GRAPHICAL MODELS FOR CAUSAL INFERENCE

Karthika Mohan and Judea Pearl

University of California, Los Angeles

August 14, 2012

Introduction

Why do we need graphs?

Figure: Motivating Example

Introduction

Figure: Motivating Example

Variables in the study:

- Season
- Sprinkler
- Rain
- ▶ Wetness of pavement(Wet)
- Slipperiness of pavement(Slippery)

Introduction

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	# Variables	Table size
$\begin{array}{ccccccc} 6 & 64 \\ 7 & 128 \\ 8 & 256 \\ 9 & 512 \\ 10 & 1,024 \\ 20 & 1,048,576 \\ 30 & 1,073,741,824 \end{array}$	5	32
$\begin{array}{ccccc} 7 & 128 \\ 8 & 256 \\ 9 & 512 \\ 10 & 1,024 \\ 20 & 1,048,576 \\ 30 & 1,073,741,824 \end{array}$	6	64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	128
$\begin{array}{cccc} 9 & 512 \\ 10 & 1,024 \\ 20 & 1,048,576 \\ 30 & 1,073,741,824 \end{array}$	8	256
$\begin{array}{cccc} 10 & 1,024 \\ 20 & 1,048,576 \\ 30 & 1,073,741,824 \end{array}$	9	512
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1,024
30 1,073,741,824	20	1,048,576
, , , ,	30	1,073,741,824

Figure: Motivating Example

Introduction

Figure: DAG Representation

Conditional Probability Distributions

- $\blacktriangleright P(X_1): 2$
- $\blacktriangleright P(X_3|X_1): 4$
- $\blacktriangleright P(X_2|X_1): 4$
- $P(X_4|X_2,X_3): 8$
- $\blacktriangleright P(X_5|X_4): 4$

Total # of Table Entries = 22

Graphs: Notations

Figure: Bayesian Network representing dependencies

- Adjacent Nodes
- Root and Leaf Nodes
- Skeleton
- ▶ Path
- ▶ Kinship Terminology

Graphs: Notations

Figure: Bayesian Network representing dependencies

Background Factors & Bi-directed Edges

Figure: (a) Causal Model with background factors (b) & (c) Causal Model with correlated background factors

Note: Figure (a) expresses the assumption: $U_x \amalg U_y$ and Figure (b)& (c) express the assumption $U_x \not \amalg U_y$

How would you decompose joint distribution P(V) into smaller distributions?

How would you decompose joint distribution P(V) into smaller distributions?

By applying Chain rule

How would you decompose joint distribution P(V) into smaller distributions?

By applying Chain rule

Let $X_1, X_2, ..., X_n$ be any arbitrary ordering of nodes in a DAG. $P(x_1, x_2, ..., x_n) = \prod_j P(x_j | x_1, ..., x_{j-1})$

How would you decompose joint distribution P(V) into smaller distributions?

By applying Chain rule

Let $X_1, X_2, ..., X_n$ be any arbitrary ordering of nodes in a DAG. $P(x_1, x_2, ..., x_n) = \prod_j P(x_j | x_1, ..., x_{j-1})$

Is it possible that conditional probability of some variable X_j is not sensitive to all its predecessors?

How would you decompose joint distribution P(V) into smaller distributions?

By applying Chain rule

Let $X_1, X_2, ..., X_n$ be any arbitrary ordering of nodes in a DAG. $P(x_1, x_2, ..., x_n) = \prod_j P(x_j | x_1, ..., x_{j-1})$

Is it possible that conditional probability of some variable X_j is not sensitive to all its predecessors?

Yes!

Markovian Parents

Figure: Bayesian Network representing dependencies

Markovian Parents

Figure: Bayesian Network representing dependencies

 $P(x_1, x_2, x_3, x_4, x_5) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2, x_3)P(x_5|x_4)$

Markov Compatibility

Let $V = \{x_1, x_2, ..., x_n\}$ be the set of observed nodes and pa_i be the Markovian parents of x_i . Then, $P(v) = P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i).$

Markov Compatibility

Let $V = \{x_1, x_2, ..., x_n\}$ be the set of observed nodes and pa_i be the Markovian parents of x_i . Then, $P(v) = P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i).$

Definition (Markov Compatibility)

If a probability distribution P admits Markovian factorization of observed nodes relative to DAG G, we say that G and P are Markov compatible.

Markov Compatibility

Let $V = \{x_1, x_2, ..., x_n\}$ be the set of observed nodes and pa_i be the Markovian parents of x_i . Then, $P(v) = P(x_1, x_2, ..., x_n) = \prod_i P(x_i | pa_i).$

Definition (Markov Compatibility)

If a probability distribution P admits Markovian factorization of observed nodes relative to DAG G, we say that G and P are Markov compatible.

Example

X	Y	P(X,Y)
1	1	0.225
1	0	0.375
0	1	0.125
0	0	0.275

Markov Compatible DAGs: $X \to Y$ $X \leftarrow Y$

Testing Markov Compatibility

Given a DAG G and distribution P, how can you conclude that P and G are compatible?

Testing Markov Compatibility

Given a DAG G and distribution P, how can you conclude that P and G are compatible?

- Parents shielding tests
 - non-descendants
 - ► predecessors
- d-separation

d-Separation

Definition

Let X, Y and Z be disjoint sets in DAG G. X and Y are d-separated by Z (written $(X \amalg Y|Z)_G)$ if and only if Z blocks every path from a node in X to a node in Y.

d-Separation

Definition

Let X, Y and Z be disjoint sets in DAG G. X and Y are d-separated by Z (written $(X \amalg Y|Z)_G)$ if and only if Z blocks every path from a node in X to a node in Y.

A path p is said to be d-separated(or blocked) by a set of nodes Z if and only if : (1) p contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that the middle node m is in Z, or (2) ...

Example: d-Separation

- $\blacktriangleright X_1 \amalg X_4 | X_2, X_3$
- $\blacktriangleright X_3 \amalg X_5 | X_4$
- $\blacktriangleright X_1 \amalg X_5 | X_4$

d-Separation

Definition

Let X, Y and Z be disjoint sets in DAG G. X and Y are d-separated by Z (written $(X \amalg Y|Z)_G)$ if and only if Z blocks every path from a node in X to a node in Y.

A path p is said to be d-separated (or blocked) by a set of nodes Z if and only if :

(1) p contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that the middle node m is in Z, or

(2) p contains an inverted fork (or collider) $i \to m \leftarrow$ such that the middle node m is not in Z and such that no descendant of m is in Z.

Example: d-Separation

Example: d-Separation

Example: d-Separation

Case (a): $X\amalg Y|\phi$

Example: d-Separation

d-Separation

When is it impossible to d-separate 2 non-adjacent nodes X and Y? Do we need to test all sets for possible separation?

Inducing path

Definition

Path between 2 nodes X and Y is termed inducing if every non-terminal node on the path:

- (i) is a collider and
- (ii) an ancestor of either X or Y (or both)

Note: There are no separators for X and Y.

The Five Necessary Steps of Causal Analysis

- Define Express the target quantity Q as property of the model M.
- Assume Express causal assumptions in structural or graphical form.
- Identify Determine if Q is identifiable.
- Estimate Estimate Q if it is identifiable; approximate it, if it is not.
 - Test If M has testable implications

UCLA

Figure: Turing Test

Input: Story

Question: What if? What is? Why?

UCLA

Answers: I believe that...

Figure: Turing Test

Figure: Turing Test

UCLA

UCLA

Q1: If the season is dry and the pavement is slippery, did it rain?

UCLA

Q1: If the season is dry and the pavement is slippery, did it rain?

A1: Unlikely, it is more likely that the sprinkler was ON with a very slight possibility that it is not even wet.
UCLA

Q2: But what if we see that the sprinkler is OFF?

UCLA

Q2: But what if we see that the sprinkler is OFF? A2: Then it is more likely that it rained. Without graphs, # of Table Entries = 32

UCLA

Q3: Do you mean that if we actually turn the sprinkler ON, the rain will be less likely?

UCLA

Q3: Do you mean that if we actually turn the sprinkler ON, the rain will be less likely?

A3: No, the likelihood of rain would remain the same but the pavement would surely get wet. Without graphs, # of Table Entries = 32 * 32

UCLA

Q4: Suppose we see that the sprinkler is ON and pavement is wet. What if the sprinkler were OFF?

UCLA

Q4: Suppose we see that the sprinkler is ON and pavement is wet. What if the sprinkler were OFF?

A4: The pavement would be dry because the season is likely to be dry

Without graphs, what would be the # of table entries?

Interventions

Query: Would the pavement be slippery if we *make sure that the* the sprinkler is on?

Compute: $P(x_5|do(x_3))$

May be equivalently represented as:

(a) $P(x_5|\hat{x_3})$ (b) $P_{x_3}(x_5)$

Figure: DAG before intervention

Interventions

Compute: $P(x_5|do(x_3))$

Figure: DAG before intervention $P(v) = P(x_1)P(x_2|x_1)P(x_3|x_1)P(x_4|x_2,x_3)P(x_5|x_4)$

Interventions

Compute: $P(x_5|do(x_3))$

Figure: DAG before intervention Figure: DAG after intervention $P(v) = P(x_1)P(x_2|x_1) \frac{P(x_3|x_1)}{P(x_1, x_2, x_4, x_5|do(x_3))} \frac{P(x_3|x_1)}{= P(x_1)P(x_2|x_1)P(x_4|x_2, x_3)P(x_5|x_4)$

Interventions

Compute: $P(x_5|do(x_3))$

Figure: DAG before intervention $P(v) = P(x_1)P(x_2|x_1) \underbrace{P(x_3|x_1)}_{P(x_5|do(x_3))} P(x_4|x_2, x_3)P(x_5|x_4)$ $P(x_5|do(x_3)) = \sum_{x_1, x_2, x_4} P(x_1)P(x_2|x_1)P(x_4|x_2, x_3)P(x_5|x_4)$ Note: $P(x_5|do(x_3)) \neq P(x_5|x_3)$ i.e. Doing \neq Seeing

Examples

Question : Can you estimate P(y|do(x)), given P(x, y)?

Examples

Question : Can you estimate P(y|do(x)), given P(x, y)?

NO!

Examples

Question : Can you estimate P(y|do(x)), given P(x, y)?

NO!

$$P(x,y) = \sum_{u} P(x,y,u) = \sum_{u} P(y|x,u)P(x|u)P(u)$$
$$P(y|do(x)) = \sum_{u} P(y|x,u)P(u)$$

Identifiability

Definition Let Q(M) be any computable quantity of a model M.

Identifiability

Definition

Let Q(M) be any computable quantity of a model M. We say that Q is identifiable in a class M of models if, for any pairs of models M_1 and M_2 from M, $Q(M_1) = Q(M_2)$ whenever $P_{M_1}(v) = P_{M_2}(v)$.

Estimating causal effect

Adjustment for direct causes
Compute:
$$P(y|\hat{x})$$

 $P(x, y, z, w) = P(y|x, w)P(x|z)P(w|z)P(z)$
 $P(y, z, w|do(x)) = P(y|x, w)P(w|z)P(z) \frac{P(x|z)}{P(x|z)}$
 $P(y, z, w|do(x)) = \frac{P(x,y,z,w)}{P(x|z)}$
 $P(y|do(x)) = \sum_{z,w} P(yw|x, z)P(z) = \sum_{z} P(y|x, z)P(z)$

Figure: DAGs before and after intervention

Theorem (Adjustment for direct causes)

Let PA_i denote the set of direct causes of X_i and let Y be any set of variables disjoint of $\{X_i \cup Pa_i\}$. The causal effect of X_i on Y is given by:

$$P(y|\hat{x}_i) = \sum_{pa_i} P(y|x_i, pa_i) P(pa_i)$$

where $P(y|x_i, pa_i)$ and $P(pa_i)$ represent pre-interventional probabilities.

Example: Adjustment for direct causes

Query: Would the pavement be slippery if we *make sure that the* the sprinkler is on?

$$P(x_5|\hat{x_3}) = \sum_{x_1} P(x_5|x_3, x_1) P(x_1)$$

Figure: DAG before intervention

Figure: DAG after intervention

Estimating Causal Effect

Compute: $P(X_j|do(X_i))$ How can we find a set Z of concomitants that are sufficient for identifying causal effect?

Back-door Criterion for Identifiability

Definition (Pearl-1993)

A set of variables Z satisfies the back-door criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

(i) no node in Z is a descendant of X_i ; and

(ii) Z blocks every path between X_i and X_j that contains an arrow into X_i .

 $P(x_j|do(x_i)) = \sum_z P(x_j|x_i, z)P(z)$

Estimating causal effect: P(y|do(x))

▶ Can you adjust for direct cause?

Estimating causal effect: P(y|do(x))

► Can you adjust for direct cause? NO!

Estimating causal effect: P(y|do(x))

▶ Can you apply backdoor criterion?

Estimating causal effect: P(y|do(x))

► Can you apply backdoor criterion? NO!

Estimating causal effect: P(y|do(x))

• Is P(y|do(x)) identifiable?

UCLA

Estimating causal effect: P(y|do(x))

• Is P(y|do(x)) identifiable? YES!

Estimating causal effect: P(y|do(x))

Given: $P(y|\hat{x}) = \sum_{z} P(y|\hat{z})P(z|\hat{x})$

Estimating causal effect: P(y|do(x))

Given:
$$P(y|\hat{x}) = \sum_{z} P(y|\hat{z})P(z|\hat{x})$$

 $P(z|\hat{x}) = P(z|x)$
 $P(y|\hat{z}) = \sum_{x'} P(y|x', z)P(x')$

Therefore, $P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x', z) P(x')$

Front-door Criterion for Identifiability

Definition (Pearl-1995)

A set of variables Z satisfies the front-door criterion relative to an ordered pair of variables (X_i, X_j) in a DAG G if:

(i) Z intercepts all directed paths from X to Y; and
(ii) there is no unblocked back-door path from X to Z; and
(iii) all back-door paths from Z to Y are blocked by X

Figure: Frontdoor criterion is satisfied by $Z = \{Z_1, Z_2, Z_3\}$

Front-door Adjustment

If Z satisfies the front door criterion relative to (X, Y) and if P(x, z) > 0, then the causal effect of X on Y is identifiable and is given by:

$$P(y|\hat{x}) = \sum_{z} P(z|x) \sum_{x'} P(y|x', z) P(x')$$

Estimating causal effect P(y|do(x))

How can you syntactically derive claims about interventions?

Estimating causal effect P(y|do(x))

How can you syntactically derive claims about interventions?

▶ do-calculus

Figure: Subgraphs of G used in the derivation of causal effects.

do-Calculus-[Pearl-1995]

Rule-1 Insertion or deletion of observations $P(y|\hat{x}, z, w) = P(y|\hat{x}, w)$ if $(Y \amalg Z|X, W)_{G_{\overline{X}}}$

do-Calculus-[Pearl-1995]

Rule-2 Action/Observation exchange $P(y|\hat{x}, \hat{z}, w) = P(y|\hat{x}, z, w)$ if $(Y \amalg Z|X, W)_{G_{\overline{X}Z}}$

do-Calculus-[Pearl-1995]

Rule-3 Insertion or deletion of actions $P(y|\hat{x}, \hat{z}, w) = P(y|\hat{x}, w)$ if $(Y \amalg Z|X, W)_{G_{\overline{X},\overline{Z(W)}}}$ where Z(W) is the set of Z nodes that are not ancestors of any W node in $G_{\overline{X}}$

Deriving causal effect using do-calculus

Compute:
$$P(y|\hat{z})$$

 $P(y|\hat{z}) = \sum_{x} P(y|x, \hat{z})P(x|\hat{z})$
 $P(x|\hat{z}) = P(x)$ since $(Z \amalg X)_{G_{\overline{Z}}}$
 $P(y|x, \hat{z}) = P(y|x, z)$ since $(Z \amalg Y|X)_{G_{\underline{Z}}}$
 $P(y|\hat{z}) = \sum_{x} P(y|x, z)P(x)$

 $P(y|\hat{x}) = \sum_{z} P(yz|\hat{x}) = \sum_{z} P(y|\hat{x}z)P(z|\hat{x})$

$$\begin{aligned} P(y|\hat{x}) &= \sum_{z} P(yz|\hat{x}) = \sum_{z} P(y|\hat{x}z) P(z|\hat{x}) \\ P(y|z\hat{x}) &= P(y|\hat{z}\hat{x}) \text{ since } Y \amalg Z \text{ in } G_{\overline{X}Z} \end{aligned}$$

$$\begin{split} P(y|\hat{x}) &= \sum_{z} P(yz|\hat{x}) = \sum_{z} P(y|\hat{x}z) P(z|\hat{x}) \\ P(y|z\hat{x}) &= P(y|\hat{z}\hat{x}) \text{ since } Y \amalg Z \text{ in } G_{\overline{X}\underline{Z}} \\ &= P(y|\hat{z}) \text{ since } Y \amalg X \text{ in } G_{\overline{ZX}} \end{split}$$

Graphical Models in which $P(y|\hat{x})$ is Identifiable

UCLA

Graphical Models in which $P(y|\hat{x})$ is not Identifiable

UCLA

C-components and C-factor

Two variables are said to be in the same C-component if they are connected by a path comprising of only bi-directional edges[Tian & Pearl, 2002].

C-components and C-factor

Two variables are said to be in the same C-component if they are connected by a path comprising of only bi-directional edges[Tian & Pearl, 2002].

C-components and C-factor

Two variables are said to be in the same C-component if they are connected by a path comprising of only bi-directional edges[Tian & Pearl, 2002].

$$S_{1} = \{X, Y, W_{1}, W_{2}\}$$

$$S_{2} = \{Z_{1}\}$$

$$S_{3} = \{Z_{2}\}$$

$$S_{4} = \{T\}$$
C-factor: $Q[S_{i}](v) = P_{v \setminus s_{i}}(s_{i})$

Identifiability of C-factor

Lemma (Tian & Pearl, 2002)

Let a topological order over V be $V_1 < V_2 < ... < V_n$ and let $V^{(i)} = \{V_1, V_2, ..., V_i\}, i = 1, ..., n$ and $V^{(0)} = \phi$. For any set C, let G_C denote the subgraph of G composed only of variables in C. Then:

(i) Each C-factor $Q_j, j = 1, ..., k$ is identifiable and is given by:

$$Q_j = \prod_{\{i: V_i \in S_j\}} P(v_i | v^{(i-1)})$$

Example: Identifiability of C-factor

Admissible order: $X_1 < X_2 < X_3 < X_4 < Y$ $Q_1 = P(x_4|x_1, x_2, x_3)P(x_2|x_1)$ $Q_2 = P(y|x_1, x_2, x_3, x_4)P(x_3|x_1, x_2)P(x_1)$

Necessary and Sufficient condition for identifiability of $P_x(v)$

Theorem (Tian & Pearl, 2002)

Let X be a singleton. $P_x(v)$ is identifiable if and only if there is no bi-directed path connecting X to any of its children.

Necessary and Sufficient condition for identifiability of $P_x(v)$

Theorem (Tian & Pearl, 2002)

Let X be a singleton. $P_x(v)$ is identifiable if and only if there is no bi-directed path connecting X to any of its children. When $P_x(v)$ is identifiable, it is given by:

$$P_x(v) = \frac{P(v)}{Q^X} \sum_x Q^X,$$

where Q^X is the c-factor corresponding to the c-component S^X that contains X.

Example: Necessary and Sufficient condition for identifiability of $P_x(v)$

UCLA

Admissible order:
$$X_1 < X_2 < X_3 < X_4 < Y$$

 $Q_1 = P(x_4|x_1, x_2, x_3)P(x_2|x_1)$
 $Q_2 = P(y|x_1, x_2, x_3, x_4)P(x_3|x_1, x_2)P(x_1)$
 $P_{x_1}(x_2, x_3, x_4, y) = Q1 \sum_{x_1} Q2$
 $= P(x_4|x_1, x_2, x_3)P(x_2|x_1)$
 $\sum_{x_1} P(y|x_1, x_2, x_3, x_4)P(x_3|x_1, x_2)P(x_1)$

Causal Effect Identifiability

Identification of $P_x(y|z)$ where $X \cap Y \cap Z = \phi$ and X is not necessarily a singleton, [Shpitser & Pearl,2006]

- ▶ Hedge Criterion
- ▶ IDC Sound and Complete Algorithm

Counterfactuals

Markov Equivalence

Given 2 models, is there a test that would tell them apart?

Definition

Two graphs G_1 and G_2 are said to be Markov equivalent if every d-separation condition in one also holds in the other.

Markov Equivalence

Given 2 models, is there a test that would tell them apart?

Definition

Two graphs G_1 and G_2 are said to be Markov equivalent if every d-separation condition in one also holds in the other. . Are these DAGs Markov Equivalent?

Observational Equivalence

Theorem (Verma & Pearl 1990)

Two DAGs are observationally equivalent iff they have the same sets of edges and the same sets of v-structures, that is, two converging arrows whose tails are not connected by an arrow.

Figure: Observationally Equivalent DAGs

Markov Equivalence and Observational Equivalence

If two DAGs are Markov Equivalent, then they are Observationally Equivalent as well. True/False?

Markov Equivalence and Observational Equivalence

If two DAGs are Markov Equivalent, then they are Observationally Equivalent as well. True/False? True if all variables are observed(i.e. no bi-directed edges) and False otherwise.

Markov Equivalence and Observational Equivalence

If two DAGs are Markov Equivalent, then they are Observationally Equivalent as well. True/False? True if all variables are observed(i.e. no bi-directed edges) and False otherwise.

Figure: DAGs that are Markov Equivalent but not Observationally Equivalent

How would you distinguish between the two?

▶ Verma Constraints (Refer slide:115)

Ancestral Graphs

Definition (Ancestral Graphs)

A graph which may contain directed or bi-directed edges is ancestral if:

(i) there are no directed cycles

(ii) whenever there is an edge $X \longleftrightarrow Y$, then there is no directed path from X to Y or from Y to X.

Figure: Not an Ancestral graph

Maximal Ancestral Graphs (MAGs)

Definition (Spirtes & Richardson, 2002)

An ancestral graph is said to be maximal if, for every pair of non-adjacent nodes X, Y there exists a set Z such that X and Y are d-separated conditional on Z.

Figure: DAG and its corresponding MAG

Construction of a MAG

Given : DAG G
Step-1: Construct a graph M comprising of:
(i) all nodes in G
(ii) all uni-directional edges in G

Figure: DAG G

Figure: Graph M

Construction of a MAG

Step-2: For every bi-directed edge $A \leftrightarrow B$ in G, (i) add $A \rightarrow B$ to M if A is an ancestor of B in G(ii) add $A \leftarrow B$ to M if B is an ancestor of A in G(iii) copy $A \leftrightarrow B$ to M if (i) and (ii) do not hold true

Figure: DAG G

Figure: Graph M

Construction of a MAG

Step-3: For every pair of non-adjacent nodes A and B in G, connected by an *inducing path*, (i) add $A \rightarrow B$ to M if A is an ancestor of B in G (ii) add $A \leftarrow B$ to M if B is an ancestor of A in G (iii) add $A \leftrightarrow B$ to M if (i) and (ii) do not hold true

Figure: DAG G

Figure: MAG M

Markov Equivalence

Theorem

Two graphs G_1 and G_2 are said to be Markov equivalent if their MAGs are Markov Equivalent

Are these MAGs Markov Equivalent?

Reversing an edge in a MAG

Definition (Screened Edge)

[Tian,2005] An edge $X \to Y$ is a screened edge in a MAG if $Pa(Y) = Pa(X) \cup \{X\}$ and $Sp(Y) = Sp(X)^1$.

Figure: MAG with Screened Edge: $X \to Y$

¹Nodes X and Y are spouses, if they are connected by a bi-directed edge. Karthika Mohan and Judea Pearl Graphical Models for Causal Inference

Reversing an edge in a MAG

Theorem (Tian, 2005)

Let M be a MAG with edge $X \to Y$ and M' be a graph with edge $X \longleftarrow Y$, otherwise identical to M. Then M' is a MAG that is Markov Equivalent to M if and only if $X \to Y$ is a screened edge in M.

Figure: Markov Equivalent MAGs

Confounding Equivalence

Definition (Pearl and Paz,2009)

Define two sets, T and Z as c-equivalent (relative to X and Y), written $T \approx Z$, if the following equality holds for every x and y:

$$\sum_t P(y|x,t)P(t) = \sum_z P(y|x,z)P(z) ~~\forall x,y$$

Necessary and Sufficient Condition for C-Equivalence

Theorem (Pearl and Paz, 2009)

Let Z and T be two sets of variables containing no descendant of X. A necessary and sufficient condition for Z and T to be c-equivalent is that at least one of the following conditions hold:

- $X \amalg (Z \cup T) \mid (Z \cap T)$ or
- \blacktriangleright Z and T are G-admissible²

²satisfies back-door criterion

Karthika Mohan and Judea Pearl
Linear Models and Causal Diagrams

Assume all variables are normalized to have zero mean and unit variance.

Which parameters can be identified?

Vanishing Regression Coefficient

Definition

For any linear model for a causal diagram D that may include cycles and bi-directed arcs, the partial correlation $\rho_{XY,Z}$ must vanish if and only if node X is d-separated from node Y by the variables of Z in D [Spirtes et al., 1997b].

• $r_{TX.W_1Z_1} = 0$ Find more

Single Door Criterion for Direct Effects

Theorem

Let G be any path diagram in which α is the path coefficient associated with link $X \to Y$ and let G_{α} denote the diagram that results when $X \to Y$ is deleted from G. The coefficient α is identifiable if there exists a set of variables Z such that : (i) Z contains no descendant of Y and (ii) Z d-separates X from Y in G_{α} Moreover, if Z satisfies these two conditions, then α is equal to the regression coefficient $r_{YX,Z}$.

Instrumental Variables (IV)

Definition

A variable Z is an instrument relative to a cause X and an effect Y if:

- ► Z is independent of all error terms that have an influence on Y when X is held constant, and
- ▶ Z is **not** independent of X.

In linear systems, Causal effect of X on $Y = \frac{r_{ZY}}{r_{ZX}}$

Figure: Z is an instrument in (a), (b) and (c) but not in (d)

Conditional Instrumental Variable

Definition (Brito & Pearl, 2002)

Z is an instrumental variable if \exists a set W such that:

- W contains only non-descendants of Y
- ► W d-separates Z from Y in the sub-graph G_{α} obtained by removing the edge $X \to Y$
- W does not d-separate Z from X in G_{α}

Figure: Graph G and corresponding subgraph G_{α}

Conditional Instrumental Variable

- ► Z is a conditional instrumental variable. Hence, $\alpha = \text{Causal effect of } X \text{ on } Y = \frac{r_{ZY,W}}{r_{ZX,W}}$
- ► W does not satisfy single-door criterion. So, α cannot be identified using single-door.

Figure: Graph G and corresponding subgraph G_{α}

Verma Constraints([Tian and Pearl, 2002])

UCLA

$$\begin{split} Q[\{B,D\}] &= \\ \sum_{u} P(b|a,u) P(d|c,u) P(u) \\ P_{v \setminus d}(d) &= \sum_{u} P(d|c,u) P(u) \\ \text{Also,} \\ Q[\{B,D\}] &= P(d|a,b,c) P(b|a) \\ P_{v \setminus d}(d) &= \sum_{b} P(d|a,b,c) P(b|a) \\ \sum_{b} P(d|a,b,c) P(b|a) \text{ is} \\ \text{independent of a.} \end{split}$$

$$\begin{split} Q[\{B,D\}] &= \\ \sum_u P(b|a,u) P(d|a,c,u) P(u) \\ P_{v \setminus d}(d) &= \sum_u P(d|a,u,c) P(u) \\ \text{Also,} \\ Q[\{B,D\}] &= P(d|a,b,c) P(b|a) \\ P_{v \setminus d}(d) &= \sum_b P(d|a,b,c) P(b|a) \\ \sum_b P(d|a,b,c) P(b|a) \text{ is not} \\ \text{independent of a.} \end{split}$$

Conclusions

Graphs are indispensable for:

- encoding causal knowledge
- ▶ identifying parameters and causal effects
- identifying testable implications

Go ahead and Exploit the Power of Graphs!

UCLA

Thank You!

Karthika Mohan and Judea Pearl Graphical Models for Causal Inference