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stop(top). In such a situation, the element top has to be 
deleted from the stack and more operations are required 
to generate the next combination. When k > top > 2, 
one can show that the probability for a specific value of  
top that a[top] = stop(top) is a(top + l ) /a( top) ,  which 
reduces to (k  - top + l ) / (n  - top). Hence, when k is 
small compared to n, it is very unlikely that the next 
combination is generated by using the theoretical maxi- 
m u m  number  of  operations. 

I f  k is very small compared to n, then P(I) ,  the 
probabili ty that a combination is generated by changing 
only a[1], is approximately 1. In this case, almost all the 
combinations are generated by the single statement a[1] 
:= a[1] - 1. It is doubtful that any combination algorithm 
would require less work than this to generate a combi- 
nation. 
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This paper analyzes N,.d, the average number of 
terminal nodes examined by the a - f l  pruning algorithm 
in a uniform game tree of degree n and depth d for which 
the terminal values are drawn at random from a contin- 
uous distribution. It  is shown that increasing the search 
depth by one extra  step would increase N,~d by a factor 
(called the branching factor) ~t~_,(n) = ~,/1 - ~n ~ n 3/4 
where ~,~ is the positive root of  x" + x - 1 = 0. This 
implies that for a given search time allotment, the a - f l  
pruning allows the search depth to be increased by a 
factor = 4/3  over that of an exhaustive minimax search. 
Moreover,  since the quantity (~n/1 - ~,~)d has been 
identified as an absolute lower bound for the average 
complexity of all game searching algorithms, the equality 
;JC~_~(n) = ~,,/1 - ~n now renders a-fl asymptotically 
optimal 

CR Categories and Subject Descriptors: 1.2.8 [Artifi- 
cial Intelligence]: Problem Solving, Control Methods 
and Search--graph and tree search strategies, heuristic 
methods; F.2.2 [Analysis of Algorithms and Problem 
Complexity]: Nonnumerical  Algorithms and Prob lems- -  
complexity of proof procedures, sorting and searching; 
G.2.2 [Discrete Mathematics]:  Graph  Theory--graph 
algorithms, trees 

General  Term: Algorithms 
Additional Key Words and Phrases: alpha-beta 

search, game searching, games, minimax algorithms, 
branch and bound search, average case analysis 

559 

This work was supported in part by the National Science Foun- 
dation Grants MCS 78-07468 and MCS 78-18924 

An early version of this paper was presented at the 8th International 
Conference on Automata Languages and Algorithms, Acre, Israel, July 
3-17, 1981. 

* Former editor of Programming Techniques and Data Structures, 
of which Ellis Horowitz is the current editor. 

Author's Present Address: Judea Pearl, Cognitive Systems Labo- 
ratory, Departments of Computer Science and Engineering Systems, 
University of California, Los Angeles, Los Angeles, CA 90024. 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 
© 1982 ACM 0001-0782/82/0800-0559 $00.75. 

Communications August 1982 
of Volume 25 
the ACM Number 8 



1. Introduction 

1.1. Informal Description of the a-fl Procedure 
The a-fi pruning algorithm is the most commonly 

used procedure in game playing applications, where it 
serves to speed up game searching without loss of infor- 
mation. The algorithm determines the minimax value of 
the root of a game tree by traversing the tree in a 
predetermined order, for example, from left to right, 
skipping all those nodes that can no longer influence the 
minimax value of  the root. 

The method is demonstrated in Fig. l which shows 
a binary game tree of depth d = 4 with nodes at maxi- 
mizing levels (called MAX nodes) and at minimizing 
levels (called MIN nodes) represented by squares and 
circles, respectively. The numbers inside the terminal 
squares represent evaluations of  the game positions at 
the frontier of the search tree, while those at higher levels 
are the minimax values computed by the a-fl procedure. 
The heavy branches represent the search tree actually 
generated by the a-fl procedure as it traverses the game 
tree from left to right. Nodes not on that search tree are 
skipped (or "cutoff") by a-fl, as they cannot provide 
useful information. 

The rationale for node skipping can be explained by 
examining the nodes labeled A, B, and C, in Fig. 1. The 
purpose of exploring node B has been to find out if the 
value of A can be reduced below 10, which is the value 
established for A's leftmost son. However, the fact that 
one of B's sons has already attained the value 14 and 
that B is a MAX node imply that the value of B must be 
greater than 14, regardless of any information that C 
may provide. Therefore, any exploration of C cannot 
alter the fact that the value of A is exactly 10, so C can 
be cut off from the search. A precise formulation of the 
a-fl algorithm and its cutoff conditions can be found in 
[3]. 

Clearly, the efficiency of this search method depends 
on the order of the terminal values. For the values shown 
in Fig. 1, only 7 terminal nodes are examined by a left- 
to-right search, whereas all 16 terminal nodes would 

have to be examined by a right-to-left search. In complex 
games, the difference between the best case and the worst 
case can be quite substantial, amounting to a factor of 2 
in the depth of the look-ahead tree that a given computer 
system can afford to explore. This disparity warrants 
analysis of the average performance of a-fl under the 
assumption that the terminal values are randomly or- 
dered. 

1.2 Previous Analytical Results 
Although experiments show that the exponential 

growth of game tree searching is slowed significantly by 
the a-fl  pruning algorithm, quantitative analyses of its 
effectiveness have been frustrated for over a decade. One 
reason for this concern has been to determine whether 
the average performance of the a-fl algorithm is optimal 
over that of other game searching procedures. 

The model most frequently used for evaluating the 
performance of game searching methods consists of a 
uniform tree of depth d and degree n, where the terminal 
positions are assigned random, independent, and iden- 
tically distributed values. Nn,d, the average number of 
terminal nodes examined during the search, has become 
a standard yardstick for the complexity of the search 
method. Additionally, the significant parameter for very 
deep trees is the branching factor 

~--B = lim (Nn,d) TM 
d ~ o o  

which measures the effective number of branches ac- 
tually explored by a-fl from a typical node of the search 
tree. 

Slagle and Dixon [8] showed that the number of 
terminal nodes examined by a-fl must be at least 
n td/2j + n [d/2] - -  1 but may, in the worst case, reach the 
entire set of n d terminal nodes. The analysis of expected 
performance using uniform trees with random terminal 
values began with Fuller, Gaschnig, and Gillogly [2] 
who obtained formulas by which the average number of 
terminal examinations N,,d can be computed. Unfortu- 
nately, the formula would not facilitate asymptotic anal- 

Fig. 1. A Binary Game Tree of Depth 4 Traversed from Left-to-Right by the Alpha-Beta Procedure. 
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ysis; simulation studies led to the estimate aM,,_a ~. (r/) °'7e. 
Knuth and Moore [3] analyzed a less powerful but 

simpler version of  the a-fl procedure by ignoring deep 
cutoffs. They showed that the branching factor of  this 
simplified model is O(n/log n) and speculated that the 
inclusion of  deep cutoffs would not alter this behavior 
substantially. A more recent study by Baudet [1] con- 
firmed this conjecture by deriving an integral formula 
f o r  Nn,d (deep cutoffs included), from which the branch- 
ing factor can be estimated. In particular, Baudet shows 
that ~ _ a  is bounded by in/1 - in -< ~ - a  < Mln 12, where 
in is the positive root of  x n + x - 1 = 0 and Mn is the 
maximal value of  the polynomial P(x) = (1 - xn/l  - x) 
[1 - (1 - xn)"/x  "] in the range 0 _< x _< 1. Pearl [5] has 
shown both that ~n/l -- in lower bounds the branching 
factor of  every directional game searching algorithm and 
that an algorithm exists (called SCOUT) that actually 
achieves this bound. Tarsi [10] has very recently shown 
that ~n/l - in also lower bounds the branching factor of  
nondirectional algorithms. Thus, the enigma of  whether 
a-f i  is optimal remains contingent upon determining the 
exact magnitude of  ~ - B  within the range delineated by 
Baudet. 

This paper now shows that the branching factor of  
a-fl indeed coincides with the lower bound ~n/l -- ~n, 
thus establishing the asymptotic optimality of  a-fl  over 
the class of  all game searching algorithms. 

2. Analysis 

2.1 An Integral Formula for N.,a 
Our starting point will be an examination of  the 

conditions under which an arbitrary node J is generated 
by the a-fl algorithm. If  all terminal values to the left of 
J are given, one can perform a simple test to determine 
whether or not J will be generated. For a MAX node J, 
form the path leading from the root to J, and define the 
following quantities: 

A ( J )  = the highest minimax value among all left-siblings 
of  odd ancestors of J 

A(J )  = max[min(3, 22), 10] -- 10 

B(J)  = min{20, max[min(5, 6), min(4, 7)]} = 5 

and since A(J )  > B(J), it is not generated by the a-f i  
search. 

The criterion above was first derived by Fuller et al. 
[2] and is a useful tool for computing Nn,d, the average 
number of terminal nodes examined by a-ft. One need 
only compute the probability P[A(J)  < B(J ) ]  for every 
node J, then sum these probabilities over all terminal 
nodes. 

N,,a = ~ P[A( J) < B(J) ]  
d t e r m i n a l  

This procedure may seem like a major undertaking. 
Fortunately, when the terminal values are drawn inde- 
pendently fr6m a common distribution function fo(x) = 
P[Vo <- x], very simple propagation rules govern the 
distributions of  the minimax values at higher levels of 
the tree. For example, if Vk stands for the minimax value 
of  a MIN node at level k of  the tree, then its distribution 
fk is related to that of  its direct descendents by 

f k ( x )  = 1 - [1 - f i - , ( x ) ] "  

and to that of  its grandsons by 

f i(x) = 1 - (1 - [ f k _ 2 ( x ) ] n )  n 

From these recursions one can compute the distributions 
FAtj)(x) and FBtjl(x) of  the random variables A(J )  and 
B(J)  for any terminal node J. Moreover, since A(J )  and 
B(J)  are independent and continuous (for noncritical 
nodes) we have 

< B(J ) ]  = ( =  FA~j)(x)F'BIj)(X) dx P[A(J)  
dx= 

and Nn.d becomes 

fT[ ,] Nn,d = ~ FA(a)(X)FB(a)(X dx 
x =  --oo d t e rmina l  

+ nrd/21 + ntd/21 _ 1 

B ( J )  = the lowest minimax value among all left-siblings 
of  even ancestors of  J 

J will be generated by a-fl if and only if 

A( J)  < B( d). 

The same criterion holds when J is a MIN node, except 
that A(J )  is computed over even ancestors and B(J)  
over odd ancestors of  J. A special definition is required 
to include so-called critical nodes for which the corre- 
sponding sets of  left-siblings are empty [7]. 

The reader can easily verify that in Fig. 1 all nodes 
generated satisfy the criterion above while all those 
satisfying A(J )  >_ B(J)  can provide no information 
beyond that which has already been gathered by the 
search and will be cut off. For example, for the right- 
most leaf node we have: 

where the terms added to the integral represent the 
number of  critical nodes, all of  which are examined. The 
summation inside the integral can be performed using 
the recursion relations above (see Roizen [7]) and lead 
to the following theorem 

THEOREM 1. Let J~(x) = x, and, for i = l, 2 . . . . .  define 

f ( x )  = 1 - ( l  - [ f - ~ ( x ) F ) "  

ri(x) = 1 -- [f'-,(X)] ~ 
l - j ~ - l ( X )  

s~(x) -  ~(x)  
[ J ~ - - I  ( X ) ]  n 

Ri(x) = rl(x) X . . .  X rri/21(x ) 

&(x) = s,(x) x . . .  x s,,m(x) 
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The average number N,.d of terminal nodes examined 
by the a-fl  pruning algorithm in a uniform game tree of 
degree n and depth d for which the bottom values are 
drawn from a continuous distribution is given by 

Nn,d ---- n tdl21 -4- R 'd ( t )Sd ( t )  dt  (1) [ ]  

An identical expression for Nn,d was first derived by 
Baudet ([ 1], Theorem 4.2) starting with discrete terminal 
values and progressively refining their quantization 
levels. 

2.2 Evaluation of ~ _ a  
The difficulty in estimating the integral in Eq. (1) 

stems from the recursive nature of fl(x) which tends to 
obscure the behavior of the integrand. We circumvent 
this difficulty by substituting for j~(x) another function 
6(x) which makes the regularity associated with each 
successive iteration more transparent. 

The value of the integral in Eq. (l) does not depend 
on the exact nature of fo(x) as long as it is monotone 
from some interval [a, b] onto the range [0, 1]. This is 
evident by noting that by substituting fo(x) = ~(x) the 
integral becomes 

dx s~[~(x) ]  dx = d----~ 
X ~ a  ~ 0  

which is identical to that in Eq. (l). This invariance 
reflects the fact that the search procedure depends only 
on the relative order of the d n terminal values, not on 
their magnitudes, and since any continuous distribution 
of the terminal values generates all ranking permutations 
with equal probabilities, N,,d will not be affected by the 
shape of that distribution. Consequently, fo(x) which 
represents the terminal values' distribution, may assume 
an arbitrary form, subject to the usual constraints im- 
posed on continuous distributions. 

A convenient choice for the distribution fo(x) would 
be a characteristic function ~(x) that would render the 
distributions of the minimax value of every node in the 
tree identical in shape. Such a characteristic distribution 
indeed exists [6] and satisfies the functional equation 

ep(x) = g[ep(ax)] (2) 

where 

g(th) = 1 -- (1 -- 6")" (3) 

and a is a real-valued parameter to be determined by the 
requirement that Eq. (2) possess a nontrivial solution for 
q,(x). This choice of q~(x) renders the functions (fi(x)} in 
Theorem 1 identical in shape, save for a scale factor. 
Accordingly, we can write 

f i(x) = ep (x /a  i) (4) 

r i ( x )  = r ( x / a  i - i )  (5) 

s i ( x )  = s ( x / a  i - i )  (6) 

where 

and 

1 - {~ ( x ) ] "  
r ( x )  - (7) 

i - , ~ ( x )  

1 - ( 1  - [<~ ( x ) ] " ) "  
s(x) = (8) 

[,~ (x)]" 

Equation (2), known as the Poincar6 Equation [4], 
has a nontrivial solution ~,(x) with the following prop- 
erties [6]: 

(i) q~(0) = 4- where 4, is the root of 
x n + x -  1 = 0  (9) 

_,_[ 
(ii) a g'(4,,) n(1- -4 . )  < 1  

(ffi) t h'(0) can be chosen arbitrarily, for example, 
,t,'(0) = 1 

(iv) x(q 0 = lim ak[g-k(6) -- 4.] 
k~oo 

(lO) 

(a(X) = 1 -- (n)  -nln-1 e x p [ - - ( x )  -In(n)An(a)] 
X ~ c ~  

q)(X) ~ (n)-i/n-'exp{--(x)-in('Okn(~')] 
x ~  - o o  

However, only properties (9) and (10) will play a role in 
our analysis. Most significantly, parameter a, which is 
an implicit function of n, remains lower than 1 for all n. 

Substituting Eqs. (4), (5), and (6) into Eq. (1) and 
considering, without loss of  generality, the case where d 
is an even integer, d = 2h, we obtain 

~ . . / A  ~(~)~ N n , a = n  h +  Irht x) 2. ~ dx (11) 
=_= t,=, , ( ) )  

where 

h - I  

~rh(x) = H P(x/ai) ,  (12) 
i ~ O  

p(x)  = r(x)s(x) = e{~,(x)], (13) 

and 

l - , t , "  1 - ( 1 -  ,/,")" 
e(d/,) - 1 - q~ q~" (14) 

Using Eqs. (5) and (7), it can be easily shown that 
r ~ ( x ) / r i( x ) satisfies 

r'i(x____~) <_ n th '(x/ai-1)l /a i-1 (15) 
r i ( x )  

and consequently, Eq. (1 l) becomes 

f_° Nn,d <-~ n h + n 7rh(X) 
o¢ (16) 

• Ii~=ldp'(x/ai-')l/ai-1] dx 

We now wish to bound the term ~rh(x) from above. 
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An examination o fp (x )  = P[(h(x)] [Eqs. (13) and (14)] 
reveals that p(x)  is unimodal in x, p(0) = [~ /1  - ~n]2, 
and that p(x)  lies above the asymptotes p(-oo) = p(+oo) 
= n. Moreover, the maximum of  P((h) occurs below (h = 
~n and, consequently, p(x) attains its maximum Mn below 
x - - 0 .  

At this point, were we to use the bound 7rh(X) <-- M h in 
(16), it would result in Nn.d < n h + nhM h and lead to 
Baudet's bound ~ _ a  _< M~/2. Instead, a tighter bound 
can be established by exploiting the unique relationships 
between the factors of  ~rh(X). 

LEMMA 1. Let x0 < 0 be the unique negative solution of  
p(Xo) = p(O). qrh(x) attains its maximal value in the range 
ah-~Xo ~ X <_ O. 

PROOF. Since p(x)  is unimodal we have p(x)  < p(O) and 
p ' (x )  > 0 for all x < Xo. Consequently, for all x < Xo, 
any decrease in the magnitude of  Ix[ would result in 
increasing p(x), that is, p(cx) > p(x)  for all 0 _< c < 1. 
Now consider ~h(aX).  

qTh(aX) ---- p ( x / a h - 2 ) l P ( x / a a - 3  ) " ' "  p(x)p(ax) 

= ¢ r h ( X ) p ( a x ) / p ( x / a h - l ) ;  

for all x '  sat is fy ing 'x ' /a  h-' < Xo we must have p(ax ' )  
> p ( x ' / a  h - l )  (using c = a h < 1) and ~rh(ax') > ~rh(X'), 
implying that ~rh(x') could not be maximal. Conse- 
quently, for ~rh(x') to be maximal, x '  must be in the 
range x o a  h-~ ~ x ~ <_ O. []  

LEMMA 2. ~rh(X) can be bounded by 

~rh(X) <-- A(n)[p(O)] h (17) 

where A(n) is a constant multiplier independent on h. 

PROOV. Since p(x)  is continuous, there exists a positive 
constant a such that p(x)  <_ p(O) - ax for all x _< 0. 
Consequently, using Lemma 1, we can write 

max erh(X)= max ~rh(X) 
x a h - I Xo~X<_O 

h - 1  

_< max I-I ( p ( O )  - -  a x / a  i) 
clh-lxo~x<--O i = 0  

--< [p(0)] h max exP( i~  ° -- 
ah- l xo <--x~O a 

1 = [p(O)] h exp[  p---~ ~o 1/a i 

Selecting A(n) -- exp [-axo/p(O)(1 - a)] proves the 
Lemma. []  

THEOREM 2. The branching factor of  the a-f l  procedure 
for a uniform tree of  degree n is given by 

~n 
~._a - -  - -  ( 1 8 )  

I - - , ~  

where ~ is the positive root of  the equation x n + x - 1 

~ 0 .  

PROOF. Substituting (17) in (16) yields 

Nn.d <-- n h + n A(n)[p(O)] h 

~ h--1 
• ~ ( l /ai)ep'(x/a i) dx 

oo i = 0  

= n h "1- n A(n)[p(o)]hh 

Finally, using p(0) = (~ /1  - ~,)2 > n, we obtain 

~ - a  = lim (Nn,d)  1/2h ~ ~n/l -- ~ (19) 
h ~ o o  

This, together with Baudet's lower bound ~_~  _> ~J1 
- ~n, completes the proof  of  Theorem 2. [] 

3. C o n c l u s i o n s  

The asymptotic behavior of  ~ _ a  is O(n/log n), as 
predicted by Knuth's  analysis [3]. However, for moderate 
values o f n  (n _< 1000), ~n/1 - ~n is fitted much better by 
the formula (0.925)n °'747 (see Fig. 4 of  [5]), which vindi- 
cates the simulation results of Fuller et al. [2]. This 
approximation offers a more meaningful appreciation of 
the pruning power of  the a-fl  algorithm. Roughly speak- 
ing, a fraction of only (0.925)n°V47/n .~ n -~/4 of the legal 
moves will be explored by a-ft. Alternatively, for a given 
search time allotment, the a-fl  pruning allows the search 
depth to be increased by a factor log n/log ~,_a ~ 4/3 
over that of  an exhaustive minimax search. 

The establishment of  the precise value of  ~ _ a  for 
continuous-valued trees, together with a previous result 
that ~,_a = n 1/2 for almost all discrete-valued trees [5], 
completes the characterization of  the asymptotic behav- 
ior of  a-fl  and settles the question of  its optimality. The 
fact that a-fl  is asymptotically optimal (that is, achieves 
the lowest possible branching factor) over the class of  
directional algorithms follows directly from Eq. (18) and 
a previous result [5] that ~n/1 - ~n lower bounds the 
branching factor of  any directional algorithm. However, 
the possible existence of  some nondirectional algorithm 
outperforming a-fl  and exhibiting a branching factor 
lower than ~n/l - ~n has remained unsettled until very 
recently. Indeed, Stockman [9] introduced a nondirec- 
tional algorithm called SSS* which consistently exam- 
ines fewer nodes than a-ft. Hopes were then raised that 
the superiority of  Stockman's algorithms reflected an 
improved branching factor over that of  a-ft. 

These possibilities have all been eliminated by a more 
recent result by Tarsi [10]. Considering a standard bi- 
valued game tree in which the terminal nodes are as- 
signed the values 1 and 0 with the probabilities ~n and 
1 - ~ ,  respectively, Tarsi's result states that any algo- 
rithm which solves such a game tree must, on the average, 
examine at least (~ J  1 - ~ )d  terminal positions. At the 
same time the task of  solving any bi-valued game tree is 
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equivalent to the task of verifying an inequality propo- 
sition regarding the minimax value of a continuous- 
valued game tree [5] of identical structure, and, conse- 
quently, the former cannot be more complex than the 
latter. Thus, the quantity (~Jl  - ~n)d should also lower 
bound the expected number of nodes examined by any 
algorithm searching a continuous-valued game tree. 
This, together with Eq. (18), establishes the asymptotic 
optimality of a-ft. 
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Measures  for evaluating solutions to the line division 
problem in computer justified text are presented. They 
are based on the belief that documents tend to have a 
more pleasing visual appearance when the deviation be- 
tween interword breaks in a paragraph is reduced. This 
effect is achieved by not placing the maximum number of 
words on each line. The measures are variations on the 
variance of  the number of  extra spaces per interword 
break in a paragraph. They are applicable to both fixed 
and variable width fonts. One of  the measures is exam- 
ined in greater detail. It has the property that a lower 
bound can be computed, thereby indicating when further 
rearrangement of  the text is futile. Several text rear- 
rangement algorithms are proposed that make use of  this 
measure. 
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Processing]: Document  Preparation--format and nota- 
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I. Introduction 

The dramatic rise in the use of interactive computer 
facilities has been coupled with a rise in the use of text 
editing programs. This has in turn led to the development 
of document processing systems whose role is to trans- 
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