ON PROGRAM DECOMPOSITION AND PARTITIONING
IN DATA-FLOW SYSTEMS

Jean-Luc Gaudiot 1982
CSD-821212

UNIVERSITY OF CALIFORNIA
Los Angeles

Characterization of Intermodule Communications and

Heuristic Task Allocation for Distributed Real-Time Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philoscphy

in Computer Science
by

Lance Min-Tsung Lan

1985

© Copyright by
Lance Min-Tsung Lan
1985

The dissertation of Lance Min-Tsung Lan is approved.

Bruce Rothschifd

C O N0 <:?97°®

Tomas Lang /

Wﬁ%

‘Milos D. Ercegovac

"y |

Wesley W. Chu, Committee Chair

University of California, Los Angeles
1985

i

To

Show-Fung (Shiriey)
and our
Moms and Dads

1.1

1.2

1.3

1.4

PO DNOL B
QOO~IO G BN [

3.1
3.2
3.3
3.4
3.5

4 MODULE ASSIGNMENT

4.1
4.2
4.3
4.4

4.5

TABLE OF CONTENTS

MODULE EXECUTION FREQUENCY AND IMC PER

EXECUTION .cvvcecrecreiinsiississsessnsnsnssssnsssssssssesssssassesnnosnssssass
IMC VS, TIMEcccooevrieeisinsrissonsssssaransssesnsmassasssssssassssasesssssssnas
EFFECT OF SIMULATOR RANDOMNESS ON IMC
IMC FOR YARIOUS TASK THREADScccooviiiiiiiiinceane
EFFECT OF NUMBER OF OBJECTS ON IMCcccceeuneee
DOMINATING IMC ...ueciviirinrinnccineranssiasesssonnassacinsssosisssons
ALTERNATIVE REPRESENTATION OF IMCcccccoenee.
ACCUMULATIVE EXECUTION TIMEccconnrccinirennnnnnnias

EFFECT OF MODULE ASSIGNMENT ON

MEASUREMENTS ooiocceertrimmitmiasiresnnesnsisnisnnesassassssanssasssnesse
2.10 CONCLUSIONS

3 ANALYTICAL MODEL FOR IMC ESTIMATION
ESTIMATION OF KEY PARAMETERS ...voovooeereeemeemsessnsnens
ESTIMATION OF N{t),t141) ooororrerremeeeereseerssssesesserssessaceeeesee
AN EXAMPLE OF ANALYTICAL IMC ESTIMATION
CONTROL IMC oooooooooeoeesoeesv s sssssessmemsssessssasesesesssasemseeeaseen

CALCULATION OF SYSTEM RESOURCE UTILIZATION

PERFORMANCE OF THE PROPOSED OBJECTIVE

FUNCTIONiiiiiimnnnminneiiisnseessssseasiansrarstsssssssassssassssssansesss

HEURISTIC MODULE ASSIGNMENT WITHOUT

PRECEDENCE RELATIONccoviiiiiivinnnrinennancnsicssecsansnnines

APPLICATION OF ALGORITHM I-A TO THE DPAD

SYSTEM ..ecoireeirieerirnctreesieressssstetssssasssssnssssssssssasinssssssssassassassas

5 MODULE ASSIGNMENT WITH PRECEDENCE RELATIONSHIP

5.1

PRECEDENCE RELATION EXPERIMENTSccciviiinenenn.

iv

1 INTRODUCTION ...coovicrinirecrsinssrssssanassnsssnnmsssassssnassons SO
WHY DISTRIBUTED PROCESSING ..covvoemicerceccinencscsinnnnes
TASK ALLOCATIONcccvicivnrrcncrsssissssrsnssasssssnisssassssessssssesssas
BACKGROUND AND-RELATED WORKSccivvevnneinncens
1.3.1 Graph Theoretic Approachccccovcvcmnnciinniccsiccnienaanss
1.3.2 Integer 0-1 Programming Approachccccoecivcccnccnnancne,
1.3.3 Heuristic Approachccoccciieiirninnnicnissneeensscsisisccinene.

OUTLINE OF DISSERTATION ...ccoiirirenreriaennresanescsissssssanenns
2 MEASUREMENTS OF IMC

--

--

--

KEY PARAMETERS IN MODULE ASSIGNMENT
A NEW OBIJECTIVE FUNCTIONcccooriiineiirnnnnicninenncnnnns

page

00 =3 O W n OF b ps

5.2 TASK ALLOCATION WITH PRECEDENCE RELATION ... 109

5.3 MODULE ASSIGNMENT WITH PR FOR DPADc...ooe.e. 113
=4 EXAMPLE OF RESPONSE-TIME IMPROVEMENT BY PR 116
6 CONCLUSIONS AND DISCUSSIONS ..covvveueseneccesssssssssssmmsesasssassssesss 124
8.1 CONGCLUSIONS oovoouvsosveoeseereossssssmesessasssssssssssiassserssssassissssssseass 124
8.2 FUTURE RESEARCH AREAS ...ccrecuvecereesecns B 125
REFERENCES cocecvoseersosesssssssssssssesssssssssss e sesssssess s s s 128
Appendix A DESCRIPTION OF THE TRW DPAD .ccooovvmcurunsnrsrrensn 134
Appendix B THE UCLA DPAD SIMULATORccccccceessomsusssessinnrrsns 147
B.l CONVERSION TO SINGLE-BATCH-JOB SIMULATOR ... 148
B2 SIMULATOR TRANSFER FROM VMS TO UNIX ...cccovvuunnee. 153
B.3 ENHANCEMENTS TO SIMULATOR ..vvvruueereessensisnsmssssssanacs 155
Appendix C COMPUTING OBJECT DETECTION TIMES ..cccoovovrve 157
Appendix D MODULE-ASSIGNMENT SELECTION PROGRAM 164

'LIST OF FIGURES

Figure 2-1: Module M; Enablementscccocenenimnnninieninsinninneecncen:
Figure 2-2: Module Mg Enablementsoccoiincnnniiennennianianancne. esenasas

Figure 2-3: Number of Enablements for the 23 Modules in the.DPAD

Table 2-1: Intermodﬁle Communication (Words) Per Enablement
Figure 2-4: IMC(08,09) — 1.5MIPS, 40 Objects, Single Run
Figure 2-5: IMC(08,09) — 1.5MIPS, 40 Objects, 5 Separate Runs
Figure 2-8: IMC(08,09) with C.I. from 5 RUDS .cccoevereecraccrannonerercsensnssess
Figure 2-7: IMC(08,09) with C.I from 10 RuDS ..ccuorerrriiiiiiniinnninnnae
Figufe 2.8: IMC(02,08) with C.I from 10 Runscccvvnmmninncsieninninnans
Figure 2-9:]MC(OS,OQ) for Various Number of Objectsccccivvuncinins ,
Figure 2-10: IMC(08,08) for Various Number of Objeetscocoeevrueccere
Figure 2-11: Relative IMC SiZescccccrvmreeceransisssscmrnnuctnsnsnnnnnneneseieneaenns
Figure 2-12: Alternative IMC Presenta.tion. ...
Figure 2-13: Accumulative Module Execution Timec.coeoreeceecsecnsescens
Figure 2-14: Mz Enablements for Various Module Assignments
Figure 2-15: AET for Mg for Various Module Assignments rereenmeeteesrenees _
Figure 2-16: IMC(22,4) for Various Module Assignments ..o
Figure 3-1: Control-and-Data-Flow Graph for DPADccccevevinnnnnnnee.
Figure 3-2: Estimation for Execution Frequency of Module M,
Figure 3-3: Comparing Measured and Estimated Resultscccceeeeeree.
Figure 3-4: IPC in a distributed processing systemcccerececcccncnnnses
. Figure 4-1: Two module assignments for the DPAD systemcccccceeee
Figure 4-2: Port-to-port time for Detect/Verify threadccccoennnee.

vi

page

12
13
14
16
17
20
22
23
24
28
28

36
37

39
42
51
- 52
54
59

Figure 4-3: Port-to-port time for Precision Track threadccooceienennnen. 62

Figure 4-4: Assignment TTee .cocoiiiiimmmmnninecennsinninctsienniensenaeess 83
Table 4-1: Module Accumulative Execution Times ...coccovicninnniniinnanee. 69
Table 4-2: File-Update IMC (in MLI) oo eeseseseneeseesesees 70
Figure 4-5: Top 10 Assignments From Enumerationcccceveeccnienianen 72
Figure 4-6: Processor Loads":.'for Top 2 Assié'nments 73
Figure 4-7: Processor Loads for Two other Assignments R . T4
Figure 4-8: TRK PTP: Compare Arbitrary and Top 9 Assignments 75
Figure 4-9: P-T-P Comparison for S$/V- Thread ..ccoooveriscrccersrenncnne. 7
Figure 4-10: P-T-P Comparison for Track Initiation Thread 78
Figure 4-11: P-T-P Comparison {or Precision Track Thread 79
Table 43: M-M IMC Table vonerverrreessmsrrsssersssesrsssssessnssssmssssmesriss 83
Figure 4-12: Example of Phase I Evaluation of Algorithmccrvenenee. 84
Figure 4-13: Compare S/V PTP: Heuristic vs Exhaustiveccccoeerrennne 88
Figure 4-14: Compare TI PTP: Heuristic vs Exﬁaustive 87
Figure 4-15: Compare TRK PTP: Heuristic vs Exhaustivecoccccceeennnnns 88
Figure 4-16: TRK PTP: Heuristic and 4 Ma Assignmentsc...cceeuece. 89
Figure 5-1: Experiment NoO.1 cciiiiinimnintiienninecrsininsneasanns eeresserasanes g1
Figure 5-2: Results of Experiment NO.1 ovcreecrscvinicnstinnsennnmnnenincnsences 93
Figure 5-3: Results of Experiment NO.2 ..ccoeumiimnsciecmncnnssmnsisinisinsnrens -- 94
Figure 5-4: Experix;lent NO.B coeeeeerceriresraessrnescsesisserssssenssasesansssanssssssssasas 08
Figure 5-5: Results of Experiment No.3 .ccccoiinerneicasiinsrnnmmenssssiasennens 97
Figure 5-8: Results of Experiment Nou4 oococeiorienieinnssiiiinsennncsianen 99
Figure 5-7: Analytical Study on PR -- Deriving Wait-Time Ratio 101
Figure 5-8: Wait-time ratio as a function of E)P 23 £:1 3 1 TR 103
Figure 5-9: PR Experiment on Three Consecutive Modulescccec. 105

vii

Figure 5-10: Results of Three-Module Apalytical Studycocvinnnneee 106

Figure 5-11: Wait-time Ratio for Various M1, M2, and M3 Sizes 107
Table 5-1: Compare PR Index with IMC Indexcccoccvvcvnimrinnnisnncnncnne. 112
Figure 5-12: Minimum bottlenecks for DPAD by Alg HEU 114
Figure 5-13: Compare assignment A-PR and A-No-PR ..c.cccoccuvucnvvnnnnnne. 115
Figure 5-14: A Sample Task Control-Flc;w Graph .o 117
Table 5-2: AET for modules in Fig. 514ccccciviiiiiiinivnmnrrcneniicincinesenine 118
Table 5-3: IMC list for for the system in Fig. 514 .cccerimrevnriirnensnnnnan. 119
Figure 5-15: A Sample Task Data-Flow Graph ..cocovcveviccnnncnnnencnee 120
Figure 5-16: Assignments for the system in Fig. 5-14 .cccoerermininnverincnnnnc. 121
Figure 5-17: Response time for assignments in Fig. 516cccoccveennnnens 123

Figure A-1: Distributed Processing Architecture Design (DPAD) System 135

Figure A-2: d-RTOS Tasks ...ccccoevverenmrccssesisenssesistsnsnsnincniassissessssassnsanaes 137
Figure A-3: File Updates.in the DPADicrverreiriisinsninncsisnssansssansesssnes 138
Figure A-4: Definition of Processing Threadscccovviiiiiiricnninnnnnecne. 140
Figure A-5: Sequence of Threadsccocoiiinninniennnnsnnnneiaecennnnes 143
Figure A-8: Data Flowin the DPAD oo, 144
Figure A-T: Control FIow in the DPAD oeoveoeeoooeesieesssnreseeessesesssssns 145
Figure A-8: Partial Control-and-Data-Flow Graph in the DPAD 148
Figure B-1: Message Ordering Mechanism in DPAD Simulator 152
Figure C-1: SKYMAP, the Input Scenario File ..ccoovvvieciiiieiinninniinans 159
Figure C-2: Detection Times for Objects by Various BEAMs 181
Figure C-3: Detection Times for Each Object ..occorinvcnrnicicnnniinnanne 183
Figure D-1: Output From Tree Enumerationccoiviiiiiniannianennnnne 165

viii

LIST OF NOTATION

Roman Capitals

E - Qualifier for module enablement: Vi{Eity,ty+1), Lif{ Eityrtysr)-
F - File: F},

I - Interval size between PR levels: Ipp

IMC - Alternative presentation of IMC Volume: IMC;{#5,¢5+,)-

J - Number of I;aodules

K - Number of files

L - Average message length: L(Wity ty+y), LRty tye1)-

M - Module: M;.

N - Number of module invocations: N{y,¢4+1)-

Also, Number of PR levels: Npp.
Q - Processing-cost matrix with elements ¢,

R - Qualifier for read

S - Number of sites (processors, or computers)

T - Accumulative execution time (AET) of a module: T{M;t;,4,).
V - M-F or F-M IMC Volume: Vi{ Rty tis1)s Vi Wit tas1),

W- Qua.liﬁ;er for write

X - Assignment matrix with elements z,

Small Roman

h - Time index: (¢,¢3+1)

J - Module index: M;

§ - Module index

k - File index: F}

p - probability: p;o(Eitytier)s Pl With tas1), Pl Ritastaan)-
¢ - Element in processing-cost matrix @: ¢,

r - Site (processor) index

s - Site {processor) index.

Also, memory storage requirement for module M;: s;.

t - Site (processor) index

z - Execution time (ET) of a module per enablement: z{ tata+1):

Also, Element in assignment matrix X: z;.

Greek

a- Percent;ge to decide IMC threshold 8¢

B - Percentage to decide processor-load threshold 8p;
3 - Indicator function

~ - Importance indices for IMC and PR: Y, Yer

8 - IMC and processor-load thresholds: 0y, @pr

A - Arrival rate for tasks

p - Processor utilization

xi

ACKNOWLEDGEMENTS

I would like to express special thanks to my committee chairman,
Professor Wesley W. Chu, for his guidance, friendship, encouragement, and
Ij insightful comments during the entire course of this- research. I also thank
. Mike L. Gréen,=Edward Y. S. Lee, and Richard P.-Y. Ma of TRW for their
assistance in installing the DPAD Simulator at UCLA, Kin Kwong Leung for
sharing with me his analytic model for estimating module response time and
task response time [CHUS84b| in my study of precedence relationship, and the
members of my dissertation committee: Professors Milos Ercegovac, Tomas
Lang, Bruce Rothschild, and Harold Borko for their encouragement. Thanks
also are due to Jung Min An, Joseph Banni.%ter, Joseph Hellerstein, and Leslie
J. Holloway, for their stimulating discussions during this research, as well as
Salpy Manjikian, Wendy Hagar, Aeri Lee, and Laurel Cornachio for their

secretarial and administrative assistance.

Additionally, I would like to thank my grandma Pern-Tow, my parents
Chio-Dong and Shu-Kuan, and other members of my family for their love and
emotional support. I would always remember the lesson my lat;a father-in-
law, Dr. Jin-Liu Hsu, taught me;-: 'Always be honest in research.’
Unfortunately he passed away one month before I ﬁni;h this dissertation.
Finally, I express special thanks to my wife Show-Fung (Shirley) whose love,

patience, sensitivity, and devotion kept my motivation going up to the

xii

completion of my Ph.D.

This work was supported in part by U.S. Army Contracts No.

DASG80-79-C-0087 and DASG60-83-C-0019.

xiil

May'16, 1952

1970-1974.

1974-1976

1976-1977
1077-1978
1078-1979
1980-1981
10831984

1978-1984

VITA

* Born, Kangshan, Kaohsiung Hsien, Taiwan

* BS. in Electrical Engineering,

National Taiwan University
System Engineer, China Steel Corp., Taiwan

M.S. in Computer Science,
University of Nebraska - Lincoln

Systems Programmer, Nebraska State Department of
Labor, Lincoln, Nebraska

Member of Technical Stafl, Technology Semce Corp.,
Santa Monica, California

Member of Technical Sta.ﬂ', 0OAO Corp.,
Los Angeles, California

Member of Technical Staff, RFA Associates,

_Consultant to Rockwell Int_ernationa.l, Los Angeles

Research Assistant, Computer Science Department,
University of California, Los Angeles, California

PUBLICATIONS

D. W. Embley, M. T. Lan, D. W. Leinbaugh, and G. Nagy, "A Procedure for
Predicting Program Editor Performance From the User’s Point of View", Intl.
J. Man-Machine Studies, Nov. 1978, pp. 639-650.

M. T. Lan and G. Moring, "JOVIAL 73 Automated Complexity Analyzer”,
Contract Final Report, #F04704-79-C-0059, OAO Corp., Lcs Angeles, Calif,,
Sep. 30, 1980, for the MX Missiles Project.

xiv

W. W. Chu, L. J. Holloway, and M. T. Lan, "Task Allocation in Distributed
Data Processing”, IEEE Computer Magazine, Nov. 1980, pp. 57-69. (Also in P.
L. McEntire & R. E. Larson (ed.), Distributed Computing: Concepts and
Implementations, IEEE Press, 1984, pp. 109-119).

W. W. Chu, J. Hellerstein, and M. T. Lan, "Research on the Shared Database
Kernel for the BMD Application”, Contract Report CSD-820430, UCLA, April
1982, for US Army, Ballistichissile Defense Agency.

W. W. Chu, J. Hellerstein, and M. T. Lan, "The Exclusive-Writer Protocol: A
Low-Cost Approach for Updating Replicated Files in Distributed Real-Time
Systems®, The Third Intl. Conf. on Distributed Computing Systems, Miami/Ft.
Lauderdale, Florida, Oct. 18-22, 1882, pp. 289-277. (Also in P. L. McEntire &
R. E. Larson (ed.), Distributed Computing: Concepls and Implementations,
IEEE Press, 1984, pp. 219-227).

W. W. Chu, J. Hellerstein, and M. T. Lan, "Database Management Algorithms
for Advanced BMD Applications”, Contract Report CSD-830430, UCLA, April
1083, for U.S. Army, Ballistic Missile Defense Agency.

W. W. Chu, JI. Hellerstein, and M_.. T. Lan, "Database Management Algorithms
for Advanced BMD Applications®, Contract Report CSD-840031, UCLA, April
1984, for U.S. Army, Ballistic Missile Defense Agency.

W. W. Chu, M. T. Lan, and J. Hellerstein, "Intermodule Communication
(IMC) Estimation and Its Applications. in Distributed Processing Systems®,
IEEE Trans. on Computers, vol. C-33, no. 8, Aug. 1984, pp. 691-699.

ABSTRACT OF THE DISSERTATION

Cl;é.racterization of Intermodule Communications and
Heuristic Task Allocation for Distributed Real-Time Systems
by
Lance Miﬁ-Tsung Lan
Doctor of Philosophy in Computer Science
University of California, Los Angeles, 1985

Professor Wesley W. Chu, Chair

Distributed processing ha;'. the potential for providing lower cost,
better response time, and iﬁgher availability than centralized processing. In a
distributed real-time system, a fixed set of application program modules reside
permanently on a set of computers {or, processors). Module executions are
invoked by a stream of external stimuli (arrivals). A key work in the design
of distributed real-time systems is task allocation {module assignment) —
assigning the program modules onto the set of computers such that the
processing of each stimulus (event) can be finished within a prescribed time

limit.

The three important parameters in task allocation are intermodule
communication (IMC), accumulative execution time (AET) of each module,
and precedence relations (PR) among program modules. IMC is the
communication between program modules through shared files. When a
module on a ;:omﬁuter writes to or reads from a shared file on another
computer, IMC results in IPC (interprocessor communication), an overhead to
the processor load. Therefore, a task-allocation algorithm should try to
minimize IPC by assigning a pair of heavily communicating modules to the
same computer. On the other hand, AET always contributes to processor
load; its contribution is independent of task allocation. Constructing a
simulator to measure the IMC®and AET is time-consuming. A model is
therefore develeped to estimate these values, based on the control-and-data-
flow grapﬁ and branching probability. Estimated results for a space-defense
application match closely with the measured values obtained from a simulator

of this application.

A program module can not be enabled before all its predecessor(s)
finish execution; this relation is called the precedence relation (PR).
Apalytical results indicate that the size ratio of t{vo consecutive modules
plays an important role in task allocation. Generally if the execution time of
the second module is much larger than the first one, then assigning these 2

modules to a same computer is beneficial to response time.

Given J modules and S computers, there are $’ module assignments.
It is not feasible to enumerate through all these assignments to find the
optimal assignment when § and J are large. A heuristic algorithm is proposed
to find sub-optimal assignments, based on the concept of minimum bottleneck,
using IMC a.nd‘ AET data and PR rules. Simulation results indicate, I;13'1131: the

algorithm generates good assignments.

CHAPTER 1
INTRODUCTION

1 s

1.1 WHY DISTRIBUTED PROCESSING

Although the computer spegd has increased several orders of
magnitude during the last 30 years, user demand for computing power is
increa:;ing more quickly. In the early '50s, it was estimated that 50 IBM
Corp. model 704 mainframes would satisfy the computational requirements of
the U.S. [MALLS2). By the end of that decade, every.' sizable business
establishment, college, and government agency had at least one computer.
Nowadays, the demand for computation is still chalienging the computer

architects.

One example is a real-time computer system embedded in a space-
defense radar system where the computer must process the data stream
returned from a continuously scanning radar in real time. Besides real-time
applications, computer speedup is desired in applications of lengthy,
repetitive nature. The quality of computational results in areas such as
meteorology, cryptography, image processing, and sonar and radar

surveillance is proportional to the amount of computation performed.

For example, in the VLSI automatic testing, every chip produced by a
semiconductor manufacturer should be tested extemsively. A speedup for
testing a chip would increase the production volume and/or reduce the use of
testing machines and technicians. Another example is in VLSI design
automation where 'simulating a 10*instruction sequence requires 49 minutes"
of CPU time andt simulating a 10‘-in§-truction sequence requires 250 hours.'
[BLANS84|. If v#e can speed up the simulator, the product design cycle will be
significantly shortened because many simulation runs are usually necessary

before a chip design is finalized.

Many applications require speed capability not achievable with a single

computer (or processor). ! The two obvious approaches to this problem are
faster circuits and distributed data processing (DDP). This thesis deals with -
DDP which provides for simultaneous execution of multiple program modules
of a task. In DDP, all processors should be equal (i.e., no master/slave
relations) and each can access any network resource without the interference
from centralized controllers. If properly applied, DDP can be a much cheaper
technique than a single high-speed computer. Hundreds of microprocessors
can be interconnected to provide a processing entity that outperforms the

cost/performance ratio of a supermainframe.

1 *Computer” and "processor” are used interchangeably in this dissertation.

1.2 TASK ALLOCATION

Task partitioning and task allocation are two major steps in the design
of distributed processing systems [CHUS80]. If these steps are not donme
properly, an increase in the number of computers in a DDP sys?em may
actually result in a déc;'ease of the total throughputl." This is the \;élfl-known
saturation effect. In this dissertation, we assume the software sys£em for a
DDP application has been well partitioned into a set of program modules (or,
subroutines). We then .;Jtudy how to properly allocate (assign) these modules
onto the multiple computers of the DDP system in order to realize the
benefits of DDP. ({In this dissertation, "task allocation” and “module

assignment” are used interchangeably for step 2.)

The three important parameters for task allocation are intermodule
communication (IMC), accumulative execution time (AET) of each module,
and precedence relatit?ns (PR) among program modules. IMC. is the
communication between progi'am modules through shared files. When a
module on a computer writes to or reads from a shared file on another
computer, it requires extra processing and communication overhead which we
shall refer to as IPC (interprocessor communication). A task-allocation
algorithm should try to minimize IPC by assigning a pair of heavily
communicating modules to the same computer. The AET contribution to
processor load is independent of task allocation. Finally, the precedence

relation specifies that a program module can not be enabled before all its
3

predecessor(s) finish execution. Analytical and experimental results indicate
that the module-size ratio between two consecutive program modules plays an

important role in task allocation.

1.3 BACKGROUND AND-RELATED WORKS

Existing module-assignment methods can be divided into four
categories: queueing model approach, graph theoretic approach, integer 0-1
programming approach, and heuristic approach. Existing queueing models do

not consider IMC and therefore do not provide good assignments.

1.3.1 Graph Theoretic Approach

In general, this approach can han&le only 2-processor module
assignment problems. Each module is represented by a node in a weighted
graph where positive numbers assigned to the nodes represent the expected
cost of each module due to its execution. IMC cost between each pair of
modules is r.epresented by the weight of a nondirected arc connecting the two
nodes [JENN7?7, STON77, STON78, RAO79, BOKH79, CHOUS82]. The arc
weight then becomes the interprocessor communicat{on (IPC) if the pair of
modules are not coresident on. a processor. Any pair of coresident modules is
assumed to have zero IPC cost. An additional node is also provided for each
processor; an arc between a module node and one of the two processor nodes

represents the processing cost of running the module on the other processor.

The module assignment strategy in this model is to minimize total cost,
defined as the sum of processing cost and IPC cost. In order to represent the
assignment of modules to processors an assignment matrix X is defined such

that

1 if module M; is assigned Processor 3

Tis = | 0 otherwise

Processing cost is given by the @ matrix,
Q = {q'-'}, ¢'=1, « .. J, 8=1, ... S

where J is the total number of modules, S is the number of processors (sites)
in the system, and g, represents the processing cost for module M; on
Processor 8. A value of infinity, ¢;, = %, implies that module M; cannot be

executed at Processor s.

Let v;; represent the IMC volume between M; and M;. The total cost
for processing a given task can then be expressed as an objective function of

the assignment X.

tRe ;<1

Cost(X) =3 E{q..r‘. + 3 2wy =--2‘:}

(1-1)

The first term of eq. (1-1) represents the processing cost for each module on
its assigned processor. The second term represents the IPC cost between

pon-coresident modules. The normalization constant w is used to scale
' 5

processing cost and IPC cost to account for any differences in measuring
units. The minimum-cost module assignment is obtained by performing a

min-cut algorithm on the graph [HARAS9].

While this method is _‘conceptually simple, it has several limitations.
First, an extension of the ﬁiin-cut algorithm to an arbitrary number of
processors quickly becomes computationally intractable. An extension to four
or more processors has been proposed for cases where the IMC pattern can be
constrainted to be a tree [STON78]. Second, a weighted graph represents
only the data flow; it does not show the control flow (the prece@e_nce
relationship) among the modules of a task. The min-cut algorithm does not
consider the precedence relationéhip. Third, the method assumes 6ne—time
exeéution of modules. But, in almost all real-time systems, program modules
reside in the systems during entire mission time and a module is invoked (i.e.,
enabled} to execute by each occurrence of certain type(s) of events, e.g. the
completion of a preceding module in the control flow or an arrival of a radar

search return.

1.3.2 Integer 0-1 Programming Approach

This method stems from the file allocation problem where the model is
formulated as an optimization problem and is solved via a mathematical
programming technique [CHU69, CHU80, MA82]. As with the graph theoretic

approach, the goal is to achieve optimal system performance by minimizing

8

the total cost defined in eq. (1-1) over the module assignment X. In addition,
the minimization is done subject to some constraints which may be imposed
by a given environment or the design specifications. For example, a limited-

memory constraint is represented by

28;2". = R, ’ 8=1,I ... 85

where ; represénts the amount of memory storage required by module M; and
R, represents the memory capacity at Processor s. Load balancing can also

be achieved through imposition of constraints.

The integer 0;1 programming approach can handle any number of
processors. However, it is time-consuming to optimize the performance for a
. system with a large number of processors and modules. And it is rather
complex to express the precedence relationship and its effect on task r%pouse-

time analytically.
1.3.3 Heuristic Approach

Gylys and Edwards proposed a heuristic algorithm for module
clustering [GYLY78, EFES2]. The process of assigning two modules to the
same processor is called fusion. The algorithm searches for a pair of modules
with the largest IMC and checks to see whether the fusion of these two
modules satisfies the real-time and memory constraints. If it does, that pair is

fused. Otherwise, the pair with the next largest IMC is chosen as a possible

candidate. The fusing process continues until all eligible pairs are examined.
Although simple and fast, this approach again assumes one-time execution of

modules. And, it does not consider precedence relationship.

After examining the above approaches, we are motivated to develop a.

heuristic algorithm that can remedy their shortc;omings.

1.4 OUTLINE OF DISSERTATION

To provide a testbed for testing our theories and model analysis, we
use a simulator that simulates a BMD (Ballistic Missile Defense) a.pplicatioﬁ
— a distributed processing system for a defense unit to process the radar
returns (input scenario). This BMD application (Distributed Processing
Architecture Design - DPAD) and its simulator are presented briefly in
Appendix A. Our UCLA DPAD Simulator is a m;)diﬁed version of the one
originally developed by TRW/Redondo Beach, and we have made several
enhancements (see Appendix B) for performance measurements, statistics

gathering, data reduction, curve plotting, and reduced simulation time.

Since IMC and AET dramatically impacts the performance of
distributed systems, a methodology is proposed to measure and present their
values over the time (Chapter 2). IMC for file-update traffic and AET of the
DPAD are presented as an example. From the insights obtained with our
IMC measurements and other data from the simulation, an analytical model is

constructed in Chapter 3 to estimate the IMC in a distributed processing
8

system. This model is then applied to the example DPAD system. The

results show that the model provides good estimation.

Next, we present an objective function for task allocation that

. 1;expresses the processor load of a bottleneck proceaa.or in terms of IMC and

. AET (Chapter.4). The basic idea is to find a task-allocation algorithm that

assigns the modules to processors such that the load of the bottleneck
processor is minimized. To avoid the enumeration of a2 huge number of
possible module assignments, a heuristic algorithm based on the objective
function .is proposed and shown to generate good assignments. Chapter 5
discusses the relationship between the precedence relation (PR) and task
allocation. PR specifies that a program module can not be enabled before all
its relevant preceding module(s) finish their execution. Simulation and

analytical results indicate that the size ratio of two consecutive modules plays

‘an important role in task allocation. Task response time can be reduced by

properly allocating the PR-related modules. An improved heuristic algorithm
for task allocation is presented based on PR, IMC, and AET. The algorithm
considering PR is applied to both the DPAD system and another distributed
system example. It yields better response time than the algorithm which does
not consider PR. Finally, the conclusions and areas of future research are

given in Chapter 6.

CHAPTER 2
MEASUREMENTS OF IMC 8

Communication between program modules is ca.iled intermodule
communication (IMC). When two modules are assigned to different
computers, their IMC creates interprocessor communication (IPC), thereby
requiring both the sending and receiving computers to execute instructions for
I/O processing. If the modules reside on the same computer, no IPC is

P

incurred. In general, [PC should be minimized to reduce the CPU cycles

spent on I/O, thus improving the response time and throughput [CHUS0|.

Since the total volume (words) of module-enablement messages is
normally much smaller than the file-update messages, we consider only the
IMC volume between each pair of modules. Here, we report the IMC
measurements and characterize the IMC in terms of how it varies with time,

number of objects, task threads, and module pairs.
2.1 MODULE EXECUTION FREQUENCY AND IMC PER EXECUTION

A program _module is enabled every time a predefined event occurs, e.g.
Mo, is enabled by each radar return while M; is enabled whenever both My

and My finish their execution. Therefore, a module could execute multiple

10

number of times during a time interval. The IMC volume from a sending

module M; to a receiving module M;, for the time interval from {; to {34,

Vi ti;ta+1), has two components: 1

1. The number of times the sending module executes during the interval,

- N{ty,ta+)

9. The average message volume sent to module M; per ezecution of M; during

the interval, v,-;{t,,,thl).

Thus, we have

Viltutier) = Nftutisr) * v tustasr)

Regarding the number of module executions, Figures 2-1 and 2-2 plot
N{ty,tie1) (th41-ty = 100 ms) for modules M, and My, respectively. (The
vertical lines indicate 909% confidence intervals which are discussed in Section

2.3.) Both Figures 2-1 and 2-2 were obtained f{rom DPAD simulations of a

three-computer distributed system for a scenario with 40 objects. 2 Figure 2-3
presents Njt;,t4+;) for all twenty-three modules in the DPAD for the same

scenario.

! 4 is simply an integer index; we reserve i and j for indexing other items in
this thesis.

2 IMC does not change significantly with module assignment or the number of
computers. See Section 2.9.

11

No.

off enablements

9

8aL

7%

0 500

FIGURE 2 -1

1000 1500 2000 2S00 3000 350D
Lima(msac)

. TASK 01 ENABLEMENTS - 1.5 MIPS, 40 ORJECTS

12

of enablements

No.

20

24

21

18

13

10
L)

500

[=]

FIGURE 2-2

1000 1500 2000 2500 3000 3500
time{msec)

. TASK 08 ENABLEMENTS - 1.5 MIPS, 40 OBJECTS

13

160

No. of F
Exec. [

0 ¢

11111

-, T T ——

T T v ¥ Y -

uuuuu

T v T T ——

Nae) TENan e 1ENag)

LLLLLL

F1s,2-3 No., OF MODULE EXECUTIONS

14

Module M, is executed once for each radar return except those
SEARCH returns with no detection. So, Figure 2-1 reflects offered load:
loading increases as more objects are detected and loading decreases when no
more object detections occur (sbout 2 seconds after the first detection).
Figure 2-2 shows a sumxla.r trend for Mg but with fewer module executions.
This is because only Precision-Tracking radar returns mvoke Mg (see Figures
A-4 and A-7) while SEARCH returns with detection, VERIFY returns,
Coarse-Tracking returns, and DISCRI (discrimination) returns passed down

from M, would invoke other modules (My, M,, or the pair M;s & M)

Table 2-1 shows the IMC between the module pairs, measured in words
sent per ezecution of the sending ﬁodule. A blank entry in this matrix means
that no niessa.ge words are sent out from the sending module. In most cases,
a module execution results in sending a constant number of words to other
modules, so ”:'.:‘(ty,24+1) simplifies to v,-'J-. For example, a module M, execution
always causes 13 words to be sent to Mj (10 words for file updates and 3
words for message header). However, there are cases in which p,-;- is not a

constant (e.g. 0;4'23). In these cases, the matrix entry has two numbers.
2.2 IMC VS. TIME

In our simulation, we measured IMC in 100 ms intervals for each pair
of modules. Figure 2-4 shows the IMC for the file updates sent by module Mg
to M. (This result is obtained from the same simulation which generated the

15

INMTTAVNT ¥3d (SQYOM) NOTLVIINDWWOD TINOWYIINI 'T-C 1avL

16

92/0 st SE
€0t N
tot
94 [s2r0 . 9/0
-)
B 8
cz/c 9
L0S/E1 .
B €l
_. 0 bl R 0L/¢ S fehy
£t
. 9
B 9
lot/o| gz/o|sz/0pz/0
51
£L/0

€2 2 12 oz 6L 8L £ 9 SL ¥l el 2zl U ot ‘6 8 (9 S ¥ £

m-_—tN M W Y W0 D h

ilordse senl from Task 08 to Task 09

&3

sed

430

420,

350

280,

21

140

gt &

\

0 500

FIGURE 2 -4

1000 1500 2000 2500 3000 3500
time{msac>

. IMC (08,09) - 1.5 MIPS, 40 OBJECTS (SINGLE RUND

17

curves in Figures 2-1 and 2-2.) Note that the activities of M increase from
tactical time 0 (when the system is empty) to a peak point at about 2 seconds
(when all objects in the scenario move out of the surveillance area). This

curve can be divided into three phases:

1. Initial phase. Objects are initially detected and kept in track, and thus the
tmage arrival rate is greater than the image drop rate, where the image
arrival rate is defined as the rate at which images are changed from
TRACKI (track-initiate) stage into TRACK (precision tracking) stage,
and the image drop rate is defined as tﬁe rate at which TRACK images
are dropped from further tracking due to image redundancy or image’s

not being classified as one of the top five threats.

2. Steady phase. After 1.2 seconds, fewer objects are detected {about 2 or 3
every 100 ms) and the image arrival rate is almost equal to the drop

rate.

3. Trailing phase. After 2 s, no images arrive but many are dropped.

Two dips appear in the steady phase because the image drop rate is slightly
higher than the image arrival rate during those two short periods. Clearly,

the curve shape is highly scenario-dependent.

18

The curve in Figure 2-4 is similar ! to the one in Figure 2-2 which
shows the number of enablements for Mg, because v;,g is a constant, 23

words, most of the time (See Figure 2-3).

2.3 EFFECT OF SIMULATOR RANDOMNESS ON IMC

In the UCLA DPAD simulator, random numbers are used in
determining events, such as
Cross Trﬁc Rejection
Impact Point Prediction
Known Object Recognition
Redundant Track Elimination
Passive Object Discrimination
We have enhanced the simulator to permit maultiple runs, each with a
different starting seed for the random number generator. Figure 2-5 shows

five curves as the results of five such replication runs.

Since IMC varies with cross traffic rejection, impact point prediction,
etc., we are interested in the mean IMC and the associated 90% confidence
interval (C.L). This confidence-interval approach will be used for all of the

measurements in this study, e.g., the number of module enablements

1 The difference in curve shapes results mainly from the time lapse between
the instant that module Mg is enabled and the instant that this enablement’s
execution is finished and messages are sent. That is, an enablement may be
counted in a 100 ms interval, but its execution is finished and the IMC
incurred and counted in the next 100 ms interval.

19

2r0¢s

mmMmm

o e L ok S S
L B R R R I
’

3000
t imei{maec)

3500

2500

60 Mse] 09 g *»8®) wWOJ} JUEs epJOp

=]
== 3
=
~
o
[=]
w
vy
X, <D
o
i 4
L
S
A T)

| =]
4
n
T R B

W < < M o~ o -

FIGURE 2-5. IMC (08,09) - 1.5 MIPS, 40 OBJECTS (5 RUNS)

20

presented previously in Section 2.1 and the port-to-port times presented in
Section 2.1. Figure 2-6 shows the'means and confidence intervals, for the five

curves in Figure 2-5.

. Many C.L's in Figure 2-6 are quite large. Since this mean IMC curve
for 5 replication runs is not precise enough, 10 replications were performed as

shown in Figure 2-7. Comparing Figure 2-7 with Figure 2-8, we note that the

width of the C.L’s have been reduced almost by 50%. !

2.4 IMC FOR VARIOUS TASK THREADS

- Where there is an image Qetected, first there is' processing in the
Search/Verify (S/V) thread and then in the Coarse-Tracking thread (See
Figures A-4 and A-7). For both of these threads, activity drops very quickly
when there is no new image arrival, i.e., it is sensitive to image arrivals. That
is why the plot of IMC between modules 2 and 3 over time, IMC(02,03), for

the S/V thread shows a saw-toothed shape (Figure 2-8).

On the other hand, the activity for Precision-Tracking thread rises
steadily (as shown in Figure 2-4) because a detected image is held in this
thread until dropped by redundant track elimination or passive object
diserimination. At about 1.2 s of the tactical time, activity reaches a constant

level. And then, at about 2 s when all objects leave the surveillance area, the

1 The confidence intervals for 15 replication runs were also derived, but they
showed only slight improvement over the 10-run results.

21

Worde sent from Task 08 to Taqk 09

560

430,

920

350

280

214

1400

0

500

1000

1500

2000

2500

3000
time{msac)

3500

FIGURE 2-6, IMC (0&,09) WITH C,I, FROM 5 RUNS - 1.5 MIPS,

40 0BJECTS

22

Worde eent from Task 08 to Task 089

Sed

430

420

350

280

210

140

70

500

1000

1500

2000

2500

3800
time{msac)

3500

FIGURE 2-7. IMC (08,09) WITH C.1. FRCM 1C RUNS - i.S MIPS,

40 O0BJECTS

z3

Worde sent from Taesk 02 to Tuesk 03

120

79

(1 8

48

108

0

E] S

500

1000

1500

2000

2500

3000
. ime{msgc)

3500

FIGURE 2-8, IMC (02,03) WITH C,I. FROM 1C RUNS - 1.5 MIPS,

40 OBJECTS

e

activity level enters the trailing phase.

2.5 EFFECT OF NUMBER OF OBJECTS ON IMC

Figure 2-9 shows how the IMC changes with number of objects in the

scenario. In general, the increas:ing number of objects increases IMC !
because the larger object population results in more activity for each

processing thread and, thus, more shared-file updates.

Let us examine the region between 2 and 3 tactical seconds. In our
experiment simulating three computers, each running at 1.5 MIPS rate, the
40-object runs generate heavy load on the computers. Thus, one or more of
these computers are oécasionally saturated during that period, and certain
module enablements are discarded because of the enablement queue overflow.
Therefore, some activities are eliminated undesirably and the measured IMC
are smaller than they should be. (The measurement for 40 objects is
somewhat inaccurate during that period). On the other hand, the 30, 20, 10,
and O-object runs do not saturate any computer's load. As a result, the IMC

for 40 objects are smaller than that for 30 and 20 objects during that period.

Since we already had a feeling about the statistical variation of the
IMC for ten replication runs, only sample means of IMC will be presented for

the rest of IMC discussions; the confidence intervals will not be shown.

1 One exception in the simulation is the IMC transferred from module M,y to
M, See the last paragraph of this sectlon

25

Horde eent.from Task 08 to Task 09

Sel

430,

420,

371 8

280

214

j\]{/ \ — e — QP_ORJESTS

140 -
70 -
0 OBJECTS
o
-7 . X — R A N
9 S00 1000 1500 2000 2500 2000
time(msec’
FIGURE 2-9,

IMC (08,C3) FOR VARIOUS MUMBER OF OBJECTS

~y -

3500

Figure 2-10 shows the IMC for another communicating path, from M,
to M. This IMC(08,06) is similar to IMC(08,09) as shown in Figure 2-9, but
the ratio of their IMC sizes is about 5:1. We now briefly explain this

similarity and the scale difference.

Module Mg processes a precision track radar return a.nd updates al
record (20 words long) in the OBJSTV file {Object State Vectors). It then
distributes that updated record to modules My, Mg, Myg, My, My3, My, and
My, Almost every time it updates OBJISTYV, it 5130 updates a record (100
words long) in file COVMTX (Covariance Matrix) and distributes the updated
r-ecord to Modules M, M;q, and M. Therefore,

IMC(08,08) - IMC(08,10) = IMC(08,18)
and _ |
IMC(08,09) = IMC(08,17) = IMC(08,19) = IMC(08,20)
"as we have observed; the symbol " m" here means that two corresponding

figures are identical. (See Figure 2-11 in the next section).

Since those OBJSTV updates distributed to Module M, (i.e,
IMC(08,09)) are also distributed to Mg, My, and M4, IMC(08,06) should
have been 6 times (100420 to 20) as large as IMC(08,09). However, there are
some occasions when OBJSTV records are updated and no COVMTX update
follows. This explains why the scale ratio of the above two figures is about

5:1 instead of 6:1.

27

Worde sent from Task 08 to Task 06

3150,

I T T r — —p

N
a0
,....‘_.....«__P____..__

S
. P
tn

n
poary
<«

1750
140

1050

S
(=]

350

0 500 1000 1500 2000 2500 3000
: time{msec)

FIGURE 2-10, IMC (08,05) FOR VARIOUS MUMBER OF QBJECTS

28

3500

Although IMC increases in general with the number of objects,
IMC(13,14) is an exception. This IMC remains constant when the number of
objects is varied. This is due to the fact that 50 radar scheduling commands
(5 constant amount of messages) are sent to M,, for each module 13

. L

'lekecution, which occurs every 5 ms. This. radar scheduling rate does not

change with the number of objects.

2.6 DOMINATING IMC

In the last section, we noticed the large difference between IMC(08,06)
and IMC(08,09). This motivated us to compare the relative IMC sizes among
all module pairs. All those pairs wi'th non-zero IMC are shown in Figure 2-11,
where they are all plotted on the same scale to reveal the relative magnitude.
These are the average IMC obtained from ten replications (see Section 2.3).
The IMCj; varies with module pair and time. For example, IMCg 4 is quite
large during 1 to 2 seconds, IMCy 7 is always.small, and IMCyy;, is always
large. This figure discloses those pairs of communicating modules with
dominating IMC. The dominating pairs are:

(13,14)

(08,08), {08,10), (08,186)
(22,01), (22,02), (22,04), (22,08)
(14,23)

(14,13)

(08,00), (08,17), (08,19), (08,20)
29

IIIIIII

110(02, 033

r—rer T v 7

TTTTTT

nnnnnn

llllll

™ | —1 A . F

T

1004, 07

11111

3

IHC(0S, 07

||||||

llllll

§ (08, 10

IIIIII

nnnnnn

IIIIII

g i 1 Aermadh k.

IIIIII

iiiii

iiiiii

||||||

ek i

A A i i

nnnnnn

‘Fig, 2-11, IMC BETWEEN MODULE PAIRS

30

111111

llllll

11111

||||||

F R A i 9 4

lllll

¥ L T %

122,02
éf”“""*___j

AR T TR SN W 1

tttttt

1M (22,045

llllll

llllll

110(22,06%

T N —]

g

1122, 23

Efd\“"‘s___; -

||||||

b A i e n

F16. 2-11, (CONTINUED)

31

It we enlarge all these small figures, we can see that, just like the
IMC(13,14) described before, IMC(14,13) is constant independent of the time.
This is again due to the constant rate of radar command scheduling. IMC for

“all other module pairs varies with the time, {e.g. see the IMC(08,09) and

IMC(02,d3) shown before). \ i
2.7 ALTERNATIVE REPRESENTATION OF IMC

Since the measured IMC is caused by file updates, there is an
alternative way to present the IMC — IMC between a module and a file it
writes (updates) or reads. The IMC from a module to a file it writes is
referred to as Module-to-File IMC, or M-F IMC. The IMC from a file to a

module which reads the file is referred to as File-to-Module IMC, or F-M IMC.

There is no F-M IMC in the DPAD system because its modules only
read local file copies. Figure 2-12 displays the average M-F IMC for the
DPAD for the same ten replications that generate Figure 2-11. Each plot
V(i,k) gives the IMC size produced by module M; in order to update file F}.
Note that only twenty-six (28) V{ik)’s are non-zero and thus shown here.

Again, they are all plotted on the same scale to reveal the relative magnitude.

2.8 ACCUMULATIVE EXECUTION TIME

As stated in Section 2.1, a program module M; might be executed

multiple number of times during a time interval {¢;,¢;4,). For each time of its

32

]1 000 . e S den Smen SR Y Y e ——
’ - - P d = 4 P d
- o - o - - -

IMC

o Bycne, 110 03,119 g, 16)] fueae, 17

0 TIME(SEC) 3.8 f e e B
R ey e
U(05, 119) V06, 1213 F(07,122)1 u(08, 120)

e r
(10, 1367 (13,1307 (14, 1493 B(14,130):

F1g.2-12 MoobuLe-FiLe (M-F) IMC ror THE DPAD

33

N N ¥ T T T

11111 _—

T T T T

Ak 1 i A

C1e, 2-12,

(CONTINUED)

34

execution, its execution time (ET) contributes to the CPU load. An
important piece of information which can be measured from the DPAD
simulator is the acct_:mulata've load caused by M; due to its multiple times of
execution during a time interval. Let us call it accumulative ezecution time
(AET) for M, ‘dehoted as T{t;,t,+;)- Both the average ET and AET can be
expresséd in machine language instructions (MLI) executed. Although the
execution time of one méchine-la.nguage instruction varies from instruction to
instruction, we can find the mean instruction execution time given the mix
ratios for various different instructions. Our measurement results are given in
Figure 2-13 where each plot T(i) shows the module AET T{?;,?,+100ms) for

module M; during all 100 ms intervals.

2.9 EFFECT OF MODULE ASSIGNMENT ON MEASUREMENTS

In general, IMC and AET change with &iﬂ'erent module assignments.
However, our study shows that the number of module executions, IMC, and
AET are all almost independent of module assignments if a fized offered load
is input to the distributed system. For example, Figure 2-14 shows the
number of times module My executes duriﬁg 100 ms intervals under a scenario
with 40 objects in the DPAD simulation; Figure 2-15 displays the AET for Mg
during the intervals; and Figure 2-16 exhibits the IMC from My, to M,
measured from the DPAD simulation. In each figure, five curves represent
five different module assignments. Note that the five curves are so ‘close to

each other. This is a very important observation which makes the module
35

45,000

MLI

v T g L S r

11111

vvvvvv

Fi16.2-13 ACCUMULATIVE MODULE EXECUTION TIME

36

of Executions

23

c21

24

18

18

13

.o

0

500

1000 1500 2000 2500 3000
t.img{msec)

Fig. 2-14 NUMBER OF M8 ENABLEMENTS FOR VARIUOS

MODULE ASSIGNMENTS

37

3500

MLE

24 i\

—.—_.—lm s

L U e ———— asey 3
29 a M eedsseeerennes ASGN 2
asen 1 |
22- V . -

\ Ny ‘)

. ™ N
' ’ b Y
19 4
Il
) | \
ig If Ly .
14 ‘ .
1% ' ' 4
Jj:
A
E. " -y
-~
g A .
N

Q 4
]‘ A
___ -'.
0 5

00 1000 1500 2000 2500 3000 3500
t.ime(maac)

Fie, 2-15, AET oF MS FOR VARIOUS MODULE ASSIGNMENTS

38

llorde sent from Task 22 to Taslk (04

3600 . . r . .

2700]
e e e e]
— o — — — X7
e e o o e s o h 1
L yaaessesssnsannes h-1+
29000 34
210d. i
1804 l
1500)
1200]
S04)
g0]
300 !
0 00 1000 1600 2000 2500 3000 3500

t ime(msec)

Fig, 2-16, IMC(22,4) FOR VARIOUS ASSIGNMENTS

39

assignment problem a lot easier.

2.10 CONCLUSIONS

A method for presenting both the IMC and AET has been shown in
this chapter. We found that both IMC and AET vary with time, number of
objects in the scenario, task threads, and module pairs. Ho‘.ivever, ithe
measurements indicate that IMC and AET exhibit almost no variation with
various module assignments. Both IMC and AET data are important

parameters for module assignments.

Using simulation experiments to characterize IMC is quite time-
consuming. Thus, we have developed an analytical model in the next chapter
to estimate IMC based on the data volume sent per execution instance,

branching probabilities for control flow, and number of objects.

CHAPTER 3

ANALYTICAL MODEL FOR IMC ESTIMATION . .

This chapter i)rwents an a.n:alytical model for IMC &atimafion, which ;is
developed to avoi& thé time-consu:ﬁing coding and running of simulation
experiments. A distributed a.pplica.tibn consists of J program modules M,
M,, .., M;on S computers. Graph models have been developed [BAERSS] to
study various aspects of computer systems and other more general systems.
Figure 3-1 is the same as Figure A-8; it shows a portion of the control-and-
data-flow graph of the DPAD system. The granularity of modules is at the
subroutine level rather than thé- instruction level as is being used in data flow
machines [TREL82]. A control-and-data-flow graph is a control flow graph
superimposed by files and the associated data flow between modules and files.
The graph has an entry point and a te@nation point [CHUSO]. EFach square
box represents a computational module, and each directed arc represents the
precedence relationship between the two connected modules. The sequence of
module execution is referred to as the control flow. Module M; causes M, to
follow it by sending an enablement to M,’'s computer which is referred to as

"M; enables M.". Data flow is represented by broken lines and consists of

reads and writes by modules to the set of K shared data files Fy, Fy, ..., Fy.

41

' f
e | |THREAD |

N DETECT SELECTION |

! L/ ‘ i

) VERIFY ~ a migfcs TRACK '

21~ ~ 4 | 8
p AR & (RN}
Py 3 ‘IIIHII' ~ %)

a- 5] [
% EXD 51 |56 ,
\\f) 3 : '

7 ;= ’

J + « . JlODULE 1“1‘l

v« FILE Fe

END

& ...Exctusve OR
LMD

F1g, 3-1, PART OF THE CONTROL-AND-DATA-FLOW GRAPH

FrorR THE DPAD sysTem

42

Modules communicate through shared files and module enablements; such

communication is referred to as Intermodule communscation (IMC).

Our model for estimating the IMC between each communicating pair of
modules is presented in Sections 3.1 and 3.2 where it is assumed that 1) the
distributed program has been partitioned, in terms of functions, into a set of
modules, 2) the function of each module is fully specified, and 3) the files used
by each module are known. Section 3.1 develops a methodology to estimate
all key parameters in terms of number of module executions. Section 3.2
shows how to obtain the number of module executions for each module in the
control flow. Next, in Section 3.3, this model is applied to the DPAD. The
estimated results are compared with those measurement results presented in
Chaﬁ)ter 2 as a validation of the IMC and AET model. Finally, the IMC
incurred for control functions and system resource utilization in distributed

processing systems are di_scussed.

3.1 ESTIMATION OF KEY PARAMETERS

| Three types of IMC exist: Module-to-Module (M-M} for module
enablements, Module-to-File (M-F) for file updates {(writes), and File-to-
Module (F-M) for file reads (see Fig. 3-1). Here we estimate each for all
specified time intervals (Z,44+,)'s. The interval size, l441-y for the
estimation should be properly selected. Too short intervals prevent us from

observing the trend of ﬁorkload changes while too long intervals are not

43

sensitive enough to reveal the dynamic behavior.

For M-M IMC, the number of module M, enablements by M; during

{ime interval (ti!tk'i'l) is

Nty ta+1)Pia(Eitastasn)

where Nj{{;,t44,) = number of times module M; ezecutes during (¢;,¢;41),
referred to as ezecution frequency of M;
PiulE; ti,t4+1) = probability that an execution of M; enables M, ,
referred to as enabiemcnt probability.

Thus, the M-M IMC volume from M; to M, is

Vil Bitystier) = Nitatia)Pia(Eitistie)) Lia(Es i tasy) @1

where L;,(E;¢),t3+,) = average number of words (enablement-message length)

sent from M; to M, when M; enables M,.

~ For M-F IMC, the number of updates to F; by M; is

Nj(tlnti'l' l)pjk(W, tk: t)H-l)

where p.(Wity ty+;) = probability that an execution of M; updates file F, .

Therefore, the IMC message volume (number of words) sent from M; to F is

Va(Wity tia) = Ni{tutae)pa{ Witi, i) La(With tit) 32
3-2

where L W:t,,ty41) = average number of words (record length) written per

update.

Similarly, the F-M message volume for read response sent from file F}

Vi Bitutier) = NJ‘(thtk-H)Pji:(R;tbuth+l)ij(R;th:tb+l) 33)

where p;(R; th,t,,.,.l) = probablhty that an execution of M reads file F; , and

La(R;ty,the = average number of words M; reads from F} .

Finally, the accumulative ezecution time (AET) for M; during (tistaer)

T{tutir1) = Nitutir)z{tntssd)
(3-4)

where z{¢),f4+1) = average ezecution time (ET) of M; during (¢;,¢4+,). This
. time can be expressed in terms of machine-language instructions (MLI)

executed.

Since egs. (3-1) — (3-4) require values for Nj{#,,f4+;), we show how it

can be estimated in the next section.
3.2 ESTIMATION OF N,{t,,tH,)

To estimate Nf#;,f4+1), We use only the control flow portion of the
graph. There are three basic types of control flows: sequential, conditional
branching (Exclusive OR), and parallel (AND). Loop control fow is a variant
of conditional branching because the control is conditionally branched back
to some previous point. Therefore, in this thesis, we assume control flow

graphs with no loops.
45

Estimation for the execution frequency of module M; within (¢y,¢144),
N{ty,ty+1), requires knowledge of the enablement probabilities p;{E;¢),t4+1)
for all incident arcs (i-j)’s from M;’s into M;. Enablement probabilities must

satisfy the following two conditions:

L. If moré"t__;'han one Exclusive-OR arc leaves M;, ihen every such arc i-m
has a.n enablement probability p,-m(E'; titis1) such that

Epa'm(E; thtlﬁ- l) = 1.
m

2. If there are more than one AND arcs leaving M;, each arc i-m has
Piml Estita+;) = 1. Note that sequentisl flow is a special case of

Exclusive-OR flow (and AND flow) where only one arc leaves M; and

Piml Ertista+r) = 1.

A control flow graph with no loops can be viewed as an acyclic directed
graph and hence has a partial ordering of modules where the relation “partial
order” is denoted as M; < M; when M; enables M; We can use the
topological sorting algorithm [KNUT73] to embed the partial order of the J
modules into a linear order and rename these modules into M), My, ..., M;
such that whenever M; enables M;, i < j . Let the entry node be M, and
assume the number of entries into the control flow graph, Ny(f,th+y), is
given. To eétimate N{{ty,ty+1)’'s, we consider the modules M;'s in their
ordered sequence § = 1, 2, ..., J. Doing so ensures that for each j, N{ts,th+1)

is known if M; enables M;.
486

1.

2.

The following estimation rules are used:

If M; has only one incident arc and this arc emits from M;, then

Nty i) = N{ty- Bijtaer- A0 Eita- Aty Ay) @)

. where the notation "=" indicates an approximate estimation, and A is
s Do
[

‘the a.verage'M,—to-MJ-l enablement delay. An: enablement delay is the
duration starting from when M; completes its execution and enables M;
until when M; completes its execution. This includes the wait time of
M; in scheduling queue plus its own execution time. Normally the
module execution time is much smaller than the time interval (¢;4(~f;).
(See the discussion on interval size at the beginning of Section 1) It
the wait time is also small, then A;; is negligible compared to (¢44+,-¢)

and eq. (3-5) reduces to

Nty tier) = N{titise) pif Bitastasn)
(3-6)

For example, if M, in Figure 3-1 executes 10 times within a time
interval, py5(E) = 0.5, and A, is negligible, then M; executes 10 X

0.5 == 5 times within that same interval.

If multiple arcs (i-j)’s enter module M; in the Exclusive-OR manner,

then

N{tptyer) = 2 N{ty A a1 B5) piA Bty By tie 1 Ay) 3

Eq. (3-7) sums over all the modules M; which have an outgoing arc
47

connected to module M; since any of these M;'s might enable M;. For
example, consider M;; in Figure 3-1 and assume 4;,3’s are negligible.

Then

Nig(tutarr) = Na(totarr) ¥ Neltytar) pras(E) + No(ta tie1)P4,13(E)

+ Ng(t,tas1)

If multiple arcs ({-j)'s join at M; in the AND manner, M; cannot enter
the scheduling queue until all its predecessor modules M;'s have

completed their execution. If such a wait time is negligible, then

N{tutier) = ony [N{tytis)) pif{ Eitistas)]
' (3-8)

gsince all these predecessor modules enable M; the same number of
times. For example, for M; in Figure 3-1 we have Ni(fy,f)+() =
Ng(tyt3+1) %X 1.0 = Ny(#;,441)X1.0. If enablement delays are not small,
then from the predecessors M;’s we must determine the module M,

that finishes execution last and eq. (3-8) becomes

Nity,tiar) = Ny(ti-y;, tia1-8y;)
(3-9)

To compute all the N{t;,4,41)'s, we always start from the top of the

control flow graph, obtaining them in the topologically sorted sequence. Once

we know how to obtain all N{#;,t3+,)'s, We can use eqs. (3-1) — (3-4) to

estimate the desired IMC and AET profiles.

48

In the estimation of IMC and module AET, some values may be
difficult to obtain, e.g., enablement probabilities p,-;{E;t,,,tHI)’s and average
module execution time z; in eq. (3-4) for some modules. In these cases, a
simulation can be used to estimate these values. Since such a simulation is

applied to a smaller subsystem, it usually is much simpler than simulating the

entire system.

3.3 AN EXAMPLE OF ANALYTICAL IMC ESTIMATION

In this section, we apply the estimation methddology of Sections 3.1
and 3.2 to DPAD Detect/Verify processing for modules Myg, M;, M,, and M;.
Search/Verify processing determines the presence of potentially threatening
objects and consists of: 1) a radar-search return with object detection that
causes modules M,,, M;, and =Mz to execute in sequence (ie., in their
topologically sorted order), 2) a radar-verify delay of 9 to 15 ms, and 3) a
radar-verify return that causes modules My, M;, M, and M; to execute in
sequence. A radar-search return with no detection is simply discarded by My,
and so My, M,, and M; are not enabled. We shall estimate Ny(t;,8441) and
the IMC written by M, which consists of 13 words to update file Fjy (i.e.,

Lg 114(W) = 13) whenever M, enables Mj.

We let Nj{d;t},t4,) be the number of ‘module M; executions for Detect
processing, N{v;t;,f,+1) be the M; executions for Verify processing, and
N,(ts,ty+1) be the total M; executions for both Detect and Verify processing.

49

Clearly,
NJ'(ti:tA-H) = Nj{d;tiith'l'l) + Nj(”;tbtk+l)

Because each module’s execution time is short (less than 1 ms) compared to

the measurement interval (¢,4;-¢; = 100 ms),
N.j(d;tbtb'ﬂ) = Nﬂ(d;thtl:ﬂ'l) for J =12
and

N{wvtytie)) = Nyg(v; by, tyse) forj=1,23

The radar-detection time for eacﬁ object and, thus, the number of
radar detections in 100 ms intervals (i.e., Noo(d;¢;,¢34,)) are computed from
the input scenario (the sky map). For simpli.city, only the first 400 ms of
radar-detect and radar-verify operations are shown in Fig. 3-2(a). The
algorifhm for coniputing object detection times is given in Appendix C. The

time-shift due to radar-verify delay (A = 10 ms) is shown in the figure, i.e.,
Nyg(t3ty,tsa1) = Noo(d;#4-10,434-10)

Fig. 3-2(b) shows how Ny{t;,ty+;) was estimated. From eq. (3-2) we can

obtain Vz,ll-i(“,;th!tk-l-l) as follows
Va 114 Wity tie1) = No(v58y,t441) X 13(words)

Figs. 3-3(a) and 3-3(b) plot the estimates for Ny(fy,ty41) and Vi1 Wits i) '

along with their measured values. Since the average execution time for M,

50

WAYIINI HOV3 ONIUND Gy TG0 0 AININOIA NOLLN3X] ' 2-5 *91]

TeAxsIuT yoeq buying pafjfasa pue pe3oslsg s3oolqo Jo Iaquny (q)

Butssa001d UOTILDTITIBA J0J BUOTINTDXS Ty Jo ascuny

[I R

SUOTILDTITISA ..—ow_”..mo JOo Isqunpn TLNNZ
bursseooxd uoTIDEIEP JOJ SUOTINDSXD ¢ W JO Jaquny =
: SUOTIDRRPP I08(Q0 JO Jaqunp = AENNZ
"
. \ Fi
¢ 0 0 0 0 € 0 Z 0 09 & € % ¥ Il 6 9 OL € ¢ o.a_m:ncmnam_ﬁ_:*__#v?
© 9000006t o0oEE LT T 9 S T S ET S O VY 9 E OZ E T | (nN
cocoooo_oonnuﬂnnvvnﬂnmo..m_.o__nn_:anmz
000€ 005z 0007 0051 0001 006 00B 00L 009 005 00b 00t 007 001 |!*'h Teazsqur
0062 00tZ 006 | oort 006 008 OOL 009 DOS OO 0OF 00T 001 O 't sty
§309(q0 JO SWTL UOTILOTITIOA PUB SWT] UOFIOEISA (©)
IJQ—AI [room)
A ey
Tor__FIN_w s :.---”"m. J"«w".. o 4 - ! .m_. b M mm”_. +
I A 1Y R e AT ¥ 1 | ! I T
ng L 1] .
L)
w e e e e e " o ;. S . g ™
S Y 1Y S S N A ¥ ! i ! ! 't et
- +

51

N0, OF EXECUTIONS

-

-
'.:

14

400 1109 1599 20

L inn{nane)

A) o, or Moous Wy DXscuTions, Bp(fy tuey)

—

MORDS AENT FRoM MODUWLE 2 7o FiLE 114

.._

e
®.

= REASURED
R ISTIMATED

S

¥
——

300
Lima{nsec)

1008 1500 300

B NF DK rron By T Tiig, T304, (Fi6y, See)

1Lt

RCCUULAT UE EXEC. T

X ESTIMTID

[T

1000 1500

2g

o0 500 3000 350
TirE (anen)

C) Mopig My ACTUPRAATIVE IXECUT IO TN, Ty { ty.tue1)

Fig,3-3, COMPARISON BETWEEN MEASURED AND ESTIMATED VALUES

52

1800

(i.e., z3(ts,t4+4)) is 500 MLI and Na(ty,ti41)=N3(v;t),t54,), the AET for M,
li.e., Ta(tyty+;) is estimated from eq. (3-4). Both the measured and
measured AET are shown in Fig. 3-3(c). All three charts in Figure 3-3 exhibit
close correspondence between the estimated and measﬁred values. This gives

a validation for the estimati;n nietl;odology.
3.4 CONTROL IMC-

So far in this thesis only ap-plication IMC was studied. However,
distributed processing systems require a significant number of control
functions tc; support application file access (e.g., read-requests, lock-requests,
and lock-releases) and to maintain the distributed processing system (e.g.,
status monitoring). These functions are carried out by control modules,

resulting in control IMC.

Control IMC consists of reads and updates (writes) by control modules
(e.g., lock managers) to control files (e.g., lock status files). Once the file
access and distributed system maintenance functions are known, control IMC
can .be derived from application IMC. For example, in Fig. 3-4, assume that
module M; at computer 1 updates application file F; at computer 2 for
N{t,,t4+;) times during (¢;,¢4+;). Since every F, update requires a lock-
request and a lock-grant, control module M, at computer 1 writes N{ts,t441)
lock-request messages to control file Fy at computer 2 while Mp at computer

2 writes N{t;,t;+1) lock-grant messages to Fy at computer 1.

53

CompuTeRr 1 ~ CompuTER 2

-
APPLICATION MODULE % ! CONTROL MODULE

/ \
@ APPLICATION FILE {____ICONTROL FILE

[PC

Fic.3-4, IPC IN A DISTRIBUTED PROCESSING SYSTEM

54

3.5 CALCULATION OF SYSTEM RESOURCE UTILIZATION

The utilization of a system resource (i.e., computer, shared memory, or
bus channel) is defined as the fraction of time the resource is busy. Resource
utilization is an important measure in distributed processing systems since it
is directly related to queueing delays and throughput. Each IPC message
incurs a processing cost at the sending computer and a processing cost at the
receiving computer. It also increases network traffic. Therefore, IPC

degrades the performance of distributed processing systems.

The utilization of a computer can be estimated from module AET, the
processing cost for sending and receiving IPC messages at this computer site,
and operating system overhead. The utilization of a channel can be derived
from the channel bandwidth (ih words/s) and the [PC volume to be sent on

this channel.

59

CHAPTER 4
MODULE ASSIGNMENT

After discussion of IMC measurement and estimation, we shall now
" proceed to the study of module assignment problem. Section 4.1 identifies
key parameters that should be consid.ered in. a module assignment. Section
4.2 describes the concepts of module assignment tree and enumeration
procedure, and an objective function based on the concept of minimum
bottleneck is propos:d as a criterion for finding good module assignments. In
Section 4.3 the objective function is applied to the DPAD system and is
shown to yield good response time. Section 4.4 presents a heuristic algorithm
based on that objective function that drastically reduces the computation
time in finding good assignments from a huge prob'lem space. This heuristic

algorithm is applied to the DPAD (Section 4.5) and has yielded good response

time.
4.1 KEY PARAMETERS IN MODULE ASSIGNMENT

The three parameters that play important roles in module assignment
are intermodule communication (IMC), accumulative execution time (AET) of
each module, and precedence relations {PR) among program modules.

Chapter 2 shows that both the number of module executions and the AET
' 56

are almost independent of module assignments if a fized load is offered to the

distributed system.

Our second parameter, IMC, is the communication between program
modules through shared files. IMC can also‘lbe assumed to be independent of
module assignment (see Chapter 2) and a method for estimating both IMC
and AET has been proposed in Chapter 3. When a module on a computer
writes to or reads from a shared file on another computer, such IMC'_ becomes
IPC (interprocessor communication) and causes processor overhead. The
importance of IPC minimization has been recognized by many researchers
[CHU78, GENT78, IRAN82, WU84, CHUS4]. A task-allocation algorithm
should reduce IPC by assigning a pair of heavily communicating modules to

the same computer.

[PC varies with module assignments because the occurrence of IPC
between two communicating modules depends on whether these two modules
are assigned to different processors. For example, 1f two modules
communicate through a replicated shared file and reside on different
processors, then the file is replicated on each processor. When a processor
updates the file, it updates the copy on its local processor. It then sends the
updates to remote processors, resulting in IPC which requires processing load
on both the sending and receiving processors. The IPC is eliminated if the
two modules are assigned to the same processor since both modules are

sharing the same local file copy.
57

The processor load for a computer is the sum of 1) load due to program
module execution and 2) load due to IPC. Therefore, both AET and IPC play
important roles in module assignment and thus influence task response time.
These two components should_ be normalized and expressed in the same unit.
© Our approach is to convert the number of words tra.nsferred?due to IPC infaﬁ;’.
the number of machine-language instructions (MLI's) spent By the proc;ssof
in transferring or rece_iﬁng the IPC.V A good module-assignment algorithm
should at least follow these two rules:

R1) co-locate M; and M; to the same computer if the IMC volume between

them is large. This eliminates the large IPC.

R2) Balance the loads on all computers.

For example, Figure 4-1 shows two module assignments for the DPAD
System. Module assignment A only considers balancing the module
processing load (due to AET) among computers. For example, both modules
Mys and M,, have large accumulative execution time (see Figure 2-13), so
they are assigned to different computers. Module assignment B co:;siders
both rules specified above. Since.there is a large IMC between modules My;
and M,, (Figure 2-11), they were co-located. Similarly, My, Mg, Myq, and My,
were co-located. Using the UCLA DPAD Simulator, response times (referred
to as port-to-port times) were generated for both module assignments. Fig.
4-2 portrays these measurement results (with 90-percent confidence intervals)

for the DPAD Detect/Verify processing thread. Fig. 4-3 portrays the port-

58

ASSGNIENT A ;

COMPUTERS 1 2 .3 1) 3

MODULE # 2 3 1 1 13 3

5 y 7 2 14 5

: § 1 4 23 7

g 10 16 § g

19 13 18 : 17

20 U 2 10 18

2 23 16 o1

20

21

22

AVERAGE

nggLE 0.218 0,365 0.417 0,205 0.57 0.278

_ASSIGNMENT A: BASED CNLY ON BALANCING MODULE LOAD
ASSIGNMENT B: BASED ON BOTH MODULE LOAD ANC IMC

Fig. 4-1. Two MODULE ASSIGNMENTS FOR THE JPAD sysTEM

59

Port-to-port time(msec)

1€

20

14

3 COMPUTERS
CPU speep: 1.5 MIPS

{7 L L T
2 ____MEAN; ASSIGNMENT A |
- -
| ,v+ MEAN; ASSIGNMENT B |
i : i
33 J
28 -
24]

250

500

550

100 me=ec intervals

F1G. 4-2, PORT-TO-PORT TIME FOR DETECT/VERIFY THREAD

60

1000 1250 1500 1750 2000 2250 2500

to-port time for the Precision Track thread. The overall superiority of
assignment B clearly demonstrates that IMC plays an important role in

module assignment.

4.2 ANEW OBJECTIVE FUNCTION

Let us ﬁrsf define the concept of module assignment tree. Consider a
software system which ﬁas been partitioned into a fixed number of program
modules. Given the control and data flow graph, the problem of module
assignment is to assign the program modules into a number of processors such
as to meet the performance requirements. The main design requirement in
real-time systems is to meet the response time constraint, or port-to-port (P-
T-P) time in BMD terminology. In this dissertation, we concentrate on

distributed real-time systems where response time is the main design concern.

Since each module can be assigned to any of the S processors there are
S’ different ways to assign J modules to S processors, assuming that each
module is assigned to one and only one processor. This can be represented by
an assignment tree with S7 leaves, each leaf corresponding to a possible
assignment. This tree has J levels, each representing a module. At each
non-leaf node there are S downward branches, each representing the choice of
a processor to host the particular module. An example with J=23and § =

3 is shown in Fig. 4-4.

81

Port—-to—-port time(msec)

pp—

ul
U) &

33

2%

16

14

2d

20

| ___ MEAN; ASSIGNMENT
i | .++ MEAN; ASSIGNMENT

JURE W

55 €30 500 1200 1500 1800 2100 2400 2,00 3000
100 msec intervals

C16, 4-3. PORT-TO-PORT TIME FOR PRECISION-TRACK THREAD

62

M1

M2.

M3

M4

M5

M23

Fig, 4-4,

P1

P2

ASSIGNMENT FOR THIS

AN ASSIGNMENT TREE

P3

P1

P2\P3

PARTICULAR TPEE LEAF.

63

Pl
M1
M2

P2
M3
M5

P3

—

A

The module assignment problem is to search through the leaves of tﬁe
assignment tree to find the particular assignment which yields the minimum
value of an objective function (or maximum value in some cases, e.g.,
maximum system throughput.) An ezhaustive search through all leaves is
usually undesirable because of the enormous amount of time involved. For
example, when the computation time for one leave requires 250 us, the

enumeration for a tree with 3% leaves takes around 10 days.

For a real-time application, th; key performance measure is response
time. Normally a computer system is dedicated to a single application. The
computer is required to finish a certain predefined processing within a time
limit. Merely minimizing IPC alone may not produce a good assignment. In
fact, a minimum-IPC assignment will assign all program modules to a single
processor which might be saturated, resulting in poor response time. The
processor with the heaviest loading in a distribﬁted system is the one that
causes the bottleneck. For instance, for a system with three processors, an
assignment requiring 58%, 60%, and 61% of processor utilizations might have
a better response time than a second assignment with 20%, 40% and 90%
utilizations. This is mainly due to the fact that the second assignment has a
bottleneck processor more heavily loaded than the first assignment, and
queueing delay is a non-linear function that rises quickly with the level of

bottleneck (processor load).

For a given assignment X, the work load L(s;X) on a given Processor s

L(:X) = iz,-,T,- + i [H’C(s,t;X) + LPC’(t,a;X)]
SR (1)

5.

The first term is the AET for all modules assigned to Processor s. The second
term is IPC overhead which consists of two parts: overhea.d due to the PC
originated from Processor a to other processors, and incoming messages to
Processor s from other processors. F;r a system whose file-update messages
dominate the IPC traffic, we can ignore other types of IPC such as module
enablement messages and system control messages. The total overhead due
to outgoing [PC at Processor s is

i‘.ma 60 = vz, 3V Sh

tyky i t¥e (4-2)

where K is the number of files used in the distributed system; Vj; is the M-F
IMC message volume sent from M; to update the replicated file F at a

remote Processor t; 8, indicates whether a replicated copy of F} resides at

Processor ¢; the term i 3,, indicates the number of remote copies of Fj that

taml
i3y

must be updated; and w is a weighting constant for converting the message

volume into MLI's. For a system with message-broadcasting capability, a file

update need only be sent out once; the term é&u in eq. {4-2) then reduces

tom]
t#g

65

to 1.

Similarly, the total overhead at Processor s for incoming IPC from all
remote sites is

g:HDC(t,s;X) = w§ é Zje § Vis Bi,

- =] {e k= ‘
g‘*: t‘*: =l 1 (4‘-3)
Based on the discussion above, we propose to use the work load (in
unit of MLI) of the bottleneck processor as the objective function, ie.,
s
Bottleneck(X) = max { L{#X)
pmn

! (4-4)

The module assignment problem is to search through the assignment tree to
find the assignhment that yields the minimum bottleneck among all possible
assignments [CHUS4a), i.e.,
min {Bottleneclc(X)}
x (4-5)
or,
s
m}i{n max [AET(s) + IPC(a)]

gam]

(4-8)
where AET(s) and IPC(s) are the total module execution time and total IPC
overhead incurred at Processor 8. Section 4.1 has shown that a good
assignment can be obtained from minimizing IPC and balancing processor

loads among the set of processors. A minimum-bottleneck assignment
66

generally has low IPC and fairly balanced processor loads because:

1. If the loads were not fairly balanced for an assignment, the bottleneck
(highest load among all processors} would be high and this assignment

would not be a minimum-bottleneck assignment.

.
S

B "l ‘ b ’
2. If a given assignment had high IPC, the sum of processor loads over all

processors would be high and thus, yield high bottleneck.

Eq. (4-6). is different from minimizing the sum of processor loads
[STONT77],

|

An assignment obtained by eq. (4-7) can be quite unbalanced. In a
homogeneous system all modﬁles will be assigned to a single processor as
stated above. Our minimax principle is also used in [SHEN85| which
considers only one-time execution of a task while we accumulate the
processing load of multiple executions of the task. (Note that each external

stimulus cause an execution of the task.)

In the objective function (see eq. (4-1)), AET for a module M; is
represented as a single value T;. IMC information between a module and a
file is also represented as a single value V,, (eq. (4-2)). However, the
measured or estimated value of AET, T{{;,{;4,), varies from one interval to

another. Since we are concerned with system performance during the peak-
67

load period, we shall use the average AET and IMC during the peak-load

period for computation in our objective function.

4.3 PERFORMANCE OF THE PROPOSED OBJECTIVE FUNCTION

In this section we evaluate the performance of the proposed. objective
funcfion by applying it to the DPAD system. Table 4-1 shows the average
AET for the peak-load period for every module in the DPAD experiment
where the identified peak-load period is from 1.0 sec to 2.0 sec of mission
time. For example, Ty (=32055 MLI's) for module M; is an average of ten
measured values Ty(1.0sec, 1.1sec), Tg(1.1sec, 1.2s¢c), . . ., Tg(1.9sec, 2.0sec).
The IMC information was estimated in the same manner. The results are
shown in column 3 of Table 4-2. Column 2 shows the file(s) ﬁpdate-d by the
write module. Column 4 lists all the modules which read the updated file. If
a read modﬁle for a file and its associated write module are on different
processors, both processors would have a copy of the file and IPC occurs for

updating the replicated file copy.

A FORTRAN program was developed to compute the proposed
objective function for every assignment in the DPAD assighment tree. When
an assignment (corresponding to a tree leave) yields a bottleneck value
smaller than the smallest bottleneck ever obtained so far, that assignment is
saved and printed out (see Appendix D). The last ten such assignments were

selected {Fig. 4-5). These ten assignments were then simulated with the

63

TABLE 4-1 |
ACCUMULATIVE EXECUTION TIME (AET) PER 100 MSEC

(UNIT: MLI)
(Module _AET !

M1 8865
M2 2700
M3 1580
M4 10410
M5 1860
Ms 1950
M7 1680
MS8 32055
M9 18600
M10 3360
M1l 0
M12 ' 0
M13 25305
Mil4 16860
M15 0
Mil18 - 4170
M17 6240
MI18 3975
M19 Q705
M20 2010
M21 195
M22 16410
M23 17025 |

MLI = Machine Language Instructions

EACH AET IS AN AVERAGE ACROSS THE PEAK-LOAD PERIOD,
FROM 1.0 SECOND TO 2.0 SECONDS.

69

TaBLE 4-2, FILE UPDATE IMC (in MLI) PER 100 MSEC

Write File MC Read
Module M Size Modules
Ml none
M2 Fi114 124 M3
M3 F115 144 M13
Md F116 112 M13
F117 314 MS§, Ms, M7
MS F119 68 M7
Mb F121 68 M7
M7 F12 67 Mi13
F120 62 M13
M6, M10, M16,
M3 Fiz3 1568 MO, M17, M19, M20
Fl24 6387 M5, M10, M16
M9 F12§ 806 Mi13
F127 1 M3
M10 F134 1 Mis
(M11) Module Not Implemented
(M12) Moduile Not Impiemented
M13 F131 30371 Mi4
Fi47 1800 Mi13
Mi4 . F132 5019 M23
(M15) Module Not Implemented
M16 F135 100 M18
M17 F136 100 Mi8
F137 229 M19
Mi8 F138 : 36 M8
F139 244 M20
M19 F139 ' 599 M20
M20 F140 62 M21
M21 F141 32 Radar
M2 F142 242 M23
F113 4593 Mil, M2, M4, M8
M23 - Fl112 5112 Radar
Radar F111 14737 M2

* EACH TRANSFERRED WORD = 3 MLIs

EACH IMC SIZE IS AN AVERAGE ACROSS THE PEAK-LOAD PERIOD,
FROM 1.0 SECOND TO 2.0 SECONDS.

70

DPAD simulator and their performance is compared. Figs. 4-6(a) and (b)
show the CPU utilization for Assignments #1 and #2. We note the loads of
the 3 processors are quite balanced during the peak-load period between 1.0
sec. and 2.0 sec. Assignments #3 through #10 exhibit similar load-balanced
be§avior. This coincides with our expectation that our objective funcfion (the
ms:nimum-bottlencck model), egs. (4-1) thru (4-8), provides good balanced

processor loads. For comparison, Figs. 4-7(a) and (b} show the processor

loads for an arbitrary assignment and a knowledge-guessed ! manually
generated assignment [HOLL82]. These two assignments are less load-
balanced compared with Assignments #1 and #2, and have much higher

bottleneck loads. .

Fig. 48 shows the Pr;cision-Tra.cking port-to-port time for
Assignments #1 through #9 as well as the arbitrary assignment. The
arbitrary assignment has a poor performance because two of its three
pr@msom are saturated as was.previously shown in Fig. 4-7_. Note that the
performance difference between a good and a bad assignment can be

substantial. Poor assignments yield poor response time.

Fig. 49 compares the port-to-port time for the Detect/Verily thread

between the knowledge-guessed assignment and Assignments #1 through #9.

! The knowledge-guessed assignment was obtained by a combination of
intuitive insight and trial and error. It was one of the best assignments
known to the author in terms of port-to-port time for the DPAD example
system.

71

"A0ANITLI08 WNWINIW 3HL HLI1M LNIWNDISSY 3HL LON S1
avol TVIO0L WOWINIW 3H1L HLIM LNIWNDISSY NV °¢
"(ITW 40 LINA N1) D3SK 00L ¥3d AVOT1 §:¥0SSAD0¥d HOVE SI T-AVOT "1 :3ALON

A0AN
=3a1liod
hblcce GLetl Slind S08EL toOohL Ece <2tiLl OLEoO Lelel €122t "WINIW
cttéee Slenwl slenl- gtonl 6lL0hL 12 cctie ottoo cicte telcl pug
94hcee Bothl GLehl tiytl goEnL ELL cctlc OttoO cicke teaiel Pt
Ytycee cithl clinl Slchl 6hchl clt L12EE 02c00 EEECE 2Ll Ulih
~elleee hinhi t2ond Slenl Wikl clt L1gtEt 0ceoo EEtet clLilLlL uis
90htee £L0G9L 6ecBtl h9Shl £106. cEZ LECEL 02¢00 LEL2L cLLil uig
cgetee gLlLGL 6egtl Glenl lisl ctl LECEL 02200 LELEL 2Lt ulil
g0hhce tInSL thotl cstal ELRGl tce ¢eetl Ottoo Ll 2Ll uig
glGlee 9hGS. 60.L0L 9hGGL gceal £ct 2ctel 0LE00 Leitl 1Lt 4316
glalce . closl 0chol 915Gl cL94l tE2L cetel OLE0Oo Lt tLiLl 4301
dvol 1YLl ADANF1LI08 E-QV0] 2-GV01 L-avol LNJWNDISSY

SINAWNDISSY Q00D Ol :SLINS3Y NOILVUIKNNI“g-¢ '914

72

HOUVY3S JALISNVHXI A9 @31l373s

SINIWNIISSY ITINAOW HO4 SHOSSIJOMd WML NI NolLvziHiLn fig) ‘9-h 914

INIWNDISSY 431937138 QNOD3S ()

quesysay) .
i 11 i s "

i,
tvedemaaa,
.y

LLTTH
"V hatany,
LLL T

INIWNDISSY 3123738 LS¥Id (Y)

[EITITTEY

) ONSS__ eMS 952 0ee2 eeSt_ eeei 449 ¢
-] T— ad _I
T I
)2 i
e N
1 . "
- -||r|l:l|41!\l n% \\\\
A [.
s \ ! ps
. \),.-...
p by
—
— / . :
' m /\% re
b
Ly
—‘ — "hﬂv---.-
m M e————— j—-
—
Hn ﬁ e
— = = "

(%) NOILYZITILA

73

SLNIWNDISSY ¥IHL0 OML HO4 SHOSSII0Hd IIYHL NI NOLLYZITILD N|d) Wi BRI

INIHNITSSV 03SS3n9-390TMONX v (g) INIWNIISSY ANVHLIGNYV NV (V)

{Incuynug)

(Nt R}y _
L SOK ez w2 e el e A 005K _ 065 aeS2_ 00I2_ee3l__ eeq1 oes ’

: ..q
. S
. N -—
c L} :
- [H h- I3
- A i
I~ By i
- Y ”.._
| s .
“.-— -a. -s
o) § py—————— R ;
=z BT e .-. - Y .‘.. "
e i f/ I3
L) H » H
¥ L A ._._‘-.
i N WY
" - * g . " . . _

74

(%) NOILYZITILN

S 108 . _ -
e U T
b P ——— T]
~ 1 eeesceee=— assh 2
............... pssn ¢
E =iz 8 -fcn &
S —— T I
i _ —— e — G 3
| ——— —— s £
,E g /\ mgan 1
| ———l T3
-~ .
: \
a
ST \
i
=& '
.54. 4
40], .
34
|
24. . .
J- \ARBITRARY
1 ' 4
(/_/ 9 SeLECTED
d M
i
| |
=10 — - .
0 840 1000 1800 2009 2500 3003 ot

Lima{mage)

Fic4-8, PTP TIME FOR THE PrRECISION-TRACKING THREAD ---COMPARE AN
ARBITRARY ASSIGNMENT AND 9 ASSIGNMENTS SELECTED BY

ExHAUSTIVE SEARCH

75

Figs. 410 and 4-11 are for the Track Initiation thread and the Precision
Tracking thread. Our experiments confirm that the proposed objective

function is able to generate fairly good module assignments.

4.4 HEURISTIC MODULE ASSIGNMENT WITHOUT
PRECEDENCE RELATION

An exhaustive search through an entire assignment tree is prohibitively
time-consuming. In order to drastically reduce the computation time, we
shall develop a heuristic algorithm for selecting good assignments from a huge

problem space.

In the following we propose a two-phase heuristic algorithm for module
assignment. Let us denote it as Algorithm I-A, for the initial characters of
"IMC" and "AET". In order to avoid heavy IPC, Phase I merges heavily
communicating modules into groups if the resulting group does not have too
large an AET. This phase is a linear-time algorithm, requiring little
computation time. Fach group is a set of modules which will be assigned as @
single unit to a processor in Phase II. Phases II assigns the :;mdule groups to
the available processors such that the bottleneck (in the most heavily utilized

processor) is minimized. Our algorithm assumes that
1. there are J modules, M;, M, . . ., M;, and S processors;

2. the average AET, T (over the peak-load period) for each module M; is

given;

76

PORT-TO-TORT

3
5. RN ——— - L LR
- tessssssavassss AEEN &
ZA e e BEEN &
[———— 1
PR p— 1 4
.............. . AEEM L
————— it
3
g .
3)
5 ' L
9 00 1009 1500 20689 250¢ 3009 3340

t.ime{m=ac)
Fig., 4-9, P-T-P TIME FOR SEARCH/VERIFY THREAD -~ COMPARE AN

KNOWLEDGE-GUESSED ASSIGNMENT AND 9 ASSIGNMENTS SELECTED
BY EXHAUSTIVE SEARCH

77

PORT-T0-PORT

29

PN ——— - R

7 S . T I I R S ASEN &

1& acsn &
—— — PE— T+~ L N
PR p——— . - - B
5% A 3 [. AP P ASE 1
1{ i
1ai J
!
lU‘. 4
j
& i
%

g |
|
|

4 ;
i
i

- |

=% _:
i

a'. H

| 1
-2 |
J 239 1000 1520 2000 2800 3000 z

tLime{msac)

“16., 4=10, P-T-P TIME FOR TRACK-INITIATE THREAD -- COMPARE A

KNOWLEDGE-GUESSED ASSIGNMENT AND 3 ASSIGNMENTS
SELECTED BY EXHAUSTIVE SEARCH

78

PORT-T0-PORT (MsEC)

20
13- 8
18
14
14
1

R e

KNOWLEDGE -GUESSED

=

—— o — e £

R —— L

....... teassesNEEN £
aeen £

PR ——) N)

— o —— ——S1 3

B - 1

..... earesaaees BT 1]
APy

3 1)

=B E| 1049

1521

[-2 0

2941¢

25317 3040 3
Limg{nsgc)

Fig, 4-11, PTP TIME FOR THE PRECISION-TRACKING THREAD --(OMPARE THE
KNOWLEDGE-GUESSED ASSIGNMENT AND 9 ASSIGNMENTS SELECTED

BY EXHAUSTIVE SEARCH

79

3. the average IMC, IMC; ;, (over the peak-load period) between any module

pair M; and M; is given;

ALGORITHM I-A:

Phase I: Merge modules with large IMC into groups to reduce total system
load. : -‘

1.1 Initially list all module pairs (M;, M) in the descending order of IMC
volume. '

Calculate average module size & average processor load:

AET - $T,/J

T}

PL - é:r,./s

ful
Set threshold values for IMC values & for processor loads:
Omc - AET X a %
OPL - E X B %

Let each program module form a distinet group (a set):
G" - {M} f = 1,...,J

1.2 If no more pairs exist in the module-pair list
go to Phase II.
Pick the next pair of modules, M, and M;, and delete this pair from
the list.

1.3 If IMC,, < Opqo
go to Phase II.

1.4 TFind the group G, that contains M,, and the group G, that contains
M, (ie, M,€G, , M,eG)).
If s =t (i.e., if M, and M, are already in the same group)
go to Step 1.2.

15 U T,+ T, > 0p

go to Step 1.2
1.8 Merge the two groups G, and G; into a single one:
G, - G,UG,
Gf - g
T. - T. + Tt
T, - 0

1.7 Go to Step 1.2.

Phase II: Assigh merged groups to processors to minimize the bottleneck.
2.1 (We now have ¢q groups, ¢ < J, which corresponds to a much smaller
assignment tree with S possible assignments.)
Perform an exhaustive search through the new assignment tree to
locate good assignments.

2.2 Stop.

In the following we provide some discussions on Steps 1.3 and 1.5.

" Step 1.9: When we reach a pair of modules whose IMC is smaller than the
IMC threshold 0, (@ % of AET), merging them gi.ves little benefit in terms
of the IPC saved. The @ % should range from 1% to 10%.

Step 1.5: Our assignment algorithm tries to eliminate major IPC. When
merging two grdup into one, we should leave some processing capacity in the
resulting new group for accommodating the remaining [PC as well as some
other small groups. If two groups were merged and formed a group that is
too large, Phase II would not be able to produce a balanced-load assignment.
This is the reason why processor-load threshold 8p; is based on the parameter

B % and average processor load PL.

&1

4.5 APPLICATION OF ALGORITHM I-A TO THE DPAD SYSTEM

Let us now apply the heuristic Algorithm I-A to the DPAD module
assignment problem. Table 4-2 shows IMC between a module and the files it

accesses. For Phase I of Algorithm I-A, this table is reorganized into Table

[
i

4-3 which provides IMC size between module pairs. (Pha:_;e II uses Table 4-2)”3:
Fig. 412 shows the merging process of Phase I where 5% and 75% are used
for the a and P respectively. Column 1 lists IMC in the descending order,
column. 2 displays the modula. me-rged into one group, and column 3

calculates the total AET for all modules within the group.

Since in this example we have 3 processors and 20 modules, the PL =

8 7,73 = 50555 MLI and the AET = $ 7,720 = 8933 MLL Phase I

fma] imn]
finishes when it reaches IMC, s = 314 MLI because 314 is smaller than 5% of
T. The resultant groups are:

Group Modules

1 1,2,4,22
2 3

3 5

4 6,8,10,16,20
5 7

6 9

7 13,14

8 17

9 18

10 19

11 21

12 23,(11,13,15)*

82

TaBLE 4-3, FILE UPDATE IMC (in ML) PER 100 MSEC FOR MODULE PAIRS

Write Files m™MC Read
Module Involved Size Module
M2 F114 124 M3
M3 F115 144 M13
M4 F117 314 MS
M4 . F117 . 314 M5
M4 F117 314 M7
M4 ._F115 112 Mi3
MS F119 68 M7
M6 Fi121 68 M7
M7 F12 67 Mi13
M8 F123, F124 7955 Mb
M3 _F123 1568 MI
M8 F123, F124 7935 M10
M8 | F120 62 M13
M3 F123, F124 7955 Ml6
M3 Fi23 1568 M17
M3 F123 1568 M19 -

M8 F123 1568 M20
M9 F125 806 Mi13
Mi10 FiZ7 1 M3
M10 F134 1 Mi8
Mi13 F131 30371 Ml4
Mi4 F147 1800 Mi13
Mi4 F132 5019 M23
M16 F135 100 Mig
M17 F136 100 Mi8
M18 F138 36 M3
M18 F137 229 M19
Mi8 F139 244 M20
M1S F139 599 M20
M20 F140 62 _M21
M21 Fl141 32 Radar
M2 F113 4593 Ml
M22 F113 4593 M2
M22 F113 4593 M4
M22 F113 4593 M3
M22 F142 242 M23
M23 F112 5112 Radar
Radar Fill M22

* EACH TRANSFERRED WORD = 3 MLIs

83

14737

Modules in the Exec, Time of

IMC (MLI)

“a,b Merged Group the Group
IMC(13,14)=30371 13-14 25305+16860=42165
IMC(8, 6)= 7955 6-8 1950+32055=34005
IMC(8,10)= 7955 ' 6=8-10 34005+3360=37365
m™MC(8,16)= 7955 6=-8-10-16 | 37365+4170=41535
IMC(14,23)= 5019 Can't group l3~14-23

Otherwise, 42165+10725=32890 > ePI.
MC (22, 1l)= 4593 1-22 8865+16410=25275
mMc (22, 2)= 4593 1-2-22 25275+2700=27975
IMC (22, 4)= 4593 1-2-4-22 ' 27975+10410=38385
™MC (22, 8)= 4593 Can't group® l=2-4-6-8-10-16-22

Otherwise, 38385+41535=79920> 8,
mc(14,13)= 1800 Modules already in same group
m™Cc(8, 9)= 1568 Can't group 6-8-9-10-16

Otherwige, 41535+18600=60135> 8,
m™c(8,17)= 1568 Can't group 6-8-10-16-17

Otherwise, 41535+6240=47775> 65
mCc(8,19)= 1568 Can't qroup 6-8-10-16-19

: Otherwise, 41535+9705=51240 > ePL

m™MC(-8,20)= 1568 6=-8-10-16-20 41535+2010=43545
mc(9,13)= 806 Can't group 9-13-14

Otherwise, 42165+18600=60765> 8,
mMC(19,20)= 599 Can't group 6-8-10-16-19-20

Otherwise, 43545+9705=33250> ePL

mMc(4, S)= 314

{Phase I finishes because IMC(4,S5)= 314 < eIMC

* Two large groups would otherwise be merged into cne.

Fig. 4=12, Example of Phase-I Evaluation of the Algorithm

84

* Mo&ules My, Mys, and M, are not implemented in the DPAD; each has

a zero AET, T;.

_ We have merged 20 modules into 12 groups, a reduction from 320
possible module assignments to 312 possible group assignments which reduces
the algorithm’s computation time (CPU time) from 3 days down to less than

one minute on a VAX-11/780.

To evaluate the effectiveness of our heuristic algorithm, the best
assignment obtained by this algorithm is compared with that by the
exhaustive search, as shown in Figs. 4-13 through 4-15. We note that the
module assignment generated by the proposed heuristic algorithm provides
comparable performance to that from the exhaustive search. We have also
used our DPAD simulator to simulate the four assignments (Assignments A-1
through A-4) reported in [MAS82]. Fig. 4-16 shows that our heuristic
algorithm performs better than that of [MAS82]. This is mainly because our

algorithm provides better load-balancing than [MAS2].

85

% A i .7 _
£ : [HEURISTIC,
T 4. : i EXHAUSTIVE
- :]
o i
° : -
p=- : .
21 _ A .]

PP P
Y

4 i _
d ? }
] 500 1000 1500 2000 2500 3000 3500
tima(msec)
FIG! L;..]_B‘

PTP TIME FOR DETECT/VERIFY THREAD--COMPARE BEST ASSIGNMENT
SELECTED BY HEURISTIC ALGORITHM AND BEST ASSIGNMENT SELECTED
BY EXHAUSTIVE SEARCH

8€

PORT-TO-PORT

14 | - o]
HEURISTIC,

g | - _EXHAUSTIVE |
14 _)

13 z .
1q PRI .
d]
g]
0 500 1660 1500 2000 2580 3000 3500

. t.ime{meec)

Fig, 4-14, PTP TiME FOR TRACK-INITIATE THREAD --COMPARE
BEST ASSIGNMENT SELECTED BY HEURISTIC ALGORITHM AND
BEST ASSIGNMENT BY EXHAUSTIVE SEARCH

87

PORT-TO-PORT

18 | {

16 ? o]
| EXHAUSTIVE

14 _]

14 .

10 : : ‘ .

0 00 15001500 2000 2500 3000 3500

. time{meec)
Fie. 4-15,

PTP TIME FOR PRECISION=-TRACKING THREAD---COMPARE
BEST ASSIGNMENT SELEGTED BY HEURISTIC ALGORITHM AND
BEST ASSIGNMENT SELECTED BY EXHAUSTIVE SEARCH

88

PORT-TO-PORT

S v o —
45 _
”=
! ——— i—— - — an
. B
40 .‘! g-
(1
¥ i
kiR i;‘ .'!
AL |
it 1
30 jilk g]
HRE P
Rt HRY. - .
HERTA S
'H ¥ -y i l
a1y
ooy
18 f , . \. ,- |]
i\ N \\ SR P
[\ AR
1 Y A3\A-2 . ']
RN
5 Ind AR .'. |
[HEURISTIC '
0 S06 1000 1506 2000 2500 3000 3500

- - Ltime{maec)
Fig., 4-16, PTP TIME FOR PRECISION-TRACK THREAD -- COMPARE

* BEST ASSIGNMENT SELECTED BY HEURISTIC ALGORITHM AND
- A’S FOUR ASSIGNMENTS

89

CHAPTER 5
MODULE ASSIGNMENT WITH PRECEDENCE RELATIONSHIP

Algorithm I-A considers only IMC and AET. Another factor that
needs to be considered is the precedence relation (PR) among program
modules. In this Section 5.1 we describe several experiments on PR and study
its impact on module assignment in terms of response time. Simple PR rules
are obtained on whether two modules should be co-located on a single
processor or separated on different processors. Section 5.2 includes these PR
rules in the revised task-allocation algorithm (Algorithm P-L-A). In Section
5.3, Algorithm P-I-A is tested on our DPAD example system and shown to
yield only slightly better response time than Algorithm I-A (which does not
consider PR), because the size of most DPAD modules are in the same order
of magnitude and therefore PR has little effect on the response time. When
we apply Algorithm P-I-A to another example system (Section 5.4), significant

improvement is obtained over Algorithm I-A.
5.1 PRECEDENCE RELATION EXPERIMENTS

For the first experiment, we compare three assignments of assigning
nine modules to three computers (Fig. 5-1). The precedence exists in the

control-flow graph from one module to another. Assume the job arrival is a
80

Fig, 5-1. ExperiMenT No, 1
THREE ASSIGNMENTS TO BE COMPARED

ASSIGNMENT #1 (SEQUENTIAL)

COMPUTER |1 2 3

1.4 7 A
MODULES# {2 S 8 l
| 3 6 9 1 1TIME
l UNIT
ASSIGNMENT #2 (PIPELINED
G *) 2 1TIME
UNIT
COMPUTER |1 2 3 l -
123 3 1lrme
MODULES# |4 5 6 l UNIT
7 8 9 P
i
q 1TIME
ASSIGNMENT #3 (SKEWED) UNIT

COMPUTER 1 2 3

MODULES# | 5§ 6 4

91

Poisson process with arrival rate N, each job enal;lca module M, which is
placed in the ready queue of M,’s residence computer waiting to be processed,
and upon the completion of execution a module will enable the execution of
the next module in the control-flow graph. The execution time of every
module is a constant (deterministic service time) and equal to one time unit.
To simplify our analysis and to isolate the precedence effect, we further
assume there is no IMC .between modulé and thus no IPC overhead between
computers. The three assignments m Fig. 5-1 are simulated with PAWS
simulator [BERR82]. The queueing discipline at all computers is FCFS. Al
three assignments result in balanced loads on the computers. However,
simulation results (Fig. 52) reveal a significant difference in response time
'a.mong the three assignments. The pipeline assignment (Al) yields the best
response time. (Vertical bars in the figure represent 90%-confidence intervals
for each simulation point). Since we assume no IPé overhead and all
assignments are load-balanced, the response-time discrepancy is due solely to

precedence relation.

In our second experiment, the execution time of each module is
changed from a constant to ezponentially distributed service time with a mean
of one time unit. All other parameters remain the same as those used in
Experiment No. 1. Simulation results (Fig. 5-3) exhibit that the response
times for all three assignments are about the same. This is because the three

computers form a Jackson network. Each computer can be treated

92

e e mem - e - e—ema— = e— L

4
in
T

SEQUENTIAL (155
PipeLIine (2)

L I I I B IO B B B B B B

SKEW (3)

o]
L

{n
L]

Ly P-T-P RESPONSE TIME

o
T

29

20

10

0

1026 30 40 S0 &0 20 80
UTILIZATION

Fig, 5-2, REsuLTs ofF ExperIMENT No.l
(DETERMINISTIC LEXECUTION TIME)

93

39

100

P-T-P RESPONSE TIME

49,

40

20

18

0

tn

0 020 30 40 S50 &0 0 80

| UTILIZATION

Fig, 5-3, RESULTS OF EXPERIMENT No, 2
(EXPONENTIAL EXECUTION TIME)

94

30

100

individually as an M/M/1 queue for calculating the queueing wait time for
each module, and since all modules have the same execution-time (service-
time) distribution and the same arrival rate in this particular case, all load-
balanced computers are treated as identical M/M/1 queues, and thus all
modules have -idéntical wait tune.: ' Experiment No.1 reveals that precedence
relationship does have an impa.ci on task response time. Experiment No.2
reveals that module execution-time distributions alter the PR’s effect on the

response time.

Experiment No.3 is for testing the effect of module size on precedence
relationship. Modules have deterministic execution times as shown in Fig. 5-
4(a). The three assignments in Fig. 5-4(b) are compared. The results (Fig.
5-5) reveal that assigning two consecutive modules to a same computer will
yield a good response time if the ezecution time of the second module is much
Iargef than the first one. We shall call this our PR rule #1. For example, in
Assignment #1, M, and M, are assigned to the same computer. If the second
module is much smaller than the first one, it is beller to separate lwo
consecutive modules and assign them on two distinct computers This is our PR
rule #2. In Assignment #1, M, and M; are assigned on two different
computers. Finally, the performance of Assignment #3 lies between
Assignments #1 and #2 because Assignment #3 observes PR rule #2 for
some module pairs (e.g., separation of M, from My} and violates PR rule #1

for some module pairs (e.g., separation of M, from M,).

a5

A EXECUTION
l TiMe (sec)

M1

|

Y

M2

l

M3

l

Ma

l

M5

|

Me

1

10
AssiGN-

ment CPU 1

10

10

EXPERIMENT

No, 3

(A

Fig, 5-4,

M1,M2
M1,Mo
M1,M4

(B

(U 2
M3, My
M2,M3
M2,15

96

cPy 3
M5, M6
M4, M5

M3,M6.

A EXECUTION
l TiMe (sec)

M1 |10

l

M2 i1

l

M3 |10

l

M4 11

T

M5 ilO

=

Mo 11

EXPERIMENT

No. 4
)

ExperIMENTS No.3 & No.U

mMmIX——- —IAV O~ —133Q70

650
5005
ssoé
sooé
50
400]
350
300%
250-
2005

1
150%
100%

50

Fie. 5-5, REsuLTs oF EXPERIMENT No, 3

0

5

10

M B

| SRS B T T A B L e B B B M I e L L

1S 20 25 30 35 uJ u4s SO S5 680 65 70 73 80
UTILIZRTIGN

97

Experiment No. 4 is similar to No. 3 except with different execution
times as shown in Fig. 5-4(c). The same three assignments in Fig. 5-4(b) were
simulated. Now, Assignment #2 yields the best performance (Fig. 5-8)
because it folléws the PR rules for most pairs of consecutive modules.
Assignment #1 is the worst since it seriougi_y violates the PR rules. We
repeat these experimeﬁts with exponentially distributed execution times.
They yield the same results. The intuitive reasons for the PR rules are as

follows:

1. If the arrival process is highly random such as Poisson, there would be
periods of bursty arrivals. If the job arrival process is deterministic,
the. work load is evenly spread over the time. As a result, the average
queﬁe-length at every computer should be smaller (smaller average
-module wait-time) than that of a Poisson arrival process. Thus, "let
smal! jobs (modules, in our case) rua first, while large jobs wait” yields

less average wait-time.

2. For two consecutive moduies assigned to a single computer, if the
second module is much larger than the first one, the second one will
act as regulator valve which regulates job flow into the next computer.
For instance, in Assignment #1 of Experiment No.3, M, at Computer 1
is a large module, therefore the arrivals of My at Computer 2 won’t be
in bursty mode — instead, arrivals for Mj are fairly evenly spread over

the time, which results in short queue at Computer 2 and thus, short
98

M —DET A" -TQTD

390
asoé
330
300-
avné
2u0°
210@
180
xsoé
120@
90
504

30—

Fig, 5-6. ResuLTs oF EXPERIMENT No, 4

Fy

T

0 S

Ty

10

1S 20 25 30 35 40 45 S0 S5 60 63
UTILIZATION

99

LI B B4 LR S ELEL RN BLELELAE BMMLELEY BMEMLELEY BLAM L A e L

T

70

ML l

75 &80

wait time for M, and M, at Computgr 2. In the same manner, M, acts
as a regulator valve for job flow into Computer 3. On the other hand,
the poor response time of Assignment #2 is mainly due to the fact that
| thereis a hlgh possxb:hty that an M, arrives while a previous M, is still
in execution (and more other M,'s might be waiting in the queue) ew;en
if M, arrival process at Computer 2 is not bursty That is, there is a
high probability to see geveral Mzs exist, one a.fter a.nother, in the
queue. After the first M, finishes execution, an Mj is enabled and
placed behind all existing M,'s in the queue. This particular M; would
experience a long wait time because those M,'s in. front of it have a
large execution time. Later on, we see mt;ltiple My's nezt to each other
which will then quickly finish their execution one after another

(because of the small execution time of Mj) and dump multiple M,

arrivals to Computer 3 in @ bursty mode.

Having realized that the module-size ratio of consecutive modules influences

response time, we should determine whether two consecutive modules M, and

M, (with a module-size ratio z,/z5) should be separated or co-located.

Consider the control-flow graph in Fig. 5-7 where all modules have

z
deterministic execution times. Let z;=z;, z3=2, (thus, ?- = f—), module-
3

size ratio r; ; = z;/z;, and job arrival rate A, equals to A,. Both Assignments

#1 and #2 balance the processor loads. We like to determine the benefit or .

100

Ass1GN- |

MENT PU L CPU 2
1 M1,M2 M3, M4
2 M1,M4 M2Z,M3

F1g, 5-7, EXPERIMENT FOR DERIVING WAIT-TIME
RATIO Rw(AlfAz) BETWEEN ASSIGNMENTS Al AND
A2 , AS A FUNCTION OF THE CORRESPONDING

SIZE RATIO x2/xl

101

penalty of assigning M; and M, to a same computer in terms of response time
as a function of ry,. That is, we are looking for a threshold value @ such
.that: if rya > 6, M; and M, should be assigned to a same computer,
otherwise they should be assigned to separated computers. More generally,
we are looking ‘:ff)r a relation (a function) which maps a size ratio into a

benefit index (or penalty index if negative value).

Because of the symmetry in this control-fiow graph and in loading on
both computers, the two threads in the graph have the same response time,
which is w; + z; + wo + 25 (or wy + 23 + wy + 2z,), where w; is the queueing
wait-time for module M; A model has been developed in [CHU84¢| to
estimate the wait time w; for any given module assignment on any control-
flow graph. Since z;, zp, 73, and z, are constants independent of module
assignment,A the :-vait-ta'me ratio between two assignments, R, = R(A,/Ag) =

w{A;) + wyA,)
wy(Ag) + wylA,)

above: If R, < 1, then Assignment #1 is better than Assignment #2, i.e., we

, can be used as a measure for the benefit index mentioned

should assign the consecutive modules M; and M, to one computer, and the
other pair of consecutive modules My and M, to another computer. If R, >
1, then Assignment #2 is better than Assignment #1 and consecutive
modules should be run on different computers. Fig. 5-8(a) shows the wait-
time ratio R, for various module-size ratio ry, = 2,/z;. The horizontal axis

is the processor utilization p = p, + P, Where p; = Az, and py == Az, are

102

L R

{ A) DPETERMINISTIC EXEC TDRE

(X" L
a2 -
[
P M E B e m 8w == F ¢ 4 W w a m T ® @
e Rbaiid

. X
;lan e 3.40
i 1 g 1o *1o0.20
) 4.10
n 1.3%
ol — I —— - ——— .
= } d.01 (= i
] H
[N ! [
4.3 ‘
i —— re—— 1 (X5,
e ———————————————— ¥
et -
bt wd
L] - L] - - - - » - » - L] " -] - - - - - - s
ol M L -
(€) HYPEREXPONENTIAL EXEC TOE
ey
X
L —2 - 3,3 [
i A H T 0
k oeret———= P L LR B -2
] *
hhad -~ \
5% i L . 0.1
(X} - \ pl]
& i - 2 1
e P LI ERR NI e T
e FR
Lad 2
nad L
2 1 a L] L “ - L] - n a 3 . - » - L] - - - - =
anmne o

Fic., 5-8, WAIT-TIME RATIO BETWEEN TWO ASSIGNMENTS AS A
FUNCTION OF PROGRAM MODULE-SIZE RATIO

103

contributed by the execution of M; and M,, respectively. Note that as ry,
decreases, R, increases until reaching approximately to 1.7; then it rev;e;'ées
the trend and decreases. R, only vary slightly with the processor utilization.
Figs. 5-8(b) and 5-8(c) are obtained if the execution time of each module is
cha:nged from ; deterministic value to an exponentially or hyperexponentially
distributed random variable. Since the execution times of most programs are
more deterministic than exponentially or hyperexponentially distributed, the

following discussion will be for deterministic execution time.

We shall now study the execution of three consecutive modules (Fig.

wi(Ay) + wyA,) + wy(A
5-9). Now the wait-time ratio is R, = w:: A;; + w:tAj + w::A:; '

‘ analysis shows that if the size of M, is fixed (thus, p; = Az is fixed), as the-
ratio of M; to M, (ro3 = z,lig == pypy) decreases, the wait-time ratio R,
increases to a certain point; R, then reverses the trend and decreases (Fig. 5-
- 10). Likewise, fixing My and varying the size ratio of M, to M,, we observe
similar results. These relations between R, and r;; a.rer similar to our
previous observations for the two-module-thread cases as were shown in Fig.
5.8, Similar relations are exhibited for a control-flow graph consisting of four
or five modules in each thread. Finally, if z,, z;, and z; in Fig. 5-9 are varied
simultaneously, the results are shown in a 3-dimension diagram (Fig. 5-11(a))
and the correspbnding contour plot when projected on the 2-dimensional

plane (Fig. 5-11(b)). Note that when both size ratios r;3 and ryo are large,

104

S| A2
M s
w1 | Xy [
'Nz ' lWS
21 2 5| 5 -
s b
X33 61 6

_MENT CPU 1 CpU 2.
1 M1,M2,M3 M4,M5,M6
2 MI,MS,M3 M4,M2,M6

Fig, 5-9, EXPERIMENT ON 3 CONSECUTIVE MODULES
IN EACH CONTROL-FLOW THREAD

105

Q1P D ME—~- —A—DY¥

Fig, 5-10, WAIT-TIME RATIO AS A FUNCTION OF MODULE-
SIZE RATIO X3/X7 (FOR VARIOUS PROCESSOR
UTILIZATION) FOR 3-MODULE EXPERIMENT

pl = 10%;
pl = 15%;

: pl = 20%;
: ol = 25%;
: pl = 30%;

20%
30%
40%

o
Y
+
o
[
LI T B A

60%

-

1.3 C. %

Mt AL
AMCIang

106

rl

=

.3

= F16, 5-11¢A) 3-D DIAGRAM FOR WAIT=TIME RATIO AS A
' FUNCTION OF BOTH MODULE-SIZE RATIOS,
X9/X] AND X3/x2

WTRATIO

1.62 1

1.26 -

0.89 -

0.%53 1

107

()

\ -

ConTOUR PLOT OF THE 3-D D1AGRAM

sHowN IN 5-11(a)

Fie., 5-11(B)

1
r
[
'
¥
’
.
i [
H .
i "
{ _ / ro
H Py "
H P
3 ! \
; r 1Y wnn
/ / ’) it
! [L o
i / 1 ' et
r I L]
i i ' I [
! r ["1y
; [J \ _
’ \ ’ '
! [
\ '
[
T
! ey
! 1
' P i :
’ A L T
I \ n
\ ’ / Y <l
r 7/ \ ._._
\ -~ / T
\ ’ /
[/ "
/ ! /
4 -
’ / \\!.....
4 Vs A
/ .’ / ’ A
Vd
’
\ \\ Vd \\
\ \\ \\ ’
L ~y
\\ v \\ \\\ JI/ g
o’ -~ V4 Va
-’ i ’ .~ M
- - \\ \\ __
-~ z
- -~ \\ }lllr“\l\\\
-— - -
- -
A e = — —_—- !
r » T Y f— 3
. ol
w m o
H - - o

CTOomMm~aTon

108

the wait-time ratio R, is the smallest. Thus, assigning all three consecutive
modules to a same computer (i.e., Assighment #1) yields betier response time,
which is consistent with our previous observation. If one of the ratios ry3
and ry, is large while the other is small, then the benefit from one module
pair is canceled out byﬂiﬁ'he penalty from another pair. As a result, both
assignments have similar wait times; If 'both ro3 and ryq are small, then

Assignment #2 is better.

Our experimental observations reveal that in assigning modules to
computers, each pair of consecutive modules in the control-flow graph can be
treated independently, and using the PR rules on each individual pair of

consecutive modules in task allocation yields good task response time. -

5.2 TASK ALLOCATION WITH PRECEDENCE RELATION

We shall now include the PR rules into our task-allocation algorithm.
The decision on grouping two consecutive modules or not should base on the
two possibly conflicting factorss IMC and PR (ie, module-size ratio).
Therefore, IMC indez and PR indez are developed. First let us define (in Step
1.1) the following IMC index and PR index between modules M; and M;:

MC; .
y 4] = —2 i=1..,J; j=1,.,J
[MC(OIMC

1 "Ru("i)
vy (ij) = ———— i=1.,% j=1L..,J
PR Ipp

where z; is the average module size of M;, and R, is a function of r; ; (see Fig.
5-8). Note that a R, value on the Y-axis of Fig. 5-8 always lies in the range
of [0, 2]. This value should reflect the PR index 1PR(€,J’) — a positiv;a
(negative) R, should correspond to a positive (negative) 7?3(f,) and
prac;;iba the co-location (separation) of modules M; and M;. For simplicity,
we divide the range [0, 2] on the Y-axis into Npp equal-size intervals for PR
index levels. The interval size is [pp = 2.0/Npg. Because R, equals 1 at the
break point between grouping or separating two consecutive modules, the
function (1 - f)/Ipg gives the PR index v,.(¢,j) for any given module-size
ratio. For example, if we choose to have 20 PR levels within the range [0, 2|,
we have an interval size [pp == 2.0/20 = 0.1. If f determines the R, to be
1.4, then v R = -4, which opposes the grouping of thelmodules. To complete
our new algorithm, we should -replace Step 1.3 of Algorithm I-A with the
following:

13 I i) + Vpglind) S0

go to Phase II.

Let us denote this generalized algorithm as Algorithm P-I-A {adding the

initial "P” for PR).

There exist three variables in Algorithm P-I-A — a, 8, and Npp (or,
Ipp). For a given distributed system (e.g., the DPAD), if Npp is fixed, then all

¥ PR(£,7) values are uniquely determined. In that case, adjusting the a value

110

will influence the sign (positive or negative) of the sum 7.’;\(0('-’ D+ 'yPR(i, i)
and thus determine whether M; and M; should be co-located on a computer
(assuming a fixed P value). If we reduce Npp by half and double the a value,
then the minimum-bottleneck assignment generated by Algorithm P-I-A will
remains unchanged because both ¥, (i,/)-and ¥ (i) are reduced by half.
However, if we reduce Npg while keef)ing a.?;consta.nt a, the influence of PR is
reduced. On the other hand, increasing Npp while keeping a constant a will
result in less IMC influence. Table 5-1 contrasts ¥ PR’s and v IMG’S for various
values of @ and Npp. ¥,.'s and v, s in this table have been rounded to the
nearest integers. We summarize the heuristic task-allocation algorithm,
Algorithm HEU, as follows:

Fix the number of PR intervals Npp;

Do a = ;% to a;%;

Do B = B, % to B, %;
Perform Algorithm P-I-A;
end;

end;
The experimental results on DPAD and two other systems reveal that using
Npp = 20 and @ between 1% and 10% generates good assignments. A good
range for 8 is between 80% and 120%. This is because too small a2 B would

retard proper module grouping while too large a B makes it impossible to

balance the loads during Phase II.

111

Number of PR intervals, NPR

6 &4 2

3

10

100 50 40 20

YPR(I,J)

QOO0 QO0OO0OO00O

1000001.0 '

40000040

s

-8 -6 -3 -2 -1
4 -3 22 -1 -1
<4 =3 =2 -1 -1
4 =3 =2 -1 ot
-8 o -3 2 .1 -1
-4 =3 22 -1 -1
-9 =T -8 22 o
<4 -3 =2 -1 =%

=16
-3
-3
-3
-3
=19
-3

J

M.

M.
1

Mmoo

1

3
18
14 23

20 21

(AT TR s . o)

16
17

a%
12

24 27 30

15

9

8 .

18 21

YIMC(I,J)

02221111100000000000000.000000000000
—
23332111100000000000000000000000000
i

3..]332222200000000000000000000000000
Lad .

Shq.hﬂuazzaaoooooooooooooo000000000000
i

Bhwuu.uazaz210000000000000000000000000

—

m555333331‘1111000000000000000000090
TTTTuuuHﬂualal111000000000000000000000
N

699965555.21111000000000000000000000

958833222,2110000000000000000000

109 5% 3
14
13
14

28
28
28
18
16
16

VOWOWINP NN =00 0000000000000 0
- -

14

6
10
16

13
3
8
3

COMPARE Ypq AND Yiue

TaBLE 5-1,

112

5.3 MODULE ASSIGNMENT WITH PR FOR DPAD

Applying Algorithm HEU to the DPAD produces the bottlenecks
shown in Fig. 5-12. Simulation reveals that the response-time performance of
the assignment with a bottleneck of 74985 MLI (genei-ated by @ =3% and 8
= 60%) is sli‘g‘htly better than the one with a bottleneck of 74312 MLI
(generated by @« = 4% and B = 70%). This result shows that a smallest
bottleneck doaA not necessarily yiel.d the best response time. However,

assignments with close bottleneck values always yield similar response times.

The assignment with a bottleneck of 74985 MLI performs only slightly
better than the assignment generated by Algorithm I-A (Fig. 5-13). In fact,
using the same parameters @ == 5% and B = 75% as were used in Algorithm
I-A in Chapter 4, Algorithm P-I-A will generate exactly thé same assignment
as Algorithﬁl I-A because of the following reasons. Consider Table 5-1 and‘
'~ imagine a column of v, for @ = 5%. A pair of modules recommended to be
grouped by Step 1.3 of Méorithm I-A are recommended the same by Step 1.3
of Algorithm P-I-A. ‘And a pair not recommended to be grouped by
Algorithm I-A are not recommended by Algorithm P-I-A. For instance, both
IMCy3 < AET X 5% according to Algorithm I-A and ¥y !Mc(2’3) + ¥ PR(2,3)
= 0 + (-2) < 0 according to Algorithm P-I-A, which recommends separating
 M; and M; On the other hand, both IMCyy e > AET X 5% and

"' JrM;,(14,23) + ¥,,(14,23) > 0, which recommends grouping M, and My,.

113

A9 d3LVH3INITO

lghol
lghol
Le46l
6t69L
citnl
citnl
__Solsd

301

lghbl
lghol
tgho6l
sE69L
citnl
clinl
S0LSL

56

gt69.
2itnl
citnl
gt69L
citnl
CiEnd
soLol

36

11151472
clenl
citnl
gt69L
439 7
435 73
S0LGL

7

8L69L pL69L
ZLEHL 2iLEnl
cithl 21enl
gL69L gQL69L
clthl 21Ent
cleEnl 2ie4l
S0LGL S0lsL
19 y §4
SToA07 N4

'NAH WHLI¥09TY
QYdQ ¥04 SHIINITLLOT WAWINIY

BL69.L
clEnl
ciEnd
pe69L
2itnl
clEnd
60LGL

h

6E69.
0009%
00091
8E69L
non9i
0009.L
Sgohl

it

‘71§ ‘914
19908 1990§
6EL6L 6EL6L
6EL6L 6EL6L
19908 1950¢
6EL6L 6EL6L
6EL6L 6ELGL
6LLLL 6ELLL
e 1

3021
3011
%001
306
308

0L
209

114

PORT-TO-PORT

20

14 |
16 No PR]
IT.]
i
12,]
1a .
g
a
4? Ns
|
:' o
!
il) . | l)
0 500 1000 1500 2000 2500 3000
N ’ tima(msec)
F1g. 5-13, PTP TIME FOR PRECISION-TRACK THREAD --

COMPARE ASSIGNMENTS WITH AND W/0 PR

115

3500

5.4 EXAMPLE OF RESPONSE-TIME IMPROVEMENT BY PR

An example is given in this section which demonstrates that a
considerable improvement on response time can be obtained by considering
PR in the task-allocation. '. Fopsider the control-flow graph shown in Fig. 5-14
where each program module has a deterministic execution time of either 100
or 1000 s, thus the size ratio of every pair of consecutive modules is either
0.1 or 10. According to the PR rules derived in Section 5.1, we should assign
M, and Mg on the same computer, and M, on a different computer. Using
the model of [CHUS4b], we can estimate the AET for a specified time interval
for each module. In this example let us assume a time interval of 100 job
arrivals, the inter-arrival time is exponentially distributed, and each arrival
invokes the entire control-flow graph once. The estimated AET’s are shown
in Table 5-2. Let us further assume that the IMC sizes for all communicating
module pairs are about equal, either 1400 or 1500 ps as shown in Table 5-3
~ and Fig. 5-15, so that the IMC plays a less important role than PR. Given
these PR, IMC, and AET, the module assignments generated by Algorithms
I-A and P-I-A are shown in Fig. 5-16. Both assignments have fairly balanced
processor ‘loads with similar bottleneck values. Therefore, if ‘they differ
significantly in response time, it is due to the PR consideration. Note that for
the assignment generated by Algorithms P-I-A, most module pairs are
assigned (either co-located or separated) according to our PR rules instead of

by IMC size. For example, the module size ratio ﬁ,s is z¢/z, = 10, and M,

116

1 | 1o0us
f . em e oo amn soonveny —?E '
i :
1 BRANCHING . 4 1000
|= PROZSACILITIES -3
3.5 c
! I—’ LSy .
é 3 j100 g |100 | g [100
N e)
' 12 {1000 8 1hboo| 7 f[100] 8§ |[ro00
g v '
; 9 hoo| 10 hooof 11 100
o
: 13 [100
: s |
5 @
t 14 |[100 '
'---------------------§
SACEASILITY O.2 ® §EXIT oocaEASILITY Q.8
iﬁ 1000
Xt
Fie, 5-14,

A SAMPLE TASK CONTROL-FLOW GRAPH

Table 5-2. AET for Modules in Figure 5-14

Exec Time/job arrival

Module Xy X (invocations/arrival) AET/100 arrivals
1 100 X 1 = 100us 10,000us
2 1000 X 1,25 = 1250 125,000
3 100 X 0.625 = 62.5 6,250
4 100 X 0.375 = 37.5 3,750
5 100 X 0.25 = - 25 2,500
6 1000 X 0,375 = 375 37,500
7 100 X 0,25 = 25 2,500
8 1000 X 0.25 = 250 25,000
9 100 X 0.375 = 37.5 3,750

10 1000 X 0.25 = 250 25,000
11 100 X 0.25 = 25 2,500
12 1000 X 0.625 = 625 62,500
13 100 X 0.25 = 25 2,500
14 100 X 1.25 = 125 12,500
15 1000 X 1 = 1000 100,000

118

Table 5-3. IMC List For The System In Figure 5-14

From To)

Module Module IMC/100 Arrival File-ID

6 9 1500 106

10 13 1500 111

8 11 1500 109

11 130 1500 112

12 14 | 1500 105

1 1400 101

2 1400 102

2 1400 102

2 1400 102

3 12 1400 103

4 6 1400 104

5 1400 107

5 8 1400 107

7 10 1400° 108

9 14 1400 110

13 14 1400 113

14 15 1400 114

119

[15

Fig. 5-15, DATA-FLOW GRAPH FOR THE SYSTEM
iN F1gure 5-14

120

ASSIGNMENT #1 ASSIGNMENT #2

(ws0 CONSIDERING P,R.) (CONSIDERING P.R.)
CPU1 CPU2 CPU3 _ CPU1 CPU2 CPU3
7 3 | 6 3

10 4 ¢ 2 5

9 13 5 15 7
14 6 8

15 8 10

11 11

12 12

13

14

Fig. 5-16. Module Assignments for the System

121

and M are co-located on computer 3. On the other hand, rgg = 0.1 and M

is separated from My although IMCj g is larger than IMC,,.

These two assignments are simulated via the PAWS simulator. The
average response time for each job arrival is measured from when the job
arrives at the system until it finishes the execution of M;s. Figure 38
compares the response time between the two assignments. Note that
Algorithm P-I-A yields better response time than Algorithm I-A, with 10.8%
improvement at processor utilization p = 20% and 25.7% improvement at p

= 80%.

122

Fig.

ME~— 84S

1500

5-17 -

Compare task response time for

assignments in Fig. 5-16

0 44 it 2d “Q
WUTIL.ZRTION

Ly
"

=)
K
¥

123

CHAPTER 6
CONCLUSIONS AND DISCUSSIONS

6.1 CONCLUSIONS

The three important parameters in task allocation are intermodule
communication (IMC), accumulative execution time (AET) of each module,
and precedence relations {PR) smong program modules. IMC is the
communication between program modules through shared files. When a
module on a computer writes to or reads from a shared file on _anather
computer, it requires extra processing and communication overhead known as
IPC (interprocessor communication). Therefore, a task-allocation algorithm
should try to minimize IPC by assigning a pair of heavily communicating
modules to the same computer. On the other hand, AET always contributes
to processor load; its contribution is independent of task allocation. We have

proposed a methodology to measure and characterize both IMC and AET.

From the insights obtained with our simulation and the MC
measurements, an analytical model has been constructed to estimate the IMC
and AET in a distributed processing system. This model was applied to the
DPAD system and it has been shown that the model i;°. able to provide fairly

accurate prediction.
124

An objective function for task allocation that considers both IMC and |
AET is proposed. It is based on the model of bottleneck processor. An
heuristic task-allocation algorithm based on this objective function was also

presented to effectively search for good assignments.

The third parameter for task allocation is the precedence rclat:'onship;
(PR) which specifies that a program module can not be enabled before all its
predecessor(s) finish execution. Simulation study and analysis reveal that the
module-size ratio of two consecutive modules affects task response time. A
set of PR rules are generated to determine if the consecutive modules should
be co-located on the same computer. Allocating the modules according to the

PR rules yields performance impi'ovement.

An improved -heuristic . algorithm for task allocation was presented,
based on PR, IMC, and AET. The algorithm was applied to the DPAD
system and another distributed system example. The.rat‘llts reveal that a
module assignment considering PR yields better rapdnsé time than an

assignment without PR consideration.
6.2 FUTURE RESEARCH AREAS

Many related issues in task allocation remain unsolved and need

further investigation.

a. Replication of files — A file-replication policy should be developed to

125

decide how many copies of a replicated file are needed and where these
copies should reside, for either access speed, fault-tolerance, or
reduction of file-update message volume. Data consistency among the

copies is a major concern that affects performance in file replication.
_ .

Replication of program niédule — Some modules might be so
frequently invoked that their processing requirement cannot be met by
a single processor. It is desirable to process identical copies of a given
module on multiple computers, each processing a subset of invocations
of that module. For that, techniques need be developed to decide a)
the needed number of copies for a program module, b) the file
structure (centralized, replicated, or partitioned [CHUT76]) for the files
accmséd by a replicated program module, ¢) the number of copies (and
" the sites) a file should be replicated and/or partitioned into, and d) the
ﬁolicy for distributing module invocations among all computers which

run a copy of the invoked module.

Task scheduling policy — Scheduling policy plays an important role in
real-time systems. Besides the FCFS discipline, there might be other
scheduling policies more suitable for distributed real-time systems.
One possibility is to schedule multiple modules and process them as a
batch. As a result, some lines of code (e.g., the initializing
housekeeping code) can be shared by all modules in the batch. This

reduction of overhead should be weighed against the increased

126

complexity in task scheduling.

127

ANDE7S
ARNO79

BAERS68

BERNS81
BERRS&2
BLANSg4

BOKH79

BOKHS1

REFERENCES

G. A. Anderson, "Computer interconnection structure: taxonomy,
characteristics and examples,”" ACM Computing Surveys, 7
(1875), pp. 197-213.

R. G. Arnold, R. P. Ramseyer, L. B. Wing, and E. A. Householder,
"MMBC architecture,” in Proc. 1st Intl. Conf. on Distributed
Computing Systems, Oct. 1979, pp. 707-724.

J. L. Baer, "Graph Models of Computations in Computer
Systems,” Ph.D dissertation, Report No. 68-46, UCLA-
10P14-51, Univ. of California, Los Angeles, 1988.

C. T. Baker, "Logical distribution of applications and data,” IBM
System Journal, vol. 19, no. 2, pp. 171-192, 1980.

Philip A. Bernstein and Nathan Goodman, "Concurrency control
in distributed database systems,” ACM Computing Surveys,
vol. 13, no. 2, pp. 185-221, June 1981.

Robert Berry, K. Mani Chandy, Jay Misra, and Doug Neuse,

"PAWS 2.0 — Performance Analyst’'s Workbench System:
User's Manual," Information Research Associates, Austin,
Texas, December 1982, -

Tom Blank, "A survey of hardware accelerators used in computer-
aided design,” IEEE Design & Test of Computers, vol. 1, no.
3, pp. 21-39, Aug. 1984.

S. H. Bokhari, "Dual processor scheduling with dynamic
reassignment,” IEEE Trana. on Software Eng., vol. SE-5, no.
4, pp- 341-349, July 1979.

S. H. Bokhari, "On the mapping problem,” [EEE Trans. on
Computers, vol. C-30, no. 3, pp. 207-214, Mar. 1981.

128

CHU69
CHU78
C.HU78
CHUS0

CHUS2

CHUS3

CHUS84a

CHU84b

CHUB84c

Wesley W. Chu, "Optimal file allocation in a multiple computer
system,” IEEE Trans. on Computers, vol. C-18, no. 10, pp.
885-889, Oct. 1969. |

Wesley W. Chu, "Performance of file directory systems for
distributed data bases,” in Proe. AFIPS National Computer
Conf., vol. 45, pp. 577-587, 1976.

Wesley W. Chu, D. Lee, and B. Ifla, "A distributed processing
system for naval data communication networks,” in Proe.
AFIPS National Computer Conf., vol. 47, pp. 783-793, 1978.

Wesley W. Chu, Leslie J. Holloway, Min-Tsung Lan, and Kemal
Efe, "Task allocation in distributed data processing,”
Computer, vol. 13, no. 11, pp. 57-69, Nov. 1980.

W. W. Chu, J. Hellerstein, M. T. Lan, and L. Holloway, "Research
on the shared database kernel for the BMD application,”
Dept. Computer Science, Report # CSD-820430, Univ. of
California, Los Angeles, April 30, 1982.

W. W. Chu, J. Hellerstein, M. T. Lan, and J. M. An, "Database
management algorithms for advanced BMD applications,”
Dept. Computer Science, Report # UCLA-ENG-83-20
(CSD-830430), Univ. of California, Los Angeles, April 30,
1983.

W. W. Chu, J. Hellerstein, M. T. Lan, J. M. An, and K. K. Leung,
"Database management algorithms for advanced BMD
applications,” Dept. Computer Science, Report # UCLA-
ENG-84-07 (CSD-840031), Univ. of California, Los Angeles,
Apr. 1984.

W. W. Chu, M. T. Lan, and J. Hellerstein, "Estimation of
intermodule communication (IMC) and its applications in
distributed processing systems,” IEEE Trans. on
Computers, vol. C-33, no. 8, pp. 601-689, Aug. 1984.

W. W. Chu and K. K. Leung, "Task-response-time model & its
applications for real-time distributed processing systems,”
5th Real-Time Systems Sympostum, Austin, TX, Dec. 1984.

CHOUS82 T.C.K. Chou and J. A. Abraham, "Load balancing in distributed

systems,” IEEE Trans. on Software Eng., vol. SE-8, no. 4,
pp. 401-412, July 1982.

129

CHOW79 Y. C. Chow and W. H. Kohler, "Models for dynamic load
balancing in a heterogeneous multiple processor system,”
IEEE Trans. on Computers, vol. C-28, no. 5, pp. 354-361,
May 1979.

DENN68 Denning, P. J., “The working set model for program behavior,”
Comm. ACM, 11, 5, pp. 323-333, May 1968.

DESP78 A. Despain and D. Patterson, "X-tree a structured multiprocessor
computer architecture,” in Proc. 5th Symp. on Computer
Architecture, Silver Spring, MD: IEEE Computer Society
Press, 1978, pp. 144-151.

- EFES2 Kemal Efe, "Heuristic models of task assignment scheduling in
distributed systems,” Computer, vol. 15, no. 8, pp. 50-58,
June 1982.

FENGS81 Tse-Yung Feng, "A survey of interconnection networks,”
Computer, vol. 14, no. 12, pp. 12-27, Dec. 1981.

FISH73 George S. Fishman, Concepts and Methods in Discrete Event Digital
Simulation. New York, NY: John Wiley & Sons, Inc., 1973.

GARC78 Hector Garcia-Molina, "Performance comparison of two update
algorithms for distributed databases,” in Proc. 3rd Berkeley
Workshop on Distributed Data Management and Computer-
Networks, Aug. 1978, pp. 108-119.

GENT78 W. M. Gentlemen, "Some complexity results for matrix
computations on parallel processors,” J. of ACM, Jan. 1978,
pp. 112-115. :

GOKE73 R. Goke and G. J. Lipovski, "Banyan networks for partitioning on
multiprocessor systems,” Proc. 1st Symp. on Computer
Architecture, Silver Sprint, MD: IEEE Computer Society
Press, 1973, pp. 21-30.

GREES0 M. L. Green, E. Y. S. Lee, S. Majumdar, and D. C. Shannon, "A
distributed real-time operating system,” in Proc. Symp.
Distributed Data Acquisition, Computing, and Control, Dec.
1980, pp. 175-184.

GREES0 M. L. Green, E. Y. S. Lee, S. Majumdar, and D. C. Shannon,
"Phase III of Distributed Processing Architecture Design
(DPAD) program - the DDP Underlay simulation
experiment: tactical applications and d-RTOS models,”

130

TRW Defense and Space Systems Group, Special Report
35010-79-A005, May 15, 1980.

GYLY76 V. B. Gylys and J. A Edwards, "Optimal partitioning of workload
for distributed systems,” in Proe. COMPCON Fall 76, Sep.
1978, pp. 353-357.

HAES20 K. Haessig and C. J. Jenny, "Partitioning and allocatmg
computational objects in distributed computing systems,” in
Proc. IFIP Congress 1980, Melbourne, Australia, pp. 593-
598.

HARAS9 F. Harary, Graph Theory. New York, NY: Addison-Wesley, 1969.

HOFF80 R. H. Hoffrnan, R. W. Smith, and J. T. Ellis, "Simulation software
development for the BMDATC DDP underlay experiment,”
in Proe. 4th Intl. Computer Software and Applications Conf.
{COMPSAC), Oct. 1980, Chicago, pp. 569-577.

HOLLS2 L. J. Holloway, "Task Assignment in a Resource Limited
Distributed Processing Environment,” Ph.D dissertation,
Dept. Computer Sclence, Univ. of California, Los Angeles,
1982,

IRANS2 K. B. Irani and K.-W. Chen, "Minimization of interprocessor
communication for parallel computation,” I[EEE Trans. on
Computers, vol. C-31, no. 11, pp. 1067-1075, Nov. 1982.

JENN77 C. J. Jenny, "Process partitioning in distributed systems,” in Proe.
NTC 1977, pp. 31:1-1 — 31:1-10.

KINN79 L. L. Kinney, W. D. Johnson, R. R. Ramseyer, and K. L. Stephens,
"Modular missile borne computer hardware modules,”, in
Proc. 1st Intl. Conf. Distributed Computing Systems, Oct.
1079, pp. 736-748.

KNUT73 D. E. Knuth, The Art of Computer Progremming; Vol. 1:
Fundamental Algorithms. Reading, MA: Addison-Wesley,
1973.

LEUNS2 K. K. Leung, Task response-time model, dissertation in

preparation, Dept. Computer Science, University of
California, Los Angeles, 1985.

131

LOCAS0 B. N. Locanthi, The Homogeneous Machine, Technical Report
3759, Dept. Computer Science, California Institute of
Technology, Jan. 1980.

MAS2 P. Y. R. Ma, E. Y. S. Lee, and M. Tsuchiys, "A task allocation
model for distributed computing systems,” IEEE Trans. on
Computers, vol. C-31, no. 1, pp. 41-47, Jan. 1982.

MAHM76 S. Mahmond and J. S. Riordon, "Optimal allocation of resources
" in distributed information networks,” ACM Trans. on Data
Base Systems, vol. 1, no. 1, pp. 483-497, Mar. 1976.

MALL82 Efrem G. Mallach, "Computer architecture,” Mini-Micro Systems,
Dec. 1082, pp. 246-259.

MARKS?2 Pauline Markenscoff, "A multiple-processor system for real-time
control tasks," in Proc. 9th Annu. Symp. on Computer
Archstecture, Apr. 1982, pp. 274-280.

PRICS1 C. C. Price, "The assignment of computational tasks among
processors in a distributed system,” in Proc. Natl. Comput.
Conf., May 1981, pp. 291-296. - |

RAMS79 'R. R. Ramseyer and R. G. Arnold, "An overview of the MMBC
architecture from the requirements and constraints point of
view," in Proc. 1st Intl. Conf. on Distributed Computing
Systems, Oct. 1979, pp. 747-756. '

. RAO79 G. S. Rao, H. S. Stone and T. C. Hu, "Assignment of tasks in a
distributed processing system with limited memory,” I[EEE
Trans. on Computers, vol. C-28, no. 4, pp. 291-299, Apr.
1979. ‘

RILE7T1 W. B. Riley, "Minicomputer networks — A challenge to maxi-
computers?” Electronics, vol. 44, pp. 56-62, Mar. 29, 1971.

SAUESla C. H. Sauer and K. M. Chandy, Computer System Performance
Modeling. Prentice-Hall, Inec., 1981.

SAUES1b C. H. Sauer, E. A MacNair, and J. F. Kurose,
*Computer/communication system modeling with the
Research Queueing package, Version 2," [BM Report No.
128 (89850), November 2, 1981,

132

SHENS5

STONT71

STONT77

C. C. Shen and W. H. Tsai, "A graph matching approach to
optimal task assignment in distributed computing systems
using a minimax criterion,” JEEE Trans. on Computers, vol.
C-34, no. 3, pp. 197-203, Mar. 1985.

H. S. Stone, "Parallel processing with the perfect shuffle,” [EEE
Trans. on Computers, vol. C-20, no. 2, pp. 153-161, Feb.
1971.

H. S. Stone, "Multiprocessor scheduling with the aid of network
flow algorithms,” IEEE Trans. on Software Eng., vol. SE-3,
no. 1, pp. 85-93, Jan. 1977.

STON78a H. S. Stone, "Critical load factors in two-processor distributed

systems,” IEEE Trans. on Software Eng., vol. SE-4, no. 3,
pp- 254-258, May 1978.

STONT8b H. S. Stone, and S. H. Bokhari, "Control of distributed processes,”

STON79

TRELS2

TSUCS80

VICK79

wUg4

Computer, Vol. 11, No. 7, pp. 97-108, July 1978.

Michael Stonebraker, "Concurrency control and consistency of
multiple copies of data in distributed INGRES," I[EEE
Trans. on Software Eng., vol. SE-5, no. 3, pp. 188-194, May
1979.

Philip C. Treleaven, David R. Brownbridge, and Richard P.
Hopkins, "Data-driven and demand-driven computer
architecture,” ACM Computing Surveys, vol. 14, no. 1, pp.
93-143, Mar. 1882.

M. Tsuchiya, "Considerations for requirements engineering of
distributed processing systems,” in Proc. Symp. Distributed
Data Acquisstion, Computing, and Control, Dec. 1980, pp.
61-65.

Charlie R. Vick, "A dynamically reconfigurable distributed
computing system,” Ph.D dissertation, Dept. Electrical
Engineering, Auburn Univ., Auburn, Alabama, Dec. 1979.

William S.-F. Wu, "Minimization of interprocessor communication
for parallel computation on an SIMD multicomputer,” Ph.D
dissertation, Dept. Electrical Engineering, U. of Michigan,
Ann Arbor, 1984. _

133

APPENDIX A
DESCRIPTION OF THE TRW DPAD

The TRW Distributed Processing Architecture Design (DPAD) was
developed to manage the data processing and radar resources in the BMD
Application [GREES0]. The DPAD system is shown in Figure A-1. It consists

of four components:
1. the radar interface
2. the interconnection network
3. the distributed Real-Time Operating System (d-RTOS)

4. twenty-three (23) tactical application-program modules
To validate the DPAD concepf, TRW produced a simulator consisting of a
Jully coded d-RTOS and simulators for the other three components. Extensive
statistical recording and reporting facilities were included in order to assess
performance. The original DPAD simulator was developed for the BMDARC
testbed and made use of up to eight VAX-11/780 computers interconnected
by a PCL 11-B data bus [HOFF80, GREES0]. Later, this simulator was
moved to TRW at Redondo Beach, California where it runs as multiple batch

jobs on a single VAX-11/780 (under VMS).
134

COMPUTER SYSTEM 1

. TACTICAL
APPLICATION

Ml)nuu;MI

DISTRIBUTED
REAL TIME
OPERATING SYSTEM

(a-rT0S)

COMPUTER SYSTEMGQ

TACTICAL
APPLICATION

My oo M3

DISTRIBUTED
REAL TIME
OPERATING SYSTEM

(a-r7108)

FIG; A"l;

INTERCONNECTION NETWORK

RADAR

THE DISTRIBUTED PROCESSING

ARCHITECTURE DEsieN (DPAD) SysTeEM

135

Residing on each computer is & copy of the d-RTOS. The 4-RTOS
consists of six cyclically executed tasks (see Figure A-2) responsible Lfor
scheduling application modules, shared data management, and resource
management. Apphcatlon modules are scheduled for execution based on their
priority and are executed without interrupts. ' The role of shared database
management is to ensure the consistency of the replicated shared data. Thls

is facilitated by the folloiving design constraints:
1. There is only a single writing module for each shared data file.

9. If a module references a shared data file, then a copy of that file is present
on the computer to which the module is assigned. Thus every module
reads only local file copies and this incurs no H’C.

Finally, resource management is concerned with reassigning modules when an

overload condition is detected.

Of particular interest to shared database management is the procedure
for updating a replicated shared file (see Figure A-3). When a module M;
updates a file i, M; places an entry for F, in the Task Completion Queue
(TCQ) of the d-RTOS, indicating the file and record modified. When the d-
RTOS task COMPLETE reads this entry from the TCQ, it formats and sends
a file-update message (containing the updated record) to all computers which
have a copy of that file. This file-update process causes IPC which might

degrade the system performance. At a receiving computer, the d-RTOS task

136

2

DATA INPUT HANDLER
(DATAIN)

3

 CLOGK MANAGER
l (CLOCK)

!

CONDITIONAL ENABLEMENT HANDLER
(CONDIT)

!

RECONFIGURATION PflESCHEDULER
- (PRESCH)

|

SCHEDULER
(SCHED

B!

TASK COMPLETION HANDLER

(COMPLETE)

Fig, A-2, THE d-RTOS Tasks

137

avdd 3HL NI S3lvadn 3114 °"¢-¢ N9l

o
|

|

_ (WD) SILVAIN TI14/SINMMTTEVNI NSVL

" o :

. |
_ |
!

1l 1 ! ! BIL
= — - ——-+{ 371D sﬁ “ ro=m= = 1T1dH0D ,..iﬁﬂ
! 1 I - 1
! ams [=f oo | |} _ ams = s
' i " f
| ST __ . IS
i * i ﬁ

VIVO GRIVHS L] \viva a3uves,
¥0M) “ ¥01)
|
| L p |
Lo — ——J vt fo———— -} L NIVVE Jo— ————1
¥ H

L o o . v S S e el el S S S AL L S S R T S e e e—

138

DATAIN reads the update message and posts the update. Similarly, when M;
enables M, , M; places an entry for M, in the TCQ. The d-RTOS then sends

an enablement message to the computer where M, is assigned.

Two intérconnection networks are considered in the DPAD: a bus and
s totally connected point-to-point interconnection. In both cases, the
networks are assumed to be error free and infinitely fast, ie., the network
delay is assumed negligible. The TRW DPAD simulates these networks by

using the VAX/VMS mailbox communication facility.

Thg radar interface is simulated by the System Environment and
Threat Simulator (SETS) which is driven by a predefined detailed sky map.
Based on the sky map scenario, the SETS reports initial detections and
updates the position of objects.c.wer time. A verified radar return is referred
to as an fmage.. Since an object changes its position, it may have several
associated images. For each radar return, the SETS provides the tactical
applications with the radar command type as well as the time at which the

return was received.

The tactical application modules are driven by the radar. There are

twenty-three application modules 1 which are employed in seven processing

threads (see Figure A-4). For example, the SEARCH/VERIFY thread

1 However, Modules M,;, M;,, and M5 are not currently implemented in the
simulator.

139

Figure A4a: DEFINITION OF PROCESSING THREADS

SEARCH/VERIFY.
1) Verifies a radar return
2) Control flow: See Figure A-4b

COARSE TRACKING. '
1) Performs cross traffic rejection and known object recognition.
2) Control flow: 4, {5, 6}, 7, 13
({5,6} means that Modules 5 and 8 can be executed in parallel.)

CANCEL COARSE TRACKING.
1) Cancels a standing order for coarse tracking.
2) Control flow: 4, 13,

PRECISION TRACKING.
1} Tracks objects to obtain an accurate estimate of their position.

2) Control flow: 8, 9, 13

REDUNDANT TRACK ELIMINATION.
1) Determines if an image matches an already known object.
2) Control flow: 8, 10

ELIMINATE NONTHREATENING OBJECTS.
1) Determines if an object is threatening.
2) Control flow: 8, {16, 17}, 18

INTERCEPT PLAN.

1; Establishes an intercept plan for a threatening object.
2) Control flow: 8, {18, 17}, 18, 19

140

Object
Detection

Module 22
Execution (200MLIJ)

2

| M_odulé 1 Module 23

Execution (200 MLI) Execution (200 MLI)
{Schedule a VERIFY
‘ radar command to be
Module 2 sent 7.5 msec later)
Execution (50 MLI))
(Process the PR
detected object & SETS
store record for Execution (5 MLI)
later verification) (Radar simulation)
Module 22
- Execution (200MLI)
. . Module 1
MLI=Machine Language Execution (200MLI)
Instruction;
Execution Time==MLI divided
by processor speed. Module 2 -

Igcgcution (SOOaﬂILI)

Coct | n

** Radar receives the VERIFY (Jeiregi?it;gie), eng
command about 9 to 15 msec

after Module 23 finishes
execution. . Module 3

Execution {500MLI)
(Initiate Coarse Track)

Module 13
Execution (500MLI)
(Establish a standing
order for Coarse Track)

FigureA-4b. Search/Verify Parallel Activities

141

processes an initial image detection, then schedules another radar pulse to
verify the presence of an object. The time from beginning to end of a
processing thread is its port-to-port (PTP) time. The processing threads are
applied in a pipelined manner, as depicted in Figure A-5. Communication
betjwi;veen moduia is accomplished by use of shared files (see Figure A-8). All
files in the DPAD are named with an integer number greater than 100. The

overall control flow of the modules is shown in Figure A-7.

A portion of the control-and-data-flow was shown in Figure A-8. M;;
consists of two separate routines: M;;, and M;3p. M3, is periodically
enabled every 1 ms to schedule radar commands: it enables M), which in turn
enables M,s. All other modules are enabled by the radar returns, directly or
indirectly. Returns of different types (e.g. Detect, Verify, Coarse Track, or
Precision Track) are processed by different threads of modules; M, does the

thread selection.

142

SEARCH/VERIFY

CANCEL (COARSE TRACKING)®

COARSE
TRACKING
@——=IMAGE DROPPED

(PRECISION gONTHREAT INTERCEPT REDUNDANT-TRACK
TRACKING) ATION PLANNING ELIMINATION

(thread)® == the thread is executed z times,
and the superscript * means 0 or more times

FigureA-5: Sequence of Threads

143

GVd JHL N1 1NOTS 1041NOD

ad B [R]E)
HOLAN LN
- [wvon]
L0 ONY DiN
fuidabbl ol Ll M
u..-dtm
e v 12[wm] sz {Toviaov]
BONYIIPON
o Fian L1 o [omt] 1 [] o o0Ns
=NON
6) (i

e o

—— — e s s] ..|....I|l|.l..ll...|||u|l-||ll

145

13, {~MRITE _
CLOCK A -
o2
14 |4 Read
|
23
(RapAz |
.-"_ ——p -_-.__
..‘.‘: ———————— ! {
T~ 1 |THREAD |
‘ - L " PRECISION 4|
COARSE .
VERIFY ~ o ¥TRACK TRACK !
2 - 8
~. 4
AN & e
Nl
)3 O
s Pt 9 10
%, END ,
Y NP, '
END K% .
115
RN
\@\@
~
“
\ Y
N13g
J | ...HobuLe M| 7 €D ...Excrusive OR
(&)P F, @ A
F16. A-8, PART OF THE CONTROL-AND-DATA=FLOW GRAPH IN DPAD

146

APPENDIX B
THE UCLA DPAD SIMULATOR

The DPAD simulator at the University of California, Los Angeles
(UCLA) is a modified version of the TRW DPAD simulator. In the TRW
DPAD simulator, each tactical cbmpu-ter (also referred to as a CPU) in the
target network is simulated by a VAX/VMS batch job. The tactical
computers (the VMS batch jobs) communicate by using the VMS mailbox
system function. The batch jdbs must be synchronized so that the simulated
CPUs keep roughly the same simula.ted tactical time. To this end, messages
are sent between the batch jobs to synchronize the execution speed of the
simulated computers. When 2 job suspends execution while waiting for a
synchronization message, the VMS scheduler selects the next job to run. It
can be one of the DPAD simulator jobs or another job ﬁnrelated to the
simulator. If the next job is a simulator job, the d-RTOS for this job must
ensure that its tactical time is the smallest among all the simulator jobs;
otherwise, it goes into a futile loop, testing and waiting for all other simulator
jobs to proceed to larger tactical times. Thus, if n computers are simulated,

there will be n-1 batch jobs in a futile loop.

147

Futile loops made the time to do a simulation quite long and prevented
us from making the large number of runs necessary to study the effect of
varying the scenario, module assignment, and database kernel design. Thus,
the TRW simulator was modified and moved to the UCLA VAX-11/780
(under UNIX). The UCLA version runs 3 ffo 10 times faster depending on the

VAX load, number of objects simulafed in the scenario, and number of

computers simulated for the target systém. 1 The following sections describe
the process of converting the multi-i)a.tch-job simulator to a faster single-
batch-job version, changing it from the VAX/VMS operating system to the
VAX/UNIX at UCLA, and providing enhancement to the UCLA version.

B.1 CONVERSION TO SINGLE-BATCH-JOB SIMULATOR

The popular event-schedﬁling simulation method [FISH73] was adopted
to eliminate the futile-loop bottleneck. The modified simulator uses only one
batch job no matter how many computers are simulated, (which also reduced
the memory space required during a simulation). The teéhniqua used in
these modifications on data structures, event scheduling, message

communication, and the generation of statistical reports are mentioned below.

a. Data Structure: In the TRW simulator, data for a batch job refer to a
single computer. For instances, a simulated local tactical time is

represented by TACTIME, and a module enablement queue by

1 More objects or fewer CPUs usually means busy CPUs. And the busier the
simulated CPUs, the smaller this speedup factor.

148

ENABQUE(10,40,4), which means that the queue has 10 priority levels,
40 entries per level, and 4 words Vper entry. To provide the same type
of information for the different computers, the UCLA simulator
dimensions most variables and arrays in FORTRA.N COMMON
statements by ;ﬁomputer. For example, ENABQUE(iO,40,4) becomes
ENABQUE(10,40,4,20) and TACTIME becomes TACTIME(20).
Variables and arfays appearing in FORTRAN executable statements

are modified accordingly.

Event Scheduling: To simulate the parallel activities of multiple
computers, the UCLA simulator maintains a clock, represented by the
aforementioned TACTDdE(CfU), for each CPU. Thus, it becomes
easy ﬁo always schedule the simulated CPU with the smallest value of

TACTIME(CPU). The UCLA simulator maintains an event queue as

follows.
TACTIME CPU TASK)
T 18t event
2nd event -
Entire . . . 3rd event
Event
Queue
L etc.

There are as many entries in the event queue as there are computers in
the simulated system. Each entry tells when its corresponding
computer is to be scheduled for its next activity. Events in the queue

are ordered in the ascending TACTIME sequence; i.e., the first event
149

has the smallest TACTIME. The simulator always schedules the first

event to happen and deletes that event from the queue.

When the current scheduled event finishes all its activities,
TACTIME(CPU) is advanced properly. Then, the simulator creates a
new event and inaerta’f it into the event queue according to the
TACTIME sequence. The new event created is for the same CPU to
execute the d-RTOS routﬁe specified which is next to the ome just

finished in the cyclic order. This new event has the following contents:

TACTIME : the tactical time when the current event finishes; also the

occurring time for the newly created future event.
CPU : same value as the current event’s CPU.

TASK : the next d-RTOS routine to be executed.

To conclude, the UCLA simulator uses only one job to simulate all -

computers. This greatly reduces the delays due to futile loops.

Message Communication: Computers can send "module enablement”
command messages or shared-data update messages to another
computer. The complicated (and thus time-consuming) mailbox
function, used for intercomputer communication in the TRW
simulator, has been replaced in the UCLA simulator by a simple °

procedure with 20 message collectors, MESSAGE(20,1000), each

150

collecting messages sent to its associafed computer from others. Fig.
B-1 shows the role of MESSAGE collectors in the simulator. Note that
input and output buffers are FIFO queues while the MESSAGE
collectors are not. A message is inserted into the MESSAGE collector
indicated l;y the message destination and it is inserted according to its

arrival time.

Let us justify the existence of the MESSAGE collectors by an
example. Assume CPU i starts an event E1 before CPU j starts E2.
E2 will not be scheduled to happen until E1 has been completely
simulated, although in the target system these two events overlap in
time. (Remember that we have only one batch jéb.)- Assume both E1
and E2 generate messages for CPU k at the end of their executions and
assume E2 finishes earlier than El 1n the real .world. But E2 will not
generate messages in the simulation earlier than El. We must
compensate such a distortion and this is done by reordering messages
in MESSAGE collector for CPU k, through message insertions

according to their arrival times.

Statistical Output Files: Code was added to the d-RTOS operating
system to extract statistical information such as CPU utilization in
target computers (named as ZTG files in the simulation), shared-data
update message volume from one application module to another

(named as ZTU file), and number of times each module is executed
151

1L ONIATMYY Y1301 0L 9NIQUOIIV

AYIGUOT WY YILNAWOD V 1V INIATYYY STOVSSM YO1VYYdHOD WIL :| L

*HOLVINWIS 3HL NI WSINVHOI ONIYIQYO FOVSSM ‘T-a Jnold

(0001’ QZ) HONSSHW

I

0c

(7Y}

(000T *€) TNSSAN -

¢ - : 1

i (0007*2)

| k2
(0007 T) TOVSSHW ...

1 P— | I

L L ¥3LNdW0D
¥ILNdHOD IHIAITIRY ONIONIS 40

40 43449 LndNI 434409 1ndLno

152

(named as ZTO files). Two classes of statistical files can be
distinguished. When we request for a file of the first class, a file should
be generated for each CPU. Since there is a copy of d-RTOS in each
batch job in the old-version simulator, multiple CPU utilization files
‘were generated; each for one CPU. Because there is only one batch job
in the new version, statistical records of a given type (e.g. CPU
utilization) are wﬁtten into the same opened FORTRAN file, with 2
digital characters added in front of each record to indicate the
particular CPU this record applies to. After the simulation, the
combined file is sorted off-line to recover the individual files for various

CPU’s.

Let us now consider files of the second class {e.g. ZTd and ZTU
files). The old-version simulator generated a ZTO file from each batch
job, each file supplying only part of the complete information
requested. On the other hand, the new version naturally produces a

single ZTO copy for the complete information requested.
B.2 SIMULATOR TRANSFER FROM VMS TO UNIX

Despite the potential portability of FORTRAN IV and the fact that
both TRW/Redondo Beach and UCLA use the same VAX-11/780 hardware,

problems arose because TRW uses FORTRAN-PLUS under VMS while UCLA

153

employs F77 under UNIX. ! Two major problems encountered were the

number of characters allowed for a variable name and the number of file units

allowed for a program.

3. Variable’ Name: FORTRAN-PLUS allows up to 14 characters in a
B ._ | !

variable name while UNIX only allows 8. Long variable names improve
program readability and facilitate enhancements. It required much

effort to rename variables while still preserving their uniqueness and

their meanings.

b. File Unit Number: This problem was worse than the previous one in
terms of the effort needed to correct it. UNIX allows only 20 logical file
units {units O through 19) in a FORTRAN program. The TRW
simulator generates more than 30 different statistical report files, each
with its own unit number. The technique of "combine and then sort”
is used to solve the problem. Frequently requested files are assigned
their own file unit between 1 and 19. All other outputr files use unit 0.
File unit pumbers in the WRITE statements were changed to 0, and a
code was added in front of each output record to indicate the original
individual file. Sorting routines were written to sort the output file

from unit 0 into separate files.

1 FORTRAN-PLUS and F77 are different versions of the FORTRAN
language.

154

B.3 ENHANCEMENTS TO SIMULATOR

We have made the following modifications to the simulator to improve

its performance and functionality.

a. C’ircular. Queunes: There are 23 program modules in the TRW DPAD
application model. Some files (repr;ented as FORTRAN variable
arrays) have as their sole function the information transfer from one
program module to another; records of a file are generated by one and
used by the other. In the original simulator, the receiving module reset
the records to zero (or blank) and then distributes this update so that
the same record spaces could be re-used. This technique creates
unnecessary IMC. We have changed those modules which
communicate in this maﬁner to use circular queues instead. Much IMC

 was eliminated and CPU utilizations dropped in the range of 10 to 30
percents, which depends on the nut_nbexf of receiving modules residing
on a particular CPU, frequency of receiving records, and record

lengths.

b. Functions for gathering IMC Statistics: In order to study the role of
inter-module communications in task allocation, we need to know how
many messages are generated by what application modules, and to
what modules these messages are sent. Special measurement routines

have thus been inserted in the simulator to measure the IMC.

155

Replication Runs: In order to eliminate the bias resulting from the
random number generator, we modified the simulator so that, for each
run, it would start with a different initial seed for the generator. A
UNIX command procedure was used to repeat the simulation a

specified number of times, each time starting with a different seed.

Tool for Data Reduction and Plotting: To handle the huge amount of
output statistical data from simulations, particularly from replicated
runs as described above, several data reduction routines and plotter

routines were developed.

156

APPENDIX C
 COMPUTING OBJECT DETECTION TIMES -

The input 'scena.riol_i-s represented iay the SKYMAP ﬁlev(Fig.' C-1).
START TIME and END TIME are the ﬁme instances when an object enters

and leaves the sky area covered by the indicated radar BEAM. The following

2 steps calculate the detection times for all objects in the scenario.
a) Perform the following algorithm for each BEAM-ID number:

1. Divide BEAM-ID by 15, obtaining the quotient q and the remainder r.

2. If r=0
then { q <~ ¢;
r <-15; }
(This BEAM direction is searched during the r-th round of radar search.)

3. Calculate the time instance t in milliseconds
t <- 57(r-1)+(q+1)+7

e.g. BEAM-ID = 332
332/15=222
57x(2-1)+(22+1)+7 = 87 ms
4. It t < START-TIME for the object to show up within
the search-range of this beam,
then { t <-— t+855;
goto4; }
5. If t > END-TIME
then terminate;

Else
{ Record t as a Detection Time for this BEAM;

t <-- t+855;
go to 5; }
157

Note: After performing this algorithm for all the BEAM-ID numbers,
we obtain the object detection times as shown in Fig. C-2.

b) List all Detection Times for each object (Fig. C-3).

158

THE SKYMAP FILE, TTSKYMAP.DAT, CONTAINS 42 OBJECTS

SEQUENCE OBJECT BEAM START END
NUMEER D D TIME TIME
1 47 2il 0 1000
1 47 212 800 2000
2 69 332 0 800
2 e . 375 600 1600
3 56 482 0 400
3 56 528 - 300 2000
4 80 408 0 1000
5 67 603 0 500
5 67 646 400 1000
6 36 259 c 200
6 36 260 700 - 2000
7 35 350 0 500
7 35 351 400 1500
7 B 399 1400 2000
8 70 - 246 o) 950
8 70 290 900 1600
8 70 288 1500 2000
9 64 291 0 800
9 64 335 700 1600
9 /64. 380 1500 2000
10 8l 322 0 800
10 .81 318 700 1500
11 45 396 0 400
11 45 442 300 1100
11 45 488 1000 2000
12 75 546 0 2000
13 59 205 0 2000
14 57 341 0 800
14 57 386 700 1600
14 57 431 1500 2000
15 58 255 0 800
15 58 300 600 2000
16 46 300 0 800
16 46 346 700 1600
16 46 347 1500 2000
17 65 207 0 1000
17 €5 251 800 2000
18 77 329 0 800
18 77 325 700 1600
18 77 366 1500 2000
19 8L’ 321 250 800
20 74 . 283 o 800
20 74 281 700 1600
20 74 278 1500 2000

Fig. C~-1l. SKYMAP, Input Scenario File

159

21 25 265 0 800
21 25 267 700 1600
21 25 270 1500 2000
22 70 291 500 950
23 82 232 0 1000
23 a2 229 800 2000
24 78 190 0 400
24 78 189 300 900
24 78 187 800 2000
25 43 756 0 1000
26 61 745 0 1000
27 55 660 0 1100
28 7 501 0 500
28 7 635 400 1000
29 62 608 0 1000
30 33 583 0 800
31 72 552 0 800
32 44 533 0 2000
33 63 474 0 2000
34 68 463 0 2000
35 76 460 0 1500
36 34 447 0 1000
37 73 418 500 1500
37 73 459 1300 2500
38 24 358 500 1000
39 26 176 500 1500
40 37 173 500 2000
41 48 165 500 1500
42 22 130 500 1500
43 0 0 0 0

Fig. C-1{Cn.} SKYMAP, Input Scenario File

160

THE SKYMAP FILE, TTSKYMAP.DAT, COONTAINS 42 CBJECTS

SEQUENCE OBJECT BEAM START END DETECTION

NUMBER 1D D TIME TIME TIME

1 47 211 0 1000 22, 877,

1 47 212 800 2000 934,1789

2 69 332 0 800 87

2 69 - 375 600 1600 : 830

3 56 482 0 400 97 i

3 56 528 300 2000 1012, 1867

4 80 408 0 1000 149 oo

5 67 603 0 500 162

5 67 646 400 1000 : 906

6 36 259 0 900 196

6 36 260 700 2000 . 1108, 1963

7 35 350 0 500 259

7 35 351 400 1500 1171

7 35 399 1400 2000 (Not Detected)
8 70 246 0] 950 309

8 70 290 900 1600 1110

8 70 288 1500 2000 1851

9 64 291 0 800 312

9 64 335 700 1600 1113

9 64 380 1500 2000 1971
10 81 322 0 800 371

10 81 318 700 1500 298
11 45 396 0 400 219

11 45 442 300 . 1100 379

11 45 488 1000 2000 1294

12 75 546 G 2000 329, 1184

13 59 205 0 2000 534, 1389

14 57 341 0 800 600
14 57 386 700 1600 1458 ,
14 57 431 1500 2000 (Not Detected)
15 58 255 0 800 (Not Detected)
15 58 300 600 2000 825, 1680

16 46 300 0 800 (Not Detected)
16 46 346 700 1600 886

16 45 347 1500 2000 1798

17 65 207 0 1000 648

17 65 251 800 2000 1449

18 77 329 0 800 770

18 77 325 700 1600 1397
18 77 366 1500 2000 {Not Detected)
19 81 321 250 800 314

20 74 283 0 800 710

20 74 281 700 1600 1451

20 74 278 1500 2000 (Not Detected)

Fige C-2. Detection Times for Cbjects by Various BERMs

161

21 25 865 0 800 538

21 25 267 700 1600 1507

21 25 270 1500 2000 1678

22 70 291 500 950 (Not Detected)
23 82 232 0 1000 365

23 82 229 800 2000 1049, 1904
24 78 190 0 400 {(Not Detected)
24 78 - 189 300 900 476

24 '78 187 800 2000 1217

25 43 75 O 1000 343

26 61 745 O 1000 570

27 55 660 0 1100 849

28 71 591 0 500 332

28 71 635 400 1000 (Not Detected)
29 62 608 0 1000 447

30 33 583 o 800 730

31 72 552 0 800 67

32 44 533 0 2000 442, 1297

33 63 474 0 2000 495, 1350

34 68 463 0 2000 722, 1577

35 76 460 0 1500 551, 1406

36 34 447 0 1000 664

37 73 418 500 1500 719

37 73 459 1300 2500 1349, 2204
38 24 . 358 500 1000 715

39 26 176 500 1500 589, 1444

40 37 173 S00 2000 1273

41 48 165 500 1500 817

42 22 130 500 IS00 529, 1384

43 0 0 0 0

Note: An cbject with more than one Detection Time
means that it is detected multiple times by
the radar and redundant images are generated.

Fig. C-2 {Con.) Detection Times for Objects by Varicus BEPMs

162

OBJECT DETECTION OBJECT DETECTION

NUMBER TIME NUMBER TIME
1 22,877,934,1789 21 538, 1507, 1678
2 87,830 2 (Not Detected)
3 97,1012, 1867 23 365, 1049, 1904
4 149 ' 24 476,1217
5 162, 906 : 25 343 .
6. 196,1108, 1963 26 570
7. 259,1171 27 849
8 309, 1110, 1851 28 332
9 312,1113,1971 29 447
10 371,998 30 730
11 319, 379, 1294 31 671
12 329,1184 32 442,1297
13 534, 1389 a3 495, 1350
14 600, 1458 M 722,1577
i5 825, 1680 35 551, 1406
16 886, 1798 36 664 .
17 648, 1449 37 719, 1349, 2204
18 770, 1397 ‘ 8 715 :
19 314 39 589, 1444
©20 + 710,1451 40 1273

' Fig. C=3. Detection Times for Each Ubject

163

APPENDIX D
> MODULE-ASSIGNMENT SELECTION PROGRAM

, -‘ The pfogram selects the module assignfnents from the enumeration
tree according to the -objective function. Variable MINMAX keeps the
minimum "bottleneck load” eva.luatéd so far in the tree search. It is
initialized with a large value, 999899 MLI's. Whenever a module assignment
is evaluated to have a bottleneck smaller than MINMAX, the bottleneck value
replaces the old MINMAX value and a line is printed to log this particular
assignment. Fig. D-1 shows the printout from this program. Progressively
better assignments are obtained. The first- column .displays the module
assignment with the minimum bottleneck found so far and the next column
shows the associated bottleneck value. Of the 23 numbers shown in the
assignment, the j-th number with a value of 1, 2, or 3 means ﬁlodule M; being
assigned to processor 1, 2, or 3 in the particular assignment. Within each
row, the bottleneck is the largest of those three load values in columns 3, 4,
and 5, each column representing a processor in the distributed system. The
rightmost column shows the total load of the 3 processors, i.e., the total

system load.

164

IOUVIS ALLSIMIXE WS SIBISTRE NOLLVIERIN] (=) 91

secooz <wm] psce zstos €9vim =pre] €99ia = reeit) O ez cze1y ozgegoo §EPT1 LT ELE AT
Fecs wwns)iuciy (D66¢ TGRIB wpRO1] ES61A = TEEOLY CEY zzewr ozgoo 1Eity L1 EAAC
02ebTe Tumilecrce wucen tezcm -peoificcea - aesnit | L G2 creil gegeoo 1EiEi B LLLAAC
e Ceni|ecece covim ozsen =prod| ozsca - rewnin | 8 €% €zz11 ozgoo 1zt TLTIRAL
S Chee wwns|ocie YE(CE 25610 =PYO1) FELEO = SEEUIC Ly ZzZz11 ozzoo rzsil LaElnAg
y e rwmilaeuie cmce austa =prel| ALSYE = 1eRHiT) T C2 tEzit ozzoo pzria LT
Oeiore wwns|veucs fsvzm EritE —PEOV| ERLYE = SRUC TET teery ozzoo pEasl LA
2o600E —wns|9sAie 2SI0B bieca =pvOlL bieSE = Stz set1y ozzog 1EATL LR
oyosez =wns|9emi9 [Bobe €9198 =pe01| £9198 - S zzi1ry ozgoo rzit LIIEAAC
gccace ~wns|9anle &€SBL locea =peod| jored - €ce tzivy ogzoo vzyer 1A 1hy 4
Zroecs wos|sLgie Ol28L 9IrE0 =peo1} 99vEd - ccf szt1y ogzoo tTiil LA TEL
Geppes ewns| Geni9 kGOYH FOPES = ToMes - swemm \CEe ZZTez ezzoo T4 1 L1 gnae
S iy: want|oency 680ER CLLC& PPOI| SLLE6 = TEEUIC el 22tz ozzoo zerT 1 1N e
Borors -wns|zoeiC cecsB BZLRG =FTOL| bilkb Cez tccetl ozzoo 111 a L bLLmE L
zevoes -wnslzoese ZCved BIOSH =PrOT) BIOSH CES zzeza ozzoo el L1LEE e
gitooe ens]2once Zeven w¥9es wbToV| BEILA Btz 122z ozzoo PEILL EE R 1
vosroz =wni|Znuce £oren sopce =Pro| 0ALS Ce: tezzecy ozggo 111 L L1 ES 1w
oa1tos ~wns|ZaenE 85078 Ories =PeO1) ObI&E Ii: ezier oztoo vpEr1o tbbAA ar
yoc1e2 snenE reBcE eTRes =ProR] eZvel e 22tz ozzoo prILE BALES 1
8080272 2065E £SPER 650101 =pYo1] 490104 Ttz zazrty ozzoo 1yrEy 1A il
zegoe? zhecE “2s2cA @sciol -proll BETLIO EET szety ogzoo 1Ers1 L1l 1.
oio0c =wna|Beeez ¥18101 BSEIOF =PTo1| ¥IEI0) ggy zeziy orgoo PE1LL oA VR
Secars -wns|@o6LT ¥L600F POGEOI =PTol| bBECOL = tes tzEty oggoo veTy LIEE] ¥
zeaILE B e69001 Lyit0l =pvoi| sypon = tvsure | € 2 4 2 Gzi11 ozzoeo TPIEL P TEAY
aroi1e2 B ovems OCcOl =peol) OBESOT « reeuim [CE R E Syt1 ezeoo VUETL e alas
Srbice -wn3|BeCEE SLiB6 69CSO1 =prol) SICEO1 = CZt fziis ozzoo pEIET 1 LIAAC
Zepitz =wes|BeriE cve96 L0L(O1 =PPOTL LOLLAS 7 €St T2191 ozzoo pra b B E1RIAC
B2LICE onFer BSE9s 240201 =peol] 2ediOb = €27 1z2vi1y ogzoo rtrver Bl e
02122 0 yECE11 26£01 =Pvoy| PEEEAT = 21 a1zvi4 ogzoo srres A e
gec9 e) reciol 950S11 =prol FIOSIY - %z t1tvt ozzoo p11 Bl 1AL 1e
PLPTIT 0 fcerar teisit =ero1| taisil = 2% 141y czzoo preat LIRS e
oD¥ (2T 0 Eien zzeory —pvey| eciovh m vewmiw 22T EE T 2y o1trga VVEILY BTN ETAY
voucES 0 o8 GroiEl ~pro i) 1T0Ibg = sweuiw | 221 ZEEL 7 ottoo pELE T LLRLAn
DozeE 0 B ora croEyt =proq| scocyy « vemupe |z 2 P EEE L ottog tyyir Py
99162 0 e CoOEH) =pvo)| Zomcyy = svewe j 2 EL VETE f olitoo 1V PI VR ETLAS
zecenT 0 Yo CLicel =proq) grigyy = svewe f 2 ZE ZE L EN oti1o0g L IETE pLLAEAT
givoze =eoslo vsoed ZTEGYL Sopeey - temugw 221 22yl ot g0l 3 t1rs t1itie
opvzze ==nt| 0 aisoa ZI0LEY zo0Lt = s Zreta orvoo 1N LLEES e
voneze -=nsfo CGron 1GELRT 1cEh) = Zel Zectwr oertoo vt 1Ll EAC
ooreez =wn| 0 E1s6L LL6oT] Leobh) = St: Tzz1a ovioo 1rbEr o MR 14e
99cs22 =03 0 yezel Teios) zei0clh = 25 1zevs otvao 1t B i1 e
zeimee =ensf 0 beA9L ELZIST =prolf £4ZIAN < Tta zzisy ofroo stiEy 1l 1.
gczaee =ons| o yie9¢ z9cist =peol| £95151 = e it cvioo vivTE v rid 1w
qpeBiz =*rs| 0 9pzge coLrsi =kvol| ooLesy - CZ: Tz1us otvoo vy bt B
zgegzz =wni| 0 (hove 9661 ~peof geeesy - SEY 1zt orvoo ppavy ot Rl
verrez =ensl o goicy s00l7l =bro1| 600191 = SZ: thivg oproo vrEn VLI 1"
ocorze =wns 0 qeaze ¥eE17) =PTo] ¥LNNT) - 5% viwrg oviooe pEAEECoLEAS I e
215p12 =wnslo 2Dese vESALl =peo | bECBLN - TS tr11d otsoo pypvy o b Pt
aesiz »wnslo gercz 0c6eo) =bvo1| ocesBl = 2%l Jiisg ortoo sTEEE T LERE 1.
FrnEnE =en’ m MNVJ IrptoE =reel aﬂa. LIt JtLi eploeo. 11 LU IO I
._ﬁc._ o (D1 INIWNYESSY k0
ol _ - y sfeq qna [ous £AG11)ED I UOC

165

[Jilelotet

cegzze

GokEcT
scacTd
b ¥ 2t

J0MEZE
[t o il
aoreZd
[: 743 k44
s
rZCsZ2
| R Pl
alzee
IIECE
FEEET
YS9EES
OCGELT
FEYEED
ORSELE

=EOE
=uns
[Ll

seidve
cezre
Geave
21TV
EZovL
LTBECE
bEBCL
cYIceL
50408
oTYaL
E0LL
BIZ0L
gees?
S1LLL
YLy,
LLE¥L
Lobhe
ol
2660

S08EL
acorL
€8eL
L1147
SLCKL
rSKL
L: 141 14
ZEESL
9rsSL
9¥seL
80Z0L
IeNLL
[]1:74
oLc8L
Fdrpr T4
1sn8L
T968¢L
Sl
eh69L

voord
&H10bL
BOEYL
[1 54 1
rikbeL
[A1y
- TA LT3
EI1¥SL
EZESE
[3314
oeliL
oniid
eclel
o8lLL
oBitd
F086L
[71T
cocie
14810

SLEVL
sLzML
KL
EIcy,
vivke
€loss
T
Civse
8¢
2196¢
qcaLL
9g8LL
ecza:
0£28L
958l
9006¢
7Y
Toes
16518

1z ki as RO BRTR

L L L b D R R K L B R R R

MM NNSEHNNT O - ===

(Q3INN11NDY)

P el el B BNk B

08 O v wm (3 17 o T 00 O 08 0 s o e GO DY

CT T CY T 7 06 O 1% O Cd 00 00 Y) = o 04 TN 02

,m A AGANNGTIOANOGNNOON

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ“ﬂﬂﬂﬂﬂ-—-
-y o vt e um w73 DO

ACc00a00a00C00000a00

aNIRRIE!

GUNEGNAMAMISANNGRRA

cEo00 121 c
coo0 eCI1EZEC
coo0 TI1ZE
200 EEET
o0 EECCT
zod f1c1z
zZ00 Ter e
copo rz1l
[rery
coo 1z
coo 111
E00 Tz
cEo¢ 11
200 re2t
o0 te1
goQo 15
[] [S-2 B |
tod et
200 1zt

2 afed yno nns

e e e e e Rk R B Ry B B

e L L L L LK

P e e e el 5 1 R

(W)

P e o R e R KR]
[L L L E R .]

[NIYA

, ww wn ww S b wl MR Y VR A wm e b S am
-
L]

LI

166

Since it takes several days to enumerate the entire tree, the program is
designed to have a checkpoint written out in a temporary output file for
every 3!! assignments evaluated. When a computer system failure occurs, the

program can continue the enumeration from the most recent checkpoint.

| | i

“From the program output we picked the last ten assignments (shown
in Fig.4-20) and simulated each of them with the DPAD simulator. See

Section 4.3 for the results.

Although the 10 selected assignments have progressively smaller
bottlenecks, they are not exactly the 10 assignments in the search tree which
have the 10 smallest bottlenecks. For example, after the assignment with the
bottleneck 74368 MLI was printed on Fig. D-1 (the 3rd line from the bottom)},
‘an assign-ment with a bottleneck 74310 was not printed. Nor was an
assignment with a bottleneck 74400. But, both 74310 and 74400 might well
be among the 10 smallest bottlenecks. Therefore, there are many more
assignments that have better (or ' comparable) performance than the 10

selected ones.

167 -

