INPUT
un
LOCK-RELEASE
(LE) o _X__

[TE(K,I) = TU(K,I) = T(PL;k, 1} + WLGQ; k) + T(GE:;k, 1)

T(PL;k,1) = TIME FOR PRE-LOCK PROCESSING

W(LA;) WAIT IN LOCK-QUEUE

T(GE;k, 1) = TIME FROM LOCK-GRANT THROUGH COMPLETING TM'S
EXECUTION

61

Tylk,i) = Te(k,i)
(4.3-2)

Pre-lock processing times depend on whether the tramsaction executes at its
file's primary site {PS transection) or it does not execute at its primary site {non-PS
transaction). Referring to figure 4.3-1, PS transactions have a high priority wait for
lock-request processing at the PS plus the lock-request processing itself. Non-PS
transactions additionally require a high priority wait to format a lock-request message,

time to do the formatting, and network communication of the lock-request message.

T(PL;k,i) = W(H;psy) + XILR) + (1 - 6,) MH:i) + X(LR') + X(C')} s
4.3-3

where:

ps; = Primary site for file F,

{l if pay=1
B, - 0 otherwise

X{LR) = Average time for lock-request processing at the primary site
W H;f) = Average wait of high priority work for execution at site ¢
X{LR') = Average time for formatting a lock-request message

X{C') = Average time for network communication of a control message

For T(GE;k,t), there is time required for the lock-grant processing, network

communication of the lock-grant message for non-PS transactions, low priority wait for

62

transaction execution {which is conditioned on the transaction having locked its file),

and update output processing.

NGE;k,) = X(LG) + (1 - 6)X(C') + WIL;dk) + X{ITM;k) + X{UG;k)
(4.3-4)

where:
X(LG) = Average service time for lock-grant processing

W(L,ilk) = Average low priority wait at site ¢ conditioned on the waiting

work being performed for a transaction that has locked F}

Only the site and lock queue waiting times are unknown. Since we assume all
arrivals are independent poisson processes, estimating the former only requires
determining the arrival rates and service times for each type of work at every site.
Figure 4.3-3 depicts a queueing system for site s which operates as follows. Background
work (H' and L') is queued for execution and executes at its priority level. When a
transaction arrives and site ¢ i3 not its primary site, there is a high priority wait for
formatting and transmitting a lock-request message (LR’). If site ¢ is the primary site,
lock-request processing (LR) is done, and if the lock queue is non-empty, the request is
placed in the lock queue. Otherwise if the lock queue is empty, lock-grant processing
(LG) is performed, and a lock-grant message is sent to the transaction’s execution site.
When a lock-grant message arrives, the locking transaction incurs a low priority wait
for execution. After the transaction executes (TM), update output processing (UO) is

performed. If site ¢ is the primary site, lock-release (LE) processing is done, and if the

63

FIGURE 4,3-2; QUEUEING SYSTEM FOR SITE 1 UMDER PSL

|
_TIEIE W (H;1)

A H)

A(TH; D
LOCK-REQUEST MESSAGE
UPDATE MESSAGE ———

———

HIGH PRIORITY QUEVE

LOW PRIORITY QUEUE

AL

LOCK-GRANT MESSAGE / ~(m uo)}

e— W (L;1) lv."/

b
[}

EXTERNALLY GENERATED ARRIVAL SITE 1

O SERVICE TIME COMPONENT
®

= COMPLETED SERVICE AT SITE 1 WITHOUT SENDING A MESSAGE

—

UPDATE MESSAGE

64

lock queue is not empty, then lock-grant processing (LG) follows. In any case, the
updates are distributed. When site f receives an update message, update input
processing (UJ) is performed to write the update to the data base. If site ¢ is the

primary site, lock-release and possibly lock-grant processing follow.

We now consider the transaction’s wait in the site execution queue. Since this
wait occurs after the transaction has received a lock-grant, delays due to some types of

processing will not occur.

1. There should be no other F, transaction in the execution queue at site s. (If
there were another F, tranmsaction, the primary site would have given two

concurrent transactions conflicting access to the same file.)

2. If site ¢ is the primary site for F;, then no lock-grant or lock-release processing

for F; will be done during the transaction’s wait for execution.

3. Unless the system is heavily loaded, there should be no F, file update waiting to
be processed at site 1.

Thus, we condition the transaction’s wait for ezecution on having locked its file.

Recalling that transactions are low priority work and we assume all arrivals to be

poisson, we can apply the formula for M/G/1 head-of-line priority queue systems

[KLEI76],

y Wolilk)

(4.3-5)

where:

65

W,(i]k) = Average remaining service time at site i given that the waiting

work is performed for a transaction that has locked F}

p(H;f) = Utilization of site i due to high priority consistency control protocol

work
p(H' ;i) = Utilization of site { due to high priority background work
p(3) = Utilization of site ¢

This is an upper bound since utilizations are not conditioned on F} being locked.

Similarly for high priority work,

Wolilk)
- p(H;") - p(H ;;] (43-6)

W H; k) < I
where:

W{ H;i]k} = Average wait of high priority work at site ¢ given that the waiting

work is performed for a transaction that has locked F}

In some cases, site waits should not be conditioned on a file being locked {e.g.,
wait for lock-request processing). Such waits can be viewed as being conditioned on
having locked a non-existent file, since there will be no transaction, file updates, lock-
grants, or lock-releases for a non-existent file; and hence, waits are the same as not

having locked any file. For low priority work, this is

66

WIL;s) = W L;ilk), for k>K

(4.3-7)
where:
W L;s) = Average wait of low priority work at site ¢
For high priority work, this is
W H:i) = W H:k), for k> K
(4.3-8)

where:

W H;i) = Average wait of high priority work at site s

To compute the average remaining service time at site {, we must consider all
types of work at site ¢, calculate the average remaining service for each, and then sum

the terms ([KLEI76]). For a M/G/1 queueing system, if a type of work has arrival rate

A and second moment E[¢], its average remaining service time is —;—AE’[gf] ([KLEI175}).

So,
Wy ilk) = _;_.[MH' DEDCH)] + ML EXAL 9)
+ WolH:ik) + Wo(L;dk)
(4.3-9)
where:
Wo(H:ilk) = Average remaining service time at site i due to high priority

consistency control work given that the waiting work is performed for

67

a transaction that has locked F;

W,(L;ilk) = Average remaining service time due to low priority consistency
control work at site ¢ given that the waiting work is performed for a

transaction that has locked F;

The first two terms are delays due to background work and the last two terms are

delays due to consistency control protocol work (e.g., transactions, file updates).

Utilizations can be calculated by considering low and high priority work for

both consistency control and background.

p(5) = p(H;s) + p(H' 58} + p(L;3) + p(L' 13)
(4.3-10)

where:
p(L:i) = Utilization of site ¢ for low priority work consistency control work

p(L' ;i) = Utilization of site ¢ for low priority work background work

For background utilization, we have

p(H 1) = NH ;)X(H)
(4.3-11)

p(L' 39) = ML ;9XL ;9)
(4.3-12)

Thus, site waiting times can be computed once we solve for Wy(L:ilk),
Wy(H:i|k), o(L;i), and p(H;i). For average remaining service time, we use the

decomposition technique described previously. Since a site may be the primary site for

68

some files and not for others, we consider separately work for PS operations (e.g., lock-

grants) and non-PS operations (e.g., formatting lock-request messages).

Wo(H;ilk) = W,(H,PS;ik) + Wy(H, PS;ik)
(4.3-13)

where:

Wo(H,PS;ilk) == Average remaining service time due to high priority
processing when site ¢ is the primary site given that the waiting work

is performed for a transaction that has locked F,

W,(H,PS;iJk) = Average remaining service time due to high priority
processing for those files for which site ¢ is not the primary site given
that the waiting work is performed for a transaction that has locked

Fy
We consider each term.

W,o(H,PS;dk) > %fx(TM;I)6,',{ E[X*(LR) + E[X*(LG)|
Bk

+ (- TMLNE(XUED + XLEVF] + SN(TMR6, EC(LR)
2 (4.3-14)

where:

K = Number of files

A(TM;k) = Arrival rate of transactions for F

69

X{LE) = Average service time for lock-release processing

Since we are conditioning on F, being locked, we sum over all files F;£ F;. The
arrival rate of transactions that update file F;is M TM:l). If site s is the primary site
for Fy (ie., é,;=1), then site ¢ performs lock-request (LR) and lock-grant (LG)
processing for the transaction. For non-PS transactions, site : does lock-release
processing (LE) immediately after receiving a F; update. Site ¢ receives a file update for
all transactions that do not execute at site s, so the probability of receiving a F; file
update is 1 — p(TM:l:). Since the lock-release immediately follows the update, the
second moment of service time is EX{ UL + X{LE))’]. The last term accounts for F,
lock-request processing, which occurs even though Fj is locked. This equation 1s a
lower bound since it does not consider that lock-grant processing will immediately

follow either lock-request or lock-release processing.

Average remaining service time due to high priority processing when site 1 1s

not the primary site is

K
Wil PBAR) = 3 SN TH - b M THADEIXALE!)]
1

+L \f} MTM;)(1-p{ TM:L) EIXA(ULD)]
2 i (4.3-15)

The arrival rate of transactions for F; at site § when psgZi is N(TMI)(1 - 6,.)p(TM;L5).
For each such transaction, a lock-request message must be formated (LR’). There also

is update input processing for each update message received, and an update message is

70

received for each transaction that does not execute at site 5. So, the arrival rate of
update messages is M TM;(1 - 6,1 - p{ TM;l,s}). Since we condition on the waiting
work being for a F} transaction that has locked F}, there should be no update input

processing for that file.

Low priority work consists of transaction executions and update output
processing. At the primary site, this is immediately followed by lock release processing.
Since we condition on the waiting work being for a F, transaction that has locked F,

there should be no remaining service time due to a F, transaction executing.

Wy(Lijk) > -;-f; M TM;)p(TM:Li 5,_,-[5[{)41 TM) + X(UO;D) + X(LE))“"]]
oy’

+ (1= 6E(XTMD + XUODF))
(4.3-16

This equation is a lower bound since it does not consider that lock grant processing

may immediately follow lock-release processing.

Utilizations can be computed in a similar manner to remaining service times,
only second moments are not used. For high priority work, we consider utilization due
to formatting lock-request messages, lock-request processing, lock-grant and lock-

release processing for non-PS transactions (since this is done immediately after update

input processing which is high priority), and update input processing.’

! Actually this is an approximation, since it assumes that the fre uency of high priority
lock-grant processing will be the same as the frequency of high priority lock-release
processing.

71

AHD) = TMTMB((1 - 6, I TMEAXLE) + b, XILR)
k=1

+ 8, {1-p(TM;pa) X(LG) + X(LE)) + (1 - p(TM;k,)) XTULK)) (
4.3-17)

For low priority work (the previous footnote applies here), we consider transaction

executions, update output processing, and lock-grant and lock-release processing for PS

transactions (since this is donme immediately following the transaction’s execution,
which has low priority).

K

p(Lif) = 3 N(TMk)p(TM:k,) XA TM:k) + X(UO:k) + b: (XILG)+X(LE))

k=1 (4.3-18)

To estimate W{L@;k), we view the lock queue as a single server queueing system

with First-Come-First-Served (FCFS) service. A service time is the period during

which a transaction holds a file lock. This starts when the lock is granted and does not

end until the lock is released. So, assuming poisson arrivals at the lock queues, we can

apply the formula for M/G/1 waiting times with FCFS service [KLEI75].

WH(L@;k
WL Q:k) = WlLQik)
1 - p(L@iF) (4.3-19)
where:
Wy(L@Q;k) = Average wait in F}'s lock queue due to the remaining service

time of the current lack holder

p(LQ;k) = Utilization of the lock queue for F}

72

And lock queue utilization is

(L Q;k)=~(LQ;k) T\ GR;k)
(4.3-20)

where:
~(LQ;k) = Arrival rate of lock-requests at F}’s lock queue

T(GR;k) = Average holding time of a lock for F} (i.e., time starting with F}
lock-grant processing and ending with the completion of Fy lock-

release processing)

Note that ~{LQ;k) = M TM:k), since all F; transactions must lock Fj. Also,

T(GRK) = o TMA)TIGRK)
e=1 (4.3-21)

where:

T(GR;k,{) = Average time starting with F} lock-grant processing for a
transaction that executes at site ¢ and ending with the completion of

F, lock-release processing for that transaction

From [KLEI75], the average remaining service is

I A
WoLQ:k) = ¥ p(LQ:k,$)T(GR;k,1)
=1 (4.3-22)

where:

p(LQ;k,9) = Probability that a F} is locked by a transaction that executes at

73

'”,..d."‘

site ¢

T(GR;k,f) = Average residual life of T(GR;k,¢)

Difficulties arise, however, when solving for p(LQ;k,{) and T{GR;k,i). The issue
is that arrivals at F}'s lock queue are not truly poisson since an arrival can not occur
until lock grant processing bhas been performed at the PS. So, arrivals are precluded
during those portions of T(GR;k) that require PS processing (e.g., X{(LG)). To correct

for this, T\ GR;k,1) is decomposed as follows:

N GR;k,3) = X(LG) + TAP:k,1) + T(RP:k,1)

(4.3-23)
where:
T(AP;ki) = Average time when arrivals are possible during the lock holding
period of a F transaction that executes at site ¢
T\RP;k,i) = Average time remaining in 7\ GR;k,s) after T{AP;k,1)
Thus,
T\ GR:k,) = TVAP;k,) + T\RP:k,5)
(4.3-24)
where:

T{AP;k,§) = Average residual life of T(AP;k,3)

Assuming that arrivals are poisson during T{AP;k,s) and from [KLEI75],

74

E{T(AP,9)]

TAP;k,1) = S TAPKY

(4.3-25)
To compute p{LQ;k), we again assume poisson arrivals during T{APk;s). The
probability of a poisson arrival occurring during an interval is the same as the fraction

of time that interval occurs, or its utilization. So,

ALQ:k3) = APk T(AP;k,i)

(4.3-26)
where:
H AP;k,7) = Arrival rate of F, lock-requests during T{ A P;k,s)
And,
AAP;k,i) = MTME)H TMk,) — T(GR;k,) \
Y, A TM:k)T(APk,g)] (4.3-27)

j=1
N TMk) TM;k,4) is the arrival rate of lock-requests for F;, made by transactions that

execute at site 1. Since these requests arrive at Fy's primary site at any time during

T(GR;k) (not just during T(AP;k,i)), the adjustment factor in (- - -] is included.

T(AP;k,i) depends on whether the transaction that currently holds the lock for
F; is a PS transaction or a non-PS transaction. If the current lock holder is a non-PS
transaction, then arrivals at the lock-queue can occur during the period starting after
lock grant processing has been completed and ending once update input processing
begins for the lock holder’s update. Specifically, this consists of transmission time for

the lock-grant, transaction wait for execution, transaction execution time, update

75

output processing, transmission of the file update, and wait for update input
processing. If the current lock holder is a PS transaction, arrivals can only occur

during the lock bolder’s wait for execution.

APk = (1 - 6,)(X(C")+ X(TM;k) + X{UO:K)
+ X(Cik) + WH;ps,|k)) + WL;¥)
(4.3-28)
The remaining period for non-PS transactions is update input processing and lock-
release processing; for PS transactions, it is the transaction’s execution, update output

processing, and lock release processing.

T(RP:k,i) = (1 - & JXUUEk) + 6, [X(TM:k) + X{UO:k)) + X(LE)
(4.3-29)

4.4 EWL MODEL

In the following, we refer to transaction’s that execute at their EW’s site as EW
site transactions and those that do not execute at their EW site as non-EW site

transactions.

The components of EWL response times are illustrated for the case of a conflict
in figure 4.4-1. Tg consists of the transaction’s wait for execution, execution time, and

update output processing time.!

I Transactions execute even when a known conflict situation exists. See section 3.4.
Also, we assume that if a F, transaction executes at its EW site and is restarted, the
transaction still incurs update output processing (X{UO;k)) costs on its initial
execution.

76

FIGURE 4,4-1:

o RESTART CASE FOR TM ACCESSING ONLY FILE F_

TIMING DIAGRAM FOR EWL RESPONSE TIMES

TM ARRIVES SITE 1 EW SITE
3 _f _____ “
el W(L; 1)
™ }X(Tm;x)
UPDATE OUTPUT } X (003)
i oy P o -
UPDATE-REQUEST = TCER;x, 1)
UPBATF;E?QUEST i
Tylk, 1) LOCK-REQUEST J
% (} Rgl -5~
: s A
K=GRANT i
; o] |
GRANT 1
LOCK T(GEsK, 1)
™
o , T(GR; k, 1)
. s (D N U U, - X __
UPGATE INPUT
D
LOCK-RELEASE
(12N J_
o TE(LD = MLD + X(TMK + X(U0;K)
o Ty, 1) = Teli, D) + TER K, 1) + alk, 1) [WCLQ;k) + T(GE;K, 1)]
T(ER;k, 1) = TIME FROM EXECUTING A F, TRANSACTION AT SITE 1

UNTIL COMPLETING ITS UR PROCESSING
a(k,1) = PR[RESTART F TRAMSACTION THAT EXECUTES AT SITE I]

77

Te(k,8) = W(L;é) + X(TMk) + X(UOG:k)
(4.4-1)

T, depends on whether or not a conflict occurs. If there is no conflict, then a F
update-request is known to be finalized once the EW has completed update-request
processing and written the update at the EW’s site. However, if there is a conflict, the

transaction is restarted under PSL.

TAki) = Tg(k) + T(ER;k3) + (k) WIL@:k) + TIGE:k,)
(4.4-2)

where:

T{ER;k,) = Average time from completing the execution (and update output
processing) until finishing update-request processing for a F;

transaction executing at site ¢

¢ k,1) = Probability of restarting a F, transaction that executes at site 1

The first term is time to complete the transaction’s first execution (i.e., execution
response time), and the second is time from finishing its first execution until completing
update-request processing. The last two terms are included only when there is a
conflict, in which case the transaction waits in the lock queue and once the lock is
granted, there is the period from the lock-grant until the transaction’s second execution

has been completed.

T ER;k,f) includes delays for: (1) network communication of the update-request
message, (2) wait for update-request processing at the EW's site, (3) update-request

processing, and (4) if no conflict is detected, update input processing, and otherwise

78

lock-request processing. For EW site transactions, update-request processing is
performed immediately after update output processing. So, time is required for

update-request processing, and if a conflict occurs, lock-request processing.

TER;k,3) = (1 - 5,)(XUCik) + W H;ewy) +

(1 - o(k,N)XULK) + X{UR) + k,9)X(LR)
(4.4-3)

where:

X{UR) = Average service time for update-request processing which includes

checking for conflicts and update distribution if there is no conflict!

WL @:k) and T(GE;k,s) have the same meaning as for PSL and are computed in
the same manner as for PSL, with the following two exceptions: (1} EWL values for
site waiting times are used; (2) ew; is used instead of ps;

where:

ew;, = EW site for file F}

and (3) the arrival rate of lock-requests is computed differently. Recall that locking is
required for EWL only when a conflict occurs. For a F| transaction executing at site 1,
this occurs with probability ¢k,f). So the arrival rate of lock-requests from F;

transactions at site ¢, 1s A TM:k)p(TM;k,¢)q(k,3). Summing over all sites,

! Very little output processing is required when EWs distribute updates, since the same
buffer in which the update-request was received can be used for update transmission.
So, the cost of EW update distribution is included in update request (UR) processing.

79

I
ALQ:K) = 3 M TMR)H TMik, ol k)
=1 (4.4-4)
We use the approach taken for PSL in section 4.3 to solve for site waiting

times. Thus, to complete this model we must compute Wy{H;ilk), Wy(L;ik), p(H;1),

p(L;3), and ¢(,9).

The decomposition techniques of section 4.3 are used to compute average

remaining service time.

W,(H;ik) = W,(H,EW,RS;ik) + W{H EW,RS;ilk) + Wy(H, EW,ilk)
(4.4-5)

where:

W,(H,EW,RS:1|k) = Average remaining service time at site ¢ due to high
priority work for EW site processing of transactions that are not

restarted given that the waiting work is performed for a transaction

that has locked F,

W, H,EW,RS;ilk) = Average remaining service time at site 1 due to high
priority work for EW site processing of transactions that are restarted
given that the waiting work is performed for a transaction that has

locked F}

W,(H,EW:ilk) = Average remaining service time at site § due to high priority
work for non-EW site processing given that the waiting work is

performed for a transaction that has locked F}

80

These terms reflect average remaining service time when the waiting transaction has
locked F;. Since a site may be an EW site for some files but not for others, we
consider separately its EW and non-EW processing. The first term is EW site
processing for transactions that are not restarted, the second is EW site processing for

transactions that are restarted, and the third is non-EW site processing.

High priority EW site processing for transactions that are not restarted consists

of update-request processing followed by update input processing.

WHEW, SN = L SN TH08 A RSB UR) + UE)
(4.4-6)

where:

p(RS;l) = Probability of not restarting a non-EW site transaction for file F|

For transactions that are restarted, high priority EW site processing consists of
update-request processing followed by lock-request processing (applies to F,
transactions since we condition on F; being locked). When the update is received,
there is update input processing, followed by lock-release processing, and when the lock

queue i3 not empty, lock-grant processing.

W (H,EW,RSik) < %‘Ex(TM;!)&Up(RS;B{E[[X UR) + X(LR)?|
Lk

+ E(XUED + X(LE) + XILG) 7} + 8, N\ TMRE(X(UR) + X(LR)? ()
4.4-7

81

i

where:

HRS;)) = Probability of restarting a non-EW site transaction for file F; EW

site

This is an upper bound since it assumes that there is always a lock-grant after a lock-

release (i.e., the lock queue is never empty), thereby increasing residual life.
High priority non-EW site processing consists solely of update input processing.

K
WlHEVF;lh) = - 53 (NCTMN - 8t - A TMLIALD) E(UL .
4.4-8

When site i is not the transaction’s EW site, update input processing is required at site
¢ except when the transaction is restarted. p(TM;,{)g(l,s) is the probability of a F
transaction executing at site { and being restarted. So, the term in [.-) is the

arrival rate of transactions that send update messages to site 1.

The average remaining service time due to low priority work results from the

first and second execution of transactions.

Wy L;ilk) = W(L,1;5) + Wy(L,2;4k)

(4.4-9)
where:
Wy(L,1;) = Average remaining service time due to the first execution of
transactions at site ¢
Wy(L,2;k) = Average remaining service time at site ¢ due to the second

82

execution of transactions given that the waiting work is performed for

a F}; transaction that has locked F)

For W{L,1;i), we consider both EW site and non-EW site transactions. For the
former, there is the update-request, immediately followed by the transaction’s
execution, immediately followed by update output processing, which is immediately
followed by lock-request processing if the transaction is restarted. For non-EW site

transactions, there is the transaction execution, followed by update output processing.

Wy(L,1;4) = % gx(TM:0)p TMLi), 6,.E[(XUUR) + X{TM;l) + X(UG;))

+ ghXLRY? + (1 -)BT + X(U0:0)7)
(4.4-10)

For Wy{L,2;ik), EW site and non-EW site trapsactions are again considered

separately.

WL < 5 NTOIA T L)
Bk
X {a,;,-n(xl TM) + X(UOl) + XLE) + X(LG)?]

+ (- 8E(XTMD + X(U0) %)
(4.4-11)

Since we condition on F being locked, the locking transaction will not be delayed by

83

the remaining service time of the second execution of another F; transaction (since the
latter tramsaction could not execute until it had locked F;}). The arrival rate of
transactions that lose a conflict for F; at site ¢ is M TM)p(TM;ls)¢(ls). When a
transaction is restarted at the EW site, it executes, has update output processing, then
releases its lock, and if the lock-queue is not empty, there is a lock-grant that
immediately follows. For non-EW site transactions, there is only the transaction’s
execution and update output processing. This equation is an upper bound since it

assumes that the lock queue is never empty.

Computing the probability of restarting or not restarting a pon-EW site
transaction only requires summing the probabilities of transactions at each site being or
not being restarted.

. !
AREH) = (1 - 6,)0 TMkX1 - k)
=1 (4.4-12)
!
dRS,k) = E(I - 6k,i)p(TMk,')dk:")
=1 (4.4-13)

To compute utilizations, we first consider the arrival rate at site ¢ of update

input processing work for F}.

AUEk,) = NTMR)(6, {1 - o TMK,)

+ (1 - Jk,i)(l - p(TMk,l)dk,l')))
(4.4-14)

The first term is for an EW site, since update input processing is required whenever a

84

s

non-EW site transaction executes. The second term is for non-EW site transactions,

since update input processing is required at their execution site except when the

transaction is restarted (since updates will be distributed by the execution site). Thus',

K
p(Hy) = S A ULK)X{ULK)
§

+ 8 MTMEp(RS;K)X(LR) + X(LG) + X(LE)|

+ 8 M TMK)(1-p(TM;k,3)) XTUR)
(4.4-15)

The first term is utilization due to update input processing, the second is lock request,
grant and release processing (occurs with high priority for non-EW site transactions),

and the third is update-request processing. For low priority work,

ALis) = {: N TM:E)pl TM;k,z){(l + q(k,i))[X(TM:k) + X{TUO;k)
k=1 '

+ 6, {XUUR) + o(k ¥ X(LR) + X(LG) + xtw))l} (
4.4-16)

The first term in [.) is due to the first and restart executions of tramsactions as
well as their update output processing. The second term is update-request, lock-
request, lock-grant, and lock-release processing for EW site transactions (since
transactions are low priority work, and these types of processing occur at the

transaction’s priority level for EW site transactions).

! Actually the equation for p(H;? (ﬂ(L;i)) is an approximation since it assumes that the
frequency of high (low) li(rlonty ock-grant processing will be the same as the frequency
¢

of high (low) priority lock-release processing.

85

What remains to estimate is ¢{k,) - the probability of restarting a F;
transaction that executes at site . Under EWL, there are two reasons for restarting a

F, transaction.

1. SN CONFLICT.
The transaction read an old copy of Fj. Thus, the EW will detect that the
update sequence (SN) in the transaction’s update-request differs from the SN of

F, copy at the EW's site.

2. LOCK QUEUE CONFLICT.
When the EW processed the update-request, F's lock queue was not empty.

Assuming that the occurrence of SN and lock queue conflicts are independent events,

ok =1-(1- qLQK)(1 - dASN:k,7))
(4.4-17)

where:
A L @;k) = Probability of a lock queue conflict for a F} transaction

« SN:k,{) = Probability of an SN conflict for a F; transaction executing at site

Additionally, if we assume (as in the PSL model) that arrivals at F's lock queue are
poisson, the probability of a lock queue conflict is the same as the lock queue’s

utilization. So,

qLQ:k) = p{LQ;K)
(4.4-18)

86

To compute ¢(SN:k,i), g SN;k,ew,) = 0, since transactions executing at F;'s EW
site always read the most current copy of F.. An SN conflict occurs when the update-
request arrives at the EW too soon after an update has been distributed; hence the
transaction's execution site did not receive the update before the transaction executed.
The cases to consider for SN conflicts are determined by the situations in which
updates are distributed. There are four such situations, and they are characterized by:
(a) whether or not the transaction executed at its EW site and (b) whether it was the
transaction's first or second execution. (Under EWL, transaction’s are restarted at most
once if their basesets do not change, which is the case for the system we are studying.)

Thus, if % ew,; and assuming independence,

dSNkD) =1 - (1 - (EW, k) (1 - (EW,2:5,1)

X (1 - EW,LR)(1 - EW,2;K)
(4.4-19)

where:

« EW.1;k) = Probability of a F, transaction losing an SN conflict due to the

first execution of a non-EW site transaction

g EW,2;k) = Probability of a F) transaction losing an SN conflict due to the

second execution of a non-EW site transaction

@ EW,1:k) = Probability of a F; transaction losing an SN conflict due to the

first execution of an EW site transaction

f EW,2;k) = Probability of a F transaction losing an SN conflict due to the

87

second execution of an EW site transaction

We now estimate the probability of each type of SN conflict. First consider
« EW,1;k) for a specific transaction, TM, that executes at site { % ew;. TM will lose an
SN conflict if its update-request arrives at the EW site too soon after the EW has
accepted an update-request. Let T{EW,1;k) be the period of time prior to the arrival of
TM’s update-request during which the arrival of an update-request that is accepted by
the EW will cause TM to lose an SN conflict. Figure 4.4-2 illustrates the components
of TIEW,1;k). Such an conflict causing update-request must, after its arrival, wait for
processing at the EW site, perform request and update input processing, and the
update must be transmitted. If the update arrives at site i after TM has begun
execution, the update will not be written to the site’s copy of F} (F},) until TM has
completed its execution, since scheduling is non-preemptive. However, if the update
had arrived just prior to TM being scheduled for execution, F;, would have been
written, since update input processing has higher priority than transaction executions.
The last component of T{EW,1;k) is the transmission time for the update-request. So,
g EW 1;k) is the probability that there is no arrival during TEW,1:k) of an update-
request that will be accepted by F;'s EW. Assuming that such update-requests form a

poisson arrival process with rate {EW,1;k) and ¢t = T(EW,1;k) is a constant,

(EW1;k) = 1 - exp[-+WEW,1;k)Y]
(4.4-20)

where:

AEW,1;k) = Arrival rate of update-requests made by non-EW site Fy

88

FIGURE 4.4-2: SN CONFLICT WITH THE FIRST EXECUTION OF A
NON-EW SITE TRANSACTION

SITE 1 EW SITE _UEQAIE:REQUESI‘

W(H; EW)

|

UR X(UR)

Ul XAUL;x)

X(C; k) _
T(EW,1;Kk)

™ XCTM; k)

uo X0 k)

S -

X(C; k)

- L X

e TM LOSES AN SN CONFLICT IF AN UPDATE-REQUEST THAT IS ACCEPTED
ARRIVES DURING T(EW,1;K)

89

-~

transactions whose update is distributed after the first execution

Integrating over all possible values of ¢,

AEW LK) =1- ?exp[—-y(EW,l;k)t]HE—W,I;k,t)Bt
° (4.4-21)

where:

T(EW,1;k,t) = Probability density function of T{EW,1;k) evaluated at ¢

This integral is the LaPlace transform for T{EW,1;k) evaluated at (EW,1;k). Letting

T EW,1;k,s) be this LaPlace transform,

EW.1) = 1 - T{EW 1k oA EW,1:8)

(4.4-22)
where:
T'[Wl;k,'){EW,l;k)] = LaPlace transform of T{EW,1;k) evaluated at
W EW,1;k)
With
- i
AEW, 1K) = MTMk) 3 (1 - 6 3o TMikg)1 - olk.5))
=1 (4.4-23)

In general, TY-) is the LaPlace transform of 7{-). So, from figure 4.4-2 and the fact
that the LaPlace transform of the sum of independent random variables is the product

of the LaPlace transforms of each random variable

90

.

TYEW 1;k,3) = W H;ew,, o)X (UR;8)X (UL, s)
X X{Cik,8)X(TM;k,8) X (UO;k,0)X'(C;k,3)
(4.4-24)
where:
W'(H,ew,s) = LaPlace transform of W[H;ew;) evaluated at s
X(UR;3) = LaPlace transform of X{UR) evaluated at a
X" ULk,s) = LaPlace transform of X{ UJ;k) evaluated at s
XY(C;k,3) = LaPlace transform of I{C;k) evaluated at s

X(TM;k,s) = LaPlace transform of X{ TM.k) evaluated at s

X(UO;k,s) = LaPlace transform of X{UO;k) evaluated at s

Only W'(H,ew,,s) is not an input parameter to the performance model, and this

equation has been presented elsewhere ([KLEI76]).

The other three cases for SN conflicts can be derived in a similar manner.
Figure 4.4-3 is a timing diagram for SN conflicts caused by the second execution of
non-EW site transactions. We use the above described approach to estimate
A EW,2;k,1).

AEW2:ki) = 1 - TUEW 2k, EW,2:k,)
(4.4-25)

where:

91

FIGURE 4.4-3: SN CONFLICT WITH THE SECOND EXECUTION OF
A NON-EW SITE TRANSACTION

SITE 1 EW SITE
™,
U
y
™, | X0 T
U : |
0 [xwew I B e s
_ X(C;K) l
UPDATE-—REGUEST B . A
|

o THM, IS RESTARTED AND EXECUTES AT A NON-EW SITE

o TM, LOSES AN SN CONFLICT IF TM,'S UPDATE ARRIVES AT
THE EW’S SITE DURING TC(EW,2;k)

92

~«EW,2;k,i) = Arrival rate at F;'s EW of updates to F, made by the second
execution of transactions that did not execute at either their EW’s site

or site t

T1E_W,2;k,a',-7(E_W,2;k,z] = LaPlace transform evaluated at ~{ EW,2;k,s) of the
period during which the second execution of a non-EW site transaction

for F will cause an SN conflict for a transaction executing at site ¢

I
7 (4.4-268)

This equation excludes tramsactions that restart at site f, since the transaction that
loses the conflict executes at s and thus would read the most current copy of F;. From

figure 4.4-3,

T EW,2;k,2) = X(TM;k,s) X (UO;k,8)X'(C;k,s)
(4.4-27}

Figure 4.4-4 shows a timing diagram for an SN conflict resulting from the first

execution of an EW site transaction.

AEW1;k) = 1 - T{EW,L;kA EW,1;k)
(4.4-28)

where:

~{EW,1;k) = Arrival rate EW site transactions for F; whose update is

distributed after the first execution

T'[EW,];I:,’;(EW,I;I:)] = LaPlace transform evaluated at ~(EW,1;k) of the

93

FIGURE 4.4-4: SN CONFLICT WITH THE FIRST EXECUTION
OF AN EW SITE TRANSACTION

SITE 1 EN SITE
X(TM;) ™, b
X(U0;K) ug
X(UR) UR |
UPDATE A NOT
™, XM | T, 150
o X(U0; 1)

o TM,'S UPDATE IS ACCEPTED BY THE EW

e TMy LOSES AN SN CONFLICT IF TM, BEGINS EXECUTION
DURING TC(EW,1;x2

94

period during which the first execution of an EW site transaction for
F will cause an SN conflict
Thus,
KEW,L;k) = NTME)p(TMik,ewp)(1 - ok, cwy)
(4.4-29)

And from figure 4.4-4,

TEW,1;k,8) = X'(TM:k,)X{UO;k,3)X(UR;a) X"(C;k,s)

X X(TM:k,a) X (UO;k,8)X'(C;k,8)
(4.4-30)

Figure 4.5-5 shows a timing diagram for an SN conflict resulting from the

second execution of an EW site trapsaction.

AEW,2:k) = 1 - T{EW,2;k{EW,2;K))

{4.4-31)
where:
« EW,2;k) = Arrival rate of EW site transactions for F} that are executed a
second time
T'[EW,?;k,i,'y(E W,Q;k,a')] = LaPlace transform evaluated at v(EW,2;k,1) of the
period during which the second execution of an EW site transaction
for F, will cause an SN conflict
So,

95

FIGURE 4,4-5: SN CONFLICT WITH THE SECOND EXECUTION
OF AN EW SITE TRANSACTION

SITE 1 EW SITE
X(TM; 0 mo| f -
X(U0;K) vo
X(LE) LE
X(LG) 6
LPDATE A X(C;k)
TCEW, 2;K)
™, | Xam |
7
uo | X{Uo; k)
X(C;K)
_____ Y_

o TM, IS RESTARTED AT THE EW'S SITE

o M, LOSES AN SN CONFLICT IF TM, BEGINS EXECUTION
DURING T(EW,2;)

96

AEW,2;k) = N TM;k)p(TM:k,ewy)g(k,ew;)
(4.4-32)

And from figure 4.4-5,

TEW,2;k,8) > X(TM:k,0)X(UO;k,8)X(LE;8)X(LG;s)

X X C:k,)X (TM;k,8) X (UO;k,8)X(Csk,8}
(4.4-33)

where:
X*(LE;s) = LaPlace transform for lock-release processing evaluated at s

X*(LG;s) = LaPlace trapsform for lock-grant processing evaluated at s

This equation is a lower bound since it assumes there is always a lock-grant after a
lock-release (i.e., the lock queue is never empty). By using a lower bound for

T*(EW,2;k), we get an upper bound for ¢(SN:k,i) and hence an upper bound for ¢(£,f).

Finally, note that the above equations are recursive in that ¢(k,s) is expressed as
a function of {dk]l),....dk})}. We resolve this problem by using iterative
approximations. Initially, we let ¢(k.f) = o(prv;k,9) =0, for = 1,...,]. Using the

above equations, we estimate ¢ new;k,r) in terms of ¢(prv;k,1), ..., dpru;k). If

max {|¢(new;k,i) - prok,il} < e
! (4.4-34)

where:

dnew;k,§) = New value of k) estimated by the iterative approximation

algorithm

97

d pru;k,i) = Previous value of ¢(k,) estimated by the iterative approximation

algorithm

the iteration stops, and response times are calculated. Otherwise, the iteration

continues. In the numerical studies, ¢ = .001.

4.5 OTS MODEL

Because accurately estimating OTS response times is complicated, we make

several assumptions all of which cause our model to be a lower bound for OTS response

times:

1. Updates that must be rolled back are never written at a site other than the
transaction's execution site.

2. There are no cascading rollbacks (i.e., transactions never read a file copy which
is rolled back).

3. The update log has infinite size, so there is no cost for removiag log entries.

Figure 4.5-1 shows a timing diagram for OTS with its components of response
time. For T, there is no inter-computer synchronization delay, only the transaction’s
wait for execution, transaction execution, update output processing, and update log

maintenance.

Tk,§) = W(Lyi) + X(TMk) + XQTUOk) + XTUM;k)
(4.5-1)

where:

98

FIGURE 4,5-1:

TIMING DIAGRAM FOR OTS RESPONSE TIMES

o TM ONLY ACCESSES FILE F,

99

™ arrives SPE! SITE 4
F Y
T (K, 1) ™
1" "7 UPDATE L0G
i (UM
UPDATE OUTPUT
N (UO)\QEQA_U:\—'
UPDATE - CHECKING :
T(EA,RS; K, 1) UPDATE-ACK/REJECT | !
| [UPDATE AK
T, (Ua)
DAT K
0 ABASE ROLLBA
Te(k, 1) ™
UM
1
k- ! \Uﬁu&[\—
uc
RS; UFDA
T(EA,RS; K, 1) A
UM
UPDATE-ACK/ACCEPT j
Y _ __Y_ LA

X{UM;k) = Average service time for update log maintenance of file F,

Ty includes Ty and the time to receive update acknowledgement messages from all

other sites.! Additionally, there may be ome or more transaction restart. A restart
occurs for a F transaction at site s with probability ¢(k,5). With probability 1 - k),
a F, transaction is not restarted. Thus, such transactions are restarted exactly n times

with probability (1 - ¢(k,1))¢"{(k,1), which is a geometric distribution and has a mean of

gk.q)
Y R
g k,1)
N (kt)= L1 _
A8 L - gki) (4.5-2)
where:

N, {k,;3) = Average number of restarts for a F, transaction that executes at

site §

And the update confirmation response time is

Tulky) = N, (ki) Tk} + TIEA,RSk,3) + Telki) + TNEA,RS:k,{)
(4.5-3)

where:

g(k,s) = Probability of restarting a F transaction that executes at site s

T(EA,RS;k,1) = Average time from completing a F} transaction’s execution at

site ¢ until the transaction's last update acknowledgement has been

! The ress)‘onse time model for OTS assumes that transactions are not restarted until
update acknowledgements have been received from all other sites. Doing so prevents a
transaction from being restarted until all corflicting updates have been written.

100

processed when the transaction is not restarted

T(EA,RS;k,5) = Average time from completing a F} transaction’s execution at
site ¢ until the transaction's last update acknowledgement has been

processed when the transaction is restarted

Referring to figure 4.5-1, T{EA,RS:k,s) is

TEA,RSki) 2 X(Ck) + m;x{w(H;ﬂ} + X(UC) + X(ULk) + XTUM:K)
17

+ X(C') + max{(}-2)X{UA), WM H;3)} + X(UA)
(4.5-4)

where:

X{UC) = Average service time to check an update to see if it conflicts

These terms are time for transmif;ting the update, waiting for update-checking at each
of the other sites, update-checking, update input processing, update log maintenance,
transmitting the update-acknowledgement control message, waiting for update-
acknowledgement processing at site ¢ (which requires a delay no less than the time to
process -2 update acknowledgements or a high priority wait for control processing),
and update-acknowledgement processing at site 1. The equation is a lower bound since

it uses the maximum of means instead of the mean of maximums.

Similarly, T{EA,RS;k,5) is

101

T(EA,RS;ks} 2 X(Cik) + m;x{ WH;)} + X(UC) +
70

+ X(C') + max{([-2)X(UA) + X(DR;k), W H;d)} + X{UA)
(4.5-5)

where:

X(DR;k) = Average service time for database rollback of file F

These terms reflect time for transmitting the update, waiting for update-checking at
each of the other sites, update-checking, transmitting the update-acknowledgement
control message, waiting for update-acknowledgement processing at site s (which
requires a delay no less than the time to process I-2 update acknowledgements plus a
database rollback or a high priority wait for control processing), and update-

acknowledgement processing at site .

To complete this model, we must estimate site waiting times (i.e., W{H;s) and
W(L;i)) and the probability of a transaction being restarted - ¢(k,:). Site waiting times
are calculated use the approach of section 4.3, which requires estimating Wol H:4),
Wy(L:i), p(H:i), and p(L;i). We begin with Wi(H;i) and using the decomposition

approach of section 4.3.

W (H:i) > %f;{zx(TM:k,)(I-1)E[X2(UA)]

MTMK)(1 - o TMED)E{ XTULE) + X{UM;k))?]

102

+ ADRKAE(DRA + LA THkDELX(UC))

1 (4.5-6)

where:

A(TM:ks) = Arrival rate at site ¢ of externally gemerated and restarted

transactions for F}

~(DR;k,{) = Arrival rate at site i of database rollbacks for F}

Each term reflects average remaining service time for a different type of work: (1)
update-acknowledgement processing, since Fj transactions (including restarts) arrive at
site i with a rate of A(TM;k,1) and each execution requires processing /-1 update
acknowledgements; (2) accepted update messages which have an arrival rate at site i of
M TM:k)(1-p{ TM;k,9)) (site i accepts one update message for each tramsaction that
executes on another site) and reqﬁires update input processing immediately followed by
update log maintenance; (4) database rollbacks; and (5) update-checking which is

required for each update message received (i.e., each non-site ¢ transaction execution).

The number of times a F, transactions executes at site s is one plus the average

pumber of times a transaction is restarted. Thus,

M TM:k,15) = N TM:k)p(TM:k, N, (k,§) + 1)
(4.5-7)

A database rollbacks occurs whenever a transaction is restarted. So,

A DR;k,$) = ¢k HA(TM;k,s)
(4.5-8)

103

The only low priority cobsistency control work is transaction executions (which
are immediately followed by update output processing and update log maintenance).

So,

K
WilLii) = = 3 A(TMkDE(XTMH) + X(UOsK) + XUMK)Y]
k=1 (4.5-9)
Utilizations are estimated in a similar manner. The terms of these equations

have the same interpretation as those for average remaining service time.

K

o Hyg) = E{A(TM;k,3)(I-1) X{UA)

k=1

+ MTM:EX1 - p(TMk)N XTULR) + XTUM;k))

+ ADRkNXDRE) + Y ATMA X UC)}

#i (4.5-10)

K
A L) = Y A TM:k,) XITM:K) + X(TUOsK) + XTUM;kK)
=1 (4.5-11)
We complete this model by estimating ¢(k,¢). As shown in figure 4.5-2,

transaction TM, at site ¢ will be restarted if site has not received an update made by

transaction TM,, since TM, has a lower valued timestamp than TM,! Since a
transaction’s timestamp is assigned when it begins execution, TM, will be restarted if it

begins execution too soon after TM, has begun execution and if TM; does not execute

! Actually, only those transactions with lower valued timestamps and whose updates
are written at site ¢ will cause TM, to be restarted. We simplify the model by
assuming that all lower valued timestamps can cause a restart and justify our
simplification through simulation.

104

FIGURE 4,5-2: ESTIMATING OTS RESTART PROBABILITIES

SITE 1 SITE v

X(TM; k) | TM, {
X(M;) | um

- TARS; k)

X0k | uo
UPDATE A x<c,-x)t

™ | ‘

o TM, WILL BE RESTARTED IF TM, EXECUTES DURING T(RS;K)

105

at the same site as TM, (since TM; would read TM,'s update). Let T{RS:k) be the

period of time starting when a F, transaction begins execution and ending when the

other sites have received the transaction’s update. The arrival rate of F} transactions

at site j is A(TM;k,j). Assuming poisson arrivals, ¢(k,f} = 1 - P,[no transaction begins

execution at site j54¢ during T{RS;k)]. Using the same transform technique as in the

EWL model, T(RS;kA(TMk,j)} is the probability of no conflict causing transaction

executing at site sy during T(RS;k). So, the product of these probabilities for j#1 is the
probability of no conflict. Hence,

1
k,8) = 1~ I T(RS;kA(TM:k.j))
éa (4.5-12)

where:

T(RS;k,A(TM:k,j)) = LaPlace transform evaluated at A(T'M:k,;) of the period
of time following the execution of a F, tramsaction during which

executing another F; transaction will cause the latter to be restarted

This LaPlace transform can be calculated as follows.

TRS:k,8) = X(TM:k,8)X'(UO:k) X*(UM:k,8) X Cik,8)
(4.5-13)

where:

X(UMk,s) == LaPlace transform of the service time for a F, database

rollback

106

P Note that as with the EWL model, g(k,i} is recursively defined (e.g., o{k,3) is a
function of A(TM:k,{) which is a function of g{k,s)). As with EWL, we use iterative

approximations with ¢ = .001 for the numerical studies.

4.6 NUMERICAL STUDIES

Here, we use the analytical models for PSL, EWL, and OTS to study the effect
of the input parameters on response times (i.e., Tg and Ty). Ideally, we would indicate
which protocol is preferred for each region of input parameter values. However, this
goal is difficult to achieve since there are a large number of input parameters, many of
which affect two or more of the protocols in a complex way. Instead, we show how
input parameters affect the protocols. We reduce the number of parameters by
grouping similar parameters together. Specifically, we perform the following numerical

studies by changing the values of the input parameters indicated.

1. Baseline.
Input parameters are set to values reasonable for the DPAD System. In the
other studies, parameters values that are not explicitly mentioned have their

baseline value.

2. Background Load.

MH), ML ;6)

3. Transaction Execution Times.

X(TM)

107

10.

Throughout this section we assume there is only a single shared file, since {(under the

model assumptions) the effect of multiple shared files is the same as having background

Update Processing Times.

X(Uo), X(Uh

Control Processing Times.

X(LR), XILR'), X(UA4), X{UC), X{UR)

Network Communication Times.

X(0), Xx(c')

Lock-grants and Lock-release Processing Times.

X(LG), X(LE)

Update Log Maintenance and Database Rollbacks.

X(UM), X{DR)

Number of Sites.

Transaction Load Partitioning.

o TM;q)

load. Thus, we do not index parameters by file.

queueing systems. In the system we study, there is queueing for only two types of

resources: sites (for program execution) and files (for write access).

Utilization is an important parameter for understanding the behavior of

108

utilization measures for each.
p(#) = Utilization of site ¢
#(L @} = Utilization of the file's lock queue
For sites, we are concerned with the one that is most heavily utilized, referred to as the

bottleneck site.

p = max{p(s)}
' (4.6-1)

where:

= Utilization of the bottleneck site

We begin with the baseline study, in which parameters are set to values that
are reasonable for the DPAD system (see figure 4.6-1). Figure 4.8-2 plots T against
the external arrival rate of transactions (AM{TM)). Since the response time models are
approximations, simulation models of the protocols were implemented in PAWS
[BERR82], and simulation studies were performed. In figure 4.6-2, results from these

studies are presented as 90% confidence intervals (bars).

PSL has the largest T over a wide range of \(TM). This is due to the cost of
locking, which consists of processing lock-requests, lock-grants, and lock-releases as well
as inter-computer synchronization delays due to waits in the lock queue. To better
illustrate this point, we decompose PSL response times into pre-lock processing, waits
in the lock queue, and time from the lock-grant through the transaction’s execution.

(For details, see section 4.3.) Since PSL is an early checking protocol, Tp = Ty. So,

109

Figure 4.6-1: Baseline Values For Parameters

A(TM:k); poisson arrival process

MH ;1) = 0; poisson arrival process

ML' ;i) = 0; poisson arrival process
P

I=5
K=1
ATMkD) = L

X(DR;k) = .3 maec; exponential
X(H ;1) = 1. msec; exponential
X(L' ;i) = 1. msec; exponential
X(LE) = .25 masec; constant
X(LG) = .25 msec; constant
X{LR) = .25 masec; constant
X{LR') = .05 masec; constant
X(C' ;k) = .01 msec; constant
X{C;k) = .01 masec; constant
X{TM:k) = 2.5 msec; exponential
X{UA) = .05 msec; constant
X{UC) = .05 msec; constant
X(ULk) = .06 msec; exponential
X(UM:k) = .3 msec; exponential
X(UO;k) = .08 masec; exponential
X{UR) = .05 msec; constant

110

TE(MSEC)

FIGURE 4.6-2: T. FOR BASELINE

BARS ARE 90% CONFIDENCE
INTERVALS FROM SIMULATION

P

G

0,06 0.12 0.18 0.24 0.30

AT (EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

111

TAPSL) = T PSL) = T(PL) + WILQ,PSL) + T\GE,PSL)
(4.6-2)

where:
T(PL) = Average time for i)re-lock processing
W(LQ,PSL) = Average wait in the lock queue for PSL

T(GE,PSL) = Average time for PSL from the lock-grant through the

transaction’s execution

Figure 4.6-3 plots these components. When A(TM) is small, locking increases response
times because of processing for lock-requests, lock-grants, and lock-releases; this is
included in 7{PL) and T(GE,PSL). As M TM) increases, W{LQ,PSL) dominates PSL
response times. In fact, PSL does not saturate due to site utilizations but due to lock

queue ulslizations (see figure 4.6-4).

TAOTS) > TAEWL) when A(TM) is small due to OTS update log
maintenance. As A(TM) increases, OTS has transaction restarts (see figure 4.6-5).
Under OTS, transactions are repeatedly restarted until they execute without conflict,
referred to as repeated transaction restarts. Thus, the number of times an OTS

transaction is restarted, N,{OTS}, is

N,{OTS) = _40Ts)

1-«0T9) (4.6-3)

where:

N,{OTS) = Average number of times an OTS transaction is restarted

112

FIGURE 4.6-3;

Time (msac)

g

COMPONENTS OF PSL RESPONSE TIME FOR BASELINE

8

20

20

&0Q

soq

a0

00

2ng

W

T(GE,PSL)

R, PSL)

T(PL)

o . e e e o M e e e . e e T A i M T ——— ——— L — o — .

pra—

Q0.05 0.10 0.15 0.20

A (TM) (EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

113

0.25

0.

30

FIGURE 4.6-4: SITE AND LOCK QUEUE UTILIZATIONS FOR BASELINE

e(LQ)

114

Average Number of Transaction Restarts

FIGURE 4,6-5: NUMBER OF TRANSACTION RESTARTS FOR BASELINE

500, . .
450]
L d
l |
i |
| |
30 4
! |
|
2l J
250 ']
| |
200 E
F / |
1 t
150 /]
! 0TS i
! |
wed e
/'/. F
v |
S0 - EWL 1
ﬂ!__.-//'(N P L i ;
4] 0.05 0.10 0,15 0.20 3.25 0.3C

A(T) (EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

115

FIGURE 4.6-6: PROBABILITY OF A TRANSACTION RESTART FOR BASELINE

10 - . -

S

B0

20

B0

Sa

40

Probabillity of a Transaction Restart

20]

AQ

e

0 0.05 0.10 0.15 0.20 0.25 0.30

ATM) (EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

116

¢ OTS) = Probability of an OTS transaction being restarted

It is due to repeated transaction restarts that OTS is so semsitive to ¢ OTS).
Specifically, as OTS) approaches 1, N,{OTS) becomes unbounded (see figure 4.6-6),

and the sites saturate {see p in figure 4.6-4).

EWL has no locking for Tr and hence no delays due to lock queue waits. Also,
EWL restarts a transaction at most once if {as is true here) the transaction reads and
writes the same files when it is restarted. Thus, Tg(EWL) is relatively small for the

entire range shown in figure 4.6-2.

Figure 4.8-7 plots T for the three protocols. Note that OTS has the largest
Ti» To understand why, we decompose T OTS) into time for execution response time
and update validation; the effect of restarts is considered separately. (See section 4.5

for details.)

TAOTS) = TH{OTS) + T(EA,RS) + N, {OTS)THOTS)

+ N,{OTS)T(EA,RS)
(4.6-4)

where:

T(EA,RS) = Average time beginning after a transaction has executed and
ending when all update-acknowledgments have been processed when

the transaction is not restarted

T(EA,RS) = Average time beginning after a transaction has executed and

117

FIGURE 4.6-7: TU FOR BASELINE

1900

balr)t

g0

700

TU(MSEC)

afd

sa

200

wa

igu:lr/z//f" .-"..'

BARS ARE 907 CONFIDENCE
INTERVALS FROM SIMULATION

3 (TH)

.12 0.18 0.24 0.30

[

(EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

118

Tima {(msec)

FIGURE 4.6-8: COMPONENTS OF 0TS T, FOR BASELINE

—p—

1084

00

gog

200

500

Vit 8

e

i

|
1
1
|
1
'
1
!
1
!
)
!
i
1
I
!
r
i

Neg (0TS T,(OTS)

!
i
i
]
!
]
]
I
{
I
'
t
i R
I

!

]

t

!

T (0TS) f

Nag (OTS)TCEA, RS)

- -

0.05 0.10 0.15 0,20 0.25 0.30

A(TM (EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

119

ending when all update-acknowledgments have been processed when

the transaction is restarted

Under OTS, a transaction’s update is not known to be confirmed until all sites have
validated it. Referred to as distributed update validation, this approach introduces
delays as indicated by T(EA,R3) and N,[OTS)T(EA,RS) in figure 4.6-8. In addition,
when A\ TM) increases there is a substantial cost due to repeated transaction restarts as

indicated by N,{OTS)Tg OTS) and N,[OTS)T(EA,RS).

Figure 4.6-7 shows a crossover point for T({EWL) and T {PSL}. When A\(TM)
is small, restarts are rare, so EWL incurs small costs for locking; hence,
TAEWL) < T {PSL). However, { EWL} increases with A TM) (see figure 4.6-5).
When a transaction is restarted, Ty increases due to locking. Also when restarts are
frequent, p increases, and hence site waits increase. To illustrate the foregoing,
T EWL) is decomposed into execution response time, time from completing execution
through completing update-request processing, wait in the lock queuve, and time from

the lock-grant through the transaction’s execution. (See section 4.4 for details).

TAEWL) = T{EWL) + T(ER) + { EWL)WMLQ,EWL)

+ {EWL)T(GE,EWL)
(4.6-5)

where:

T{ER) = Average time from completing the transaction's execution until its

update-request processing has been completed

120

Figure 4.6-9 plots the components of EWL response times. When M TM) is small,
T EWL) is dominated by T EWL). As M TM) (and hence ¢(EWL)) increases, then

TU EWL) increases due to the cost of locking (i.e., W(LQ,EWL) and T(GE,EWL)).

Next we consider the effect on response times of background load. The
utilization of site ¢ due to high priority background load is p{H' ;i) and is changed by
varying MH' ;i), the arrival rate of high priority background load at site 5. Similarly,
the utilization of site 7 due to low priority background load is p(L' ;i) and is changed
by varying ML’ ;¢), the arrival rate of low priority background load at site ¢. Figure
4.6-10 plots Tg for four combinations of p(H' ;1) and p(L' ;5). Tg PSL) increases with
background load due to increases in all three PSL response time components (i.e.,
N PL), MLQ,PSL), and T{GE,PSL}), but lock queue waits increase most dramatically.

Recall that a service time in the PSL lock queue, TYGR,PSL), is defined as

T GR,PSL) = Average time beginning with the lock-grant and ending with the
lock-release when PSL is used

This period includes waits for transaction executions and writing file updates. Such

waits increase with background load, thereby increasing T{GR,PSL). W{LQ,PSL)

increases with T{ GR,PSL) due to increases in:

1. lock queue utilizations (see figure 4.6-12)

2. average remaining service time for lock queue service, which depends on the

second moment of T{GR,PSL).

121

FIGURE 4.6-3: (COMPONENTS OF EWL T, FOR BASELINE

1000 :
]
)
i
S sod)
L]]
]]
[i
L] i
o 800 1'
E |
= |
]
200 |
I
I
I
|
ol !
!
i
]
500 !
!
)
!
400 !
i
I
!
00 7 L
T CEWL) / /
f ,/’/’
ith § 4//
/
%
100, 3 4(ENLW(LA, EWL)
GE‘ //
AQE\\\)-‘H -
............... T TR
Q C;-..OS 0.; 0.;.5 Q :0 O.;S

AT

122

(EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

" FIGURE 4,6-10;

T, FOR BACKGROUND LDAD

(AL 39 AH)

10.0

TE(TT?)

FOSETECELAL

YL L

0TS

-~ ~ —-psL
N

123

FIGURE 4.6-11:

nmﬁ_.ﬂ.:) NES._:

(0.0) (.4,.1)
1.0 - + - ,_
2 2 \.ul.\\\\n!
[" .

(.1, .4)

R

7

BOTTLENECK SITE UTILIZATIONS FOR BACKGROUND LOAD

b

124

FIGURE 4,6-12: LOCK QUEUE UTILIZATIONS FOR BACKGROUND LOAD

ﬁm.:.;:. m:f::

125

(o, 0) (.4, .1) (.1, .4)
T T 1 - * v J|o.l.w
: ;
L \\L L s L
s)
s : P]
1 L P s VA s
\\\ \\ . :
Pid 7 : \\
\\ .Y 3 \.\ ... - .s b o \\
ot Vs - . \ K
o WM s _

Probabllity of a Transactlon Resiart

FIGURE 4.6-13: PROBABILITY OF A TRANSACTION RESTART
FOR BACKGROUND LOAD (.6 , .1)

109

g0

S0

70

Rt N

-

0 0.05 0.10 0.15

NI

126

Q.

20

a.

23

0.

30

(EXTERNAL ARRIVAL RATE OF TRANSACTIONS)

As background load increases, T OTS) approaches T EWL). As shown in
figure 4.6-13, this is a consequence of ¢ OTS) being independent of background load,
but ¢{ EWL)} increasing with such load due to lock queue conflicts (i.e., the lock queue
was not empty when an update-request arrived). From section 4.5, the probability of a
lock queue conflict is p(LQ,EWL). Figure 4.6-12 demonstrates that p(L@Q,EWL)

increases with background load.

Figure 4.6-14 plots T, for the backgrourd load study. T, {OTS) increases with

background load due to:

1. distributed update validation, which requires site waits for update checking and

update acknowledgement processing

2. repeated transaction restarts, which increase the number of times site waits are
required to perform update confirmation.
For EWL and PSL, the figure shows a shift in their crossover point: as background

load increases, EWL is preferred to PSL for larger values of M TM). This is a

consequence of:

1. Lock queue waits grow rapidly with background load;
2. PSL always requires locking; and
3. EWL only uses locking when a conflict occurs.

However, (EWL) increases with background load, which in turn increases T (EWL).

So, in general to choose between EWL and PSL we must consider the net effect on

127

FIGURE 4,6-14: T FOR BACKGROUND LOAD

(AL 0 AH D)
(0,0)
10. A S \ ' :
Tu_. w.\.\\.
N.m > 2 " s Y S—
0 ATH) .15

0TS
- -~ —=~PsSL

....-..-mz—l

128

their response times when background load is changed.

Figure 4.8-15 shows that response times increase with transaction execution
times (X(TM)). For PSL, this is primarily due to W{LQ,PSL) (as evidenced by
p(LQ,PSL} in figure 4.6-16), since lock queue service times increase with X{TM). For
OTS, the cost and frequency of tramsaction restarts increases with X[TM), since: (1)
the period during which conflict causing transactions can arrive is lengthened; and (2)
re-executing the transaction takes longer. EWL response times increase with X{TM)

due to both the cost of locking and the cost/frequency of transaction restarts.

We study the effect of update processing times (i.e., X{UI}, X{UO)) in figure
4.8-17. Larger update processing times increase Tp and T, for all three protocols, since
these costs are required whenever transactions execute or updates are received.
However in the figure, OTS and EWL response times increase faster than those for
PSL. For OTS, this is due to increasing the probability of a transaction restart, since
this probability increases with X{UO). EWL is affected in two ways. First, restarts
increase with both X{UO) and X{(UJ), since: (1) utilizations and hence site waits
increase with update processing times, which in turn increases p(L@) and hence lock
queue conflicts; and (2) the period during which an update sequence number conflict
can occur is lengthened. Secondly, under EWL writing a transaction's update at its
execution site is deferred until the EW has validated the update (referred to as deferred
updated writing). So instead of transaction’s being able to modify during execution the
data they write, additional update input processing is required to write the update

once the EW has validated it.

129

[

FIGURE 4.6-15: RESPONSE TIMES FOR TRANSACTION EXECUTION
TIMES

VALUES FOR X(TM)

Q
[=]

T, (MSEC)

[=]

T (MSEQ)

0TS

————- PSL
<e---- EWL

130

FIGURE 4.6-16: LOCK QUEUE UTILIZATIONS FOR TRANSACTION
' EXECUTION TIMES

VALUES FOR X(TM)

1.0 MSEC 2.5 MSEC 5.0 MSEC
r Y ' v 4 T : ‘I
r 1 r Z ir p
! f i , 1
I SR Y
P i / v/
- -7 'l r r -
i - 0 s .
L RV i
®ATM 3
----- PSL
""""" EWL

131

FIGURE &,6-17:

RESPONSE TIMES FOR UPDATE PROCESSING TIMES

VALUES FOR X(UI> AND X<U0)

.06 MsEC

10

=

TU (MseC)

~r

.b MsEc

T
o!
)
-"
-
o

2.5

10

o

IS

MSEC) .
e S

g

il

""""

2.5

132

FIGURE 4,6-18: RESPONSE TIMES FOR CONTROL PROCESSING
TIMES

CONTROL PROCESSING TIMES

.05 MSEC .25 MSEC

10,0 / 1 i N
D . .
[;‘ :’ ! / .,' ;l
dyor)i
2 . 5 L . -

0 (MM 3

—
(e
(]

]
4

i
or
(8]
g /
_vuu. // ‘
._/
2.5 R |
QTS
—— =" Pl
""""""" EWL

133

Figure 4.6-18 plots the effect on response times of control processing times (i.e.,
X(LR'), X{LR), X(UA), X(UC), and X{UR)). OTS response times increase most
rapidly due to distributed update validation which requires /-1 instances of update-
acknowledgement processing and update checking for each transaction execution. (I'is
the number of sites.) PSL is affected more than EWL, since PSL has two instances of
control processing (i.e., X(LR') and X(LR)) while EWL has only one (i.e, X(UR)).
However for EWL, increasing X{UR) increases the probability of an update sequence
number conflict due to the first execution of a transaction distributing its update (i.e.,
A EW,1) and EW,1) in section 4.4). This increases the probability of a restart and

hence can increase response times.

Figure 4.6-19 plots the effect on response times of network communication
times for update (X{C}) and control {X{C')) messages. Response times increase with
communication times for all three protocols. TgOTS) increases since ¢ OTS) increases
with X{C), which causes repeated transaction restarts that can saturate the system at
lower values of MTM). T {OTS) is additionally affected by distributed update
validation which requires that (I-1)(N,(OTS)+1) update messages be sent and the
same number of update acknowledgements be received before the update is confirmed.
PSL response times increase due to PSL’s requiring two message transmissions (l.e.,
lock-request and lock-grant) before update confirmation is achieved. EWL only
requires one message transmission (i.e., update-request) if the transaction is mnot
restarted; if it is restarted, a lock-grant is also needed. However, for EWL both update

sequence pumber and lock queue conflicts increase with communication times.

134

—
[]

3

o

T, (WSEC)

FIGURE 4,6-19:

RESPONSE TIMES FOR NETWORK

COMMUNICATION TIMES

VALUES FOR X(C) AND X(C")

.01 MSEC

.1 MSEC

:3

1.0 MSEC

7

f
!
F

135

FIGURE 4,6-20: RESPONSE TIMES FOR LOCK-GRANT
AND LOCK-RELEASE TIMES

VALUES FOR X(LG) AND X(LE)

25 MSEC 1.5 msec

W TE {MsEC)

~

— Q0TS

------ PSL
e, ENL

136

Figure 4.6-20 shows the impact on response times of lock-grant {X{LG) iand
lock-release (X{LE) processing times. Since OTS does not use locking, its response
times are unaffected. Response times for both PSL and EWL increase with lock queue
processing times. In the figure, PSL response times increase more quickly than those
for EWL since all PSL transactions have lock queue costs, but only restarted EWL
transactions incur them. However, o EWL) increases with lock queue costs, since lock
queue conflicts (p{LQ,EWL)) increase with these costs. Thus, the choice between EWL

and PSL depends on the relative effect on their response times of increasing X(LG) and

X(LE).

Figure 4.6-21 indicates the impact of update log processing (i.e., X{UM) and
X(DR)) on response times. Omnly OTS is affected since EWL and PSL do not use
update logs or have database rollbacks. OTS is affected in two ways. First utilizations
increase due to update log processing, which in turn increases site waits and hence
response times. Second, ¢{OTS) increases with X{UM) by lengthening the period
during which a conflict causing transaction could execute. If X(UM)} and X{DR) are
very small (e.g., 0), then OTS compares favorably to EWL, when A(TM) is small.

However, if these costs are large, OTS response times are very large.

Figure 4.8-22 plots the effect on response times of the number of sites (/). For
PSL, increasing [can increase response times if the fraction of primary site transactions
decreases, since such transactions have smaller lock queue service times. However, PSL
response times decrease with / if delays at the primary site are reduced. T EWL) and

T OTS) decrease as [increases, since p decreases due to partitioning the transaction

137

FIGURE 4.6-21: RESPONSE TIMES FOR UPDATE LOG PROCESSING

VALUES FOR XCUM) AND X(DR)

.3 MSEC 1.5 MseC

T

o

10,

TU(MSEf)

2.5

10.0 N g i L N - i
! !
I’ J!
o L o
9 /
7] / !
‘5 L / /
w
—_
° e Lol
2 5 5 e ._ l

138

RESPONSE TIMES FOR NUMBER OF SITES

FIGURE 4.6-22:

VALUES FOR [

3

_ g -
= — .
== — .
- - -
. " -
. -
~ :
ﬂ ////.
— A LA
—wi T YT o ..'_.:l -
S -
ST .
4 ~ ~ .
~o N
- .
4
S R /l‘

0TS
——----psL

- EWL

139

load among more sites. However, T { OTS) increases with /due to

1. distributed update validation which increases control processing in proportion

with [, and

2. repeated transaction restarts which increase when it is less frequent that
transactions execute at the same site as the last transaction whose update was
accepted (see section 4.5).

Increasing { affects g(EWL) in two opposing ways:
1. Site waits decrease, which decreases p(LQ,EWL) and hence ¢ EWL).

2. The frequency of non-EW site transactions increases which increases update

sequence number conflicts and hence g EWL).

The issue of partitioning transaction load is complex. Here, we consider a
situation in which there is a "designated” site. We define the fraction of external

transaction arrivals processed by the designated site as A,

h = Probability of a transaction executing at the designated site
The remaining external transaction arrivals are equally split among the non-designated

sites. For EWL, the designated site is the EW site; for PSL, it is the primary site.

Figure 4.8-23 plots the effect on response times of varying . When A 5% —i—, response

times can increase due to the bottleneck site being more heavily utilized. However,
OTS response times decrease due to reducing the frequency of transaction restarts. By

having a small value for A, the number of sites is effectively reduced by one, and hence

140

FIGURE 4.6-23: RESPONSE TIMES FOR PARTITIONING OF
TRANSACTION LOAD

VALUES FOR w

141

it is more probable that transactions execute at the same site as the last transaction
whose update was accepted. By having a large value for Ak, the number of sites
eflectively becomes one; when k approaches 1, { OT'S) goes to 0. PSL response times
decrease as A grows, since primary site transactions become more frequent, thereby
decreasing all components of PSL response times. EWL is aflected in two opposing

ways. Increasing A can

1. increase EWL response times due to increasing lock queue conflicts due to

longer waits at the primary site {i.e., p(LQ,EWL) becomes larger as k increases).

2. decrease EWL response times since
a. locking costs due to inter-site communication are decreased; and
b. increasing A increases the frequency of EW site transactions, and update

sequence number conflicts do not occur for EW site transactions.

In this section, we provided iasight into how PSL, OTS, and EWL are affected
by the input parameters. Figure 4.6-24 summarizes the effect of input parameters on
protocol respopse times. Our studies indicate that the key key costs affecting the

response times of these protocols are:

OTS
1. Repeated transaction restarts

2. Update log maintenance and database rollbacks

142

3. Distributed update validation

PSL
1. Locking
EWL
1. Transaction restarts
2. Deferred update writing
3. Locking

4.7 DISCUSSION

We were motivated to develop EWP ard EWL because of performance
problems with existing consistency control protocols. Approaches to consistency
control protocols can be classified depending on whether checking for conflicting file
accesses is done before {early checking) or after (late checking) transactions reference
shared files. Early checking protocols have inter-computer synchronization delays for a
transaction’s execution response time (I'g). Existing late checking protocols repeatedly
restart a transaction until it executes without conflict. So when conflicts are frequent,
late checking protocols have: (I) long delays for update confirmation response time

(Ty) and saturate the computers and interconnection network.

143

FIGURE 4,6-24: EFFECT ON RESPONSE TIMES OF INCREASING INPUT
PARAMETER VALUES

PROTOCOL RESPONSE TIMES
INPUT PARAMETERS
0TS PSL EWL
ATM) + + +
AH D L N + + +
X(TM) + + +
X(UD . X(UO) + + *
XCUAY, XCUCY,XCLR),X(LR), XCUR)| | + . +
X , X(CH + + *
X(L6) , X(LE) 0 . + |
X(UM) , X(DR) + 0 0 |
I +, - +, - +, -
H P+, - + , - + , -

- = DECREASES RESPONSE TIME

0 = DOES NOT AFFECT RESPONSE TIME
+ = [NCREASES RESPONSE TIME

+ -

, SOME RESPONSE TIME COMPONENTS INCREASE
OTHERS DECREASE

H

144

PSL is an example of an early checking protocol. Transactions must acquire
permission from a primary site before accessing a shared file. Thus, T includes inter-
computer synchronization delays in the form of lock queue waits, which increase

rapidly with transaction arrival rate and background load.

For some real time applications, updates need not be finalized before they are
used by time critical functions. In such cases, late checking protocols have much
appeal. OTS is a late checking protocol, since no inter-computer message need be
exchanged before a transaction executes (hence there is no inter-computer
synchronization delay for Tz). However, to preserve consistency in case of conflicting
file updates, OTS requires that an update log be maintained. Additionally, when
conflicts do occur, database rollbacks are required. Thus, OTS response times increase
with these costs. Furthermore, OTS update confirmation response times increase with
the degree of file replication due to inter-computer synchronmization delays for
distributed update validation (i.e., all sites with a copy of F; must validate each update
to F.). Finally, OTS is very sensitive to the transaction arrival rate. When
transactions arrive too frequently, there is a higher probability of a conflict and hence a
restart. Since OTS repeatedly restarts transactions, each conflict creates one or more
new (restarted) transactions, which further increase the tramsaction arrival rate.
Repeated transaction restarts can saturate the computers and the interconnection

network.

145

EWL is a late checking protocol, so it has no inter-computer synchronization
delays for Tp;. EWL avoids the delays caused by distributed update validation by
designating a single exclusive-writer for each shared file. A file's EW controls update
validation and distribution for the file. Because updates are not written until they are
validated, EWL avoids the cost of update log maintenance and database rollbacks.
Additionally, EWL guarantees that a transaction is restarted at most once if the files it
reads and writes do not change. Thus, for a wide range of parameters, Tg EWL) is
lower than T OTS) or Tg{PSL). When the real time constraint depends on Ty, our
studies suggest that OTS is undesirable for the abovementioned reasons. We have

identified the following conditions under which EWL is superior to PSL for T

1. The size and update processing times for updates are smaller so as to reduce:
(a) the effect of not writing updates until the EW bhas validated them, and (b)
the communication cost of including the proposed update in the update-request

message.

2. The cost and/or frequency of transaction restarts is lower, since EWL has
restarts and PSL does not. The cost of transaction restarts increases with
input parameters such as background load, transaction execution time, and
update processing times. The frequency of restarts increases with these
parameters {because of update sequence number and lock queue conflicts) as
well as transaction arrival rate (which increases the probability of conflicting

transactions executing concurrently).

146

3. The cost of locking is higher, since PSL incurs these costs for all transactions
but EWL only incurs them for transactions that are restarted. Locking costs
increase with input parameters such as the time for processing lock-grants and
lock-releases as well as background load (which lengthens lock queue service
times and hence lock queue waits).

Otherwise, PSL is preferred.

As to EWP, its response times and utilizations are always lower than EWL’s.

However, like EWL, EWP costs increase with update size and update processing times.

We conclude by considering the impact on our studies if files reside on disk
rather than in RAM. Doing so has two implications. First, disk access takes
significantly longer than access to RAM. Since update log maintenance and database
rollbacks would require disk accesses, OTS response times would increase. Secondly, to
optimize disk utilization, existing disk based systems use multiprogramming in which
program executions are preempted by disk interrupts. Multiprogramming increases the
cost for scheduling transaction executions (since the scheduler becomes more
complicated}, thereby making restarts more costly. However once a transaction bas
been preempted, other high priority processing could be performed, such as conflict
detection. Thus, transactions that lose a cornflict could be aborted prior to finishing
their execution, thereby reducing the cost of conflicts. So, a disk based system affects

the cost of corflicts in two opposing ways:

1. Conflicts become more costly due to increased scheduling costs.

147

2. Conflicts become less costly since transactions that lose a conflict can be
aborted before completing their execution.

If the net effect of a disk based system is to reduce the cost of conflicts, EWL would be

more desirable; if a disk based system increases the cost of conflicts, PSL would be

more desirable.

148

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

The motivation for this research was to find approaches to consistency control
appropriate for real time distributed processing systems. We found existing
consistency control protocols unappealing since either: (1) they have inter-computer
synchronization delays for execution response times {Tg); or (2) when conflicts are
frequent, they have repeated transaction restarts which result in long delays for update
confirmation response times (Ty) and can saturate the computers and interconnection
network. Our contributions lie in two areas. First, we presented two new protocols
that have no inler-computer synchronization delays for Tp and aveid repeated
transaction restarts: the exclusive-writer protocol (EWP) and the exclusive-writer
protocol with a locking option (EWL). EWP is simple to implement, has no database
rollbacks, and no transaction restarts. Since it does not use locking, EWP avoids
deadlocks due to shared data access. EWP has no inter-computer synchronization
delays for Ty and its intercomputer synchronization delays for T}, are small, even when
conflicts are frequent. However, EWP ensures only a limited form of serializability,

since it discards update-requests that lose a conflict.

EWL is a fully serializable extension to EWP in which transactions that lose a

conflict are restated under primary site locking (PSL). EWL has no database rollbacks.

149

Also, EWL restarts a transaction at most once if the files the transaction reads and
writes do not change when it is restarted. Performance can be further improved by
dypamically switching to primary site locking (PSL) when conflicts are frequent, since
PSL has no transaction restarts due to conflicting file accesses. Doing so requires no
additional messages or inter-computer synchronization delays. EWL has no inter-
computer. synchronization delays for Tp. For Ty, these delays are similar to EWP’s

when there is no conflict, and like PSL’s if the transaction loses a conflict.

A second area of contribution is our response times studies of PSL, optimistic
timestamps (OTS), and EWL. While PSL and OTS response times have been studied
previously (e.g., [RIES78] and [LIN83]), only simulation techniques were used. In
chapter 4, we developed analytical models for PSL, OTS, and EWL. From the models,
we conclude that OTS is undesirable since: (1) it uses distributed update validation
which causes long inter-computer synchronization delays for Ty unless the degree of file
replication is low; (2) it requires maintaining an update log which creates additional
processing overhead; and (3) it has repeated transaction restarts which saturate the

sites and the interconnection network when conflicts are frequent.

Additionally, our models provide insight into the parameters to consider for
dynamically switching between EWL and PSL. EWL is preferred to PSL for T, since
PSL has inter-computer synchronization delays for Ty, but EWL does not. EWL's T,

is lower than PSL's when:

1. Updates and/or update processing times are smaller, since EWL

150

a. includes the proposed update in the update-request message

b. incurs additional update processing overhead due to sites not finalizing a

file’s updates until it has been validated by the file's EW;

2. The cost and/or frequency of transaction restarts is lower, since EWL has

restarts but PSL does not; and

3. The cost of locking is higher, since PSL always requires locking but EWL
requires it only if a transaction is restarted.

Otherwise, PSL is superior to EWL.

There are several research topics created by this dissertation: (1) selecting a
policy for dynamically switching between EWL and PSL; (2) making EWP and EWL
resilient to hardware failures; and (3) incorporating consistency control protocols into a
general model for task response tiﬁes. While we have indicated the key parameters to
consider for dynamically switching between EWL and PSL, we have not discussed an
actual policy for performing such switching. One approach is to have sites use
information on conflicts incurred by their transactions (indicated by the receipt of
lock-grant messages). Over a period of time ¢, sites could count the number of
conflicts that occur for each file. If this count at site ¢ for file F; is too large, then
transactions at this site could use PSL to access F for the next ¢, seconds, after which
EWL would again be used. Alternatively, PSL could be used untii F £
primary/exclusive-writer site broadcasts an update with an indicator that the lock

queue is empty.

151

B

In our presentation of EWP and EWL, we assumed that computers did not fail
and that the interconnection network was reliable. If these assumptions are not valid,
then EWP and EWL need to be made fault tolerant. One approach is to designate for
each EW site another site whick is its backup. The backup would be responsible for
detecting EW failures as well as recovering from them. To make EWL fault tolerant,
the fault tolerant EWP would be merged with an existing fault tolerant PSL protocol

(e.g., [WALKS3]).

In real time systems, time critical functions (or tasks) often consist of several
transactions which are executed according to a control flow graph. Such graphs can
include forks, joins, and branching. The response time models of chapter 4 only
considered transaction response times, not the response time of the entire task. Our
models could be used as part of a more elaborate algorithm for computing task

response times that include consistency control.

152

REFERENCES

BERN81 Bernstein, Philip A., James B. Rothnie, Nathan Goodman, and Christos A.
Papadimitriou. "The Concurrency Control Mechanism of SDD-1: A
System for Distributed Databases (The Fully Redundant Case),
IEEE Tranasctions on Computers, Vol. SE-4, NO. 3, May 1978, PP-
154-168,

BERN78 Berpstein, Philip A. and Nathan Goodman. "Concurrency Control in
Distributed Database Systems,” ACM Computing Surveys, Vol. 13,
No. 2, June 1981, pp. 185-222.

BERN82 Bernstein, Philip A, and Nathan Goodman. ”A sophisticate's introduction
to distributed database concurrency control,” Proceedings of the
Eighth International Conference on Very Large Data Bases,
September 8-10, 1982, pp. 62-76.

BERR82 Berry, Robert, K. Mani Chandy, Jay Misra, and Doug Neuse. PAWS 2.0
Performance Analyst’s Workbench System User Manual, Information
Research Associates, 1982.

CERI82 Ceri, Stefano and Susan Owicki. "On the Use of Optimistic Methods for
Concurrency Control in Distributed Databases,” Proceedings of the
Sizth Berkeley Workshop on Distributed Data Management and
Computer Networks, February 16-19, 1982, pp. 117-129.

CHU80 Chu, Wesley W., Leslie J. Holloway, Min-Tsung Lan, and Kemal Efe, " Task
allocation in distributed data processing,” I[EEE Computer,
November 1980, pp. 57-69.

DANTS80 Dantas, Joao. "Performance Analysis of Distributed Database Systems,”
Ph.D. Dissertation, UCLA Computer Science Dept., 1980.

ESWA76 Eswaran, K.P., J.N. Gray, R.A. Lorie, and I.L. Traiger, "The notions of
consistency and predicate locks in a database system,” Commun.
Ass. Comput. Mach., Vol. 19, November 1978.

153

GALL82 Galler, Bruce. "Concurrency control performance issues,” University of
Toronto Technical Report CSRG-147, September 1982.

GARC78 Garcia-Molina, Hector. "Performance comparison of two update
algorithms for distributed databases,” Third Berkeley Workshop on
Distributed Data Management and Computer Nelworks, August 29-
31, 1978, pp. 108-119.

GREE80 Green, Michael L. et al,, "A Distributed Real Time Operating System,”
Proceedings of the Symposium on Distributed Data Acqussition,
Computing, and Control, December 1980.

KLEI75 Kleinrock, Leonard. Queueing Systems Volume I: Theory, John Wiley &
Sons, 1975

KLEI76 Kleinrock, Leonard. Queueing Systemas Volume II: Computer Applications,
John Wiley & Somns, 1976

KOHL81 Kohler, Walter. "A survey of techniques for synchronization and recovery
in decentralized computer systems,” ACM Computing Surveys, Vol.
13, No. 2, June 1981, pp. 149-185.

LAMP78 Lamport, Leslie. "Time, clocks, and the ordering of events in a distributed
system,” Commun. Ass. Comput. Mach., Vol. 7, July 1978, pp. 558-
565.

LEES80 Lee, Chin-Hwa. ”Qﬁeueing analysis of global locking synchronization
schemes for multicopy databases,” IEEE Transactions on Computers,
Vol. ¢-29, No. 5, May 1980, pp. 371-384.

LIN81 Lin, Wen-Te. "Performance evaluation of two concurrency control
mechanisms in a distributed database system,” Proceedings of ACM
Internation Conference on Management of Data, April 29 - May 1,
1981, pp. 84-92.

LINg2 Lin, Wen-Te and Jerry Nolte. "Performance of concurrency control
algorithms using timestamps,” Eighth International Conference on
Very Large Database Systems, September 8-10 1982.

LIN83 Lin, Wen-Te, Jerry Nolte, Philip Bernstein, and Nathan Goodman.
"Distributed database system designer handbook,” Computer
Corporation of America, contract number F30602-81-C-0028.

MILE81 Milenkovie, Milan. Update Synchronization sn Multiaccess Systems,
University of Michigan Research Press, 1981.

154

RIES79 Ries, Daniel. "The effects of concurrency control on the performance of a
distributed management system,” Fourth Berkeley Conference on
Distributed Data Management and Computer Networks, August 28-
30, 1979, pp. 75-112.

ROSE78 Rosenkrantz, Daniel, Richard Stcarns, and Philip Lewis. "System level
concurrency control for distributed database systems,” ACM
Transactions on Database Systems, Vol. 3, No. 2, June 1978, pp.
178-198.

STON79 Stonebraker, Michael, "Concurrency Control and Consistency of Multiple
Copies of Data In Distributed INGRES,” IEEE Transactions on
Software Engineering, Vol. SE-5, No. 3, May 1979, pp. 188-194.

THOM78 Thomas, Robert. "A solution to the concurrent control problem for
multiple copy data bases,” COMPCON78, February 28 - March 3,
1978, pp. 56-62.

WALKS83 Walker, Bruce, Gerald Popek, Robert English, Charles Kline, and Greg
Thiel. "The LOCUS distributed operating system,” Proceedings of
the 9th Symposium in operating system principles, October 10-13,
1983, pp. 49-70.

1556

