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Kelly Gotlieb. It is my great pleasure to welcome you to the ACM Alan Turing
Lecture. This annual presentation is delivered by the winner of the ACM Alan
Turing Award, which is named for the great British mathematician and com-
puter scientist Alan M. Turing, the originator of the Turing Test, and whose 100th
birthday we’ve been celebrating.

The Turing Award is often referred to as the “Nobel Prize of Computing,” and
is the most prestigious prize a computer scientist can receive; it carries a $250,000
prize generously provided by Intel and Google.

This year’s recipient of the ACM Turing Award, and our lecturer this morning,
is Judea Pearl, Professor of Computer Science and Statistics at the University of
California in Los Angeles. He received this honor in recognition of his fundamen-
tal contribution to artificial intelligence as a result of the development of a calculus
for probabilistic and causal reasoning.

So, you can see it is quite fitting that he addresses this audience at this con-
ference, seeing he is one of the true pioneers in advancing both the science and
the art of artificial intelligence. And I do not give the term “art” loosely because if
you know any of Professor Pearl’s works or books, you’ll know that he is as much a
philosopher as a scientist.

The subject for his talk this morning is “The Mechanization of Causal Inference:
A ‘Mini’ Turing Test and Beyond.” It is my privilege to introduce Judea Pearl.

Edited transcript of Lecture Video at https://amturing.acm.org/award_winners/pearl_
2658896.cfm.
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Judea Pearl. Thank you, Kelly, for a wonderful introduction. I'm very glad to be
here. I did request to deliver the Turing lecture at AAAI because you, AAAI students
and researchers, were with me at an early stage of this game, and deserve to hear a
progress report about what happened in this adventure since we last played in the
sandbox and built those castles together.

Also, I think it is important that I pay tribute to AAAI for nurturing my work
when it was not exactly fashionable. I want to thank all of you for being partners
in the development of the things I'm going to talk about: colleagues, co-authors,
co-principal investigators, students, and reviewers. I do not know if I should thank
my reviewers as well [LAUGHTER].

Three of my most important works were published in the proceedings of AAAI,
so Twould like to start with those.! The first, presented at AAATI 1982 in Pittsburgh,
was my first paper on belief propagation in trees. The second was presented at
AAAT 1994 and it was a paper with Adnan Darwiche on the do calculus. 'm sure that
it wouldn’t have been published in any other conference proceedings, in Statistics
or any other field. The third was presented in the same conference, AAAI 1994, and
it was the paper with Alexander Balke on “Probabilistic Evaluation of Counterfac-
tual Queries.” I chose those three papers because their titles are closely related to
the names of the three-layer hierarchy of causal reasoning that we have today. They
established a very solid kind of hierarchy that is rarely mixed, in the sense that you
can syntactically tell if a sentence is probabilistic, causal, or counterfactual.

But this is not a lecture about my work; it is a lecture about Turing. So, let me
start with Turing and his Turing Test in the article in Mind Magazine in 1950: a test
that I think is an engine behind much of the work that is done in AI

Turing’s answer to the question of, “Can computers think?” was very simple.
“Yes, if it acts like it thinks,” where “acting” means that it provides reasonable
answers to non-trivial questions about a story, a topic, or a situation. Many of us
are working on mini-Turing Tests in various fields. I will consider questions that
involve causal inference.

Here is how Turing described a hypothetical conversation with the machine.
First was the question about poetry. And the answer, of course, is evasive, although
with some human element to it: “I never could write poetry.”

The second question is about arithmetic: “Can you add that and that,” and the
answer is also human. You pause for 30 seconds, and then you give the answer. This
is also a very simple domain.

1. The three AAAI papers that Judea Pearl is referring to are: “Reverend Bayes on inference engines:
A distributed hierarchial approach” [Pear] 1982]; “Symbolic causal networks for reasoning about
action and plans” [Darwiche and Pearl 1994]; and “Probabilistic evaluation of counterfactual
queries” [Balke and Pearl 1994].
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And then Turing said, “Let’s look at chess. Do you play chess?” “Yes.” “I have a
King on my K1, and no other pieces; you have only King at K6 and Rook at R1. It is
your move. What do you play?” And of course the machine answers after a pause,
“Checkmate.”

So, these were the questions exemplified in Turing’s first paper: questions about
various domains like arithmetic, poetry, and chess, all of which admit reasonable
answers.

But then Turing talks about a “child machine,” which is essentially machine
learning. “Why don’t we start with a child machine?” It should be easier, he said,
because the child does not need as much background as we expect adults to have.
“Our hope is that there is so little mechanism in the child-brain that something
like it can be easily programmed.” I think that Turing underestimated the role that
vision and motor action play even in high level intelligence. We know, for example,
that metaphors taken from the child world play a tremendous role in the child’s
ability to handle mathematics.

Turing then made some statements about the connection between machine
learning and evolution, and said: “The survival of the fittest is a slow method for
learning. The experimenter [the programmer], by exercise of intelligence, should
be able to speed it up. How? By creating artificial mutations where they are needed.
If he can trace the cause of some weakness, he can then probably think of a
kind of mutation which will improve it.” Turing’s idea was that the program-
mer would be able to trace shortcomings of the program to where they matter,
and fix them. There was a great vision here because it leads to the question:
Why shouldn’t a machine, having a blue print of itself be able to pinpoint the
root causes of a weakness, and change priority among competing computational
resources?

I will explain to you why I chose causal reasoning to be a domain that deserves
to be called a “Mini Turing Test.” For this, imagine that you have Turing’s exper-
imental setting with an interrogator asking a machine questions. The questions,
however, are limited mainly to three types or modalities: What is?, What if?, and
Why?

The story, that I used many times in my 1988 book Probabilistic Reasoning [Pearl
1988] and the 2000 book Causality [Pearl 2000], is as follows: You get out of your
house and you see the pavement. The pavement may be wet or dry, it may also be
slippery or not, it may have rained or not, the season may be dry or wet, and the
sprinkler may have been on or off. These are five binaryvariables that can be used to
generate many simple stories connected to your everyday experience. The task is to
tell a story to the machine and the machine has to answer questions corresponding
to the three modalities.
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One simple question: if the season is dry and the pavement is slippery, did it
rain? You expect an answer like: “It is unlikely. It is more likely that the sprinkler
was on, with a very slight possibility that the pavement is not even wet.” There
could indeed be other reasons for why the pavement is slippery. This is the kind of
answer that you expect on the basis of observations alone.

Then comes a second question: “What if you see that the sprinkler is off?” A
plausible answer is: “It is more likely then that it rained.” This is reasonable; it is
an example of what is called “explaining away.”

Now a question about actions: “Do you mean that if we actually turn the sprin-
Kkler on, then rain will be less likely?” And you want the machine to say, “No, there
is a difference between seeing and doing; the likelihood of rain would remain the
same but the pavement will surely get wet.”

Finally, a question of counterfactual nature: “Suppose that you see that the
sprinkler is on and the pavement is wet. Would the pavement be wet if the sprinkler
were off?” I’ll explain why I’'m so hung up on counterfactuals, but first I would like
you to answer the question instead of the machine. What I expect the machine to
say is, “The pavement would be dry then, because the season is likely dry.” Namely,
you take the observation here, that the sprinkler is on, and you infer, “Oh, it must
be a dry season.” Then, if the sprinkler were off, the past remains the same but the
future changes, so the justification should be: “Because the season is likely dry and
the pavement is wet.”

This is the kind of question/answer session that we expect for a toy problem.
We all remember, however, Searle’s argument of the Chinese room that says that
answering questions does not mean that a machine thinks or even understands the
questions. To prove his point, Searle imagines that the machine takes the questions
in Chinese and answers them using a rule book, where every sentence in Chi-
nese has the answer printed there in Chinese or in English. He concludes that the
machine can’t be said to understand Chinese just because it looks up the answers
in the book.

What Searle overlooks is the fact that there are not enough molecules in the
universe to make up such a book, because of the huge number of questions that
may be asked. “So what?,” you may ask. “Just because you have combinatorial diffi-
culty, you conclude that the machine thinks?” [AUDIENCE LAUGHS] The answer is
“Yes,” because when you have such a combinatorial problem to overcome, the only
way to solve it is by taking advantage of the relevant constraints in the domain. And
understanding and taking advantage of the relevant principles and constraints is
what we mean by understanding.

Even for the sprinkler example, if, for the sake of argument, we consider ten
binary variables and count the number of entries in the table that we would need
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to use Searle’s Chinese-book method, it turns out that we would need on the order
0f1,000 entries just for the probability. We need to multiply this number by another
1,000 to get the probablities for all actions, and by an additional 1,000 to account
for the counterfactual queries. So, we would need a billion-long table just to answer
questions about the simple pavement story.

Yet even children can answer these questions quite intelligibly, and the ques-
tion is, “How?” I'll argue that there are important principles and constraints that
enable the child to answer questions about observations, interventions, and coun-
terfactuals, but before getting there, I'd like to explain why I think that the causal
conversation is important (Figure 2.1, “The plurality of mini Turing tests”).

Causal reasoning is important because it is pervasive in human cognition and
human ethics, and it is deeply entrenched in the cognitive development of chil-
dren. In addition, causality is a building block of scientific thinking and crucial in
robotics. Finally, and that’s the reason I have spent more than 25 years of my life on
causality, there are many data-intensive applications that can benefit from any new
insight in causal reasoning. There are thousands of hungry and aimless customers,
not hungry for money since they are well endowed—all the pharmacutical com-
panies are part of this enterprise—but they are hungry for ideas, because causal
reasoning has not been properly formalized in those fields. Thus, any insight that
we get by trying to make a robot understand cause-and-effect could translate into
methods that could save millions of lives and dollars in those fields.

Let me start with human cognition and ethics (Figure 2.2). I like to start with
Adam and Eve—where else do you start? And you can see immediately that when
God asked Adam, “Hey, did you eat from that tree?” Adam does not answer “yes”
or “no.” He says instead, “She handed me the fruit and I ate.” You see: facts are
for the gods; excuses are for men. [LAUGHTER] And Eve, of course, is no less
expert in causal explanations, and says, “Don’t blame me. The serpent deceived
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Figure 2.2 Causes, counterfactuals, and our sense of justice.

me and I ate.” Thus causal reasoning plays a key role in our sense of justice, and in
the need to pass the buck to somebody else. [LAUGHTER]

You also remember when God told Abraham that he is about to destroy the cities
of Sodom and Gomorrah, and Abraham said, “Are you about to smite the righteous
with the wicked? You can’t do that. What if there were 50 righteous men in the
city?” Here, you have the first counterfactual in the Bible. [AUDIENCE LAUGHS]
“What if there were 50?” And look what God says: “If I find in the city of Sodom
50 good men, I will pardon the whole place for their sake.” Do you think that Abra-
ham gave up at that point? No. He got down and said, “What about 45?” [AUDIENCE
LAUGHS] “Are you going to make a big fuss for five people?” And God says, “No, I
ain’t gonna destroy it,” and then he goes down to 40, and then 30, and 20, and 10,
and you know what happened. The rest is history, and the question, of course, is
what kind of game this is. Did Abraham doubt the ability of God to count or to
distinguish the righteous from the wicked? No. Abraham was the first scientist: he
tried to find a general rule. “Where is the threshold?” “What is the general rule for
collective punishment?” [AUDIENCE LAUGHS] In that sense, he was the first sci-
entist, because what is science all about? It is about the general rules; not about
specific events.

So, here I go to science to prove to you that counterfactuals are indeed the basis
for science. We all used to do problems in physics, for example, using Hooke’s law,
which tells you that the length of the string Y is equal to a constant, say 2, times
the weight X it supports. So if X is one kilogram, we have two equations: ¥ = 2X
and X = 1 (Figure 2.3). You may think that finding the length of the string Y is just
arithmetic: you solve the two equations with the two unknowns, and obtain the
values Y = 2 and X = 1. The question is: are the equations Y = 2X and X = 1, and
the equations Y = 2 and X = 1 equivalent? They are of course algebraically equiv-
alent, as they have the same solution, but I will argue that they are not equivalent,



Turing Award Lecture 17

WHAT KIND OF QUESTIONS WHY PHYSICS IS
SHOULD THE ROBOT ANSWER? COUNTERFACTUAL

Scientific equations (e.g., Hooke’s law) are non-algebraic
Observational Questions:
“What if we see A” (What is?)
Action Questions:
“What if we do A?” (What if?) X=1 X=%Y
X=1 Y=2 Y =X+1
Process information ~ The solution Alternative

e.g., Length (Y) equals a constant (2) times the weight (X)

Counterfactuals Questions:
“What if we did things differently?” (Why?)

Options: Had X been 3, Y would be 6.
“With what probability?” If we raise X to 3, Y would be 6.
Must “wipe out” X = 1.
THE CAUSAL HIERARCHY

Figure 2.3 The causal hierarchy and why physics is counterfactual.

because the equations on the left can answer questions that the ones on the right
cannot.

For illustrating this difference, consider actually a system of equations X = Y/2
and Y = X + 1 which has the same solution Y = 2 and X = 1, along with the fol-
lowing question: “If we raise the weight X to 3, what would be the length Y?” In
the first system of equations Y = 2X and X = 1, which captures Hooke’s law and
the unit body weight, the counterfactual question “if X had been 3” has the answer
Y = 6, which can be obtained by wiping out the equation X = 1 and replacing it by
X = 3. The new system of two equations, modified by the new information, gives
us the answer Y = 6.

The system of equations X = Y/2 and Y = X + 1, on the other hand, has the
same solutions as the equations Y = 2X and X = 1, but if we apply the same
method for answering the counterfactual query, and replace the equation X = Y/2
by X = 3, we obtain the answer Y = 4, which is wrong.

Every child in high school, when he or she solves physics problems, engages in
counterfactual reasoning of this sort. The child knows which equations to write,
which equations to wipe out, and which ones to keep. They keep the one that con-
veys the generic rule and wipe out the ones that are merely boundary conditions
and subject to the antecedent of the counterfactual. If this is the case, the equality
sign that we saw before in the equation Y = 2X for expressing Hooke’s law does
not really represent an algebraic equality but something closer to an assignment
statement in a programming language.

You can imagine that Nature, before determining the length of the spring, looks
around for all variables that might possibly affect the length. She looks at the
weight and says, “Ah, that is the one,” then consults the weight on the spring,
and finally determines the value of the length. So, this is the conception of Nature
in physics: Nature looks at some variables, goes through some process, and then
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assigns values to other variables. If that is so, then modeling Nature requires a dif-
ferent kind of algebra because the process involves wiping out equations. That is
the meaning of arrows in the structure of causal graphs; it is a description of the
strategy used by Nature.

The role of counterfactuals and causation in human reasoning has not escaped
philosophers. Already at the time of the Greeks in 430 BC, Democritus said, “I
would rather discover one causal relationship than be king of Persia.” King of Per-
sia at that time was not exactly a dangerous occupation like it is today. [LAUGHTER]
And Hume, of course, looked at that and said, “What is this idea of causation? I've
got to solve it.” And he came out with the conception that causation is not a gift
of the gods, but something that we learn from experience. Here is a famous para-
graph: “We remember to have seen that species of object called ‘flame,” and to have
felt the species of sensations we call ‘heat.” Without any further ceremony, we call
the one ‘cause’ and the other ‘effect.’” So, it is a matter of determining regularity in
nature that makes us come up with the label “cause.” There are obvious difficulties
to that conception, of course, but the fact that generations of philosophers have
stumbled on the difficulty of explaining what “cause” is, brings us to ask: “What
gives us the audacity, here in Al to think that we can add another iota to this long
debate?”

The answer is simply that we do not have the luxury to philosophize. We need
to build robots that understand what went wrong in the laboratory or the kitchen,
and if they do not learn it by themselves, we need to teach them, so that they can act
properly and answer queries about cause/effect relationships. And this is not a triv-
ial thing to do because now the puzzles that philosophers have faced translate into
engineering problems. The question of, “How do we acquire causal information
from the environment?” is translated into, “How do we people conclude that the
sprinkler caused the pavement to get wet?” And the question of “How do we peo-
ple conclude that the sprinkler caused the pavement to get wet?” translates into,
“How should a robot use causal information received from its creator-programmer
to understand or to answer queries properly?”

The use of causal information may look trivial but it is not, because if you just
follow the rules you get unexpected results. If the input is “If the grass is wet, then
it rained” and “If you break this bottle, the grass will get wet,” you do not want an
output such as “If we break the bottle, then it rained.” So, just rule-chaining is not
going to do the work for us; we need something more.

And what is that something more? Before we get there, let me provide an outline
of what I'm going to talk about (Figure 2.4). I'm going to talk about the three-level
hierarchy first. The question “What if I see” is about probability and beliefs. The
question “What if I do?” is about actions and interventions. Finally, the question
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Figure 2.4 Roadmap: From Bayesian nets to causality and counterfactuals.

“What if I did things differently?” is about counterfactuals. You can decorate these
questions with probabilities; namely, how likely are the answers, but that’s not
essential.

The following is a field report of the journey that we took from the old days
of Bayesian networks to causality and counterfactuals. We have to understand
the distinctions and mental barriers that stood in our way. We have to talk also
about what makes a model causal as opposed to something else, how a causal
model can be tested, and how causal models and data are connected. If a model
has testable implications, then you can hope to discover or learn the model from
data. A model that does not have any testable implication cannot be discovered
from data. Then I’ll talk about three themes: the effects of interventions, the evo-
lution of the do-calculus, and the algorithmization of counterfactuals. I'll also talk
about applications: evaluation of plans and policies, mediation (i.e., distinguishing
between direct and indirect causes), and generalization.

I start with the basic statistical problem and the paradigm that rules statisti-
cal thinking and most of machine learning. The idea is that someplace behind the
scenes there is a Santa Claus called the “joint probability distribution” that occa-
sionally, when he or she is gracious enough, spits out data. Our job is to infer Santa
Claus’s properties: some aspect Q(P) of the joint distribution function P from the
data; for example, we might want to estimate the mean, come up with a classifier,
or decide whether a customer who bought Product A will also buy Product B. This
kind of question is neat and well-formulated because it can be neatly encapsulated
in the language of probability theory. We even have a short sentence to express
this question: “Find the conditional probability of B given A,” with conditional
probability coming all the way from Reverend Bayes 250 years ago. The function
P can be a very complex distribution defined on many variables, some continuous
and some binary, and so on. Although this is not a simple computational problem,
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Figure 2.5 Structured causal models and truncated factorization.

the paradigm is clear enough. Causal reasoning, however, deals with a different
paradigm.

You ask a question, for instance, “Infer whether customers who bought Product
A would buy Product B if we double the price.” So, here we get up in the morning,
whimsically greedy, and wonder what would happen if we raised the price. And we
ask the question, “What will the probability of B given A be after we do something
that perhaps has not been done before, like doubling the price of the product.” This
is not even an aspect of the probability distribution P; observing that the price has
doubled (and what has happened as a consequence) is very different from doubling
the price and seeing the consequence.

The counterfactual “had we doubled the price” is thus not an aspect or prop-
erty of the Santa Claus. So, what is it? It is a property of a data-generating model
that is behind the joint probability. As before, the joint probability spits out data,
we get the samples, and we need to infer some property, but of what? Not of P, but
of the data-generating model. This is the invariant strategy of Nature that I talked
about before, sometimes called a “mechanism,” “recipe,” “law,” or “protocol”—all
are counterfactual notions—by which Nature assigns values to variables.

This simple idea is torture for a statistician because it takes a leap of imagina-
tion to think of Nature rather than experiments or measurements. It is a traumatic
experience for people outside artificial intelligence; I would like you to be aware of
that if you ever talk to an outsider. [AUDIENCE LAUGHS]

Once we go there, let’s generalize it. Let’s imagine that the whole world is just a
collection of springs. So, the model is fueled by a collection of functions that assign
values to variables. Every variable is assigned a value that is a function of the other
variables in the system (Figure 2.5). Some of the variables are exogenous; you do not
care about their causes, but only about their effects. The rest are endogenous. And



Turing Award Lecture 21

our job is to encode this on a machine so that the machine can provide reasonable
and plausible answers to our reasonable questions.

The equations that we had for the spring example are typical: after Nature
spends some time, maybe a billionth of a second, looking at X, multiplying it by
constant, adding to it some noise, and deciding that Y deserves the value y (great
work, mother Nature!), our job is to decipher the strategy of Nature. If this sounds
too ambitious, at the very least we should be able to answer counterfactual queries
if we have enough data.

Let us illustrate this by considering a familiar digital circuit diagram. The circuit
is an oracle for counterfactuals because if you look at the circuit you can answer a
counterfactual question like “What if I were to replace this OR gate with an AND
gate?” or “What if I were to connect this node Y to a power supply of 5 volts?” Even
though the circuit designer never anticipated such crazy questions and events, the
engineer glancing at the circuit has the ability to contemplate the answers and
compute them correctly.

Where does this ability come from? It comes from some fundamental proper-
ties of the collection of functions and equations in the causal model. The funda-
mental one, from which everything else eventually derives, is that, if you happen to
be lucky and your equations are recursive (no cycles there), and the disturbances
happen to be independent of each other, then regardless of the functions that
you have there and regardless of the distributions of disturbances, you can say
something about the probability distribution of what you observe. So, the struc-
ture of that collection of springs determines something very basic in your dis-
tribution function, which has the form of a product and represents conditional
independencies (Figure 2.5).

And from that comes the next corollary, which is the ability to answer questions
about interventions. Once you have this product form, if somebody asks you, “And
what if I take an action?,” the answer comes from the truncated factorized product
(Figure 2.5). This is the same factorized product as before, but we delete from the
product those variables that are forced to a constant (by the interventation) because
those variables no longer listen to their parents.

Here is our sprinkler example again (Figure 2.6). Before you act, you have the
diamond structure shown in the figure, which corresponds to the set of equa-
tions shown. But once you take an action like turning the sprinkler on, you must
remove the causal influence of the variable Season on the variable Sprinkler, as
Mr. Sprinkler no longer listens to its parent, and instead becomes enslaved to your
muscles, which set the variable to a value.

This formalism for actions did not germinate in Al, but originated with
an economist, Haavelmo. In 1943, he considered the problem of modeling
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Figure 2.6  Structured causal models of two of the examples in the text.

government interventions in the economy, like fixing a price or imposing taxes,
and he had the idea to model the effects of the actions by introducing changes in
the equations. If the government does something like keeping a price constant,
a term is added to the corresponding equation to balance the other terms, so that
the price remains constant. Later on, this manipulation was replaced by Strotz and
Wold, who “wiped out” the relevant equation and replaced it with a constant assign-
ment. Then Spirtes, Glymour, and Scheines transformed this manipulation into a
graphical surgery procedure, where you wipe out the arrows going into the manipu-
lated variable, resulting in the truncated factorization. I took this all very seriously
and said, “We have a new calculus that deserves algebraic support,” translated it
into the do-calculus, and then applied it to counterfactuals. That has been the evo-
lution of these ideas. Now we also have the unification with the Neyman-Rubin
account in statistics, which also handles causality with counterfactuals.

How are counterfactuals handled, and what is the general model for counter-
factuals? This is all very simple (Figure 2.7). You mutilate your model to take care of
the antecedent of the counterfactual, and you solve the equation in the mutilated
model. There’s nothing else to it; it’s embarrassingly simple. In this Definition,
I simply say symbolically what I said verbally: you are in possession of a calculus
because you have a semantics for joint counterfactuals. For any set of variables
X,Y,Z,...,you can find the joint probability of Y taking a value y had X been x,
and simultaneously, Z taking value z had W been w, and so on. The semantics
determines the probability of any such sentence.

Specifically, the sentences can involve actions with the “do” operator and attri-
butions, like “What is the likelihood that a patient would be alive today had he
not taken the drug, given that in fact he is dead and he took the drug?” This is
a sentence in the language, and the semantics is there. If you have the model,
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The sentence: “Y would be y (in situation «), had X been x,”
denoted , means:

The solution for ¥ in a mutilated model M,, (i.e., the
equations for X replaced by X = x) with input U=y, is
equal to y.

The sentence: “Y would be y (in situation ), had X been x,”
denoted , means:

The solution for Y in a mutilated model M, (i.e., the
equations for X replaced by X =x) with input U=u, is

equal to y. * Joint probabilities of counterfactuals:

P(Yy=y,Zy=2)= DY P(u)

The Fundamental Equation of Counterfactuals: WY (u)=y 2,y W)=z

In particular:
Pyl ) A P(Y,=y)= X P(u)
u¥, (u)=y
P(Yy=y'lxy)= X  Plxy)
uYy(u)=y'

Figure 2.7 Counterfactuals are simple.

you can compute the answer. Everybody knows how to solve equations, right? The
semantics is extremely simple.

And Joe Halpern and David Galles came up with a complete axiomatization
of that. Why do we need an axiomatization? So that if anybody says, “You can
do counterfactuals differently,” you can compare the axioms and evaluate if they
are equivalent or not. The workhorse is a composition axiom that tells you that if
you do something that would have occurred anyhow, you have not done a thing.
This sentence says, essentially, that our world is closer to our world than any other
possible world, if you go to the possible worlds interpretation of it.

I'll give you now an example of what you can do with it. You have a collection
of equations and you think that Nature works like that. The first questions that
you have to ask yourself are “Is this model testable?” or “Does the model have any
testable implications?” As I said before, if it does not have testable implications,
you cannot learn or verify the model. And the idea for the verification is very sim-
ple. Everything that we did with Bayesian nets translates now into Causal Bayesian
nets, and the criterion of d-separation gives you a finite set of testable implications.
Just look at the missing arrows: every one carries the promise of a test. If the test
fails, the model is wrong.

What else can these models do for you? They can handle interventions; they
are, indeed, an oracle for interventions. So, if you have questions like “What is the
average causal effect of X on Y, given that you can measure variables W and Z”
or “Can you do this without manipulation, just by observation?”, you can produce
answers like “Yes, if you can measure variables like age or ethnicity.” Namely, you
are guaranteed that you can answer the query without bias by simple adjustment
(regression). Of course, these results are built on the assumptions encoded in the
causal graph. Each missing link in the graph is an assumption of a causal nature,
not of a statistical nature.
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THE MACHINERY OF CAUSAL CALCULUS DERIVATION IN CAUSAL CALCULUS

Genotype (Unobserved)
@

Smoking Tar Cancer

)=2,P(cl P ) Probability Axioms

3 P(cldo(s),do(t))P(¢ | ) Rule2 . ..
+Plel : )P(ts) Rule2 y ...
(Pcldo(t)P(t5) Rule 3 |

Pl L,S)P(s'| )P(t15s) Probability Axioms
(P(clt,sHP(s'l )P(ts) Rule2 =
P(clt,sHP(sHP(t]s) Rule3 y

Rule 1: Ignoring observations
Pyl 2, w)=P(y| , W)
if (YAZIXW)g

Rule 2: Action/observation exchange
Ply| ) W) =P(y| Z,W)
if (YLZIXW)g
Rule 3: Ignoring actions
Pyl , W) =P(y| W)
if (VILZIXW)g
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Figure 2.8 Causal calculus in action.

Here is another example, one which is highly applicable. You are in the sports
medicine business, and you wonder whether warm-up is a cause of injury or pre-
vents injuries in the game (Figure 2.6). It’s an extremely important question for
our society, for our culture, right? You can take measurements of previous injuries,
team aggressiveness, and so on. Which one would you measure? Each one takes a
lot of dollars to measure. The answer is given to you automatically: “Thou shalt
measure this, and you’re okay; thou shalt not measure that because you would get
bias; thou shalt measure that—fine, and here there is another alternative.” Indeed,
you can pick the measurements according to their cost and their reliability. There
are three rules that drive this answering mechanism (Figure 2.8). The rules take the
graph into account, are applied repeatedly, and produce the answer.

Another example: Does smoking cause cancer? The query given to you contains
a causal symbol (Figure 2.8): the purple expression do(s) stands for doing the action
of smoking. We do not have the data for the effect of this action: we cannot conduct
randomized experiments on smokers. So we have to answer the query analytically.
We apply the rules one after the other until we get rid of all the purple expressions.
Once we do this, it means that you can answer the query from data obtained by
hands-off, passive observations. And you can answer the question quantitatively:
this is the extent to which smoking causes cancer.

What else can this calculus do for you? Find equivalent models, identify coun-
terfactual queries, mediation, which is about the distinction between direct and
indirect effects, explanation, which is about finding the causes of observed effects,
and transportability, which is about generalizing what you learn in one domain
into another domain in which you cannot conduct any experiments.

Counterfactuals are very interesting because philosophers have gone through
a great deal of pain to understand why we are able to agree on their truth value.
Here is a typical example: “If Oswald didn’t kill Kennedy, someone else did” and
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“If Oswald hadn’t killed Kennedy, someone else would have.” If I give you this pair
of sentences, you’ll tell me “Yes” on the first one and “No” on the second. How are
we able to agree on this? This was a puzzle for philosophers.

Hume tried to explain causes in terms of counterfactuals, and David Lewis tried
to explain causes in those terms too. The puzzle that I faced was different. Why
don’t we try to define counterfactuals in terms of causes, rather than the other way
around? Are counterfactuals less problematic? Apparently so, because we do form
consensus on counterfactuals. And these two pillars of philosophy tried indeed to
define causes in terms of counterfactuals. To me it means that we do count on a
counterfactual engine in our mind that is swift and reliable, and we form consen-
sus because we share the architecture of this engine. So, this is an AI problem, not
a philosophy problem.

Indeed, what Lewis came up with in his possible-worlds semantics for coun-
terfactuals does not solve the consensus puzzle as it relies on assessing, for exam-
ple, how close is a world in which we are all dead after Nixon presses the button,
relative to a world in which Nixon presses the button but somebody disconnected
the wires. That is a typical question in philosophy—assessment of how similar
worlds are. In our structural world, you do not rely on similarity among worlds; you
rely on equations which are common equations of physics, and mutilating those
equations.

I will not have time to talk about the counterfactual triumph, which is the
ability to distinguish between direct and indirect effects. It is an important distinc-
tion because we send people to prison if they are directly responsible for murder,
and fine them if they are only indirectly responsible. So, it is a key notion in law,
in ethics, and in understanding how the world works. However, it requires the
ability to answer questions about different kinds of interventions—interventions
where you enable and disable certain mechanisms, rather than fixing variables, as
I mentioned before.

Direct and indirect effects is a booming field now in statistical epidemiology,
called “mediation analysis.” And the impetus for that was counterfactuals. We were
able to express the idea of indirect effects by counterfactuals, as you see here. What
is the definition of “indirect effect?” It is the expected change in output when we
keep the input constant but change the mediator. “What would you have gotten had
the input changed?” is a nested counterfactual that is not about fixing the value of
variables. It is now the accepted definition when you have indirect effects. That’s
why I consider this account a triumph.

I'll now talk about the next triumph: transportability. And I say it’s a triumph
because here the do-calculus appeared out of the blue. We didn’t expect it to reveal
its potency in an area like that, which has very little to do with interventions.
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HISTORICAL OBSERVATIONS

"Development of Western science is based on two

great achievements: the invention of the formal
logical system (in Euclidean geometry) by the
Greek philosophers, and the discovery of the
possibility to find out causal relationships by
systematic experiment (during the Renaissance)."
(Albert Einstein, 1953)
Inspired by Turing, | have tried to put the two

together and base causal inference on a formal
system that is reducible to algorithmic

CONCLUSIONS

« Counterfactuals are the building blocks of
scientific thought, free will and moral behavior.

The algorithmization of counterfactuals has
benefited several problem areas in the
empirical sciences, including policy evaluation,
mediation analysis, generalizability, and

credit / blame determination.

This brings us a step closer to achieving
cooperative behavior among robots and

implementation. humans.

Mission largely accomplished — more to be done.

Figure 2.9 Logic and experiment for a science of cause and effect.

Imagine that we want to transfer relationships that we learn from experiments
in one environment to a different environment in which no experiments can be
conducted. So, we can think about training a robot in the cockpit and moving
him or her to another environment where only observations are allowed, but no
interventions.

How much of the causal knowledge that the robot acquired in the cockpit is
transferable? We typically want a crisp logical answer, yes or no, regarding whether
a certain relationship is or is not transferable given what we know about the two
environments. And this has surprisingly a complete answer; that is, an answer that
cannot be improved. When the method says that the information cannot be trans-
ferred, we also get an explanation for why, in terms of the assumptions about the
disparities and commonalities between the two environments.

I think I'm close to the end of the talk. I have five seconds. [LAUGHTER]

I didn’t talk about our new game, which is meta-analysis, in which big data
comes to play. Imagine that you have data coming from 1,000 hospitals in the
United States or worldwide, each one conducted under different conditions with
different populations. You want to use all this data to come up with an answer to a
query in another environment, where no measurements are allowed. All you know
is the structure. Can you do it or not? We look for a crisp, yes or no answer. And if
you can, how? So, I go through the “how” over many slides here, which I’ll have to
skip. Believe me, there is a method here, and there is a lot of work to be done in
terms of decomposing the relationships into sub-relationships for picking up from
every study the commonalities, and for putting them together to come up with an
unbiased estimate.

It is time to move to the conclusions (Figure 2.9). Counterfactuals are the build-
ing blocks of scientific thought, free will, and moral behavior. The algorithmization
of counterfactuals has benefited several problems in the empirical sciences, and
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brings us a step closer to achieving cooperative behavior between humans and
robots.

Historically—I have to play the sage at this point—Einstein noticed that there
have been two major advances in Western science. One is the development of logic
by the Greeks. The other is the recognition by Galileo that you can find cause-
effect relationships from experiments. I'm following these paths, trying to com-
bine the two: the logic of the Greeks with the experiments of Galileo, to come up
with logically sound theories of causes and counterfactuals. Our mission is largely
accomplished, but more remains to be done. Thank you. [APPLAUSE]
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