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ABSTRACT OF THE THESIS

Paralle] Execution of Functional Programs
by
Jeffrey Nathan Kellman
Mastef of Science in Computer Science
University of California, Los Angeles, 1982
Professor Milos D. Ercegovac, Chair

This report proposes a multiprocessor system design t0 directly execute functional programs
in massively parallel fashion. A maximally parallel reduction step in this system takes only
Oflog® N) time on O(N) processors (where s < 4), Furthermore, this system easily implements
powerful operators as functional primitives, including such meta operators (functional forms) as

apply-to-all and associative insert, and regular operators like matrix transpose and parallel sort.



1. Introdiiction

To achieve a high computational throughput in a wide range of .computations. a computer'
system should execute with maximum parallelism wherevér possible. In Lh1s pursuit we also want
to -enlist the aid of modern VLSI technology and use large numbers of microprocessors to achieve
their maximum effect in any given computation. But how should we interconnect and organize
all these processing elements? And just as important, how could we instruct such an assemblage
to d6 our bidding in a reasonable and effective manner and still prevent the programming
language from hindering parailelism?

This report investigates one approach which attempts to accomplish both of these objectives
simultaneously. We shall see how functional programming 1anguages.1 fulfill important necessary
conditions for expressing maximum computational parailelism and how these languages specify
parallel computations in a natural and straightforward manner. We shall also examine how the
proper interconnection of many simple processing elements makes it possible to directly execute

functional programs in a manner which can take full advantage of their expressed paralielism.

1.1 Background and Motivations

As the speeds of computer devices reach a limit, current large computer systems fail 10 keep
up with the demands of many contemporary problems. Government, industry, and academic
applications all continue to demand ever more massive computations at ever higher speeds.
Computer designers, faced with this challenge, increasingly look to parallel processing as the
proper approach for significantly increasing computing capacity. To perform ever more
instructions in less time, a computer system simply must execute more than one instruction at a
time whenever it can.

And yet, computer systems achieve parallel computation only with great difficulty, since
computer parallelism can only happen if the program algorithms permit it, if the system hardware
supports it, and if either the programmer or the system can find it quickly and cheaply enough

for their efforts to pay off. Furthermore, to be useful in more than one application, any system



organization for parallei computation needs to have upward scalability so that increasing the
system size should also increase its capabilities. The degree to which a system accomplishes all
four of these important prerequisites detenmines the degree of general parallelism which that
system will achieve, To see where the difficulties lie, let us examine each of these prerequisites in

more detail,

LLI Computazz'om:.d Parallelism

Although parallel execution generally performs computations faster than sequential execution,
not every computation has a parallel execution. For example, calculating xzn requires at least n
steps (of repeated squaring) on any machine which supports muitiplication but does not otherwise
support exponentiation as a primitive operationz. Unless we use some parallel scheme to speed
up multipiication, we simply cannot hope to compute x2n any faster through parallel’sm.
Likewise, in any other such computation with very little inherent parallelism, parallel processing
can completely fail to help.
On the other hand, a number of important applications show a great deal of inherent
concurrency at various points of their computations. They include:
Image processing for:
Scene interpretation (e.g. robot vision)
Scene display (e.g., high quality graphics)
Control systems which must:
Evaluate ‘inputs from many Sénsors (e.g., industrial process monitoring)
Send commands to many actuators (e.g., in a guidance system)

Simulation to solve complex problems
{e.g., weather forecasting)

Synthesizing complex signals
(e.g., high quality speech and music)
Notice how any of these applications would greatly benefit from using their massive inherent
parallelism to achieve huge computational throughputs. For these cases and many others like
them, paralielism is not only possibie, it is desirable. ‘

Fig. 1-1 shows a value-oriented view of the execution of such massively parallel



computations.
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Fig. 1-1: Executing massively paralilel computations

Possibly large numbers of incoming values enter the computation simultaneously to interact with
each other and with values and representations (programs) already resident in some history-
sensitive system state. This interaction produces possibly large numbers of new values, some of
which might update the system state, and others which may leave the computation as outgoing
results. If we focus just on the agents of computation, as in Fig. 1-2, we see that as a gl;oup, they
could operate in a purely functional manner. Upon receiving their inputs in paralle] (these inputs
including the incoming values, the program representations, and the internal values), they might
produce all their outputs (including outgoing values and possibly the new system state) in paralel,
solely as a function of their inputs. Notice how this model factors out the history-sensitive system
state from the agents of computation themselves (although actual implementations need not

necessarily keep this system state physically separate).
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For the rest of this report, these agents of computation will comprise the "system” we want to

implement. Implementing the other parts of the system we leave to the application designer.

1.1.2 Programming Language Parallelism

Given a computation containing lots of parallelism, we still need to represent its program (o
the computer system in such a manner that the programmer or the system can easily find this
parallelism. Furthermore, the time and cost of finding paralielism should not outweigh the
advantages gained by using it. Failure to achieve this would restrict all future applications of
parallelism to a small number of very special-purpose systems, —a not very exciting prospect.

Nonetheless, the current widely-used programming languages make the job of finding
parallelism difficult, if not impossible. By hindering and confusing the detection of execution
concurrency, usable parallelism might go undetected while at the same time we might falsely
conclude parallelism for portions of computations where none actually exists. In this sense, the
problems of programming parallelism relate to the more general problem of producing and
maintaining correct and reliable software. Programming concurrent computations often leads to

notoriously difficult-to-understand software which nobody wants to trust or modify. More and



more investigators, however, suggest that functional or applicative programming languages can
overcome these and other problems of the "software crisis” > 4 3 These languages have .
mathématically tractable foundations! which make their programs easier o analyze. Furthermore,
they expréss all their computations in expressions, and as Hehner® points out, we can always
execute the subcomputations of pure expressions in concurrent fashion. In this report we discuss

in more detail how and why the functional programming approach is well-suited for expressing

paraltel computation.

1.1.3 System Hardware Parallelism

Directly supporting parallel computation in hardware implies the physical distribution of
subcomputations among many processing elements. This strategy gets considerable
‘eacouragement from modern LSI and VLSI technology w~hich caa procuce smal, cheap
microprocessors in large numbers. Intuition strongly supports the interconnection of many smail
{and perhaps even slow) microprocessors to obtain large fast systems for inherently parallel
computations. If all these processors were identical instances of some standard universal building
block (for example, a single chip microcomputer) then the diminished costs of mass production
would make feasible systems with thousands of processors. Some current proposals already
suggest 10° processors in a single system’, and by putting many processors into each chip we may
someday have far larger systems fitting into surprisingly reasonable amounts of space.

Naively, we might easily assume that interconnecting ever larger numbers of processing
elements would always give us systems which could perform more parallel computations in less
tme. Yet except for some extremely special-purpose applications (algorithms for mesh
computations, for example), this has not ofien happened in practice. In fact, the opposij;e
frequently happens as centralized shared busses and costly crossbars make the larger numbers of
processors'-hinder each other more than they help each other. Obviously, the interconnection and
organization of many processors impacts the overall system just as significantly as their actual

number.



1.1.4 Upward Scalable Parailelism

When we apply the soluton of one problem to solving an otherwise identical problem of
larger size, we also need to worTy about the solution’s upward scalability, ~that is, whether the
solution solves the larger problem with as much effective power as it solved the smaller one. The
upward scalability of a paralle] processing system tells us how much increasing the size of the
paralle} system increases its computation rate per unit time. (Of course, we also assume that the
amount of inherent computational parallelism increases to give the larger system more parallelism
to use!) If we consider a system which executes its computations with maximum parallelism, then
the maximum upward scalability one can conceivably have is proportional scalability, i.e.,
doubling the size of the system also doubles its throughput (assuming that the available
parallelism in the computation also doubles). As we shall see throughout this report, many
proposed systems for general-purpose parallel processing don’t even come close to proportional
scalability.

We concern ourselves with the upward scalability of parallel processing systems for several
reasons. The most straightforward reason is expansibility. If a given system scales upward in a
reasonable fashion, then we could feasibly expect 10 construct higher performing versions of this
system. Upward scalability is also important for system generality. A parailel processing system
which scales upward affordably would be, by implication, free of any organizational, technology-
dependent, or application-dependent bottlenecks or any other “creeping hindrances” to
paralielism which, although insignificant in small systems, might show up noticeably in large
systems. For example, consider an organization, such as a binary N-cube, where the number of
communication links per processor increase by one for every doubling of the number of
processors in the system. For such a systém the hardware costs would become quite
unmanageable as soon as the processors had more than ten links apiece. But if we instead had a
fixed number of links per processor, as in tree structure, then the number of links in the system
would remain proportional to the number of processors (although communication delays between

certain processors in the system might get worse).



We do not worry about downward scalability in this report because a special-purpose system
well-tailored to its task will always handle a small scale parallel task far better than any .
al:emétive, and would also cost less. Hence, we find it difficult to justify constructing any
general-pﬁrpose parailel system for only small scale uses. Large scale applications, on the other
hand, require large systems anyway, whether special-purpose or general-purpose. For these, we
certainly want to consider the asymptotic performances and hardware cost behaviors of

competitive general-purpose systems.

1.2 Goals

In this report we investigate the design of a general-purpose computer system to achieve
massively parallel execution in those computations which contain massive amounts of parailelism.
Based on the forgoing discussion, we now set down some goals to fulfill in accomplishing this

task.

1.2.1 Computation

The system should detect and take advantage of the maximum amount of program-expressed
parallelism in an on-the-fly manner without programmer intervention. Furthermore, since many
parallel computations also contain some non-parallel subcomputations, the system should also be

able to execute these successfully without any explicit preparaton or warning.

1.2.2 Programming Language

Because of its mathematical basis, and its clean and natural expression of parallelism, the

* system should execute programs written in a functional programming language.

1.2.3 System Hardware

To successfully execute as a large scale system with massive parallelism the system should

contain many processing elements. Because of their possibly large number, these processing



elements should be as simple and as identical as possible, but they shouid still support a general
purpose overall system capability. Moreover, to prevent communication bottlenecks, the
interconnections between processors should allow general patterns of fast parallel interprocessor

communication with fully distributed control and synchronization (mo global system clock).

1.2.4 Scalability

Because of our concern with system scalability, we shall evaluate a systen{’s performance
parameters and hardware costs asymptotically and in terms of the problem size, N, of any program
executing in that particular system. For this purpose, problem size shall refer to the total number
of primitive data values all the primitive operations use (where a primitive instruction is one that
executes within a single processor and a primitive datum is one that a processor can hold in a
single iocdl storage cell or regisier). Using these conventions, theu, we can say hat sequential
uniprocessors execute their programs in O(N) time, —meaning that as the problem size N becomes
large, a sequential uniprocessor’s execution time for that problem grows as fast as
aN+lower order terms, for some fixed constant a.

We shall call a system’s performance for a particular program power-log fast if that sysiem
can execute that program (with problem size N) in at most O((lg N} dme or less
(where Ig N = logy N, and s is some small fixed constant). Power-log fast performance implies
one major asymptotic consequence: as N grows large, a power-log system will eventually
outperform any other system with only polynomial-fast execution with respect t0 N. This holds
even if the polynomial in N involves fractional exponents. Of course, not ail computations permit
power-log fast executions, and sometimes we can find both power-log fast and non-power-log fast
executions for the same computaton. For example, if we consider a binary adder (in TTL
technology, say) as a network of simple combinational processors (gates) whose primitive data are
single bits, then carry-propagating adders tike that of Fig. 1-3 are not power-log fast because of
their Q(N) execution time, whereas carry-lookahead adders like the one in Fig. 1-4 are indeed

power-log fast because they only require O(lg N) execution time.
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We shall call a system a powerlog fast system only if that system has a power-log fast
performance for every algorithm which has any power-log fast execution scheme, While this.
deﬁmﬂon seems to belabor the obvious, we need it so that the existence of even a single slow
a]gorithm. for some- computation won't force us to ignore all other possible power-log fast
algorithms to obtain thé same result. For example, some inefficient programmer might
implement addition using repeated incrementation by 1 instead of using the fast adder built into
most computer sysiems. Even a power-log fast system would fail to execute this slower addition
with power-log speed. However, if any power-log fast system were programmed 1o add with the
carry-lookahead algorithm, it should aiways execute this addition power-log fast.

A desire for a power-log fast system at any cost raises the following possibility: We could
conceivably implement practicaily any computation by putting all its possible results into a large
table ahzad of time. “"Execuring” this computation would then merely involve performing a tahle
lookup, -a power-log fast computation! Since we do not want to implement all the possible
computations of a general-purpose computer in this manner, we need to impose some asymptotic
limit on hardware as well as execution time.

We now state our system's two scalability goals: The system should behave as a power-log
fast system for any computation which it can successfully execute to completion, and the system’s
hardware costs should scale no worse than O(N(lg N)®), for a system containing O(N) processors
and some small fixed constant s.

One last remark on our scalability goals: When we compare system performances in this
report, we shall insist on comparing their worst case speeds, rather than overall average speeds,
for massively parallel computations. We do this for three important reasons: First, for time-
critical system apphcanons always allowing for worst case execution time can prevent disasters
caused by unanticipated executional latencies. Second, for any single algorithm the worst case
execution time has less application-dependence than does the average execution time. And
finally, és we shall see in chapter 4, the distributed synchronization requirements of our proposed
design forces certain parameters (the length of a "reduction step”, for example) to always have

worst case values (albeit power-log fast ones).

11



1.3 Towards A Solution

The rest of this report develops and describes a multiprocessor design proposal attempting to
folfill all these goals. Chapter 2 describes the basic difficuldes of current widely-used
programming languages when they try to express parailel computation, and then establishes the
special suitability of functional reduction languages for this same purpose. Chapter 3 examines
the classical approaches to the direct comcurrent execution of general-purpose functional
programs, and also examines the tree machine proposed by Magd. Chapter 4 presents a new,
more parallel approach to executing functional reduction languages and a multprocessor design to
accomplish this approach. Chapter 5 evaluates this new design and compares it against Mag6’s
machine. And finally, chapter 6 draws some conclusions about our proposal and offers some

thoughts toward the future of implementing such massively parallel computers.
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2. Reduction Languages: Functional Programming with Parallelism

2.1 Conventional Limitations to Parallelism

Conventional computer systems impose two basic limitations which hinder parallelism in the
programs they execute. First and foremost, as Backus! points out, they possess a conceptual
communication bottleneck. The system CPU must communicate to & memory system through a
channel usually only one word wide. Thus, an executing program can change its program state
only a tiny step at a time. For programming languages like Fortran or Algol, these interactions
involve complex protocols with a complex state (for example, Johnston’s contour model for
Algol®). This step-at-a-time constraint severely limits system speed. Furthermore, planning and
managing data access overwhelms all algorithm construction and execution, since ail operands, all
‘results, their addresses, pointers, bounds, and so on must pass, one word per memory cycle,
through the same bottieneck.

The architectures of conventional computer systems originated the communication bottleneck.
'I‘hé persistence of the programming community in using conventional step-at-a-time
progljamming languages has perpetuated such architectures along with the botteneck.! For
exam‘ple, even though most of the high performance computers of the late 1970s boasted
simultaneous multiword fetches from multi-module memories, this only amounted to negligible
widening of the memory-processor bottleneck in such systems, which still remained a ﬁxed and
microscopic size compared to their muiti-megaword address spaces. Interference between accesses
to the same memory module often defeated parallelism.lo And besides, many of the users of
these computers still continue to program them in Fortran. The communication bottieneck
persists, therefore, iin botﬁ the hardware and the software of these machines.

Conventional systems also suffer from a second limitation: their dependency entanglements.
The data and control dependencies in conventional systems often get so complex, so obscure, and
so tangled, that they can only safely execute their programs sequentially. Subroutines with side
effects might unexpectedly alter the values of global program variables. Reusing memory locations

(an old technique to conserve memory space) usually creates data dependencies not inherent to

13



the logical operation of the program. Unstructured branching can compietely bury any
possibilities for program parailelism. A host of other common programming practices also
produce such entanglements. Most of the trouble comes from the compleie separation of a
conventional program from its all-important, yet invisible program state. In fact, in order to find
out what caused any certain program behavior the programmer must reconstruct the invisible
program state by hand simulation or by forcing the machine to regurgitate a core dump.
Programs usually fail to express all their usable parallelism because checking all their depéndency

entanglements requires too much expensive effort from both programmer and machine.

2.2 Overcoming these Limitations

To exploit maximum concurrency and parallelism at ail levels we must have the following

necessary conditionst:

NC1) All data dependencies should be completely deducible.

NC2) All sequencing constraints should be due only to data dependencies.
Ensuring all three of the following will fuifill these conditions':

ATR1)  Locality of effect: Keep the data dependencies of each instruction well-
defined and explicitly limited in scope, so that independent uses of
different data will not affect or interfere with each other.

ATR2) Freedom from side effects: All operations, functions, and subroutines
should have read-only access to their operands and not be able to modify
them (i.e., “call-by-value™).

ATR3) Data driven execution: Every operation can proceed as soon as it has
available all its operands. :

ATR] eliminates the unnecessary data dependencies which programmers might inadvertently
introduce. ATR2 reduces all data dependencies to either the availability or unavailability of
operands to an operator. ATR3 makes all sequencing constraints due only to these data

dependencies.

14



2.3 Programming Language Approaches to Overcoming these Limitations

A few existing programming systems possess one or more of the attributes ATR], ATR2, and '
ATR3 v)h@ch we want for parallelism. For example: LISP 1.5 12 has locality of effect (but not
the other two attributes). Lazy Pure Lisp!® and FGLY both have locality of effect and freedom
from side effects, but neither have data driven execution. (These both depend on demand-driven
evaluation, a strategy which conserves resources at the expense of speed and of parallelism.) And
finally, single-assignment languages like Lucid®, and data flow languages like VAL and IDV7
have ail three of these attributes. All of these examples have much in common with the
paradigm which we call functional pragrammingS. Functional programming Systems use
expression-oriented syntax [0 express computation via the application of functions to arguments,

In this report we investigate a purely functional programming approach to parallel execution.
As we see in this chapter, reduction languages possess all three of the attributes we want for
" parallelism: They have locality of effect, freedom from side effects, aﬁd can execute via data
driven execution. Furthermore, they have a simple execution semandcs and express their
parallelism in clear and natural fashion. Ler's define reduction languages formally and justify all

these claims.

2.4 Formal Reduction Languages

Reduction languages form a subclass of the class of closed applicative languages and closed
applicative languages, in turn, form a subclass of the class of complete languages having a
constructor syntax.3 We shall clarify the meanings of these classifications so that we can examine
more closel_y what properties of reduction languages make them suitable candidates for highly
parallel systems. |

In the following, we will use the conceptual notations and conventions of Backus® and of

Berkling* to formally describe reduction languages.
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2.4.1 Complete Languages

A complete language consists of a set E of expressions, a set C of constants, and a partial

function p from E omto C such that

CLl) CCE
CL2) pe = ¢, for all ¢ € C

We call p the semantic function of this complete language. For all e € E, if pe is defined, then
pe is the (unique) meaning of e. In this way, the definition of any complete language completely
specifies its inherent computational semantics. There is no separate or invisible state. All
computation consists of finding the meaning of an expression. Once we have this meaning or
value we have the result of the computation.

Actually, we should find such a value-oriented view of computation quite famliar. Consider,
for example, the simple complete language of arithmetic expressions without variables, where:

p@+2)*G+4y =12

The concept of "state” obviously has no meaning here. The value of an arithmetic expression is
simply its vaiue, nothing more. Of course, we haven't vet discussed how a value is found. The

semantic function p subsumes all the computation to find a value.

2.4.2 Constructor Syntax
A set E of expressions has what is called a constructor synlax iff:

CS1) It contains a subset, A & E, of elements called afoms.
CS2) It has a set K of partial functions called constructors which map E" into E
(n>0), so that for all e € E,
either e € A,
orelse e = Kk(e1,...eq), for some unique k € K and e,...ep € E.
Thus, a set of expressions has a constructor syntax if all its expressions are either atoms or formed

of constructed subexpressions. The familiar language of arithmetic expreséions tike

({(I*)+3)((4+5)+6)+T7)
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with all operator associations made explicit using parentheses, has a constructor syntax. Here:
each matched pair of parentheses denotes a single-subexpression constructor. 1f we add to this .
langua.ge a vector notaton to accommodate expressions like

' (0,1,(23),4,((5*6+T+8),9)

then we have a language with muiti-subexpression constructors.

2.4.3 Closed Applicative Languages and Strict Realizations
We call a complete language with a constructor syntax a closed applicative language iff:

CAL1) Al its atoms are constants, ie, A C C.

CAL2) It has a two-place constructor ap € K such that:
waple,) = pap(penl) , for all ef € E.

CAL3) For all its other constructors ky € K:
pwkgler,nen) = Kkp(pey..uen) , for all ej,..eq € E.

CAL4) We can find a total function p mapping C—(C—E) such that
pap(c,d) = p(pcd , and is defined for all cd € C

Expressions constructed by ap we call applications.  According to CALL above, in closed
applicative languages atoms are their own meanings. We find the meaning of any constructed
expression e by first replacing its components with their meanings. If e is not an application
CALS3 vields its meaning completely. If e is an application CAL2 simplifies it without changing
ir.§ meaning. The function p is the representation function associated with the language. Closed
applicative languages represent functions by constants (either primitive or composite) and then
use the ap constructor so that CAL4 will apply the represented function to its argument.

All closed applicative languages have two of the attributes we want for parallelism: locality
" of effect and freedom from side effects. CALA4 tells us that the result of an application depends
only on the represented function’s own argument. CAL2 and CAL3 together ensure that
replacing an expression’s components by their meanings cannot change the meaning of that
expression. The question now arises: Can we use data driven execution to evaluate closed

applicative expressions (the third attribute we wanted)? To answer this, let’s clarify what we
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mean by "executing an evaluation”.

We say a complete language has a strict realization iff:

SR1}) We can find a function r mapping E—~E where:

pe is defined for e € E iff
there exists an integer n such that 7% € C
in which case pe = te

We call r the transition function for p. We can always find pe, if it exists, by calt;ulating
), r(r(e)), r(z(r{e))), .. ; If this sequence converges within C, then that value is pe. In fact,
ue is undefined unless repeated T on e cOnverges. Such a r-repetition sequence defines an
execution sequence for a complete language.

Given any strict realization, we can immediately determine the complete language it realizes
since we can easily derive u from r. The ccnverse is not so easy, howaver. because given a
complete language, even a closed applicative language, we have no general way 10 find a strict
realization for it. At least one subclass of the closed applicative languages, the reduction

languages, does not have this problem.
2.4.4 Reduction Languages

A reduction language is any closed applicative language containing the constructors:

Application: ap , as defined above in CALl and Cal4
Sequence: o , where op{€1,...n) = (€L.tn)
Abstract Error: «{ ) , a nullary constructor

and where:

@, the empty sequence, is also an atom,

and where p, the representation function has the following definition:

RF1) p@ is the identity function, ie, (pB)e = e for all e € E.

RF2) For all other a € A, a particular reduction language must define pa as a
primitive function, or else the programmer must supply pa in a definition.
Otherwise pa = w( )
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RF3) For p(cy,..tn), if c; is regular, then
plClwntn) = (pep)p p(C2Cn)-

" RF4) For p(cp..tq), if €1 is meta, then
p(ELmtn) = (pe1)rm{CluCn)

(where wc is such that (wc)d = (cd) for all cd € Q.
We call an expression meta if it is atomic and defined as meta, or if it is a sequence whose first
(or only) element is &; otherwise we call the expression regular. As we see in Fig. 2-1, operators

involving meta expressions evaluate in a different manner than those containing only regular

expressions.
i m lon:
ap (REVERSE,(A,B,C)) = reverse ((A,B,Q))
= (C,B,A)
Meta ggmgg. sition:

ap ((META-REVERSE},(A,B,C)) = ap (META-REVERSE,((META-REVERSE),(A,B,C)))
meta-reverse {(((META-REVERSE),(A,B,C}))) -

((A,B,C),(META-REVERSE))

']

{whers reverse and meta-reversa have identical meanings,
except that REVERSE is reguiar and META-REVERSE is meta)

Fig. 2-1: Evaluation of expressions invoiving regular and meta composition

With. meta composition, ﬁJﬁcrions can operate on representations as well as values. As a result,
meta eﬁpressions can specify higher-order functionais (functions which operate on functions). In
fact, by' manipulating a representation of its own self a meta operator can specify functional
recursion. Regular composition, on the other hand, corresponds to the familiar notion of function

composition in which functions only operate on values.
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Now let's see how to obtain a strict realization for any given reduction language:
Theorem A: Every reduction language has a strict realization.
Proof: We give 7.

s+ Find an innermost application, ap(c,d) and do ome of:

TR1} If ¢ € A, then
ap(c,d) — (pcid.

TR2) If ¢ = (c1,...cn) and cj is meta, then
ap(cd) — ap(c1, (cd) )

TR3) If ¢ = (¢1,...¢n) and c1 is not{ meta, then
ap(c,d) — ap(cy, ap((c3...ca) d)) if 021, or
ap{c,d) — ap{cpd) if n=1
TR4) If ¢ = w( ), then
aple.d) — w( )
The above proof gives us reduction rules. We call the application of 7 t0 a reduction language
expression a reduction transition. Note how every reduction transition operates only on explicity
present information in the expression. We never refer to an invisible state when finding the
meaning of an expression.

The following remarkable theorem holds for all reduction languages:

Theorem B (The Extended Church-Rosser Property)’ %:

ECR1)  Every terminating sequence of reductions on an expression vields the same
meaning for it, and

ECR2) If an expression has a meaning, then every sequence of reductions on it
terminates.

This theorem finally gives us the third attribute we want for parallelism: data driven execution
(ATR3). Reduction transitions can proceed in a concurrent data driven fashion because ATR1
and ATR2 guarantee the mutual data-independence of separate innermost applications, while the
Extended Church-Rosser Property guarantees their order-independence. Thus, any sequence of
executable reductions on an expression will always give us the same result, even if we reduce

more than one innermost application at the same time (ie., in parallel).
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2.5 Necessary vs. Sufficient Conditions for Parallelism

We have just seen how the execution of reduction languages can possess all three of the
attributes we want for parallelism: locality of effect, freedom from side effects, and data driven
execution. These attributes fulfill two necessary conditions (NC1 and NC2 we saw in 2.2) 10
suggest that, given enough hardware, we can aiways execute all the expressible parallelism of any
reduction language' program. Any particular reduction language or program, however, might stifl
lack §ufﬁcient conditions for expressing parallelism, and thus fail to achieve any parallel execution
at all!

To solve this sufficiency problem we depend on both the language designers and the user
programmers. The designers of any particular reduction language must provide easy ways of
specifying concurrency in functional applications. For example: Fig. 2-2 shows how a single

function might simultaneously act on a large number of arguments,

SRR

t (aq,23,83,..-,24)

Fig. 2-2: A single function acting on many arguments

Fig. 2-3 shows how a large number of functions might act on a single argument,

FAL 4

{f1512|t3 ,...,f,] (a)

Fig. 2-3; Many functions acting on a singie argument

and Fig. 2-4 suggests that many functions might act on many arguments,
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ISR

[f1sf29f3:-~-sfr] (31332!33:---133)

Fig. 2-4: Many functions acting on many arguments

In section 2.6 we define an example reduction language which neatly expresses all of these
situations. |

A | parallel reduction language system should encourage programmers to write parailel
programs. But no system can always enforce this. An inept of unsympathetic programmer might
completely defeat the intent of the system, say, by using a sequential algorithm instead of an
equivalent paralle]l one, for example. To discourage this, might require re-educating the entire
pregrammer commurity which sdll thinks conly in terms of sequential execution and the
communication bottleneck. Backus provides some hope in this endeavor with his very attractive

functional reduction language called FFP.!

2.6 An Example Reduction Language

We now define a small example reduction language which closely resemnbles one the
languages described by Backus®. To do this, we specify its concrete syntax and its concrete
execution semantics. This language serves only as an example for this report, and lacks many of
the useful features we would want in a real programming language. We shall nevertheless find it

powerful enough to demonstrate highly parallel execution.

2.6.1 Concrete Syntax

Our example reduction language uses strings of symbols 10 represent expressions. Each of
our symbols is either a bracket, an entire atomic name, Or an entire atomic value. We use two

xinds of brackets to represent two of our constructors as follows:

Application:  ap(e.f) is represented by <e,D>
Sequence: ao(ey...eq) is represented by {e1...en)
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We use "bottom" to represent our third comstructor:

_-Abstract Error:  w( ) is represented by L

In this reﬁort we show atomic names as strings of characters, although a reduction machine might
internally represent them in some other fashion (bit patterns, perhaps). Our atomic values
inciude a set of integers (written as numerals) and the boolean values true (T) and false (F).
These conventions, together with the definition we saw in 2.4.2 of a constructor syntax completely
specify the syntax of ‘our reduction language. Fig. 2-5 shows some sample expressions in our

reduction language.

<+ ,(23)2 -adds the numbers 2 and 3

T[40/, (2,3)> -simuitanecusiy finds the sum, difference,
[+.-*/1.(23) product, and quotient of 2and 3

CAAAAY), (1D, BANSETEN>  Tultalies e oo v

to "get inslda™ two leveis of parentheses

Fig. 2-5: Some expressions in our reduction language

Our bracket notation for constructors provides another useful way of viewing reduction language
expressions. Fig. 2-6 shows a reduction language expression and its equivalent representation as a
tree structure.Notice how all the constructors constitute the connecting nodes of this tree, while all
the atoms sit as its leaves. This tree structure represents each inner level of bracket nesting as a
lower tree level. In fact, if we isolate each symbol, associate each with its level number, record
them all in preorder fashion, and delete the now-redundant right brackets and commas, we obtain
the equiva_lent (but more compact) cellular representation shown at the bottom of Fig. 2-6. Like
Magblg, we will find this preofder-with-level—number format very convenient for internal machine

representations of expressions.
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Reduction language
expresslon in our

original string syntax: < (AA,AA,*), (((1,2),(3,4)).((5,6).(7.8))) >

Equivalent tree
representataion

(//{ )(/r\hn

Compact celiular representation
of the same sxpression
{preorder-with-level-number) :

pinriminninnnAaanannnnnan
STz 2 2] o (2 e el (=] B G T I 1 ] L] [ ] Tad e

Fig. 2-6: Equivalent representations of an expression

2.6.2 Execution Semantics

To completely reduce an expression in our reduction language we must perform reduction
transitions on innermost applications until we have no more applications left in the expression.
Each reduction transition overwrites applications with their results. We call this style of execution
string rewriting semantics. At the end of reducing an expression (assuming we reach an endpoint)
we either have an expression containing no applications (i.e., a constant consisting of either an
atom or a sequence) or else am error (L)

To completely describe the actions of any reduction transition, we must first fully specify ail
the primitive functions of our example reduction language. The following list of names and their
corresponding meanings supply all the information we need to invoke reduction rule TR1 of

Theorem A for any of our primitive functions:
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Meta Operatoss

NF (N Functions)

{(NF.,f,f5, .. fm)x> reduces to KALOLHX, w Lmx®)

Comment; NF (also called “"construction” in many functional programming sys_tems) enables
many funictions to simultaneocusly operate on the same argument(s), as shown in
Fig.2-3 and Fig.2-4. Because of this usefulness we also use the square brackets, [ .. ],
to abbreviate (NF .. ) in our examples. Thus we equivalendy say that:

{f,f2, .. fmlx> reduces to (KO LHX0, w Lfnx>)

CN_(ConditioN)

<(CN,f1.f2,f3),x> reduces w0
(CNLALOfafy)x>  if fi is not a constant function,
Fx>  if f1=T,
KB if fi=F,

otherwise it reduces to L.
C (Constant

{Cyv),x> reduces to Vv

Comment: We also use C(v) to represent (C,v). Thus we equivalently say that:

{C(v),x> reduces to- Vv

AA (Apply to Al
(AAD(aLas - am)> reduces to  (Kfap<fad, .. <Famd)

Comment: AA enables the same function(s) to operate on many arguments as shown in Fig.2-2

and Fig.2-4.
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INS (INSert)

(INS, B> reduces to
CF(al <(INS,D,(az, .. amPP if x=(ap,2 . ,3m) and m>l,
a3 if x=(ap),

() if x=()

Comment: Notice how INS produces recursion via meta composition.

Al (Associative Insert)

{(ALD,x> reduces to
SRALD@EYL, - AP ALD@rna L - AP
if x=(a1,83, ... -am) and MmOl
ap if x=(ap),
() if x=()
Comment: Al directly produces tree reduction involving a single implicitly repeated operator

part ("f" above).
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Regular Operators

1D (IDenti
{ID,x> reduces to X

Comment: When the empty sequence, ( ), occurs in the operator part of an application, we can
say: ()Y = ID and ID = ( ), and thus, either one can serve as the concrete

representation of & (recail 2.4.4).

HD (HeaD

<HD,x> reduces to
a, if x=(apay, .. ,am) and m21

otherwise it reduces to L.

TL (Tail

{TLx> reduces to
(a3 .. ,am) if x=(apaz .. .am) and m>2,
() if x=(a,

otherwise it reduces to L.

AP (APpiy}

{APx> reduces to -
x> if x=(x1.x2),

otherwise it reduces to L.
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EQ (generalized EQuals predicate)

<EQx>  reduces to
T if x=(xyx).
F if x=(xpyp) and x1#y),

otherwise it reduces to L.

ATOM (ATOMic predicate)

<{ATOM,x> reduces to

T if x=( ), or x#1L and x is atomic,
F if x#1 and x is not atomic,

otherwise it reduces to L.

NULL (NULL sequence predicate)

{NULL,x> reduces to
T if x=(), or x=ID,
F if x#L and x#( ) and x*ID,

otherwise it reduces to L.

UN (UNion

<{UN,x> reduces to
(ap32, .. ,ap if x={(an(a, - Ag)) and m>l,
(ap if x=(@@( M

otherwise it reduces to L.

28



+ -.* / (arithmetic operations)

<{+x> reduces to the value aj+a; if x=(ajay) and al,ag‘ are numerical values
¢-x> reduces to the value aj - 2 if x=(apay) and 2)3; are numerical values
¢*x> reduces to the value ay*a; if x=(aj.ap) and aja; are numerical values

¢x> reduces to the value ay/a; if x=(apap) and apa; are numerical values

INX (INdeX)

<INX,x>  reduces to
(1,2, .. .m) if x has the numerical value m,

otherwise it reduces to L.

REVERSE (REVERSE a sequence)

<REVERSE x> reduces to
(Amoame, - 32,31 if x=(ajay .. .ap) and m>l
ay if x=(ap, '
() if x=(),

otherwise it reduces tw L.

TRANS (TRANSpose 2-dimensional array)

{TRANS,x> reduces to

((alliazl’ e ,851),(312,322, . ,332), s ,(alk,azk, s ,a]k))
if x=((a1,212 - AWH(@21.222, « 2%, - {BLa2 - 30) and KL
(@) if x=( (@)

otherwise it reduces to .L.
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In our example language, meta composition looks like:

Cde) ) © = <& (€)mnd)> , when ¢ is meta

and regular composition looks like:

Lepntn) & — <01 K(c2tn) © >, when © is regular

while errors still ﬁropagate:

<L & — L , for any d

In fact, any atomic name which does not represent a primitive function must represent L uniess

the programmer supplies a definition for it. Let’s look at how the programmer might do this.

2.6.3 Function Definitions

In our language we include one more primitive operaor, the definition facility. 1t has a

syntax which looks like:

<DEF (atomic_name, expression)>

Despite its functional appearance, it cannot appear in any expression. All definitions must appear
outside of any expression and outside all other definitions. Reductions have no effect on the
definitions themselves, but definitions can affect the reduction of program expressions. Whenever
the reduction of an expression uncovers an atomic name which doesn't represent a primitive
function, we must check if the programmer defined it in a definition. If so, we rewrite the atomic
name with its corresponding expression. This definition expansion takes up one entire reduction
transition,

Definitions allow programmers to represent chosen subexpressions with convenient atomic
names. In this way, programmers can avoid tedious repetitions of long subexpressious. that an
expression may happen to use many times. This "hiding of information” encoﬁrages a modular

programming style which usually improves the understandability of programs. Moreover, if a
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definition’s own atomic name appears in its expression part, functional recursion results. Thus,
the programmer can specify functional recursion without resorting {0 meta operators. Including a.
deﬁniﬁon facility in our reduction language has no formal impact on its expressive POWer,
however;' because given any expression which contains definitions, we can always find an

equivalent (but more cumbersome) expression which uses meta compaosition instead.3
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3. Computer Execution of Reduction Language Programs

3.1 Requirements

No matter what kind of system does it, the execution of reduction language programs via
reduction transitions always involves four basic activities: storing expressions, locating reducible
applications, execﬁting reducible applications, and overwriting reducible applications with their
results. A conventional uniprocessor can only accomplish these activities one way: sequendally.
The ideal multiprocessor system, on the other hand, would accomplish these activities with full

paralielism. Let's look at these four activiies and see what they entail.

3.1.1 Storage of Expressions

The reduction language program and the data it acts on together constitute an expression.
The computer system must somehow store this expression’s symbols and values in a readily
accessible fashion. As we noted in section 2.1, conventional storage in a separate memory, or
even a small group of memories would give us the familiar processor-memory bottleneck to
hinder parallelism. A large group of (necessarily small) memories might widen this bottleneck,
but unless these memories were "close" to the processing hardware, using them might dominate
the cost of using the computer system. Having memories extremely close to the processing
hardware means co-location of the storage space and the processing space ("processing in
memory”). Such a system would distribute its entire working storage space among a large
number of processors. Each processor in this system would contain its own few registers of
working storage. Accessing any piece of storage from elsewhere in the system would require
communication with the processor containing it. The rest of this report describes the enormous

power of this system approach when we use it in multiprocessor reduction machines.

3.1.2 Location of Reducible Applications

In reduction language programs, the applications (i.e., all subexpressions immediately within
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a matched pair of brackets "<" and ">") denote all executable computation. Furthermore, data
driven reduction, by definition (see sections 2.2 and 2.4), reduces the innermost applications first. .
Thus,' for any reduction transition, the computer sysiem must find these innermost applications.
We call these innermost applications the reducible applications (RAs) of the expression. The
syntax of a reduction language expression uniquely determines where all of its RAs reside: If we
can find any subexpression bracketed with "¢..>", and with neither "<" nor ">" within it, then we
have found an RA. We call such a syntax-directed search for RAs scanning.

A conventional uniprocessor scans for RAs sequentially. [t serially progresses along an

expression and examines symbols one at a time, as in Fig. 3-1.

(<(f1,fz),(31)),<f3,(a2,as)>,<f4,a4>,<{f5,fe),(&s,ﬁs)))

Fig. 3-1: Uniprocessor serially scanning an expression

A parallel multiprocessor might also scan an expression serially, but all of its processors would not
need to scan the same place at the same time. Each processor element might simuitaneously and
independently scan at a different place along the expression, as in Fig. 3-2. In this fashion, we

would hope to find many RAs at once.

(<(f1le)I(a‘l))!(fSl(a2!a3)>|<f4|a4>|<(f5|f6)l(aﬁ'a6)>)

i d od

Fig. 3-2: Many processors simultanecusly scanning an expression serially

For important cases, however, this particular multiprocessor approach would fail to locate all
the RAs of an expression any faster than a single processor could. For example, Fig. 3-3 shows
how the initial application of a composite function to a composite operand might give us an

expression with only one RA: the entire expression itself!
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<. fatalf wfsl fafrfafo fio), (@ ,82.2384),(85.(2)))>

Fig. 3-3: A large composite exp ression containing only.
one all-inclusive reducible application

No matter how many processors the system devoted to this task, at least one serially scanning
processor element-wouid need to traverse the entire expression in order to find an RA. Fig. 3-4
shows how even later reduction transitions on this same expression still produce RAs of long

length as we dissect the composite function into its regular and meta compositions.

<(f1:f2!f3s[f4|f5]1f61f71f8!f9-f10)v((a1 -32-33'34).(35,(56 )))>

}

(f.',((fz,f3,[f4,f5],fs,f-hfa,fg,f“d,((31 -32.33:34),(65a(as)))>)

|

<f1,<fz,<(f3,[f4,f5]-fe.fr.fa.fe,ﬂd.((31,32.aa|a4),(as,(as))))>>

}

Fig. 3-4: Later reductions on this same expression still yielding
single long reducible applications

At least one of the serially scanning processors would still need to traverse a majority of the
entire expression during each of these transitions. In general, since a serially scanning processor
must always traverse the entire length of an RA to locate it, the presence of long length RAs in
any expression will significantly slow the serial scanning process, even for multiprocessors. Thus,
we must take care when designing the RA scanning process, or else it alone can severely constrain

parallelism.



3.1.3 Execution of Reducible Applications

Once it has found the RAs of an expression (or at least one RA, if operating sequentially), '
the computer system must apply the operators to their operands and compute their results, We
call the computation required to reduce RAs execution. If an RA contains a composite function
as an operator, several reduction transitions must first reduce the composite function via regular
or meta compositions, as appropriate, until we eventual_ly obtain our desired RAs, which only
apply' primitive functions to their data objects. |

A conventional uniprocessor executes RAs sequentially, progressing serially along one RA at
a time while it examines one symbol at a time. Likewise, a parallel multiprocessor might aiso
execute each RA seriaily, but with many processors working on separate RAs, this multiprocessor
could execute many RAs simultaneously. A functional program with many RAs could then take
advantage of tree reduction to achieve high performance. Fig. 3-5 shows an example of tree
reduction, whereby a parailel system evaluates a suitable expression of M innermost

subexpressions in only Flg M7 reducton transitions. -

C (< <H,(1.20 , <+,(B4PY , <K+ (560, <+ (T 8)) Y>>

UVl

<+ (K" ) 7))y, <Y (N , 15))))

/u\/

Fig. 3-5: An expression reduction taking advantage of tree reduction
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A serially scanning multiprocessor approach, however, fails to execute a single RA any faster than
a single serial processor could, because with certain important operators, we could get very long
execution times for large data objects. For example, each of the primitive operators NF, AA,
TRANS, and REVERSE rewrites its input data object with many changes distributed throughout
it (see Appendix A). Even with many serially-executing processors working on such an RA at the
same time, all of them would have to traverse the entire RA to first read the operator name and
then find the corr;ct spots for all these changes, all without mutual conflicts. Thus, we mﬁst take

care when designing the RA execution scheme, or else it alone can severely constrain parallelism.

3.1.4 Overwriting Reducible Applications with their Results

After executing an RA the computer system must symbolically replace the RA with its result.
(Recall the string-rewriting semantics Jescribed in 2.6.2) During the rewrite of an PA, cne cf

the following three things might occur:

RW1)  the result might require the same amount of storage that the RA did,
RW2) the result might require more storage than the RA did, or
RW3) the result might require less storage than the RA did.

The first case causes no necessary storage management. The second case demands that the system
find some idle storage space and make it available where we need it. The third case gives us
some new idle storage space to possibly reclaim and use elsewhere in the system. If we assume
that the system stores expressions in the processor-distributed memory space we described in
3.1.1, then many processors must co-operate in this storage management, —possibly all the
processors in the system. The system should recognize ail idle storage regions and move them to
any RAs that need them. If this storage management happens only through nearest-neighbor
communication, however, we find ourselves with a storage management bottleneck! Thus, we
must take care when designing the system resource management scheme, or else it alone can

severely constrain parallelism.
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3.2 Previous Approaches

Let us now examine some previous work in the multiprocessdr execution of reduction
languagé programs. To date, the most execution-concurrent of these proposals fall into two
éategories: serial scanning and parallel scanning. All of these prior proposals use serial resource

management techniques or have a major serializing botteneck in their resource management.

3.2.1 Serial Scan / Serial Resource Management

Patel?®, and Treleaven and Mole?! propose two similar multiprocessor reduction machines to

execute functional programs. Fig. 3-6 diagrams Patel's machine,

direction
of program
symbol flow

Fig. 3-6: Patel’s machine
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and Fig. 3-7 diagrams the machine of Treleaven and Mole.

backing store J@

definition mamory

Fig. 3-7: The machine of Treleaven and Mole

Patel's machine consists of a number of identical processing elements arranged in a ring
structure interconnected by queues (FIFOs). Each processing element has its own local memory
and also connects to the common system-wide bus of a supervisory host. The functional program
expression travels around the ring symbol-serially and each idle processor bf the ring scans the
symbol stream coming into it When a processor finds it has scanned an RA it wants 10 execute
it removes the RA from the ring and leaves a tagged placeholder to continue around the ring.
This processor, after completing the execution of the RA, waits for the proper placeholder to
come around again and replaces this placeholder with the RA’s result. When any processor
requires the definition of a defined function it puts the name of the function on the system bus
ind the host broadcasts the corresponding definition © all the processors that need it

Similarly, the machine of Treleaven and Mole consists of a number of identical processing
units arranged in a ring structﬁre, but interconnected by double-ended queues (DEQs). Each
processing unit contains some register memory and also connects t0 a system-wide definition
memory. A backing store also resides on the ring between two DEQs to hold surplus parts of the
expression. After an inidal distribution of the functional program expression among the DEQs,
each processor reads symbois from either its left or right DEQ and starts its serial scan for an RA.

According to a prearranged distributed protocol, each processor might transfer symbols to its
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other DEQ, retain the symbols internally, or return them to its first DEQ and change its scanning
directio_n. The distributed protocol has to prevent deadlocks and starvation while ensuring that .
proces.sors will eventuaily locate RAs. Once a processor contains an RA, it executes it, outputs
the result to one of its DEQs, and then contnues scanning. Any processor needing the definition
of a defined function gets it from the system-wide definition memory.

Since both of these reduction machines scan serially to find RAs, they both share the
disadvantages we discussed in 3.1.2, because at least one processing element might have to scan
the entire expression.' Furthermore, since both machines require any of their processing units to
hold an entire RA in its local memory before executing it, every processing unit must have
enough memory to hold the largest possible RA (ie., the entire initial expression if using our
reduction language!). Because of this, Treleaven and Mole simplify the language of their machine
to limit the maximum size of possible RAs. This destroys much of the expressive power of their
reduction language by making impossible such useful primitive operators as NF, AA, TRANS,
and REVERSE (as we defined in chapter 2).

Serial communication also takes its toll on the performance of these machines, In either of
these two systems a processor always takes twice as long to output a result containing 2m symbols
than to output an m-symbol result And -even then, this output goes first only to immediate
neighbors. Furthermore, neither of the two designs mentions an efficient way for its system-wide
central source to look up function definitions and still satisfy many simultaneous, yet different
requests. To get rid of such system bottlenecks we need good parallel ways to communicate
results and look up definitions.

Both of these serially scanning reduction machines also manage their resources in serial
fashion. In Patel’s machine, an RA travelling toward an idle processor for execution must pass
~ though all the intervening busy processors on its way.' Moreover, when an idle processor finally
removes the RA from the symbol stream it must always wait through at least one complete
revolutidn of the expression through the system so it can put the result back in the proper spot.
The machine of Treleaven and Mole, on the other hand, forces any RAs within a DEQ to wait
idly when the processors on both sides of that DEQ are busy. These idle RAs remain trapped

inside the DEQ even if processors elsewhere in r.he'systern have nothing to do. When one of the
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pusy processors finally finishes, only one of the trapped RAs: leaves the DEQ to make that
processor busy again, leaving the other RAs still trapped. Hence, both machines demonstrate

how serial resource management serializes RA execuiion.

3.2.2 Parallel Scan / Serial Resource Management

Magélg- 2 proposes a network of microprocessors to directly execute reduction languages.
Mago's machine consists of a linearly-connected row of processors ("L-cells™) which also sit as the
leaves of a tree of processors ("T-cells”). Fig. 3-8 shows an instance of this machine with 8

L-cells.

"T" slements

\F "L" alamants

Fig. 3-8: Mago’s machine

The functional program expression resides, one symbol per cell, in the L-cells (where a "symbol”
is a name, a primitive value, or a bracker). Fig. 3-8 also shows how this machine efficiently
represents the reduction language expressions using only the left brackets of the "< .. . >" and
"(...)" constructors. (This suffices because each L-cell with a symbol also contains a level
number.) In this reduction méchine the T-cells locate and execute the RAs, while the L-cells
perform the necessary storage management for the results. Notice how two links run between
each connected pair of T-cells. Fig. 3-9 indicates how each T-cell actually contains four

interconnected processors within it



Fig. 3-0: Actual internais of a T-element in Mago’s machine

Unlike the reduction machines we discussed in 3.2.1, Magd’s machine scans for RAs in
parallel. It accomplishes this feat by a process called partitioning: the processors within the
T-cells connect their links in such a fashion that each RA in the L-cells sees its own private
binary tree of T-cell processors above it. Fig. 3-10 shows an example of such a partitioned

system.

Fig. 3-10: Fragmentof a partitioned Mago machine

Mag!® gives a fast algorithm which completely partitions a system of N L-cells in only g N1
link times for any expression. At the end of its partitioning, Magd’s machine has identified ail
RAs, and every L-cell in an RA knows the operator type of its RA. For long expressions this

parallel scan easily outperforrhs serial scanning techniques.
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Magé's machine also differs from our two previously discussed systems by always using many
processors to store.any RA, and many processors to execute any RA. No single processor ever
needs to contain an entire RA. In fact, this machine’s one-symbol-per-cell storage philosophy
means that each L or T processor only needs a small number of registers for its internal memory.
Communication between processors brings the necessary data together for computations. This
. communication and computation takes place among the T-cells, with results travelling back the
L-cells. At any moment an active processor element holds only a small piece of an RA’s déta and
performs only a small piece of that RA’s computation. Collectively, however, the entire system
executes all its RAs simultaneously, and each RA simultaneously invoives many processor
elements in its execution.

Executing even a single RA in Magd’s machine can conceivably invoke many paraliel
activities. Some or all of this parallelism can go to waste, however, due to an inherent
communications bottleneck in Magd's system. This bottleneck comes from the treelike
connections of the T-cells. Many functions simply fail to map well to a tree-structured parallel
communication scheme, and so some processors must wait while others communicate. Fig. 3-11
shows one simple example of this with worst-case performance. The operator REVERSE reverses
the order of the subitems of its input. To execute REVERSE on a tree network requires all the
subitems to travel up the tree and pass, one at a time, through its root. Reversing M subitems,

then, takes at least O(M) time even though it uses O(M) processors.
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upward travei

REVERSE
1

downward travel

Fig. 3-11: How REVERSE causes a warst-case bottleneck
in Mago’'s machine
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Just like our two previously discussed systems, Magd's machine manages its resources serially.
Whenever an RA needs more L-cells to hold its result, the symbois in the L-cells must move
along their linearly linked row to accommodate the demand. Although Tolle?® showed that
Magd’s machine could accomplish this activity without the linear L-cell links, eliminating these
links would not make this activity any faster than Magd's. Fig. 3-12 shows an example of how

Magp’s resource management can constrain program execution. During successive reduction
| transitions, parts of our example program drastically change in the amount of storaée they
require. After the first transition, one subexpression has expanded and pushed the others over as
it grabbed up more space. Next, it suddenly shrinks, leaving much empty space. After another
transition, a different subexpression expands, pushing back the first subexpression and the one in
between. Later, it too shrinks. Notice how the subexpression in the middle (the "1") gets pushed
back and ‘orth by the nther two subexpressions. In Magd’s machine, each such push takes up
time proporticnal to the distance of the push. If a program pushes any subexpression a total
appreciable distance along the L-cell row, that program could require O(N) time in an system
with N L-cells; Thus, the performance of Magd’s machine suffers from its serial resource

management.



Conslder the foliowing functlon:

([HD,(HD,TL),(INS, + ,INX,HD,TL ,TLY], [(INS, + ,INX,HD),(HD, TL),(NEG,HD,TL,TL)])

Appiiad to the data abject:
(20,1,-20)

Watching the data cells during this computation:

starting locations
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2
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-
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“20" to expand Into a
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sequence. Notice how this
pushaesthe " 1" tothe right.

ol JEEEE-

m "INS + " causes the
expanded sequence

l 21
—2— n to contract.
Another INX operaterin the
m n I"uncjlon causes the rightmost
n ﬂ E E E B ' o n ﬂ ssguet:c:’.‘p;ggci:‘:o:vthls
N
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Fig. 3-12: A resource management bottieneck in Mago’s machine
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3.3 Evaluation of Previous Approaches

Of- the three proposals we have just looked at, Magd’s machine executes with the most
parallelism. Yet, as we saw above, it can easily run into situations which severely hinder its
parallel execution, even for programs which it can successfully execute to completion. We still
find some of its virtues attractive enough to want in our proposal, however. In particular, we like

its following attributes:

ADV1) Parallel scan for RAs
ADV2) Simultaneous execution of all RAs

ADV3) Physical separation of independent activities

In our new proposal we would also like to eliminate the disadvantages of Magd’s machine by

naving the following:

ADV4) Unconstrained parallei communication
ADVS). Parallel demand-aliocation of resources

ADV6)  Parallel compaction of idle resources

The next chapter proposes a reduction machine multiprocessor which has ail six of these
advantages and which, surprisingly enough, has an asymptotic hardware cost (in terms of parts

count) almost the same as Magd’s machine.



4. A New Design Approach

In this chapter we develop and propose a new reduction machine architecture, This new |
reduction machine has the advantages of Magd's machine, namely, the attributes ADV1, ADV2,
and ADV3 we listed in the previous chapter, and also has attributes ADV4, ADVS, and ADV6
which eliminate the disadvantages of Magd’s machine. Provided we have a sufficiently parallel
sorting network and enough processors to prevent system overflow, this new machine will quickly
execute functional reduction language programs as a power-log fast system with unconstrained

parallelism.

4.1 Basis for the New Approach

Four observations form the basis for our new design approach. Taking care of dll of these
together helps us to design a reduction multiprocessor without the troublesome bottlenecks of
previously proposed systems.

First of all, we must realize that strictly local multiprocessor activities are sufficient to execute
mény (but not all) parts of reduction language computations. This comes as a direct resﬁlt of the
tree-structured syntax we saw in 2.6.1. Nearest-neighbor communication among processors can
certainly accomplish power-log fast tree reduction (recall Fig. 3-5) and also power-log fast
scanning for RAs (as Magb's machine demonstrates). In fact, as long as a multiprocessor
reduction machine can quickly form treelike communication structures, we can always put these
structures to good use.

On the other hand, some nonglobal reduction activities require more than just nearest-
neighbor communication for power-log fast execution. We already saw an example of this with
REVERSE in 3.2.2. For another example, consider the meta operator NF (see Appendix A),
which requires the system (among other things) to append a copy of the entire data object t0 each
function of a sequence. Since the data object and these functions might initially require more
than one processor to hold eabh of them, the resulting many-to-many communication pattern

generally fits no single nearest-neighbor scheme. To avoid botdenecks in such situations, we need
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a communications architecture which allows more general communication patterns than nearest-
neighbor.

Moreover, two kinds of reduction machine actions require global aciivities: resource
allocation and, if the system design requires it, resource compaction. Having only nearest-
neighbor communication will generally slow down both these activities, or (as we saw with the
machine of Treleaven and Mole in 3.2.1) even prevent them!

And finally, last but not least, both of the first two above activities (nea:est-nexghbor and
non-nearest neighbor local communication) might have to occur in the system simultaneously.

Our new architecture should therefore accomplish both of these in parallel.

4.2 Elements of the New Approach

Fig. 4-1 shows a conceptual diagram of our proposal for a parallel reduction machine.

— o
ot e
Communication
~—p  Network -—)—
l;,,g PE b« ¢« ‘ -
\ ——
—tf
—tf—
——
Fig. 4-1: Proposed system architecture

This diagram depicts a row of processing elements (PEs) with communication links linearly
connecting them together, and with one input and one output link connecting each PE to a
common communication network. At this high level of abstraction, nothing distinguishes our new

machine from practically any other multiprocessor (including Magd's machine!). Let's take a
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closer look at each of the two basic elements of our design to appreciate its unique architecture.

4.2.1 Homogeneous Cellular Resources

A grc;up of idertical processing elements perform ail the processing and storage for this
computer systemn. These PEs operate independéntly and asynchronously from one another, co-
ordinating their activities only when they communicate to their immediate left or right neighbors,
or to the communication network. As we shall see in 4.3.2, the PEs need to communicate to all
these places quite reéularly. To avoid using any system-wide clock for synchronization, we
assume a selftimed discipline?® of co-ordination between all subcomponents of the system.

Fig. 4-2 shows the internal components of a PE.

{to the communication network)

(I

port | port I

message buffer

———=>1 port port
“: tlh::of:in warking storage {to tha right
o gPE) g (registers) nsighboring
€= port port pe— PE)

arithmetic/logic unit (ALU)

finits state sequencer

control memory

Fig. 4-2: The Processing Element (PE)

It contains a finite state sequencer which controls an arithmetic/logic unit (ALU) and six

communication ports. Three kinds of memory reside in the PE: a control memory for the
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sequencer (with perhaps a writable portion), an internal storage which contains registers used by
the AL_U, and a message buffer for communicating to and from the communication network,
The pairs of communication ports to its left and right neighbors allow a PE's ALU to access its
immediate neighbors’ internal storage. The pair of ports to the communication network, on the
other hand, must send and receive message packets which wavel serially through the
communication network. In addition to these six ports the system might also need an extra pair
of ports in each PE (not shown in the figure) to communicate to the outside world. Bef:ausa of
the extreme application-dependénce of this additional requirement, we discuss it no further in this
report.

In our system, each PE has a smail fixed number of internal registers (a couple dozen)
regardiess of the number of PEs in the system. For a system with N PEs, each of these registers
need only contain I'lg N7 bits of storage (since T'lg N7 birs allow each PE in the system to have
a distinct address). | This implicitly establishes our system's word size. Any internal PE operation
must store values which can fit into these registers (or small fixed-size groups of these registers).
Doing so not oniy keeps the internal storage small, but also keeps the rest of the PE simple. This
limit on internal storage has important consequéences for data storage in the entire system: Wwe
might need to decompose into smaller pieces any program value which cannot fit into Tlg N1
bits and possibly store it across more than one PE. (Executing programs will then need the
ability to deal with such symbolically distributed values, —but such is the case for any machine
with fixed word size) Within each PE, one hardwired register holds the [lg N7-bit physical
address (PA) which uniquely identifies that PE in the entire system. All the rest of the internal
registers in a PE hold the tags, references, and data necessary to execute any of the primitive
operations defined for that particular system.

Our multiprocessor architecture with its many interprocessor links makes possible an
especially useful kind of data mobility. Because of the small O(lg N) number of bits in each PE,
we could, if we had to, transport the entire contents of a PE’s internal storage (except for its
hardwired physical address) out of that PE, accomplishing this in O(lg N) dme or less (depending
on whether the data communication occurs bit-serially or in parallel). Travelling as a packet

through the communication network, these PE contents could eventually arrive at another PE and
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then overwrite a new internal storage space. [n this sense, the contents of a PE’s internal registers
{and t.he writable portion of its control memory) together comprise an -abstract entity, —a virtual .
processor which can perform local computations, relocate from PE to PE, carry information, and
i.udependently maintain its own identity,. We call this entity a cell.

In our machine, cells constitute the only resource we ever need to manage. Although cells
can move between PEs, the total number of cells in the system at any moment always matches
the total number of PEs. As a result of this, we can regard cells as the true agents of
computation in this machine, with the PEs merely acting as part of the framework in which cells
accomplish their activities. If we adopt this viewpoint, then every cell minimally possesses all the

computational and communicative poOwers of a PE. In particular, a cell can:

CEL) compute values from data it contains
CEL2) send and receive messages from its immediate left and right neighbors

CEL3) send and receive messages from other nonadjacent cells in the system
But unlike a PE, a cell can also:
CEL4) move to a new location relative to the other cells

As we shall see in the rest of this chapter, CEL4 makes possible a powerful high-speed

communication scheme and a power-log fast resource management method.

4.2.2 Communication Network

The communication network connects the PEs to form the complete system framework in
which cells perform their activities. All nonadjacent communication and all cell relocation occurs
via this network. By properly designing the communication network we can make both
communication and resource management power-log fast, simple, and parallel.

We now describe what kind of network fulfills these ambitious requirements. Fig. 4-3 shows

an example of the parallel demand-allocation of resources through a network.
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deMand —— demand > -
nondemand =~————» end o e

damant =—— demand > —
nendemand ————> Network
nondemand == nondemand > -
demand —e————s———1n nondemand monidie]
nondeman ————> nondemand > -

Fig. 4-3: Parallel demand-allocation of resources th rough a network

On the left side of the network, every input link carries a message containing either a demand for
more resources, or a nondemand. The messages propagate through the network to the outpuls on
the right side in one-to-one fashion and the network permutes these messages SO that the
demands go to idle cells. When an idle ceil receives a demand it also receives something to do
and thereby becomes nonidle. Notice how our example requires all the idle cells to sit at one
end of the system. Some process must have previously compacted all the idle cells. Fig. 4-4

shows such a parailel compaction of resources through a network.

Network 9 -

i

Fig. 4-4: Parallel compaction of rescurces through a network

In this case, all the cells of the system enter the network with each cell carrying a tag marking it
either nonidle, or idle. During their propagation, the network permutes all the cells so that the
idle cells form a single contiguous group at one end of the system when all the cells exit.

We want our network design to at least accomplish both parailel demand-allocation and
parallel resource compaction. Fig. 4-5 shows how a relabeling of Fig. 43 or Fig. 4-4

demonstrates the equivalence of these two activities. If in Fig. 4-3 we call a demand "0" and a
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nondemand "1, or if in Fig. 4-4 we tag a nonidle cell "0" and an idle cell "1", we get in either

case Fig. 4-5.

0 —> —> 0
1 —> —> 0
0 —> —> 0
1 > Network > 1
1 —> —> 1
0 —> o> 1
1 —> —> 1

Fig. 4-5: Equivalent parallei activity through a network

In other words, to do parallel resource management our network requires only the parallel ability
(> segregate the oaes and zeroes of any arbitrarily ordered input set of ones and zeroer. The
well-known Zero-One Principle? tells us that any netwbrk which can do this can also do parallel
sorting. Hence, our communication network must at least contain a parallel sorter.

In order to show that we need nothing more than a parallel sorter in our network, we must

find ways to do all other system communication using this same Ssorter.

4.3 Basic Activities of the New Approach

4.3.1 Role of Cell Display Addresses

In our new approach, every cell of an N-cell system contains a cell display address (CDA) of
4rig N1 + llg lg N7 + 3 bits (which takes up no more than five internal registers in a PE).
Each cell presents its own CDA to the communication network (as a packet header, perhaps)
upon entering it and the network sorts all the cells of the system according to these CDAs. Thus,

the bits of a cell's CDA determines that cell’s position relative to all the other cells when it exits

the network.
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Fig. 4-6 diagrams the internal organization of CDAs for an N-cell system.

Idie ceil
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Expressicn symboti ceil (a symbol space cell)

starter
010 I1 physical address I inssrtion fleld I

|-é—|'g N] bits ||g N bite—>j&E— 2[9&] l-g 9 ﬁl bits ———>4

Processing space cell

[0 110 I destination address 9':::;':? I origin address
P — e Pr— A P T T

bits

Fig. 4-6: Organization of Cell Display Address (CDA)

The leftmost three bits of a CDA labels each cell according to its current activity in the system,
and determines the meanings of the other subfields in that CDA. At any moment, our system
might contain some idle cells and some nonidle cells. The system uses the leftmost bit to compact
all the idle cells via sorting to one end of the PE row, making them available for reailocation.
The group of nonidle cells contains two subgroups distinguishable by their second leftmost CDA
bit: processing space cells which perform all the nonlocal communication and processing in the
system, and symbol space cells which hold the symbols of the executng program. The subgroup
of symbol space cells, in turn, consists of two further subgroups distinguished by their third
leftmost CDA bit:  definition symbol cells and expression symbol cells.

The use of leftmost CDA bits to distinguish all these cell types results in their physical
separation into contiguous groups of the same type after each sorting. Fig. 4-7 shows the

arrangement of these groups along the PE row after a typical sort
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Fig. 4-7: PE row after a typical sort

Notice how the definitions always stay in the leftmost cells of the PE row. We find this
convenient because we load the definitions into the system only once with each expression and
the definitions remain unchanged throughout the expression reduction. Hence, an expression can
safely refer to definition symbol cells without worrying about them changing their locations
during a reduction sequence. The idle cells of the entir2 system alwaye stay in the rightmost PEs,
and thus remain available to any RAs needing them. The expression and the processing space sit
next to each other and take up all the remaining PE space between the definitions and idle cells.
Any series of reduction transitions which terminates always leaves an empty processing space and
a result sitting in the expression symbol ceils. We shall later see how the rest of each CDA’s bits

function when we look at the system activities which use them.

4.3.2 System Timing

Even if our system has no system-wide clock, its global sorting activity forces it to have
global synchrony. We might easily imagine state changes to ripple through the system like waves,

with one set completing before the next starts. Fig. 4-8 shows a timing diagram for our system.
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. Fig. 4-8: Timing diagram for our system

The smallest time division, the phase, corresponds to either one pass of packets through the
communication network (ie., a global sort), or to one round of local internal PE activities which
might also involve commiunication between immediate PE peighbers. We expect both of these
alternatives to have similar asymptotic time behaviors: our paralle] sort will require no less than
O(lg N) time, and the local PE activites will require at most O(lg N) time. (For example, a local
arithmetic operation on a couple of g N71-bit internal PE values could execute in O(lg N) time
by using a bit-serial incremental algorithmzs.) The system repeatedly executes the foliowing four

phases in the following order:

Phase 1: Internal and adjacent-neighbor cell activities with the cells stationary.
(No sorting involved, but asymptotic time behavior no worse than a sort.)

Phase 2: All cells remain stationary but send tagged message packets through the
sorter. Each message either requests an idle cell (tag bit = 1) or doesn’t
(tag bit = 0).

Phase 3: All cells reply to their senders through the sorter (since all received
messages in Phase 2). Each reply acknowledges and either grants a
request (if the cell was idle) or denies it (if the cell was not idle).

Phase 4  All cells travel through the sorter and redistribute themselves according to
their new CDAs. If a previously idle cell becomes nonidle, either the

symbol space or processing space acquires it. If some nonidle cell
becomes idle, it moves to the right-end group of idle cell PEs,

We call one round of these four phases a cycle. Resource management, cell ﬁermutar.ion, and

some local processing happens once per cycle. A sufficient number of cycles can execute a
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reduction step. One reduction step corresponds 1o finding all the RAs in the system and
executing a reduction transition on all of them in parallel. The global synchrony of our system .
design' forces us to use the worst-case number of cycles for every reduction step, since any kind of
RA mighf occur in the program expression at any time. The rest of this chapter presents an
execution scheme for this report’s example reduction language which requires at most
8g N1 + 20 cycles per reduction step for a system with N cells.

Let us now examine three kinds of multicellular co-operation in this system which give it

most of its parallel power.

4.3.3 Data Driven Building of a Tree from its Leaves

Qur system repeatedly builds independent binary trees in parallel which start from some or
all of its symbol space cells, use processing space cells for connecting rodes, and finally reach a
root node which either completes some processing or communicates with a symbol space cell.
Fig. 4-9 shows a ‘binary tree diagram and our system’s representation (in cells) of the same tree.

(Rectangles denote symbol space cells and circles denote processing space celis.)

A trae organization of celis . Ourt system's represantation of the same trae

Fig. 4-9: Tree structures inour system

Qur representation closely resembles Knuth’s "natural correspondence transformation” which can

represent any tree as a multifurcating binary tree.Z’
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Fig. 4-10 shows how our system can build such a binary tree from its leaves. In Phase 1of
the ﬁrs_t cycle all the involved cells check both their immediate neighbors for involvement in the
same tree. 'Two cells will become part of the same wee only if they have identical destination
address fields in their CDAs (see Fig. 4-6). Assuming that some of them find such neighbors,
each member of every aligned pair of involved cells remembers the other member, thereby
establishing bidirectional pointers between them. Two cells of the same tree constitute an aligned
pair if both of their g N7T-bit PAs (physical addresses) differ only in the rightmost bit_. in the
rest of the first cycle, the right-hand cell of every aligned pair and every leftover unpaired ceil
simultaneousiy requests and acquires an idle cell. These new cells become processing space ceils

and each of them forms its new CDA in the following way:

The 2rg N7-bit origin address field comes from the Mg N-bit starter physical
address field and the g N7-bit insertion field of the expression symbol cel] that
acquired this cell.

The Flg g N-bit generarion mumber contains the value Mlg N7 - 1

The 2rlg N7-bit destination address field depends on the purpose of the tree. It
consists of ones during a global parailel scan for RAs. Otherwise, the 2lMg N7-bit

destination address comes from the g N-bit starter physical address and the
g N7-bit insertion field of some destination cell's CDA.

As a result of this CDA formation, all these new cells sit adjacently in preserved order in the
processing space after phase 4 of the first cycle. The next cycle proceeds just like the first, but
now only involves the new cells. After these combine into aligned pairs with cells containing the
same generation number and destination address, the right-hand cell of each pair and each
leftover unpaired cell requests and acquires an idle cell. These new cells join the processing
space, each inheriting the origin and destination addresses of the cell which brought it in, but
now their CDAs all have a generation number one less than the new cells of the previous cycle.
Successive cycles repeat this process until a level in the tree contains only one cell, —the root of
the tree. Even with worst case misalignment in every tree fevel, this entire tree building process
requires no more than Mg N7+2 cycles. Notice how our CDA formation scheme ensures the
segregation of different trees (by using different destination address values) and of different levels

in the same tree (by using different generation numbers). The system can therefore perform
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Fig. 4-10: Building a binary tree from its leaves
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many independent tree building activities in parallel.

We have two important uses for this kind of tree building. First, it helps us to do a parallel
scan for ali the RAs in the expression, (We describe this in section 4.4.2.) Second, it makes
possible a power-log fast, flexible, and parallel messaging scheme to propagate demands for
information in the system. For example, suppos¢ oné Or more cells throughout the system ail
want to get the same item of information (a definition or symbol value, say) from a single
destination cell whose CDA they all know. By building a tree in the way we discussed abbve, we
can concentrate all their demands until we have a single cell {the root) which acts as an agent on
all their behalf, This root then temporarily changes its own CDA to match the CDA of the
destination cell. After one additional cycle, the root would then find itself adjacent to its
destination cell and able to communicate with it. We now describe the activity whereby the root

would propagate the demanded information back to all the regnestors.

4.3.4 Data Propagation Through an Already-built Tree

Once our system builds a tree in the way we discussed in 4.3.3, it might want to propagate
information upward or downward through it. It can always do this, because the tree inherently
contains all of its connectivity information in the addresses of its processing space nodes. The
cells of the tree need only a method to make use of this information to pass their messages.

Let's suppose that the processing space root of a tree has received a datum from somewhere
and wants to send it to all the leaves. It can calculate the CDA of the tree cell one level below it
by adding one to the generation number of its own CDA. As long as this value stays less than or
equal to Mg N7 - 1, the root knows that it has a tree cell below it to send to. By temporarily
changing its own CDA to march the CDA of the cell it wants to send to, the root will find itself
next to this cell in the next cycle and able to communicate with it. After this communication the
root might restore its old CDA, or it might become an idle cell if we have no further need for it.
The cell now containing the datum passes a copy to the other member of its aligned pair (if it
exists) and then both of these cells simultaneously repeat the same steps that the root did before

them. In this fashion, the root replicates the datum and propagates it to all the leaves, never
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requiring ‘more than [lg N7 +2 cycles total time.

If we need to propagate data in the opposite direction through the tree (i.e., from the leaves .
to thel root), a scheme equivalent to reversing the above one would work. We could, however,
also accorhplish this same data movement during tree building time if we have all the data
available early emough. Note that in either case, leaf-to-root propagation always requires data
concentration instead of replication, —each tree cell receiving two data items from below should
process them in some fashion and only pass upward a single datum. To need to do otherwise

would cause a traffic jam in the upper levels of the tree,

4.3.5 Mitotic Insertions of Cells into Expressions

Frequently, our system also needs to insert new cells into specific locations in expressions.
For exaniple, an RA might increase in size after a reduction ransition, requiricg more clls to
hold its symbols. To accomplish this in a power-log fast and parallel fashion we use a technique
called mitotic fnsértion. Like its name suggests, it closely resembles a cell-replication technique
found in nature (mitosis), except that our version uses cell acquisition instead of cell division to
double the number of cells.

Fig. 4-11 shows how mitotic insertion works. An expression symbol cell, called the starzer,
decides how many cells to insert and requests an idle cell. The new cell becomes a first
generation symbol cell and gets a CDA which places it between the starter and the starter's
original neighbor. During the next cycle, the starter and the first generation cell both request idle
cells for the second generation. The cell requested by the starter gets a CDA placing it between
the starter and the first generation cell. The other new cell gets a CDA which places it between
the first generation cell and the starter’s original neighbor. Continuing likewise, each successive
generation fits in between the cells already inserted in earlier generations. By passing to each
new generation the generation number and the total number of cells we wanted to insert, each
new cell can decide whether to continue requesting cells or to stop. A sequence of contiguous
mitotic insertions compietes aftér no more than Mg N7 cycles (since the entire system only has N

cells). Verifying that mitotic insertion did not run out of resources before completion requires
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Fig. 4-11: Mitotic insertion of cells into expressions
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no more than g N7 additional cycles so that all the inserted cells can reply back to their parents
in the reverse order of their acquisition, Hence, a contiguous sequence of mitotic insertions never .
needs‘ more than 2lg N7 cycles total

Fig. 4-11 also shows the addressing scheme which allows mitotic insertion to give the proper
kinds of CDAs to new generations of inserted ceils. The starter must always have a CDA made
up from a copy of its hardwiréd physical address in its starter physical address field and an
insertion field of all zeroes. The first generation cell has the same CDA as the starter but with
“100..0" in the insertion field. The second generation cell acquired by the same starter has the
same CDA but with "010..0" in the insertion field. Likewise, the third generation has "001..0"
appended to the starter's physical address, and so on. Similar rules hold for all the cells acquired
by later generation cells: take the CDA up to its last nonzero bit and append "100...0" to it, then
"010..0", then “001..0", and so on. In the m® generation of this process the m leftmnst bits of
all these cells’ insertion fields. will index them in numerical order, as our example in Fig. 4-11
shows.

Note how our address scheme for mitotic insertion insists that the starter always have an
insertion field of all zeroes. Since any expression symbol cell might be a future starter, after one
sequence of contiguous mitotic insertions ends we want 1o reset the CDA of every expression
symbol cell to its own physical address plus zeroes before starting any others. This resetting
enables us to do any number of mitotic insertions while still retaining finite length CDAs.
Section 4.4 shows us that any single reduction step requires at most one sequence of contiguous
mitotic insertions. We therefore choose to reset all expression symbol cell CDAs right at the start

of each new reduction step.

44 Executing Reduction Steps

We now examine how our system can execute reduction language programs in a power-log
fast and parallel manner. In what follows, we look at how to store expressions, find RAs, execute
RAs, and overwrite RAs with their results. To keep implementation options flexible, our

description avoids a lot of hardware-specific details and gives us instead a specification level
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presentation of a set of algorithms which can do the job.-

4.4.1 Stbrag‘e of Expressions

Our system stores the entire functional program in the symbol space cells, one symbol per
cell. An expression (or even more than one expression) resides in the expression symbol cells-and
the definitions reside in the definition symbol cells. Both use the preorder-with-level-number
format we described in 2.6.1. This format lets us do without right brackets and commas since

every symbol space cell holds one symbol and its corresponding level number.

4.4.2 Location of Reducible Applications

Every reduction step starts with resetting all the expression symbol cell CDAs (see 4.3.5),
followed by the parailel location of all RAs. Because the parallel algorithm for this requires the
simultaneous co-operation of all the expression symbols cells in the system, our System uses a
- synchronous global activity to find RAs. Only after finding RAs can we execute them.

The preorder-with-level-number format makes it easy to characterize the RAs of an
expression. As Magd™® points out, an application bracket ("<") with level number i forms the left

end of an RA ift

LRAl)  the expression has no more application brackets to i right, or
LRA2) the next application bracket to its right has a level number < i, or

LRA3) there exists a symbol between the application bracket and the next
application symbol to its right with leveli number < L

Furthermore, if an application symbol with level number i forms the left end of an RA, then the
entire RA consists of the application symbol itself and all the contiguous symbols to its right with
level numbers > i

Fig. 4-12 shows our scheme for RA-location (which is much simpler than Magd's scheme).
In the first cycle of this process every expression symbol cell containing a "¢ symbol requests
and acquires a processing space cell. The CDA of each of these new processing space cells

contains the PA (physical address) of its requesting <-cell in its origin address field, the value
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Fig. 4-12: Lacation of Reducible Applications in our system
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Mg N1~ 1 in its generation number field, and ones in its destination address field. Hence, by
the end of this first cycle all these new processing space cells sit adjacently together in the same
order as the symbol space cells which acquired them.

In the second cycle, all these new processing space cells consult their immediate right and left
neighbors to check for conditions LRA1L and LRA2. By the end of the second cycle, each of
these processing space cells temporarily changes its own CDA to the CDA of the <-cell it must
report back to, and thereby moves adjacent to that <-cell |

In the third cycle, each <-cell finds out whether LRAI or LRA2 holds for it and all the
former processing space cells become idle.

Starting in the fourth cycle, all the expression symbol cells start a special tree building
activity which continues for at most Tlg N7+2 more cycles. All the processing space cells
involved in this activity possess normal tree huilding CDAs except they have ones in their
destination address fields. During this special tree building, every tree cell sends the following

cleven data items to the cell immediately above it:

LLN: the level number of the leftmost symbol sitting below this tree cell.
LCA : the PA of the lefumost symbol sitting below this tree cell.

LRA : a tag which signals "yes" only if the leftmost symbol sitting below this
tree cell affirmed either LRAL or LRA2 during the first three cycles of
this reduction step.

W the leftmost symbol below this tree cell

X the second leftmost symbol below this tree cell, if known.
(We tag X “unknown", otherwise.)

Y: the third leftmost symbol below this tree cell, if kmown.
(We tag Y "unknown"”, otherwise.)

Z: the fourth leftmost symbol below this tree cell, if known.

(We tag Z "unkmown”, otherwise.)

TLN: the level number of the leftmost symbol below this tree cell, exclusive of
the one for which we already know LLN, with a level number not greater
than LLN. (We tag TLN "unknown” if no such symbol exists.)

TCA : the PA of the leftmost symbol below this tree cell, exclusive of the one for
which we already know LCA, with a level number not greater than LLN.
(We tag TCA "unknown” if no such symbol exists.) :

RCA : the PA of the rightmost symbol sitting below this tree cell.
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REND : a tag which signals "yes” only if the rightmost symbol sitting below this
tree cell has no symbol space celi t0 its immediate right with LLN > 0, or
no symbol space cell at all to its immediate right.

Together, ail eleven of these require no more than eleven [1g N7-bit registers of internal storage
in a PE. Every tree cell receives these corresponding eleven values from each of the one or (WO
tree cells immediately below it. By‘simple comparisons it chooses its own appropriate values for
the samé eleven items and sends these, in turn, 10 the tree cell above it. This special tree
building activity also has one additional property: a tree cell never associates with its aligned-pair
partner to its right if W="¢" or LLN=0 for that parmer cell. In this way, a disjoint tree
forms over each potential RA candidate substring (where each such substring starts with "{" or a
level zero symbol and contains no other "<" symbol within itself).

When any of these disjoint trees finally has a root node, that root node computes its own
appropriate values for the eleven data items mentioned above and then immediatety sends Its
version of these back down the tree to all the symbol cells at the botom. After no more than
Mg N1+2 additional cycles, evéry one of these disjoint trees finishes this downward propagation
and all their processing space cells become idle.' At this point, every expression symbol cell has

received enough information from its root to figure out the following:

Whether or not this symbol's expression_has com leted all possible reducton: If the
data tems from its tree root have LLN .—-6, W="<", and REND = "yes", then
the system has completely reduced the expression in which this symbol resides,
otherwise it hasn’t.
Whether or not this_symbol resides within an RA: Either of the following two
conditions assures that this symbol resides within an RA:
1) The data items from its tree root have LRA="ves" and a TCA, which if
xnown, is not less than this symbol's PA, or

2) The data items from its tree root have W="¢<" and a definitely known
TCA which is not less than this symbol's PA.

If thflls symboi fulfills neither of these conditions, then it does not reside within
an RA.

The level number and location of the leftmost symbol of this symbol’'s RA: LLN
- and LCA from its tree root provide these Tespective values.

The location of the rightmost symbol properly belonging to this symbol's RA: TCA
from its tree root, if known, gives us this value, otherwise RCA from its tree

root gives it
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The type of operator in this symbol's RA: Fig. 4-13 shows how data items X, Y, and
7 from its tTee Toot tell us whether this RA has a simple or composite operator,
whether or not its operator requires definition expansion during this reduction
step, and whether its operator involves primitive microcode execution, regular
composition, or meta composition.
The process of locating RAs completes no more than 271g N1+7 cycles after the beginning of

the current reduction step.
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known to requiring requiring involving invalving
PE definition dafinition regular composition meta composition
microcode sxpansion sxpansion
Fig. 4-13: Determining operator type for a Reducibie Application

4.4.3 Ranking Activities

The information each expression symbol cell gains about its RA partially prepares it to begin
participating in the execution of that RA. However, an expression symbol cell stilt needs
additional information about its own relationship to its RA. An element of a sequence very often
needs to know the total number of elements in that sequence and its own ordinal position in it.

Let's look at a way to accomplish this even if that sequence has nonatomic elements.
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Fig. 4-14 shows how the cells of an RA perform ¢ +2 ranking. In general, if the leftmost
e symbol of an RA has level number p, then <+ g ranking enables every expression symbol cell .
of th.';t RA to find out the size of, and its element’s ordinal position in the subexpression
contajning' it whose left parenthesis has level number p+q - 1 (if such a subexpression exists).
Our example in Fig. 4-14 for <+2 ranking shows how such ranking activities bear a strong
resemblance to RA-location.

¢+2 ranking starts with a special tree building action by all the expression symbol cells of
every RA, taking at most Tlg N1+2 cycles. All the new processing space cells of these trees
have normal tree-building CDAs, with their destination address fields containing the PA of their
RA’s leftmost expression cell. Thus, the tree cell CDAs look as if ail the symbol cells of each RA
want to simultaneously send a message to its leftmost cell (although they never actually do $0).
Actually, we use this kind of CDA-formation to segregate one RA’s ranking activity from any
other RA’s concurrent activities. During this tree-building, every participating tree cell sends the

following six data items to the cell immediately above it

PLN : the level number of the leftmost symbol sitting below this tree cell.
PCA : the PA of the lefumost symbol sitting below this tree cell.

BP2: the level number of the leftmost symbol of this RA plus 2. (For <+q
ranking we would use this RA’s leftmost level number plus q and call it
BPg.)

ECT: the number of symbols below this tree ceil with level number exactly
equal to BP2.

ECA : the PA of the rightmost symbol sitting below this tree cell with level
number exactly equal to BP2.
SCA : the PA of the rightmost symbol sitting below this tree cell.

Together, all six of these require no more than six g N7-bit registers of internal storage in a
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Fig. 4-14: <+ 2 Ranking
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PE. Every tree cell receives these corresponding six values from each of the one or two tree cells
immediately below it. By simple comparisons and an arithmetic addition it computes its own .
approﬁdate values for the same six values, sends these new values to ree cell above it, and stores
in itself a Eopy of the ECT values it received from both tree cells immediately below it. (If one
of these tree cells doesn't exist below it, it stores zero for that corresponding ECT value) This
special tree building activity aiso has an additional property: a tree cell never associates with its
aligned-pair partner to its right if PLN < BP? for that partner cell. In this way, a nondegenerate
disjoint tree forms only over each sequence in the RA whose left parenthesis has level number
BP? - 1. These correspond to all the sequences whose elements we want to rank.
When any of these disjoint trees finally has a root node, that root node computes it own
appropriate values for the six data items mentioned above and then immediately sends its version
of these back down the tree along with two additional values. LENQ and HENO, where
LENO = 1 and HENO = ECT for the root. During downward propagation, every tree cell
propagates a copy of the root’s six data items to the tree cells immediately below it, and computes
new values of LENO and HENO for each of them based on the old ECT values they previously
sent upward. Fig. 4-15 shows how to do this calculation.
After no more than Mg N1+2 additional cycles, every one of the disjoint trees finishes this
downward tree activity and all their processing space cells become idle. At this point, every

expression symbol cell of the RA has enough information to figure out the following:

Whether or not this symbol participates in this <+2 ranking; If this symbol has a
Tevel number < BPZ then it doesnt, otherwise it does,

The total number of elements (note: not necessarily symbols) in the ranked sequence
containing_this_symbol: ECT from its tree root gives us this vaiue.

The ordinal position of the element containing this symbol in_this sequence: This
symbol's LENO (which should equal its HENQ} gives us this value.

The_level nu_mber'andL location of the lefimost symbol of this sequence: PLN and
PCA from i tree root provide these respective values.

- The location of the leftmost symbol of the rightmost element_in this sequence: ECA
from its tree root gives us this value.

The location of the rightmost symbol properly belonging to this sequence: SCA
from its tree root gives us this value.

71



ECT3 = ECT1 + ECT2

Storage of ECTs
during upward
data movement:

from left ceil beiow this trom right cell below this
processing space cell processing space cell
(ECT2 2 0, It none)

LENO2
HENO3

Calculations of
LENOs and HENOs
during downward
data movement:

LENO1 = LENO3 LENQ2 = LENO2 + ECT1
HENO1 = HENG3 - ECT2 HENO2 = HENO3

Fig. 4-15: Rank calculations during < + 2 ranking
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(For <+2 ranking only) The location of the operator/operand boundary in this
symbol's RA: If the PCA from Tts tree root has the value LCA-+1 (recall that
L.CA came from the RA-location activity), then the tree root's SCA gives us the
location of the rightmost operator symbol, otherwise if the SCA from its tree
root points to the rightmost symbol of the RA, then the tree root’s PCA gives
us the location of the leftmost operand symbol.

Hence, a ranking process ((+2, or otherwise} completes no more than 2rlg N1+4 cycles after it

starts.

4.4.4 Executing Reducible Applications

After a reduction step performs RA-location the next action by each RA depends on the
operator part of that RA. Depending on whether the operator part contains regular composition
or meta composition, or whether it invokes the direct application of a user-defined function or a

rrmitve function, one of several activities take piace.

Regular Composition. Fig. 4-16 shows what regular composition looks like in our system’s
internal representation and how our system reduces an RA which has regular composition in its

operator part.

Notice how this reduction requires <+2 ranking followed by rewriting brackets and changing
level numbers. After the <+2 ranking, every ceil of this RA knows exactly what to do because
RA-location and <+2 ranking have together given each of them enough information. The
symbols in the first element of the operator sequence must all decrement their level numbers by
one, while the symbols in all elements of the rest of the operator and all of the operand must
increment their level numbers by one. In the meantime, the leftmost parenthesis in the RA must
disappear while a new application symbol ("<") and parenthesis must appear between the first
and second operator elements and have the proper lev.el numbers. All of this can happen within

one system cycle after the <{+2 ranking.
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Our system’s internal representation of a reduction
involving regular composition:
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Fig. 4-16: Reducing expressions involving regular composition
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Meta Composition. Fig. 4-17 shows what meta composition looks like in our system’s internal
representation and how our system reduces an RA which has meta composition in its operator .

part.

Notice how this reduction requires {+2 ranking followed by copying the first operator element 10
the immediate left of this RA’s leftmost parenthesis, dec}emenﬁng by one the level numbers of
these new cells, and incrementing by one ail the level numbers of the operand’s symbols. All of
this can happen within one system cycle after RA-location and <+2 ranking, because copying the
entire first element of the operator sequence can proceed in parallel as follows: All the symbols
of the first element acquire idle cells. Every one of these new cells gets a symbol space CDA
which has the PA of the RA’s application symbol in its starter address field and the PA of its
acquiring cell in its insertion field. Thus, the new symbol cells all sit in preserved order between
the RA’s application symbol and the former leftmost parenthesis of the RA. Since these new
symbol cells also receive symbols and level numbers from their acquiring symbol cells, they

comprise a new copy of the first operator element.
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Our system’s internal representation of a reduction
involving meta composition:
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Fig . 4-17: Reducing expressions invoiving meta compaosition
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Direct Application of a User-Defined Operator. Fig. 4-18 shows how an RA might have an
operator part consisting of a single name which the system does not recognize as a primitve .
funcu'c.ma This name must appear in a definition in the definition symbol_ space of the system,
otherwise this RA reduces o .L.

Fig. 4-18 also shows how our system reduces an RA with a defined operator by a definidon
expansion which substitutes the correct subexpression for the defined name. After RA-location
the expression cell containing the nonprimitive name acquires a processing space cell and uses it
1o try and propagate a lookup demand to the appropriate definition space cell. Just as we saw in
43.3, when other RAs simultaneously try to propagate similar lookup demands to the same
definition cell, a tree forms in the processing space to concentrate their demands and distribute
the resulting reply from the definition cell to all of them. The source of any lookup demand
knews the CDA of its lookup destination in the definition space, because the first cell nf any
definition has a CDA uniquely derived from the symbolic name it defines (see Fig. 4-6). Thus, if
a given definition exists, lookup demands trying to find it always reach it after no more than
Mg N1+2 cycles. If a given name actually has no corresponding definition in the system, the
lookup demands searching for it will always fail to find it within the same amount of time. The
result of a lookup demand propagates back down the tree in at most g N7+2 additional cycles.

Successful lookups provide the following two items of information to all the demanding cells:

DCA : the CDA of the leftmost cell of the subexpression to substitute for the
defined name (confirming that the lookup succeeded).

DCN :  the number of cells in this subexpression.

When an expression cell containing & nonprimitive name finally receives these two data items in
reply to its lookup demand, it knows how much expression symbol space to reserve for its
* definition expansion (from DCN) and where to copy the definition from (DCA gives the leftmost
location). _These expression cells then become starters for one round of contiguous mitotic
inseftions which reserves the necessary expression symbol space and requires at most 2I'lg N1+4
cycles to finish. This reserved space shows up as empty symbol cells immediately adjacent to

each nonprimitive name symbol involved. In the insertion field of their CDAs, mitotic insertion
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automatically informs each newly inserted ceil of its ordinal position with respect to its starter
cell. Hence, every. one of these new cells has enough information (from DCA and its own rank)
to calculate (by simple concaienaiion) the CDA of the definition symbol it needs to copy (see Fig.
4-6). Upon finishing this, eveﬁ one of these new cells acquires a processing space cell and uses it
to propagate a copy demand to the definiton symbol it needs to copy. Like before, when other
RAs simultaneously try to copy the same cells, a tree forms in the processing space for each
destination to concentrate the demands and distribute the replies. Thus, after no mo.re than
2l"1g N1+4 more cycles, every new cell has a symbol and a relative level number. By adding the
starter’s level number to the relative level number, each new cell obtains its own correct level
number and definition expansion has completed. The entire definition expansion process takes

no more than 6Mlg N1+12 cycles after RA-location,

78



Our system’s internal representation of a reduction involving definition expansion:

%E"- - a def B‘.. - E".

oll s |Alsilslta) [o] Lollalial ol i2lallaile] La] {iz] 2]l

N N N VRN /
deflnition Sxpression definition expanded
expression

How our system reduces such an instance with definition expansion:

worst-cass

RA-location: m gxecution time:

/\/¢\/\ ZFg N-| +7 cycles
| — | —— ) —

Lookup demands
and

lookup replies:
Y $ $ 2|'Ig lq +4 cycles

L L 1 L1 L1J ) 1§
def de! exprscontaining
. muitigle instances of
user-defined operators

Parailel contiguous
mitotic insertions

toprovidespacetor [ emel  Towsmad Tl  Tosnd | 2 l-lg ﬁl +4 cycles
sxpanded definitions: — ¢ ) e ¢ ) )
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and

copy replles:
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total worst-case
execution time: sl.lgN.l +« 20 cycles

Fig . 4-18: Direct application of a usér-defined operator
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Direct Application of a Primitive Operator. An RA might have-an operator part consisting of a
single name which the system recognizes as a primitive function. In such cases, the system
microcode resident in a PE (or in a cell} controls the RA exccution.

Below we look at the primitive meta Operator NF and the primitive regular operator HD.
These two examples give us some of the flavor of the power-log fast parallel primidves possible in
our proposed system. Appendix B show how our system can execute all of our example
reduction language's primitive functions in a power-log fast fashion. |

Fig. 4-19 shows what executing the primitive meta operator NF looks like in our system’s

internal representation (note how meta composition reduction has already occurred), and how our
system can accomplish this for an RA.
Notice how this reduction requires <+2 ranking, operand copying, bracket rewriting, and the
deletion of two atoms (both "NF™). All of this can Pappen as follows: After RA-location and
¢+7? ranking, the two "NF" symbols and the parenthesis between them must disappear. In the
meantime, every <+2 -ranked element except the rightmost one (the operand) must insert a e
symbol to its immediate left with the proper level number, and mitotically insert SCA - ECA+1
cells to its right {(enough to hold a complete copy of the operand). Each of these newly inserted
cells then copies the appropriate operand cell so that a complete copy of the operand sits with
each new application thus formed. Once again, since this copying happens in parallei, trees form
in the processing space 10 concentrate copy demands and distribute duplicate replies. Note how
no level numbers need to change during this entire reduction step. This whole proceés requires
no more than 4r'lg N1+8 additional cycles after RA-‘location and <+2 ranking.

Fig, 4-20 shows what executing the primitive regular operator HD looks like in our system’s
internal representation, and how our system can accomplish this for an RA. Notice how this
reduction requires <+ 2 ranking followed by deletion of all the RA’s cells except for the leftmost
element of the operand sequence, and then decrementing by two the level numbers of these
remaining cells. All of this can happen within one cycle after RA-location and {+2 ranking,.

As Appendix B clearly shows, no reduction step for our exampie reduction language ever
requires more than 81g N71+20 cycles in our N-cell system. Even TRANS (matrix transpose)

executes power-log fast ~ (Most other proposed Systems can't even include TRANS as a
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primitive!) Appendix C suggests how certain other powerful primitive operators not found in our
example reduction language could also execute power-log fast in our system, including even a .
sort! But this shouldn’t surprise us. Our system’s communication network, remember, includes a

sorter.
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.Our system’s internal representation of a meta reduction involving NF:

P e B — R B R

How our system reduces such an instance:

RA-iocatlon: m

<+ 2 Ranking:

Parallel contiguous
mitotic insertions

to provide space for
new "{"-brackets and
copies of operand:

C e besd Kol bemese |

— ) =

Copy demands
and

Fig. 4-19: Execution for primitive meta operator NF
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Our system’s internal representation of a regular reduction invoiving HD:
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B — &
How our system reduces such an instance:
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Fig. 4-20: Execution for primitive regular operator HD
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5. Design Evaluation

5.1 Assumptions

Qur system’s evaluation depends upon a specific set of assumptions about our system. We
assume we have our computations expressed as functional programs in our reduction language.
Furthermore, we assume that these programs have a great deal of inherent parallelism, ie., they
contain a large number of RAs during most of their execution. In such cases, the execution
sernantics for reduction language programs of sections 2.4.3 and 2.44 gives us a conceprually fast
way to carry out these computations: parallel RA-reduction. To ensure that every reduction step
can always invoke fully parallel RA-reduction, we aiso assume that the computer system executing
these computations has enough resources (processing elements) to avoid system overflow or
resource exhaustion. Defending our conclusions requires us to justify the legitimacy of these

assumptions. Let us examine them ome at a time.

5.1.1 Computation Expressed in Our Reduction Language

We assume that our computations are expressed as functional programs written in the
reduction language described in this report. At the same time, this report claims no special
purpose properties for this particular functional Anguage. On the contrary, our simple reduction
language serves merely as an illustrative example to help demonstrate a powerful execution
methodology. The reduction step descriptions of Appendix B should suggest similarly powerful
schemes to execute the primitive operators of any other general or special-purpose reduction
language. (Appendix C contains examples of some additional possible primitive operators which
demonstrate this power.)

However, even the simple reduction language of this report contains the foundations for vast
expressive power. In one sense, it already has universal computational capability since it contains
the equivalents of the primitive operators found in pure Lisp (CAR, CDR, CONS, ATOM, EQ,
COND)?. But more important with respect to user programming, its definition facility provides

a means of language extension. A programmer can define new nonprimitive operators in terms
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of existing operators (both primitive and nonprimitive) already present in the system. In fact,
given the execution scheme for definition expansion we saw int section 4.4.4, a programmer might .
easily‘ define a new primitive operator as well in the following way: write the microcode 10
execute the new operator and place this microcode (instead of a symbolic expression) into a DEF
expression cell along with the name of the new operator. During execution, then copy replies
would bring. back microcode instead of expression cells to the requestors (see Fig. 4-18).
Hence, even though this report only presents a single reduction language with which to
evaluate our proposed system, we should easily expect our conclusions to hold for a wide variety

of more complex general and special-purpose reduction languages.

5.1.2 Large Amount of Inherent Parallelism

We assume that our functional programs possess a great deal of inherent paralielism, i.e., that
throughout most of their execution their expression bodies contain many reducibie applications to
reduce in parallel, This assumption appears at the beginning of this report and motivates
practically everything else in it. In chapter 1, we took notice only of example applications
requiring massively parallel computations. Qur hope to achieve upward-scalable, powér-log fast
performance seems (O depend on the program expression of this inherent parallelism.

Nevertheless, we should note in passing that even if a functional program fails to have any
great amount of parallelism, our system organization can still take advantage of what little
expressed parallelism it might happen to have. In our system, even a strictly sequential program
{or a strictly sequential portion of a parallel program) will properly execute. If any additional
parallelism happens 10 lurk in the program'’s reduction language expression, the system
automatically takes advantage of it without any programmer intervention. (This fulfills one
important goal, first mentioned in section 1.2.1, of automatic system adaptation 10 varving
amounts of ‘program parallelism.) Hence, our system does not need program parallelism for

correct execution, it just needs it to achieve fast execution.
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5.1.3 Sufficient Resources

To ensure that every reduction step aiways invokes fully parallel RA-reduction, we assume
that our computer system always has enough resources (processing elements) to avoid system
overflow or resource exhaustion. With cheap enough hardware (both processors and network
components) we could perhaps provide for this assumption by shear quantity of PEs. To ensure
that the symbol space cells could always perform the worsi-case tree building activity, the total
system would only need 2 plus twice as many cells as the number of cells in the largest expected
symbol space. This kind of requirément should not surprise us, however. Even conventional
computer systems need enough main and auxiliary memory to execute a given program, otherwise
they will fail to properly complete it. Hopefully, the simplicity and homogeneity of our proposed
system’s processors and network will help keep down the costs of providing sufficient resources in
our system as well

Should our proposed system ever need more cells during execution than it has available, our
present'execution scheme results in disaster: The system logjams with active cells trying to
acquire nonexistent idle cells before the end of the current reduction step. Because they cannot
succeed in this endeavor, this logjam possibly repeats itself again and again in later reduction
steps without any further progress in the computation. If we refrained from offloading any
symbol cells, but temporarily switched to some nonparallel execution scheme which used fewer
processing space cells, we might conceivably unblock some of these logjam situations at the cost
of more execution time, but this could not always work in general: If the symbol space
consumed all the cells in the system and continued to demand more before it could reduce any
RAs, the computation would surely come to a halt. Situations like this force us to look for other
methods to sclve this problem, such as the virtual memory approach which Frank?® suggests for
Magb’s machine (swapping suspended RAs to auxiliary memory). We would need to take great
care in designing such a virtual execution mode for overflow cases, since it would be very easy 1o
reintroduce system bottlenecks that severely hurt system parallelism, even if the system overflows
were only slight. Perhaps we could find some way to swap RAs in parallel, or some way (o

temporarily "hide” the symbols of suspended RAs in distributed fashion so that we could
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suddenly appear to have many new idle cells. Issues like these constitute important topics for
further investigation, because until we have some appropriate way to deal with insufficient .

resource situations, we just cannot overflow our system gracefully!

5.2 Performance; Space and Time

Given the assumptions we have just examined, we DOW undertake to compare the
performance of our proposed system architecture with the other approaches mentioned in this

report.

5.2.1 Space

qu the purposes of our comparisons we shall adopt the "primitive parts count” metric to
express hardware costs. Measuring computer systems in this way, the total cost of a system
linearly depends on the number of bits in its registers and I/0 ports, the number of wires
communicating individual bits of data in its system network, and the number of logic gates in its
ALU. This may or may not realistically reflect its actual hardware costs, which also depend on
the space-efficiency of these parts’ arrangemeni in an actual system. We shall leave the
investigation of efficient layouts in 2- and 3-dimensional space to future reports, since much work
remains unfinished in this field.

A conventional uniprocessor system with N memory cells, then, has at least an O(N) parts
count. If each of its N memory cells contained O(lg N} bits, for example, then the whole system
would have O(N 1g N} hardware cost.

The serially-scanning multiprocessors of Patel and of Treleaven and Mole, on the other hand,
have a very different hardv;fare cost behavior. Although either might contain, say, N processors,
each pr.oce.ssor needs its own. auxiliary memory to store all the symbols of the largest size RA
which a processor may sometime need to reduce. If we place no restrictions on RA size, the
largest possible RA might contain O(N) symbols. Furthermore, each symbol, to make it
distinguishable in the system, might need O(lg N) bits in its representaton. Thus, the entire

serially-scanning multiprocessor might have O(N? lg N) hardware cost!
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In designing parallel-scanning multiprocessors, such as Magd's machine and the system
proposed in this report, we have more hope of achieving O(N 1g N) hardware cost because each
of the N pfocessing elements in either case contains only a fixed number of O(lg N)-bit registers.
We still need to consider whether the interconnection network of the system in question adds any
additional asymptotic hardware cost. The tree network of Magé's machine does not increase its
asymptotic hardware cost, since the number of wires in any tree network is directly proportional
to the number of the PEs in that tree and the data path width between PEs. Can we .say the
same thing about this report’s proposed system? We answer this question in section 5.2.3 after

discussing our network in more detail

5.2.2 Time

Since cummunication dominates the time custs of computation in &ll the systems we ccnsider
in this report, we shall adopt a time metric based on the time it takes for a single wire to transmit
one bit between processors (ignoring wire length). This unit of time is quite appropriate because
hardware scalability eventually encourages us to use bit-serial communications between processors
to help keep down the number of wires in really huge multibrocessors. In fact, if we use bit-
serial primitive operations within processors (as suggested in section 4.3.2) we not only reduce the
ALU hardware, we also make it possible to overlap primitive computations with the serial
communications, thereby masking any asymptotic effects these primitive computations might have
on system execution time. Thus, this report’s way measuring execution time fits quite well to the
paraliel systems under our investigation.

A conventional uniprocessor, then, takes at least O(N) time to execute a functional program
with O(N) problem size. It might take worse than O(N) because many functional primitive
operators, like AA or TRANS, are not exactly "primitive” on a uniprocessor, —each may itself
take O(N) time or worse just to complete. The serially-scanning multiprocessors of Patel and of
Treleaven and Mole, even with O(N) processors, can still take at least O(N) time (o execute a
functional program: If some functional program contained an RA of O(N) problém size, this RA

would still have to eventually wind up in the local memory of a single processor before it could
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execute. From that point, it would execute as slowly as in a conventional uniprocessor.

We now examine the execution times of the parallel-scanning muitiprocessors. Magél9 gives .

the fo'llowing expression for the execution time of his reduction multiprocessor:
' time/RA = S+Mm/M7*S

where:

m is the number of messages between cells necessary to reduce the RA.

M is the worst-case number of uncombineable messages among the cells of the
RA that the system can deliver during a l4-state system cycle.

and where S, the time to execute a ld-state system cycle, is given by:
S = 14*t*TIgNT+K

where:

t is the time it takes for a state change to propagate one level in the tree.
(This is typically a small constant. Assume t=1 for our purposes.)

N is the number of leaf cells (L cells) in the tree
(Flg N7 is the number of levels in the tree.)

K is the extra time required during a 14-state system cycle (o bring in

microprograms, send messages between cells, and to complete storage
management.

We can already see from these formulas that the asymptotic time behavior of Mag0’s
machine critically depends upon the asymptotic behaviors of m, M, and particularly K. For
example, if m and M had the same asymptotic orders of growth, and if K were really a constant
independent of N (as Magd claims), then Magd’s machine would indeed execute power-log fast
(in fact, log-fast). Such is not the general case, however, and Magd's machine can actually have
O(N)_ execution time per 'RA, Or even Worse.

Let us now examine an example of how Magd’s machine can have an execution which is not
power-log fast. Recalling our discussion at the beginning of this section, we assume bit-serial
‘communication within Magd'’s machine for scalability (at worst, this only multiplies the execution
time by O(lg N)). For the time being, we also ignore the loading of microcode (assume resident

firmware in each cell). From the definition of K above, then, we get
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K = Mg N7+c20r1g N1

where:

c is the number of symbols moved during storage management during a 14-state
cycle. (The factor 20T1g N7 comes from the approximately twenty
registers of [lg N7 bits each in every cell of Magd's machine.}

Now in scme re:alistic situations RAs executing in Magé's machine might possibly have:

¢ = O(N)

m = O(M)
(One simple example of this might be a large RA getting pushed around by other RAs while it,
say, tries to REVERSE its elements. Other difficult permutations for Magd's machine include
such useful ones as the butterfly, bit-reversal, and shuffle permutations.’®) Substituting these into
the azbove formulas gives for Magd's machine:

tme/RA = [(ON)/M)+ 1I*O(N)+14-+M)*(Fg N7)

Whereupon, we see that no matter what asymptotic behavior we assume for M, Magd’s machine

still needs O(N) time or longer to complete such reduction steps.

The new computer system design which this report introduces has a very different and much
more promising asymptotic behavior. Let us assume (like we did with Magd's machine)} bit-serial
communication and no need to load microcode. Taking into account our system’s four phases per
cycle, its 8Mlg N1+20 cycles per reduction step, and its ~20 registers per cell, we obtain:

time/reduction step = ((1/2)8F1g N1 +20)*((2)3P+ 1)*(20rig N)

where:

P is the time required to perform a parallel sort

and where the factors of "1/2" and "2" come from the fact that to allow worst-case tree building,
the maximum number of symbols should actually be about half the total number of celis in our
system. As we can see from the above formula, if we can perform a power-l0g f_'ast parallel sort,
then our system will also have power-log fast execution for its reduction steps. The asymptotic

behavior of P, then, determines the asymptotic performance behavior of our system.
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Let's investigate P. Fig. 5-1 shows the time performance (and hardware costs) of several high
performance parallel sorting networks in terms of the number of cells, N, each could support for .
our system (and ignoring the bit-serial communication overhead, an Q(lg N) factor which our

formula above already takes into account).

Number of Worst-case
Parailel Sorting Network Comparators Sort Time
Required P
j-dimensional mesh sorter 17i
of Thompson and Kung O(JN) O(N )

(not power-log fast)

ordd-even or bltonic orter

of Batchet O(Nig’N) Q(g?N)

{powaer-log fast)

perfect-shutfle sorter

of Stane ON) Oflg® N)

(power-tog fast)

perfect-shuffle or
cube-connected sorter 18 1/7K

of Nassimi and Sahnl oQ ) Ok g Q)

whare Q' ’”"g N)

(power-log fast)

Fig. 5-1: The asymptotic impact of saveral choices
of parallel sorting network for our system

From this chart we see that the j-dimensionai mesh sorter of Thompson and Kung?? can sort N
cells in O(NV) time using.O(jN) comparators. Although it has the simplest topology of all the
networks under our consideration, the system it would produce would not execute-power-log fast.
The odd-even and bitonic sorters of Batcher3! on the other hand, can sort N ceils in O((1gN)?)
time using O{N(lg NY2) comparators. Either of them would produce a power-log fast system, but
at the expense of considerably more hardware than a mesh sorter. The perfect shuffle sorter of

Stone3? however, can sort N cells in O((lg N)?) time using O(N) comparators. This sorter realizes
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power-log speed with far less hardware than the other two above-mentioned sorters. Moreover, if
we have some flexibility in the number of comparators available in some perfect shuffle
interconnection, Nassimi and Sahni>? have described how this sane perfect-shuffle sorter can sort
Q cells in O(k 1g Q) time using only O(QL+1/%) comparators (where k is a constant and Qitlx
must be less than the total number of cells in the system). Fig. 5-2 shows how setting k to
different values can greatly vary this sorter’s asymptotic time and space behaviors. Thus, a perfect
shuffle sorter provides some interesting time and space tradeoffs to make in ‘unplementiﬁg our

system. For the time being, therefore, we choose a perfect shuffle for our system network.

Vatue of k fora Number of Worst-case
perfect-shuftle or Comparators Sort Time
cube-connected sorter Required (P}

of the type Nassimi and
Sahni describs

k=1
oQ?) Olig Q)
(sothat @ ¢ N)
k=10Q o@ | Og®a
(sothat 2Q { N)
k= 1/¢€ 0@ | o

(where € issmail)

Fig. 5-2: How different values of k impact the time and space performance
of the parallel sorters of Nassimi and Sahni

5.2.3 Hardware Cost

The low O(N) hardware cost of a perfect shuffle sorter enables us to combine both PEs and
communication network into an integrated whole: connect the PEs themselves into a perfect
shuffle network and let them carry out the comparator functions of a perfect shuffle sorter. Fig.
5-3 diagrams an example of such a system for the small-scale case of eight PEs. The toul
hardware cost of such a system would just be the total O(N 1g N) PE cost plus- the total O(N)

interconnection hardware cost, or just a total of O(N g N).
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Fig. 5-3: An eight-PE system incorporating a perfect shutfle
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5.2.4 Execution Speed

Consider Fig. '5-4 which graphs both O(N) and power-log fast execution times versus N.
Notice how the power-log fast curve, after a fast initial rise, eventuaily flattens out into an
approximate plateau which becomes more nearly horizontal as N gets larger. This plateau implies
that after a point, increasing N has only a small effect on the execution time, and hence, doubling
N after this point.almost doubles the parallel execution capacity (throughput) of a power-log fast
system. The O(N) curve, on the other hand, eventually increases linearly with N, which implies
that its throughput eventuaily becomes nearly constant, even when N increases any amount
These respective behaviors constitute the original motivations to design a power-log fast parallel

processor, such as the one this report proposes.

Execution
Time

N

Q(N) exscutlon time

powser-icg 1ast executlon

A S
W
=

croassover

Fig. 5-4: O(N) and power-log fast execution times versus N

We have already seen how our proposed multiprocessor reduction machine has a faster
worst-case asymptotic execution than even Magd’s parallel multiprocessor, and in fact, it even

achieves power-log fast execution speed for any reduction step it can execute. But asymptotic

descriptions can hide constant multipliers and lower-order terms which might significanty affect
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the relative execution speeds of systems we might actually want to construct. Looking back at
Fig. 5-4, we see that for N < Nerossover » the power-log fast execution time is actually worse than .
the O(N) execution time. For this reason, we want to try some numbers in our formulas to more
meaningfully compare our system’s performance with Magd’s, and in particular, find Nerossover-

‘Keeping the same assumptions as before (bit-serial communication between cells and resident
firmware in each cell), we choose for Magd's machine:

¢=N/2

m = N/2
(This might correspond, say, to the limiting case‘ of an RA trying to REVERSE N/2 symbols
while it gets pushed all the way across the system by storage management.) Substituting into the
appropriate formulas of section 52.2 gives for Magd’s machine:

worst ime/RA = [(N/2M)+ 110N +14+M)*Tg N
For the machine proposal of this report, we make the same assumptions {bit-serial
communications between PEs and resident firmware in each PE) as before, and use a perfect
shuffle organization with Stone’s sorting algorithm®? so that:
P = (MgNT?-Tg N1
Substituting into the appropriate formula of section 522 gives for our machine:
worst time/reduction step = (4T1g N1+ 20)*(1 +6[(T"Ig N2 -Tlg NIP*Mg N7)

This formula is independent of both storage management behavior and parallel communication
complexity so long as no system overflow occurs. With both of these exact formulas for
execution time, we need only specify M for Magd’s machine and try out values for N in both
formulas in order to compare the respective performances of both machines.

Setting M=1 would give Magd’s machine the notable property of having equal-sized state
times throughout its 14-staté cycle (except for the state transitions during its storage management).
It would also force Magd's mapkﬁne to perform operations like REVERSE only one element at a
time per cycle, because of the implied limit of 1 on uncombineable messages per cycle. For
M=1, Nerossover 1s in the approximate vicinity of 256. This means that for same-sized systems
executing identical collections of ‘massively parallel, message intensive, and storage-varying

programs, this report’s proposed machine could execute faster than Magd’s machine for all
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N>256.

Set_ting M to asymptotically greater values than 1 would disrupt locality of effect in Mago's
machine, because a single message-intensive RA (say, ons involving REVERSE) couid then slow
down the entire system when a 14-state cycle paused to deliver M messages before continuing.
Nonetheless, we could claim that storage management also disrupts locality of effect in the same
way, so leU’s give increasing M a wy. Seuing M=r1g N7 would raise Nerossover 10 just a liule
over 1024, still a .rather small value for a "massively parallel system”. Even M=Tlg N'I'2 would
only raise Nergssover 10 just over 4096. If we were to go ail the way to the maximum and set
M =N/2, Magd’s machine would then take care of ail the messages from every RA in the system
in a single (and very irregularly timed) 14-state cycle. Nerossover would then reach its maximum
value of approximately 100,000.

N=100,000 corresponds to a fairly large system at the present time. This large crossover
value might tend to suggest sufficient parallel computation pOWers for even tree-structured
multiprocessors like Magd’s machine. We must temper this judgment, however, with the
following observations: This report’s proposed machine can have much more powerful primitive
operations (like TRANS and even SORT) than Magé's machine. Our proposed machine, unlike
Magbd's machine, can also perform fully parallel definition lookups of any number of functions by
any number of RAs and still need only to keep one copy of each definition in its lookup area.
Moreover, once N increases past Nerossover, further increases in N for our proposed machine

increases its parallel capacity in a nearly proportional manner without its patterns of storage

management or parallel communication affecting this rate of increase.
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6. Conclusions

6.1 What Have We Accomplished Here?

This report has investigated the fully parallel execution of general-purpose functional
programs. By proposing a new system design and execution methodology in somewhat concrete
detail, we have fdund at least one way to meet the goals we set in chapter 1. In particuiar. our

new system design achieves all of the following:

It automatically detects and takes advantage of the maximum amount of program-
expressed parallelism in the programs it executes.

It directly executes a functional reduction language and has ample facilities to
implement many powerful primitive operators for this language.

It contains a large number of simple and identical processing elements,
interconnected in a manner which allows all general interprocessor
communication patterns.

It behaves as a power-log fast system for any computation it can execute o
completion, and, using our parts count metric, it costs only O(N 1g N) total
hardware to implement a system containing O(N) PEs.

As a result of our worst-case evaluative approach, these achievements provide some special
insights into the parallel execution of functional programs in general. For example, we can say
that with a sufficient number processing elements we eventually reach a point where doubling the
number of these PEs can nearly double the total system throughput for a very wide class of
massively parallel computations.

In addition to meeting these goals, our proposed system also solves, in power-log fast time,
the two rather more general problems of resource management. allocation and compaction.
Inefficient resource allocation and compaction (in the guise of "free list handling” and "garbage
collection™) have long plagued the conventional execution of computations written in functional-
style programming languages. Moreover, systems based on object-oriented message-passing
semantics have similar resource management problems. Hence, our new approach might sﬁmeday

find application not only in functional programming systems, but also for implementing parallel

execution in object-oriented systems like PLASMA and SMALLTALKY,
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6.2 What Might We Do With All of This?

The practicality of using our proposed system design for any real system depends on what we
really want in terms of system "generality”. If a planned system will only ever execute a single
éomputation (e.g.. an FFT network), then custom-designed, optimally configured hardware will
always work best for such a system. On the other hand, some hardware configurations may work
well over whole specialized classes of problems (e.g., tree networks for hierarchical divide-and-
_ conqﬁer computation_s). More generally, however, the universe of computational problem-solving
has many nasty surprises where certain useful computations fail to map at all well to a given
specialized parallel communication architecture (e.g, REVERSE in a tree network). When the
planned system needs- to retain predictable worst-case execution performance in spite of such
computational surprises, then we have the need for a system design like this reports proposal.

Many challenges still await the adventurous builder of any instance of our proposed system.
We have already noted the system overflow problem (chapter 5) that might occur shouid the
system run out of execution space, and also the necessity for decomposing program data into
g N7-bit chunks (chapter 2) so that each processing element in the system needs only a limited
amount of internal storage. Other important issues include testing and debugging sﬁch a large
multiprocessor, reliability considerations {(e.g., building a fault-tolerant parallel sorting network),
and many application-dependent system integration issues. All of these issues deserve additional
investigation.

For applications with N<100,000 using our new approach is appropriate when functional
expressions might need to perform complex symbolic rearrangements during execution (e.g,
sorting, permuting, matrix transposition), when expressions might need to perform many
definition lookups (e.g., when the programmer uses a hierarchical approach to deal with the
complexity of a computation), and when the symbolic storage behavior of the computation might
vary between extremes (e.g., ‘as it will often do when a single system executes several different
programs simultaneously). Any application with real-time paraliel processing will easily produce
such situations, including ail of the applications mentioned in chapter 1 (image processing, control

systems, simulation systems, and complex signal synthesis).
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For applications with N>100,000 the power-log speeds of our new approach’s reduction steps
become quite significant in its overall execution time. Regardless of problem size, the system
performs any executable parallel reduction step in what almost looks like constant time (recall the
logarithmic plateau in the power-log curve of Fig. 5-4), and thus closely approximates
proportional scalability. ~Note that we have this behavior even though we .assume PEs
communicate b1t-sena11y'

At the present time systems of 10° PEs constitute the limiting horizon of our technologma]
capabilities. The future will probably bring us systems with far more than 10° PEs, perhaps using
different technologies than today’s {maybe molecular logic?6). At that tme we will find it quite
a challenge to put together such huge numbers of processing elements and still obtain general-
purpose systems where the processors help each other more than hinder each other. Hopefuily,
system. designs like the proposal of this report will inspire some of the possible solutions to this

problem.
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Appendix A: Definitions of Our Example Primitive Functions

A.1 Meta Operators

NF (N Functions)

ANFf,6, .. fox> reduces 0  (KfxLHRX0, . LX)

Comment: NF enables many functions to simultaneously operate on the same argument(s}. We
also use the square brackets, [ .. ], to abbreviate (NF ... ), so that equivalenty:
Affy . fnlx> reduces to  (Kfx><LHx0, .. LX)

CN (ConditioN)

{(CN,f1,f2,f3),x> r1educes to
YCNLA X0 B f)x>  if fi is not a constant function,
<Bx>  if =T,
x> if fi=F,

otherwise it reduces to L.

C (Constant)

{(Cyv),x> reduces 10 Vv

Comment: We also use C(v) to represent (C,v), so that equivalently:

<C(v)x> reduces to v
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AA (Apply to All)

GAA DL, . ap>  Teduces o (Fap<fap, - Lamd)

Comment: AA enables the same function(s) to operate on many arguments.

INS (INSert)

{(INS,H,x> “reduces 10
F(alK(INS,D.(a2, . .amP)> if x=(a2 .. ,Am) and m>l,
a if x=(ap,
() if x=()

Comment: Notice how INS produces recursion via meta composition.

Al (Associative Insert)

{ALDx> reduces to
SERALDRY, - Arm PP <ALDGry a4 - Am?P

if x={ayap, .. .am) and m>l,
ap if x=(ap,

() if x=()

Comment: Al directly produces tree reduction involving a single implicitly repeated operator

part ("f" above).
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A.2 Regular Operators

1D (IDenti
{ID,)x> reduces to X

Comment; When the empty sequence, ( ), occurs in the operator part of an application, we can
say: () = ID and ID = (), and thus, either one can serve as the concrete

representation of 9.

HD (HeaD)

CHD,x> reduces to
- a; if x=(apa3, . .3y and m2l,

otherwise it reduces to L.

TL (Tail}

{TL,x> reduces to
(@, .. am if x=(a,az .. .am) and m2>2,
() if x=(a,

otherwise it reduces to L.
AP (APpl

<APx> reduces to -
| x> i x=(xy.x2),

otherwise it reduces to L.
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EQ (generalized EQuals predicate)

<EQx> reduces 10
T if x=(xl,x1)1
F if x=(x1y1) and x1#y1,

otherwise it reduces to L.

ATOM (ATOMic predicate)

CATOM,x> reduces to

T if x=( ), or x*L and x is atomic,
F if x#1 and x is not atomic,

otherwise it reduces to L.

NULL (NULL seguence predicate)

(NULL,x> reduces to
T if x=( ), or x=ID,
F if x#L and x#( ) and x=ID,

otherwise it reduces to L.

UN (UNion

(UN.x> reduces to
(apay, - .3 if x=(ap(a, .. Ag)) and m>l,
(ap if x=(ay,( )

otherwise it reduces to L.
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+,-.*./_ (arithmetic operations)

{+.x> reduces to the value aj+ay if x=(ajap) and a3 are numerical vaiues
{-x> reduces to the value ay — ap if x=(aj,a;) and apa; are numerical values
<*x> reduces to the value a;*ap if x=(aj,ay) and aja; are numerical values

/x> reduces to the value aj/a; if x=(ajap and aja; are numerical values

INX (INdeX

{INX,x> reduces to
(12, .. m) if x has the numerical value m,

otherwise it reduces to L.

REVERSE (REVERSE a sequence)

{REVERSEx> reduces 10
(Am3mels -~ 22310 if x=(apay .. .am) and m>l,
a; if x=(ap,
() if x=(),

otherwise it reduces to L.

TRANS (TRANSpose 2-dimensional array)

¢{TRANS, x> reduces to

((a11.a21, - -ax(312,222 - 432 (a1p.2%, - 2}
if x=((a1.a12, - 2220822 - B2 - (BLAD - ) and L,
(@) if x=( (a).

otherwise it reduces to L.
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Appendix B: Implementing Our Example Primitive Functions

The following figures show how our system implements the primitive functional meta operators and

operators of our example reduction language.
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‘Our system’s internal representation of a meta reduction involving NF:

e B — R G R

How our system reduces such an instance:

RA-location:

{+ 2 Ranking:

V&)

L 3 1 N3 11 1 1 J
Parallel contiguous
mitotic insertions
to provide space for
new "{"-brackats and
copies of operand:
C e feeed kel Ieses |

_— ) )

Copy demands
and
copy replies:

worst-case
|_execytion time: |

2|'|g§| +7 cycles

2['|ng| +4 cycles

Zl-lgN-l +4 cycles

2|-Igl;‘ +4 cycles

total worst-case
sxecution time:

8 Igﬁl + 19 cycles

Fig. B-1: Execution for primitive meta operator NF
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Our system’s internal representation of a meta reduction involving CN:

CNI(JICN

EEE e —

RA-location:

E:iE
i
-

How our system reduces such an instance:

AN

CN

OO R

1l 2

..%
al2] [2

worst-case
|_execution time: |

—

- |

—OAN

zﬁg I‘;I «7 cycles

<+ 2 Ranking:

2[igN] +4 cyeles

| N

Parallel contiguous mitotic Inssrtions
to provide space for a copy of the
operand if reduction foliows the first

aitarnative above (otherwise only some
symbol srasures and level number adjustments
nead happen for the cthertwo alte rnativesh:

2|-lg{;| +4 cycles

T el el bl el |

—)  —) ) )

Copy dsmands

and

copy replies

for the first

alternative: \L v ¥
|

2rlgf;| +4 cycles

-
-
b

Rewriting some brackets and level numbars:

.Ec:sngc:ul g?
i lalll
d BEeks

L5« EP

Ell < b

)
e
cycle
i
2|12l|a]

total worst-case
axscution time:

T ] e ML

Bl-lg N-| + 20 cycles

Fig. B-2: Execution for primitive meta operator CN
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Cur_systen'i’s internal representation of a meta reduction involving C:

EEEES ——
]l Ll o]
How our system reduces such an instance:

RA-iocation: m

Erasing cells and rewriting a level numbaer:

e
iy

XXX X

worst-case
axecution tima:

e —————

2|'|g ﬁ' +7 cycles

1 cycis

total worst-case
sxecution tima:

2Fg rq +8 cycles

Fig. B-3: Execution for primitive meta operator C
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_Our system'’s internal representation of a meta reduction involving AA:

G O — R R e

How our system reduces such an instance:

RA-location: m
P |

L | m——

AN

<+ 3 Ranking:

Parallst contiguous
mitotic insertions

to provide space for
naw "{"-brackets and
coples of cperator:

—_— —— > >

Copy demands
and

-
-

Fig. B-4: Execution for primitive meta operator AA
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worst-case
axecution time:

2Fg§| +7 cycles

2|-Ig B;l +4 cycles

2|'|gr:| +4 cycles

zrlgh;l +4 cycles

total worst-case
execution time:

arlg h;' + 19 cycies




Qur system s internal representation of a meta reduction mvolvmg INS:

—
1 Lz E !! El ﬂ H H E s
How our system reduces such an instance: worst-case
RA-location: %

/\/¢\/\ 2[igN] +7 cyctes

<+ 3 Ranking:
$ Zﬁgﬁl +4 cycies

Copying of the operator part:

"
<ms| | (@, ] l('*l'“‘n l

(INS( 1.1 NS ... "

1 cycis

Rewriting ¢eils and adjusting some level numbers:

P O
IR IREIEEY: i
|

e B

total worst-case
execution time: 4Fg §| +12 cycles

Fig. B-5: Execution for primitive meta operator INS
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~ Qur system’s internal representation of a meta reduction involving Al:

K e —
e

N

How our system reduces such an instance:

RA-location: m

L .|

AN

<+ 3 Ranking:

Two coples of the oparator part, rewriting ceils,
and adjusting some level numbers:

T \ \
l l I | 4] (a1...arn,?ﬂ _](a[n,ﬂ”...anj
(Al 4oty "AIT g " *(AIE .t

T O e e

worst-case
axecution time:

zl-lg 'Gl +7 cycles

Zrlgl;‘ +4 cycies

2 cycles

total worst-case
sxscution time:

4|-!g r;l +13 cycles

Fig. B-6: Execution for primitive meta operator Al
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‘Our_system"s internal representation of a regular reduction involving [D:

B —— &

. worst-case
How our system reduces such an instance: —acutlon time:
RA-location: %
L /\/\/\ . zrlg r;I +7 cycles
I | ——y ¢ | — 1 —
Erasing ceils and rewriting a level numbes:
‘l/ ‘l/ 1 cycie
X X

total worst-case
sxecution time: 2rlg N-l +8 cycles

Fig. B-7: Execution for primitive regular operator D
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Our system’s internal representation of a reguiar reduction involving HD:

How our system reduces such an instance:

RA-lacation: m

<+ 2 Ranking:

AN

i L L LR I 1L L . |

Erastng cells and rewriting level number{s}:

HD E
iy

X X

X <—kIx])
X<}

S :

|_execution time:

warst-case

2|-Ig h;l +7 cycles

ZFqN-I +4 cycles

1 cycle

totai worst-case
axscutlon time:

4|-Ig l;l + 12 cycles

Fig. B-8: Execution for primitive regular operator HD
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Our system's internal representation of a reguiar reduction invalving TL:

How our system reduces such an instance:

RA-locatlon: m

<+ 2 Ranking:

Erasing cells and rewriting level numbaers:

E ..

2ll2] (2]
§ ‘/

3 b
d WL

X <—kIx]
Xe<—|17

TL .. g
R —

exgcution tims:

worst-case

ZI-IQN-I +«7 cycles

2rlqr;| +4 cycles

1 cycle

total worst-case
execution time:

4Fg N] + 12 cycles

Fig. B-9: Execution for primitive regular operator TL
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. Our system'’s internal representation of a regular reduction in\}olving AP:
FIREEE — RS
E [a] (2] lolla]lz] 2] [2]

. wonst-case
How our system reduces such an instance: execution time:

e ———————————————

RA-locatlon: m

— —_ 2[?9:3' +7 cycles

| l

et

1 cycle

il

«—[kI=]
ELS] «—— L7
EL] <« FL7)

—— —
. (_.._——-—-— -

o [ ]
]~ ]
=]~ |

total worst-case
executiontime: 2 Fg lil +8 cycles

Fig. B-10: E:_cecution for primitive regular operator AP
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Our system’s internal representation of a reguiar reduction involving EQ:

S| E
R e — |2

How our system reduces such an instance:

RA-location: m

L |

AN

L | — | — 1

<+ 2 Ranking:

L 1
Match and verify ons-to-ons correspondance:

VV\I \l/

I ( X Xy ( Yy ¥

J

)

Tallying up the results of mateh-and-verily step
(requires one upward tree crestion actlvity to check
il any mismatches occurred), foilowad by a cell
rewrite ("T" or “"F"):

A4 T

L INaEREDE] J

|_exscutiontime: |

worst-cass

2[]9»]‘ +7 cycles

zﬁg r;' +4 cycles

1 cycie

rlg N-‘ « 2cycies

total worst-case
sxaqcution time:

S[IgN] + 14 cycles

Fig. B-11: Execution for primitive regular operator EQ
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Our system’s internal representation of a regular reduction involving ATOM:

 —

u

[aToM{#] | <
1 had
F

kel

N

waorst-case

How our system reduces such an instance: axecution time:

RA-location: m

 m— e

—OAN

zrlgl;l +7 cycies

Rewriting cails:

ATO

X «—RI~]

X <

1 cycle

ol4] «—E1x]

totai worst-case
sxecution time: 2|-lg N-I +8 cyclas

Fig. B-12: Execution for primitive reguiar operator ATOM
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Our system’s internal representation of a regular reduction involving NULL:
' /

a NULLE
ﬂ ar

. rat-
How our system reduces such an instance: oxecution time: |

RA-location: m

‘ 1 2|-I9§| +7 cycles

AN

Rewriting celis:

NULL

1 cycle

¥ €[ 1~]
X «—}-

o]=] «——E1Tx]

total worat-case
oxecution time: 2|-|g h;l +8 cycles

Fig. B-13: Execution for primitive reguiar operator NULL.
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Our system's internal repraesentation of a reguiar reduction invelving UN:

g UN .. E..
iGiL2lga] Lsd | Gl L

How our system reduces such an instance:

. : — zrtgﬁl +7 cycles

waorst-case

axecution time:

.m Ranking: M | 2[igN] +4 cycles

[ ] — m |

Erasing celis and rewriting level numbers:

UN

i

1 cycle

X €e—1x]
X €— g I~

ELF) < EB)
ELE®] «—kR"

p]~] «——EI=]
L8] «——— [ Lo

total worst-case
execution time: 4|-Igf;| + 12 cycles

Fig. B-14: Execution for primitive regular operator UN
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QOur system's internal representation of a regular reduction involving arithmetic:

0
1| 2)l2]

:
;
:
g

EINEL-TEL L]

| N Y I P LY

How our system reduces such an instance:

RA-location: m

a, +82

<+ 2 Ranking:

L LA L1 1% ) 1 |

Calculating the result and rewriting ceils:

SR
oy

XXX X

a, +a,

8]

worst-cass
axecution time:

zl-lg ﬂl +7 cycles

2igN] +4 cycies

1 cycle

totai worst-case
execution time:

4119?;' + 12 cycles

Fig. B-15: Execution for primitive regular arithmetic operator
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. Qur system’s internal representation of a regular reduction involving INX:

= — DB

How our system reduces such an instance:

b4 J

Mitotlc insertions for the correct number of numbered celia:

n1u “2' m
1 o |

y —
rd

worst-case

gxecution time: |

2['|ng| +7 cycles

ZFg r;l +4 cycies

total worst-case
axecution time:

4r|g|~:| +11 cycies

Fig. B-16: Execution far primitive regular operator INX
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_Our system’s internal representation of a reguiar reduction involving REVERSE:

How our system reduces such an instance:

RA-location: m

“+ 2 Raaking:

Erasing cells, rewriting level numbers, and permutation of ceiis:

(After < + 2 Ranking sach call has enough information to determine
the new positional jocation of its element in a reversed ssquencs.
If each celi now forms its new CDA by concatenating:

PCA , new slement position , old cell PA
sach cell can move to its proper new location.)

B REVERSE .. am,,
—— HGIE] G
X X

m- 1§ .
1 ]

REVERSE .. 2 1 E ]
@ 1 nn pu (i [l 1 1 I

worst-case

|_execution time: |

Zrlgrq +7 cycles

2|-|g h:l +4 cycles

1 cycie

total worst-cass
execution time:

4|-19N-| + 12 cycles

Fig. B-17: Execution for primitive regular operator REVERSE
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Our system’s internal representation of a regular reduction involving TRANS:

e —

How our system reduces such an instance:

RA-location: _ m
AN

1 ) e

AVZ)

| | . 1 ]

e ———————

<+ 2 Ranking:

<+ 3 Ranking:

Erasing caliu, rew riting lavel numbers, and permutation of cells:

(After< + 2 and < + 3 Ranking sach csil has enough information to
determine the new positional locatien of its element in a transposed
matrix, even when this matrix is represented as a linear array.

if each cell now forms its new CDE by concatenating:

PCA , new row , new column , oid cell PA
aach cell can move to its proper new location.)

s
N

BCRL

worst-cass
axecution time:

2Fg N-I +7 cyclas

zrlg IG‘ +4 cycles

2|-lg 'Gl +4 cycles

1 cycie

total worst-case
sxecution time:

GrlgN-‘ + 16 cycles

Fig. B-18: Exécution for primitive regular operator TRANS
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Appendix C: Some Additional Primitive Functions

(Note: these all happen to be regular operators.)

SUN_(Set UNion)

<SUN.©> reduces to
@2y o Zp)  if x=((Exn e XOLYE - Yo
and where {zfi<p<m+n} = {xfi<m} U {yli<n}
(with all duplicates removed),

otherwise it reduces to L.

SINT (Set INTersection)

SINT x> reduces to
(122 - o2p)  if x=((xpX2 o Xmh(YLY2 - Yo
and where {zli<p<m+n} = {xli<m} N {yli<n}
(with all duplicates removed),

otherwise it reduces to L.
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SHUF (SHUF1{le permutation)

{SHUF, x> reduces to
(RLX@/D)+1X2K (@ D+ 2 Zm/aXm)  if Xx=(X1.X2, . Xm) M1, and m is even,
() if x=(),

otherwise it reduces to L.

Comment: This example permutation demonstrates how easily we might use this execution

methodology to implement any rank-calculable permutation.

SORTF (SORT based on First subelement indices)

<SORTFx> reduces to
(61X 02X), - (OmXem) i x=((a1Xa)(@2%ap) -~ (AmiXam)):
where (b1.ba, .. .bm) is (21,23, .. ,am) sorted into ascending order,

otherwise it reduces to L.
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Qur system's internal representation of a regular reduction involving SUN:

. Jo |

el — B

How our system reduces such an instance:

. RA-iocatlon: m

<+ 3 Ranking:

Each symbol ¢all in the RA’s operand {sxcept those too close to the
left) acquiring one processing space cell and giving it the physical
address of an appropriate symbol cell to go and interogats:

Each of these processing space celis going to the corresponding
coll of the subslamaent to the lett and Inquiring it, hoping to find in it
the same symboi and level number as in its acquiring symbol ceil:
L 1L 11
® N
h \ h

o 1 1 e T3

LL

Then each reporting back to its acquirer:

TN Y Y _

One upward and cne downward tree actlvity aliowing sach operand
to tind out whether the subsisment to its left Is identical to itself:

Erasing cells and rewriting level numbars:

SUN

X € kIx~]
X<l

o] —~]1<— [ 1—]
Y < kT
Elple—klm]
Clgcl<—kIo]
X € pBI=]

X <klo]
CTole—kIal

worst-case
axgcution time:

2rlg N-l +7 cy"clu

zrlg P;‘ +4 cycles

1 cycle

1 cycle

1 cycle

ZFg h?' +4 cycles

1 cycle

total worst-case
execution time:

B{-Iglil + 19 cycles

Fig. C-1: Execution for primitive regular operator SUN
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Our system's internal representation of a regular reduction involving SINT:

e — &

How our system reduces such an instance: worst-cass
axecution time:
RA-location: m
L - 1
/\/¢\/\ 2|-I9r;I 7 cycles
[ j | | e | |
<+ 3 Ranking:

zrtgﬁ] +4 cycles

T LI I i3 Ar i)

Each symbol ceil in the RA’s operand acquiring one processing space
cell and giving it the physical addressas of two appropriate symbol csils

togo and Interrogate: (i It )
CT I I ] - — 1 eycle

Each o these processing space ceiis going to the co rrasponding cell of
the subsiement to the left and to the right (It sither sxists), ingquirtng
aach hoping to tind in it the same symbol and igvel number as in the
acquiring Rriniateinde |

gymbalcelt: ® (L\"/ $/I n $$J

- » - - :_-.__:___ 2 cycles
Then each reporting back to its acqulrer:

VY S S S 1 eycle

One upward and one downward tree activity allewing each operand
to find out whethar the substement to Its left or right is identicai to

¢ - ¢ \ $ , :t . ZFSIGI-chycIu

Erasing cells and rewriting level numbers:
v
X

SINT EH
\A
XX

o T~ |

1

1]
v
x|

e

1 cycie

X <kJZ]
O] N EN

X <kJo]

\4
X

:
1
:

total worst-case
axecution time: Gl-ig r;l + 20 cycles

Fig. C-2: Execution for primitive regular operator SINT
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How our system reduces such an instance:

RA-location: m

<{+ 2 Ranking:

VA"

i 3.1 13 1% ) | J

Erasing cells, rewriting level numbers, and permutation of cells:

(After < » 2 Ranking each cell has enough information to determine
the new positional location of its alemant in a shuffled array.
If agch cell now forms its new CDA by concatenating:

PCA , naw element position , old ceil PA
sach ceil can move toits proper new location.)

BRRRRE

SHUF:

L

—

=

aEeEn

‘Our system¥’s internal representation of a regular reduction involving SHUF:

=R —
B 1 l! 2]z B|B{ERnn

worst-case
axecution time:

zrlgr:' +7 cycles

2|-Igh:‘ +4 cycles

1 cycle

total worst-case
exscution time:

4Fg N] + 12 cycies

Fig. C-3: Execution for primitive regular operator SHUF
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Our system’s internal representation of a regular reduction involving SORTF:

How our system reduces such an instance:

Each parenthesis at exactly the < + 2 lavel ramembaring the value of
the celi to its immediate right in this RA (the element’s slemental
sort index), iollowed by a<+ 3 Ranking which also propagates this
remembared value to all the other leaves in the same tree (i.e.,inths
same element):

Erasing cells, rewriting level numbaers, and parmutation ot colis:

{After < + 2 Ranking each ceil has enough information to determine
the new positional location ot its eslement in a sorted array.
it sach ceil now formas its new CDA by concatenating:

LCA +3 , slemental sort index , oid cell PA
sach ceil can move to its proper new location.)

H A AER CR

vy
xX X

e
d L [2] 12! 2] [l 2l 2]

TR — CORhE:
T GEIG IE ] ] sl o iG]t Ll 2] e

warst-case
axecutfon time:

e e———————————r—

zrlg lil +7 cycles

2ie N| +4 cycles

1 cycie

totai worst-case
execution time:

4|.lgN-| + 12 cycles

Fig. C-4: _Executicm tor primitive regular operator SORTF
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