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Introduction

Why do we need graphs?

Figure: Motivating Example
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Introduction

Figure: Motivating Example

Variables in the study:

I Season

I Sprinkler

I Rain

I Wetness of pavement(Wet)

I Slipperiness of
pavement(Slippery)
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Introduction

Figure: Motivating Example

# Variables Table size
5 32
6 64
7 128
8 256
9 512
10 1, 024
20 1, 048, 576
30 1, 073, 741, 824
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Introduction

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Figure: DAG Representation

Conditional Probability
Distributions

I P (X1) : 2

I P (X3|X1) : 4

I P (X2|X1) : 4

I P (X4|X2, X3) : 8

I P (X5|X4) : 4

Total # of Table Entries = 22
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Graphs: Notations

X1

X23X

X4

X5
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RAIN

WET

SLIPPERY

Figure: Bayesian Network
representing dependencies

I Adjacent Nodes

I Root and Leaf Nodes

I Skeleton

I Path

I Kinship Terminology
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Graphs: Notations

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Figure: Bayesian Network
representing dependencies

Chain X1 → X3 → X4 → X5

X1 → X3 → X4 → X5

Fork X3 ← X1 → X2

Collider X3 → X4 ← X2
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Background Factors & Bi-directed Edges

UX UY

X Y

UX UY

(a) (b) (c)
X Y X Y

Figure: (a) Causal Model with background factors (b) & (c) Causal
Model with correlated background factors

Note: Figure (a) expresses the assumption: Ux q Uy and Figure
(b)& (c) express the assumption Ux 6 qUy
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Decomposing joint distribution-P (V )

How would you decompose joint distribution P (V ) into smaller
distributions?

By applying Chain rule

Let X1, X2, ..., Xn be any arbitrary ordering of nodes in a DAG.
P (x1, x2, ..., xn) =

∏
j P (xj |x1, ..., xj−1)

Is it possible that conditional probability of some variable Xj is
not sensitive to all its predecessors?

Yes!
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Markovian Parents

X1

X23X
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X5
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Figure: Bayesian Network
representing dependencies

Markovian Parents
X1 : φ
X2 : {X1}
X3 : {X1}
X4 : {X2, X3}
X5 : {X4}

P (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x4)
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Figure: Bayesian Network
representing dependencies

Markovian Parents
X1 : φ
X2 : {X1}
X3 : {X1}
X4 : {X2, X3}
X5 : {X4}

P (x1, x2, x3, x4, x5) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x4)
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Markov Compatibility

Let V = {x1, x2, ..., xn} be the set of observed nodes and pai be
the Markovian parents of xi. Then,
P (v) = P (x1, x2, .., xn) =

∏
i P (xi|pai).

Definition (Markov Compatibility)

If a probability distribution P admits Markovian factorization
of observed nodes relative to DAG G, we say that G and P are
Markov compatible.

Example

X Y P (X,Y )

1 1 0.225

1 0 0.375

0 1 0.125

0 0 0.275

Markov Compatible DAGs:
X → Y
X ← Y
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Testing Markov Compatibility

Given a DAG G and distribution P , how can you conclude that
P and G are compatible?

I Parents shielding tests
I non-descendants
I predecessors

I d-separation
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d-Separation

Definition
Let X, Y and Z be disjoint sets in DAG G. X and Y are
d-separated by Z (written (X q Y |Z)G) if and only if Z blocks
every path from a node in X to a node in Y .

A path p is said to be d-separated(or blocked) by a set of nodes
Z if and only if :
(1) p contains a chain i→ m→ j or a fork i← m→ j such
that the middle node m is in Z, or
(2) ...

Karthika Mohan and Judea Pearl Graphical Models for Causal Inference



d-Separation

Definition
Let X, Y and Z be disjoint sets in DAG G. X and Y are
d-separated by Z (written (X q Y |Z)G) if and only if Z blocks
every path from a node in X to a node in Y .

A path p is said to be d-separated(or blocked) by a set of nodes
Z if and only if :
(1) p contains a chain i→ m→ j or a fork i← m→ j such
that the middle node m is in Z, or
(2) ...

Karthika Mohan and Judea Pearl Graphical Models for Causal Inference



Example: d-Separation

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

I X1 qX4|X2, X3

I X3 qX5|X4

I X1 qX5|X4
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d-Separation

Definition
Let X, Y and Z be disjoint sets in DAG G. X and Y are
d-separated by Z (written (X q Y |Z)G) if and only if Z blocks
every path from a node in X to a node in Y .

A path p is said to be d-separated(or blocked) by a set of nodes
Z if and only if :
(1) p contains a chain i→ m→ j or a fork i← m→ j such
that the middle node m is in Z, or
(2) p contains an inverted fork (or collider) i→ m← such that
the middle node m is not in Z and such that no descendant of
m is in Z.
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Example: d-Separation

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

I X3 qX2|X1
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Example: d-Separation

Z2 Z3Z1
X Y Z2 Z3Z1

(b)

X Y

(a)

Case (a): X q Y |φ
Case (b): X��qY
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Example: d-Separation

Z2 Z3Z1
X Y Z2 Z3Z1

(b)

X Y

(a)

Case (a): X q Y |φ

Case (b): X��qY
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Example: d-Separation

Z2 Z3Z1
X Y Z2 Z3Z1

(b)

X Y

(a)

Case (a): X q Y |φ
Case (b): X��qY
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d-Separation

When is it impossible to d-separate 2 non-adjacent nodes X
and Y ?
Do we need to test all sets for possible separation?
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Inducing path

Definition
Path between 2 nodes X and Y is termed inducing if every
non-terminal node on the path:
(i) is a collider and
(ii) an ancestor of either X or Y (or both)

X Y

Z1

Z2 Z2 Z3Z1
X Y

(a) (b)

Note: There are no separators for X and Y .
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The Five Necessary Steps of Causal Analysis

Define Express the target quantity Q as property of the
model M .

Assume Express causal assumptions in structural or
graphical form.

Identify Determine if Q is identifiable.

Estimate Estimate Q if it is identifiable; approximate it, if it
is not.

Test If M has testable implications
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

Input: Story

Question: What if? What is? Why?

Answers: I believe that...
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q1: If the season is dry and the pavement is slippery, did it
rain?
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q1: If the season is dry and the pavement is slippery, did it
rain?
A1: Unlikely, it is more likely that the sprinkler was ON with a
very slight possibility that it is not even wet.
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q2: But what if we see that the sprinkler is OFF?
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q2: But what if we see that the sprinkler is OFF?
A2: Then it is more likely that it rained.
Without graphs,# of Table Entries = 32
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q3: Do you mean that if we actually turn the sprinkler ON, the
rain will be less likely?
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q3: Do you mean that if we actually turn the sprinkler ON, the
rain will be less likely?
A3: No, the likelihood of rain would remain the same but the
pavement would surely get wet.
Without graphs,# of Table Entries = 32 * 32
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q4: Suppose we see that the sprinkler is ON and pavement is
wet. What if the sprinkler were OFF?
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A “Mini” Turing Test in Causal Conversation

Figure: Turing Test

The Story

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Q4: Suppose we see that the sprinkler is ON and pavement is
wet. What if the sprinkler were OFF?
A4: The pavement would be dry because the season is likely to
be dry
Without graphs, what would be the # of table entries?
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Interventions
Query: Would the pavement be slippery if we make sure that
the the sprinkler is on?
Compute: P (x5|do(x3))
May be equivalently represented as:
(a) P (x5|x̂3)
(b) Px3(x5)

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Figure: DAG before intervention
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Interventions

Compute: P (x5|do(x3))

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Figure: DAG before intervention

P (v) = P (x1)P (x2|x1)P (x3|x1)P (x4|x2, x3)P (x5|x4)
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Interventions

Compute: P (x5|do(x3))
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Figure: DAG before intervention

X1

X23X

X4

X5

RAIN

SLIPPERY

WET

SPRINKLER
= ON

SEASON

Figure: DAG after intervention

P (v) = P (x1)P (x2|x1) P (x3|x1) P (x4|x2, x3)P (x5|x4)
P (x1, x2, x4, x5|do(x3)) = P (x1)P (x2|x1)P (x4|x2, x3)P (x5|x4)
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Interventions

Compute: P (x5|do(x3))

X1

X23X

X4

X5
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RAIN

WET

SLIPPERY

Figure: DAG before intervention

X1

X23X

X4

X5

RAIN

SLIPPERY

WET

SPRINKLER
= ON

SEASON

Figure: DAG after intervention

P (v) = P (x1)P (x2|x1) P (x3|x1) P (x4|x2, x3)P (x5|x4)
P (x5|do(x3)) =

∑
x1,x2,x4

P (x1)P (x2|x1)P (x4|x2, x3)P (x5|x4)
Note: P (x5|do(x3)) 6= P (x5|x3) i.e. Doing 6= Seeing
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Examples

X YX Y

U

Question : Can you estimate P (y|do(x)), given P (x, y)?

NO!

P (x, y) =
∑

u P (x, y, u) =
∑

u P (y|x, u)P (x|u)P (u)

P (y|do(x)) =
∑

u P (y|x, u)P (u)
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Identifiability

Definition
Let Q(M) be any computable quantity of a model M .

We say
that Q is identifiable in a class M of models if, for any pairs of
models M1 and M2 from M , Q(M1) = Q(M2) whenever
PM1(v) = PM2(v).
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Estimating causal effect

Adjustment for direct causes
Compute: P (y|x̂)
P (x, y, z, w) = P (y|x,w)P (x|z)P (w|z)P (z)

P (y, z, w|do(x)) = P (y|x,w)P (w|z)P (z) P (x|z)
P (x|z)

P (y, z, w|do(x)) = P (x,y,z,w)
P (x|z)

P (y|do(x)) =
∑

z,w P (yw|x, z)P (z) =
∑

z P (y|x, z)P (z)

X Y

Z

X Y

Z

WW

Figure: DAGs before and after intervention
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Theorem (Adjustment for direct causes)

Let PAi denote the set of direct causes of Xi and let Y be any
set of variables disjoint of {Xi ∪ Pai}. The causal effect of Xi

on Y is given by:

P (y|x̂i) =
∑

pai
P (y|xi, pai)P (pai)

where P (y|xi, pai) and P (pai) represent pre-interventional
probabilities.
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Example: Adjustment for direct causes

Query: Would the pavement be slippery if we make sure that
the the sprinkler is on?

P (x5|x̂3) =
∑

x1
P (x5|x3, x1)P (x1)

X1

X23X

X4

X5

SPRINKLER

SEASON

RAIN

WET

SLIPPERY

Figure: DAG before intervention

X1

X23X

X4

X5

RAIN

SLIPPERY

WET

SPRINKLER
= ON

SEASON

Figure: DAG after intervention
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Estimating Causal Effect

Compute: P (Xj |do(Xi))
How can we find a set Z of concomitants that are sufficient for
identifying causal effect?

X1

Xi X6

X4
X3

X2

X5

Xj
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Back-door Criterion for Identifiability

Definition (Pearl-1993)

A set of variables Z satisfies the back-door criterion relative to
an ordered pair of variables (Xi, Xj) in a DAG G if:

(i) no node in Z is a descendant of Xi; and
(ii) Z blocks every path between Xi and Xj that contains an

arrow into Xi.
P (xj |do(xi)) =

∑
z P (xj |xi, z)P (z)

X1

Xi X6

X4
X3

X2

X5

Xj
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Estimating causal effect: P (y|do(x))

I Can you adjust for direct cause?

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

I Can you adjust for direct cause? NO!

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

I Can you apply backdoor criterion?

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

I Can you apply backdoor criterion? NO!

ZX Y

U (Unobserved)

Karthika Mohan and Judea Pearl Graphical Models for Causal Inference



Estimating causal effect: P (y|do(x))

I Is P (y|do(x)) identifiable?

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

I Is P (y|do(x)) identifiable? YES!

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

Given: P (y|x̂) =
∑

z P (y|ẑ)P (z|x̂)

ZX Y

U (Unobserved)
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Estimating causal effect: P (y|do(x))

Given: P (y|x̂) =
∑

z P (y|ẑ)P (z|x̂)
P (z|x̂) = P (z|x)
P (y|ẑ) =

∑
x′ P (y|x′, z)P (x′)

Therefore,
P (y|x̂) =

∑
z P (z|x)

∑
x′ P (y|x′, z)P (x′)

ZX Y

U (Unobserved)
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Front-door Criterion for Identifiability

Definition (Pearl-1995)

A set of variables Z satisfies the front-door criterion relative to
an ordered pair of variables (Xi, Xj) in a DAG G if:

(i) Z intercepts all directed paths from X to Y ; and
(ii) there is no unblocked back-door path from X to Z; and
(iii) all back-door paths from Z to Y are blocked by X

1

3

2

Z

Z

Z

X Y

U (Unobserved)

Figure: Frontdoor criterion is satisfied by Z = {Z1, Z2, Z3}
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Front-door Adjustment

If Z satisfies the front door criterion relative to (X,Y ) and if
P (x, z) > 0, then the causal effect of X on Y is identifiable and
is given by:

P (y|x̂) =
∑

z P (z|x)
∑

x′ P (y|x′, z)P (x′)
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Estimating causal effect P (y|do(x))

How can you syntactically derive claims about interventions?

I do-calculus

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG

Figure: Subgraphs of G used in the derivation of causal effects.
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do-Calculus-[Pearl-1995]

Rule-1 Insertion or deletion of observations
P (y|x̂, z, w) = P (y|x̂, w) if (Y q Z|X,W )GX

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG
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do-Calculus-[Pearl-1995]

Rule-2 Action/Observation exchange
P (y|x̂, ẑ, w) = P (y|x̂, z, w) if (Y q Z|X,W )GXZ

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG
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do-Calculus-[Pearl-1995]

Rule-3 Insertion or deletion of actions
P (y|x̂, ẑ, w) = P (y|x̂, w) if (Y q Z|X,W )G

X,Z(W )

where Z(W ) is the set of Z nodes that are not ancestors of any
W node in GX

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG
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Deriving causal effect using do-calculus

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG

Compute: P (y|ẑ)
P (y|ẑ) =

∑
x P (y|x, ẑ)P (x|ẑ)

P (x|ẑ) = P (x) since (Z qX)GZ

P (y|x, ẑ) = P (y|x, z) since (Z q Y |X)GZ

P (y|ẑ) =
∑

x P (y|x, z)P (x)
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Prove: P (y|x̂) =
∑

z P (y|ẑ)P (z|x̂)

X Z Y X Z YX Z Y

X Z Y

U (Unobserved)

X Z Y

Z X

Z XZXZG G G

G   = GG

P (y|x̂) =
∑

z P (yz|x̂) =
∑

z P (y|x̂z)P (z|x̂)
P (y|zx̂) = P (y|ẑx̂) since Y q Z in GXZ

= P (y|ẑ) since Y qX in GZX
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Graphical Models in which P (y|x̂) is Identifiable

X

Y

(a)

Y

Z
X

(d)

X

Y

X

Y

Z

Z1

Z2

Y

(g)

Z3

XX

Y

Z

(e)

X

Y

Z

(b) (c)

Z1

Z2

(f)
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Graphical Models in which P (y|x̂) is not
Identifiable

(e)

Z
X

Y

Z1
Z2

X

Y

(g)(f)

Y

Z

X

Y

(h)

Z

W

X

X

Y

(a) (b)

X

Y

Z

X

Y

Z

(c) (d)

Y

Z
X
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C-components and C-factor

Two variables are said to be in the same C-component if they
are connected by a path comprising of only bi-directional
edges[Tian & Pearl, 2002].

Z1

W1

2Z

2W

X Y

T

S1 = {X,Y,W1,W2}
S2 = {Z1}
S3 = {Z2}
S4 = {T}

C-factor: Q[Si](v) = Pv\si(si)
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Identifiability of C-factor

Lemma (Tian & Pearl, 2002)

Let a topological order over V be V1 < V2 < ... < Vn and let
V (i) = {V1, V2, ..., Vi}, i = 1, ..., n and V (0) = φ. For any set C,
let GC denote the subgraph of G composed only of variables in
C. Then:
(i) Each C-factor Qj , j = 1, ..., k is identifiable and is given by:

Qj =
∏
{i:Vi∈Sj} P (vi|v(i−1))
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Example: Identifiability of C-factor

X1
X2 X3 X4

Y

Admissible order: X1 < X2 < X3 < X4 < Y
Q1 = P (x4|x1, x2, x3)P (x2|x1)
Q2 = P (y|x1, x2, x3, x4)P (x3|x1, x2)P (x1)
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Necessary and Sufficient condition for
identifiability of Px(v)

Theorem (Tian & Pearl, 2002)

Let X be a singleton. Px(v) is identifiable if and only if there is
no bi-directed path connecting X to any of its children.

When
Px(v) is identifiable, it is given by:

Px(v) = P (v)
QX

∑
xQ

X ,

where QX is the c-factor corresponding to the c-component SX

that contains X.
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Example: Necessary and Sufficient condition for
identifiability of Px(v)

X1
X2 X3 X4

Y

Admissible order: X1 < X2 < X3 < X4 < Y
Q1 = P (x4|x1, x2, x3)P (x2|x1)
Q2 = P (y|x1, x2, x3, x4)P (x3|x1, x2)P (x1)
Px1(x2, x3, x4, y) = Q1

∑
x1
Q2

= P (x4|x1, x2, x3)P (x2|x1)∑
x1
P (y|x1, x2, x3, x4)P (x3|x1, x2)P (x1)
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Causal Effect Identifiability

Identification of Px(y|z) where X ∩ Y ∩ Z = φ and X is not
necessarily a singleton, [Shpitser & Pearl,2006]

I Hedge Criterion

I IDC - Sound and Complete Algorithm
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Counterfactuals

Query: Would the prisoner be dead had rifleman A not shot
him, given that the prisoner is dead and rifleman A shot him?

C (Captain)

U (Court order)

B (Riflemen)A

D (Death)

I Abduction

I Intervention

I Prediction
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Counterfactuals

Query: Would the prisoner be dead had rifleman A not shot
him, given that the prisoner is dead and rifleman A shot him?

C (Captain)

U (Court order)

B (Riflemen)A

D (Death)

Model M
C = U
A = C
B = C
D = A ∨B
Facts: D
Conclusions:
U,A,B,C,D

Model MqA

C = U
qA
B = C
D = A ∨B
Facts: U
Conclusions:
U, qA,B,C,D
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Markov Equivalence

Given 2 models, is there a test that would tell them apart?

Definition
Two graphs G1 and G2 are said to be Markov equivalent if
every d-separation condition in one also holds in the other. .

A

B

Z

1G( )

A

B

Z

G( )2
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Markov Equivalence

Given 2 models, is there a test that would tell them apart?

Definition
Two graphs G1 and G2 are said to be Markov equivalent if
every d-separation condition in one also holds in the other. .

Are these DAGs Markov Equivalent?

Z1

W1

2Z

2W

X Y

T

Z1 2Z2WW1

X Y

T

Hard to enumerate all separation conditions.
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Observational Equivalence

Theorem (Verma & Pearl 1990)

Two DAGs are observationally equivalent iff they have the same
sets of edges and the same sets of v-structures, that is, two
converging arrows whose tails are not connected by an arrow.

X1

X23X

X4

X5

X1

X23X

X4

X5

Figure: Observationally Equivalent DAGs
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Markov Equivalence and Observational
Equivalence

If two DAGs are Markov Equivalent, then they are
Observationally Equivalent as well. True/False?
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Markov Equivalence and Observational
Equivalence

If two DAGs are Markov Equivalent, then they are
Observationally Equivalent as well. True/False?
True if all variables are observed(i.e. no bi-directed edges) and
False otherwise.
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Markov Equivalence and Observational
Equivalence

If two DAGs are Markov Equivalent, then they are
Observationally Equivalent as well. True/False?
True if all variables are observed(i.e. no bi-directed edges) and
False otherwise.

X T Z YX T Z Y

Figure: DAGs that are Markov Equivalent but not Observationally
Equivalent

How would you distinguish between the two?

I Verma Constraints (Refer slide:115)
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Ancestral Graphs

Definition (Ancestral Graphs)

A graph which may contain directed or bi-directed edges is
ancestral if:
(i) there are no directed cycles
(ii) whenever there is an edge X ←→ Y , then there is no
directed path from X to Y or from Y to X.

Z1 2Z2WW1

X Y

T

Figure: Ancestral graph

Z1

W1

2Z

2W

X Y

T

Figure: Not an Ancestral graph
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Maximal Ancestral Graphs (MAGs)

Definition (Spirtes & Richardson, 2002)

An ancestral graph is said to be maximal if, for every pair of
non-adjacent nodes X, Y there exists a set Z such that X and
Y are d-separated conditional on Z.

Z1

W1

2Z

2W

X Y

T

Z
1 2

Z

W
1 2

W

X Y

T

Figure: DAG and its corresponding MAG
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Construction of a MAG

Given : DAG G
Step-1: Construct a graph M comprising of:
(i) all nodes in G
(ii) all uni-directional edges in G

Z1

W1

2Z

2W

X Y

T

Figure: DAG G

Z
1

W
1

2
Z

2
W

X Y

T

Figure: Graph M
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Construction of a MAG

Step-2: For every bi-directed edge A↔ B in G,
(i) add A→ B to M if A is an ancestor of B in G
(ii) add A← B to M if B is an ancestor of A in G
(iii) copy A↔ B to M if (i) and (ii) do not hold true

Z1

W1

2Z

2W

X Y

T

Figure: DAG G

Z
1

W
1

2
Z

2
W

X Y

T

Figure: Graph M
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Construction of a MAG

Step-3: For every pair of non-adjacent nodes A and B in G,
connected by an inducing path ,
(i) add A→ B to M if A is an ancestor of B in G
(ii) add A← B to M if B is an ancestor of A in G
(iii) add A↔ B to M if (i) and (ii) do not hold true

Z1

W1

2Z

2W

X Y

T

Figure: DAG G

Z
1 2

Z

W
1 2

W

X Y

T

Figure: MAG M
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Markov Equivalence

Theorem
Two graphs G1 and G2 are said to be Markov equivalent if their
MAGs are Markov Equivalent

Are these MAGs Markov Equivalent?

Z1 2Z2WW1

X Y

T

Z
1 2

Z

W
1 2

W

X Y

T

Note: Markov Equivalence in MAGs are easier to check
Complete criterion for determining Markov Equivalence of 2
MAGs: [Ali, Richardson and Spirtes, 2009]
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Reversing an edge in a MAG

Definition (Screened Edge)

[Tian,2005] An edge X → Y is a screened edge in a MAG if
Pa(Y ) = Pa(X) ∪ {X} and Sp(Y ) = Sp(X)1.

X YZ

W

Figure: MAG with Screened Edge:X → Y

1Nodes X and Y are spouses, if they are connected by a bi-directed edge.
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Reversing an edge in a MAG

Theorem (Tian,2005)

Let M be a MAG with edge X → Y and M ′ be a graph with
edge X ←− Y , otherwise identical to M . Then M ′ is a MAG
that is Markov Equivalent to M if and only if X → Y is a
screened edge in M .

X YZ

W

X YZ

W

Figure: Markov Equivalent MAGs
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Confounding Equivalence

Definition (Pearl and Paz,2009)

Define two sets, T and Z as c-equivalent (relative to X and Y),
written T ≈ Z, if the following equality holds for every x and y:∑

t P (y|x, t)P (t) =
∑

z P (y|x, z)P (z) ∀x, y

W1 2W

V1 2V

X Y

Examples:

I T = {W1, V2} ≈ Z = {W2, V1}
I T = {W1, V1} ≈ Z = {W2, V2}
I T = {W1,W2} ≈ Z = {W1}
I T = {W1,W2} 6≈ Z = {W2}

Note: C-equivalence is testable

Karthika Mohan and Judea Pearl Graphical Models for Causal Inference



Necessary and Sufficient Condition for
C-Equivalence

Theorem (Pearl and Paz, 2009)

Let Z and T be two sets of variables containing no descendant
of X. A necessary and sufficient condition for Z and T to be
c-equivalent is that at least one of the following conditions hold:

I X q (Z ∪ T ) | (Z ∩ T ) or

I Z and T are G-admissible2

W1 2W

V1 2V

X Y

Examples:

I T = {W1, V2} ≈ Z = {W2, V1}
I T = {W1, V1} ≈ Z = {W2, V2}
I T = {W1,W2} ≈ Z = {W1}
I T = {W1,W2} 6≈ Z = {W2}

2satisfies back-door criterion
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Linear Models and Causal Diagrams

Assume all variables are normalized to have zero mean and unit
variance.

Z X Y

W

a

b

c

α β

γ

Z = e1
W = e2
X = aZ + e3
Y = bW + cX + e4
Cov(e1, e2) = α 6= 0
Cov(e2, e3) = β 6= 0
Cov(e3, e4) = γ 6= 0

Which parameters can be identified?
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Vanishing Regression Coefficient

Definition
For any linear model for a causal diagram D that may include
cycles and bi-directed arcs, the partial correlation ρXY.Z must
vanish if and only if node X is d-separated from node Y by the
variables of Z in D [Spirtes et al., 1997b].

Z1

W1

2Z

2W

X Y

T I rTX.W1Z1 = 0

Find more
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Single Door Criterion for Direct Effects

Theorem
Let G be any path diagram in which α is the path coefficient
associated with link X → Y and let Gα denote the diagram that
results when X → Y is deleted from G. The coefficient α is
identifiable if there exists a set of variables Z such that :
(i) Z contains no descendant of Y and
(ii) Z d-separates X from Y in Gα
Moreover, if Z satisfies these two conditions, then α is equal to
the regression coefficient rY X.Z .

Gα

β
Z YX

G

Z YX
β α
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Instrumental Variables (IV)
Definition
A variable Z is an instrument relative to a cause X and an
effect Y if:

I Z is independent of all error terms that have an influence
on Y when X is held constant, and

I Z is not independent of X.

In linear systems, Causal effect of X on Y = rZY
rZX

UYUY

UW
UYUY

Y

(b)

X

Z

Y

(c)

X
Z

Y

(d)

X

Z

W

Y

(a)

X

Z

Figure: Z is an instrument in (a), (b) and (c) but not in (d)
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Conditional Instrumental Variable

Definition (Brito & Pearl, 2002)

Z is an instrumental variable if ∃ a set W such that:

I W contains only non-descendants of Y
I W d-separates Z from Y in the sub-graph Gα obtained by

removing the edge X → Y
I W does not d-separate Z from X in Gα

Z X Y

W

α

Z X Y

W

Figure: Graph G and corresponding subgraph Gα
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Conditional Instrumental Variable

I Z is a conditional instrumental variable. Hence,
α = Causal effect of X on Y = rZY.W

rZX.W
I W does not satisfy single-door criterion. So, α cannot be

identified using single-door.

Z X Y

W

α

Z X Y

W

Figure: Graph G and corresponding subgraph Gα
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Verma Constraints([Tian and Pearl, 2002])

A B C D

(a) (b)

A B C D

Q[{B,D}] =∑
u P (b|a, u)P (d|c, u)P (u)

Pv\d(d) =
∑

u P (d|c, u)P (u)
Also,
Q[{B,D}] = P (d|a, b, c)P (b|a)
Pv\d(d) =

∑
b P (d|a, b, c)P (b|a)∑

b P (d|a, b, c)P (b|a) is
independent of a.

Q[{B,D}] =∑
u P (b|a, u)P (d|a, c, u)P (u)

Pv\d(d) =
∑

u P (d|a, u, c)P (u)
Also,
Q[{B,D}] = P (d|a, b, c)P (b|a)
Pv\d(d) =

∑
b P (d|a, b, c)P (b|a)∑

b P (d|a, b, c)P (b|a) is not
independent of a.
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Conclusions

Graphs are indispensable for:

I encoding causal knowledge

I identifying parameters and causal effects

I identifying testable implications

Go ahead and Exploit the Power of Graphs!
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Thank You!
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