ey

H‘

by

]

{1

ul

5]

by

Teelvi Jane kBalten

-

W
e}
W

The

thesis of Evelyn Jane Kalton s approved.

- -
P

£

- - -

- - .
z
— - T -~ L
- S
——
- «

e e e ——

Gerald J. Popek, Coomitiee Chalrman

7}
fod
v
n

niversity of California. Los Ang:

{

1975

To my mother, without whose help and support this vwork

would never have been possible,

iii

ot o
¢

Intrce

Chaét

Auction « « = » = =

Problen Statement .

]

Basic Design Decision

Security .+ ¢ o o o
yerification . . -
Security Kernels .

virtval Machines .

C
OCther
Th =~ ”“"““OT‘
- u:‘_'.‘_"..l--_ > [] -
m _——l e
The Irnitiator . o

Basic Systen Structure Summary

.Chapter 1: Basic System Design

DecisionsS o« » = o

Basic System Cozponents

er 2: Haréwvare and Software Ccoporants . .

114

The

5?2 11745 Architecture

Hardware FKodifications to

Security Cbjects
PTOCESSES s 2 s o e
DEVICES o « « = o =

Segnents . . o o -

Corplete Systeo Structure

iv

the

UCLA PD? 11/45

-] - [] . - -
] - - - - - »
- - - - - - »
- - - - - - »

12
14
16
23
25
27

30

32

50
53
58
66
70

T3

Chapter 3: Basic Kernel Design Decisions .

3.1 lMenory Hanagement +« o « o v « o o &

3.2 Capability PaultiDg « « o « o » o« o »

.3.3 The Kermal/Process Interface . « o «

3.4 Kermsl Structure . . s & % ©o s s e

3.5 The Kernsl Trap Handler o o « o s o o

3.6 The Kermel Interrupt Handler . . . «

3.7 Tke Rerrnsl Call Handler . . .-. . = -

3 - 8 Ke:nel Calls - - - - - - - - - - - - -*
3.9 Kernel Dssign Principles o« ¢« ¢ o « &

“2zn2l Call Descriptioh o . . .

4.1 Kernel Call Description Overview . .

.2 Kernel Irnitiation Pricitives: Descriptiocn
p

£.2.2 Destroy-2?rocess Call .+ ¢ & o o o «

-3 Stog/Stzrt~Process Call

4.3.1 The Invoke-Process Call
4.3. The Swap-In Call .« . « &+ &+ o & o &
£.3.3 The Swap-Out Call . . .«
4.4 Other Kernel Primitives: Description
4.4.,1 The Rttach=-Segment Call . ,

4.!{_2 Til'a ..elea:‘e'segEIEHt Call - - = - -

-

75

75 -
83
87
92
93
101
L

116

122

126

132
134

134

144

s
,

4.5

QU5.2

5.3.1
5.3.2
5.4

5.4.1
5.4.2

5.4.3

ryd
m
i
u
iy
§oi

The Create-Segument Call . .
The Destroy-Segasnt Call .
The Sleep Call . . + +» . =

The Send~Kessage Call . . .

- - - -
- L - -
- - L] L

Kernel I,/0 Pripitives: Description .

The BRelsasa-I/0-Device cali

The Start-I/0 Call

The Status-I/O Call + « » =
Kernel Stared I/0 Primitives:
The Reguest-I/0 Call . . .

The Start=-Indirsct-I/0 Call

Kerngl Ini-iation Primitives:

cr

[t}

+
[

[1})

ztz-Procsss Design « « .

Destzoy-Process Dasign . .

Start/3top~Process Design .

Kernel Scheduling Primitives:

Invoke-Process Design . . .

Swap-In/Swap-Out Design . .

Cther Kernel Priritives: Dasign . . -

Attach-Segment Design . . .
Release-Seguent Design . .

Create~32gaent Dasign . + .

vi

Cz313 Design Overview .

Description
- - - - » Ll

rar 5: Kernal Call Design Issues . « .

Design

- [] - L]
- - - -
- - - -

g E
168
150
153
156
159
161

164

166

166

168

171

171
172
172
177
178
130
180
183
1387
187
152

193

5.“.'4 Desttoy"'segment Design - .. « & & 2 e 8 & » » 198
5.4.5 Sleep Design . ., . e e s e .+ 2 x s s = = - o 20t
5.4.6 Send-fiessage Desigh . v o . 4 e - 4 o o o o - 203

209

L3
.
.
L]
L]
L
]
[]
[]

5.5 Kernel I/0 Primitives: Design
5.5.1 Attach-I/0-Device Design. + + o « o« « o o« o » 208
5.5.2 Release-I/0~-Device Desigh . « « o s s o = ; « 213

5.5.3 Start-I/0 Design . . .- 2
5.5.4 Status-I/0 Desigh . . « . « e e e e . . 222
5.6 Kernel Shared I/0 Primitives: Desiga . « 228
5.6.,1T Requast~I/0 DeSigR & o o o o o o = 2 & » o« « 224
- - 233

L]
.
.
-
]
]
]
[]
L)
L]

5.6.2 Start-Indirecf-I/Q Deéign
CORCIUSIONS =« o o o o o o o« o s o o s = « o s o o« = 237
Si5TII0GTETET o 2 3 o o o = o o o s 8 s v e e s = « o 240
2ppeniix A: Thoughts on the Trojan Eorse Problem . 242
25pendix B: SC2NATIO0S « v « v o v o & o o o 2 o o . 248

Appenix B.1: A USer SCeNaCi0 v ¢ v v o o o o « « « 248

Appendix B.2: & Shkared I/0 Scenario . . « « o o . . 251

Eppendix C: Inpnt/O0utput Spacification Ta2ros . . . 2%

vii

—

Index

viii

2638

0,
i
=3
10
1<
th
fu
9]
it
r3

naents

The design of the system described im the foillowing-

sections is not solely the work of the author. It
represents the outccme of several nonths of serious design
vork undertaken at UCLA under the direction of Professor
Garald J. Popek. The ipitial design work was accomplished
thrrough tke joint efforts of Professor Popsk, Charles S.
Klire, a FPh.D. candidate under Professor Popek, and the

author. Bevisions +to +the initial design were made by

Professor Popsk, Charles Kline, Steven Ebréham, and the

authaozr.

it is e:t:s;ely difficult to succinctly separate the
.= =ad= by +the authkor from those of the other
participarn=s, z2nd no real attempt has been made to d¢ so in
the +ay:r of +he thesis itself. However, some general
cocments rsgaréing the division of creéit {or blare, as the
cese =may te) can be made: 1) tke entire general systen
Zesign presentzd in the initial sections of the thasis was
accomnplisked through the Joint efqut of the previousiy
réntiorn=2@ individuals, although +the description oif this
design 1is solély the work of the author; 2) the design of
xzrnzl calls prasented in latar s=zctions was 1ia largs
part accorplished Jjointly; the descriptions of each call,
howaver, are again solely the work of +ths author; 3) the

input/cutput specifications and any rotation used in th

22

Pigure

FPigure

Figure 3

Figure

Initial System Structurt p « « « o = = = =

Reviszd System Structurs

s

w

Systen Decomposition By J[xecutior Hode . .

Systen Decomposition'By Process Privilege.

UCLA V¥ Systen Structure .

ix

A

24
31

64

74

Descriptions of kornel primitives are made, along with

the problens and constraints vhick providel the motivation

h
O
1
et
jo
(1]
fote
at
“h
lJ
o= |
w
]...l
Fn

orrat, Irput/ountput specifications for
the actions reguired of each kernel priritive -- in a style

sirpilar to that developed by Parnas —-- are given.

xiia

This thesis describes the design of the Kernel of the
gciA Virtual Hachine System. The thesis is organized into
sevsral paris. BEarly sections are 3in many respacts
independent of all others, but later sections tend to
expand, anplify, and otherwise build upon information and
materials presented in precedihg sections, Sectidns are -

ordered with

I
1]
gl

spect to irncreasing level of detail, suck
that early sections present overviews and generalities,
while later ssctions are concesrned with the nora detailed

aspects of design and implementation.

Chapter 1 presents an introduction to the problem and
a nupker of -z basic design decisions which iniluenced the
grer2ll szTucttrs of tha syster, Chapter 2 describes the

ha—dware 222 sofiwvware compcasnts of the system. Chapter 3

M

discusses = nusmbar of important kernel design docisions,

¥

their impzct wupon +the systen as a wholz, and the gensral
organizaticn of the kernel itself. Chkapter & describes the
s=t of o-initive operatiors supported by the kernel.

Chepiter 5 discusses the interesting design ssues related

M

to the kernel prinitives dsscribed in chapter 4.

il

ABSTRLCT OF THE THESIS

The UCLA Security Kernel
by

Evelyn Jane Walton
FHaster of Science in Computer Science
Uriversity of California, Los Ahngeles, 1975

Professor Gerald J. Popek, Chairman

This thesis describes the design of the security
kernel of the UCLA Virtual Machine Systemn. The motivations
for the construction of a secure computer operating systen
are sketcied, the advantiages which a security kernel
apprcachn proviés are given, and the utility of a varifiakle
sécurity systen is discussed. sinplifications to the
security kernsl appreoach provided by tha sslection of a

virtwal wmachine system as its underlying target softwara

Systen design goals ars presented and the ircpacts of

these design goals upen the design of the syster exaairned.

4o
)

betailed descriptions oi the rajor design decisions are

b

given, The interface betwssn the kernel and other syston

1
4

components is presented.

are solely of the author's devising; and, &) altbough the

the rernel calls was indeed a

trh

general design of most o
joint effort, the examination of many of the alternative -
solutions to the problems presented and their analysis are

for the most part entirely the work of the author.

The author wishes to thank Charles Kline and Gena
Schneider for their reading and helpiul comnents on early
versions of this document. . The author is especiallj
indebtad <o Steven Abraham for his rultiple readirgs and
conpents nade on several versioms of this document and
eépecially for +the aid bhe rendered 3in d&etecting and

renoving varicus inconsistencies throughout.

lest, but not least, I wish to thank Professor Popek,
nv coooittzs chazirman, for the great patience he show=d
through mulitipls readings of disorganized drafts and ZIor
his sympathsiic, 7yet critical suggestions. Without &is
suppert apd censtant prodding +this docuneant vould never

have been cozpleted,

This research was supported in part by 2dvanced
Eesearch Prciects Agency, Computer UNetwork Research

Contract No. BAHC-15-73-C-0368.

xi

Chapter 1: Basic Systen Design Decisions

—

1.1 Problan Statasrent

As the usage of computers in normal, everyday life has

increased, the meed £for reliable computer software has
Pl

grown. At the sﬁge time, the desire +to share computing
resources has bééome intersified. The expanded capability
for successful computer resource sharing has in turn
increased cozputer usage in the business field. A compény
whichk once could not afford to automate its billing
procedures-- forrthe simple'reason that it could not afford
to purchass aand maintain its own cogputer facility -- is no

ilcngesr guite s5 constrained: it is now possible to lease or

oz coaputer firms, thus gaining cozmputational
pover without also gaining the expensa oI personally

raintairing +ks | ntire cozputer facility as well.

s nore and nore businesses rent computer tims and

share +th

"
in
H

conputational resources with other asers,

-

bly

(ot}
H

t

irect congetitors, the need for some guarantee of

[

pocs

el

computational security grows. If important facts and
figurses are kept in a computational data base, £figures
vital <0 the corporate existence of thz firs in gquest

then it is of extreme impcrtance that thosz Ffacts and
figqures not become available to persons who might use them

inr a ranner detrimental to the ccrporzation. Sopse assurance

Ean

is needed that the computer which is to be trusted with
sensitive information can indeead b= trusted to deal with
that information ijn a manner cosnensurate with 1itis
éensitivity. Some assurance is necessary regazding the the

security of +he computer systeam.

Thus +hes motivation for the existence of secure
coaputar cperating systams arises. Currently, .“no
protaction systan implementation of any major multi-user
conputer systsz is known to have withstood serious attenpts
at .circuavention by deternin=d and . skilled
the task of adding {retrofitting) security featurss to
existing cooputsr systems, it seens that this task can well
f-perpetuating c¢ne-- a patter of first
discovering =security flaws, ther correcting tham (perhaps
introducing nav ones in the process), and f£inally starting
ain, without ever having any real assurance that the

g
firal flaw has been eliminated. [1]

Oorne mzjor problem in attenptirg to retrofit sscurity
is +that often one is attespting to impose a coherent

structure upon an entity which bas little coharant

{1]. As Dijkstra has stated, "program testing can be used
to determine the presence oL bugs, NeVver their absence™, an
observation true of cozputer prograes 1in Jenera and
egually as true of operating systezs (which are, aftcr ail
only a special type of computer prograa).

’

stiucture in the first place: it is @difficult to add
security features +to g systen structure designed without
sacurity in mind. One suspects, then, that an approach

Ts sacurity issues from the very beginning--

QJ

which consi
irdeed builds the entire system framework around security
conside t lons (instead of vice-versa)~- would hkave a
kigher probability of success as far as achieving reliablg

security is ccncerned. An additional <factor one would -

hope, would bs that advances in computer architecture right

alsc sipplify the solution of certain problems which arise
froz security considerations. [2]

It shoulc be easier to design a secure system fronm

scratch than. to secure an existing operating system which

was net desicozi with security coeasiderations in mind. it
szexs Zsitiy <clear, however, that just building a systenm
%¥ith security in pird does not guarante the security of

the resuvlting systerm any more thkan building a systen
wilthout cornsidszcing security doss. [3] One might clain
secuzity eand parhaps have rersonal reasons for believing

I oem d z - p H oaralar
igning it to bz s9, but oerel

o]

onetls sysiten sazuTs atiter de

[2). This line of reasoring could also be used =zs an
ergusant for not building such a systeo at tha present
tire: why use possibly iInferior wmaterials if better
metenlials wpay be skortly Zeortn-coaming? Une problem, of
course, is that better waterials will probably be develogpsd
only wvhen sufficient dewand for them is gelierated. A
second problen is that it is difficult to decide Low to
build a better wmousetrap if one has no r=al idea vwhat is

wrony with onz's current mousetrap.

claimning security is not sufficient. One would wish sone
way of demonstrating security and deponstrating it in a

positive sense: One would like to be able to say "The

system is secare', mnot merely a negative "No one has
¢iscovered any flaws yet."
The question arises then of hovw such positive

assurance of security can be obtained. & partial answer
has besn advanced which requires two. specific actiéns be
taken: 1) a rigcrous working definition of security must'be
formulatéd and +ranslated (iz necessary).into terms vwhich
are concrste anoughito be dsalt with in a precise manner;

and 2) a forsal verification of the cperating system nust

ha mnads in erder +to deterwmine if the system enforces
security 2z = :as been defined in ij.

If theos=2 =-eps are taken and the proof advanced by

2} subjectel +o intense scrutin and ‘subsequentl
Y
determinsd to rz correct, then a convincing deronstration

-

o +the sscurity of the systep relative to the gafinition

[3]. This is nct entirely trusg, of cours=. Qne suspects
that sone level of increcassd security has bsen obtainsi.
The voint herc is that Just ‘thinking" about sacurity
providass 4o concreie a&ssurance ¢i 1ts =xist=nce

{4]. This demonstration is not really ore of correctness,
but <rather one of consistency; the systen is consigstent

with the security defirition.

un

sion was made to design the system fron scratch with

(TR

dec

the end goal of formally verifying'its security properties.

The firs*t step in this process was to formulate a szt
of initial design goals., These goals were:
1. Verification - it should be possible to

formally verify the securiiy properties of the resulting
systen,

2. Usefulness - the resulting systea should be a
useful systez.

3

]

BEfficiency - the resulting system should be
relatively efficient, in order to demonstrate that sacurity
canr te cost-=zffective.

L, Cost = the syster shouléd ke relatively

o
Y]
L
]

ny
o
HR
N
fte
~]
m
of
[&]
L
[
e
[
T

-
[¥R
=)
r+
m

ros of Dotk time and nouney.

1.2 Basic Design Decision
Although most of the design
structure of +the systen

vere

careful consideration and weighing

decisions were

fixed

decisions
nade after

oZ

from the start.

+to work with the materials at hand.

a.g

(a2

a2rna

regarcding

W
)
ot

H

iva

oF

the

&, SORe

Oftzn one is forcad

Such was the case here

the s=acurity system: a

in choosing +the target machine for

bDigital Eguipzent Corporatiom (DEC) PDP 11

already destired to be purchased in ordér

netwock access for UCLA ARPA contract personnel

be - the zost accessible local machine

construction; hence this machine becane

for construciion of the security system. [5]
Tws o+rer structural decisions occurred

; _
witheut zuch déiscussion at all. Pirst,

e

I~ o I

pon

0 ot

it
ib

=

o

o M

i

£ B

T
o
certain har
vas to he

ﬁ
on
T
@

ﬁ

ST

rt
—
=

zultizrocessing systern.

tat one of the primarcy

ntee is that it proporis to

strictly
you can
instead at

rotection

canl access

4, but
nodifications
et wachine of

that

the systen

true.
g=t'.

nade
the

b=t
—_ Ot
i

W et

14

LA S SN &)

b

N o
9]
[l o

It

I}

computer

for

vas
to provide
and would

systen

ths target comﬁuter

implicitly
v2s the decision to
This was a natural outcoke

usafuelness of

deal of’

The secogd inplicit decision was that tae systen was
to be pricarily ‘an interactively oriented one. The rezl
justification for this decisicn is that the interest and
experisnce of those involved in the systes design has been

rpainly in the area of interzctive, time-siaring systezs.

-

With the primary design goals firmly in wmind, the

+
=

b
&)
[
<l

design of the UCLa: Vi 5Y began. Sincs the pripary gozl

was a system that offered verified security , it was fixst

necassary to foreulate a workable definition of security
relative to th2 design of the syste=. Two varieties o=
security were considered. Thsa first, which has been termad
data security, 1is concerned with the privacy of data and

jed access to ii, and has b2en defined as the
protection of data {files, segments, etc.}) from accidental

or intentionzal disclosure to unauthorized persons and from

pranthorizad sodification. [IBM1]

mha s=zcni category of securtitiy is concerned with the
issues oI cooductivity and denial of service. in

addressing this facet of the security issue one typically

tn
[{H
b
by
1]

r
(4]

give assurancs that the parfornance of a given

grocess cannot D@ substantially degradad or alterad by the

i-mortanzly, =hezt tha actlcns cf one process can not causa

+

The fesign of the UCLA virtual nachina systen uas
focussed mainly onr problems in the area of data security-

Although productivicy and viability arz important issues in

‘.
Hh

+heir own right, they cap be tackled much mors effectively

aT)
[
]
0
[44]

problens oi data security have been solv

e

once the

data

9]

urityv hzs bsern reliably enforced, on2 suspsacts that

9]

=

the eliminaticn of productivity~related flavs will be
greatly implified. Issuces of productivity and viability
have not been ignored completely, howaver. The constraint
thzt the systez be a useful onme implies that soge viability

and productivity issues zust bea faced and dealt with.

Issues of data security can be further subdivid=d into
areas of policy and enforcenent, The policy area 1is
concernad with guestions regarding vho should be allowsd to
access what information, ia what @anaer, and undsr what
cizcunstancss, Bxaméles of policy issues ocCur fragueuntly
in +he military environsent, whers dacisions of who sheuld
be granted what level security clearanc2 must b2 nade, and

where questisns relating to the security classification of

important docunsnts nmust be answered. (6]
©he sacond area, eniorcersnt, is concearnad with
guaranteeing that poilicy d=sclslons ale anfoncad oncL Tusjy

have been mads, In a military enviconmaint, this task wignt

include insuring that an employee with top-s=cIist
[6]- nuesticns such as: Should amployee X b2 glven
top~secret socerity cleacance? or, ¥hat Securicy
classification it nppropriats for document Y72

10

classification and access to top-secret documents doaes not
pass on top-szcrat inforumation +to anothar saployes who

+ 4 sacret clearance, oT the pore ganaral task

of protecting classified documents from pilferage by

W

The primary focus of attention in the UCLA systen is
ppon the enforcement aspects of data security rather than
the pclicy aspects. A large class of v“rzasonable! sscurity
policies c¢an be ipplenented (and hence enforcad) by the
systen. {7] Herce concern 1is given mnmainly to the

enforcement aspects of a security policy and the means by

which secuTity enforcezant can be convincingly

T
f

; o o may
2LonELIT4dCC

|4

/

rmentable under

[7]. The class of security polic! <
e lass of policies
a

our system 1is not as laxrg

e
O~

(@R Lo IR A VI

icplementable by souwe other security systeams (Hydra, fol
instance, [HGLFT4]). Our security 1€ not axtonsiiiis i the
cense tpat we rave pot nllowed new OobJjuct types ol &GCCe0S

capabilities to be derined.

11

u verification

It is our contention that any convincing deménstration
of security enforcement pust "be wmade upon some firm
+heoretical basis, rooted in the modelling of those aspects
of security enforcement relevant to conputer oparating
systets and in their subseguent irplementation ir such a
panner as to make the correctness guestioh decidable

through the asthods of formal progran verification.

Wwhat influence has the verification goal had upon tiae
design of +the system? What constraints, if any, bhas

verification placed upon the structure of thke systenm?

Phe first and prebably feremost constraint is upon the
cize of *hes systenm. Unfortunately, the task of verifying

even to ==+ of prograrms is a non-trivial proposition.

W
u
[
€]
Ja)

The largast Xxroown progracn wkich has been clainred to have
bezn veriiied is on the order of 2000 lines of hiﬁh level
code . [BRAGLA%T3] [8] If the systenm is to be ultimately
verified, either formally or informally, using éutrent
verification techniques, then 1t 1is igperative that the

total anount of code to b2 verified be as small as

{8]. The procyras vezing refersncad her2 is the Meclaus
verification condition gesnerator. Thils progrea was,
however, too large to be compiled and consaguently has
never bsen rul. tieitker has its proof been widely
circulated. :

—
| N

-

possible.

54}

]

2lthough unstructured code can be proven correct, it is in

Secondly, the code should be well-structured. {

general significantly harder than proving wvell-structured
code: A prograr with purely saquential statement flov is
much easier to verify than one which makes unrestricted use
of juhps. Howevar, understandability should not be
sacrificed merely in order to'.use a well-structured

construct.

Third, efficiency considerations should be secondary
to understandability: An algorithm which accomplishes its
purpose guickly and efficiently, bet at +the cost of

¢tilizipg 21i of the sirange anopalies of the hardware is

nl‘
1]
et
t
fJ]
H
H
1)}
e
|_i
[41]
0
Mm
(RN
s}
[
[}
e]
i

which is perhaps less eifiicient, but

o

The computing comeunity thus far has bzen unable to
isely 4define "well-structured” in any rigorous =2
hough wmest people probably have 2 general notici oL ¥
s well-structured nd what 1is not. Parhaps th2 bes
definition which can be offered at this time, although ©
which is not especially helpiul froa a theoretical point
1EY, is one which paintains trhat anything
well-structured if it is easily and conveniently handleld
current heuristic and axiowatic verification technligques.

o)
ST T o Y L o

T O

11

_generally found in the usual operating systen.

Since the security kernel will be significantly

smaller +than the usual opsrating syster, its mainterance

should be propcrticnately simplified, arnd, Dbecause it 1is
small, the goal of verification, in the style of formal

program verification, skould be a feasible one.

15

1.6 Viriual Machines

VP

The structure of the systen thus fa resented was one

H
o]
b}

with +the security kernel running on the bare hardware and -
all other software layered arocund that security kerﬁel;
The next question of interest was: what sort of soitware
wvas appropriate to layer around the security kernei? The
second goal, <that of a useful systen, might nave prcmptedh
the desire to layer a full-blgwrn, general-purpose operating
system over +the security kernsl. The <cost of such a
venture, however, was rather discouraging and was in direct
‘conflict with the third gbal, the requirema2nt that the
systes be relatively inexpensive to construct. The

selution +o this conflict of interests was to build a

Befors defining vhat a virtual nachine systeam is, it

is useful to provide some genesral background on the vtility

o+

of virtual nachine systems. Most operating systess run on

E3

the bara machin2 and remove sore 0f the nornal instructions

from the instruction set available to user prograws,

<]
o

typically those instructions that change mode and do I/0,

\
and replace them with other macro instructions (macrzo in
the sense of big --not the normal usage of macro in

coaput

4]

r contexts) callad supervisor calls to accouplish

some of thosce prevented actions in anp easier and core

16

Pam’y

controlled way. In this way the operating systen
effectively changes the operating environrnent under which
user programs execute. User programs are then written to

rur in this new envircenmant.

unfortunately, cperating systems vary tresendously and
user programs writtem to run under one oper§ting systen on
a giver machire rarely run under another different
cperating system, even for the same machire. But suppose
one built an cperating éystem which produced an environmeﬁt
identical in nost respects to the original machine. [10]
Then one would have an operating systen for running othet
operating systens. This is precisely the notion of a

virtual packins systenm.

systek, then, is a system for

running aultiple pieces cf computer softwars in an
.achine or Y4} which to the
software agpsars identical to the basic hardware of the
conputer -- regardless of the environment in which the
virtual npachine system itself exists. The vicrtual machine
concept is a derivative of the conputer simulator concept

which allows prograas written for a given coaputer X to be

{10]. The envitonment

is not pracisaly that of the Dar=
hardvare. Typically the enviroamsnt in which the viriual
machine operates differs froa the read aachine with ra2gard
to timing characteristics and available rexourcas.

17

debugged while executing on ancther computer Y. The rajor
differeuces between a sirulator and a virtuval machine
systen, asids from the fact that a virtual machines systz=a

typically produces nultiple copies of the n chire 1t

o]

provides, are 1) in the case of 2 simulator,-machine X 1is
in general different fron pachine ¥, while in a virtual
machine systen X and Y are identical, and, 2) performance
of vyiptual pachine systezs is overwhelningly better tkan
that of a sizulater as a result of the efficiency gained
from +the fact that the majority of instructions axecuted
f&r +the V¥ cay be executed directly on the basic hardware

and doc not rTeguire software intervention or sinmulation,.

]
It

(5]
[{}]
<
|,.l
ki
r'..
fo
!
}.l
L1
[+l
0
tu
o

ne monitor acts as 2 simulator which is

siznlating +b=z zachine upon which it is actuvally running.

The functions and responsibilities of a virtual

tre illusico of many. Each of ~these interfacss (virtual
nachines) is an efficient replica of the original computer

systen, coaplete with all cof +the processor Ainstructions
(3.2., both privileged and ncn-privileged instructions} and
syster rTesourcas (i.e., BS0OLY and TI/0 devicaes). qy

running each operating systeo on its own virtual machirpzs it

becomes possible to run saveral difrecent op

4]

rating systens

(privileged softvare nuclei} concurrently.®? [GOLDBERGTY]

The usefulness of a virtual rachine system is not
exclusively that of an inexpensive alternative to
censtructing 2 full operating system: 1} virtual rachine
systems allow +the convenient modification and testing or
new orf existing operating system software without seriously
impacting the use of the the machine for other daily tasks;
2) virtual mwmachine systecs increase the amount and
flexibility of existing software available to system users
by enabling multiple operating systenms and their .
all-important user software to be simultaneously available;
and, 3} virtual machine systems permit test and diagnostic
progrars +o be run while the machine is available to other

users, possiily allowing the check-out of previously

[l
-

13
44
[and
Fh
[}
=
0
ct
[R
o

nirg devices +to be made without preempting the

entire machirns=s.,

There are several advantages to building a wvictnal
machine systez that are of particular relevance to the

ol cals nted earlisr: 1) production c¢osts ar?

hagic!

{7}

pr
=)

[N
0]

il

3

e}
Iy

.g n
corsiderably lower than that of a ganeral-purpas=a operating

system, 2} a nunber of operating systaos already exist for

19

Keaiinl

the PDP 11,745, many of which can be rurn under the virtuaal
rachine monitor [11} 3} virtual maching sysiens are
eniaent to us2 as

fairly conveniant to use--at least ag C©oav

4]

the virtual nachines (operating systens) they run, and,
4) virtual rachine systen performance is high enougn to be

considered tolerable,

Instead cf constructing a.full—bloun operating systen
layered above the security kernel, ve chose to build a much
snpaller f{and hence correspondingly less expensive) virtuél
pachine nonitor, whose fiunction it is to sipulate to user
prbcesses those features of the original bare machine which
had been altered by the kernel. By choosing a virtual
cachine aptzoach, We gained the usefulness of a
general-purpos2 operating systen {indeed, the usefulness of

general-purpcs:s Op .erating systams, since existing operating

systeas can =2asily be run under the virtual =machine

the PNP 11445 can be
oritor, hovwevar.
systens which
operating in a timing-dependent nanne rot functioz 1in
the same mannper as they would upon th bare hardvars;
second, the memory m’nagomcnt unit of th 11/45 hes not yet
bean virtualized. This first probleaz is inherent 1in all
virtual wmachine systeus. Hore iwportant <rfor the time
heing, howvevar, 5~ tha fact +hat +tha current viptual
machine nponitor has ROt yot virtwalized the 11/843 melory
manageitent hardware, although virtuvalizatioen of the meaory
managemant unit is currently baing designred. Until such
tine as nemory mwmapagernsent is virtuwalized, however, IO
system which mnmakes full wuse of the 117855 Lthraes state
architecturc or menory capagemspt Leatures can b propgar
ren under the virtual machine nonitor.

teny
rtual

1 1)
v ot 13
-

}.-h

- "‘\.

monitor), while still retaining the lesser construction

expense of a virtual machine ronitor.

The Gecision to build a virtuzl machine systen,
however, %as not one to be made lightly. Although the
concepts involved in the notion of a virtual machine systen
are to a large extent independeht of the bhase nardware
machine which is being virtualized; they are not entirely

zdependent: some third generation coamputers cannot be

et

virtualizsé -- that is, for some existing third generation
computers it is impossible to construct a proper virtual
cackine moaitor. Thus if one wishss to produce a virtual
pachine svstez, one nust choose the base hardware to be

built uwpon wizk at least enough care to insure that

virzuealiziticz 135 indeed possible.
n [POZEE743) Popek and Goldberg succincily state the

cemputers, in terns of the relationship betwesen sensitive

arnd privilege? dinstructions: "For any conventional thixd

genercaticn coaiuzer, a virteval cackiine wmoaitoxr may - be
constructed if, and only if, the set of sensitive

instructions for that computer is a subset of +the sa2t oF

privileged instructions." {12]

Thus sole deliberate considercationh wWas LeCassa

ri
bt
it
G

deteroine whether the target coeputer, a DEC PDP 11/45,. was

.~

1

indeed virtualizab

nachine

designad in order

o or capable of bazing modified 1n

ults, ard nodifications to the
o pake it virtualizable These

hardware modifications are described in a later section.

g o L S i i i e S S o T

{12). An instruct ion is s
+f undor all crrouysstito
node and doos not trap whe
An instruction 1S Senqz

physical rasourcas 1v“ La}
or if the effcct of 1ts &
in real asnocy.

d to b= privilegesd if and only
it braps Wheh ,“s(wreé i ousSEl
excouted in SuUperVYisor Lodu.
ye if it attemzpts to 2 +er tha
or ar-ects the procassor podz
gtion dopends upon its loc ation

-

1.7 Other Basic Systen Componanis
The structure envisioned now consisted of the Dbare
hardware surrourdsd by a very tiny opsrating systen~-like

B
structure, the s=acurity kernel. Over the kernel is layered

a virtual nmachine mwmonitor abaove which virtual machines
{operating systemns) can be «run. This structure is
illustrated in figure 1.

At this point in the discussion, two irportant points
repain unresolved: 1) thus far no pention has really been
nzda of how the security policy is represaznted, maicntained,
or @podified, and 2) no mention has beer made of bhow the
karnel asscciates its protection inforwation with anytking
ss cencretz 2S5 a user process, The naed for addressing
ttase two issuss provides the lLasic potivation for tv¥o

ystan conponents: the updater and the

23

VIRTOAL
ﬂACEIUE
ASHITOR

~
P
-
]
1t
P
'
[}

Tha updater is the prccess ¥hich centrols changes in

the rernelts protection data.

The design and implementation of the security policy
maintainer, a privileged process called tas updater, has
perhaps been given less consideration than other conponents
of the systea, Such =a developzent 1is not completely
unexpacted, howevér, considering that our main focus lies
in the area of security enforcenant and not security
policy. Since the updater vitally affects the security of
the systez -- in essence deterainas most of the meaning of

— i, S s

.= system -- it is nscessary that its code bhe

)

-IZz7v2n cornrect. [13] To guarantee security
en“orcenent, ons nust guarantee proper wmodelling of the
sacurity policy, wvhich in turn reguires thkat one

@snonstrats csotain properties afout the maaner in which
t

Le security policy is represented and vpdatad. [14]

{i3]. It does rot, towaver, deternirve the entire mzaning
0of security in the systeR. Policy carnnot force the
contants of one procass's gensral registers o bacoxe
visihle to ancther precess, for exasple.

[1%}. If one?s security policy stetas that X can acceis A
bu+ that Y cannot access a, than if the updater ontors that
Y can access & and X ceanot access A, tasn evenr an
otherwise totally correct sscurity enforcer will not have
enforced the given security policy.

Althoughk the updater code, 1like the kernsl code,
requires verification, 3t is a readily isolatable piece and:
dne +hat can easily profit fror the protection environuent
which the kernel provides for processes operating under its
control. Dy layering the updater above the kernel, one 1is
abla to utilize the protection facilities already provided
by the kernel in the verification of the updater itself.

T£ the kernel can be skown tc maintain the data security of

th

processes running beneath it, then this assurance applies
also to the uplater, and the updater thus need not concern
itself with th problerns of protecting itself fronm

palevolant precesses.

.

e i

The initiator is the process to whkich 2ll consoles

4.

ritially belong, The security~relevant property of the-
initiator is that it is allowed to identify the user to the
kernel in such a manner that the kernel is able to make an
association between the process identity and the Kkerrel®s

protection data.

The initiator is the privileged process assigned the
task of identifying users to the kernel. The portiom of
the system which provides user authentication must likewise
be proven cozrect if the verification of the kernel is to
have any real meaning.‘_[15} User authentication methods,
lixs scheduling algorithms, are subject to change as never

{znd hopefullr aore secure) wmechkanisms and theories are

developed. The desire to provide suitably flexible user
identificaticn schenmes, coupled with the desire to remove

2s nuch senantic understanding of X170 operations from the
kernel code as possible, as #ell as the feeling that

authenticaticn 1issues regpres2nt a clearly separable task,

—rtn

[15]. One is tenpted to guaestion the validity of any claian
that user X cannot read user Y's data if 2l) that X has to
do to gain access to Y's data is simply to claim that hsz 1is
user Y. One finds oneseli dealing with rather ucbulcus
terns, however, when one Spears o verifying an
authentication scheme.

[}

1cd to the removal of the major responsibility for user
identification fror the kernel,

The authentication task 4is, however, a two-sidel
problen. One needs not only to deal with the problem of

proper identification of the user to the systen,

but also

with the proper identification of the system to the user:

one would alisc wish to assure a human

termsinal that

sitting

down at a

ke is typing his super-secret password at the

authenticaticn process and not at some other random process

masguerading as

A possible
some type oX
rrotcccl to tthe

problen and is discussed at soms length in the

7 cecda-wise,

siaple sort.

nser is an instance

+he authentication process.

solution here would be the

developmant oI

login protocol. Tha addition of such a
kernel cods woculd net only conplicate it

but

The problen of

of the

would probably

also reducs

trenendously unless the ¥protocol" is of

identifiying tke
“Trcjan horse"™

appendix.

The irnitlator is rasponsible for creating andrstarting
all us=r Pprocesses. By ccrversing with the ipitiator, a
usar may specify which new virtuel rmachire he wishes to run
or which existing virtual machine ({process) he wishes to

becone attachad

to.

pfter completion of preliminary conversation with the

user, during wvhich the user has beenl required to identify

himself to +he initiatort's satizfactioz, the initiater
2t creates and.

ies the user to the systed and =2ith

h

identi

starts the reguested process, attaching the console to it,

or attaches the user {and ¢ FSOle) to an existing process.

‘.\

.

Ar

29

The g¢ganeral overall structure of the has now been-
sketched and is 3llustrated in figure 3. The systen's
detajiled structure, however, is still guite incongplete at

this point, but Dbefore the structural details can be

g
1
l{1]
t
th
o
'+
1]
o
].h
rt
i.d
i
2]
'.J-
[}
n

+ necessary to examine certain of the

security relsvant details cf both the nrardware and software

(2]

base upon which the UCLA VM system is to be constructed.

these details is the subject of chapter

+)
-
w
o
5
[31]
El
t.-l-
w
i}
IS
i
o
o |
o
Fh

[S|

b =

s}

-

ISR

al S|
N b

.t

-q

—

Oy W
| =

[VI]

—
-
e
38]
—

W

UIRTOAL

AONITOR

VYIITOAL]
YACELHE

t

L

L

Chanter 2: Barduare and Softuare Componants
Chapkel i HE&LLxs ard oQLivare LOnpanants
2.1 Zhe PDP 11,45 Amghitecture '

%

This section is intesnded to be a ganeral overview of

tha bhardvware featuras of the PDP 11/&5 wvhich are relevant

+¢ pretection and security. It is not mnmeant to be a,
detailed Jdescription of the hardware, as a guch more

accurats description can be fcund in { DEC738], and 1is not
really necessary for a <reasonable anderstanding of the

repnainder of tha thesis.

1
=
[$4]
4]
(W]
v}
[3

1745 is a small; general purposs, three state
computez, capzhle of directly addressing 28K 16 bit words
gzoDv {[Fitnout use ol Bexory kanagenent) and up to 124K
with pmecory mziigsment. [1] It has tvo indzpendent sets of
cistscs, each set ccntaining 6 rTegisters. In
adiition, it provides one special register called the
'stack pointer' (SP) for eacn progran state and a firal
ter, =7, =ha prograr counter (PC), which is ‘shared by

all prograzs cenning in the wachirne.

Four basic areas of ths 11/45*'s architscture are of

41
Q

interest with regard to security and preotsction: 1} the

{1]. +rltiough the wmachine can physically addosss 32K
{(vitnonut REnoOTY RANa G Rent) anad 128% {vith senory
ponagelent), UK of ihese words arva effectively lout since
tke CIG lejzic antopatically rmawps ecortain of the upper UK
addressos into davice rogrotors.

42

podc structure of the wachipe; 2) the m@meRrOTyY ranagesent

unit of the wmachine; 3) the 170 architecture of the

[2D

pachineg; and, t) the maansr in vhich it handles exceptiornal

{arror) conditions.

The PDP 11/45 is a +three state machine. Prograns

[
'

operating withip the machina can execute in either kernel,

suneryisor, or user node (state). Prograns operating in

gser node are restricted in the kind and number of
jpstructiors which may be legally executed. Supervisor
node programns are slightly 1less restricted in their
jnstruction capabilities and kernel mnode programEs are
uprestrictad 1in their use of the machine. 3Somre of the
operations zllowad ior kernel mods are not alloved in
zoarvisor o user rods and some operations admissible in

supsrvisor nole are inadoissible irn user mode. [2]

The current eachire operation mode at any given
instance 1is conpletely deterained by the “currsnt rods

bits" contained ia the EICCESERLD status rord (PS). &

{2]. Unlike mest machines, however, sup2ivisor node is
only slightly rore poverzul than user mode. Tae only major
difference 1is one 1oposac by the EESOCY cznajensnt
hardwares suparvisor pode Drograss can road and nodily both
code and Gata beloaging TC wnul fo08 po@joans by usw IR
spacial group of cachire instructions ({(#TPI, X¥PD, UTPL,
MTPD) . These instru ctions cannoct normally be used by usars
node prograps to ACCEED supervisor cods ingtructlons of
da+a since user mode fpregrans are usually upacle to
panipnlate the previous mode pits which s2lect the virtual
space in wlhich thesc special ipmtonstions op2rate.

33

special pemory cell located in +the upper LK of the

machine's memory. The processor status word nay he changed

|]

n one of three ways: 1) explicitly., by physically
modifying it via “normal® machine instructions, just as if
it were any other mesory word; 2j implicitly, through the

us of one of the several rachine instructions which cause

[41]

the P53 to be implicitly changed; [3] or, 3} asynchronously,

as a result of an interrupt or trap.

The ability to axplicitly mcdify the RS is strictly a
function of whether any portion of the program's virtual

address space is appropriately napped into that portion of

o

Le machinets physical memory which conrtains the PS.

z-ograns cperating in user or supervisoxr node are
restristad in the marner in which they may implicitly
roGify the 23 by means of the RII and RTT dimstructions in
that they ars unable to cause the ne¥ pProcessor node to.be

pore privileged than the processor mode at +the time the

instruction is executed. [4] Asynchronous nodification of

S
e

)
'

v
[P
L]
(o]
3
s}
3
[FD
4]

totalliy

'—lo
W

rrupt ©OY irap
deternined by tha contents of the new PS5 portion of the

appropriate interrupt or trap vector, although interrupts

{3]. These instructicus are tbe Set Priority Lavel (321},
Feturn fron Interrupy (LZI) . !etur from Trayp (RTT) ., I/0
trap (I10T), Enulator ifrep (ILNT}, Br carx Poiat Trap (BPI),

and Trap (TRAP) iwnstructiorns.

W
o

-

are not allowed to set the previcus mode bits of the PS.

(5]

The hardware nmode rrovices some dsgre2 of protection

s)
D
uy

Kowever this pode protection in itself is not sufficient ;o
provide full protection, for the hardvare does not
automatically prevent any pragram from explicitly changing
the previocus and ‘current cpode bits in the hardware -
processor statts vword, provided that it has acceés to the
Ps, reéardless of the program*s current mode. Thus a user
nods program which possessss write access to the hardﬁare
precsessor stztus word can put itself into kernel node
sinply by clzzring {zeroing} the PS and froam there do any

anz2ge it wistss, [6]

&3, &hen thz 2TI ané RIT instructions are executed, the
rev FS i3 coostrucied by OEing in the current PS with the
current wodz sits, previous Loda bits,and register set bits
of the regussted new P5. Since the more privileged nodes
are npunsricalily smaller (kernal=00, supervisor=01,
us=r=11), this rastricts +the RTI and RIT operations to
nzking outward calls,

{5]. The true previous mode bits are automatically <filled
in by the hardwaze at the time of the ipterrupt or trap ana
effactively override the pravious rode bits specified in
the new BS stor=d in the trap vactor.

{6]. There avs cectain lcgist
hovever, since changing the cu
the address space within which Llestguckhions are Doi

(W3
“n

The nost convenient (and, in fact, the only) m=chaniswm
for . allowing or restricting access to particular memory

L)

of <tTha @penory

n
[1H

logations on thz 11/45 is through The U
menagerent unit The 11/45 mepory manageasni unit consists
of three sets (one per program rode) of thirty-tvo 16-bit
ragisters and four status registers. Each set o registers
can be divided 4into +two groups, each containing 16
registers: 1). instruction space registers and 2) data space

registers. These sets of 16 registers can then be further

separated into tvwo additional groups, each containing 8
registers: 1) page descriptor registers (PDRYs) and 2) page
addrsss ragisisrs (PAR'S).

The T.I'=s fsscribe the physical aezory location of the
given =msnozy Zframe, while the PDR's dsescribe certain
logical asc2cts of the frame, such as its length, the
tlegal® accessss which can be pade to it without causing an

abort or +rap {7] , vhether the <£ram2 has been wmodified

ast load

-
=
[
4
ct
r+
Ip]
ot
i
|

—
0

-
o
O
0]
r’u
e
H
)

[Te}
}_l
i
r?-

]
i
[al]
4]
=t
ly

d, and the

{77. The ¢ifference bhetween "trap" and M"abozt" is somavhat
subtls hera. R nerory dnhgtqent anact terminates tha
offonfing Sootrucoion fhe ponent it attoroto an invalidl
access, while a BEnOrCy nanageuunt Lian allows the
instruction to conplete before transfevting to the ®200CY
managsuent trap handler. dercry anzjomant Yeooaps® are
genarally used for gathoning senovry statistics,
vhile Mabtozts"™ or used to catch 5 oand provent
illegal accasess

36

Four status registers are associated with the paROTY

panagenent unit., The first status register (SRO) contains

+

yarious status apd error information wien DIROrYy mMarags snent
faults have occurred. It also controls the
enabling/disabling of the nerory management unit in its
erntirety, as ¥azll as contrelling whether memory mabagenent .
traps will be taken when the conditions for them are met.
(] The second status register (SR1) contains information
necessary to recover the original contenfs of any general
registers vhichk may have been nodified during tke execution
of an instruction which resulted in a memorj' managesent

akart, in order that effective error recovery is possible.

-2 s+atus register (SR2} contains the 16-bit
virtual projrazm counter whkick is recorded at the beginning
of cach instructiion fetceh or with the trap vector address

2+ +the begicning of an interrupt. The fourth status

{8}, UHenmory £framres on the 11745 are allowed to expanded
apward or dcwnward. Cownward eﬁrar sion is principelly
vs=ful in adding additionzl stack spacs, since staceks on
tke 11745 grown downward

{9]. 71t is vossible, by disabling ths MEnable d2T0Ly
managcrant Trap® bit in SBRO, to siizctively igunore a2mQry
Pahdg’L“ﬂ+ traps. all of the avprovriate stotus
informatricnh is still viecorded, but no acieal trap is

genaxrated.

Data Space in each of the three prograa modss. [10]

kith Data space enabled, each program mode has the
capability of addéressing 16 separats n2nory iranes {8 for

I-space, & for D-space). ELach kemory freme can Tiuge in

32 wvord increnants {i.e. srallest is 32 words, second
snallest is 64 words, etc.). 1A progranms's virtual memory
nzed nct bs phrsically contigucus (coatiguous din memory)

nor logically contiguous {11] and menory frares are not

restricted to being of a urnifore size.

fhe distinction between instruction and data space is

fairly sizple: isnstructiorns, iorzdiate operands, index

words, and zmsolute addressss are accessed through the
irz<r-uctic: zzzce registers; all other referencas are made

throuch dataz space registers (if data space is enabled;

othsrvigse 211 rzferences occur through instruction space).

when a meaory refergnce is nade whichk Tresults in a

meuory mRanagelent trap or abort, the rachine takes a menory

14}
el

e . B T T S - ka8 LA A W o

[10]. Data space can be sele

for each progran wode, if ds

nigirt have Dala spac igabl
a

roldeas have it etua

[11]. It could have holes 1n 1t resuwlciag eithsr frow
tniscing” framos or frow “short! frames.

3u

panagement trap to the trap hanéling routines whose address
is given in kernel data space location 250 ({octal). At this
point, the rerory management status registers-
(SR0,S5R1,5R2,S5R3) becone frozeh in the state which existed
at the tiwme of the generation of the trap. Beforé exiting,
it dis the responsibility of this memory managerent trap
handler to re-enable the error checking portion of theA
nepory managenant unit din order to "unfreeze" the status
registers and zllow any subsequent memory management faults

to be handled properly.

Physically speaking, all memory addre;seé on the 11/45

are 18-bit addresses, The 11745 voxd size, however, is
zlv 16 bi+s, which restricts the number of specifiable
afizesses tco 32X words. ﬁhén the meRory management unit is
disahled, no zidress relocation occurs, but the extra tvo
bits are zutcor2atically generated by the hardware according
to the following scheme: the 16-bit virtual address X Raps
into thz 18-bit physical address X' = 00X (unless 160000 <=
£ <= 177776, in wvhich case ¥¥ = 11X [12}), reqgardless ot
vhether the reference 1is wmads in kernel, supervisor, or
user mode, Each mode space 1is protectad identically --

that is, not at all -- and all references are made as

—— iy T T S B Ay A A S A gt Y

[12]. This is due to the fact that lecations 160000 -
177776 ({octal}) are automatically napped into addrassss i
the uppermost U4XK of physical pexory Wach A2udTy @RaRagelen
is not enablsad, thus alloving kernel, suparvisor, anhd use
mode prograns access to the dovice conirol reyisters which
rteside there.

39

TN

though through instruction space, giving a total address
space of 32K. if more than 28K of real =memory 1is
avzilable, then locaticns akove the first 28K cannot Dbe
diately accesse by any program Trunning an the CPU
tself (since it fetches only 16 bit addresses,
effectively) although this area of memory can, of course,
be read or podified by most devices operating
ynchronously to the CPU (simce post. devices use 18-bit
addresses}). Without use of memﬁry managerent, the only
protection 1is that afforded by the currert processor moﬁe,'
and since 2ll modes share the sape address space {and have

a opriori =eccess to the PS), that is little protection

]

Ozc zory managament is enabled, nowaver, an

e
4]
(U]

enormous jumg in the level of protection occurs, even
Without making use of some of the nore "standard® features
cf the urit, such as relccation.. By merely enabling the

trapping nechanisn, one can nowW memory protect portions of

- L F]
L L

a:

1]
n
| Bl

vi drass spaca shared betwasn kKornel,
supervisor, and wuser programs, and, by additionally
wrcite-prot2cting the PS, guaraatee that the ability to

change processor aode is itseli controllable.

Ornce the relocation features of the memory managenent
unit are enabled, the cenversiorn from 156-bit wirctual

addressas to 186-bit physical addresses ls acconplished 10 a

un

1ightly more complicated manner: the high 3 bits of tus

[y}

virtual address are used to select the PAR whose contents
shifted left 3 bits are then added to the low order 12 bits -
of the virtnal address to foré the 18-bit physical address.
[13] If the access is for an instruction fetch or if
~-space is disabled, then the _I*space PAR 1is usa=d;

othervwise the D-~space PAR is used.

%hen the ma2mory managezent unit is enabled, there is a
strong Ainteraction between the protection it affords and
the protaction provided by wumode-dependent iastructions.
Feur basic rachine instructions, HTPI (Move To Previdus
Instruction scace), UFPI (love From Previous Instruction
scace), MTFD {Zove To Previous Data space), MFPD (Move Fron
¢ =sace), nake use of the mesory management
facilities <c¢ read or vwrite specific locations in th=
virtual space cf the prograzo which was last in control of

+he nachine, zs specified by the previous mod=2 bits of the

4e
»
L]
H
e
t
v
o

iiizy is, of course, tempered by the accesses

[i3]. More pracisely, 1) the high 3 bits of the 156-bit
virtual address are used to select one of the & wmewory page
adéress registers to be used in forming the physical
address; 2y bits 6 - 12 of the 16-bit virtual address are
used to sa2lect +he 32 word Plock nuuwber relative to the
teginning o©f the prage frawe; 3) this wvirtual block nunbar
is added to *he beginnlay hlcck number of the paye which s
contained in the selected FAR to yield the pufSlcal bBlock
nunber; and, 4) £irally, the 12 hits of the physical block
‘nunber are interpreted 2s the high ocder 12 bits of tle
phkysical a«ddress and the low crder 6 bits of the physical

addrcss,

41

if +the user node proyran
lechs urite accass te its virtual paga® 0, the supezvisor
rogran caanot urite in user virtual page 0 via BTPD or

57DI jmstructions). The ability of the supervisor =ode

Since ons of the most obviots sacurity-ralevant
aspacts of aloost any operatingr systen- is its I/0
mechanist, thz un&erlying 1,0 architecture of the system's
wasic haréware is of extreme dinterest and importance.

~=-sa zszzcts oi the machine!s I/0 mochanisn are of

—2-=igplar in=szest: 1) how I/0 is initiated, 2} hLovw X/0

!«l
vl
4]
l”
ry
n
0
¢l
in
o
¥
tl
"
4
1Ly
]
0
¢t
4
w
H
-
il
n
IJ
Q
i)
ki
e}
i
[¢]
i
o
s
o
=)
n
D
0
=l
{4
s]
[add
0
et
0
o)
(o}
e
f=al
1]

ot
Y
H

{
3]
ot

N JE—— - ~ e - - [R - - - -y
pacnines opsrate with absolute, physical menaly

A v T - - —- - -~ ~ BT H = - - R
DO TASSS 2ha oo OL Soon r".'].‘:'l.. l.;'!.:-l_“.‘.fjil Che' D ':"4_1 beeii s .L.':‘.-_.’

auldéd L=
hel o the Vi
. < . ALY - o
i 3, , since tne locat:x T I 2=
F ourittan cen, in general be agbil =X
sutlon is pecessary o e < -4
vintely. Tn crucicl peint P
neals to veeo and oodiny Vi

5o

——

+ i i it fT =

o rechanise offered by the nevory managenent hardwara. In

order to guarantee the integrity of both merory and device

, . .- w o A = F -— . P S
o accidancal [naloyvols

[}
Q
Al
I..l.
Ih
pde
0
m
fad
l..l
g
r

g
g

~
O
=y
M
ol
[
0O
1]
th
[»)

29}
[4]]
[
fo
ck
pore
=4

(T4
=
o
[T}
A0

Lg¢]
O
s
24
]
fos
ch
[
(]

(&)
]
=}
0
0n
|+
i]
1]
4]
L
H
]
i

s, control over XI/0 is «rather easily

3
fu
ot
£t
t
]
2
[
w
fu
th
|.~«l|
iy

ce instructions vhich axe capable of

tarting, controlling, or interrogating ¥I/0 operations are

0

[N
th

groupaé by L hardvare inte & category of instructions

classifial 25 srivileged instructions arnd are unavailakble

l/—‘- .‘ll

- £3- usa -7 -o:c:cr-ans operating in non-privileged nolde. This

is not =:s czzz with the PD2? 11745, howerer: the machire
k25 n¢ ex3iicit start-I/0 instructioans, as is the case in
zany ciker cozzutesrs. Instzad, z2lnost any inft:ucﬁion in
the npackine is cavable of ipitiatiang I/C, by reading or
woiting in onecial colls (A-vice coatool ragighasg) loantaed
in the uuonsslost AY words of the owchinntz wzuory. (is)
“hether a given PLP 11/05 instruchion is I/ /0 sqeasitive is
context-dopendent uwpon whachear 1% reforsndes o louxtion in
Ul Uppar OF agssosiuned witlhon o daviCo.
[19). 7%his is the ocovicn ol L2007y wWalch 3
Wgoaglodllyt whorn the e ary ranaocIont t : N
To bs acossoed throuvgh oo oo ool o -
VAT ING, vwhen RorOny TLTHY vode Qroeabtool

e

N

The "normal" methods of ccntrolling 1/0 through use of
tLe restrictions on the program's ability to execute I/0

instructions is thereicre not available on the 11745, AR

j4-

slternate mechanism is available, however, thich is in soze
sense egquivalent: by restricting access to the upper &K
éords of rmemory, ohe can restrict access to the device
control registers and limit what I/0 can be done. This can
be accozplished through appropriate use of the memrory
panagement uait +to prevent user and supervisor node
prograns fromo éccessing these device registers.
Portunately, 31l of these registers are grouped together in

the upper UX and hence repoving access to I/0 devices is

convenisntly dcae.

cheres are, however, other locations in this last page
of physical =zemory vwhich are not directly concerned wvwith
1/0, but these other locations are thenselvas

security-relevant and need to be protected anyway. The

prize exacple of such a location is the PS, the access to
wnich oust ha conitolled fer the reasons mantionad
previously. The registers assocliated vitk the Rpemory

mapagerent wnit and its enabling or disabling likewise

reside in this upper page ¢l REDOIY.

e

Most I/0 cevices on the 11/LL ars2 capable of being

operated 1in one of two =zodes: 1) interruption mode, or,

=
L=

.y

2) non-interruption mode. Fhen a device is started with
its Minterrupt-enable bit" turned on, it operates in
interruption mode and when the I/0 completes, it causes an
irterrupt reguest to the CPU to b2 generated. Hhen a

device is started with its interrupt-enable bit turned off,

notificaticr of device coapletioﬁ occurs vhen the I/0

completes (i.e., mno interrupt +to the CPU is generated} .
{16) In boih cases, device coepletion is usually further
dicated by the hardware setting of the "done" bit in the

status registers of the 'given device.

Although an interrupt nmay be generated upon device

O
Q
I3
o

letion, it is possible that the interrupt may not occur
inzediatsziy, zlthough interrupts often “oreampt" the CPU,
This delaying of the interrupt is possible trough

appropriate s2tting of the "processor priority® bits

(16]). This description is a slight sinplification of what
Teally occurs. Actually, for most devices, an interrupt
will be gensrated whenaver a transition occurs after which
botz ha "device 15 peadyy for donoa ol

nterrupt-enakble hit are set to true. "
"non uterruptlon" mode are sinpply te
convey the logically interssting ways i
can be said to opzrate and are I
necagsarily oxgact te £iad ir any re
11/45 1/0 v ic

fercuce canual tor

EJVC‘J

it operates 1in non-interruption mode and no asynchronous

-

Devica interrupts are generated at one of four priority

it is generated

Tt - Sy — : ——— EN -
Whan an interrupt is generated, then

at a specific priority level associatsd with the device.
If the current processor priority (spacified in the PS5} is

less than the priority of the interrupt, then the interrupt

occurs immediately, preempting the CPU after 1t <finishes

the instruction (if any) it is currently processing. The

current PC and PS after instruction coampletion is savad .in

temporary hardéware registers, a new PC,PS pair is fetcheﬁ
from the intarrupt vector associated with the dev;ce
causing the interrupt, the saved PC and PS are then
automaticalls tushad onto’ the stack appropriate to the
3z 35its in tke new PS [18] , and exescution

corn+tinuaes =zt *hez instruction indicated by the new PC,

{17 3}. Altkrough the PDP 1i/45 has & levels of processor
prierity {priovity £ - priority 7}, only prioritias L-7 ar=
avellacle o I/ 0 davices, The lowest four priority
interrupt lzvels can bs assert2d only by programmcd
interrupt reguests initiated throuyih the wse of the Frogram
Interrust Reglister, a special cell in th2 upper OE.

{18]. Th= stack upon which the old PC and PS are saved 1is
th= stack which will be inp sfiect afters the interrupt is
taken. I* is the stack which will be us=ad by the routine
vyirich has besup designated (oy placing i1its PC in the
interrupt vector) to harndle the interrupt.

I

If the current processor priority is greater

ecual +to the priority of the interrupt, then the

iz gueued, [19] Interrupts which have lowar priority

than

or

interrcupt

the processor are inhibited until such time as

than

the

processor priority is lowered sufficiently to'allow then to

Kanipulation of +the processor prioxity

acconplished through one of four basic

1) explicit pmanipulation via the SPL instruction;

-

setting of +the processor priority bits

in

explicitly medifying the PS; 3) asynchronously

interrupt or trap meckhanisr through appropriate qelection‘
¢f tke procssscor priority bits ir the new PS portion of the
iznterrupt o trap vectoxr; and, U4) through appropriate
selection cf the processor priority bits in the word fron

can

the

bhe

mechanisns:

2) via

"PS by

via

the

which the BS is loaded as a result of the execution of an

RTT or RTT instruction.

By approgriate setting of the procsassor

rograss may execute anyvhere from the range
g

{19]. "Queuced? is not really the right worad
wbiich occurs here “Peﬂﬂmbered“ is prob=ably

priority

of arbitra

4 nunber of lnherLupLs ray pe waiiing tou occur as
tine, but their ordering is b; priority and not by tb

of their initial generation. Interruypt

priority level are ordered by the “c105eness"

at—

associated device to the processcr on the bus.

t

h.L.

of

cily

P

interruptible {priority 0) up to strictly non~interruptible

{(priority 7).

The final item of interest with regard to the basic
hardware 3is ho¥ it handles exceptional situations and
€ILLOCS, whéther they be hardware or software ~induced. On
tha 11745, +these exceptional conditions are those which
result in the cccurrerce of a trap ~-- an event sipilar in
pany w®ays t©o an interTurt, hut one vwhich does not ocpﬁr

asynchronously and which does not opsrate within the

(4]

frapework o the priority structura usad by interrupts.

{20]

When t=s nzrdware detecis the occurrenca of a trap, it
= 2-3 ps at the time of the trap, loads a new FC
and ©35 frcz the trap vector associated with the trap which
has Lean @=tected, stacks the old PC and Ps on the stack
for +the program node recelving control, and resunes

execution at the instructicn indicated by the new PC =~

v
=

exectly ag Is th2 case

+h interrupts oncs they arte

allowed to occur.

P+ 2

w mf“

[20]. There 1is an explicit ordsring &nong a
interrupts, however, in the instadces in which mul ipl
o

exceptional events oOCCUul sipulianeocusly. Altrough
progral can prevent interrupts fron occurizng by maintaining
its priority at a sufiiciently nhighn laevel, it cannot
prevent the ocourcence cf traps.

,n‘x

Traps on ‘the 11/45 can Dbe groupead ine . K

categeries: 1} those due to software failw. -
nalfunctions, 2} those due to CPU hardivare failu:- z
malfunctions [21] , and, 3) those specifically regues - L

+he software.

?raps falling into the first cétegory are =i
adadressing error, bus timeout errors {typically caused by’
attenpts %o reiference n6n~existent device registersj),
Eerory nanagsaent violations, stack overflow error,
bon-eyistent instruction errors, and reserved instruction

€rrors.

fraps in category two are dus to pover failure arnd

pzTisy ~-ors, primarily, although CPU nalfunctions often
-znifas= thzoz=lves through undesarved errors in the first
cztegory. [Z2]

Traps in category three result froaz +the explicit

crecution of the EXT, BPT, 10T, ané IRAP instructions.

{21]. Device malfunciions occur as well, of course. Thess
palfunctiors, in sole instances software prograLfing €rrors
on the device, typically are reflected througk devics
interrupts, kowever, ard not through trags.

[221. 0Qften 2 nalfunctioning CPU vill causa bus ticz-outs,
reserved instruction tiTaps, &€tC. yhen thers i3 no ceal
reascn for thosa traps to ke gencerated.

49

2.2 Hardware Yodifications to the UCLA PDP 31785
Sz === ~ TETTERSESE S s e

The UCLA virtuval wmachine systen was huilt to run on a
pigital Eguipment Corporation ({DEC} PD? 11/45 computer.

Ths EDP 11/45 computer, however, 2s originally marketed by

DEC is not firtualizable sinca certain sansitive
DR -

it

instructions d. ', not +trap when exectted in user or
1‘ ff
Qde\‘i.

)

supervisor {231 The UOCLA PDP 11/45 was therefore

nodifizd iu order to make it virtualizable. [24]

The najor modification comsisted of additional 1logic

to pake certain sensitive instructions trap when executed

in user or sup2tviscr mede. [25]

14
4]
v
.2
[7]
1
| F

iga a user stack limit register was added [26]

zz% proviszisn zade to allew traps to bs sent directly to
ths sueparviscr zode prograp when caused by a user uwmoda
projrar :at:e:juthan reguiring that theos2 traps be fielded
[23]. The treader 1is refazrred to ([POPEKTE3B] for a
Az Ifinitio:r sf what censtituites a2 sonsitive instruction, as
W a3 the Zornzl reguliremsnts for virtualization.

2 descriptice of these medifications can be

b
[
]

Found in [DECTL

{253, 1In the unwmodified CPU, certain instructions waich
are sensitive become no-cgs when attewpted in usar er
supsrviscor mode rather than causing am ahort or tran.

directly by the kernel. This was acconplished by the
addi+ion of a set of alternats trap vectors which can be
enzbled wvhen the virtual machine modification is enabled
&nd which are interpreted with the memory manageaent urit
enabled {i.e. use the memezy mapping unschanisa). {27]

Rowaver, the occurrence of c¢ertain <traps are nlgaly

indicativs of hardware malfunctions. Therefore, even with

the modifi=d hardware, the alternate interrupt vectors are
set so that scma traps still go directly to the kernel,

regardless of +the processor mode at the time of the trap.
Examples of these sort of traps include menory parity traps

and power fail traps.

[
p-4
[
Jos
]
vr
it
Iy
b
[
4]

+s, howevar, whether they occur whilsa the
s=ocsssor i3 spsrating in kernel, supervisor, or ussr nods

rust go te the kernel. This is necsssary not only because

{26]. The wus=z stack 1lipit registér is not security
relevapt, except for the fact That it was placed in a wos:
izconvenisznt stot as far as the2 kernel was concernsd, and
hearea will no- bha descrided heve. The wger stagk licit is,
however, n=cxssary for virtuclization of the Kkernel sitaci
linit registsr 9f the unmodified rachine (and the nodified
cn2 as wWell),

[27737. The ability to send user noda traps diroctly to the
supecvisor portion 1is not stricily necesszary. Tt is moza
of an elfficiency issue than anything elsz since one can
chaounsel all t-aps and intarzoupts ipvo the dzonsi and Zhan
have +the kernel raflect theo back to their prozer
destinations. This would, oI course, r=2guire additional
kernal code.

g

tie kermel must for security reasons conirol all I/0, but

also because the interrvpt is

tk= currently rtunning procsass,

[22]. The =04ified harduar
relocatien reji rs of the
Since ths hardwu interrunt
Loamave ot ROy Danagen
alloved to pass airectly to th
end up in the supervisor por
process, wihich is not nece
raguested the intecrunt, i
towledage ol which procecs the
hamdeare itaosld doos nou,

“
)
ford
[a]]
Iyl
4]
Hh
o
r

¢}

10t necessarily in

(28]

has acc2ss only to the

curcently TCuanuning grocoess.
schAanisa opzratess within the
=Lit, any iaterrupt whick 1S
¢ sUuperviso portion would
ticn oL the currantly ruaning
szeTily the precess wiicas
ltuough the Kern=2l has full

inzernrupt bzlonrysz to, tae

It

[
L]
i
1s]
[t
1
"Jo
e+
b=
o
or
-l
by
0
lad
in

opce the decision has kesen nrade tc provids protection,

one is left with the task of defining tha lial

-

s of the

fa

protection to be offered: ome nust defin= +the wunits of
protection to be offered, as well as the various levels of
protection which will be supported. Before doing so, it is
convenient to classify portions of the systen into objectis.
Iz ail systen entities can be éo classified and if the

classification is sufficiently flexible to

rh

systen o
. encompass a large nusber of semantically dissimilar

entities in a homogensous manner, then by choosing these

tobjects® as cna®s units of proteciion, one is able to

— = 3 - T -
P;.O?.L.LZ: 2 23

szznacus protection foundation for the systen.

he guast

[ER

n

H
-

on then is, what are the basic objects
the systen? Whzt is the smallest protsctable unit? There is

a natural trade-off bere beitween providing protsction 3in

47}

extrensly szall units, vwhich might be desirable from a

floxibility standpoint, and providing protaction in larg=

[
2
ot
)]
L]
£
e
<
9]
oo d
[X]
e
w3
o
D
N
1]
A
pei
H
v
[»n
)
hil
h
o]
o]
£t
o
jos
8
s}
'
4
it
13

=zntatiopal and

Gne could, for instarnce, chooss a4 singie #ora o Le
the tasic pretectable unit. On2 +hen could succinctly

ciassify the systen users accerding to whather or not trhey

18]
L

are able to read word X. One then has coumplate control
over which system users can accass particular vords of

tg data.

ons
There are sobe problems with providing protection o a
sinrgle word basis, hovever, rlthough the mnotion is

logically feasible, it has soae sarious inmplementation
inpacts: 1) it implies a tremesndous disk storage overhead
for representiag the protectioﬁ policy, since it requires
the existence of an access list for every protectable word
in the system [29] ; and 2) it implies tremendous kercel
overhead 4if +the system's hardware base is not flexible

snough to provide convenient singie word protection [30]

One nus<t *rsad a thir 1line then batween protection

flavipili=- 2= inplementability in selecting one’s unit of

{2%1. Suchk ovazhezd is clsarly intolerable if one wiskhes
te protect th=sz access lisis in a2 zanrner idseptical to t:hat
2f ord2d all cther cbijects in the sysitsm since one LO¥
nezés an accsss list to protect the access list to protsct
thk2 access list, ad infinituz. This is clearly
vripniacentabls in ary systsh o wita 2 finits amount of
szorage since wach word oi storags reguiTes at lsast oae
aiiitional word to protect it, which in turn pust itself be
protacted, etc. Such & schems leads to infinite recucsion.
The problez with protecting singls, individual words in
f}49s manner is that the amount of information nesded ZOT
flexible control of the protection is urlikely to Iit
yithin a Singlie word: hance the protecticen for a word must
bz sgorezd tlroughout & ¢roup of othaz vorlz which cust he
lirewise protected. By chcosing onc's savllest proseccazlie
enit to bz large erough to cont2in suificiant protaction
inforoation within a sinagle unit, the recursiveucss oz tils
probler can bz sffectively livitzd.

protection: it must be small enougk to be a logically
protectable entity, yet it must likewise be large erough
for its associated protection policy to be reasonably

cament to be

H

represeanted and its protection enfo

inplemented in a reasonably efficient manner. [31)

o
e . "
But bafore ons can choose a jhysical format for an
;

[d

object, it is first useful to ejamine the sort of logical

properties ons would wish to attach to an object. Hhat

rt
(1

gsort of protzction is desired? Ore certainly wishes to
lipit and control access to collections of data, both in
ne2O0ry as well as on secondary storage. On=2 might wish to
control accsss to physical resources such as @memory, tape
drives, 4disxsz, etc. One might wish to limit the influence
cns usa> ©igz+t zzve on anothsr, such as restricting their
ability to ccczunicate with each other.

1
s . = s " : . R
¥hat sozt of objects do thesy dasires iaply? Certainly

orna mlight ca

1sidar collections of data in memory and on

sacondary stox

w

g2 as objects. Additionally ore would

[30]). The ov=rhead is yprobably enormous evan if the
hardware mnakes single word protection fairly conveniernt.
The PDY 11/45 hardware doesntt aven cone Cclose 0 “be
Wfairly convenisant? level.

{31J. This implies, of coursz, tnat tnue chkolce of eonets
snallest prectactabhle unit is likely to b2 extrenely
dependent upon the underlying protection facilities of th=
systen*y hase harduware.

(W)

probakly classify devices as objects, and finally, uscrs
seen to be ancther sort of cobjsct, If thess three types of
objacts are inplevented, thern the resulting protection can
be sumrarized as follows: 1) Data collections are protected
froc devices and users; 2) Devices are protacted <Lron

devices and users; and 3) Users are protected from devices

[pl]

an

ueEers.

These thzss objects cah further be divided into two
classes: 1) passive objects, and 2) active objects. Data
collections ars, of course, passive objects, by nature,
while both devices &and users eare . capable of being
alternately active or passive, depending upon whether ttey
inz 22224 upcn or perforuing the action directly.
232 zira2e types of cbjects are not horogeneous.
Hovwever, i# +hey do vrepresent all the possible types of
objects in <zz system then 1little has be2r lost by
stbdividing cne's pretection mechanisa into three

categories.

&h

Objects in the UCLA Virtval #Bachine System car b2
classified into four categoriss: 1) collections of
cods/deta [32]) . called sagments, 23 devices, 3) PLOSISS2S,

4

} the kernel,

[32]. The distinction beatween cod2 and data on the FDP
11/45 is s+trictly one orf secsartics. If ona attespis O
execute it, than it is code. If one expilicitly tric-s (o
read cr write it, it is data.

e i L H8 i £2

4 Procassaes

L process in the UCLA virtual dachine system 1s &
single object and consists cf a usar/suparvisor pair, where

the user portion is optional. &A1l protection is maintained
on a per process basis. No protection is guaranteed

bstveer the user and supervisor portions of +the process

!_I-

paiz, although sone protecticn is afforded the supervisor’
portion froa the user portion automatically througi the
=cdie gprotection and ~ralocation features provided by the

basic hardwars. [33]

FTach process has at its disposal & genaral purpose
rzglszters, THO stack pointer registers, one Dprogram
countar, oos soxgran status verd, 32 relocation registers,
o3 soms rusnzt of 4K-word blocks of wnemdry. L process 1is

21ioved <o =zzegate in either wuse2r or Sup rvisor mode.

M

ernel mofe exacution is reserved exclusively Zfor the
sscurity kEsToal. ?he supervisor mede portion of the

process is the only portion eof the process vhich is allowved

+n cowmunicats directly with the szcurity kerns=l. Tive
r231. 7Thiz iz of conciderabls importanucs if on: wiskes Lo
share suparvisor code portlons batucen nultiple procasLhss
in insuring that the actions of & ma icicus user portion of
orz precess is unable 10 advarsely afiact the operation of
another procuss sharing the sanre supeivisor p rhiou.

kno#ledgealle concerning the details of the kernel/process
interfacs=. [38] Figure 2 illustrates the decomposition of

the active svysten compronents accordinyg vo execution node.
J

At any given instant in time, oaly cne member of the
user/suparvisor process pair iq in control of tu2 process.
%hich mecber of the pair 1is in ‘current control of the
process can be Qdetermined by examination of the progra=x
status word essociated with +the process. [35] If the
current =mode bits of the program status word irdicate
supervisor node, then the supervisor portion is in control.

If +the curcent mode bits specify user mode, then the user

portion is in control.

22 rrograz status word is located at any given

ccoznt in =izs depends urpon whether the given process is

rt

running. IZ th< process is not currently running, then ths

progran stztus word, along with the contents of all
relccaticn registars, stack pcinters, progranr counter, and

ied in

¥

[34). The kernzl/process intgrface will be Jdescri
the followin a

{as1. ana statuc word should net ba confused witi
the stakus Fore (PS), @itiouyl Ln 503z LLnlaloos
the two ical. Tne procassor status word is o«
hardvace ¢cr and is uwsed by th2® hardvare when
teLﬁornxbg node~dependent operations; thr progral status
word 18 el by the Fkeremsl in parforniny process

rode-depenrdeut chacks.

" entry for the given process.

If the process is currently running, thsn the prograr

4l

{

5, Qepending LRuorn

w

status word is found in cne of two plac

™~

n;

whether the kernel or the process itself 3is in current
control of the acktual CPU. If the current node bits of the
real hardvare processor status word indicate that thg C?U.
is currently executing in kernel mode, then the prograr
s-z+tus word and the program counter for the most currsantly
running process (36] reside in the kerneltfs process table

for the given process.

If the current processor mode given by t+he hardwvare
processor stzius word is not kernel mods, then the pregran
sxatns waori for the process is resideaat in the CPU

pIccesseI STEtUS wvoré (PS) and the prograz counter for the

crocess is Zcund in the narcware progranm counter (K7). In
gither case <hs gensral registaers, relocation reagisters,
and stack pointsrs of the cuzrently running process reside

in the arprop-iate hardware locatioens. [37]

Ornce pul+iple processes gnter into the system plcturza,
there arises the nmnecessity of addressing the issee of

nultiplexing the CBU botwesn the various processes TUnning

{36]. Since the kernsl lg cerrently rumping ard is rnot
considerad part o©f 4 process, LG Droces is actually
running. The moot currentlv ruaulnyg plecess im Lhe poocuess
which was running just bofore che Fernsl usurpad control ot

the CEU.

under the kernel. CPU scheduling, however, +tends to be

sorsthing that genarally undergu=s an ertansive arount of

fine-tuning as nmachine usage evelves and priorities and
constraints change. Scheduling algoritkims also irvolve a

fair degree of complexity. Most Ainmportantly from our
viewpoint, however, scheduling decisions are related to
security only in the sense that they may result in denial

e

1
itn

ervice

—_—

¥o

a2t the worst, aad, as such, can be classified as
viabilily issuss. Hence, while it is conceptually possible
to Fprove scheduling code correct, there seens little real

gain in placing such code within the kernel itself.

Indeed, there are several good reasons vhy such a step
szeould not bz faxen: 1) As previously mentioned, scheduling
% azong the post modified portions of code in
existing o3srating systewns and changing tha scheduling
policy wnight =necessitate the reverification of large

ortions of the kernel; 2) scheduling guastions are not
g

data security cuss*ions and hence do nos belong in the
kernel 1I {hiy can be made alszunera; and, 3} if latez it
[37]. This is possible siuca the 11/45 has two independent
sets c¢f general registers, 3 stack pointers, and 3 s2ts of
relocation registers. Tha kerpasl utilizeos the kernal stack
FOlutel and rejocatlon roglscars end rosinter Sw=o O, wallo
the process usss the user ard supsrvisor staeck sointars and
relocation registers and registor set 1. The hevdware
genaral regyisters and relocation vejisteory: dadicutsd o thoe
pror“ss re saved aud restozod only when procossen ara
switched., The ©C and PS, Lowevor, At.uw b Savedl wnenovoT
the Yerna2l is rvunndeg (sincs they aoc “Je:e& Dotusen all
pragranr moles) and ave founud iu rarnel it process tabl

entry for the given prociis,

[jon
ct [14]
0
Q
o}]
o]
ct 0
3]
s ot
o 0
I\ in
IJ-
Fi
Q H
e Uy
,.__I
i
¢l
= ot
4] Q
= <t
W [34)
8] [
jo |
4] y
e 2
| ek
4} leal
i
]
4]
T3 <
G F
o ¥
= a
I I
ig I~
i_l
2] oy
o I
3
9] Q0
6] o
H [
o Kh
] *
(o] IE
= 4]
=]
H b
sl
o a8
i~ r-‘l
r+ o
N

W}
1y
4]
o
H Al
‘_l
i
-
[ta
1]
[
-
bt
[y
n
Fis
i
e
',-l
=
I
[
ot
rye
i
o
o)
[
HRL)
rt
L)
4

tra kernel in crésr to perfora its scheduling task. Actual

ass context (prograsm counter,

(9]

saving aad =castozing oI pro

progrzrm status, Ta2location regisiers, general register

iR/

‘
ari stack pointers) =must of course ba perioraad by the

ko-nsl irn oriac *to guarantes ssparation of process data.

Trocszszs —:in ba divided into three categories: 1)
pTivilegeld nrocesses, 2) systen processes, aLd

erivilsgsl processes differ fron system processeas
painiy in that they are allcu=2d to cozmunicata carTtain
infgroaticn o nhe Kernsl used by
tts hernsi in sacuriiy relevant ways. These processe2s ars

i . . . A R P v b=
Proclasses aial Lhe IDNLTLe Ol and The Uil iSe.

. L : L e e t Wit s
Syston proCcesses are LLHose YRLCn DOSI=SS e aDLILEY

[-< - PN PO -y - - -
to periovn cCrnionys which szfact The orioInanses O tne

i §
<

Non-privileged processes ars th

i

normal, everyday type

r
=g
©®

hey includsz

ProcCesses. Virtual Machine

IEs

Monitor/Virtual Machine (VNN/VN) process pair.

o

|

!
I
I
i
!

|

INITIATOZ

————— — ek TR A e

e
L0 TOAL

; =5
SACHIND

HONITOR2

T

LIS

GBACHINE

P]

- - . m A o A e B A A e b A M A T e S mm ww

[VIZTgAL

SeCHINE

ATy
af

(VEYN)

F-
o
-
[
le
1
O
)
Ya
-]
(53]
)

i
|
3Y3TEN | CFU l DZTICE DIVICE
oM TCET TTATT 2N ST - . - —_
PROUISSES H SCEzZngLez |SCHIDILER SCHEDOLER
{ l 1 2
{
!
]
|
HOM-PRITILIGTD _
PEDCESSZIS] yai/vied VAV by /T3
PV /TY
! y {
!
TiguiIz L Sr3te=n Decornoositicn Ev Cracass Irivilega

Clearly, in ozder to construct a robust sys

-4

1

&7

“ition Tea Ayices

- .s e
neecazazr v CO

i
<

exanple) into some number cf smaller units, the

pultiples of these smaller units to individual

rather than dedicating the entire device for the

of s In allowing for such

P

ngle process.

f

use

the devica, it Was necessary to devisa some mean

with +the device contention problem vwhich =
zultiple users attempting to use a sing
sigultaneously. Again, this was a scheduling

hence not one that belonged in the kermel. Inst

out of the kernel and onto the shoulders

shared device schedulasrs,

prcvide a solution to this

prokblem, schedulers for those devices wh

be partitioned were introduced into the systenm.

sesm a rathsr +trivial, uninteresting descisi
sirfece, but it was one wvhich had rather
importart consegquences relative to the over
design. Had no attempt been made to provide
devicos, several kernsl calls would have been
and a nupuber of thes rore diZficulr design
elininated. On +he other bhand, one suspec

a6

ten, it iz

{disks, for

¥

n allocate

processes,
2xclusive
sharing of
5 of coping
esults fron
le device
proklem and

2ad, it was

of special

contention
ich were to
This night
the

on on

unn20essary
problens

ts t

that the

resulting systes would have bsen a much less useful opu,

[36)

Loation of cartzin

et

Singa the'ability to restricht ulli
devices seemed a likely candidate for a security policy
decision, it is necessary that the final say-so in device
allocation be given by the kernel itself. How to scheduls
a given onon-cdedicated devicd betueen conpeting useors,
hevever, falls again within the productivity-viability area
and has no relstion to data security, provided that the

kernel does indeed maintain the security of any

sub-divisions of the device storage area betwean processes.

As was the case with CPU scheduling, d=vice scheduling
is oitern a czréidate for fine-tuning angd honing operations,

&nd the saze zcilfication-reveriiication arguments t

j=ad
v

T ¢an

t

be applisd to CPU scheduling are egually valid when applied

t¢ device schedulars. Hence devics sched

&=

lers join the CPU
scheduler as additional ©processes running outside of the

Xernel, Thus, while the rajcrity of I/0 devices in <he

Systed are d=tiiated, noin-shared devices, a nuslor of

devices {(nctably the disk) are capable of being sharad

55€eS.

a

hetween multiple vroc

— e —_——— —

~

[38]. MHot averyone can azford +to ée
to a single virtual machine.

o]
.
9]
g
o]
&
Y
fad)
v
tt
r_l
=
1
0
t
n
L

Devices in the UCLA Virtual fackine Systse can be
'divideﬂ into two logical categories: 1) dedicated devices,:
and 2) shared devices. [39] n dedicated dgyice is a
device which =may be allccated to an arbitrary procsss ard
which can not be used hy any other process while it is so
allocated. A shared devige, on the other hand, 1is
allocated to a specific process which may then share the
device with cther processes, but which retains control over
the ipitiation of any I/0 ccnnected with the device, {40]
Furter discussion of how I/0 to shared devices 1is

accokzplished c¢a be found in the sections dealing with the

Reguest-I/0 and Start-Indirect-I/0 kermel calls.

A device pacones allocated to a given process upcn the
ful cooplstion of an AttacheI/O<Davice xernel call
and rem2ins alloca*ed to the given procass until 1t is

released {via a Release-I/O-Device kernel call) or until

the process raguests to attach it to another procass. A
process which has attechaed an 170 device may ho allowsd to

(39]3. Loglcally, devices can be sepurated into dedicated
and non~dedicatad devices. Physically howevarn, all
devices are 'dedicated® devices, 1n the 03nsw that a aszvice
has enly Ccne GWRET O user at any given monent., Stmichly
speaking, non—dediratcd devices atTe really dadicated
devices which the systen policy “prz-allocates™ to spacific
PIGCEESISE.

{40]. Thiz *specific' process is the device scheduler for
the given shared davice.

initiate I/0 to or frowm the device by executing a Start-I/C

P

kernel call, cr receive status informatiocn on tha device by

evecutioy & Status-I/0 Kernel call.

A process which is allowed +to use a non-dedicated
device regquests initiation of I/0 to the non-dedicated

cuting a Pequest-I/0 karnel call., This causes

o
[
<
|...l
9]
[0}
=g

d
m
»
1))

t to bpbe +transuitted to the owner of the

ct
H
[
|-
~
[
1
[
18]
r=
(0]
0

e
(2

th
2

n=dadica

0

evice, which nay evantually cause the I/0 to

fu

initiated by executing a Start-Indirect-I/0 kernel call.

o
113

Error or conpletion inforration is returned to the initial
reguestor upon device initiation and completion,

respectively.

&Y

B segment in the gCcL: virtual lHaching Systenr is an

collection of hE YOGS whigh I=zldées

i

arbrt contiguou

',‘.‘.
a.m

either in memoly Or On secondary storage. [41] Five mnmajor
access capabilities can be associated with ségments: 1} rno
access, 2) read only access, 3) read/write access,
4} read/exsc 4te access, and 5) read/urite/execute access
Protection is maintained romogeneously on a per segnent
basis. :11 words contained in a single segment are
srotsctad iientically—- that is, if word X1 and word X2
voth Teside in segment X, then any user having access Y to

segment X will possess access Y to both X1 and X2.

mha kLernel supports five major operations on SegrRznts:

they can b= 1) created, 2) destroy=4, 3} attachsd,
4) swapped., and, 5) released. once a segment has been

created, it continues to exist in some forn, @ither 1n

=ics 1o in Some LERSHO arbitTtary. Dbut ther UW
narticularly conveniant in taat 4f words is thea

sego=nt that cal be protected Dby @ single

‘ rsgister using the 11,45 meBpolY managenont
hardwvare. additionally, the cholce of 4% word segnonts
allouws ths virtual machine monitor to simulate a ohysically
contiguous virtuul addrsss space to tha Vi If a Sejunent
size of less than LE words i¢ ~hosan, the rezultant adiroess
spacs Wil contain “holas* in it ~ta reader Ls refsrred
+o +the PDP 11745 Processdr yandbooX [DECT3R] for furthes

processes once they have been attached am

memory and remain directly accessibls until they are

svappaed out of nemory or are released. Existing ssgrents
which are nct core=-resident can be indircctly accesssd via
I/0 devices assoclated with tke procsss under cerptaln

circurstapcss.

The kernsl was designed tc provide controlled, limited
sharing of data between processss. Under Mnorgcal®
circumstances, the resources availabls to a given process

at a give tirs are disjoinrt frcm the resources accassible

to gther processas at the sawe womant. Hovsver, minor
meiificaticnz n the security policy make lirmited data

sharing beatvesn nutually willing processes possiple through

th2 use of "sinzred" segments.

non=-shared s=gzent, The only distinction betwsen thz two
LIYDEs LD osmEgasus 18 thal thd prolzcitlon ddate assoTloved

with the sharsd segpsnt indicates that 14 may be accessed

by more than c¢ne ussr.

T+ is Ekelievaed +that thzs ahorci-cognent pochapion

provides enough of the basic canwuuications tools to 2n.blo

L

r
t
[
¢]
9]
o]
#4)
rt
H
jar
0
it
;—l .
(&)
o3
o]
th
"
b
5
5]
=
m
i
0
e
o
o
po
"}
e
joh
1,_1
1_}.
[C4]
4]
'J
ad
i
L
73l
o
]
o
i
+
tw

security kernel. [&42] Thers is the necessity. howevaer, of
providing Soms vay of initially establishing a
connunications link, Sincs the Xernel mailntalins PrOosess

isolation except for shared seghents thenselves, 1t 1is
recessary to place this irnitial corrunicatioans channel

sonevhere in tke kernel., Thus some special nmeans had to be

designed to allow processes to COoRXuURicati anong
thenselves. The extent ¢f such kernel communhication
sSupport éid not need +to be larges, however, and a

sinple-mindsd Sepd-Message kernel call was provided to mee

[423. & bare rninizal set of communications priniiives will
be furnichsd by the kernel: sleep, wellbeuy, and
send-nessage.

[[&]

-4

Conplete Systen STrucinre sui

—_—— - Poraip AR

Th2 general structure of the systenm is fix=d. At the

iovast, most hazic lovel of the systew, CuUnLLLG BROL Lhe
bhares hardvare, lies the security kernel, providing
inpter-grocess protection, conmunhication, and security
enforcanent., A%t the next cuterzost level, outside of the
security kernsl, 1lie the c¢ther basic coaponents of the
systen: the virtual nachine meniter, to simulate to the

virtual =machkine those «cactabilitiss o©f <the real machine
usurped by the kernel, the initiator to identify users. to
the kernel anéd create, start, stop, and destroy processes,
the CPU schedulisr toc multipiex the CPU anong Drocssses

running outsils of the kerrnel and zakse decisions as to how

{

=20y manassaznt should be handled, device schedulers 0

.avices among conpeting processes, and the

1
i
i.. 4
t
[
sl
=t
a0
[
)
¥
m
L
My
[N
foX

updater to reaintain and control the protection data used by

the kernel in mpaking security decisions. This structure is

illustrated in Zigurs 5.

nzt remains iz to thorougaly exasine the
individual «corzonents, isclats the security onforcexant
issues involved 1in each, and insure that the kernzl

contains some m2ans of providing toen.

i}l
Lt

B
L

bt
41
n

2
M
A
in

™

o

3_
Ly
ﬂ 1
tm

-l

$]
1]
n
14}
o+
=3
1
=
o
H
O
[45]
t

guite early in the design pro guzstio

regarding what place memory managzrcent should have in the

m

security kernsl, From thke first ve were hesitant to place

[as

the rTesponsibility for previding virtual memory support a

(=]

the lowest lsvz=l in the kernel. ¥ot only does wmerory
ranagenent tend toward «ccooplexity, but it often lkas the
scheduling flaver about it if one is to handle such things

as naking pagz faults and the 1like invisible by doing

derand paging. It just did not have the feel of tne sort

1y

of coliz yhicr nezdzd to be z n

cessarvy part of the kernel.

awpack o¢f placing +the lowest level of
EeCory [maracgsrant support in the kernel was that it raised

tha irterrun<ibility issue ip all of its gory details: if

one were to narke full uss of the @gemOry Danagencnt
farilitics new nlacad in the k+vnal, it ssens only

reasonabls +o 2llow the kerpel it==21f to rely upon then,
Ye- now one finds oneself in the awkwvard situastion where
certain (2nd no¥ almost assuredly, avbitrary) portions of
thos kaernel need to be intsrruptibls in order *o function

prop=rly.

Se what if the kernel now ne2ds to ba jntervuptiile ot

avrbitrary points? “hy is that such a big dravback? It aight

N [Lo .- =R -y T~ = R -

not be such a problsw Lf thz statz-cf-the-art of fprogras
v 3 Yok \ F G = verTs pnora advanooa B T N S
VariLoido DL Lo desn YoD2 Morvz QdvVvanssd, CGL Lo Lw Wale

significantly easier to write cods ir such a £fashion to

.gﬁmake it arbitrarily interruptible. Unfortunately,
" =

‘interrupts are capable of instigating side-eifzcts of the

[Cal

-

. rost.confusing and intricate sort, and side-eifects in evan
their sinplest and nost rudimentary forwms are extremely ill

dealt with by currant progran verificatlon tachniguse

f.

Besides, was memory manpagensnt really & necessity forn

the kernsl? Yot if the coriginal size =xpectetions about the

a
Ly
Ca

kernel conli ts rmealized. ¥Why would a small &ksrnel nee

e

virtual zencTy suunport for itself? Its code should clsarly
Zit in the zvaeilatble space. But what about 1ts data? Was
there any r=zson to believe that the Karnell!s nacessary

\idata segnents could not always be Kept core-resident?

Urfortunata2ly +the answar ssensd to be yes 1f one wish=s to

andle security policy issues in any reascnable manner on a
crlativaly lafye s Eut this represanis a relazively

to sacrifice kernel unintegrruptipiizty 1if a sizpler,

perbaps nore restrictive, scolution could be discovared.

Indeed, an alternzative sclution, one which pushsd the

a2nts into

responsibility for bringing protection dzata seog

e
Lr

COCe Qnio processes CURNing ou

et
143
.},J
[Y
8]
¢
o
-
o+
-
"
It
;

I
mn
v
el
—

-

.
f_|
9]

devised and will beg discussad at length i1t the secticn on
capability fauliing. réditicnal discussion of th= notion

[)

s »
rau

MY

+ing can be found in [POPEKTHC, POPEKTS].

or
bt

[

an

cf ca

T

Yet while it seered most reasonable to Dbzalicve that

the kernel could functicn propékﬁy without benefit oif

nt suppom';
(.

ls o belisve that the éest of the processes in

I}

underlying menory Cahagean it s<eemed not nearly

so Teasonzkhb
thez systen could manage without some sort of help in that

zrea from the kernel, 124K, after all, is not much meRnory
+o share bztw¥wszn a CPU scheduler, initiator, updater, disk
scheduler, and several procecses other than the systen

cocponents. [1] 2nd, of courss, ona has to include the

Yernelts coiz in that 124K figure.
I+ sezned reasonable to expect that some sort of
sv¥aproing facility would eventuamly be necessary, and
s : . .
although the izi<ial version c¢f "the systen might not

wtilize it, enough thought had to he given to svapping

CSE wWas

o

considerations o fznoncstrate thet ths entire mechan

f1]. TQhere 15 little
security 1t cno io mere
itself.

ip bothering with
. o

nagnitude ¢f such support. Fellowing the "kesp it saallm

design criterion, vwe were determined to Includd as litele
extwa keornel code as we could mahage to gt hy with and yeot

st111 mneet viability constraints., [2] What then was the

least we could get away with?

It wes alnost immpediately clear that the dacisic as
to the eavrrcoriate time to swap a given segment ¥as one
which the k=rnsl did not wisk to nmake. {37 Egually as

obvious was the fact that which segient to suap is not a
decision which should be left up to the kernel either. [4]
¥either what %o svap, ncr when to svwap it are really

security isst

[

£z at all, as long as the kermel enforces sone

I. J

ninin2l ceon=striints aghout what can not be swapped when.

#ell <hesn, if the kernel iz mot concarned with why a

seoment is being sSwepped, Wwhat sagment is being swapp=d, or
el o I3 ’ Yy [

whan a segpent i3 being swapped, then what is the Kernel

L= sSG nucs COnCornel Wi oh R ANy
Lsn mplament, simply with pakitng 1t possible
plaa

[3]. 211 of the fire-tuning arguaents apply in full rorce.
Policy that mayv be expected to changs do2s not balong colzd

into ths Xsrnsl.
{41, How in fhe world should taz poor tin xerncl koow
L i 3 hoen busy

vhat segmenrt will be nesded next? I
keeping track of such things, *than it is 3
larger than one can expect to got avey ®ith

I

with ho¥ the segment is being svapped, nore specifically in
from what and into what the segment is being noved., It S
interested wrainiy ip asszuring thait sognonws afs labslled

Rlthough the majority of the prebliems of svapping are

"

not the concezn of the kernel, the swapping mechanisn does

-

inde=sd invelve I/0 and has severs security implications.
i+ is o0f yprice inportance that the kernal be totaily
correct in its association ¢ in-cors segmanis with precess

rn=2l can be led t¢ balieve that in-core

1
3
Q]
n
)
th
1
-
lr
-
D

-+

segnent ¥ bslongs to process ¥, when in reality it Dbelongs
to precaess 7, = security viclation has occurred. ihile it
is of 1it+ls ~=zrsecuvence to the hernel when or for whon
5 ogcurs, it is of vital importance that the kernel
correctly iden—ify the segments currently residing in

zerory, in order that protection checks are nade upon the

prorsr basis,

Lo lon L ThersioIs noclnonly

to handle swapging than the nornal I/0 mechanisi. Thore 1s

a2 logicel differcnce 1u the acticns required of thz Kernel
when 2 disk request is 2 svWap reguast than when z Gink
reguesT s o2 noraal disk rogueost: A mormsl diak vooost

- - I - R - . -y — — g P - P .- - W - -
SegrRoRT; a suvay digk roegquest dodas, Since the rones oif cou=

and Te security reley

il

i

[

must take &

the reguest ani

Failure uponr the kerne2l®s Ppar

recautions a+t the beginnin of =&
g

pstance, is readily seen as a poss
£

Consider following scenario:

If the k

s syapped out.

ctice of this action, i

copy of the segment to

result termediary I1/0 done 1

batwsen the swap raguest was

oe it Cre can

o

ve,

zo one

21l

o+

4

&

nC

MOGTZ2

Q

GVen nsegu
in data bslonging t

being transpitied

anough, frow =2

ignoring viability iss

80

ant and controlled by
. tional actions bhotn

vpon its completion.
+ to take suitable
swap out regquest, for
ible security flavw.
core segment I Was
ernel has not taken

+ is possible for the

becore corrupted as a

nto the core ssgmert
initiated and <the
inagire a malgvolent

has

HE2CO0

riately to make that

&

i+

Tin

(i

o

1]

4y
o
[
=

[

o}

H

to the new

security

fiad

not roally

v
A

necessary that the kerrel swap correctly -=- thaet 1is, =
the given core segment tc Or fron the indicated dish
ceoment. 511 that is really necessary is that no expansion

of the capabilities of zny user is acconplished as a result

of the swap. Fo security viclation results 1if segrent ¥
belonging to user A is swapped intd the disk space reserved

for user A's sagment Y sc leng as that swap has not given
any user accsss to ¥ whichk it did not previously poss2ss.
If B previously had no access to X, but was allcwed +to

share ¥, then this would be a violation.

Such violations are fairly subtle, and it is probably

cuch simpler to show that the kernel swaps correctly rather

srzp showing <trhat any incorrect swaps do not violate
s=curity conszraints. But even here onc rerely naed show

that rerory frene X is transfered into disk fZrame X and not
k frace Y. It does not reguire that the resultant

contents of disk frame X appear identical to the previous

1

corntents of memory frame X. The kernel right have inverstsd

in the Tegens of the smuwap buk o such ab

0

9]

O
3
1
i

3

irversion would not be considered a data security flaw.

(5]

The najor responsibility for memory managepent in the

[5]. It iz extremely unlikely that the kernrol would invert
a segmpent during a swap, hoswever; inverting it is much nore
couplicated than merely copying it.

jo

UCLA4 Virt+tual tachine systern, then, 3is placeéd on thoe

shoulders oI the CPU scheduler., DProca2os reguesis to have

segunants swapped in and out are ccemnunicated to the CpU
scheduler via the Send-Hessage kern=l call and the actual

ping eventually requested by the CPU schedulor.

82

in

e

it

{82
tos

e
(-]

ilthough we are primarily concerned with Securiiy

OO S C ey A r 7
[AT el

sneurity rolice 3

]

th

DR st A NS AL St M P . =

3]
fa
P
O]
ot
S|
o)
th
]
f:
-

-4

2y
~

system, certain minimal viability constraints necessitated
the exanination of some facets of policy gquestions during

necgssary to protect soie

“

the design process. Since it 1
large nurber of disk segments spread through sore larae
nunber of possible users, & totally im-core prot=ction data

hase is an unreasonable choice == certainly one which dees

not readily lend itszlf to system resource expansion.

On a systen with a 1large nuwmber of available disk

segnents, i%t 1is «conceivable that a significant amount of

cecorv wouls S2 wasted merely in kesping the protection

¢z+a corz-rzziient, thus significantly reducizng the menory
resources avzilzbls to the repainder of the system, perhaps
to zero. Sech & constraint sszemed unreasonable, so sonme

viahle alternativse was soughi.

T+ 15 ohyvicus that sone vnriion of the protection data

e

H
1]
rh

should be cors-rasident Lo ficiency's sake. A schens

tha+t would require swapping of protection data from disk to

menory each tige & process asked to do zuything 1

il 2

clearly

[41]

143)

intdlerabhle fror an efficiency viewpoint. Howavar, 1t was
just as clear that not all of the protaction data could be

Yept in menory all the time. A comprowise batwesn the w0

oxtreanss scemned o be 1n crder.

Lt this point another crucial chservation can he made:
altbhough it ses2ps mone conveniani 10 provids protoction on

a per object basis, ROST protection Jquese

}J.

ons seenl

aturally stated on a user~oriented basis. While it is
most convenient to store the data on an objectT basis, only
= swmall portion of the entire set of protecticen data would

d

Jods
1
h

n

=
=

be of interest at any ore t +he normal opsration

0

6f the systen-- not all users will be actively accessing

all obij2cts at any given npomant.

If one viesws the protection data as being represented

in a Lampson access matrix with passive objects labelling

«ts columcs =2n3 active objects labelling the rows, apd thed
zttenpts to collapse the ratrix into *riples to bhe stor-sd

either by their Tow or columi label, one discovers that

hile the dzta 4is mnost fproperly storzd by colunn, it is
mos+t convaniently accessed by Trow. The protection data

most usefully kept in core is that data pertinent to <The

CUTTELOTLY UL aUvoten uS<os.

Nzxt the question arisss ©0oI how portions of trne
protection data are brought into core 7T at whose reguest
and ip what manner. Several alternatives came ias ediately

to mind: 1) The kernel cculd swap in appropricte porticus

0of the process's protsction data at the +time I process

a4

for i: 10 be swapped in whspever it runs the procoess; on

) the process itseli could asx for it 1o be swvapped

Alternatives one, two, and three potentially 1involve
significant process start-up dalay. Alternative tWo mlgyht
cause additionzl complicaticns to the initiator which wmust
eventually be preoven corrsect. Alternative on=2 vwould

necessitate éirect I/0 operzatien by the Kernel, wuith

resulting confusicn due to disk scheduler interference and
coznunication, and reintroduces the kernel interrupt

problen previcusly set at rest by making tne Kkernel

unintarrupiibls,
The fouoii alternative, however, possessed none of

some nipnizal knowledcge of kernsl protasction data situctire,

tn

allow the ussr process to cause a disk seguent to be read

in on its behalf without having any real access 1o tae

The last alternative scesnzsd the @ost veasounalle of the

four in spits of the necsssity Ior another karnsl cali.

<
W

Tho conplication to user pProcesses should be wininal. yet
efficiency is now 1ost only when neceS3a8IYe Undcor the

fourth alternativa, & nechanisn which we terfn cagabnilizy

b
fu
e
b
e
i1
o]
i
[
-+
}.l
o
Car
o
'd}
)

faulting, Pprocessss Opsl rats as 1
pertinent to thenm is core-resident until thsy Teceive a
capability Zfazult - @ special kernel call responss which
indicates that the kern=l has insufficient protectionr data
in ccre to nake any decisicn regarding the legality of the

process's currant request.

Uoon receiving the capability fault, ths user process
then dete-minss which disk segmant cortains the required

protection ipfermation, and sends a message to the CPU

inno
Swap=Inh roernsl call, asking the disk schedular To ©2ad Loz

S=y nent LRTO COor=.

If the process has requested the propsr protection
segrnent, then the mDext time 1t atteqst vhatever action

S . e e e 1T e Eood S e o T e,
TeLMLTed X T k-:t?c.blLJ_t} fFzult aTher Toor SPGRRIIT Lo Foieer T

read in, it will receive a Raore dafinitive ensvwer from tha
kernel.

{6]- This iz done via the SEND-MESSL3E kermel call. Tie
process asks the CFU scheduler to swap tha segisnT 1in.
Originally there wWas & speciiic kerael czll To do this, Tz
Ypegquost-Saegnent” call, but was gensrallzad Lm0 the
SEHD-MESSAGE kerrel call.

(04

3.3 The Kerr=sl/Prochnss Intsriace
——— — e el T e et e e e e e e . A T

Copnounicaiion between tae kernel and a process CRUAGLDG
uuloer otk Levasl ig esteblished wvia o core vesidsnt Antn
arca sharad betwsen the kernel arnéd the process called tue
shareé kernsl/process compunications buffer. This shared
area Duist remain in real mewory at all times and cannot
easily be swepped out for it is often the case that the
kernael must send informeiicn to ths process {(interrupt

rotificzation, for instance) during periods of time waen it

is pot rurnning (and thus its memory sesguents not ordinarily
guazant . eed tc bz core-resident). This prohibits ary

sWeppliiag shared kerna2l/frccess communications buffer

=
s 2 “ser procsss bzeis along ulth the process.

Sincs nuch of the menory management suppozt is layered
abovre +tha kerrel in our system andé not bensath it (ag is
the zice in nmzony other systems) and ‘sinacs one of *he
assstiiions we would like te be able to prove abpoutl the
rerr=.1l is that Travs navelr OCCUr within the keznel {unlacs,
oI SurET, Tid nalGeand is physicekly fezilingy, Lo 15
pscressary that fhz kernel naven g3t @ Denoxy FaRajensht
Fawlt, Hence +thaz sharsed kernel/process coamunicaticrs
bef fer must be locked into core at altl tices, though it is
not necessary that the sharad communications bufier he or
the samwe size as other segrents in the systzo, (7]

p)

C

.

The shared kernel/process conpunicowions buiifer i

i @dod into thres logically distinct 2 rezad-only

4
Y
a2
Ia
v
X
—
e
m

1]
-

or+ion. 2) a process Tread/vriteable portion, and, 3} a-

3

read /uritesexecutable portion.

The read-only pecrtion cif the communications bufier 1is
reserved for storing inferzation which may be read by the

o

nrocess, nut which FoT security reasons may not be modifie
by +ths process. Phis area is principally used for storing

oxes, collectiorns of information which have beern

lozkad

punaled up by the kernel and put avay for safe keapiug

un+il whatever further pr000551ng thay reguire has been
cozpleted. The wmost prominent use of locked boxes in the
systez is in tramsmitilng & FL c2gs's shared devics I/C
sguest o thad appropriate desvice schaduler so that the

schedular can dscide when tc periorm toe reguest without

The read/write portiocn oI the communications buifer
contains thrse major secticns The first two sectlouns ars
concernsd wWatsn syncnrionized copsunicaticon Dacivash Tis
kerpel and +the process. The first of these sections 1S

used for passing kerns. call arguients from the process to

the karnel. mhe second sectien is resarved foT passing
e At e e e

{71]. Indeed, ir this werg a reguivoesnt, it woulild
seriously reostricit the nurpbel CL ProcEsSes which could b=

yun in the svsinn

.

IS

1t

(]

Q
+
B
fu
w
=1
LJ
9]
(o
3]
0
.

coll responsas back from the kern

[
™~
O
4
-
&
n
.

v

Tha third section of the read/write portion o¢f the

conwunications buffer contains a first~in-first-gut

ere niscellaneous A5 YNCLIONGU:

e
s

WIdparound naus W

f.
[SA

icforration can be passed from the kernel to the process
and inspected ai the process's leisure. Responsibility for

draining this queue area rests with the process. If gueue

entries are nct processsed at a suZficiently high rats, the
gkern=l will discard entries rather than bothar with the

probler of gusus overflow. The problem oI insuring that

ths gusue dJ&o=s pot overflew is merely a matter of ke=ping

track of the cucrent nunber of outstanding I/0 regussts and
pardimyg karnsl regussits and not reguasting more than car be
szfigly £i% irn-o the gueue at any one tine.

)

:2lzhougt <he kernel does not explicitly concern itself

¥ith srohlans of queue overiflew, a great deal of careiul
cessisderation was given to deciding wha sort of

A reasonable guestion wonich pight be asked at Tiis

poi nt 1s: why should toe kKernel concoern itszli With

rreinplems Of rocess neue cverflow? PR beaxring Cors
T p i

gy

One is terpted to reply, very little. Such &an aunsver.
nowaver, 1eads right back 10 the first question: why

The procsss gqueue overilow croblan woul? seam to he a
: b
quastion of the "proper’ functioning o. {AS@L PLOCESIes,

comathing we have Dnever even pretend=d | to guarantee.

T

c@R as & whole

faad
0
1]
i
9]
[y}
-
ot
iy
D
0]
[
Q
=
4
4
cr
[
lae
]
O
T3
[t}
H
ct
K
T
n
o]
H
ot
e
[tH]
n

¥s
as currently designed depend o sone extent upon the
corrcctness ©f certain processes running outside of the
kéznel, namely the initiater and updater. Thus assurance
is Teguirsd <that ProOCesSseS gan be written (in parcticular,
#h2+ an initiztar and updater can be written) which can he

shown to Fuonotion properly. [8]

1f th=zre is mo way of guarding against guaue overflov,
than n sifective deronstratiorn cf the pi

of any process ¥pich ever needs to use the

impossible. since both the initiator and updater nust
co.nunicats wiTh terminalz, henvte porionning /G, ong

{81, Howsver, svarn an inltizter o uolater maliuactior
caussd by gqueue overflos cannot causse a2 datld s¢curlt;
violatien *o cccur, as far as the xernsl is concernzd, At
the worst, information wnich wvould othsrwisc be
Cormupicat.d to *he initiuster or updater Will pa lost Al
some action which was ipnitiated migat possibly nevsr bR

completard,

9

Py

=

——_F

 mportanca to tfirew. Thus, thsz gqueue overiiow problem uwust

be adéresscd to some extent and successiully resolved.

1 rrad /oot baesenconte ooptien of tha < TUNLCATLONS
= 3 - JEE B oy P ST T, =
hpeffer is used to implement the kuinel pseudo-interrupt

Gy

3.6 EKernal SLzugiurd
< ——— e e T e T ———

The kernsl cau be divided into three parts, based upon
£hs peans by which 1% receives coutrol: 1) the kernel ¢all

tandler, 2) the kerpal interrupt handler, and 3} the kernel

Tress parts are not strictly independent since they

siare portions of cods ard data. However, they do op=rate
a

@
fad
et
|-
@)

f epe another. It is not s zuch a guestion
of where the curxrent kernel program counter points so much
as how it got there -- which of the three entry S&e{uUeNncCEs

into the kernel was used.

Entry ssgusnces OnE and three share the property that

Tr
'
£
It
rt
{3}
H
i3]
[T

¥ through either, the kernel perfoges sone
ac+ion on bpehalf of the currently running pEOCeSS {unless
ip case 3 <the trap was @ kernel trap}. Entry into the

Lternel through seguence tWo may Cause actior on the behalf

of any process, 0L, as is the case of a clock intecrupt, no
LTTCeoE.
fegardless of the original entry segusice, the k=rns

will proceed with a given action until its completion. Tasz
kernel runs in a totally upintecruptible mod2. (93 %o

other action will bs started urtil the initial action is

4

e e

On the unmodified PDP 11745, the first 1000 octal

hetos of the kernalts virtyal nemorv are resstvad for trap
ané interrupt Vectors. When +traps are generated, the

processQr ceases execution at its current site of operation
and resumes operation at the instruction pointed to by the
wnew PC?® pertion of the trap vector in the instruction

te to the ‘“new PS" pertion of the Lap
vector, after first pushing the PC and PS which existed at

+he +ime of the trap onto the stack corresponding to the

new processor mode. The location of the trap vectors is
de+ernin=d in ksrnel data space (ie. the new PC,PS are
fe+phed nusing the memcry management registers corresponding

+. wernel iziz space locations O - 100C octal). The new
processor nols 1S deternined by the new PS node of the trap

vector con+enis. Virtually no restrictions are made by the
Lardwvare on the contents of these trap vactors, although
nincorract" contents may Tesult in the generation of

additicnal traps,

[9]. This iz accomplished by always entering <the kernel
with Thardware procsssor fpriority 7, which m=zaas that no
interrupts will be allowed to oCcur un+til the processcr
priority is deliberately lowared. This is gquite
independent of whetner tne xerpel operatss with device
int=zrrupts enabled, since no device interrupt will be
alloved to occur (will ever be seen by the CPU)Y as long as
the Erocessor vriority remains at priority 7. The

interrupt nay be waiting to cccur, put will not ba allowed
to occur until +he kernel changes its priority.

The trapping rmechanisa under the nodified CPU is
jdentical except that an extra provision is nade which
41lows +raps in user Rrode to be handled through an-
alternate sa2t of vectors, - also located in kernel data
space. Kernel and superviscr mode traps operate exactly as

in the unamodified machine.

Unfortunately, it is necessary to seand certain traps
to <+he kernel regardless of the processor wode at tke tire
of the trap, bescause the occurrencs of certain types of
traps are highly dindicative of hardware maliunctions and
hence should b=z handled by the kernel. Additicnally,

caertair other types of traps (menory mdnabene it traps, for

}J
3
4]
ri
u
td
¢

2} ©=s

sire additional actions which only the kernel

9]

is akbls tc psrfora. [10]

211 of the original hardware trap vectors {as oppossd

to the alternate hardware trap vectors available on th

{

nodified machirne) must point to karnel routines since they

o e — —

[10]. In the case of & megory managemsnt trap, the ©IAOCY
managersnt unit becomes partially disabled and casrtain oL
the registers are frozen in the state existing at *he tics
of the trap. The unit nust be reenablad and the uenory
management status raglsters saved if ths stata2 of the
processoxr at the <tiwre of the trap is t©o bs preuwerly
racons+«ructod, Only the kernel is able wo psTioim ta=ws2
actions since the mewrory ranagement reglsters veside on 1he
unibus and hence do ho* reside in the address cpace of any
pProcass. Only +the KkKernel should perforn these actlons
since n=2mory n;nag»mbnt is ¢ne of the prinarcy uechabRisis by
vhich isolaticn of precesses is wmalintainad.

94

oy

f1

. . oot -~ e ey et s . PR
vitl b= invoxod wivn brapih ceoul 11 eblihi o supsovanhsn Of

Fornel nodf. one kazrnol S codnd in such oo Yoy Tl it
nav trips WASD oparating cropeTly. Th2 Qifuuionos O o
orpol npodls TIRP Fhon s Sndaviuive 0o Dioes T IS S DAL
error aid currently results in an innediabe ol

'
n
C
]
r—'.
nl
0
o)
0
¢!
¢
3
]
O
(Tt
tr
I3¥)
]
{1
jm
[
jat]
P.
D
2
b
P
6]
o~
o

Since sure

vy - -s = N - o — 1 -~ - - P e -3

SUPpETVIEQL {p=cause sUpelV1sE0L and kernsl traps sSnaoe T
P -] b e Pt kS - s 1 -2z T e o b

szme vectons) . ancther HeCLanls- i IEeCeSSLT to railest

process. [11] The obvious, straighi-forwar: goluticn would

s to follow the exauple set by the hardwara: simply pusa

ot
[
o
ol
(7]
Len]
]
.
J
w1

pair on to the supervisor’s stac

‘mzstyrn? to the SuperviscT portion oI tas2

o P N} - - o 1 . - - 3 -y 3. IR T A - -
smzcouting =n 2TI. Thais canho Lo done, howeval, X OLZ
R : -3 . : - LA 3 1 - - - -y 1 = — - - NS
Zinhes 0 AYOLG LTaps within tha karnal. Cn0= Tib DI AN

the harvdware and mersly push the old IC and PSS onto the
suparvisoris stack, for Lthera 1S DO aHsuranies rhae

3
-

stack poritiocn oOi the supanvisor!s 50300 L

o

- — e I a0 P R I [L <
core-raesidant and habhCs SUT. = cttenpt covld result an o

intarrupts, The pothod choson o handling InToumupgaw
discussed in tho next sSeCctlciis

G5

- e e L PO ————— L R

kornel nemory ranagekent trap.. Furtherwmore, +there 1is ro
assurance that the supervisorts stack pointer will point at
anytking legal anvvay. One is additionally faced with the
guesticn of Where to reen{er the supervisor portion of the
process. 1f one wishes to avoid such probhlenms, an

alternative mechanisnr nust be devised.

There is, however, one portiocn of the process's
zddress SDacs which Qur design guarantees <o be
core=-resident at all times -~ the shared kernel/procsss
conmunicatioas segnent. An obvious place to save the old
pC,PS at the time of the trap and any other informaticn

hecessary to enable the process to recover from the trap is

"
l_l
r
o
i
1
ol
=
[l
-t
[

nared segment. Having thus provided an anaiog

£ +hs saviuz of the oié PC,PS done by the hardware, the

problan remains of imitating the change in the contents of
+he preogras ccunter wnich results from a_real trap.

This was guite simple to accorplish onc2 & decision

vas rade ccncerning where the process should resume
SXecution. Tuo obvious alitarhatives cawme Lo mind: 1) the

4]
h

entared, or 2) the kernel could cause control to bz pass

ot

o specific lecations fixed for all processes.

The first alterrative is closer to tha environgent

offered by the real @achinc, Fowever, 1t necassitates

96

keroel since it reguires kernel

}.J
o]
<
0
n
{0l
ot}
03
.
Ins
=
1

additions
coding not only to allcw the process to set thess: "trap
vectors' but also reguives acéitional ftable Space in the-
kFernel +to keep track of them. &lso, one would probably

s & sirmilar facility in the handling of user

[ED
£

]

wish to provi
ncde +traps, €0 the arount of additional necessary space 1is

doubled.

The secand alterrpative night ssem at f£irst glanc to

w

be a nore restrictive ons, but in actuality is equivalent.
If fiyed locations are picked such +that <two words are
availabla bstwsen each sszparate transfer location, then
sufficient rooz exists for the process to place a jump
instructiorn, <5 +hat ths fprocess can effeciively set this
without causing any
¥ernel. The kernel then
execution at a £fixed

tien to Juap to a

m
w2
il
b
el
0
t
1
EN
[
[a]
Pl
r
1]
fu
o
t
fth}
=
ot
ol
v
ot
Ft
s

vectors that coRpe into uss when traps occur 1n usser wode.
The problem is rot so critical here sinca ‘therc is no

ambiguity concerning the node at the time of the

14}
gl
H
o
O
b
i
"
(o]
]

n

trap. If the Kern=l does nct intervene, the hardware will
I ‘
propexrly deal with apy additicnal traps which might result

fron cttempting to pushk a PC,FES prair onto the ToCessts

a9

stack. The problem of where 1o reenter the process still

exists, hovever, ané unless one is prepared to save and
restors the =utirve st of zlternate trap vaolions (1GC0

octal hytest) sach time processss are swvapped, sons other

soluticn nust ke developed. [12]

Since it was alrsady necessary to develop a
psendo-trap Gechanisn to deal successfully with supa2rvisor
+raps, it seened most straight-fervard to enploy a

derivative of i* to handle user traps. User traps which

oY)
L}
17
o
O
o+
tn
il
I
ot
r)
Ly l
1]

ctly to the supervisor by the wmodified
hardware are reflected back to the supervisor part of the
process pair by thes kernel in the same manner as sup2rvisor
traps excspt +hat the £fixed entry points are different.

{13] The stpervisorn can handle them with the sawe indirect

Superviscr aps cause the supervisor-mode portion of

the process tc¢ be entered at the locations vhick weuld have

{121. oOne could, of course, dedicate an additional 1020
octel bytes of kernel <data space for gach procuss (eon
vell-chosen becundaries in physicel nemory) and e tir=
:ernel relocation register which points to : ate
trap vectors each time & nhew process 1s loade: i 2
veste net only of real cenciy (for StorAny =
vector for the process) but also of the ker 1
mewnory: the remainder or the pags frace o
alternats vectors canhot be used for any Mu L
data unlass an entire segosnt is rezervad b
trap vectors {(and even then the wie :

postionable since its cont--nls W

time a new proc-ss 15 rub).

N

e

contained the new PC, had the process been running on the
rezl1 machine (i.e., & trap which would have us<d the
contents of location U as the new PC causss the supervisor
to Le entered with 1ts PC pointing at location b in thw
supervisor's instruction space. A trap to vector 10 will

enter the supervisor at location 10, etc.).

Since no bardware ‘trap' trap vectors exist above &0
octal in eithsr the modified or unmodified 11,45 except for
the mepory management trap vector, real user traps (those
caused by the user portiom of the process pair) will cause
the supervisocr portion cf the process to be entered at the
norzal +trap vector locaticn plus a bias of 40 octal bytes
{(i.2. a ussr vector 4 Trap causses the supsrvisor to Dbe
vz, a user vector 10 at 50, etc.). The previous
- 7¢ ané P53 are placed in locations in the sharsd

segmrant resz=rv=3d for +the c¢ld user EC and PS, and the

4]
=
vy
D
2}
=
o
4]
o}
(o]
Lis]

ortion is entered with a real (supervisor} FS5

inéicating current wmode of supervisor, pravious mods use

M

[13]. These are only the user +raps Yhich ar= s=sit
directly +o the kernel by the hardvare. Currcantly @aznory
Ranagensnt +traps, user stack iimit violations, weROLY
parity traps, and power fails traps are fizlded bv th=

kFernel and then reflected back to the Sup2rvisor portion of
the process (th=a VHM). The alternate trap veciors ar :
by the kernal such That us 2T hus~oITCor <
odd-addressing traps, privilegsd ipstructlion traps, 1k

and reserved instruction traps, aund I0%, nHT, TRabB, an
traps are sent directly to the supervisor portisn o

process and reqguire no kernel intervention,

99

in order that the supervisor portion can access the user's

virtual space without necessitating kernel intecvention.

There is ne confusion ragarding whether the source of
the +trap was in the user or supervisor portion as long as
the supervisor is careful to set up its pseudo trap vectors
to point +to different trap handlers for the two cases.
[14] & user pode Kekory management trap causes tke
supervisor to be entered at location 100{octal}, while
supervisor meméry nanagenent traps cause it to be entered

at location 104 {(octal).

e s B e

{147, These psetdo trap vectors effectivaly rapresent a
branch +table where each eniry consists of two words (since
a jump instructicn on the 11/45 regquires tvo words). knrer=
on +the ©bare Rmachine the +trap vectors mighat have looxed
like:

LOCARTION COHTENTS

o CTOTon_ D & HNDd EC

2 FS5 % HER PS

4 VECTCR_ 4 % NEW PC

& P5 # NEW TS5

10 VECTOR_10 % HEY PC

12 B3 % HEW FS3

The equivalent pseudo trap vectors wonld look like:

LOCATION COHTEUTS

0 Juy 2 JNP VECTOR_O

2 VECTOR_G

L Jup % JMP VECTOR_U

6 VECTOR U /
10 JHP € JHP VECTOR_1C

12 ‘LCTOR_10

100

o

fl

‘he Kernel Intoprupi Handler

fon

4

As long as one€ deals with I/0 on the PODP 11/485 ==
indeed, as long as omne deals with I/0 on most machines -=

of how to handle interrupts must be resolved,

r'.
(1]
o]
Ly
O
o
Yt
8

£15]

The infeasibility of kernel operation in complete

polling mode necessitates that it operate in either full or

pactial dinterruption mode. As previously mentioned,
Lovwever, it is icconvenient for the kernel to be
arbitrarily interruptible. The PDP 11/45 hardware does,

however, allc# such issues to be taken in account: by

[15]. On %= PDP 11,45, hovever, onz g¢ould ignors
int=rTunts zmtirely, simplv by retusing to set the
ipterrupt enacis bit when I/0 is initiated. One Rust then
poll <for <devics complaeticn, hovwever, While polling might
be a reasonable choice in some systess, it is net a viable
alternative 4if done by the c¢ontrelling porticn oI a
multi-prograzsing system, such as the kernel. Two obvious
problens arise if polling is done by the systen controller,
depending upoz how often polling is done: 1) If +the
controller ©pclis only when it has been entered in order to
provide sonz process-requested action, then a delay occurs
hetusen +tbha aotnal tivs of davice complition ana the niwme
iovice Cc lation 1S notlcol which Hay aavs Cire
conseguenc depending upcn the timing characieristics ox
the particular device; 2) 1if the system controller polls
whepever it has noxhing else to do, then the situation 1is
even worse sinca no multiprogramning occurs at all. There
is a solution which lies halfway bhetween the tuo muntioned
above, but it requires 153 £ at lecast on2 typs of
intarrupt and Lfhe existence of some sort of clocking
mechanisn: the systen controller arrange2s to recce ive clock

T (

[

(el e}

interrupts periodically, ©polls for any davice cowplatl
whenever it receives such a clock inzerrupt, and al
UsSer procecses to run whenever it has nothing else to 3

G i b
o
2
2

101

appropriate ralsing ot lovering of tha processor priority,

one can selectively dinhikit pending dinterrupts ifron

t‘.a

cccurring until later or allow them to occur. [167 T

T

b

(8

interrupted under auny CLLCLLSTARCES

o

one wWishes not b

P

(

during critical sections of code, one merely raises the

rt

processor priority o its mwmaximum level, just beioxrse
Vo

entering the critical secticn and then lower ithe priority
5 r‘f

hack to the appropriate level after the critileal section of

code has baen executed. [17]

Any interruptibility problems the kernel might have
had, +then, ara solved by appropriate use of the basic
facilities provided by the hardware. Such is not the case
for arbitrary processes, howevaer. The 11/45 mode dependent
restrictions trzvent non-kernel node programs from actually

canipulating the precsssor priority unless by explicitly

A

[163. The currsnt inmplementation of the keLnel doss not
naka full use of the contrcl over interruptibility ofrfered
by the haréwacte. The2 processoxr priority is set by the

kernel such <hat the processor is totally uninterruptible
whansver it 15 =uecutiang in karnusl medaz and a'”itla;;L_
interruptisl whenever it i3 mot in Kernel wmode (L.e.
priority = 7 whenever the Xernel is running, priority = 0
whenever +he kernel is not running).

(1713. The 11/45 has an explicit, unintercuptible
instruction, SPL (Set Pricrity Level), for manipulating he
procegsor vpriority. The SPL instruction eithex NOPS orF
traps when executed i usSer OF supervisor mods, daspendiny
upon how the virtual machire hardvare rodi fications are sat
and whethar they are enabled.

—

changing the hardvawe DS, ana tae kernel has resmoved tihe
hardvars PS from the address space of all processes. { 18]
Bu pProCoSsSes neead 25 much control cvern their
interruptibility as the kernel does. The real question is,
how much control? Are %levels® of interruptibility such as
offered by +hz hardvare really necessary, or is a siople

interruptible/non=-interruptible distinction sufficient?

For Yarbitrary" processes, the answer is unclear ==
interruptibility levels might be <crucial or irrelevarnt.

Certainly sonme virtual machines bpay require levels of

interruptibility since +they were ¥ritten <for a base
hardware which provides such facilities.

uil

|=-

+
nT

[t+]

Hhaitavez icterrupt

rface the kerrel presents 1

[

not directed at narhitrery" proca2sses, however, but indeed
a* a d=cidedly unarbitrary half of an "arbitrary™ process

——— —— -

[138 ceggary that pr ¢s he unable to change
the priority: other alicio oY vld
Kaoa Tk cpal fTOon pvoapely ir : T
for other processses or ot tue
machine by s=stting its prioxit ive
up control. I£ a process are
processor priority to 7, then van
that the kernal wouls EvVar tha
machine. Currently that assd 2 1z possibla bociuse
13 procassas running 1n user r suporvisor o nods are
prevented froa changing the e300 polerity by the
hardware, 2) the Kerusl reot outrTol to user procescsEes
witlh the hardware processo ority set at lavel O
(conpletely interrvuptible) ad, 3) periodic cluck
interrupts force controi of t aine to be rellinguisthed

pair: while ths userx nods portion (Vi) 1S arbitrary, the
supervisor node portion (V#H} is not; the SUpPBLVLISOT
portion is required to know about certain Jdetails ol the

kernel and ite interface.

Hence the kernel is not constrained to provide all the
features of the real hardvare for the supervisor portion if
i+ is easier or nore convenient for the kernel to previde
something =siapler. How =minimal can the kermel-provided
features be with respect to interrupts? If the
interruptible/uninterruptible distinction is sufficient for
the kernel itself, then one suspects that it should suifice

{or can be made to suffice) for the ViX as well,

Once the need for a pseudo-interrupt pechanism Was
racognized, it remained cnly to consider the possibis
alternatives, select the most acceptable one, and implement

it.

Two issues are of importance with regyard to
interrupts: 1) whether to physically interrupt tha process,
ard 2) now To prevent the process £from losiny intorrupts

vhich occnr while it 1is in the process of transitioning

104

~—
—
(%]
[}

from a non-interruptibls to interruptible state.

Oone possible solution to the inte ruptiblity problen

- .
4

arnel collis: one 1o mark the

h

emont & pAain of

o
ih
L

cfF
&
=
J

ProCess as eninterruptible, and one to mark the process as
interruptible =-- effectively a Disable- Iqtcrrup; kxernel

11 and an Enable-Interrupt kernel call. This schene
would address the question of whether to interrupt the

supervisor portion of the process and would perhaps zaks it

nore responsive to interrupts. The SUpervisoer process
would then have the ability to decide whether it wished to

be interruptsd or not. However, the second probles still
remains if an interrupt occurs while <the supervisor is
uninterruntibli=, but on the verge of reenabling interrupts.

Soma a¢ditioral machapisa is necessary to aveid lesing this

s s

An instance of this second problem occurs as

Y+ENADLE_THTERRUPTIS
RTURYN_TO_USER;

ELSE
DO_WHAT NEEDS_TO_BE_DOYF;
FI;
When the interrapt occurs hetwssn the succassfiul test in
statspent ¥ and the execution of statement Y. In the
najority of cas=s, this werely results in The lnterrupt
beiny delayed. However, i1£ the VX returns control to thez
V¥ and the Vi thercalter naver attenpt:s any actlons which
cause the Vid to be dinvohke (atteupes no soonsitive or
privileged actions), this irnterrupt is lost forsvar.

105

The solution offered hy sone systers is termed &
"hyper-ayake” mechanisn and is typically ispleasnted as
follows: The pProcess runRs normally with interrupts enablsd
or disabled as desired. When it eventually dscides it has
nathing useful to do, it executes a "sleep" systen call to

inform the system that it cannot usefplly run until it

receivaes an interrupt. I an interrupt has occurred in the

H

msantioe, then the process beconres "hyper-awake' and the
sleep reguest is ignored by the syster and cortrol returned
+o +the «calling process Jjust as if the interrupt had

ppened after it had gone to sleep and not before.
Solutions of this sort, however, typically require that the

progran exit (or sleep) by f£irst returning control to the

supervisor; L1f the progran exits without first going
+hrough the supsrvisor, then the supervisor has no vay of
xnowing it rn=2sds to force the progran to be intarrupt

pow. This would reguire that the Vil go through the kernel
each time it rTeturns to the Vil, an action which occurs
rather £

reguzntly. This, of course, reguires some extra

'MH requests that the kernol pzriern I/0 o1
«he UMM's behalf, it car request that the kxern2l interrupt

tha WVHE r=

O
)_..1
IL‘
4
i,

it whzsn th= 1,/0
interrupt from the kernel, it will rscelve i%is interrupt in

oue of two ways, depandinyg cn whetrher the VEX or the VI Was

106

running when the intorrupt happane.

Since it is often difficult to wrlite code vhich 1is

interruptibls at any arbitrary point in tiwe, the decision

w

vas made that the kernel would never fozcibly interTupt *ke
VYiMN-—-~ that is it would never intsrrupt o process which was

currently executing in supervisor ncde

This decision was not without probleas, however. It
211 prey to the lost interrupt problenm sketched garlier.

accordingly, an addit al mechanism was addzsd.

The *solution' provided for the lost interrupt problenm
is in several senses an unusual one. The mechahisn 1s
unintuitive ve+ it possesses the favorable guality of being

within the kernel, while at

i)
™
r

1z to ilagplex
the sanas tioe N,ﬁng fairly straight-forward to deal with im
+he YMM: whan +he kernel wvishes to interrupt a VEX, it
plazces an interzupt gueue entry into the gqueue of the
process to be interrupted. If ths stored process status of

the process to be interrupted indicates that the utsger

portion of the process was active at the tine of the
interrupt {20)] , then the stored PC and PS5 are saver in
ot i e . i gt e A e e e . A S it ot

[20]. Here active is a relative tern arnd is delfined by the
current-nuas bits of the 5 saved in the process table. 1L
the current mode Ls user pode, then ithe user portion 1o
active; otherwise the superviceor puouvilon 1y aictivae,

fixed spots of the conmnnications segnent {so that the user

portion can be restarted from where it was interrupted, 1if
d

esired), and the supervisor portion of the process caus a
to be enterad at leoccation 124 {octal) the neXxt tisz Tage

orocess is allcwed to run. [21]

If the stored PS for the process indicates that the
supervisor portion was running at the time of the
interrupt, then instead of actually interrupting the
supervisor portion, the kernel placses a HOP instruction in
the first word of the dinterrupt word portion of the

connunication segment.

When the supervisor portion of the process enters that

porticn of its code which handles the draining of the
cueua, it places several appropriate machine languaga

astructions in successive words oi the interrupt words
portion of tha communication segment, which when executed
would cause the user to ke reentered, a sleep call to be

nade, etc.=-- whatever the VIHN wants to Ao if it receives Lo

b3

fuorther ivtsrruots. Tn additiocn, it placss in successive
words of the kernel/process communications buffe wvhatever
[21]. This is accomplished gquite simply by placing a
supervisoer PS in the stored PS slot in the kernel's process
tahle and by placing 120 in the stored PC. The process PC
anéd PSS are loaded frow the process ta2hle each tiwz the

process 1S Cun.

1G8

other Ainstructions are necessary to cause it to be
recntersd in the proper spot for handling any additionnl
intercupts. when +he VMM finally tries to X1 it, it dozs so
by Jjuwping to the iirst word of the machine lezayuage
ingtruction seguence it kas placed in the communication

he kernel has Yinterrupted" the Vil, then thke
flrst several words will have been nullified by being HOPed
by +the kernel and the Vil will be reentered whersver it

+ed to be. If no additional interrupt has been given,

wan
then tha VHX will exit as planned.

Thus, frem the kernel’'s viewpoint the code to

ipplenent the pseudo-interrupt looks something like:

REGZIY
% SAVE PROGRAM COUNTER OF PROCESS WHICH
% WAS RUNNING
¢ AT THE TIME OF THE INTERRUPT IN THE
% KEBUEL'S PROCESS
% TAGLT SLOT FCE TR PROCESS
PROCISSL2C] DUNNING_PROCESS § <= DLD 743
% SAV“ THE PROCESSCR STATUS
% (CURRENT 2ND PREVICUS HMODES, CONDITICH CODES)
¢ OF THE PROCESS RUNNING AT TIHE OF INTERSUPT I
g KERNEL®*S TABLE FOR THAT
% PRUCESS
PROCESS.PS{ RUNIING_PROCESS] <~ OLD_PS33
© nOoWw FPIGURE OUT WHICH PRQOCESS IS SURPOSED

g 7m0 GET THE INTERRUZT
p <~ USER{DEVICE);

149

¢ $5EE IF PROCESS WBiOTS INTERPUET
Ir INTERRUTT_REQUESTEID (DEVICE)
THE
¢ pROCESS PEQUESTED DSEUDRC-INTEZRRUPT
¢ RUILD [NTDRARUPT IHFCRUATION TO
% SEYD IO PROCESS
T <~ BUILD_IKTERRUPT_INFO(DEVICE);
% FINALLY SEuD THE INTERRUPT
SEUD_IHTZRRUPT (P,I}:
FI:; % TO INTERRUPT_REQUESTED IF
¢ ®OW PETURY TO THE INTZRRUPTED PROCESS
% KOTE THAT THE PC,P5 LOADED HAY B3I
= DIFFERENT FRO# THE PC,PS
% WHICH WAS SAVED UPCH CSNTRY
% TO THE INTERRUPT HAUCLER
0LD_PC <+ PROCESS.PC{RUNNING_PROCESSI;
OLD_DPS <~ PRCCESS.PS{RUNNING_PROCESS J;
% OF INTERRUPT HAUDLER
S ARG NS G I A R RE RS RS AR LG AL ARG RERARRRRARD A

!"’F‘(.L‘It"lﬁ"
W EERE

rfr_’cfcf"’ﬂ oo of

SOL I

’

I

ESS,LUHTORY

T0 I3 PP U R I

ATION) ;

LY A

[gl

¢ DRQCESS TS PROCESS TO 3F INTERRUPTE

¢ THFOSUATIOR IS INTERRUPT INFORHATION

5 TG BE PLACED INTO QUEBUE

< PUT INTERRUPT NOTITICATION IK QUEUE

PUSH INTO DROCHFSS5 GUENE (DPROCESS, INFPCRHNATION)

¢ LND IHTERRUDT THE PROCESS

IF CURRENT_HOLL(PROCESS.P3[PROCESS]) =
SUPERVISOR_HGDE

¢ PLOCESS IS CURREUTLY IWESCUTIHNG I

% SUPERVISOR PCRTZIONU,

% SO DON'Z INTIRRUPT IT

¢ NOP FIRST WORD OF SUL=LVISOR

% EXIT SEQUENCE CODW

o NOTE THAT POCCESSS.INIEYGLDI _S0nD IS

av——

hEf
.
w3

g REALLY THE SAMNE

S COMUIDNICATIONS

PHOCESS.INTZHETY
NOP_THsY

|}
£
93]
R

PROCESS IS5 CURR

TIME THE

INTERRUPT
IS 120 (0CTAL)
PROCESS . EC[PHOC

Pl B e e

PRUOCESS.

FORCE IT INTO TH
PROCESS
LMTRY POIKT
2551 <~

PS[PROCESS] <~ SU

LS
NTENRUBT_UORD

T ongne EOADE

Lo ila

i
PVISCR

b A A

Ty
Jdan kol

5 50P
FOR SUP
120K;

EEVISOR_PS;

Fi; & TO CURRENT _HODE 1IF
END; 5 OF SEﬁD_INTEERUPT
- - B N L Lt A s e o -
GO RRRERE TR ﬁa?ﬁ':?o?.-ia?ﬂ%%?%%f:?:fhs"),:.a A »:;%n;’cn%%ﬁ%?{’gz‘”«-%%ﬁ%

Thae the code in the VEM might look something like:

SUPERVISCR COD:E:
120-122:-

DE TRANSFER
REUPT_HWDLR;

Gf.'{'.-'""l“"""i"f‘"ﬁ-(f'w’ Lol LV ST e
FY e ad i

R P PSR R
s, -
L}ISCK.J
CJ'C‘C’L'C"
YA AS A

[
3
"
L
5

LANEQUS CCDZE
i

[oroe L0 e
%% LRNEEADLEDE

INDUJ:

1
Y

P3EYDO-
IHSTRUCTION IH
T SEQUENCE

HOOPRED EBY KERMNEL

T TR D!
P IHTIREUET

% P
%I
%
h

b

bt
jha}
[
!
ot
v
oo

EXVISOL PORTION
% yILL BE REEHTERID HERE IF
¢ {UTLRRUPT CONES IN LETHWEIL
¥ DECIDED TC¢ RETURU TO USSE
g WL GET ARCUHMD T0 ACTUALLY
R%E_ho: COUNUNICATIONS. LT LN
’ ET TRUCTION;

Q Zere e
PPN wfha/fl'::»‘:t- P

TIOR3

COIE3

15

-

AT DY - R ke T rrer T T T
NTERED IT IHT LRRUDPTT ali D
O3RN IOH
m Mo - -
TO TrE ILuTALRIU2T HAUDLER

INTEQRUEPT OCCUELS

T WORD OF

Il

STILL FUNNING
ANOTHER

TINE %8 URVE
AND THE TTUE
DOTNG IT
DT HORD[{ 0} «-

REVISOER

——

< oW PILL Il WHAT TO DO IF IHET
¢ I.BE., IF KERN:D NOOP’" FI
CONNUNICATICONS.INTERRUBT_HCR
COXBUNICLTIONS., HEEPRUPT_NO

. R o L L L LR AR - A AP A Y (g Tt 7 GO TS N 5
BLEREELD n‘-‘-f9.’1134’3/71‘{17-%/-:.'at/':'m?,-ﬁﬂrsr:.n..afan/J?a;urua':‘xn.‘.f%,t;f—u,o/;?:n.u;" p B MRRNATR
T > " m o Y ¢ 2=l A — Lol =
;Y COUL TO DRAIN ENTEIZS QUT Of QUZUT GOES HEPE
L ol N AR AN ALY TR G T O Y T O O T T Gy G O O O O O T O O T L LT B LA -t v
R GERBEAERAR P AR e B i AT A N S A M S S SR B & A AT A

¢ PUT USEE PS ON STACK SO CAY¥ RTI TO USER PORTION
STACK_PUSi(USER_PS) ;

@ pUT LSER PC Ol STACK FOR RTI

STACKPUSH (USEE_PC);

4 AND FINALLY ATTEMHPT TO RETURN 0 USZE2

¢ EITEER END UP AT RE_DO OR RETURN TO USER

% {THIS JUNP5 INTO THE CONMUNICATIONS SEGHENT)
JNP ZADDRESS_ Of COxﬂUﬂICATTONS INTERRUPT_WORD{ 0]3

E¥D; % OF SUPERVISOR CODE

orne gust adait +that this design sesds somawhat

strangs, cluzsy, and unclean. [22] However, other schemes

’Jo

suggested, involving such things as enable and disable

interrupt syst=e calls, 1) are wmore complicated, 2y as

systen calls would reguire increasad code in the karmel o

support then, and 3) would be at least as, if not more,

{22]. ©Or= =must realize that the process is now exscuting
in a portion oFf the Aernells address space (S10CC tes
comrmunication egnent 1is shared DatHean k=rnel and
Supervisor) waich might seem especially risky. This is not
security relevant, however. The process ilalherits ro
special gpowers by dolng o =ince privil o tha 11/65
are Getermined by a coambination ofop pode aud
relocatior reaglstor conitants and not n ratites GI
yhare in nopory thoe progran counter pointst

ol

w3

Thkus the interru“tihle/nonointerruptible flag is
eszentially contained in the stered TS5 of tihe process 4hich
is to receive tos interrupt. A current wode of usar
implies that the process is interruptible, while a currant
code of supervisor implies that is it mot to be
interrupted. che indirect Jjump return mechanisa used by
the VM to return to the Vi, whei combined with the actions
taken by the kernel when it places an interrupt iu the
process gqueus, effectively ioplements a drawn out

srinterruptible "test and set® ingtruction.

3.7 The Kernal Call Havdler
. o e TN e el AR i e

Entry into tho call handliny portion of the kKernel 1is
accomplisned via the exscution oI axn DMT instruction

(¢ zulator trap) while running in supervisor mode. [23]

Execution of the supervisor ENMT instruction causes the

kernel call bhandler to be entered with processor state of

(]
%o

ister set 0, and processor priority 7 (ail

' -y
kernel mode, T

interrupts inhibited).

The PC and PS ¢f the running process are first saved,
th=n the EMT is decoded. The kernel call-code is contaited
inr the ENT instruction itself {so one exscutes a ENT 6 to
fo kernel call number 6, for instance). [24] The kernel
Z2cocses the call code to determine if tha call is a legal
one. Tf no such call code exists, no further action is

+aken by the kernsl except that of returning erroc

information to the calling process.

If, on the other hanrnd, the call 1is at lzast

guperficially legal ({i.e., +th2 call code is within the
{23]. 2ZKMT's cevaecuted in user mode are totally transparant
to +*he kernsl since the alternate trap vectors ars set to
reflect user node EMT's dirfecily to the sup2fvisor poctivg
of the process.
[263. This, of course, lirits <the nuwber of possible
distinguishable rernel calls to 256, since the EIT
iastruction contains only enough roonm for cne byte of ent
colde,

114

range of valid kernel call cod=s). then the call avyguaupents

ar=z copiad fron their locations in tha sharesd
kernal/process segrent inte local areas of tue Kernel's
space. [25] ALl <further actions oOccur relative to tue

values of these copied paramsters. BAfter tha arguments are
copied, control is passed to the X-pnel routine responsible
1
i :t@
for the impler2atation of the requ. 'ted call.
Lf
[

3

{25]. Yo security flaws can result from +this delayed
copying thkat would not be y0551hle even if the parameters
were copied inz=zdiately. The gerne has restricted access
tn +he cozzunizations segment such thlu it can never be the
Aas+tinatizn oS zny I/0 transfer. Since 1/0 devices arte tona
only =zntitizs I the syste: which operate asynchronously of
tre P4, and since the kernel is in conplete control of the
cPG at the <tize of the call, it is iampossible roT the
xernel call pacaneter to cﬁan ge, between the time the
kernel initially receives t*ll and the time it copi=zs
the pa:amete:s into its owWn aaﬂreus spaca Furthernore,
even if it ware possible for L/C to be directpé into the
conmunications segment, the very worst that could happen 1S
that the xernel would @maxe its security checks on
naransters different from thoss initially given hy the
T= winyg precezEs {0z pEraans; chink tos JU0osesd wWaud
regquasting a <ifferent callj. EBut this is only an lssue 1f
the sccurity policy perzits ancther procass to write into
the cownunications 5UJMQ1+ of +the reguesting procsess, a
capahility which in itself iwmglies the requestor may be in
plenty of trouble anywvay.

The kernel could have eautomatically copled all
possible koruoel c2ll pagameTolr slots dumnedictely, evel
befors tryiug to decode the cail, but no increasad sscurity
is gained by doing sO. It h

ci b
i/0 were allow=d to the
communications sagnent, it is as likely to occur at th=
beginning of the call as it is to occul ahy other tin=.

A set of kernel calls provide the orly visible

1
=
1
I
Y]
o

rface bhetiysen Processes runping under the ke
tre kernael. They are the means by whilich procezszes regiest
the kernel tao perfora certain actions on their behalf,

“#ctions which can be performed cnly by the kernel,
b

%r & kerrel call is mnade by placing appropriate
W -
information (kernel c¢all argumeats) in wall-specified

pertions of the shared kernel/process cormunication bufier
and then exescuting an EHT instruction. [26] Tae kernel
then copies the information from the comrunications buffer
into cells 1local to the kernel, decodes the call, and

performs the reguested action if it decides the reguest 1is

+

a2 legal ong, zossibly returning e€rror or other information

hack to the caller through locations in the comnunications

buffer.
M\
i '
u

There are *wo obvious places where kernel call return

information could be returned to the process: 1) in fixed

locosions Ly tohe szpared comaunicatlons bhurn=2il, and, {4} it
the process gqueue. The first alternative is reasonable
when the conmunication betwesn the kernel and th2 procsss

- v e ek o P it L il e i pi e AL e

[261. There was no overpowering reason why ZUT was chosen,
otheyr 4han sowe instruction which fraps +#nen exzcuted In
supervisor wode was heCcEsS5aLY. TRAD, 107, ox EDT

L
instructions would have worxed just as well,

. = 5 J T T) e gy T, D -
seond altornative L5 WnSedd yhen the

is synchroniz=d. The

1]

connunication OUTUES asyuchronourly.

It migat appeaxr <Thal & 1opecnsl call reLponues Gouid
be plac=d in fixaed porticans of the sharad conmaunications
wufier in all cases, whether the caller #as running or nos.

Tris, hoKevsL, secmed unsatisfactory in the cas2 whzre the

karnelts responrse does not occur immediately, as in tke
case ©f the Reguest-1/0 xernel call, where the hernel
response occurs in two phases ~- the response to the

Reguest-I1/0 call and then when +the I/0 is finally started
by the device schedulerts Start-Indirect-i/0 call, when the

validation of the I/0 requast is finally dona.

T+ ses-2} only reasonakle that any errors OCCUILRY
from the eventuzl Start~I/0 call he returnad to thse pProcess
that initially reguested the I/0C, since 1t 15 extremely

vnliksly that the dsvice scheduler could have caused the

error because it has cnly rsad access to +he original I/0

-4
3
b
W
4]

ast. [271

If the kernel's response to the Start-1/0 call were %o

£277. It could, hotizver, havse atteaptad the
Start-Indirect-I/0 call while the device was otill busy,
which is a scheduling =rrgy on the schpdaler?s part andl o
Fanlt of the requestic; procoss o al all. This =TroT,
however, ig reflocred back to the schedules and nec the

<
original requestol.

I+ is concelvable that the caller mright b= logically in the
nidale of oxecuting anothex kernel call, in which case the
resnoncze froc the sarlier call weould be confused with the
roupense from the curient kernsl call. {28 Perhaps eveld
wore likely, the caller would have =no reason to suspect
that i+t had received information from the Kernel. OfF
course the kernel could always ®wake-up' the process, but
then +the process would ne=d to Keep track of what it last

saey as a kKernsl Tesponse OF be forced +to resort to sone

o

other eguivalently complicated nechanisa to decide what is

transpiring.

Tha second alt e:natlve,.that of placing all kernel
call return entries in tne'process gueue offers a solution
srohlzan which disgualified the irst alternative
but it too possasses an annoying featwure: the vast nmajority

of keranel cell reiturns cccur synchronously and the

or th

rh
D

necessity for searching the gqueue response to a

i i Y e S e A A ARy e ekl St b P

[22]. Becausa ieriel calls typically raguirs a nuabsh of
instructicns L order to move argupents into the
conmunications huffer, it is reasonable to speak 1n Teros
of being "in the middle” of executing a korrel call,
although, strictly speakiung, 1t is wh;s;ca]1} impossible:
eithar ths HMT has already tesn exacuzod, In which case tha
kernel will handle the call first and then overwrite the
current c¢all ceturn with tha respounse Jfren the shared-i/C
call previously iuitiated, or the EUT has not yet heen
executed, and the shared-1/0 responsg 1S the one which will

be overwritten by the rcsponse to the nev call.

118

rather inconvenient for the vil. [29]

3 conprenisce betveen the tywo alternatives Was
fupleogeatad, If ha karnal call Te3POL5R 0CCUInS

asynchronously {as in the Start~Indirect~I/0 response), 1t
is placed in the queue, If the regponse occurs immadiately
(synchronously), it is placed in fixed locations in the

comnunications buffer. This solution is only slightly nore

rk

Q
¢]
E
b
=

icated than either of the previous alterrativas, Ye
possaessas neither of the drawbacks. The information needed
by the process is placed where it can be most easily

accessed at the tine it is received.

B iist of the designed kernel calls and a thunmbrail

+to create a

2
0

na

u

The DEST2CY~PRCCESS kernel call is made to destroy a

user-superviscr process pair.

—— o — —

f29]. <hough the VEH could search the gqueues for the
return inforoation, that guzuse snvry cannot iun general be
renoved from thez aonsus vhen rfennd without andangeriny tho
informotion contained 1in the rTest of the gueuys. The
procese cueue it irplemented in a wanner where the kernsl
m2y freely wodify 1ts rear pednter and the Vil 1ts t
pointer. Thus pulling entrics frow the aeirddle can
all scrt of havoc

o
——h
wl

c411 is wade to start or stal an

Tha VOKE-PROCESS kernel call is nade +to svitch

O e mthratande e bt

control of the CPU to ancther process.

fhe SHAP~IN kernel call is mrade to swap a given disk

segment into a given memory frare.

The SEAP-CUT kernel call is made to swap a given core

segment into a given disk segnent.

The RTTACH-SEGUERT kernel call is made to assocliate

core segrents with processes

The EELIASE-SEGHMENT kernal call is mades to detach core
segnents oo [rocesses.

The CRELT3-SAGHYENT kernel call is made to create disk

The DESTROY-SHGHIRT kernel call is wmades to destroy

- ot ~ v A o
CIS Szohanls.

The SLEED kernel call is nade to notify the CPU

scheduler that the reyuesting process does not wish to run.

m ~ TiiTIY IRl SR - 3 o T - -
t"he SEHD-BESSACE herpel call 1s cade to s=2nd a szall

L e e e g

message to ancther procqss

PR

k0
)
ty
o
o
G
jat
]
[o]
=
lix
.
[y
i
o+
o

R

Th= START-I/0 kernel call is made to initiate I/0 it

attached devices.

The STATYS-I/0 kernel call is made to interrogate the

The REQUZST-I/C kernel call is rade to reguest I/0 on

£ Kerncl Desiun Rringapls
.- o T v e -

e - — e I

As the d=sign of the UCLA-VH systen progressed, a

ruiher of dasign principles evolvad. The f£irst dasign
principle, one present from the very beginning, was

conpletely motivated by the verification goal: keep the
removed from the kernel and forced outvard into unprovan
code without jeopardizing protection and security should be
pushed out of the kernel, even at the cost of conmplicating

outer level processes.

Two previocusly mentioned examples of this principle 1in
action were tne decisions to Tenove Process and device
scheduling froan the karnel, instead constructing scheduling
proCcesses running outside of the kernel. One wmight
eventually wish to verify such schedulers, of course, but

one mnight r=asonahly esxpect that layering them gutside of
7 3 Sl roan

i

the kernel rather than inside could not help but sioplify

the task.

An exanple of a function which by the imary Gesign

pT
principle gannot bs renoved from the kernel is the actual

physical loadiag of I/C device contrel registers. The
necessity of kernsl contrel over this opera*ion hecoznas
inmediately clear once ithe realization is made that I/0

devices on th

n

pPDP 11/45 operate completely independently

SV, [30] ©Ff & process wavte alloyed to
load device control registers directly, the kernel could
not guarantee elther the privacy of data residing in maaory

or of data residing on external media.

L second cesign principle euployed was the notion of

lesast privilecs, the policy of granting only the winimal
set of capabilities necessary to enable the perxornance of
a given function. If a process needs only "read" access to
a section of @emory Ain ordef to erform 1its proper
function, thexe 1is no peed to allow it “write¥ and

9}
)
[aF)
i

Y
9]

waell, This principle is of s

P
in ths detaeraization of the propser privilzges to be granted
+o certain "scsoial?! progesses in the systen {such as CPU

schedulser, dist scheduler, initiator, updater) .

case analysis. This was extrexaly userul in enpirically

deciding which functions rust necessarily be performed Dy

[307]. Sone I1/0 devices, however, ar2
operation within the lower 32K of tie
since thev do not utilize the full 10
necessary to access leccations above the f1

o

the kernel and which £ nctions can be dalegated to

processas rupaing outsic of the kernel., Often envisioniny

{.

a raoalevol

17

nt usger process perforning the function in
cuiestion seorved to clavriiy the full extent of iis securicy

-

relevance.

A fourth principle applied to the design of the kernel
vas that of 4inserting run-time checks wherever possible
izmediately bafors the acticn to be perforued -‘the notion
pairs. J1E +he security check 1s

immediately fcllowed by 1its corresponding action, th

®

[

prebability of the check becoring invalidated before th
action contingant upon it 1is taken 1s significantly

reduced.

wupmerous sscnrity f£laws in IBM 05/360 resulted £fron

separating the security~rslevant check from the
szcurity-relevaat action, coupled with the implicit

assunptioa at the time of the action that whatever had been
checked remained valid at the time o the action. Zn

a security flaw of this kind 5 th=2

v

arameters are alloved to remaia 1in
the calling process during tae
crxocution of the call, ara first checked thesre foxm

legality, then used loater during the systen call without
being reverified., The security flaw occurs when an I/0

oparation previously initjiated by the calling process

124

vodifies the "checked® parameters between the tine tho

careful attertion was given both during desiga ahd
ipplementation ~ to keeping the security checks as closz to

thei

L]
]

pertinant actions as possible, in a conscious attsmpt

11

to avoid the sort of pitfall detailed abowvea.

L

125

)

Chavtor G Fern2l Call Descriciion
4.1 Description Cysrvisy

The follcwing section of this thesis presents an
overvisw of the Function of each kernel call. [1] First, a

general desscription of what the call does 1is given, then
its parazeters (if any) are enunerated and explalned, along
¢ith any pertinent restrictions which the kernel placss
uponr then. rinally, the actions taken by the kernel upon

successful sxecution of the call are explained.

Following the English description, a Parnas-like,

i

pseudo-procsdnral description is given in an atteampt to

o

zhz garzinent functional proparties of each call.

caTTuTe
Ths noLAaTion enploved does not conforsm to any oue

particular progranriang language, yet is reminiscent of

oL/, LLGOL 60, ALGCL 68, and various other
block-siructursed languages and hence is probably
self-evident for the most part. The only unohvious,

szrhaios, notasion is that uosd LoT CODNTIDHTST compants Lra
pracedsd with & (percent sign) and are terninated by the

end of the textual line, Definitions of individual terms

o —

{1]. These calls, vi courss, do not represaut all actions
taken by the kzrnel, 3dditional sacurity relsvant actious
are takep in the kernel trap and intercupt handiers.

140

found in the Inpubtysoutpu specifications 2argc given il

rppendixz C.

=3
Jmt
=
14
-
D
.
v
|
+
..U
o
Hh
fasd
Ior
~!

parameter of each czl

[sH)
[y
)
[,
s
H
[
ot

he

m

reguesting process. This parameter is pot supplied hy

4
—— -

jct

caller, but is filled in by the kernel befors executing the

call.

2 used

Ore function and one procedure a

D

xtensively in

£

tha Input/0ntput specificatiocns and dessrve mention heare.

enction is EVAL. EVRI is a general purpess routias

[}
by
©

H

which interrogates +the kernel!s policy protection data.

ct

EVAL(A,B,C) supplies a True/False ansver to the guestiorn:

Can A do B to C€C? The geusral purpose procadure usad

n the Input/Output specificaitions is ERRCR(E).
z3s kernel call errer return iafeormation to ba

placed in +th=z &ppropriate place in the conmunications
beifer of procsss R.

The Create-Process kernzl call is the neans by which
pew processes come into existence. This call is generally
restricted to the initiator, but nesd mnot necas isar’] My he

[

50.

The paraneters of the Create~Process call are the namne
of the reguesting process and the namé of the process to bs
created. The name of the nev process must be unigue and

onfornm to standard process nane formats and coaventions.

If +the requesting process 1is allowed to create
processes and the given process nane is acceptable to the
kernel, then a xernel process table entry is aliocated to

1

the new process, containing the name of the new proCess,

o
0
=
=
Ui
tn
W
1Y
H
o
{8
[o7]

ters initialized

N
(=]
rt
-
1)
'_J
[
[
43}
'_.J
(8]
0
T
ot
'_l
o}
[]
H
()]
Vsl
ot
[44]

except for these ressrved for k rnel/“r cess conrkunication

which are initialized to pecint at appropriate sSaglsnts.

(2] 2ii thar resyistars, including cne Sstacting prosysi
countar, arse itializced teC zero.

{2] L minimum of three supervisor relocation ragistars
are na=dsd for the sharsd kernel/procoess comaunications
seqgrent: ops portion must ke read-cnly, one porticn aust De
read/+ ‘lt and one portion must be cxccutabla. Tnas
requivas cmo C-space relccation reylstars and one I-SpaCe

relccation re=gisters.

-t

PELHCTION:

IE

rit
™

-

'

EVAL (RE(!
ANDIF

THENH

LX)

[
i

b B e I e

O L LD

, "CREAT E-PHOCESQ"
PROCESS=HA

124

LA

4.2.2 ‘tne Destroy-Process Kerovsl Call

o — i it ——— - —_—— -— oot Guiel

The Destroy+«Process kermel call providaes tha mnechahlsw
by which progsases are rapcved froa the systen, Tans call

is generally restricted to use by tkhe initiator.

The paraneters of the Destroy-Process call are tine
nane of +the process requesting the action and the rase of
the process to be destroyed. If the requesting process is
allowed to destroy the given proecess, if the given process
is "stopped" {a Stop-Process kernel call hes already halted
the process), and if all I/0 associatad with the process to
be destroyed rhas completed, then.all devices and segasuts

attached tTo +the given process are "released" and the sictht

iz the kzrzel's process table previously occupied by the
ate

.-._...._‘..__--..— Pt _......

- AONPSE o .
/'\/ r-(" ,'r.» O TO'J P OC S},

ST"IM; LLLJQJ STOE; :

% PROCESS HALE OQF DEGUESTOR
STRING PRCCESSS

g% HAME CF DROCESS TO BT DESTROYED

FULUCTION:
IF EVAL{REQUESTO SMDESTROY - ~-BRCCESS", PROCESS)
ANDIT STOEEED(DROCfSS}
AIDIF »O-10- IN-PROGRE SQ(PROCESS)
THEN
DETACH-DEVICES(PROCESS};
DETACH=SEGUENTS (PROCESS) :
DEALLOCRTE~FROCESS (PROCESS) ;
ELSE
ERRORZ (REQUESTOR) §
FI .

o o

The Stops/Start-Process kernel call 1is the ma2ans by
whiclh +*he CPU scheduler becones aware of the existence or”

non-existence of processes. [3] Its parameters are th2

the process to be started or stopped, and a flag indicating
whether the ©process is to be startsd or stopped. If the
requestor is allowed to start or stop the process, then the
CPU scheduler 1is g¢given "Invoke Process" access to tha
process (in the case ¢i a start) or +the CPU schecduler's
#Tnvoke Procsss! access to the process is revoked (in the

case of a stop). 4]

[3]. This call may be supexfl
+bke section on the design ¢
czl

'L...J
.
»

[47J. 7This is done by scthting a hit
the ©process can be run. It nesd

the kernzl?s underlying policy puotec

L sl e ALl e

-]
i
1
]
s |
%5}

CUESTCE, FLAG,PROCESS) §

START~DROCESS (RAQ

STRIEG REQUISTOR:

¢ WANE OF REQUESTIEG EROCESS

STRING PROCESS;

o NAME OF DPROCESS TO EE STOPPED OR STARTED
INTEGER FLAG:

¢ WHETHSR TO START OR STOP

FPUNCTIONS
ir EVRL{REQUESTDR,ACCESS,PRCCESS}

THEL '
IF ACCRESS = Y"START-PROCESS™
THEH
STOPPED (PREOCESS) <= FALSI;
-ELSE
IF ACCESS = WSTOP-PROCESS"Y
THEN
STOPPED (PRCCESS) <~ TRUE
ELSE
. EREOR {(REQUESTOR) ;3
I ;
FI;
ELSE
E2FOR (REQUESTOR) ;

mhe Invoke-Process kernsl call is the pechanise Dby
vhich contrel of the CPU is switched fron one process to
another. The calling procsss supplies to +the kermnel tha
name of +he process to vwhich it wishes to yield CPU

control.

If the requesting Pprocess pbssasses the proper
capabilities to be allowsd to invoke the given process,
than the ©progess context (BEC,P5, general registers,
relocation registers, and stack pointers) of the requesting
srocsss are saved in +he kxernalt's process table entry for
<ts recissting procsess and the context of the givel process

ipaded intc the hardware frow where it had last heen saved

lornally o¢nly the CPU scheduler possesses +the L1Invoke

r?.
-
o
[
n

ubject to change. Rlso, since thae capability checked
is in +the fornm of a triple, it is possible to allow a
nrocess to invoke certain other processes without giving 1t
t

ha capability to invoke all processes. [5]

I+ should be noted, perhaps, that ouce a process has

given up ity right of oxecution by *invoxing' another
4

S

iy

“’r-\

)

process, it has no real assuranc

. that it wi.

il
d"“
l..-d
43
-
D
]
a1
43
[in}
w
}-.J

it

erocution control again. The c¢nly procass guarantead to

regain control is the CPU scheduler, which is periodically

17

InVCoHRZd by ths kerrel in order to periorn provuss

{

scheduling.

{5]. This extra flexibility of control over invocation of
processes 15 probably not roally DeCesS3aly. Cohinr Rern2li
calls, however, do reguire that access guestions ha stated
in terms of triples, so if cra's protection data evaluation
procedure is structured 1in 2 general euncugh wanner, one oAy
be able *o gain that added but perhaps unnacoessaly

flexibility at no real extra cost.

135

S
GCESS T0 BE& IHVOIE

FUBCTI
I BEVA

t"‘C)

M.
{22 STOR,"INVOKE+FROCESS"Y, PROCESS)
LNDITF STCE ‘D{PROCMSS) = FALSE
THEL

SAVE-CONTELT (EEQUESTOR) ;
LOLD-CONTEXT(PRrOCESS)

’!1 L"

EFRROR (REQUESTOR) ;

135

The Swap-Ta kernel call is the means by vhich segnants
are moved fron disk to con2. i3 LaranaTEIs Al ti nana
of thes process raguesting the swap, the nams ol the segrnent
to be swapped, and the nemory {rane location whoze the

segrment is to be placed.

i

B

uestor has ¥“Swap In" access to the sagiient

ct
iy

If

®

r

i}

[t

ard +he menory frame 1is free, then the memory frams 1is
rarked as not free and a swap in request constructed arnd

k scheduler. Eventual rasponse is sent to

o]
[N
1

sent to the
the original regquestor in much the same way as with norzal

shared I/0 requests.

)
IN

2D
IS TO BE PLACED

)
L
v
£

T
E

e L) @

o™

SHAPY
HEN
EGH

A

et 4] f2q b4 . iy

gt

,.3.3 The SumnzOut Fezppel Cal

4~

The Swap-cut kernel call is the neans by which coxre

name of the process requasting ths SWap and the nawme of the

+he nane of the disk to which it

0
(]
ul
0]
3
b
+
Q
or
D
mn
=€
)
=
o
o
[e7]
b
24
3
[t}

hz reguested segnent mpust bLe currently in core and
no+ lockzd and the requestor Dust poOSsSess "Syap Out? access
to it., If thesa conditions are nmat, then the kernel's
tables are updated such that only the disk scheduler has
accsss to the segient, and a Mewap out® regu2st built aud

Evertual response is reflected

n
{4
o)
¢t
cF
O
ct
1

ir
i
I
N
n
0
i
1]
=1}
=
[
D
H
.

to the ozizissl raguestor in much the sane IARDLT as in

rormel sharad I/0 operations.

e e s ATt e o i e e e e

redundant information,
-

conventions are enfovced.
iteell tually
suapp=d.

i
Lo
,-

SHAP-QUT (TR0
Qlﬁieu J
% P”“”“SS YABE OF
STRING SEGHEHT;
¢ MANY OF SEGHUENT IC EE SHEPPEID OUT
STRING DISK-~HAHE;
© NMAME OF THE DISX THE SEGMENT IS TO BE SWAPPED TO

N, BESK~NAHTE) 3

ref

" ZGUESTOE

FOKCTION:

IF EVAL(®IJUISTOR,"SHAP-CUTH,SIGUENT)
ANDIT TH~-CCRET (SEGHINT
ANDIT SEGHENT.LCCE-COUNT[SEGHENT] = 0
THER

RE¥CYE-ALL-BOT-SHAP~AUCESS (SEGNEET) ;

SEND~SUAP-QUT (ZEQUESTOR,SSGHIENT, DISK-NANE) ;
ELSE

ERRCR {(REQUESTIOQOZ)

146G

B2ans by which segnents

[uil
L]
[t
4
>
0
s
ity
r«-q'
Q
]
]
)
n
t¥
(8]
]
2
[
T
.
[ag)
v
103}
T
f
t
Ul

materns are the nane
of tue procsss reguesting the swap, the name of the segnent

to bes swapped, and the wmewory frame location whkers the

segnent i1s to be placedéfﬁ

P L . 7
If the rsguestor ha:i| "Swap In" access to the ssgnent
v

and +he @penory frawe is frese, then the uenory

Hh

2 1is

,
14

ra
markad as not free and a swap in request constructed arnd
sent +to *he disk scheduler. Eventual raspoose 1s sent to

the origiral rteguestor in much the same wWway as with nrnorrmal

==,

The rituch=Soonent . Kerpel Call

The Attach-Segment kernel call is the means by which

processes running under the kernel gain direct accass to
!

in-cor! *pegments. [7] Due to the structur=s of +tha 11/45

nelory’ Jna agzment hardware, the maxinuunm punber of segnmnants
% :

+hich can be accessed at any cne time in such a fashion 1is

ligited to 32, since only the user and SUpervisor

relocation registers are available for process us=2. [8]

The paraseters of the Attach-Segment call axe the nama
of the prccsss requesting the attack, +he nanme of the

sracess =o waiich the segment should be attached, the nane

sf the sszzenit to be attached, thne relocation ragister naaz

{aumber) with vhich the segpent skculd be associateda, and
Ap . L - '

the cbheegss with which it should De attached (read,

sy e e e e o b SRR it T

[7]. Tiis access allov¥s nora mal PDP? 11/L5 ipstructions to
rezd or writs data or exascute insiructions residing in the
seguent without interventiocn by tas kernel. it is only
after the successful execution of this call that the
segment can be directly accessed.

{8]. Fot all of the full range of =Zoeynept accesses can LE
aszociated with each of the 32 available czrelocation
registers. ©nly 16 o©f ther can be aztached with any
"oxecutable access =-- nanely +the I-spaces rp2leocation

CLSl"ELS.

181

FE

e

attached, if the process to whica the 2gpnent 15 to bLe
attrached possesiass Yigtach Ssguint? Aagcoss Lo obhe oohcussial

segment with the requested access type. if th

w
5
[$]
W
o=
[y
[44]
td
T
u

segnent is core-resident [9] , and if th

]
[
el
[or}
1
(%]
{9
or
M
jat)

Hh

relocation register of the prccess to which the segment 1is
to be attached is currently unattached, then the indicated
relccation ragister is set to point at th2 requested core
segnent with the requested access, the refersnce counter

for the given sagment is increwerted, and the relocation

register is zarked as attacbed.

W s o e A e o b e e

93. This restrictiocn nay he TrTelaxed when {if) it is
decided +o allow Ren-residsat ssguents to "Fault!" 1nto
renrory when the process first triss to access a sejment 1t
fias n++ached but which was nat coro-residsnt at the Tloe of
the attach.

ATT&CH—SEGHEST(RBQUESTGR,?RGCESS-NAaE,SEGﬂEﬁT,Accass,
RELOC=250) 3
oTRING BEQUESTOR;
S5 HAME OF REQUESTOR
STRING SEGHENT;
9 NANE OF SEGHMENT TO BE ATTACHED
STRING PROCESS~NRKE;
% NAMEZ OF DROCESS ¥C WHICH SEGMENT IS T0 BE ATTACHED

INTEGIR ACCESS;

¢ EOy SIGHINT SHOULD BE ATTACHE

g (MELD,EEaD/WRITE, ETC.)

1,CC~REG;

CiTTION REGISTER WITH WHICH
5T IS TO BE ASSOCIATED

FUNCTION:

iF EVAL(REQUBSIOE,“IHDIRECT*ATTACH'SEGMEHT",PROCESS-NASE)

ANDIE EVRL(PROCESS‘HAHE,ACCESS,SEGBEHT)

ANDIF FR’E{PROCESS-N&ME,RELGC*RBG)

THEH
FEEE{?ROCESS-NAHE,RELOC-REG) £~ FTALSE ;3
EELCC‘SET{PROCESS*NAHE,SEGHEHT,RELOC-REG,ACCESS);
ZTF-COUNT {(SEGHENT) <~ LEF~COUNT(SECUENT) + 1:

ELS5E

td
2v)
RN
L]
by
~—
o
1
1

GESTOR} ;

g
-4

-

143

G,2,2 The Call

The Relezse=Ssgment kernzl call is the geans by which

core-resid=nt sagnents become unassociateld from

=]

prooscEs

™
-

-

ln.l

contion ragintars

N
+
I

3}
1
153}
P
@]

1
-~
[y
o3
w2
o
o
¢
¢
i
{
e
6]
L)
3
1
"
{
D]
[
[)

asscociated a core saghent with a given process's rel-
register, it is necessary to release the segne
relocation register can be reused. [10]

The paran2ters of the Release-Segrment
naze of the process requesting the release, the Qm'
process freca which the segment is to be released,
nLame fnunber) of the relocation register
tnassociated. If +the reguestor is allowed to

segrent I

(]

ou the given [process, if the given reloc
=zis%=27r caz b=z released, and if the relocation registe.
currentlv a=t:chzd to a2 segument, then the relocati

register is nazx2d as unattached and <the reference coua

for the orevisusly attached segment decranented by one.

{101). This could have been done autounatically in the
Lttach=-Sagnent call, but wourld hava c¢onmplicated it
sogevhat. The cods to relcease seguents is noad2l anywly o
free +the segnents attached to a process befor= 1t c¢an be
destroyed.

{111, Some ra2leocation registers, namaly thooa

with the sSharsd xernel/procass COaAnQhlCations
effoctively helong to the kornel andi hencs, £

related bhoth *o security and viablilicy, canntot

and subsegquently reattached,

tay
4N

4

ted
b

‘,RELOC“EEG,PRGCESS-NANE H

Lo
G

;

REQUESIOR

LSE-S
S
% EE
IHTE
% EBEZLOC TER TO UHICH SZGUHEXRT
g 15 CURKRENTL
STEING PROCES!
g DRQOCESS THZ DEVICE IS TO BE RELEASED FROI
FUNCTIONT
1F EVAL(REQUESEGE,”INBIRECT-EELEASE*SBGBERT“,PROCESS-HQHE)
AMDZEIF FEEE(RZQUESTCR,RELOC-REG} = TALSEI
LNDIT EELCC-REG-CBN*BE-FEEED(RELOC-REG)
TEZ N
EEF-COUHT{SEGEENT(RELOC-EEG}) <=
REF-COUHT{SEGHEHT(RELOC*EEG)) - 1
FEEE{EEQUESTOR,RELOC-EEG) <~ TRUE ;
SEGHEET(RELOC~EEG).<-,"EULL";
ELSZ
TRAR0Z (RECULSTOR)
- - L]

—
uby
Wy}

P

4.4,3 The Call
Laled falx Lo
} (t— i e STt Y o1t e = I e 3 . e - 1- P R
Tha Create«Sz2ymaent kernsl call is the wseans by which
4 : LR L - o . Sy Ay s e - - IR
DroCcessas Creeta Naw disk segments. Tis paranstars are whe

process nane of the reguestor and the rame oi the segoent

Create s=2gment autematically gives th2 requastor
{creator} attach segpent access to the creatad segzent.
Create-Segrent succecds only if the requestor is allovwad to

create segoents on the indiceted disk, 1f the rsquested

s=gment nane is unigue and confores to standard Kernal

i3]

raming conventions and formats, and if there is sufficient

the indicated disk for the segrent {0 ke

Y

Ttz nam:z and location c¢ii the nevw segrent are entercd
in the kernsl's disk segsent table, the nevly craoated
segment is zers2d, and the Kernel's protsction deta 1is
updated £o show that the reguestor pOW PpoOSsSISsSes
YAttach-S=grmeat? access to the segrent,

Tu45

—~—
js¥]
- . = oem
[
g
[
e b R
— Ul el w
fei RS
ps] £y FA
iy -] o w b R2%
s &3 [£3] [vy BT
4 £ = —~ - o]
- " e 321 =]
e £ E -
[f§ t o, v 110
= O Moo= S
&) 13} } w4 oeal
= =3 3 =] SR~
Fp TS B 5 m a = ol e
w g jes - K3 LN S I
=) & 15 O bR] w5 BA -
[au] | [o I S8 B] e
[SR A P8 o
w [= 1 et U 4 =
1] et = b oo
el 4 m ¢ = e U O v
) O <] OG-SR Y -
34 [&) Ul Uy e & Uy R (33
o o 21 I b D === p—
[e U LIRS D =< [+
= {4 (- [}
ey wh M WS W 8RO 28]
vy I VYRS MG fe)
Sk [T B [B2 Ml = [ER)
[0 o Iy fom I B 7 N €3]
- Rch | IS iy A

w kL) w0 B 2%]
ﬁ.n. O__ m.:.._CF.. R

[M= [I B i3
n O Lot 0
L O e [YRR o (1
bR SR | [R B ik | ey
[ER N o B R o LSRN o R 13}
Lt £ B~ RO Iy e fig
W owd 2 el LS T B B) Ie}
LR~ IS AR i S T S LM
— - [0 T B A S T ¥ w1
[#5 VA U 75 T |t LI S T Il
=
{21 ‘.
=4
W a -

fre b P,

-

4,4 .4 . strovsSegient Kerpel Call
SeliX o SEVQYZoRHaERE Did k82s

The Destroy-Segment kesrnel call is the only rnaans by
wvhiclh Alsk ssgrents arz dsstroyed. Ito paraw2ioUs 2uvoe too

A segment may be destroyed only 1if the reguestiag
process possassses “destroy segnent' access to the segoent

and 37 noc cther process (or device) 1s using ths sajoent,

iang

~
[

icatl

TQR
DES

1

TT
s L
a
L

H,
g
ot
.

v

(@] s SRR LSRR

STOR)

jEa]
e}
jar]

ia

Ny Q) R A

f

(¥

ERROZ (R

- ra by
2 st

L]
rem

i

R

I3

ES
L]

-
Fd

Q
p
STRIEG

IOH
B
ThE
L

]
[

3
nC

R
UNCT
IF BVAL{

(33

D
3
I

—

109

L.0.5 The Sleen Kornel Call

LI SRS Sl Feekalede A vl

The Sleep kernel cell is the neans by which processes
+el) the CPUG scheduler that they do not wish Lo run for a -

while., 1Its only parameter 1is the process namhe of the

J

L

(v

requaszting process. {12] GExecution of the Sleep kern

the gereral Tegisters, Telocation régisters,
process status, and progran counter of the «currently
running process {the requesting process} to be saved, the
cpy scheduler to be notified that the process does not wish

to run [13] , and the CPU scheduler to be invoked.

It is expected that the process whichk requested to

sleep norzally will not ©be run until it receives sore

be exclusivaly relied upomn. The occurrencsa oL
aoun-occurrence of such a pending interrupt car be

determined frca examination of the gueue of the requesting

ri2). It night be desirable to inciude an additional
paramster, the amount of tinme “nhe process wishes to cleep.

This parameter vould ot be interpreted by the kernel,
howeva nut would be sent to the CPU scheduler to be dealt

with as desired.,

'J}
1
-3
-
b
L34]
=]
w

{13]. This is done by re~setting the PROCESS-WAKI
bit associnted with the reguesting procs

150

The Sleep kernel call is gimilar in efigct o ab

Tnvoke-Process call to inveke the cry scheduler except that

the reyuesting process A longer desikxes TO TUll. En
additional difference is that it 215 possible that <the
requesting process nmight Le able to invoke the CPU
schedulet via a Sle=p call which would not otherwise be

able tc do so by means 0% the rormal invoke call. [14]

rt

The main difference betwsen tae Sleep call arnd the
Stop-Process call is that +the latter causes the process
which is being stopped to becons non-invocable, thus
insuring that the process will eventually quiesce ehough to

-
- o
Le dsst

[}
[wF]

ove

bl

In the InputsOutput specifications which follow,
PROCESS*HANTS-TO-RUN(X,Y) <~ Z,
cayses the field asscciated with preocess Y in the array

PROCESS-WANTS-TO-PUN f0or process ¥ to be set to Z.

iy Pl e R e e R ke S . T

[i41. One might wish, for instance, to allow only the CIU
scheduler +o invoke other (LOCSSSES. Unier such a policy,

the slezp call would be the cnly way & pProcass can keep
itself from being rul. This rwight seee of little
importanca, since it could sicply continu2 exalUiing in ¢
tight "do nothing" loop instead, but this would not solve
the prohlen 1L fthe Dracess wWeic really waiting 0@ 3
interrupt to occur, 1f the process loops in tu=2
suparvisor, the Kernsl 2111 pever forcibly interrupt 1t--=
hence +he do nothing" locp pust ip offect bhe a ouch Dors
dlasp loching roo Lo LnT e e : =4

i

ta

g

\
C
-

]

ou

=
is

7

o
Il

-
-

N

0]

X

HCT

FU

BEGIN

} <=

2

2, PEQUESTO

S-TG-RUHN {CPU=-5C

arm

Atk

T,
1
v

[£5]
=

<]

.

bopr *

i

~J
P

e

L.4.0 The fzud-iles

The Send-iinsc

=8 TLOCLSS TNl

process to which ©

Ace kernel call is tha pechanisa by wiklch

units ¢ inforamation te OLheL PTOCESS25.

s of the Send-liessage kerael call are the

1

ne

th

h
w

1ame Q

I

°

the regquesting process, t

he message is to be sent, and thc message

-

~

the requesting process is allowed to se&n

nessagas to tae destination process and if the message slot

for nessages Lron

]
of
|l-
{r=
1

H
R
(W)
9]
)]
(4

m —~ —
rhese nossage
size - areas i th

the receiving EIoC

the possibla ¥ pr
+: 2 systan AT ALY

vhather a given
process—uodifiable

connunications 592

—

i e = N T —~
itae Ll nosw rec

i

o

fu

by insuring that

the reguesting process to the Jestination

then the given message 1s placed in the

he message slot is marked as full, and tke

s awakened.

slots are iazplemented as small, fixed

he kerngl/process communication seguent of

ess. On2 slot is allocated for each of

scesses which are allowed to be active in
moment Lo time. The flags which iadioiTt

mnessage slot is full or not reside in a

ortion of the kernel/process
19
DENT. Hence a Dprocess can safs-guara
E 5!

civing nessagss fron partieular pProcassess

the nessags <lot full flag for that
g

a)

rernel automatically sets the full flag vhen
nessaqges vill be aoverwritten

iving process rasets the full

154

it hLranzaiis o a

with

flayg.

nav

onwes

L B =
-
[

o

FI

~HNnSSA ia"*jE”PRQCEJd,MEQSAUu};

STLE NG :QUUSLOR;

v uRCUBST0R 15 PRGCLES BAdE Gr Senoio af S5 RO
STRIHG PEOCESS;

@ PROCTESS IS PROCESS HEME OF RECRIVER CF MES3AGE
WORD ANRAY MESSAGEL;

v HESSAGE TO Bz SENT

TION:

VAL{EEQUESTOR,“S-TD MESSAGE-ACCESS Y, PROCESS)
ANDIZ® ﬂESSRGE.EEPTE{”ZQUESTOR,PEOCESS} = TRUE
THEN

HMESSAGE. Ih:ORd? LQU(REQUESTOR, PROCESS) <~

dnSSAG
MESSHGE.EPTY (RE
HAKEUP(PROCESJ}

QUESTOR,PROCESS) <-

155

P
which
running v 'ler the kernel. A procaess vhich has attached a

device 1s then allecved to issue start 1/0
reguests feor that device, receive status information fron
the device (do a Status-I/0 call on it), and release it. A
proc¢eass cannot parfors a successfal Start-I/C kernel call

on @& device to wihich it is not attached.

The paraamsters for the Attach=I/0-Device call ars the

(i
[ah

~2ze ¢f the Tocess wishing to attach th: evica, the nase

T0o which the device should be attached, and

i

the nanse of tno2 device it wishes to attach.

s allovaed to attach +the device to

-
™
ct
[
H
M
2]
=
W
n
84
o}
1
[*N

the given process, if the given process is allowed fo have

-

ice at+tached to it, a2né if ither +the Aevigse is

]

cuerrently unzattached or if the device is currently attached

el

to the reguesting process and is currently inactive (not
irvelved 4in any ongoing I/0), then the devics status is

zerosd {15] , the device is narked as attachad to tha given

procaess, the given process becomes the ownsar of the device,

-k
[
(2

thereby inheriting WStart /00, Potauus 170" . and YReleoass
I/0 Devics® access to the device [16] , and the rLven

process 1S infornad that i1t nouy [LOSSESHEs the given devico.

el

If +he devica was attached o “he reguasting protio.s <

time of the call, then the devics status 1is zeroad, the
Sk .
device Dbescores tached (released) fron the requestinyg

1
pPrEOCESS and the r.guest
[

longer "owns® the device. [17]

that it no

}J .
o]
¥al
L |
(@]
¢]
@
©
0]
fu]
o]
ot
’_J
h
I.
©
=y

[153}. Tze device status is zeroed for precisely the saxe
reasgns as SegRents are zeroed when they are creatsd == to
prevent the T2S52g8 of unauthcrized information. For mcst
Zavices, =eroinog status inplies the pulsing of a sp cial
hi+ whicn C ses the device registers to be reset to the
i-i:ial szats Which results from the execution of a RESET
iastrugction. Other isvices have no device reset pit, but
will pe st to soms well- defined, upinformative state.

A .
[15]. This izhey;ting of privileges rasults Zfron narking
the requesting LLOCESS 2S +the owner of the device, thus
permitting tas PLOCESS +o perform start 1/0, status I/0,
and release I/0 dsvice vernel calls on the deavice.
[17]. Sha DTCOASS +o whichk the device has becon
wi1l Tacoivs 3 Maahoup? Iooes Che kernmal, in ogrisT Lo LV
it a chance ta Ynotics" that 1t hes been gived 2 D2W
device., This is of particular importance in insuring that
the initiater can properly deal with a teralnal which 13
Leing re-attached to it after the process whicn prev: ‘ously
owned it decides tTo gC away. The reguesting pProcss will
recelys o Hyagcup, however. Drosunably »1A5 is RO
inconvenience since the EPLOCESS effectivaly asked the

kernel to reagve the device.

Inpur-Cutput Specificarions

ATTACH~TQO-DEVICE(REQULESTCE, rLOCEbS,DEVICB);
STREILG ZLGUSSWOr fhOCeRss, DEVICT;,
% REQUESTOR IS PROCEES NAﬂE 07 CRLLEE
% PROCESS IS MAUE OF PROCESS TO HRECEIVE DsVICE
% DEVICE IS THE NAME OF DEVICE %0 BE ARTTACHED
FUNCTIOYN:
IF EVAL{RECUESTOZ,"ATTACH~-IO-DEVICE" ,PROLESS)
AUDIF EVAL{PROQOCESS,"ATTACH~DEVICE",DEVICE)
THEN
IFf CHEER({(DEVICE} = "KULL"®
THEN
ZERO-DEVICE~STATUS (DEVICE)} ;
OWNER(DEVICE) <~ PROCESS ;
ATTACHED(DEVICE,PROCESS) <= TRUE ;
WRKEUP {FEOCESS) ;
ELSE
IF OBUHEP(DEVICE} = ZREQUESTOR
LULIF DEVICE~INACTIVE{DEVICE)
THEEU
ZERO-DEVICE~STATUS (DEVICTE) ;
ATTACHED {DEVICE,REQUESTOR) <~
FALSE ;
CUNER{DEVICE) <~ PROCESS;
LATTACHED (DEVICE,PROCESS) <~
THUE ;
HAKEUP {PROCESS) ;
ELSE
ERROR (REQUESTOR)
FI;
FI ;
ELSE

2 Tho Pelengeni/

¢

O-Dovics Karuol Call

- i e Sl =R e

The Belecasa-I/0-Device ksrnal call is the @w=ans by
wihich procasses running uandar the Lernel deallocate I/0
devices they have been using. Due to security constralnts,
ne I,/0 device mnay be released while 1/0 concarning it is

activs. .

The paraaeters of the Relaase~-I/0-Device call are the
nane of +the process wishirng to release the device and the

nane of the device to be released. If the reguestor is

P

attached +o the device and the davice is not busy (does not
have I/0 in progress), then the device 1is narked free

{unattached znd the requestcr's "Start I/o", "Status E/0Y,

ard Mpeleasz TI/0 Device®" access 1o the given davice
cevsked. [33

[18]. 7This is done by marking the device as helonging to
the ¥null¥ rocess, which is equivalent to stating it has
O QOWLED, Start-I/0,Status-1/0, and Releasae-1/0 all
reaulirs oot fhe ooouestaor tount tra yiven davioa.

A 3 - B -
Input=0ntout Speclficatlions
e R it b ks i s b i
PELETAST-TO~DrVICT{NEQUNSTOR, DEVICE) ;

ERQCESS UHAME OF REQUESTOR
STRING DEVICE;
% WNAKE OF DEVICE TO BE RELEASED

1

b4
L

FUHCTICH:
Iz

CWHER(DEVICIZ)= REQUESTOR
ANDIF BUSY{DEVICE) = FALSE

THEN

O¥NER(DEVICE) <= WHULL"™;

ATTACHED (DEVICE,REQUESTOR) <~ FALSE;

ELSE
ERROR {REQUESTOR)

-
T

RCEN

1.5.3 Tho Seant-T/0 ¥eornel Call

oo .
e At e i T e e i S e e ek e e e ity

The Start~r/0 kernel cell is the wochenion Ry Which
precesses runnlng under the kernei causs the repnel to

initiate I/0 in their behalf.

The parazeters of the Start-I/0 kernel call are the
name of +the reguesting process, the nape of tha device TO
he started, thz nazme of the core segment to be involved in
the transier, the byte ciiset from the beginning of the
core segnant uhére +he I/0 is to start, the nunmber oflbytes

to be transferred betvween the ccCre sagment and the dsvice,

i}

the access itype to be parforped 1in this I/0 operation

{r=zad,vwrite,revind,etc.), wyhether a pseudo-interrupt is

dasired upon conplation of the 1/0, and other piscellaneous
gzvice-dependant information which is necessary for scoame

devices, such as a disk segment nane and offset for disk

1/0 reguests.

If the given device is attacked to the requesting
h

ths appropriate access, 1if the reqiestl

(e
e
W

rocess s aitigcwdsd TO aAcCusSs Tae Jivel Core TRt IS eRe WLT

1

Tu

1%

the appropriate access, if the named core segment is inde=d
core-resident, if the combination of segment byte offset
and byte count indicate +that the reguested I/0 Wwill net
extend beyond the named COXe segnent, and 1f all otaerT

device-dependent check indicate that thz given reguest

161

will not violate any security constraints, then the kornpol
locks the c¢orz segment if necessary [15] , ma2rks ihe

segrent as being Juvolved in ongoirg I,/0, and starts the

rgquested,

ol
a
¥
(@]
i3]
o
e
4]
[y

7]

Supplenentary, device-dependent dinforgation may b
returne to the requesting process along with sone

indication of the success of the call.

T o Al e e A B e . A et ot

[19]. Sore I/0 operations, for instance input operatic
from terninals, dc¢ not regquire +he locking of the o

segnent since all transfers to or from the core sagmant
w1ll bte counplete before thz kernel re:zurns control to tiao

requesting process.,

-~y
3
b2

o~

-.-..—.—.-...-,_-___....,4._...__ el AT e B

~10 (REQUESTOR, BEVICE, SEGUIUT, BYIE-0FFSET, BYTZ-CCOUNT,
opzﬁnTzcu,zsé"“'cr* SLIG, RS0UEST) ;

STRILHG REQUESTOR;

% PROCESS ¥adkb OF EEQUESTOR

STRING DEVICE:

% NAHE OF DEVICE INVOLVED IN I/0

STRING SEGHENT;

¢ WAME OF CORZT SEGHEINT INVCLVED IN TRAHSFEIR
IHTEG"R BYTE-QOFFSET;

¢ BYTE-OFFSET FRCH BEGILNWING OF CORE SEGMENT WHERE
% TRENSFZR HILL START

INTEGEZ EBYTE-CCOUHET;

2 NUMBER QF BYTES T0 BE TEANSFERRE

INTEGEZR CRPIRATION;

% WHAT SOQ=T OF OQPERATION IS REQUESTED

% (READ,H=ITE,ETC.)

BOO’LAL INTTRRUPT-FLLEG;

% ¥ 4ETR DSEUDO-ILTERRUPT WANTED
o«D "ARBLY REQUEST;

¢ OTHER DEVICE~DEPEKDENT INFORYATICY

REQUESTOR
COISTOR, OPERATION,SEGHENT)
SEGHENT)

NT-BOUNDS (BEYTE-COUNT,BYTE-O

ANDIF LE VICE,0PERATION,BYTE-COUXT,! 5
SEGH 2 EQULST)

ANDIT (S-F"?HT.CRN EL_USED[STGNENT] =

ORIF (SZGHENT.CAN_BE_USZD[SEGNEW

ANDIF (OSERATION = “SHAP-IN"®

ORiF OPZBATION = "SHAP

ANDBIF IH‘
ANDIF IN

LTJ !

L"J o O l' 1

o O
‘]a—t- @)ooty

oo lTJ H

'U L:] l'*J ~—

L TEZN

,\'-\1'-?’-___‘__ s oTyrm g T T Y -
FoRNRR L.“.I-!.......AJ.J.J..U"' DEVICZ

BYTE-COUNY,CFERATION, INT!
BUSY (DEVICE) <- TRUE ;

ERROR (REQUESTCR) 3
FI

-4

h—h
[
"

G,5%.4 Tha Stoatn

—a —-Z

The Status-1/0

proccess can 1
attached and

on-going I/0.

5

T F ety) 11
L0 Hopnel Cail

n e S

kernel call is the machaniss by which e

terrogate the status of I/0 davicas it haw

effectively monitor +the progress o0Oi any

Its paraneters are thke nams of the requesting process

and +*he nan

18

reguested. If
attached, <+thsan

reguestor.

of

the

sta

the device for which status is beiny
requestor currently has the device

+us information is returned to the

ras

Input-ovinut Specifications
Lpputzov

STLTUS+TO{REQUESTON,,DEVICE, ACCESS
STHEING REQUZITORS
¢ DencsSS NAGD OF REQURSTCH
STRING DEVICE;
% MAME OF DEVIC
N¥TEGER ACCESS;
o WHART STATUS IS REQUESTED

r U\ECmIOu -
IF CHNER(DEDEVICE) = REQUESTOR
THIXN

STND-DEVICE~STATUS (DEVICE,RCCESS,

ELSE

ERROR (REQUISTOR) ;

F:

1

FI

165

T WHOSE STATUS IS TO BE

INTERROGATED

REQUESTOR) 3

4,6 Kernel Shared I/£0 Primitives: Descripticn

4,6,1 The Request-1I/0 Kerpel Call

The Request-I/0 kernel call is the ﬁechanism by which
processes request I/0 be performed on their behalf by the
shared device scheduler associated with the appropriate
shared device. (such as the disk). Its parameters are the

name of the reguesting process and a Start-I/0 regyest. .| .o

If the requestor is allowed to use the shared device
and if the requestor'has no other pending I/0 requasts for
that shéréd;éévicé; theh.thE'réquesé'is placed in a "locked
box", the appropriate device scheduler given access tb the
request, and the appropriate device scheduler is informed
that it has a pending I/0 request from the ragquesting

process. [20]

{203}. A resiriction imposed@ by the kernel regarding use of
shared devices prohibits individuwal processes from having
more than one pending request per shared device, This
restriction simplifies the handling of lockad boxes
significantly and is also nzcessary in order to insure that
device schedulers remain information sinks. The reader 1is
referred to a paper by Popek and Kline ([POPEK74A] for
further discussion the information sink problen.

166

Input-Output Specifications

REQUEST-IO(REQUESTOR,LDEVICE,SEGMENT,BYTE-OFFSET,BYTE-COUNT,
ACCESS, INTERRUPT-FLAG, REQUEST) ;
STRING REQUESTOR;
% PROCESS NAME OF REQUESTCR
STRING DEVICE;
% NAME OF DEVICE INVOLVED IK I/0
STRING SEGHENT; -
% NAME OF CORE SEGMENT? INVOLVED IN TRANSFEZR -
INTEGER BYTE-OFFSET;
% BYTE~OFFSET FROM BEGINNING OF CORE SEGMENT WHERE
% TRANSFER WILL START -
INTEGER BYTE-COUNT: .
%' NUMBER OF BYTES TO BE TRANSFERRED’
INTEGER ACCESS; .
% WHAT SORT OF OPERATION IS REQUESTED
% (READ,WYRITE, EIC.)
BOOLEAN INTERRUPT~FLAG;
% WHETHER PSEUDO-INTERRUPT- WANTED
WORD ARRAY REQUEST;
4 OTHER DEVICE~DEPENDENT INFORMATION

FUNCTION:
IF EVAL(REQUESTOR, "REQUEST- IO",DEVICE)
ANDIF LOCKED-BOX.FREE[
LCCKED-~BOX~INDEX (REQUESTOR, OHNER(DEVICE))]

THEN

BOX-INDEX <=
LOCKED-BOX~-INDEX (REQUESTOR, OWRER (DEVICE)) ;

LOCKED-BOX.REQUESTOR[BOX-INDEX X~
REQUESTOR; .

- LOCKED=BOX. DEVICE[BOX—INDEX]<—

DEVICE;

LOCKED-BOX. SEGHLNT[BOX IWDLX]<-

. SZGUENT: -

LOCKED-BOX.BYTE- OFFSET[BOX INDEX](-
BYTE-OFFSET;

LOCKED-BOX. BEYTE=COUNT{ BOX~INDEX]<-
BYTE-COUNT;

LOCKED-BOX.ACCESS[BOX~INDEX J<~
ACCESS;

LOCKED~BOX.INTERRUPT-FLAG[BOX~INDEX J<-
INTERRUGPT-FLAG;

LOCKED~BOX.EEQUEST{ BOX-INDEX]<~
REQUEST;

WAKEUP (OWNER (DEVICE)) ;

ELSE

ERRCR (REQUESTOR) ;
FI;

167

4.6.2 The Start-Indirect-I/C Kernel Call

The- Start-Indirect~I/0 kerrel call is the w@means by

which device schedulers initiate I/0 requasts for processes
which do not normally possess full "Start I/0" access to a
shared device. Its parameters are the name of the device
scheduler process and the "locked box® uhicﬁ contains the

I/0 request to be initiated.

If the indicated locked-box is not empty ' (not free)

and 1if the requestor is the owner of the device for which.

the I/0 request contained in the locked-box is intended,
thén the process whose name is contained in the "requestor™
field of the locked box (the original requestor} is
temporarily given "“Start I/O0Y" access to the device [21] ,
and an internal Start-I/C call performed, with the name of

the locked box owner as its requestor. [22]

This qall-returns tvo respouses, one to the o:iginal
. requestor regarding the results of the Start-I/0 call, and
one to the device scheduler concerning the results of the
Starf—lndirect-i/o call. Intertﬁpt.nbtificatioh'is aluéys
sent to the device scheduler, but is sent to the originai

‘requestor only if so requested in the original Request-I1I/0

-

[21). This is done by tenmporarily mnaking the original
requestor the owner of +the device, Once the device is
started, the cwner is reset to to be the process whkich
requested the start-indirect I/0 call.

168

call.

-y

{22])., Hence all the security checks will be made according
to the capabilities of the original requestor. This nay
seem a bit unusual, and one might be tempted to M"assume!
certain properties of device schedulers and instead give
them the pertinent capabilities at least temporarily.
However, in the case where the criginal reguestor attempted
a syntactically or semantically invalid 1I/0 request, one
would 1like the error to be reflected back ‘to the reguestor
and not the scheduler. If the scheduler instead receives
the errox, it is then faced with the problem of reflecting
the error back to the requestor, which it can not do if 1t
is to remain an information sink.

169

Input-Output Specificatjons

START-IHDIRECT-IO(REQUESTOR,BOX“INDEX);
STRING REQUESTOR:
% REQUESTOR IS PROCESS NAME OF THE DEVICE SCHEDULER
INTEGER BOX-INDEX;
% LOCKED BOX INDEX RELATIVE TO THE DEVICE SCHEDULER

FUNCTION:

-IF.LOCKED‘BOX.FREE[BOX'INDEX] = FALSE

ANDIF OHNER(LOCKED-BOX.DEVICE[BOX-IHDEX}) =

REQUESTOR

ANDIF BUSY(LOCKED-BOX.DEVICE[BOX-INDEX]) =
FALSE

THEN ‘

OWNER (LOCKED-BOX.DEVICE[BOX-INDEY J) <=
LOCKED-BOX, REQUESTOR[BOX-INDZX };

START+IO0 (LOCKED-BOX. REQUESTOR[BOX~INDEX],
LOCKED-BOX. DEVICE[BOX~INDEX],
LOCKED~BOX. SEGHENT({ BOX-INDZX],
LOCKED-BOX.BYTE-OFFSET[BOX-INDEX],
LOCKED=-BOX. BYTE~COUNT[BOX-INDEX J,
LOCKED-BOX.ACCESS[BOX-INDEX],
LOCKED-BOX. INTERRUPT[BOX-INDEX],
LOCKED-BOX.REQUEST[BOX-INDEX)

OFNER (LOCKED-BOX . DEVICE[BOX~INDEX]) <+
REQUESTOR;

LOCKED-BOX.FREE[BOX-INDEX] <- TRUE ;

ELSE .
ERRCR (REQUESTOR) :

170

~

The following section is concerned with the detailed
design of the kernel calls. Calls are presented in turn,
along with.any relevgnt design problems, decisions, or
enusual features that arose relative to the particular
calls. Sections concerning some calls are absent, " The
fact +hat a design discussion of a particular kernel call
is not included here does not necessarily impiy that the
particular <c¢all is lacking in interest from the design
point of view. Quite the contrary, sone of the missing
design discussions are related to calls which are of great
ipterest, but whose design is interleaved and dependent to
a great extent on the logical and physical representation
of the policy protection data'(whicﬁ itself is yet to be

designed) .

An attemnpt was made whenever possible to lndlcate what
influence each call had upon the general system structure

as well as npon other kernel calls.

171

2 Kernel Initiation Primitives: Design

S5:.2.1 CreatezProcess Design

One important design problem of the Create-Process

~kernel call ccncerned the question of how the CPU scheduler

becomes aware of the existence and nane of the newly' ,
created process. The general overriding problem of queue -
overflow again arises with respect to the CPU scheduler.

Simply stated, the problem is this: the CPU scheduler needs

- to be informed of the identity of processes as they cone

into existence, in order to be able to invoke them. Pour
obvious alternative exist: 1) processes are invoked by
process number rather than by process name, 2) a kernel
call is provided which returns the process name associated
vith a given process number, 3) the kernel tells the CPU
scheduler the name of the new process when the process is
created, or 4) the CPU schedpler is alloue& read access to
certain areas of the ke:nel's'data stfuctures which contain
process name;process nurber associations and kn@ws how to

intefpret the data structures.

The fourth alternative is unacceptable in +the sense
that it conflicts with the notion of least privilege, and
more importantly, it unreasonably binds CPU scheduler
coding to that of the kernel, restricting the ability to

make perhaps necessary changes in the Physical format of

172

kernel data structures without necessitating coxresponding

CPU sqheduler nmodifications.

The third alternative again IPOSes the gquestion of
vhere to place this asynchronous information. Several
alternatives exist: 1) in the gqueue, possibly'causing queue
overflow problems; 2} in a fixed spot in the coamunications
buffer -- information so placed, however, is likely to Dbe
lost if the CFPU scheduler: is. not run guickly or often
enough; or, 3} gsent as a message from the initiatdr to the

CPU scheduler via the send-message facility.

The second alternpative is somewhat more attractive.
It éolves the problem in 2 ueclean® way, yet it does
pnecessitate an additional kernel call. It might present 2
bad precedent —-= one of writing a new kernel call to scolve
any problem that might develop. Hence it night be well to
consider otper reasonable alternatives before choosing the

kernel call route,

The first alterﬁative,“tﬁat of using process TRUBbErS
instead of process names in the invoke process call, would
at first glance seen to invclve the least number of drastic
£epercussions. It does, however, nean that the security

implications of using process numbers rather than names 1in

inveke process must be considered.

173

The gquestion then is, are there any serious security
drawbacks which would result from usinyg process nuubers ag
invoke process arguments rather than process names? As long
as the kernel maintains the association between process
namnes aﬁd nunbers, there are no kernel secur;ty problens as
far as the call is ccncerned , since the kernel can élways
use the corresponding process-name in all of its security

checks. The problem, if any, would seem to be one of

‘whether any security assurances are lost for +the CPU

scheduler if numbers now replace names.

Consider the following scenario: The CPU scheduler
decides that after running_frocess X it will ron process 2,
a high-priority process, but between the +time it invokes
process X and again receives control, process 2 has been
destroyed and another process created which 1is reassigned
as process 2. The CPU scheduler receives control again and
this time invokes the bogus process 2, which is not really
the high priority pfocess the scheduler thought it was.
The CPU scheduler has been fooled.into running a'prqcéss it

did not mean to.

- Is such a scenario realistic (or even possible)? - The
ansver ssems to be, maybe. First, since only the initiator
has the ability to create and destroy processes, clearly
the initiator must have run sometime between the time it

invoked process X and the time it attempted to invoke

174

process 2. Since only the CPU scheduler can cause
processes to be run, it follows that process X itself nust
have been +the initiator. Since the CPU scheduler invoked
process 2 directly after process‘x, the ijnitiator nust have
both destroyed the o0ld process 2 and c;eated the new
process 2 before the scheduler again received control. The
CPU scheduler was presumably given notificationlof both the
demise of the old process 2 and the advent Vof the new

process 2.

Now, either the new process 2 is or is not rumnable.
If it is - not, then presumably the scheduler will suspect
something is awry when the invoke fails and straighten
things out . without doing any real damage. If the new
process 2 is runnable, then the scheduler has been
effectively subverted, unless the notification given the
scheduler concerning the destruction of process 2 and the
creation of the new process 2 is sufficient to suggest to
the the CPU scheduler that process 2 is now 1indeed a new

entitye.

So it would seém‘that.the switch to proceés numbers is
a- reasonable bne,. provided that the details of prdcess
creation and destruction notification are carefully
designed and considered with the invocation problem in

mind.

175

There is, however, yet another viability issue at hand
here. If the CPU scheduler is to be given the ability to
do any sort of priority based scheduling, it meeds sonme
reasonable criteria. upon which to base its scheduling
decisions. If process numbers are now hs?d instead of
napes, thén . one of the prime candidates, the-process name
itself, for information upon which priority can ' be
determined, is now removed from the possibilities. This is
not a significant festrictidn, however, if one allows the
process creator to communicate with the CPU scheduler via
the Send-Message call, 2any priority-associated information
lost by switching to process numbers can be easily regained

and augmented through use of Send-Message.

176

5.2.2 Destroy Process Design

e s

Most of the unusual constraints involved 1in the
Destroy-Process kernel call are ‘directly related to two
observations: 1) terminating an arbitrary I/0 operation in
the niddle is in general a difficult task, and 2) I/0 once
initiated will eventually terminate after some finite

period of time == it will not continue indefinitely..

The first ohsérvatiop makes it desirable that the
kernel never fércibly attempt to £erminate an I/0 operation
once it is started. . The second observation iends
credibility to the viability of never making such an

attempt to terminate I/0 abruptly.

One might reasonably ask vhy the kernel would ever
need to stop an I/0 anyway. The answer is obvious in
retrospect: if one wishes to destroy a process,. dne rust
also terminate all on-going I/0 before remdving the process
from the system; otherwise, the I/0 in progress is 1liable

to 'encroach upon the security of whatever data may happen
to end up in the memory previously occupied by portions of

the destroyed process.

177

3 Start/Stop-Progess Design

The design and necessity for the Start/Stop-Process
kernel call is heévily dependent upon the design and
implementation details of the Invoke-Procesé,
Reléase-lfo-nevice. Attach-I/0O~Device, angd "Sleep kernel
calls; Additional discussion of the Start/Stop-Process
call can be found in the design discussions of these calls.,
It is, however, appropriate to gather the pertinent facts

together in omne place.

Briefly stated,l the | motivations for the
Staft/Stop-Process call were: 1} the CPU scheduler needed
sone way of ﬁnowing when a new process came into existencé
or was destroyed; 2) some mechanism whereby I/0 devices
{terminals in particular) could reliably be removed fron
malfunctioning processes was desired; and, 3) sone
mechanism was desired whereby the CPU scheduler could be
prevented <£from invoking a given process until certain
resources had been allocated to the process. The

Start/Stop-Process call vas designed to meet these needs.

Through clever manipulation of tha
ﬁinvocable/non-invocable" bhit which the Start/3top-Process
call controls (the "stopped" bit), a procéss {the
initiator, for instance) can prevant the C2U schzaduler froa

running the given process until all necessary resources

178

o~
~

have been allocated to the process. ZThe CPU scheduler
jearns of the existence of +the new process either by
interroddting the "stopped® bit =- either directly if it is
able to read the bit, or jpdirectly by attempting to invoke
the process and either succeeding oI failing. One can
insure fhgt 1)0 devices can eventually be reclaimed Dby
stoppiﬁg the nalfunctioning process and waiting until any
I/0 in progress conpletes, with +the assurancs that the
process uill not be able to 'sneak in™ and start any

additonal-I/O in the meantine.

211 of the above functions, houever, are related to
system viability and are not data security relevant.
Consequently this call is a likely candidate for removal

from the kernel, in spite of its great simplicity.

179

5.3 Kernel Schedyling Prisitives: Design

3. Invcke=~Process Design

Two issues of 4interest arise with regard to the
Invoke-Process kernel call besides the obvious policy issue
concerning which processes should be allowed to make the
call. The first is concerned with the conditions under
which an inéqke may be invalid, even for processes' which
normally possess the full invoke process capability (such

as the CPD scheduler).

One obvious constraint is that the process which is to
be invoked nust indeed be an existing process. However,
this'simple constraint is not gquite strong enough to
¢apture the full extent of process scheduling réguirements:
There are instances during the lifetime of a process during
which 3t is crucial that the process not be allowed to run
(vhile the initiator is trying to destroy it or trying to
'recover"a misbehaving device from it, for instance).
 Additiomally, if one later wished to place the
responsibility for swapping into a special swapping process
rather than with the CPU scheduler, one might be interested
in insuring +that the CPU scheduler never run a prdcess
which does not have all of its necessary segnents in core.
The mere process existence assertion assured by the initial

constraint offers nothing useful in either of the

180

preceeding cases. something stronger must be asserted.

Exactly how much stronger must the constraint be? It
seens fairly 'clear that a simple invocable/non-invocable
switch should suffice: it is either "safe" for the CPU
scheduler to run a given process or. it is not. As long as
the Yproper" proceéses are able to manipulate this -svitch
{(vhere wproper™ is something that nRust be contextually

determined, according to what sort of guarantees one hopes

to offer by the ability to prevent a process £rom being

run), there should be no problenm.

of coursé it woulﬁ be guite easy to effectively
strangle the system by unwise use ' of such a blocking
capability by a process vhich possesses it. Even tlkis
powerful ability can be tempered, however, by.épproptiafe
choice of policies: one niéht give & reliable .system
process (the initiator, for instance)} the capability to
stop any process, but limit this capability with regard to

all other [rocesses so that .they can not stop. the

initiator. If one additionally gives the initiator ‘the

unrestricted ability to ‘®unblock™ processes, then one
effectively has guaranteed that any system block-ups vhich
may <xesult can " at least be undone by a reasonably clever

jnitiator. One would not, however, vish to give the

unblock capability to the CPU scheduler or all the nice

guarantees just provided f1y right out the window.

181

The second issue relates directly to issues discussed
to some extent in the earlier section on Create-Process
design issﬁes and concerns the nethod by which oné& refers
to the process to be invoked. There seems to be sone
slight advantage ;n invoking processes by name rather than
by number, but &Eiy in the sense that one is slightly nore
sure that the pro%éss which one has invoked was the sane
proéess ‘which. oﬁe wished +to invoke. It is not at all
clear, however, how much has been lost if the process-
actually invoked is not the same process as the one
conceptually invoked. The additional complications which
using process names introduce in other kernel calls tend to

overshadov any vague misgivings one. might have about

accidentally invoking the "“wrong™ process.

There is a definite trade-off here between names and
nunbers, but ﬂt appears that process numbers are
substantially mo;e convenient in terms of kernel
manipulation and can easily be processed into their
corresponding process names whenever kernel security checks

require the actual names. [1]

-

182

~

TN

5.3.2 Suwap=In/Swap=-0Qut Design

As mentioned earlier in the section concerning menory

management, the data security constraints which are

relevant to swapping are surprisingly lax. The important

issue: here is thﬁt the~ kernel be able to accurately

determigé#uhere objects are lccated at any given instant

{or atﬁhéast have a very good idea; it is rather difficult
[

to state:precisely where a given segment is while it is in

the Qrbcess-of being moved in or out of memory).

Interestipgly enough, the two swap c¢alls are 1likely
candidates <for expulsion from thé #ernel., ITf the kernel
were willing *o allow a process to label (name} core
segnents, then by adding a single "Name~core-segment”
kernel call c¢ne could eliminate both Swap-in and Swap-ou£

kernel calls, and at the same time remove some of the

~
|

[t]. In the current implementation, processes are invoked
by name rather than process number, but modifying the code
to use numbers instead would represent a trivial change.
If one allows the initiator, for instance, or even those
processes which are allowed to create other processes to
comnunicate with the CPU scheduler via the Send-Message
kernel call, then one 1is able to reclaim any priority
scheduling <flexibility one might have lost by merely
sénding process nuasbers to the CPU scheduler instead of
names. The creating process presumably knows the name of
the process it has created and could be returned a process
number by the kernel. The creating process could then
comnunicate a priority to be associated with that
particular process onumber by sending a process number,
process priority message to the CPU scheduler.

183

strangeness inherent in the kernel's handling of @isk

completion interrupts. [2]

There are several other security relevant actions
which impact when swapping can occur, however. A
comnunications path between PIrocCessSes in the system is
readily seen if one allows processés to modify segqments
which are in +the . process of being swapped out. [3]
Likewise, serious consequences can result from swapping out
a segment which is involved in séme on-going I/0 operation.
Therefore attention needs to be given in the Swap-Dut call
that 1) the segment is indeed tsyappable" -~ that is, no
asynchronous access is being made to it -- and, 2} no
further access will be made to it until it has been swapped

out.

Assurance 1 can be given if one checks at swap time
vhether any device I/O has been initiated which will access

the memory segment involved in the swap. If a device is

{2]. VWhen an 1/0 interrupt on 2 disk occurs, the kernel
must check to see if the reguest just completed is a swap
request and perform a number of additional operations if it
is.

{33}, In particular, if a frocess is allowed to modify
segmnents while they are in the process of being swapped, it
is now able to sense when swapping has occurred. Hence it
has in effect been given information by the CPU scheduler
and the CPU scheduler can nc longer be classified as a pure
information sink. See [POPEK74A] for a further discussion
of the notions of informatica sources and sinks.

184

performing an asynchronous operation on a memory segnent,
that segment will have been #locked"” at the time the kernel
Start-I/0 call on the device vas executed. If the segnent
is still locked at swap time, then the swap cannot be
‘allowed to proceed until the segment is unlocked by the
eventual completion of all 1/0 operations which caused it
to become locked. Oﬁcé_the swap is allowed to procéed,
further asynchronoﬁs modifications +0 the memory segment
can be prevented by markirg it as "not in core" for all

operations except swapping. [4]

Assurance 2 cannot be given merely by -marking the
segment as notrin.core, since this would cause the eventual
Start-Indirect-1/0 call made by the disk scheduler to fail.
Accordingly, sone 'special access nmnust be used in the
eventual Start-I/0 for the swap-out reguest, and all
pfocess relocation registers which point to the segment

nodified such that any attempted access will fail.

Hence, if one pushed the two swap calls into the
normal Start-1/0 call, the special checks already necessary
for swaps would change slightly, becoming instead an "is

the segment locked" check rather than one of "is this a

[4]. Special checks must be made at the time of the actual
start-I/0 <c¢all which causes t+he swap to occur, ctherwise
the fact that the segment does not #"appear" to be in memory
would prevent the segment from being swapped out.

185

swap request?", The only operations saved would be the
kernel construction of the "correct"™ swap request,. forcing
this task onto the CPU scheduler, instead, and perhaps
'giving the CPU scheduler a finer grain of control over
swapping. {5) In addition, one has probably given the CPU
scheduler the extra Mprivilege" “of 1labelling memory

segments. [6] i

[5]. The gualifier “perhaps" is added here because the
level of control the CPU scheduler currently has over
swapping is not at all clear. Such control depends to a-
large extent on issues such as naming conventions which
have not yet been thought out in detail. '

{6). Here one becomes a bit squeamish, for this is clearly
data security relevant. One could add extra constraints,
however, which would limit what names +the CPU scheduler
could associate with the memory segment. Alternatively,
one could push the name change back into the interrupt
handler and eliminate the new "change names"™ kernel call.
The total result then would be two less kernel calls
{Swap=-In and Swap-Out) at the expense of some additional
complications to the Start-I/0 call.

186

5.4, Other Kernel Primitives: Design

5,4.1 Attach-Segment Design

For efficiency reasons, the méchanism for attaching
segnents was implemented using the hardware memory
management facilities. The only other alternative ﬁould
have been +to support segment attachment, accessing, and,
detachment in a purely interpretive manner - an
alternative ¢learly unreasonable ffom a performance and
efficiency standpoint. Since - segment accessihg
capabilities are based uéon the facilities provided by the
memory managerent hardware, the available access rights to
segmnents are limited to thosa supported by the hardwére -
namely, no access, read access, and read/vrite access. TWO
additional access types become available when one adds
execute access - read/execute access and
read/vwrite/execute access, These last two access types can
be associated only with segments attached to I-space
relocation registers, however, since instructions are

fetched by the CPU using the I-space relocation registers.

- In order to gain the capability for efficient
accessing of core-resident code and data, a process
executes an Attach-Segment kernel call. The Attach-Segment
kernel call perﬁozms security relevant operations by

appropriate loading of the proccess relocation registers in

187

——

such a way as to allow certain subsets of the possible
accesses to pfoceed without further kernel intervention.
Proper loading of the process relocation registers is, of
course, essential from a data security viewpoint, although
certain classes of errors would not fall directly under the

heading of data security flaws. [7]

In addition t¢ the "restrictions imposed by the

hardware on the valid access types which may be associated

.with a given segment, the kernel has placed additonal

restrictions upon the use of several of the supervisor
relocation regisfers: several are reserved for the
kernel/process commnunications buffer, are initialized by
the kernel to be mapped into the communications buffer, and
cannot be released or reattached by the process. This last
restriction is in some sense unnecessary as long as the
kernel does not place information in the communications
buffer using +the process relocation registers., The
contents of process relocation registers and whether they
aré ;ﬁrrently‘attachqd is bf little interest to the kernszl

as long as 1) the relocation registers reforence segnents

which are legally accessible by the process, and, 2) the

7). If the kernel TMaccidently" attached segment X to
relocation register R with read/write access when in fact
it was asked to attach segment X to relocatior register R
with read access, no security violation would have occurred
-- provided that the process possessed the potential for
attaching segment X with read/write access.

188

xernel does not use the process relocation registers for
accessing the comnunications buffer. [8] Thus the
restriction that the process cannot detach the
commpunications buffer relccation regiéters. is one which
might easily be relaxed. However, since the communications
buffer is not a real segment, once its associated
relocation registers have been released the prbcess has no

means of reattaching then.

The other point of interest in the Attach~Segment call
is +the notion of indirectly attaching a segment to another
process. This ability is necessary for the dipnitiator in
order to establish enough of <the process®s necessary
environment for it to bootstrap itself into core. Once the
process's bootstrapping ccde is in memory and properly
attached, the process can, of courée, be held responsible

for bringing its other compcnents into core.

A number of alternative methods for initializing

[8]. If a process is allowed to detach or ~reattach the
supervisor relocation register which references the
qommunications buffer, then under certain circumstances it
{s conceivable that a kernel memory management trap could
occur. If the kernel were to reference the communications
pbuffer via MTPI, MTPD, MFPI, or MrPD instructions and if
the segment was either nct attached or was attached with
inappropriate access, then a kernal mempory marnageament trap
wvould occur. It is, of course, unnecessary for the kernel
to reference the comnunications buffer in such a fashion
since all process communications buffers are mapped 1into
kernel space as well as process space. It might, however,
be more efficient to access the comnunications bufier of
the last running process in such a nanner.

189

process memory exist but will not be discussed here since
they have not been examined in any great detail. Each
alternative method in the end still rests on the notion of
initially bringing a wninimal amount of code into memory
uh%ch then "knows" egough-concerning process requirenments
to bring in the next piece of proceés code which then knowvs
enough to bring in thernext incremental chunk, etc. The
task of attaching segments is~crucial in this bootstrapping
mechanism, and although a certain restrictive bootstrapping
mechanism could be built into the Create-Process call
itself [9] ; the indirect attach wmechanism is of much
greater generality and dis available at 1little _extra

expense.

As currently designed, the <contrel one has over
invocation of indirect segment attachment may not be as
flexible as might be desirea. A process which 1is allowad
to indirectly attach segments'to another prbcess is allowed
to attach any segments which the given process itself could
have ‘attachéd directly. Currently there is no way of

limiting this indirect attach capability to pérticular

{9]. One could, for instance, place standard process
bootstrapping code into an executable portion of the
connunications buffer at process creation time. Since the
connunications buffer is autcmatically attached to the new
process by the kernel, it would be relatively simple to
require tkat the process begin its execution at the
bootstrapping code so placed. This mechanism would b=
quite limited bhovever, since it is desirable to keep the
communications buffer as small as possible.

190

N

segments: process X cannot have indirect attach segment
access to process Y for segment Z without also'possessing
indirect attach segment access to process Y for segment ¥,
given that Y can attach both R and Z.. Thus ﬁhe.indirect
attach segment privilege is associated on a process basis
rather than on an individual segrment and process basis.
Although this latter abilitj may be desirable it involves
corplications to the strﬁcture of the kernel's undérlying
protection data structure and so has been excluded from the

design.

191

5.4.2 PRelease-Seqment Design

The issue of interest regarding the design of the

Release~Segment kernel call concerns the circumstances

under which a segment can be feléaéed. This issue,
however, breaks down into several inter-related components:
1) what segments can be released, 2} when a segment can or
cannot -be released, and, 3) who can cause a segmnent to bhe

released.

Generally speaking, any segment attached to a given
process can be released by that process, with the exception
of those portions of the supervisor portion address space
reserved for the kernel/process communications buffer.
[10] Additionally; any process X possessing the "indirect
release segment® capability for process Y may indirectly
release any segnent attached to process Y which process Y
itself could have released. This indirect release facility
is not strictly nec;ssary, but it is available with
virtually no extra complications to the kernel code and is

particularly coanvenient for the initiator. {[11]

[10]. GUnder certain circumstances it is conceivable that,
in principle, even this reserved area could be detached.
This particular 4issue is addressed in the section on
Attach-=Segment design. .

[{11). This indirect release capability would be absolutely
necessary should the internal arrangament of the
Destroy~Process kernel call change in such a wvay as to
reguire all segments be detached before the process can be
destroyed. Such a change is likely since it decreases the
amount of code required in the Destroy-Process call.

192

5.4.3 Create-Segment Desiqgn

The most impoxrtant design-questions relative to the
Create-Segment kernel call arise with reépect to 1) how the
segment is allocated, 2) when the segment is to be zaroed,

and, 3) how the system object directories are updated.

In orderlto‘destroy the residue information | resident
in segnents 'which have been deallocated, segments &ust'be
zeroed before they can be reallocated. There are tuc
obvicus tines when this zeroing operation c¢an be
conveniently d&one: 1) when ‘the seguent is éreated
(allocated or reailocﬁted}, and, 2) vwhen the segument is

destroyed (deallocated).

on the surface, hﬁth alternatives seem equivalent. If
all segments are zeroed the first time the system is ever
brought up, and aftervards either zerced at creation or
deletion time, then it would seem to bé~i@possihle for one
~ process to steal residue information from another pPIrocess
- by examiring the contents of newly allocated segments.
Under ideal situations this is true.' Under slightly 1less

than ideal circumstances, it is not.

As long as one assumes that the system never fails =~
that system crashes, hardvare or software induced, never
occur -- the two alternatives are effectively squivalent.

However, ©Once one mMoOvVes into a less idealistic environment

193

where periodic system crashes may be an unwelcome fact of
life, the +total eguivalence of the two alternatives
vanishes. The non-equivalence is easily seen in the case
wvhere one zeroes the seghent at destruction time and the
system crashes while in the process _of destroying the
segment, after altering the directory but before the
zeroing operation is completed. Tﬁe segment then appears
to be free when in fact it is not., Reallocation of the
segment transmits its preiious, non-zéroed conténts to the

new owner, and a security leak has occurred.

Three logical operations nust occur before the
creation or gdestruction of the segment can be considered
compléted: 1) the disk space for the segment pust be
allocated (deallocated), .2) all process access to the
segment must be added (removed), and 3) the segment must be
zeroed. Each of these operations - requires some finite
amount of time. Although the kernel operates in a
non-interruptible fashion, it seems fairly obvious that it
cannot afford to simply hang waiting for all reqﬁired
actions to complete. Hence it is meaningful to discuss thé
segqguencing of these.operations in a wmapner which assunas

arbitrary intérruptibility between tkLemn.

Breaking these three sters down for both allocation
and deletion of segments, allocation requires 1A) disk

space allocation, 2R) capability addition, and, 33) segpment

194

zeroing. Deletion requires 1B) disk space deallocation
{(freeinqg), 2B) capability revocation, and, 3B) segnent

zeroing.

Examining the allocation operation first, clearly 33
must occur before 2A or the passage of residue information
that segment zeroing was designed to prevent can occur if
the system crashes after 2A was conpleted but before.
operation 3& had finished. It is just as obvious that 13
nust occur before 2A or one may have extended a capability
to an object that does not physically exist. Similarly 1A
pust occur before 32 for the -simple reason that it is
@ifficult to zero a segment whose location is not yet
known. Hence the correct ordering among the operatiosns
necessary during segment creation should be: &) segment
disk space allocation, followed by B) segment zeroing,
followed by C) addition of capabilities to the seguent to

the protection data for the new owner of the segment.

For segment destruction the segquence is slightly
different. If one wishes to provide a job restart
capahiiitj over system crashes, then 3B cannot occtt before
28 -~ othervise the original information contained in the
segment which was destroyed is lost forever, poséihly along
with files created by the job. fikewise, 1B cannot be done
before 3B or residue information may be transmitted to the

new CwWner. Thus the proper ordering with respact to

195

segment destruction should be: A) revoke all access to the
segment being destroyed, B) zero the segment, and, C) free

the disk space associated with the segment.

Thus the sequencing of operations is slightly
different 3in the two cases. Which of the two alternatives

is safer (or has less disadvantages)?

Ifnone considers the consequences of a éystem crasﬁ
between any twd steps -of eithei sequence, then a crash
between 2B and 3 results at worst in a non-zeroed partially
freed segment =-- but no security violation since the
'segment is only partially free, A crash between 3B and 1B
results in the complete loss of a segment..but viclates no
data security constraints. [12] If one zeroes the segment
at creation time, then a crash between 1A and 3A results in
a partially ailocated, non-zeroed segment, but no data
security flav results since the segment is only partially
allocated. A crash between 33 and 23 results in a

ron~-£free, zeroed segument.

Both alternatives have nearly equivalent results, but
in the case of zeroing the segment at creation time, the
security necessary actions are not separated in time from
the actions which necessitated those actions. This

alternative =- that of zeroing segments at creation tine

{123. A viability question arises here, however.

196

VN

rather than at destruction time -- was the alternative
chosen to be implemented by the security kernel in the

Create-Segment kernel call,

A

197

4 Destroy~Seqmnent Design

The most interesting design decision relative to the
Destroy-Segmen£ kernel call was the decision to z2ero
segments at creation time rather than at destruction tine.
2 discussion of this dissue can be found in the section
concérning the Create-Segment kernel call design. One
additional poinﬁ is of interest here: under what conditions
can a segment bhe destroyed? Since sone policy decisions
have serious sacurity implications, it is appropriate that

this question be addressed here.

since the decisior had already beer nade to zero the
segment when it is created rather than when it is
destroyed, it is important fhat all possible access
capabilities Telative to the segment be revoked when the
segnent is destroyed. This revocation oi capabilifies is
not merely a matter of deleting entries from the protection
policy database -~ it is not merely a matter of arranging
things so that EVAL no longer answers "yes" when gquestioned
concerning the ségment. Ona must also remove all “dynamic"®

accessing capabilities to the segment.

In the UCLA system, these dynamic capabilities are
inferred fron the attached/unattached status of the
segment. If the segment to be destroyed is not attached to

any process when the Destroy-Segnent call is attempted then

198

the operation proceeds normally, as expected. 1If, however,
the segment being destroyed is attached to some process,
then basically two choices exist: 1) the Destroy-Segment
cail can be made to fail and continue to fail until such
time as -the segment is eventually released from all
. processes having it attached, or, 2) the Destroy-Segument
call can automatically detach the segment from 7 all
processes having it attached and then destroy the segment.
From a strict data - security standpoint, the two
‘alternatives appear equivalent. The notion of least comumon
mechanism, however, suggests that the first alternative is
more desirable since it involves fewer kernel actions than

the second. [13]

More impcrtantly, however, alternative 2 imposes a
scheduling policy on ‘the system which is not strictly
necessary. In choosingrthe second alternative, omne might
find the grain of contrcl over when segments may be
indirectly released insufficient: if process A possesses
the ability to destroy segment B, then it would also
impiicitly possess the ability +to dindirectly | release
segment B from any process C having it attached -~

indirectly release that segment from any process having it

[131. The code for actually detaching segments is needed
by the Release~Segment kernel call already, however. Thus
the "extra" code required bty the second alternative need
not be considerable.

199

attached -- independent of whether process A explicitly
possesses the ability to indireétly release segaents fron
process C. Alternétive 2 thus imposes a priority structure
upon the utilization of segments, If implementad it would
give amny process possessing destroy-segment access to a
given segment preemptive power over any other processes
attempting to use the segment =~- regardless of the relative
importance of those oéher processes. This did not seem a
vise (or even usefui) policy to impose upon the systen,
especially since alternative 1 shows it to be an
unnecessary imposition. Should it prove desigable' to
implement such a _preemptive, priority structure, the
indirect release~segnent ability supported by | the
Release-Segment kernel call, combined with the
Destroy-Segment call should provide a sufficient base from
which %o reconstruct the features offered by the second
alternative, Accordingly, the first alterrative was chosen

as the onme to be implemented by the kernel.

Additionally the reguirenent vas added that the
segment wmust be currently unlocked before it can be
destroyed in order to avoid thes complexities involved in

any attempt to halt am I/0 operation in mid-strean.

200

5.4.5 Sleep Design

——— ——

The Sleep kernel call involved fewer design decisions
than any other kernel «call. As designed it contains no
security checks whatsoever. It merely causes a inmediately
context svap between the process perforning the call and
the CPU scheduler. It was included in the kernel strictly
for reasons of system viability: since processeses are
prohibited fromn executing actual WAIT instructions by the
hardware {14] , another wmethod had to be devised if omne
wishes to reclain CPU time wﬁich would othervise be wasted

in some sort of "wait until there is something to do" loop.

Due to the unusual nature of the pseuﬁo*interrupt
mechanism which was developed and discussed earlier, the
pertinent features éf the Sleep call cannot be synthesized
through a combination of a Send-Message call informing the
CPU scheduler tkat the {sending) process does not wish to
run, followed by an Invoke-Procass call to invoke the CPU
' scheduleﬁ. such a combination can fall victim to the lost
interrupt problem since the process vishing to sleep is

interruptible between the time it attenmpts +he Send-Nessage

[t14]. The ability to execute pachine WAIT instructions
vould not provide the process with any additional power,
however, since the kernel fields all interrupts itscli.

201

the time it attenmpts the Invoke-Process call. [15]

The Sleep call is, however, functionally equivalent to
the Invoke=-Process call except for added information which
is transmitted to the CPU scheduler. If the Invoke-Process
call were to be mnodified to inform the process being
invoked of the'process identity of its invoker,‘ however,
then the Sleep call could be synthesized by a combination
of a Send-Message from the process to the CPU scheduler
indicating a desire to sleep, follbwed by an Invoke-Process
to the CPU schednler, combined with ar ™understanding"
between +the CPU scheduler and processes which invoke it
that "sleep™ requests will be ignored unless followed

reasonably gquickly by a successfaul invoke by the process

wishing to sleep. [16]

f15]. If an interrupt comes in for the process regquesting
the sleep after it has sent the message to the CPU
.scheduler, but before it can invcke the CPU scheduler, and
if +the CPU scheduler has been invoked by a clock interrupt
in the meantime, it is possible that the CPU scheduler will
still think the process wishes to sleep when in actuality
the awaited for interrupt has already occurred.

[16]. How one can define "quickly" in such contexts is nhot
at all clear. Presumably the CPU scheduler would be able
to distinguish between being invoked because of a tiger
interrupt as opposed to being invoked by a particular
process. The CPU scheduler could perhaps assume that 1if
the sleeping process did nmnot invoke it betueen tvo
successive timer interrupts that the sleep request should
be ignored, Although this might cause a sleep request to
be ignored which should not have been, it does not result
in lost interrupts.

202

The Send=<Hessage kernel call was motivated by tvo
preéise needs: 1) din ofde; to make capability faulting a
_reasonable mechanism, the process that received the
capability fault had fo be able to cause the proper kernel

protection‘data segment to be brought inté memory, which
-required that the proceés be able to communicate the nanme
of the necessary seqmnent to the CPU scheduler; and, 2) 4in
order to make linited data sharing between processes via
shared readfwrite segments, some limited communication
facility was necessary in order that the processes involved

agree as to the name of the segment to be shared. [17]

Both cases represent situations where a small anmrount
of information needs to be passed from one process to
another., In the first instance, t+he anount of dinformation
passed need only be as large as that necessary to hold some
representation of a segment name, plus some flag to

indicate to the CPU scheduler that this message concerns a

——-

{17]. This could have been avoided by placing sone rather
severe restrictions upon how shared segments are to be
used. For example, one could require that whenever process
A and process B wish to communicate they do so via shared
segnent A~B, that process B and C coamunicate via segoent
B=-C, etc. Such a solution does not generalize wall,
however, to situations where more tham two processss wish
to communicate with each other, nor does it handle the
question of how process A becomes aware that process B
vishes to ccmnmunicate with it.

203

to swap in a Rernel protection data segment., [18] Is such

a limited facility sufficient to handle case 2?2

A1l that is really required is that the kernel éct in
a manner similar to that of am answering service: Process X
calls the kernel and asks to be connected to process Y over
line Z(where 2 is, for instance, the nane of a shared
segment X wishes td use in comnection with its conversation
with Y}. The kernel then notifies process Y that it has
received a call from process X and that the return call
should be placed over line Z. Nov Y knows that X wishes to
use shared segment Z as a ccmmunications path between then.
Both processes have thus bzen effectively connected one to
the other over line Z. [19] Any other protocols needed for
comnunication are left to the imagination and discretion of
the processes involved. Having set up the initial
dialogne, the kernel is no longer concerned with what is

actually said.

What security issues are involved Lere? At first

glance it appears The only gquestion which has any security

{183]. This is assuming, of course, that the CPU scheduler
is never sent any other type of message. 1f this is not
the case, then this message type flag is unnecessary.

[19]. Tkis is quite similar to the Initial Connection
Protocol (ICP) in current use on the ARPA network. The
only major difference is that the network callee specifies
the new number to be used, rather than the caller, as 1is
the case here.

204

relevance is whether to allow the twWwo processes to
communicate in the first place. Once the decision is nade
to allow the message to be sent, the actual content of the

message is of no interest to the kernel whatsoever.

Perhaps nore at stake here than security
consideration§ are certain viability gquestions. Suppose
one process is.a file ﬁanagemgnt process and that a large
punber of other processes normally wish to comnunicate with
it. It seems most reasonable to expect that the file
management process might be desigred such that it is
prepared to accept messages from anyone. Now the gquestion
arises as to where these messages are going to be placed.
If they appear in the gqueue of the receiver, then the
receiver may find it extremely difficult to insure that its
gueue does not overflow, especiallj if it is very Jlenient

concerning with whom it is willing to communicats.

If it is more discriminating (would accept mnessages
from 6nly one or two specific processes, for instance) and
if some mechanism existed vwhereby it could prevent
processes from sending more than one message at a time,
then the queue overflow problem might be effectively dealt
with provided that the gqueue itself is physically large
enough to hold the combination of the number of outstanding
I/0 request notifications, pending interrupts, and the

requisite number of messages. However, clearly the gqueue

205

will not be large enough in the general case.

#hat can be done then? The desires of this
hypothetical file management procass seemn rost reasonable.
Tt would not be too difficult to devise some sort of
. locking mechanism with regard to messages which would
- prevent a given process froum sending multiple messages to a
given destination -- effecfively a one-at-a-time capability
which is revoked once exercised and reinstated only at the
'reguest of the receiver, for instance. This, howéver,
still does not solve the gquene overflow problem of our
hypothetical file management process. There still is not

enough quene space to avoid overflow in all instances.

Several alternatives came to mind: 1) do not put the
nessage in the gqueue, 2) limit the number of messages a
given caller can have outstanding, store the message with
the sender, and provide a kernel call to move the message
to the receiver's space when so requested, °'3) store the
pessage with the receiver and limit tke number of messages
it can receive at any given time, effectively refusing to
send messages to him when his allotted message space is ’

full.

Alternative 2 reguires yet another Kkernel call, and
hence is probably not reasonable unless all else faills.

Alternative 1 is embodied in alternative 3 (and in

206

TN

alternative 2 as well), thus both can be inplemented by the
third alternative if it contains no serious problenms of its

QWD .«

The major drawback possessed by the third alternative
is that it requires additional space be reserved in the
kernel for these message slots since the logical place to
put them is in +the shared kernel/process communications
segnment. [20] This need not be a serious handicap.,
however, ‘if sope shall upper bound can be-placed upon the
size and number of these message slots. 1If the restriction
is imposed that a pmaximunm of one messagde cain be sént fronm
process A to process B a£ any one time, then it is
relatively easy to place an upper bound on the paximun
punber of nacessaﬁy slots: simply R*N, vhere N is the
maximum number of processes allowed to be active at any
given moment {OT N* (N-1), if a process is not allowed to
send messages to itself). If one then chosses the maximun
size of a message slot to be relatively small, then the

space problenm virtually disappears.

Placing the message slots in the comnunications

{20]. These message buffers nust at least remain
core~resident at all times since messages, like interrupts,
occur asynchronously.

207

segment eliminates the need for an additional kernel call
in order to read the messages since the process can now
read them directly. The "“one-at-a~time"™ property of the
messages can be easily implemented by placing a full/eapty
flag for each message slot in a process-writeable portion
of the bommunicationsfl¥segment, which the kernel
interrogates before placigFEa new message in the slot. If-
the message slot is full,‘%hen the kernel sinply refuses to
copy the message from fhe sehder to the receiver. This
provides a double level of protection for the receiver

since it can now inhibit messages from processes which

possess the potential of communicating with it. [21]

.’tl.

[21]. Effectively there are two ways a Send-Message call
can fail: 1) because the sender can never send messagas to
the intended receiver; and 2) because the intendsd receiver
is not currently prepared to receive messages from the
sender. This will probably prove to be o0f great utility
vith regard to processes such as the initiator or the file
management process which are potentially willing to listen
to anyone,

208

St ‘
\=hser processes was necessary: 2) sore mechanism was needed

I

The Attach-I/O-Device kernel call had three primary

!potivations: 1) a mechanism for allocating I/0 devices to
i _

bt e
iito M"pass"® consoles from their initial ownexr, the initiator,

A

4T
1

to their proper owner, the Vi to which they should belong,
and -3)' some mechanism was necessary to provide for the
returning of consoles to the initiator when the user wishes
to bhalt his current VM or attach himself +to another

processe.

These needs could have been accomplished through two
kernel calls =-- one to attach an I/0 device to one's own
piocess and another to attach a dsvice currently attached
to one's own process to ancther process. I+ was, hovever,
fairly easy to collapse the fwo calls into a single kernel
call by supplying an additional parameter: the name of the

process to which the device is to become attached.

Once the decision to merge the two possible attach
calls into a single attach call had been made, the gquestion
of how a process "discovers" it has been given a console
arose. This issue was present already if an "“indirect

attach console " call were to be implemented. The most

208

obvious solution might have been to send a dynamic,
asynchronous (to the receiver) message to the new "owner",
telling him of his acquired device. Such a solution,
however, required finding a place to.put the message. The
wrap-around gueue used for sending interrupt notification
seemed a likely candidate, but if a process can receive an
arbitrary number of "attached console" notifications, it
becones exceeding difficult for the process to insuré that
its queue does not overflow. The process can no longer
estimate the maximum number of entries which may be thrown
into the gqueue at any poiqt in time. This sclution would
also make it possible for other malicious processes to
‘drastically affect the performance of a given process by
causing its gueue to overflow, if one were to extend the
generalized "indirect-attach" capability to processes other
than the initiator. (User processes, of coufse, need to be

able to attach consoles to the initiator.}) -

Other oﬁvious alternatives were no more attractive: 1)
another message passing area could be all&cated for the
process of a ﬁixed size with sone sort of flag to indicate
vhether - it is full or not, or 2} the kernel could manage a
number of "message" queues in its own space and provide a

mechanism whereby a process can read its nessages. -

The first alternative is unsuitable in the case of the

initiator, unless the size of this message passing area 1s

210

large enough to hold a number of messages egqual to the
paximum number of consoles in the systen. Otherwise it is
possible for the initiator to "piss® notification of a

reattached console.

The second alternative reguires additional gueue
management in the kernel, complete with overflow probleus,
and also requires an additichal kernel call to. let the

process read its messages.

The mechanism finally devised is a derivative of ths
additional message area scheme, but in its most simplistic
form. Enough space is allocated in the shéred
xernel/process segment for every device in the system to
have a slot. The key here is that each "slot™ consists of
only a single bit, indicating whether the device is
currently attached or not. This makes it relatively siumple
for the kernel to notify a process that a device has beerm
attached or detached -- no clumsy links or pointers to
follow down, no dueue management or ovérflow problems to

bother with. {22]

It is also rather sinmple and straight-forward for the
process to notice that a console has bacome attached: it
sinply keeps its own record of which devices it thinks are
currently attached and periodicaily compates its own list

with the kernel's list of attached devices and updates its

211

own list accordingly. The process no longer needs to worry
about its gueue overflowing simply because scona otler

process has passed it a console.

[223. This ™attached device" notification could be
conveniently sent to the new ownar by the process causing
the device to be attached via SEND-YESSAGE, if the 1two
processes are allowed to ccmmunicate. However, removing
the notification from the attach c¢all implies that the
correct functioning of any process which has devices
attached to it by other processes may now be dependent ugpon
the correct functioning of other processes. This is an
important consideration, especially with regard to the
injitiator which will typically have devices reattached to
it and which needs to be eventually verifiad. For this
reason, the decision was nade to retain the the
potification in the attach call.

212

2 Release-I/0-Device Design

The kernel has not particularly concerned itself with
any of +the gory details of device allocation == not even
for dedicated devices. If a process is allowed to attacﬁ a
given device and that device is currently unattached
(freé), then the kernel simply allocates the device to the

process which requested it. (23]

It would be unrealistic, howevef, to assume that all
processes behave correctly all of the time, and it is quite
conceivable that under certain circunstances it w@ight
become desirable to be able to detach a given-device from
its current owner without neceséitating-the restarting of

the entire system. [24]

How might this be done? Two immediate alteranatives ars2

{23]. One could build a wore sophisticated device
allocation scheme outside of the kernel, hovever, Dby
creating a device allocaticn process which would initially
nouwn" all dedicated devices not belonging to the ipitiator.
This device allocation process could then "pass® devices
around in a fashion similar to the initiator. '

[24]. Such a desire is not at all unreasonable. One can
easily imagine a situation where a malfunctioning virtual
pachine has managed to "tie up" the usen console so

effectively that the user is unable to communicate with the
virtual machine monitor long enough to halt the virtual
machine. In such instances, one would like to be able to
walk up to another console and by conversing with the
initiator eventually salvage the user's original console
and job.

213

obvious: 1) the Release-Device kernel call could take as an
extra argument the name of the process from which the
device is to _Le released, and special processes (the
initiator, for instance) given an "Indirect Release Device"
capability; or 2} a .detach device facility could be

inplicitly included in some other kernel call

{($top-Process, for instance).

Just what is involved in releasing an I/0 device?
Nothing at all really, if the device is inactive at the
time. If the device is currently active; however, it is an
entirely different story, since attempting to stop an 1I/0
operation in mid-stream often causes unpredictable results.
Thus, one would much rather have the device stop of its own

accord before attenpting to release it.

But how is it possible to insure that the device will
eventually stop? How can one insure that the owner of the
device does not somehow "smneak in " while the kernel is
vaiting for the I/0 to complete and manage to start another
I/0 operation on the device, so that the device never

really quiesces?

Let us stop for a moment and consider the problen
logically. The fact that a Release-Device call for the
device was made and found the device busy implies that the

process to which the device was attached was not runpning at

214

the time (unless, of course, the process vwhich requested
the release has the device attached to itselr). UNow, if
one could insure that the process to which the device is
attached will not be allowed to run again, then it would be
impossible for any additional I/0 to be initiated on the

runaway device.

There is a relatively straight-forvward way of insuring
this: One meﬁely arrapges matters 5o that the CPU scheduler
never invokes the process again until after the device has
finally been recoveréd. There are essentially tvwo ways of
doing thisﬁ 1) one can depend upbn the "good will" of the
CPU scheduler and hope that if one asks the CPU scheduler
not to invoke the process that the scheduler will eomply
with +that <reguest; or 2) one can insure that the CPU
scheduler gar pot invoke the pfocess, even if it wishes to
do so0, by revoking the schedulerfs "Invoke Process" access

to the process in question, at least temporarily.

Two kernel design principles are in c¢onflict here.
The principle of winimization of maxinum damage suggests

that the second alternative is the safer of the two. [25]

£25)]. One cannot, however, keep the CPU scheduler 1itself
from running sirnce it will periodically be invoked by the
kernel itself. On the other hand, it is unlikely that one
would ever have occasion to grab a device away fron the CPU
scheduler anyvay, since it is rather unlikely that the CPU
scheduler would ever have an attached device in the first

place.

215

This latter function, that of making a given process
uninvocable, is precisely the function performed by the

Stop-Process kernel call.

on the other hand, the issue being addressed here is
strictly -one of viability and not one of dﬁta security.
The worst that could hapfen here is that a malevolent or
malfunctioning CPU scheduler could deliberately continue to
invoke a process which the initiator (for dinstance) is
trying desperately recover a device from or destroy. The
maximum damage to the system is that a process night be

able to prevent itself from being destroyed.

Thus the principle of 1least coanmon mechanism (the
"keep the kernel small® piinciple) suggest that the
function performed by the Stop-Process kernel call can be
safely excised from the kernel if no other data security
induced motivations for the Stop-Process call can be

advanced. [26]

—— —

[26]. Indeed, it seems quite likely that the Stop-Process
call wmay be removed. The decision 1is not yet final,
‘however.

2106

5.5.3 Start-1/0 Design

. ——

one of the most obvious security relevant aspects of
almost any operating system is its 1/0 mechanism. If one
wishes to demonstrate that it is impossible for
unauthprized users to gain access to the contents of an
important filé, it is cléarly necessary to demonstrate that
it is Ainpossible for that file to be reah by unauthorized
users. If the machine's basic 1/0 hardware 1is Such that
this restriction cannot be enforced in the basic hardware,
it becomes necessary to provide the requisite protection in
the system software. Since virtually no protection is
provided by the I/0 hardware on the ii/us, our kernel is
given tﬁe task of ensuring that no I/0 initiated by any
usexr process can compronise the security of any information
of another user without specific authorization being

indicated in the security policy of the systen.

Due to the nature of +the 11/45's 1/0 structure and its
lack of specific I/0 instructions, the kernel usurps all
170 capabilities from supervisor and user processes [27] by
eliminating access to the uppernost 4K of the machine's
feal penory for user and supervisor processes through use

of the mnmemory management facilities of the machine. 1In

(271. on other machines this usually happens
"automatically® since I1/0 related instructions are usually
privileged.

217

doing so we have taken from the user his ability to perform
I/70 directly. A progran which is unable to do I/0,
howvever, 1is severely rest:icted in its usefulness.
Accordingly, we were forced to substitute an alternate
nechanism to replace the origiral I/0 facilities now

usurped by the kernel.

In removiﬁg the usual I/0 mechanisms, we replaced them
with several system calls (kernel calls, analogous to
supervisor calls or SVC's in other systems). These Xernel
calls initiate I/0, request the initiation of I/0, and
return status information to the procéss performing thke
call. In many cases the interface provided by the kernel
Start I/0 call closely resembles that intérface existing on
tke real nachine. In other cases, hovwever, the interface
is much simpler than the interface supplied by the bare

hardware.

The kernel contains a set of "“device-driver-like"
routines for each device type. These device-dependent
routines are used in determining the validity of I/0
requests for the corresponding devices as well as in the
loading of the individual device registers necessary for
the initiation of the I/0 itself. Although each new device
type requires a set of kernel routines, many of the
required actions are ccunnon for all Jdevices and a

significant amount of code sharing among them is possible.

218

For instance, the UCLA INP hardware interface expects
to be supplied with a starting pointer and an endirng
pointer from which it determines where to get or put its
data, as well as the number of bytes to be transfered, with
all sorts of 'funny' conditicms occuring when the- starting
or ending address is odd. The interface to the IHP
provided by the- kernel is muck simpler, although tﬁe‘
conplexities of progranning the real hardvare interface
still remains in the kermel itself: the user process
specifies a combination of segment name, sSegment byte
offset, along with a byte count for thé number of bytes to
be transferred and the kernel then transforms them into the

form required by the actual hardware.

One might argue that it is uannecessary for the kernel
to perfora tbis translation, that indeed it would reduce
the complexity of the kernel code and hence ease its proof
if the user process were regquired to do the translation and
the kernel thereby avoid it. This is a reasonable
suggestion which might have been implemented were it not
for the sinmple fact that the kernel, for security reasons,
is required to vérify that the real addrasses to be used by
the I/0 device fall within the address space of the process
doing the I/0 and will not trespass into areas belonging to

other processes.

219

Also, some address translation 1is required anyway
unless the process is allowed to know where in real memory
its virtual addresses reside. Such knowledge would result
in additional complexity when éuapping is introduced intc
the system, as well as pushing the added burden of keaping
the wuser processes informed of their real addresses onto
the kernel. Rather than do so, we chose +to perform a
singie level of virtual tb real address mapping inside the
kernel, a process which is greatly sinplified by couching
procesé virtual aﬁdresses in standard forms rather than in

conpletely virtual, device dependent ones. [28]

ﬁOSt 1/0 operations have several features in common,
regardless of the physical I,/0 device involved. They
¢perate upon some location in .memory, transfer sSoR2
specified number of bytes, either cause or fail to cause an
interrupt to be generated, and perform some well-defined

operation on the memory locations involved.

Accordingly, the standard arguments to the kernel

[{28]. HWe could have allowed the process to specify its
virtual addresses in the appropriate davice-dependent
format and then converted those virtual addresses +to real
ones in a device~dependent fashion. This is a somewhat
mnessy operation in general since device register formats
are non-standard. The coaplications of performing 18-bit
addressing on a 16~bit machine enter here in fell force.
Here the extra 2 bits of the address arce positioned within
the device registers in such a way as to make even Wginplew
double-word arithmetic all but impossible.

220

N

——

Start-I/0 call provide these pieces of inforeation. The
starting memory location is identified by a combination of
segmeﬁt name and segment byte offset (from the beginping of
the named segment). The number of bytes to be transferred
during the operation is given as a byté éount. whether a
pseudo-interrupt is to be generated is specified by an
interrupt flag, and the operation to be performed upon the

memory- locations is given by an operation type.

221

5.5.4 Status=1/0 Design

The Status-1I/0 xernel call involves few essential
design decisions. one of the major guestions, however, was
whether the call itself was indeed necessary. Since
interrupt notification entries contain device status
information, a separate kernel call to profﬂﬂe ‘device
status information is in some Sense redundant. ,:

However, since the original bare machine I)O itself is
capable of being wutilized in both polling and interrupt
driven modes, it seenmed reasonable +to provide equivalent
facilities. additionally, if ore required all I/0 to be
performed in interrupt mode only (from the viewpoint of the
virtual machire monitor) without providing any facility for
jevice status interrogation, this places a perhaps
unreasonable constraint on the virtual machins operation.
If a VMM has no means"of determining real deyice status
while the I/0 is active, it has no way of refléﬁting status
changes back to the virtual mpachine. until the I/0 has
completed. The virtwal machine, however, might have beeﬁ
designed in such a way that it might "time out" certain I/0
operations if they did nct complete within a certain time
jnterval. {29) 1f the Vil itself has no way of obtaining
status information on devices which have not yet completed,

then reflecting the information which results in such

tine-out activities to the Vil becomes more complicated.

222

The actual code for the Status-I/0 kernel call,
however, did not represent Anew code to be added to the
kernel to any great extent. T?he code to <return the
required information to the user was already necessary for

the kernel to return interrupt notification.

The only mnoderately interesting design decision
relative to the Status-I/0 céll vas the decision pot to
allow processes not in direct possessionAof a shared I/0
device to do status calls on the device. The consensus was
+hat little use gould be made of such a capability and that
the conseguential complication inr the kernel is

unnecessary.

[291. Such is the case with certain network type
protocols. since one of the most interesting virtual
pachines we are interested in running communicates with tae
ARPA network via the established protocols, it is important
to at least consider what is required here in order to
allow the virtual machine momitor to be able to virtualize
such time-out behavior,

223

6 Kernel Shared I/0 Rrimitives: Design

Reqguest=-1/0 Desiqgn

The Reguest-I/0 kernel call.was directly mpotivated by
the shared I/0 mechanism. It is the fuhction of a shared
de#ice scheduler to accept I/0 requests from other
processes wishing to utilize its device, to decide Wwhen
those requests should be allowed to proceed, and to
actually cause the final initiation of the process
requested I/0. In order for any of-this +o work, however,
i+ was first mnecessary to devise some means of "sending"
the request to the appropriate device scheduler in the
first place. This was not so simple a task: Thus far no
copasunication mechanisam between processes existed, and a
large amount of thought had to be given as to the "best"

way of handling the problen.

Furthermore, uniess one is willing to take the
correctness of any such device schedulers on faith, this
must be a rather peculiar sort of message being sent =-one
that 'can be read, Dut not written, and yet one that is
éasily distinguishable by the kernel as a process-requasted
I/0 regquest. It is necessary for the kernel to be able to
determine that the 1I/0 toO bé done by the device scheduler
on +the process's behalf, is indeed the I/0 which the

process itself originally <requested, OT that, for that

224

‘matter the process ever made sugh a request in the first
place. If this were not the case, it would be possible for
a malevolent device scheduler to arbitrarily initiate I/0,
ostensibly on another process's behalf, which was never
even requested by him, thus subverting the pro;ess's data
and invalidating any process isolation guarantees which

night have been claimed.

What is needed, then, is a message which can be read
by the device scheduler, which can be neither faked nor
overuritteﬁ, and can be earmarked ﬁy the kernel as a
"legal" indirect I/0 request., (But not necessarily a valid
one =~- the original réquestor pay be trying something it is

not allowed to do.)

The concept of locked-boxes was devised to mneet the
consfraints mentioned above, Wken a process executes a
Request-I/0 kernel call, as an argument to the call it
gives a conplete I/0 request in a format identical to that
required by the Start-I/0 call. The I/0 request 1is not
itself checked for validity at the time of the execution of
the Request-I/0 call, but is merely bundled up and placed
somnevhere where it cannot be modified after first prefixing
it with the process name of the regquesting process. The
kernel "remembers*" where it has put this request and in the
locked~box 1itself is some indication of whether the

locked-box <currently contains a request. Some indication

225

of the location of this locked box (its name, an index,
etc,) is then sent to the cwner of the shared device. When
the scheduler starts the request via Start-Indirect-I/O, it
specifies the request to be started by naming the locked
box. If the box so named contains a request for the device
owned by the scheduler, then the start is performed and the
pox freed so that a second start attemnpt on thejpart of the

scheduler will fail.

Two major guestions arise in connection with shared
I/0 requests and device scheduling: 1) how does the device
scheduler gain access to the information it needs to
schedule the dsvice; and 2) where should these locked-boxes

be kept.

The first gquestion, then, is how the scheduler for the
shared device is provided with enough information about the
request to do some sort of reasonable scheduling on the
regquest other than a simple first-come-first-served

mechanisan, [30]

f30]. If first-come-first-serve is the only ¢type of
scheduling possible based on the information available to
the scheduler, then it 1is probkably more reasonable to
eliminate the device scheduler (and +he extra overhead it
involves) entirely and force processes which wish to use a
shared device to coapete for it, just as if it were a
normnal, dedicated device. One would probably wish toO
enforce +that the device be released automatically upon
completion, however, in order to prevent a single process
from tying up a much-needed resource indefinitely.

226

As currently specified in the Request-I/0 call,
however, the locked-box containing the reqqest'contains
only logical device addresses-- that is, segment names and
6ffsets -~ which must somehow Dbe mapped into physical
device addresses in oxder .for any reasonable
device-dependent scheduling to be !done. It is probably
unreéasonable to assume that every device schedulér has
enough accurate, up-to-date information conceraing all
possible segments on its device to be able to construct
this 1logical +to physical mapping itSeif. It is cleaf, on
the other hand, that the kernel must possess this ability,

since otherwvise the Start-I/0 call would never operate

properly.

The device scheduler must then sonehow be given this
physical address information. This extra information could
be put into the locked-box.itself. ' However, any physical
address Ainformation placed in the locked-box for that
purpose must be in addition to the logical address
information previously coatained in the locked-box, since
the logical information is reguired by the Start-I/0 call.

Alternatively, this physical address information could be

cornpunicated to the scheduler by some other means,

If the neceded information resides in the lccked-box

along with the rest of +the original request, then the

227

to release the relocation registers vhich it has pointing
at the lock-box area, then that is its prerogative -~ it
has just thrown away information which might have been
useful. The scheduler cannot cause the kernel to start an
incorrect shared device reguest merely by giving away its
own access to the locked-box segment and reattaching
something else in its place. The kernel's locked=-box area,

however, probably mneeds to be in “nice®" 32 word hlocks so
t+hat locked-box areas can be split up among various
schedulers if one wishes to block the covert communications
channel which might arise from allowing one scheduler to
read another scheduler's locked boxes. [33] Tiis
effectively says the locked hox'segment is not a Mreal"
segment in much the sare vay that the process
communications buffer is not a real segment -~ it is not
the proper size for a real segment -- otherwise lock-box
segments wvould rapidly eat up all available memory since

they nust remain locked into memory for the same reasons

[(33]. It wpight be possible for the scheduler to
comnunicate extremely limited bits of information to
processes which use the device it schadules by the
scheduling of the reguest =- vhich can be sensed by the
process since it is mnotified when the request is both
initiated and conmpleted. The following might be possible:
user X has written a disk scheduler with the property that
j+ will start a reguest from process X only when device
scheduler Y has a reguest for segaent 2 frow process ¥. In
this manner process X nay te able to sense when W is using
z.

229

—

scheduler needs some means of accessing that portion of the
locked box, so the guestion arises of where the locked=-box
should be stored. The most convenient place from the
scheduler's viewpoint is somewhere within its virtual
address space., However, as pfeviously noted, it nust
reside in a portion which cannot be modified by tge
scheduler. [31] This would seem to be a rather strange
segnent uanless it is itself part of the process
comnunications buffer, since ‘'normal" segments can be
freely attached and detached, and it secens extfemely
anreasonable to make special cases of devicel schedulers
tcoded" into the kernel. (32] sSince the kernel always
#"100ks® at locked-boxes through its own space rather than
the process space, the kernel will always read exactly what

it placed im the locked-box. Thus if the scheduler decides

(31]. Effectively, some segment of the scheduler mnust be
attached with read-only access in such a manner that it nmay
never be attached with read/write access.,

{32). Special cases are "coded" into the kernel already in
some sense, but not in the same npanner. Certain process
already possess special privileges. These privileges,
however, are strictly a function of policy, as represented
in the policy protection éata, and can be changed fairly
easily, although such changes may drastically reconfigure
the manner in which the system operates. The sort of
checks which might be necessary here would be on the order
of: is process X a device scheduler? If so, then 1)
automatically attach supervisor relocation register 6 to
lock-box area F(X) with read-only access, and 2) never
allow X to attach that area with reaéd/write access.
Actually 2) is not reguired as long as the kernel nmnever
allows any process read/vwrite access to lock-box area F({X).

228

the kernel must be able to access then at all times. ([38)

All of this mess can Le avoided, however, if one does
not put ‘the physical address jnformation the scheduler
needs in the locked-box itself. If +this information 1is
compact enough (and one suspects it is or can be made s0),
then it can probably be squeezed into a normal send-message
- type message slot and bhandled similarly. I£f the requesting
process possesses the necessary physical information [35]
" then it could send the message to the scheduler directly.
If the process lies about the information, then the vworst
that could happen is that the device is scheduled
incorrectly, since the kernel will do the proper thing
regardless. The result of the scheduler being lied to
about the physical address information by +the user 1is

precisely the same as if the kernel had misinformed it.

In fact, one can remove the purden of telling the

scheduler about the locked hox from the kernel entirely if

[3a41]. this would not have to be the case if the
Request~I/0 call fails if the lock-box segment is not
core~resident and the Start-Indirect~-1/0 call fails
likewise.

{35)]. It may not, for the same reasons that the scheduler
doesn't. However, the process might be expected to KNOW
puch more about the segment, since the segment, after all,
presupably belongs to it.

230

one lets the requesting process do this be means of a
send-message to the scheduler, provided that one identifies
wvhere the request will be placed in such a manner that the
requesting process can communicate that information to the
scheduler in its message (so that the s?heduler knows what
to say to the kermel in the Start-Tn urect~I/0 call). If
the process lies about the locked-box;jthe results are no -
nore disastrous than if the scheduler picked a random
iocked-box and tried té do a Start-Indirect-I/0 call on it,
regardless of whether it had any reason to believe that

locked box contained one of its requests.

The following conclusion can be made from the
preceeding observations: where locked boxes are kept is
irrelevant as long as 1) they can never be written by any

process {36] , 2} a convenient way of naming lockead-boxes

A

iy

is devised, and 3) the physical addre{f intormation is sent
to +the scheduler along withk the locked box name. Sending
of the éhysical address information and the mname of the
Jocked box can be done either implicitly by the kernel in
the Request-I/0 call, or, explicitly via a Send-Hessage
call by the requesting process., The kernel, hovever,

probably possesses nore accurate physical address

[36]. Not even the original requestor can be allowed o
nodify the locked-box, since the Xkernel deteraines the
pProcess identification of the original reguestorx from the
contents of the box itself 1if that information is not
implicit in the box's location.

231

- b ke e e im e RTINS e AR ek R s i L B8 g =

information thanm the process aund could relay this
jnformation to the requesting process as part of the return

information in the request-I1/0 call. (371

Although it slightly complicates the kernel, it is
probably safer and more <convenient to have the kernel
notify the scheduler of the reguest and physical device
snformation concerning the request auntomatically. This has
the additional nice property that the code can be
efficiently shared in the Swap-In and Swap-Out calls as
well, effectively causing swap~In and Swap-Out to look like
a Céu scheduler Regquest-I/0 call with a kernel constructed

request.

{37]. This is another possible commanications patk,
however, unless one checks to make sure that tha requesting
process possesses the required access to the sagaent at the
time of the Request-I/0 call, as well as at Start=-I/0 time,
Otherwvise Reguest-1/0 calls could be used to S&ise the
location of arbitrary segments. There are a nunber or
arguments against requiring the process == OL even allowing
the rprocess-=- to dget at physical addresses cf logical
segnents which are concerned with covert communication
channels.

232

2 Start-Indirect-I1/0 Design

The Start-Indirect-I/0 kernel call is the final step
in the sequence by which processes which do no posssss full
access to a given shared device cause 1/0 to that device to
be initiated in their behalf. The normal sequencing of
operations here is a Request-I/0 by process A to device B,
eVentualiy followed by a Start-Indirect-I/0 call for

process A executed by the process which owns device B.

Execution of a Request-I/0 kernel call causes the
request to vbe placed in a locked-box where it cannot bhe
‘modified by any process. Then tha owner of the device for
which the regquest is made is informed that it has a pending
request., Eventually the owner of the device decides to
start +he requested I/0 and issues a Start-Indirect-1I/0
kernel call referencing the locked-box containing the
reguest. The kernel first checks that the locked-box is a
valid one and that the given device is not busy and 1is
attached to the Start-Indirect+I/O regquesior, then treats
the request as if it had been a normal Start-I/0 requested

issued by the original reguestor.

The Start-Indirect-I/0 kermel call itself posed
relatively few interesting desigﬁ questions. Most of the
interesting points concerning the initiation of indirect

I/0 operations occur ¥with regard to the Regquest-1/0 call

233

and have been discussed in the previous section.

Two points are of interest, however. The first
concerns the type of errors which are (for could be)
reflected back to the process attempting the
Start-Indirect-I/0 kernel call. [38] fhe requesting
process can be held entirely responsible for two categories
of errors: 1) Start-Indirect-1/0 calls which are attempted
while the given device is ‘still busy, and
2) Start~Indirect-I/0 calls which reference an invalid
locked box. These two classes of erroﬁs can be totally
attributed to the mglfunctioning of the requesting process.

and hence are reflected back to that process.

There is a separate cléss of errors, howvever, for
vhich the Start—;ndirect-l/o requestor ¢an not be held
responsible -- namely those errors which are discovered
when the actual Start-I/0 call is pefformed. Errors
falling within this third classification result not <from
errors in the Start-Indirect-1/0 cali, but rathef fron

- previously undetected errors in the Treguest specified in

{38]. This process is usually the device scheduler for the
shared device, but not necessarily: any process cal
mattempt® any kernel call; whether that atteaopt will
succeed is an entirely different matter,

234

hY

Reguest-I/0 call. {[39] The desire to reflect this last
class of errors back to their original source (the original
requestor) vas the motivation behind placing kernel <¢all
return information in certain cases in the process queue
rather +than in fixed locations in the communications
buffer. [40)] This information cannot be trusted to be sent
back to the requestor by the device scheduler via a
Send-M¥essage call since the device scheduler w&uld no

longer be a communications sink. f[41]

The second point of interest concerns the grain of
control which the initiator of the Start-Indirect-I/0 call

is to have over the operatién of the device it is

— -

[39]. These errors are uridetected only because the Kkernel
does not examine the contents of the request in any detail
when the Regquest-I/O0 call is performed. No validation of
the request is made in the Request+~1/0 call. Security
checks made during the Request-I/0 call cannot be assured
valid at the time the Start-Indirect-I/0 call is periormed.
Hence the security checks must be repeated at actual
Start-I/0 time and so any validation of the regquest nade
during the Reguest-I/0 call is redundant.

{40]. This phenomenon is discussed in nore detail in
section 3.6.

[41]. See [POPEK74A] concerning conmunication sources and
sinks.

235

scheduling. The question to be answered here was whether
it vas necessary f(or even desirable) to allow the
start-Indirect-I/0 requestor to specify the same 1type of
control options which would have been available had the
request been a wpormal® Start-I/O rather than an indirect
‘ore# More specifically, should the requesting process be
aimgwed to spedify whether it wishes to receive an
iéiérrupt when the I/0 completes? The decision was nade
that a device completion interrupt would always be sent to
the device scheduler for the shared device upon device
corpletion. [{42] Whether _the original reguestor (the
process which did the Regquest-I/0 call) alsc receives an
interrupt upon the completion of the requested 1/0 depends

on whether an interrupt was requested in the original

request., [43]

A
Ly
ol

- -y

t42]. This makes matters slightly simpler in the kernel,
but not significantly. :

[43). 1t is doubtful that much use can be made of shared
I/0 witnout reguesting ap interrupt, however. A Process
which does not have the device attached cannot do status
calls to poll for device completion, Thus if an interrupt
is not requested in the original Reguest-I1/0 request, the
process has no real way of knowing when the I/0 has

completed.

236

6. Conglusions

The overall désign of the UCLA Virtual Hachine Systen
is now completed. A significant portion of the kernel has
peen flowcharted, coded, keypunched and submitted to
heuristic debugging. The major pieces of the Vvirtual
Machine Monitor have been written and tested. Several
virtual pachines, including the DEC DOS single user
operating system, have been successfully run under the
systen, as vell as several sets of wyirtual"® CPU
diagnosticse. The verification of the kernel code is

undervay.

In general the original design goals have been
reasonably met: 1) already the systenm has proven useful
enough to gather sobe iﬂtereéting facts concerning
neypical" operating éystgm performance patterns; 2)
although it is already' fairly obvious that additional
pardware assistance for the virtual macﬁine monitor will be
necessary before systenm performance is high enough to
service a sizalkle user compmunity, it seens likelj that
systen performance will be more than tolerable with such
modifications; [48] and 3) the system has been reasonably
inexpensive, having gone frem original design to near
complete ioplementation in a relatively short period of
time. It is not yet certain whether the primary goal of &

verified systemn will be met, since the verification effort

237

is still underway. TYet it does seem guite likely that the

verification task will scon reach a successful conclusion.

Two significant rortions of the system, the initiatoer
apd +the updatsr, still remain to be designed in detail.
The kernel's underlying policy protection data structure
(the structure interrogated by EVAL) still remains to be
designed in detail. phe mechanism by which t+he updater
controls changes inm this protection data and the necessary
xernel support for such operations structure still remain
to be designed. several "convenience" changes in the way
that capability and page faults are handled are currently
ander consideration and require detailed examination as to
their feasibility and possible jmpacts on the system- as a

whole. [45]

only time and grueling peasurements will tell vhether

the initial system goals have been truly met. The success

[4t]. This is not a systen design fault, however, but
instead is a direct result of the daifficulties involved im
virtualizing the 11/45 hardware.

{u45]. These possible changes involve making capability
Faults totally transparent to the faulting process. The
fault would instead be reflected to a special process {the
cp0 scheduler, perhaps) to be dealt with, and the faulting
process would be blocked until the proper capability
information is brought into memory.

238

or failure of the verification attempt will be the only
true test of the systenm design, If it is succeséful, then
much Hill.have-been learned, and if it is not, thern much
still will bhave been learned; Fither way, the ressarch

will have been worth the effort put into it.

239

o~

- P — e b

1. {DEC73a] Digital Equipment Corporation. PRDP 11
bPeripherals Bandbook, pigital Eguipment Corporation,
Maynard, Massachusetts, 1973.

2. { DEC73B] Digital Equipnent Corporation. EDP 11/45
Procassor Handbook, Digital Equipment Corporation, Maynard,
Hassachusetts, 1973.

B 1 :)

3. [DECT4] Digital Equipment Corporation. gQpticon
Descrivtion: Virtual Machine Extensions fo the PDP=11/85,
Document N¥o. CSS~MO-F-90-4, Digital Eguipment Corporation
Computer Special Systems, Maynard, Massachusetts, 1974.

4. { GOLDBERGT74] Goldberg, Robert P. "Survery of
virtual Machine Research,” IEEE Compuisr, vol. 7, No. 6,

5. [IBM1] international Business Hachines
Corporation. ZIThe Consideratiohs of Data Security in a
Computer environment,Iinternational Business Machines
Corporation Data Processing pivision, White Plains, New
Yorke.

6. { PARNALS72B) Parnas, D. L. ©On the Criteria To Be
Used in Decomgosing Systenms into Modules," Comnunications
of the ACH, Vol. 15, No. 12, pp. 1053-1058, Decenber
1972. .

7. [PARNAS723] parnas, D. L. "A Technigue for
Software Module Specification With Examples, "
Connpunicationg of the ACH, Yol. 15, No. 5, pp. 330-336,
May 1972. .

8. [POPEK74C] Popek, Gerald J. and Charles 5.
Kline. "The Design of a Verified Protection Systen,"
Proceedings of the International Horkshop on Proteciion in

e i e

Operating Systens. Rocquencourt, France, August 1974, ppe.
183~ 196.

9. { POPEK7UB] Porek, Gerald J. and Robert P.
Goldterg. "Formal Regquirements for Virtualizable Third

240

Generation Architectures," communications of the AC[, vol.
17, ¥o. 7, pbp. 412-421, July 1974.

10. [POPEKTU4A] popek, Gerald J. and Charles S.
Kline. W"verifiable Secure Operating Systen software,"
AFIPS Conference Proceedings, Vol. 43, pp. . 145-151, 1974,

11. [POPEK75] Popek, Gerald J. and Charles S. Kline.
np verifiable Protection Systenm," proceedings of the
International Conference on Softwaze Reliability, PP-
294-304, April 1975.

. [RAGLANT3] Ragland, L. C. & Verified Progranm
rifier, Ph.D. Thesis, University of Texas, BAustie, 1973.

5 °

13. [WOLF74] Wolf, W. et al. "HIDRA: The Rermel of a
Multiprocessor Operating System," conmunications of thg

241

‘appendix A: Thoughis of the Trojan Horse Problen

When one notrmally encounters authentication problems
one generally 1is ljed to address the issue of identifying
the user to the system. There is, however, a COnverse
problen =~ that of identifying the systen to the user.
ﬁhile a considerable amount of attention is typically given
to +the former problen, 1ittle concern is usually given to
tie latter, yet the disasters which can result from faulty
jdentification of the system to the user are often as
horrendous (and perhaps evel worse) as those which result
from the faulty identification of the user to the systen.
While user identification flaws are often dangerous to the
systém as 2 whole, "systenm jdentification™ flaws can be

even more shattering to the individual uaser.

A typical scenario which gives rise to an instance of
wvhat bhas come to be termed the "Trojan Horse" problen
arises as follows: A user walks up to a supposedly unused
terminal and pushes a button. The terminal responds,
asking him to log in by entering his user namne, account,
and password. The user does so and rappears" to become
properly logged into the systez. In reality, however, the
terminal was not nunused" and the "system" to which he had
jdentified hinself was not the systen aé all, but rataher a
process masquerading as the system. The unwary user has

now given that process his user name, account, and passworad

242

|

and may never suspect that his access rights have been

compromised in any way.

Wwhat can be done to prevent the Trojan Horse problen?
Two ‘"simple" solutions come to mind: 1) The system can
reserve certain characters or sequéences of characters for
jtself so that no Trojan Horse process can output an
ipitation system herald; or, 2) the system can reserve.
certain characters or seguences of characters such that
their occurrence on an input channel forces control to be
returned +to the system. Can either of these alternatives

be reasonably implemented under the kernel?

Upon exanmining the first alternative, one finds that
3t is excecdingly easy, yet also exceedingly inefficient to
have ihe vernel monitor all characters being output to user
terminals for purposes of maintaining the integrity of a
fsysten identification™ character. There 1is no real
efficiency problem if one restricts the class of terminals
used by the system to to L230-1ike devices (terminals which
output 3n single character mode, rather than outputting
characters stream orT line-at-a-time) . The kernel is
already providing output character buffering there, for
simplicity as well as efficiency. The problem becomes much
more difficult to handle, however, if DH11-like devices
{devices which do direct memory accessing on output) are to

be utilized in any reasonably efficient fashion.

243

DH11-1ike devices require either +hat the kernel
buffer all the characters to be output in the kernel®s oun
data space, check them each for validity, and then perform
the nulti-characterl output on the characters fron the
kernells space, or that the kernel validate all the
characters vhile still resident in the process space, then
point the device at them after first insuring that the
given process will not be run again until after the I/0 has
conpleted. Otherwise the process could -change the
characters between the tinme they were checked and the time
they were output-- clearly a security flaw if the inability
of random processes 1o output the Psysten idenpification

sequence® is a vital security guarantee of the systen.

Secondly and Rore importanf fron a security
standpoint, the first method is not fool-proof. Although
one may dedicate the system jdentification character for
the exclusive use of the systen and system processes, it is
exceedingly difficult to prevent malicious Pprocesses fron
subverting a valid use of the identification character for
its own devious use by clever terminal manipulations. If
"one dedicates a sequence of characters to the systen
(carriage return, followed by line feed, followed by &, for
exanple), it is most difficult to prevent processes fron
outputting a character seguence wvhich “looks™ nuch like the

jdentification string -- carriage return, line feed, null,

244

@, for instance, or line feed, carriage return, thirty-six
nulls, backspace, @ =+ seguences which are quite distinct
from the system identification seguencé as far as the
operating systemn is concerned, but which are often

indistinguishable to the user sitting at the terminal.

Single system identification characters (as opposed to
character sequances) are slightly less prone to problems of
the sort mentioned above but still fall prey to them in
.circumstances thiCh are often dependent upon physical
characteristics of the terminal in question: a single
character identification scheme, for instance, is more
likely to be subverted on a CRI-type and "intelligent”
ternminals where one typically has a 1large degree of
flexibility in invisibly repositioning the cursor than on
kard-copy devices. Subversion of both single and
multi-character identification schemes in this manner reét,
of course, on one's ability to find instances of the
identification sequence legally output to the user
terminal, something which is considerably much harder to
accomplish in situation where a éingle character is
reserved for all time as the systen identification

character. [1]

Huch more wusa2ful than a "systenm identification "
character provided by the first alternative, migit be a

system escape character offered by the second alternative.

245

Such a system escape character might be a single special
character which would force the user terminal to be
attached to a specific éart of the system (the initiator,
nost likely, especially since it will be verified). This
action is a likely candidate for kernel handling, and can
be irplemented with reasonable efficiency in the Kernel as

long as the kernel continues to buffer console input.

One would probably not <fiad much sopkistication in
such an escape mechanism implemented in the kernmel. One
might expect the escape character to be a reserved
character. When typed, it would aluays force the terminal
to become attached to the initiator =- no backspacing or

rubouts if typing it was accidental. [2]

[1]. There are considerable problens, however, in even
choosing such a reserved character. It must be a visible
character and one would wish it to be uniform for all
terninals. These two reguirements drastically limit the
range of possibilities to the tnormal' upper-case only
alpha-numeric character set plus a small number of exira
symbols (essentially to a ntypewriter" compatible subset of .
+he available characters). This, in turn, limits the
character echoing capabilities available to normal
processes and one is likely to find oneself in ‘the
unfortunate situation of being forced to echo sone other
chardcter sequencs than the one typed by the user, at least
in the instance where the «reserved - system character was
input from the terminal. such may well be the cost of
security in this instance unless one 1is willing to go one
step further down the road and eliminate the reserved
system character from being input by the user in the first
place, forcing the use of an escape sequence (which can be
echoed exactly as dinput) which 1is interpreted by the
software as an occurrence of the reserved sywsbol.

{2). Such sophistication could be implemented by the
initiator once it has received control, howvever.

2u6

Although the current implementation of the kernel
supports neither of these alternatives, it appears that it
would be relatively easy (and also relatively efficient)

for the second alternative to be handled by the kernel.

247

e i s e e . i

Appendix B.1: A User Scenarig

A typical user sessioh on our system is intended to

occur as follows: [1]

User X walks up to terminal Y-and types the initi,'pr
escape character {control E, for example). The initi&Eor
responds with "UCLA VM Systenm. Enter user name and
password, please." The user types in his name, X, which the
initiator echoes on the terminal, followed by a space and

then entars his password, which is Dot echoed by the

initiator, followed by a carriage return.

The initiator checks the combination of Bpame and
password against its list of legal name-password pairs,
finds a match and responds by typing out the date and time,
4

L

followed by "Enter a command or type HELP for help."®

User X is already familiar with systen conmands and
types "CREATE VM <cr>", to which the initiator responds
vith "ENTER NAME OF VM TO BE CREATED". X responds with
®posS <cr>, {2] The initiator then prompts with DO I0U

WISH TO SPECIFY SYSTEM CONFIGURATIONZ?" X responds with "NO

[1]- The reader must bear imn mind, however, that this
merely represents a hypothetical sanple session, since the
entire system has not yet beer completely implenented.

248

<cr>" and the initiator creates a DOS virtual machine with
a default configuration and attaches console Y to the newly

creatsd VM.

The DOS herald appears on the terminal and user X logs
into the D0OS and does whatever it was he vanted to do.
Some time later he has finished his DOS session and novw
desires to use the network rather than DOS. He
copnunicates with his virtual Hachine Monitor, informing it
that he wishes to ﬁe reattached to the initiator by typing
YATTACH <escape> (T0} TNITIATOR <cr> ({assuming the VM

escape character to be '%').

The VMM reattaches the tegminal to the ipitiator,
which in +urn indicates its presence by prompting with
HPTER A COMMLND OR TYPE HELP FOR HELP". This time X types
"ATTACH VM <cr>". The initiaﬁor responds with "DO YOU WISH
TO DESTROY YOUR PREVIOUDS VH<, (ES) OR N(0) 2% User X types
HyES <cr>", the initiator destroys user X's previous V# (in
this case, a DOS}), and then prempts the user with M“ENTER
NAME OF EXISTING VM TO BE ATTACHED u, types “ANTS {cr>"
(3] and the initiator responds with "Attaching Teletype to

ANTS".

{2). DGS is a DEC single-user operating systen.

249

The ANTS login prompt spews out onto +he terminal and
¥ converses with ARIS for a while, then decides to logout
of the system gntirely. He asks the VAN to reattach him to
the dinitiator and then types "QUIT <cr>" at the initiator.
The initiator types out the tiume and date, "X HAS LOGGED
orrF", and is ready to respond to the initiator escape

character once ROTre.

The terminal is now free to be used by another user.

[3]. ANTS is an acronyn for Arpa Network Terminal Systenm,
a system developed at the University of Illinois for
providing user access to the ARPA netiwork.

250

Appendix B.2: A Shared I/0 Scenario
S— - —— - —

——

The following represents a typical scenario of I/0 to

a shared device (non-dedicated device) by a user process.

User X has logged onto the system in a manner similar
to that previously explained and has been given a DOS as
his virtval machine. He is interested in doing sone
editing, so he has started the pOS editor and has entered
several hundred lines of text into the editoxr's in-core
editing buffer. Now X decides he has no more text to
input, so he tells the editor to write the contents of the

buffer out to a f£ile on disk.

pos, being a virtual machine, thinks it has sone
nucber of disks at its disposal_and attempts to allocate
the new file somewhere on one of its disks. In order to do
this, perhaps, it first reads some directory information
from its (virtual) disk. So DOS 1loads sone interesting
numbers into its disk registers and‘attempts to read from
the.disk. This is not what happens in reality, however.
ﬁhen DOS attempts to load its disk control registers, a
real hardware memory management fault occurs, causing the
processor to enter the kernel at an entry point for user
mode memory management traps. This memory management trap
has occurred because the virtual machine monitor has

insured that no real segment will avar be attached to the

251

user mode relccation registers which reference the upper UK
of the user's memory space (the region where the device

control registers reside).

Upon being entered at the user memory management trap
entry point, the kernel saves the contents of the memory
ﬁana;ement statué regisférsiin fhe ;hared kernel/proaéss
communications segment so that the virtual machine monitor
can reconstruct what the virtual machine vas attempting to
do. After some amount of difficulty, the VM realizes that
the VM (DOS in this inétance) really wanted to read from
the disk, wmaps the memory addresses involved into segment
nane,offset and count, maps the disk address into disk

segment nane and offset and makes a Request-I/0 kernel

call.

The kernel constructs a locked-box containing the
contents of the user reguest and sends it to the

appropriate disk scheduler.

Some time later the disk scheduler decides to start
the disk request and mnakes a start-Indirect-I/0-Request
kernel call to do so. At this point, the kernel starts the
I/0 request, destroys the locked~box, and informs both the
yHM and the disk scheduler that the device has been

started.

252

#hen the disk interrugt OCCUrLS, the kernel sends the
disk status hack to the vHH if it requested a
pseudo-interrupt and notifies the disk scheduler that the

disk operation has completed.

The VMM now reflects the completion of "the disk I/0
back to the VM via apprqp;iate panipulation of the ready
bit in the disk control register, possibly causing the VH
to rTeceive a virtual dnterrupt (if DOS was runaning with

disk interrupts enabled).

Eventually DOS discovers that the disk 1is done,
figures out where to allocate the file, and goes through

the whole process again to write the file out on disk.

253

Inputsoutput Specification Terms

T o s et e il s

LEGLL-PROCESS~-NAMEA{X) = TRUE
iff (there exists a process Y, such that) (X =X AND

Y conforms to process naming conventions);

KO-TI0~IN~PROGRESS (X) = TRUE
iff (there does not exist a device D, such that)

(DEVICE,USER(D} = X AND DEVICE.BUSY (D) = TRUE);

IN-CORE(X) = ZIRUE
iff (there exists a menory~frame M, such that}

{MEMORY~FRAME.NAME[(Y] = X}

RELOC~REG-CAN-BE~FREED{X) = TRUE

iff (X is not reserved for kernel/process communication};

ROOH~-ON=-DISK (X) = TRUE
iff (there exists a disk seément Y on disk X, such that)

(FREE{Y) = TRUE};
LEGAL-SEGHMENT ~HANE (X) = TRUE

iff (there does not exists a segment Y, such that) (¥ = X))

LND X conforms to seqment naming conventions;

254

- pmiadar o e ot e i 4 S0 e e

DEVICE-INACTIVE(D) = TRUE

iff DEVICE.BUSY(D)} = FALSE;
IN-SEGMENT~BOUNDS (X,Y) = TRUE
iff (X >= 0) AND (Y >= 0) AND (X + Y <K=

SEGMENT-BYTE*LENGTH) ;

LEGAL{D,2,C,0,S,R) = TRUE

iff (reguest R is a le;gal 1,0 request for device D)
FREE~-LCCKED-BOX (R,P) = TRUE -

iff (there does not exist a locked box index L and a device
D.' such that) |
(LOCKED-BOX.REQUESTOR{L]‘= R) AND (OWNER(D} = P)

AND (LOCKED-BOX.DEVICE[L] = D}y AND {LOCKED-BOX.FREZE[L] =

FALSE};

255

ALLOCATE-PROCESS (P} :
FUKRCTION:
Allocates a kernel process table entry £or process 7P,
ipitializing PC, PS, relccation registers, and giving
supervisor portion proper access to its eommunications
buffer.
BEGIN
X <- NEW-KERNEL-PROCESS~-TABLE-~-INDEX;
PROCESS.NABE[X] <~ P;
PROCESS.PC[X] <- 0;
PROCESS.PS[X] <~ SUPV-PS;
DO I =0 70 15;
PROCESS.USER-PAR[X,I] <~ 03
PROCESS.USERPDR[X,I] <~ RO-RCCESS;
PROCESS.SUP&*PAF[X,I] <~ 0;
PROCESS.SUPV-PDR[X,I]} <~ NO-ACCESS;
END;
PROCESS.SUPV=-PAR[X,7] <~
COﬁMUNICATIONS‘SEGHENT.EXECUTABLE-PART[X]:
PROCESS.SUPV~PDR{X,7] <- READ~WRITE«ACCESS;
paoczss.sopv-Pah[x,1u] <~
COMMUNICATIONS~SEGMENT.READ-ONLY~PART[X];
PROCESS.S0PV-PDR[X, 18] <~ READ-ONLY-ACCESS;
PRCCESS.SUPV~PAR[X,15] <~

COMHUNICATIONS-SEGMENT,READ-WRITE-PART[X];

256

PROCESS.SUPV-PDR{ X,15] <= READ-WRITE-ACCESS;

END; % OF ALLOCATE-PROCESS

DETACH-DEVICES{P) ;

FUNCTION:

4

f
Detaches any devices that Mi}ht be attached to process P.

BEGIN Qf
DO I = 1 TC NUHBER-OF-DEV}CES;.-
IF DEVICE.OHNER[I} = P
THEN
DEVICE.OWNER[I] <- NULL:
ATTACHED-DEVICES{P,I] <~ FALSE;
FI;
END; % OF DO

END; % OF DETACH~DEVICES

DETACH~-SEGHMENTS (P) ; %

FUNCTION:

Detaches all segments attached to process P.

BEGIN
DO I =0 TO 7;
IF SUPV-RELQC-FREE(P,I) = FALSE

ANDIF SUPV~-RELOC-REG~-CAN~BE-FREED (I)

THEN
SUPV~RELCC~FREEE (P,I) <~ TRUE;

PRCCESS.SUPV-PDR[P,XI] <- NO-ACCESS;

257

PROCESS .SUPV-PAR[P,I] <~ 03

SEGHMENT. REF~COUNT[ATTACHED-SUPV-SEGHENT[P,X]]
o x = 18
ATTACHED-SUPV-SEGMENT{P,I] <- NULL;
ELSE
PROCESS.SUPV-PDR[P,I] <+ NO~ACCESS;
PROCESS.SUPV~-PAR{P,I] <= 0;
FI; % TO SOPV RELOC CAN BE FREED TEST
"END; % OF SUPV DO

DO I

0 TO 7;
IF USER~RELOC-FREE (P,I) = FALSE
ANDIP USER-RELOC-REG-CAN-BE~FREED (I)
THEX
USER-RELOC-FREE (P, I} <- TRUE;
PROCESS.USER-PDE[{P,I] <~ NO-ACCESS;
psoc&ss.ussa-pna[p;x] <~ 0;
SEGHEHT.REF-COURT[ATTAcﬁﬁD-USER-SEGnENT[p,:]]
= % = 1;
ATTACHED-USER-SEGHENT[P,Ij <=~ NULL;
ELSE
PROCESS.USER;PDB[P,I] <= NO-ACCESS;

PROCESS.USER=-PAR{P,I] <~ 0}

FI; % TO USER RELOC CAN BE FREED TEST

END; % OF USER DO

END; % OF DETACHE-SEGHMENTS

SAVE~CONTEXT (P} ;

2538

N

FUNCTION:
Saves the context of process P
process.
BEGIN
pO I =0 TO 7;
DPROCESS.USER-PAR[P,I] <-
.PBOCESS.USER-PDR[P,I] <=
PROCESS.SUPV-PAR[P,I]} <~
PROCESS .SUGPV=-PDR[P,I] <~
END; % OF DO
po I = 0 TO 5;
PROCESS .REGISTER{P,I] <-

END; % OF REGISTER DO

in the process table for the

REAL-USER-PAR[I]:
REAL~USER-PDR{ I}:
REAL-SUPV-PAR{I);

REAL-SUPV~PDR[I];

REAL-REGISTER-SET-1{I];

PROCESS.SUEV-SP{ P] <~ REAL-SUPV-SP;

PROCESS.UGSER~-SP{ P] <- REAL~-USER-5P;

END; % OF SAVE-CONTEXT

LOAD-CONTEXT (P) ;

FUNCTION:

Loads the context of process P
the hardware.

BEGIN

DO I =0 TO 7;

from the process table

REAL-USER-PDR{I] <- PROCESS.USER-PDR[P,I1]:

REAL-USER~PAR[I] <- PROCESS.USER-PAR[P,I];

REAL-SUPV-PDR{I] <- PROCESS.SUPV-PDR{P,I];

259

into

REAL-SUPV-PAR[I] <- PROCESS.SUPV-PAR[P,IJ;
END; % OF RELOCATION REGISTER DO
DO I =0 TO 5;
REAL-REGISTER-SET1{I] <~ PROCESS.REGISTER[P,I];
END; % OF REGISTER DO
REAL-SUPV~SP <~ PRCCESS.SUPV~SP[PJ;
REAL-USEK-SP <- PROCESS.USER-SP[PI;

END; % OF LOAD-CONIEXT

SEND-SWAP~IK (REQUESTOR,SEGHMENT,MEM~-FRAHNE) ;

FUNCTION: “

Constructs a swap-in request and transmits it to the

appropriate disk scheduler.

BEGIN
DISK <+ SEGMENT.SWAP-DEVICE[SEGHMENT];
HEMORY-SEGMENT <~ MEMORY-FRAME. NAME{ MEN-FRAME];
REQUEST.SEGHENT <- SEGMENT.SHAP~-SEGHUENT{ SEGHMENT J;
PEQUEST.OFFSET <~ 0;
SEGMENT.SWAP*IN*IN-PROGRESS[SEGHENT] <= TRUE;
REQUEST*IO(REQUESTOR,DISK,HEHORI—SEGHENT,O,SK,

SHAP~IN-ACCESS,INTERRUPT,REQUEST) ;

END; % OF SEND-SWAP~IN
RENMOVE-ALL-BUT-SHAP~ACCESS (SEGHENT) ;

FUONCTION:

Updates kernel tables so that SEGHENT can be accessed only

260

N

in order to be swapped out.
BEGIHN
SEGHENT.CANNOTBE-USED[SEGHENT] <~ TRUE;
DO I = 1 TO NUMBER-OF-PROCESSES;
po J = 0 TO 15;

IF PROCESS.ATTACHED~USER-SEGHENT{I,J] =
SEGHENT
THEN

PROCESS.PREVIOUS-USER-ACCESS[I,J] <~
PROCESS.USER-PDR{I,J}:
PROCESS.USER-PDR[I,J] <- NO~ACCESS;

FPI;

Ir PROCESS.ATTACHfD}SUPV-SEGMENT[I,J] = SEGHENT
THEN

,PROCESS.PREVIOUS*SUPV-ACCESS[I,J] <=
PROCESS.SUPV-PDR{I,J];
PROCESS.SUPV-PDR[{I,J] <~ NO-ACCESS;
FI;
END; % OF J DO
END; & OF I DO

END; % OF RENCVE-ALL~-BUT-SHAP-ACCESS

SEND-SHAP-OUT (REQUESTOR, SEGMENT,DISK};

FUNCTION:

Constructs a swap-out request for the segmenit and transnits

it to the disk scheduler for the appropriate device.

261

BEGIN
REQUEST.SEGHENT <- SEGHENT.SWAP~SEGMENT[SEGHMENT J;
REQUEST.OFFSET <~ 03
SEGHEHT.SWAP‘OUT‘IN’PROGRESS[SEGHENT] <= TRUE;
REQUEST-IO(REQUESTOR,DISK,SEGMENT,O,BK,SWAP'OUT-ACCESS,
INTE%%UPT,REQUEST);

END; % OF 'iND-SWAP~OUT

y
-

RELOC*SET(P,SEGHENT,R,ACCESS);
FUNCTION:
Sets the indicated releocation to point to the given segment
_with the given access.
BEGIN
IF R < 16
THEN
% USER RELOCATION REGISTER
RﬁOCESS.USER*PRR[P,R] <+ SEGMENT.LADDRESS[SEGMENT];
PHOCESS.USER-PDR[P,R] <=~ ACCESS;
ATTACHED—USEB*SEGHENT[P,R] <~ SEGMENT;
USER-EELCC~FREE (P,R) <~ FALSE;
ELSE
® SUPY RELOCATION REGISTER
PROCESS.SUPV-FAR[P,R) <- SEGMENT.ADDRESS{ SEGHENT]:
PROCESS.SUPV-PDR[P,R} <- ACCESS]
ATTACHED<SUPV~SEGMENT[P,R] <~ SEGUENT;

SUPV-RELOC-PREE (P,R) <- FALSE;

262

FXI; % TO R TEST

END; % OF RELOC-SET

ZERO-DEVICE~STATUS (DEVICE) ;

FUNCTION:

Resets the device status for the device to a well-defined,

initial state,
BEGIN

END; % OF ZERO-DEVICE-STATUS

BDD-ACCESS{P,A,O);

FUNCTION:

Updates the policy protection data so that P has access
to object 0C.

BEGIN

END; % OF ADD-ACCESS

ALLOCATE~-DISK~SEGMENT (SEGMENT,DISK);
FUNCTION:

Allocates segment SEGHENT on disk DISK.
BEGIN

END; % OF ALLOCATE-DISK-SEGHENT
ZERO-DISK~SEGHENT (SEGHENT, DISK) ;

FUHCTION:

Zeroes segment SEGMENT on disk DISK.

263

A

BEGIN

END: % OF ZERO-DISK~SEGHERNT

FREE~DISK-SEGHENT {SEGHENT) ;
FONCDION:

Peallccates disk segment SEGMENT.
BEGIN

END: % OF PREF-DISK-SEGHENT

RAKEOP (D) ;
FUKNCTION:
Notifies CPU scheduler that process P might wish to run.
BEGIHN
CCMMUNICATYIONS. PROCESS-WANTS=TO-RUN[CPU~SCHEDULER,P} <~
TRUE;
COMMUNICATIONS.PROCESS~HWANTS-TO-RUN[P,P] <= TRUE;

END; % OF WAKEUP

DEVICE-START (PROCESS,DEVICE,SEGHMENT,OFFSET,COUNT, ACCESS,
INTERRUPT~-FLAG, REQUEST) ;

PURCTIONS

Initiates the requested I/0 on the given device,

BEGIN
DEVICE.REQUESTOR[DEVICE,ACCESS] <- PROCESS;
DEVICE.MEM-SEGMENT[DEVICE,ACCESS] <~ SEGHENT;

SEGKENT.LOCK~COUNT{ SEGHENT] <- * + 1;

264

DEVICE.DEVICE-SEGHMENT[DEVICE,ACCESS] <~ REQUEST.SEGHENT;

SEGMENT, LOCK-COUNT[REQUEST.SEGHENT] <~ * + 1
IF INTERRUPT~-PLAG = INTERRUPT

THER

DEVICE. INTERRUPT~REQUESTED{ DEVICE,ACCESS] <- TRUE;

ELSE
DEVICE. INTERRUPT-REQUESTED[DEVICE,ACCESS] <~
FALSE;

FI;
REAL-DEVICE.HEMADDR[DEVICE,ACCESS] <~

SEGHEHT.ADDRESS[SEGHENT] + OFFSET;
REAL‘DEVICE.COUHT[DEVICE,ACCESS] <= COUNT;
REAL-DEVICE.FUNCTION[DEVICE,ACCESS] <- ACCESS;
REAL-DEVICEZ.INTERRUPT-ENABLE[CEVICE,ACCESS]} <- TRUZ;

REAL-DEYICE.DEVICE~ADDR[DEVICE,ACCESS] <~

SEGMENT.ADDRESS[REQUEST.SEGHENT] + REQUEST.OFFSET;

REAL-DEVICE.GO[DEVICE,2CCESS] <~ TRUE;
DEVICE.BUSY[DEVICE,ACCESS] <~ TRUE;

END; % OF DEVICE~START

SEND-DEVICE-STATUS {(D,A,.P);

FONCTION:

Builds device status for the device and returns
information to the process.

BEGIN

EXD; % OF SEND~DEVICE-START

265

that

LOCKED-BOX-INDEX(PHOCESS1,PROCESSZ);

FURCTION:

Returns the index of the tocked box allocated for shared
I/0 requests fromn PROCESS1 to PROCESS2.

BEGIN

EXD;

266

Variables ani Bsgudo-Variables

STOPPED(P) = TRUE
iff (there exists an X, such that) (PROCESS.WAME[X] = P AND

PROCESS.STOPPED[X] = TRUE);

STOPPED(P) <~ FALSE only if (there exists an ¥, such that)

(PROCESS.NAME[%] = P AND PROCESS.STOPPED[X] = FALSE};
FREE (P,R) = TRUE

iff (there exists an X, such that) (PROCESS.NAME[X] = P AND

PROCESS.RELOC~FREE[X,I] = TRUE);

267

=4
1=
[=N]
o
b

Problem Statement . . .
Basic Design Decisions
Security e« s v o o
verification .+ .« -«
Security Kernels . .
Virtual Machines .
Other Basic System Con
The Updater . « «
The Initiator . » .
Basic System Structure Summary

one

s Hs ¢ &
IQ!I‘.O.'

" Hes & 9 = & @

¢ & My e a & @

r
[)

L]) L] o [] L3 - L] L] .

ts
r

P . S P N e]
a ® B B ® ® 0 " & 0
00 =) =] =3 ULN 57 WN

The PDP 11/45 Architecture . .« »

Security Objects .+ « -
PIOCESSES o« s o » & o o
DEVICES o o .o o« o o = o o o o o ¢
Segments s % © = 3.9 @
Conplete System Structure Summary

L] L] » - [

NNV N
a ®» » & & b =8
~ln W -

Mepory Management . « o« - o o =
Capability Faulting . o « » -«
The Kernel/Process Interface
Kernel SEructure .+ + o e s o
The Kernel Trap Handler . . «
The Kernel Interrupt Handler
The Kernel Call Haréler . - »
Kernel Calls =« « « o o o « =
Kernel Design Principles .« « +

L] L[] L] L] L] a
- . L] - L] - L]

WWwwwWwwis Ww
WO O E W -

Kernel Call Déscription Qverview

Destroy~Process Call .« « o «
Stop/Start~Process Call . .
Kernel Scheduling Primitives:
The Invoke-Process Call . -«
The Swap~In Call . « « « «

B DB -
[] -
L

s s s s

s s 0w
[FER & B

The Swap<Out Call . . » «
Other Kernel Primitives: Des
The Attach-Segment Call . .
The Release-Segment Call .
?he Create-Segment Call . .
The Destroy-Segment Call .
The Slzep Call . . - .« & .
The Send-Hessage Call . . - o
Kernel I/0 Prirmitives: Description
The Attach-I/0-Device Call . .
The Release-I/0O-Device Call . .
The Start=I/0 €all . o o« « «

ripti

. @

P
[] » L] []
[« 2308 s QRN FT I %
¢ e+ 8 8
T L

oo EeREREERERERESE

[}
wantns:=x=:.cz:ctouwt»

'
L B —

268

A 5 ® 3 B & 4 B &+ 0

on

-

»

E

» & 9 B p & @&

-

. . L] L]

-

-

-

» & & & @

s 5 8 & ® & & & 0V @

L) - » [] -

s & 4 % 4 8

4 & & & 8 & & ® % 8

e = 8 8

Rernel Initiation Primitives: Description

escription

PR T TR T S Y

s 4 8 & 5 8 8 s »
v
A A 3 4 5 8 & B

-

Hardware Yodificaticns to the UCLA PDP 11/45

¢ " A 8

“« A & & % & 8§ & »

» ¢ o784 } & 4 A 4 B m o8 ® s 2 B

e's A o8 @& & 3 wW & @

* & & & & m ¥ & @

!.uolu‘luoql-o..

12

16
23
25
27

‘30

32
50
53
58
€6
70
73

75
83

92
93
101
i1¢
116
122

126
128
130
132
134
134
137
139
141
141
144
146
148
150
153
156
156
159
161

vy Al TETURN T

vy gt T 4 TR
DouelTER RN Des AL..’Y}: it

410 BOELTHIL AL

.4 The Status-I/0 Call . .

The Regquest~-I/0 Call .

Create~Process Design .
Destroy-Process Design

. s @
WA =

Invoke-Process Design .
Swap-In/Swap-0Out Design

. -

| S

Attach-Segment Design .
Releasa-Segment Design
Create~Segunent Design .
Destroy-Segment Design
Sleep Design <« « o o «
Send-Message Design , «

[] » » ¢ @
A8 WK =

Attach-I/0-Device Design

¥ & & 4 B § % P P " ¥ & & ¥ €& B s @
. 8

1
2
3 Start=I/0 Desigqn . .« .
& Status-I/0 Design « .« .

L N
O UMMM ERREEELlWWWNRNNN -
. 2 [T]

[)

Request-I/0 Design . .

URVALROURLELRUEE R NGRS RS RS R R R NGRS NN IV N, T, sEEE

Appendix 3

Appendix B.1: A User Scenario . + «
Appendix B.2: A Shared I/0 Scenario .
Appendix B: ScenaTioS o s o ¢ o s s
Appendix C: Input/Cutput Specification Teras

Bibliography « « » o = o o « o

-

Start/Stop-Process Design
Kernel Scheduling Primitives:

. & 9

Kernzl Shared I/0 Prinitives:

Start-Indirect«I/0 Design

Kernel Shared I/0 Primitives:

.|
.2 The Start-Indirect-I/0 Call

Kernel Call Design Overview .
Kernel Initiation Primitives:

-
-
[
-
-
*

Kernel I/0 Primitives: Design

Release~I/0=Device Design .

L]

Description

&

Design

Other Kernel Primitives: Design

-
-
]
L
»
L
®
3
L

©

-
de
L.
-

s

n

] L) L] L] - .‘. L] [] L] [] L]

o

Chapter 1: Basic System Design Decisions .

Chapter 2: Hardware and Software Components

Chapter 3: Basic Kernel Design Decisions .
Chapter 4: Kernel Call Description .
Chapter 5: Kernel Call Design Issues .

Conclusions .+ o « o » o = & »

o

Figure 1: Initial System Structure .
Figure 2: Revised System Structure .
Figure 3: System Decoaposition By Execution Mode

Pigure 4: System Decomposition By Process Privilege
UCLA VM System Structure

Figure 5:

Index - L) - - - - - - - - - -
Introduction . « a2 o o« o » o &

269

-

€£

<

L3

¢ 9 & & B 3 ® o0 4 & 4 =& O & a & @

a 5 8

IR

*

& 8 5 & & & 9 2 B & ® B & " P 4 B 82 W

: Thoughts on the Trojan Horse Problem

. & ¥ & 9 3 0

. s 4

a ¢ 9 3

4 & & F & 8 % B 4 & 4 ¢ 9 8 90 LI |

164
166
166
168

171
172
172
177
178
130
180
183
187
187
192
193
198
201
203
209
209
213
217
222
224
224
233

242
248
251
248
254

240

32
75
126
171
237

24
31
64
14

268

