
On the Discovery and
Generation of Certain Heuristics

Judea Pearl

Cognitive Systems Laboratory
School of Engineerzng and Applied Scaence

Unwerszty of Californza, Los Angeles

Abstract

This paper explores the paradigm that heuristics are discovered by
consulting simplified models of the problem domain After describ-
ing the features of typical heuristics on some popular problems, we
demonstrate that these heuristics can be obtained by the process of
deleting constraints from the original problem and solving the relaxed
problem which ensues We then outline a scheme for generating such
heuristics mechanically, which involves systematic refinement and dele-
tion of constraints from the original problem specification until a semi-
decomposable model is identified The solution to the latter consitutes
a heuristic for the former

Introduction: Typical Uses of Heuristics

Heuristics are methods and criteria for judging the rela-
tive merits of alternative courses of planning or action. There
is hardly any intellectual activity which does not rely on
heuristics of some kind. The decision to begin reading this
paper, for example, reflects a tacit use of heuristics which
has lured the reader to invest time and effort in anticipation
of certain benefits. Ahhough such anticipations may occa-
sionally be disappointed, on the whole they are essential to
planning our everyday activities.

Complex combinatorial problems require the use of
heuristics if a reasonably “good” solution is to be produced

Prepared for UCLA-Computer Science Department Quarterly, Spring
1982, this work was supported in part by the National Science Foun-
dation Grant MCS 81 14209

(9
2m3
184
765

n 2 3 283 23m
184 1m4 184
765 765 765

(A) w (Cl

Figure 1 A goal tree in the ES-puzzle

within practical time constraints. We shall demonstrate this
point using three simple problems (readers familiar with the
properties of A’ may skip to section Where do these heuris-
tics come from?):

The Spuzzle. This simple puzzle is a one-person game,
the objective of which is to rearrange a given configuration of
eight uniquely numbered tiles on a 3 X 3 board into another
given configuration by iteratively sliding one of the tiles into
empty location, as in Figure 1 above:

THE RI MAGAZINE Wint.er/Spring 1983 23

AI Magazine Volume 4 Number 1 (1983) (© AAAI)AI Magazine Volume 4 Number 1 (1983) (© AAAI)

Figure 2

Assume that in the example above the objective is to reach
the goal state:

1 2 3

8 I 4
7 6 5

Which of the three alternatives, (A), (B), or (C) appears
most promising? The answer can, of course, be obtained by
searching the graph associated with the puzzle and finding
which of the three states leads to the shortest path to the
goal The notorious combinatorial explosion, however, makes
this method utterly impractical when the distance to the goal
is large and/or when larger boards (e.g., 4X4) are involved.
The very search for a solution path requires the use of judg-
ments to decide at any point which search avenue is the most
promising

To assist a computer in solving path-finding problems of
this type, the programmer is usually required to provide a
rule for computing an estimate of the proximity between two
given configurations. The most popular rules for the g-puzzle
are: hl= the number of tiles by which the t,wo configurations
differ, and hz= the sum of the distances of the mismatched
tiles from their proper destinations. (The black position is
not counted.) The appropriate distance measure, in this
case, is the sum of the coordinate differences, also known
as the Manhattan or city-block distance. For instance, in
the example above we can compute:

hr(A) =2 h,(B) =3 hi(C) =4
ha(A) =2 hg(B) =4 hz(C) =4

These heuristic functions are intuitively appealing and
readily computable, and may be used to prune the space of
possibilities in such a way that only configurations lying close
to the solutin path will actually be explored. An algorithm
which exhibits such pruning will be discussed later.

Finding the shortest path in a road map. Given
a road map such as the one shown in Figure 2, it is desired
to find the shortest path between city A and city B. If the
intercity distances are presented in the form of a distance-
matrix d(i, j), there is no way for the search program to
judge a priori that city C, unlike city D, lies way out of the
natural direction from A to B and, consequently, that city D
is better candidate from which to pursue the search. At the
same time, the preference of D over C is obvious to anyone
who glances at the map. What extra information does the
map provide which is not made explicit in the distance table?

One possible answer is that the human observer exploits
vision machinery to estimate the Euclidean distances in the

E

Figure 3

map and, since the air distance from D to B is shorter than
that between C and B, city D appears as a more promising
candidate from which to launch the search. That same
information can also be used by the machine if each city is
assigned a heuristic function h(*) equal to the air distance
between that city and the goal B. A tentative choice between
pursuing the search from city C or city D should depend,
then, on the magnitude of the cost estimate d(A,C)+h(C)
relative to the estimate d(A,D)+h(D).

The traveling salesman problem (TSP)

Here we must find the cheapest tour, that, is, the cheapest
path which visits every node once and only once, and returns
to the initial node, in a complete graph of N nodes with each
edge assigned a non-negative cost.

It is well known that the TSP is NP-hard and that all
known algorithms require an exponential time in the worst
case. However, the use of good bounding functions often
enables us (using the branch-and-bound algorithm) to find
the optimal tour in much less time What is a bounding
function? Consider the graph below where the two marked
paths ABC and AED represent two partial tours current,ly
being considered by the search procedure Which of the two,
if properly completed to form a circuit, is more likely to be
part of the optimal solution? Clearly, the overall solution
cost is given by the cost of completing the tour added to
the cost of the initial subtour, and so the answer lies in how
cheaply we can complete the tour through the remaining
nodes. However, since the computational effort required to
find the optimal completion cost is almost as hard as that
of finding the entire optrima tour, we must settle for an
estimate of the completion cost. Given such estimates, the
decision of which subtour to extend first would depend on
which one, by combining the cost of the explored part with
the estimate of its completion, offers a lower overall cost,
estmate. It can be shown that if at every stage of the search
we select for exploration that partial tour with the lowest
estimated cost, and if the estimates of the completion costs
are consistently optimistic (underestimates), then the first
tour to be completed by the search is also the optimal one.

What easily computable function would yield an optimis-
tic, yet not too unrealistic, estimate of the subtour com-
pletion cost? People, when first asked to “invent” such a

26 THE AI M4GAZINE Winter/Spring 1983

Some properties of heuristics

Figures 4a and 4b

function, usually provide easily computable, but too simplis-
tic answers For example, the cheapest edge or two-edge
path connecting the end of the initial subtour, bypassing
all unvisited cities or going through one other city, respec-
tively. These functions, while being optimistic, grossly un-
derestimate the completion cost. Upon deeper thought,
more realistic estimates are formed, and the two which have
received the greatest attention in the literature are: (1)
The cheapest 2nd degree graph going through the remaining
nodes (Lawler and Wood, 1966), and (2) the cost of the mini-
mtirn spanning tree (MST) through all remaining nodes (Held
and Karp, 1971). The first is obtained by solving the so-
called optimal assignment problem using O(N3) steps, while
the second requires O(N2) steps.

That these two functions provide optimistic estimates of
the completion cost is apparent when we conside that com-
pleting the tour requires the choice of a path going through
all unvisited cit,ies A path is both a special case of a graph
with degree 2 and also a special case of a spanning tree.
Hence, the set. of all completion paths is included in the sets
of objects overwhich the optimization takes place, and so,
the solution found must have a lower cost than that obtained
by optimizing over the set of path only

Figure 4a below shows the shape of a graph that may
be found by solving the assignment problem instead of com-
pleting subtour AED. The completion part is not a single
path but a collection of loops. Figure 4b shows a minimum-
spanning-tree completion of subtour AED In this case the
object found is a tree containing a node with a degree higher
than 2.

The three examples in the preceding section are typi-
cal of a problem-solving method called “state-approach)’
(Nilsson, 1971), where the search for a solution to a posed
problem is formulated as the search for a path in a state-
space graph. A path to a given node in such a graph rep-
resents a code for a subset of potential solutions: the arcs
represent transformations of those codes, which correspond
to finer partitions of the parent subsets. In the &puzzle the
transformations corresponded to the actual legal moves of
the game. In the road map and the TSP the transformations
consisted of concatenating a partially explored path with
one more edge. Tasks such as theorem proving, robot plan-
ning, and speech recognition can naturally be represented as
path-finding problems using the state-space approach. Even
constraint- satisfaction problems, such as the 8-queens prob-
lem, which at first glance bear no mention of graphs or paths,
can be formulated in state-space if we regard the computa-
tions which allow us to scan the space of possible objects
systematically as arcs in a graph.

An algorithm known as A* (Hart et al., 1968) has become
popular in the Artificial Intelligence literature as an efficient
way of using heuristics to solve path-finding problems. Un-
like conventional shortest-path algorithms, the state-space
graph is not available explicitly but rather is generated in-
crementally during the search itself using the transforamtion
rules. A* uses heuristic information to search the state-space
graph in a directed fashion, making explicit only that por-
tion of the graph which is absolutely necessary for finding
an optimal solution

We shall say that a node n is expanded when all pos-
sible transformation rules are applied to it and the resul-
tant nodes, called successors of n, are generated. Any node
which is expanded is called CLOSED, and any node generated
but not yet expanded is called OPEN. At each step of the
search, A* selects for expansion that OPEN node which has
the lowest cost estimate f(n). The estimate f(n) consists of
two components:

f(n) = g(n) + h(n),

where g(n) is the minimal cost so far encountered from
the root to n, and h(n) is an estimate of the cost required to
complete the path from n to a goal state. A* halts when it
attempts to expand a node which satisfies the goal condition.

The most significant theoretical result regarding the be-
havior of A* is its admzsszbzltay property: if for every node
n, h(n) does not exceed the actual optimal completion cost
h*(n), then A* t er mates with the minimal cost path to a m’
goal. An estimate h(n) satisfying the inequality h(n)5 h’(n)
for every node in the graph is called an admissibility heurzs-
tat.

The second important property of A* is called conszs-
tency. A heuristic function h(‘) is said to be consistent if it
sat,isfies the triangle inequality:

TIIE ;U IvL4GAZINE Winter/Spring 1983 27

h(n) >c(n, n’) + h(n’) <(n)<n’
and:

h(n,)=O

where n’ is any successor of n, c(n, n’) is the cost of the edge
from n to n’ and nng is any node satisfying the goal conditions.
The importance of consistency lies in guaranteeing that A*
will never reopen a CLOSED node. The reason is that A*,
when it selects a node for expansion, has already traced the
optimal path to that node and so it need not test whether
shorter paths may be found in the future. It can be shown
that consistency implies admissibility but not vice versa.

The power of the heuristic estimate h is measured by the
amount of pruning induced by h and depends, of course, on
the accuracy of the estimate. If h(‘) estimates the completion
cost precisely, then A* will only explore nodes lying along
an optimal path. Otherwise A* will expand any open node
satisfying the inequality:

g(n) + h(n) < h*(s)

where h* is the cost of the optimal path from the intial node.
Clearly, the higher the value of h the fewer nodes will be
expanded by A*, as long as h remains admissible. In the
8-puzzle example, for instance, since h2 is generally larger
and never lower than hl, it is a more powerful heuristic and
will give rise to a more efficient search.

Where do these heuristics come from?

We have seen a few examples of heuristic functions which
were devised by clever individuals to assist in the solution of
combinatorial problems. We now focus our attention on the
mental process by which these heuristics are “discovered,”
with a view toward emulating the process mechanically.

The word “discovery” carries with it an aura of mys-
tery, since it is normally attached to mental processes which
leave no memory trace of their intermediate steps. It is
an appropriate term for the process of generating heuris-
tics, since tracing back the intermediate steps evoked in this
process is usually a difficult task. For example, although
we can argue convincingly that h2, the sum of the distances
in the 8-puzzle, is an optimistic estimate of the number of
moves required to achieve the goal, it is hard to articulate
the mechanism by which this function was discovered or to
invent additonal heuristics of similar merit.

Articulating the rationale for one’s conviction in cer-
tain properties of human-devised heuristics may, however,
provide clues as to the nature of the discovery process it,-
self. Examining again the h2 heuristic for the 8-puzzle, note
how surprisingly easy it is to convince people that h2 is
admissible. After all, the formal definition of admissibility
contains a universal qualifier (In) which, at least in prin-
ciple, requires that the inequality h(n)#h*(n) be verified
for every node in the graph. Such exhaustive verification
is, of course, not only impractical but also inconceivable.
Evidently the mental process we employ in verifying such

28 THE AI MAGAZINE Winter/Spring 1983

propositions is similar to that of symbolic proofs in mathe-
matics, where the truth of unversally quantified statements
(say, that there are infinitely many prime numbers) is es-
tablished by a sequence of inference rules applied to other
statements (axioms) without exhaustive enumaration.

An even more suprising aspect of our conviction in the
truth of hz(n)<h*(n) is the fact that h*(n), by its very na-
ture, is an unknown quantity for almost every node in the
graph; not knowing h*(n) was the very reason for seeking its
estimate h(n). How can we, then, become so absolutely con-
vinced in the validity of the assertion hz(n) 5 h*(n)? Clearly,
the verification of this assertion performed in a code where
h*(n) does not possess an explicit representation.

In the case of the road map problem our conviction
the admissibility of the air distance heuristic is explain-
able Here, based on our deeply entrenched knowledge of
the properties of Euclidean spaces, we may argue that a
straight line between any two points is shorter than any al-
ternative connection between these points and, hence, that
the air distance to the goal constitutes an admissible heuris-
tic for the problem. In the 8-puzzle and the Traveling Sales-
man Problem, however, such a universal assertion cannot be
drawn directly from our culture or experience, and must be
defended, therefore, by more elaborate arguments based on
more fundamental principles.

If we try to articulate the rationale for our confidence in
the admissibility of h2 for the 8-puzzle, we may encounter
arguments such as the following:

Consider any solution to the goal, not necessarily
an optimal one. In order to satisfy the goal condi-
tions, each tile must trace some trajectory from its
original location-to its destination, and the overall
cost (number of steps) of the solution is the sum of
the costs of the individual trajectories. Every trajec-
tory must consist of at least as many steps as that
given by the Manhattan-distance between the tile’s
origin and its destination, and, hence, the sum of the
distances cannot exceed the overall cost of the solu-
tions.
If I were able to move each tile independently of
the others, I would pick up tile #l and move it, in
steps, along the shortest path to its destination, do
the same with tile #2, and so on until all tiles reach
their goal locations. On the whole, I will have to
spend at least as many steps as that given by the
sum of the distances. The fact that in the actual
game tiles tend to interfere with each other can only
make things worse. Hence, . .

The first argument is analytical It selects one property
which must be satisfied by every solution, such as in provid-
ing a homeward-trajectory for every tile, and asks for the
minimum cost required for maintaining just that property
The second argument is operational. It describes a procedure
for solving a similar, auxiliary problem where the rules of
the game have been relaxed . Instead of the conventional 8-
puzzle whose tiles are kept confined in a 2-dimensional plane,
we now imagine a relaxed puzzle whose tiles are permitted

to climb on top of each ot.her. Inst.ead of seeking heuristic
functzon h(n) to approximate h*(n), we can actually compute
the solution using the relaxed version of the puzzle, count the
number of steps required, and use this count as an estimate
of h*(n).

The last scheme leads to the general paradigm ex-
pounded in this paper: Heuristzcs are dzscovered by con-
sultzng szmplafied models of the problem domazn We shall
later explicate what is meant by a szmplzfied model and how
to go about finding such a one. The preceding example,
however, specifically demonstrates the use of one important
class of simplified models: that generated by remowzng con-
straznts which forbid or penalize certain moves in the original
problem We shall call models obtained by such constraint-
deletion processes relaxed models

Let us examine first how the constraint-deletion scheme
may work in the Traveling Salesman Problem. We are re-
quired to find as estimate for the cheapest completion path
which starts at city D, ends at City A, and goes through every
city in the set S of the unvisited cities. A path is a connected
graph of degree 2: except for the end-points, which are of
degree 1, a definition which we can express as a conjunct,ion
of three conditions: (1) being a graph, (2) being connected,
(3) being a of degree 2. If we delete the requirement that
the completion graph be connected, we get the assignment
heuristic of Figure 4a Similarly, if we delete the constraint
that the graph be of degree 2, we get t,he minimum-spanning-
tree (IUST heuristic depiced in Figure 4b.) An even richer
set of heuristics evolves by relaxing the condition that the
task completed by a graph.

An alternative way of leading toward the MST heuristic
is to imagine a salesman employed under the following cost
arrangement: he has to pay from his own pocket for any trip
in which he visits a city for the first time, but can get a free
ride back to any city which he visited before. It is not hard
to see that under such relxed cost conditions the salesman
would benefit from visiting some cities more than once and
that the optimal tour strategy is to pay only for those trips
which are part of the minimum-spanning-tree. If instead of
this cost arrangement the salesman gets one free ride from
any city visited twice, the optimal tour may be made up of
smaller loops, and the assignment problem ensues. Thus,
by adding free rides to the original cost structure we create
relaxed problems whose solutions can be taken as heuristics
for the original problem.

It is interesting to note that heuristics generated by op-
timizat,ions over relaxed models are guaranteed to be consis-
tent This is easily verified by inspecting Figure 5 below,
where h(n) and h(n’) are the heuristics assigned to nodes
n and n’, respectively. These heuristics stand for the mini-
mum cost of completing the solution from the corresponding
nodes in some relaxed model common to both nodes. h(n),
representing an optimal solution (geodesic), must satisfy
h(n)<c’(n: n’) + h(n’), where c’(n,n’) is the relaxed cost
of the edge (n, n’), or else c’(n, n’) + h(n’), instead of h(n),
would constitute the optimal cost from 72.’ The relaxed edge-

n

h(n)

Figure 5

cost c’(n, n’) cannot, by definition, exceed the original cost
c(n: n’), thus:

h(n) < c(n, n’) + h(d)

which, together with the technical condition h(n,) = 0,
completes the requirements for consistency.

This feature has both computational and psychologi-
cal implications. Computationally, it guarantees that a
search algorithm, A*, guided by any heuristic evolving from
a relaxed model, would be spared the effort of reopening
CLOSED nodes or even testing whether a newly generated
node has been expanded before. The pointers assigned to
any node expanded by such algorithms are already directed
along the optimal path to that node.

Psychologically, if we assume that people discover heuris-
tics by consulting relaxed models, we can explain now why
most man-made heuristics are both admissible and consis-
tent. The reader may wish to test this point by attempting
to generate heuristics for the 8-puzzle or the TSP that are
admissible but not consistent. The difficulties encountered
in such attempts should strengthen the reader’s conviction
that the most natural process for generating heuristics is
by relaxation, where consistency surfaces as an automatic
bonus.

Before proceeding to outline how systematic relaxations
can be used to generate heuristics mechanically, it is im-
portant to note that not every relaxed model is automati-
cally simpler than the original. Assume, for example, that
in the 8-puzzle, in addition to the conventional moves, we
also allow a checker-like jumping of tiles across the main
diagonals. The puzzle thus created is obviously more relaxed
than the original, but it is not at all clear that the com-
plexity of searching for an optimal solution in the relaxed
puzzle is lower than that associated with the original prob-
lem. True, adding shortcuts makes the search graph of
the relaxed model somewhat shallower, yet it also becomes
bushier: A* must now examine the extra moves available at
every decision junction, even if they lead nowhere.

Moreover, relaxation is not the only scheme which may
simplify problems. In fact, simplified models can easily be
obtained by a process opposite to that of relaxation, such as
loading the original model with additional const,raints Of
course, the solutions to over-constrained models would no
longer be admissible. However, in problems where one settles

THE N MAGAZINE Winter/Spring 1983 29

for finding any path to the goal, not necessarily the optimal,
simplified over-constrained models may be very helpful The
most popular way of constraining models is to assume that
a certain portion of the solution is given a-priori This as-
surnpt ion cuts do\vn on the number of remaining variables
\ihich of course. results in a speedy search for the comple-
tion portion For example, if one arbitrarily selects an initial
subtour through l\l cities in the TSP. an overconstrained
problem emues which is simpler than the original because
it involves only iV - 1ZP rities The cost associated with the
solution to such a problem constitutes an upper bound to
h* and can be used to cut down the storage requirement
of .‘I*. Every node in OPEN whose admissible evaluat,ion
Sin) = g(rz) + h(n) exceeds that upper bound can be per-
manentl>- removed from memory wit.hout endangering the
optimality of the resulting solution.

.-I third important class of simplified models can be ob-
tained b?- probabilistic considerations In certain cases we
may possess sufficient knowledge about the problem domain
to permit an estimate of the most probable cost of t,he com-
pletion path C’onsidcr. for example, the problem of finding
the cheapest cost path in a tree where all arc costs are known
to be drawn independently from a common distribution func-
tion. with mean ~1. If N stands for the number of arcs
remaining between a node n and the goal, t.hen for large
.V the cost of any path to the goal is knownref be highly
peaked about /IN Therefore. if we are sure that only one
path leads from n to the goal: we can take t,he value PN as
an estimate of h* and use f = g+pN as a node-rating func-
tion in .4* If several paths lead from 72 to the goal set and
if the structure of these paths is fairly regular, probability
calculus can be invoked to estimate the most likely cost of
the cheapest one among them. and that est.imate can be used
as h in iI* . iUternatively, probabilistic models often predict.
that reasonable solution paths are likely to exhibit cert,ain
distinctive properties in their behavior, e.g ! that the cost
along the path will increase gradually at a predetermined
rate Hence, an irrevocable search strategy can be employed
which prunes away any path found to behave at variance
with such expectations (Karp and Pearl, 1982).

Ry their very nature, probability-based models cannot
guarantee the optimality of the solution. Although, in most
cases, they produce accurate estimates of the completion
cost. occasionally these turn out to be grossly overest,imated,
which may cause iI* to terminate prematurely with a sub-
optimal solut.ion On the ot,her hand, if one does not in-
sist on finding an exact optimal soIution all the time but
settles instead for finding a “good” solution most of the time,
probability-based heuristics can: in many cases, reduce the
complexity of combinatorial problems from exponential to
polynomial.

Another class of simplified models used in heuristic
reasoning is analogical or metaphorical models. Here t,he
auxilary model draws its power not from a structural simpli-
city inherent in the problem, but rather from matching the
machinery and expertise accumulated by the problem sol-

ver For example, the game of tic-tat-toe appears simpler
to us than it.s isomorphic number-scrabble game (Newell
and Simon, 1972) because the former evokes an expcrt.isc
gathered by our visual machinery which has not yet been RC-
quired by our arit.hmetic reasoner. Likewise, t.he use of visual
imagery in solving complex mathematical or programming
problems takes advantage of the special purpose machinery
which evolution has bestowed upon us for processing visual
information and manipulating physical 0bject.s The use
of analogical models by computers would only be beneficial
when we learn how to build an efficient data-driven expert
system for at least. one problem domain of sufficient. richness,
e g , physical objects.

Mechanical Generation of Admissible Heuristics

%‘e return now to the relaxat,ion scheme and to show how
t,he deletion of constraints can be systematic to the point that
natural heuristics, such as those demonstrat.ed in the Intro-
duction Section; can be generated by mechanical means. The
constraint-relaxation scheme is particularly suitable for this
purpose because many problem domains are conveniently for-
malizable by the explicit representation of the constraints
which govern t.he applicability and impact of the various
transformations in that domain. Take, for instance, the 8-
puzzle problem. It, is utterly impractical to specify the set
of legal moves by an exhaustive list of pairs: dc>scribing the
states before and after the application of each move I\ much
more natural representation of the puzzle would specify the
available moves by two sets of conditions, one which must
hold true before a given move is applicable and one which
must prevail after the move is applied. In t.hc robot-planning
program STRIPS (Fikes and Nilsson, 1971), for c,xample. ac-
tions are represented by three lists: (1) a precondzfzon-lzst,
a conjunction of predicates which must, hold true before the
action can be applied; (2) an add-l&, a list of predicates
which are to be added to the description of the world-state as
a result of applying the action; and (3) a delete-M, a list of
predicates t,hat are no longer true once the action is applied
and should, therefore, be deleted from t.he state description.
We shall use this representation in formalizing the relaxation
scheme for the 8-puzzle.

ilre start with a set of three primit.ive predicates:

ON(z: y) : tile L is on cell y
CLEAR(y) : cell y is clear of tiles
ADJ(y, 2) : cell y is adjacent to cell z!

where the variable z is understood t,o stand for t.he tiles
%1,372; , Xs and where the variables y and z range over the
set of cells Ci ? C2, ., Cg. Ahhough the predicate (‘I,F:AR
can be defined in terms of ON:

CLEAR(y) ++ V(X)-ON(T: 1~).

it is convenient to carry CLEAR explicitly as if it, were an
independent predicate Using these primit.ives, each state
will be described by a list of 9 predicates, such as:

ON(X1, cl), 0N(X2, c2), . . ., ON@-&), CLEAR (C,),

together with the board configuration:

AD.J(Cl, C2), mJ(C1, c;b), . . .,

The move corresponding to transferring tile z from loca-
tion y to location z will be described by the three lists:

MOVE (z, y, Z) :

precondition list : ON(s, Y), CLEA@), A”J(Y, ~1
add list : ON(z, y), CLEAR(y)

delete list : ON(z,y), CLEAR(z)

The problem is defined as finding a sequence of ap-
plicable instantiations for the basic operator MOVE(x, y, Z)
that will transform the initial state into a state satisfying the
goal criteria.

Let us now examine the effect of relaxing the problem by
deleting the two conditions, CLEhR(z) and AD.J(y, z), from
the precondition list. The resultant puzzle permits each tile
to be taken from its current position and be placed on any
desired cell with one move. The problem can be readily
solved using a straightforward control scheme: at any state
find any tile which is not locat,ed on the required cell. Let this
tile be X1, its current location Yl, and its required location
%, Apply the operator MOVlS(X1, Yl, Z,), and repeat the
procedure on the prevailing state until all tiles are properly
loca.ted.

Clearly, the number of moves required to solve any such
problem is exactly the number of tiles which are misplaced
in the initial state. If one submits this relaxed problem to a
mechanical problem-solver and counts the number of moves
required, the heuristic h1 (‘) ensues.

Imagine now that instead of deleting the two conditions,
only CLEAR(z) is deleted while ADJ(y, 2) remains. The
resultant model permits each tile to be moved into an ad-
jacent location regardless of its being occupied by another
tile This obviously leads to the hg(*) heuristic: the sum of
the Manhatt,an-distances.

,The next deletion follows naturally; let us retain t,he con-
dition CJ,EAR(z) and delete ADJ(y, 2). The resultant model
permits transferring any t,ile to the empty spot, even when
the two cells are not adjacent. The problem of reconfiguring
the initial state with such operators is equivalent to that of
sorting a list of elements by swapping the locations of two
elements at a time, where every swap must exchange one
marked element (the blank) with some other element. The
optimal solution to this swap-sort problem can be obtained
using the following “greedy” algorithm:

If the current empty cell y is to be covered by tile Z, move
z into y Otherwise (if y is to remain empty in the goal
state), move into y any arbitrary misplaced tile Repeat.

The resulting cost of this model, h3, is mentioned neither
in the Introductory Section 1 nor in textbooks on heuris-
tic starch. It is not the kind of heuristic that is likely to
be discovered by the novice, and it was first introduced by
Gaschnig (1979) ,l e even years after A* was exemplified using
hl and h2. Although h3 turns out to bc only slight,ly het-

ter than hl, its late discovery, coupled with the fact that
it evolves so naturally from the constraint-deletion scheme,
illustrates that the method of systematic deletions is capable
of generating non-trivial heuristics.

The reader may presume that the space of deletions is
now exhausted; deleting ON(z, y) leads again to hl, while
retaining all three conditions brings us back to the original
problem. Fortunately, the space of deletions can be further
refined by enriching the set of elementary predicates. There
is no reason, for instance, why the relation ADJ(y, 2) need be
taken as elementary-one may wish to express this relation
as a conjunction of t,wo other relations:

~J(~,~)+=~NEIGHB~R(~,z) /\SAME-LINE(~,+Z)
Deleting any one of these new relations will result in

a new model, closer to the original than that created by
deleting the entire ADJ predicate.

Thus, if we equip our program with a large set of predi-
cates or with facilities to generate additional predica.tes,
the space of deletions can be refined progressively, each
refinement creating new problems closer and closer to the
original. The resulting problems, however, may not lend
themselves t,o easy solutions and may turn out to be even
harder than the original problem. Therefore, the starch for
a model in the space of deletions cannot proceed blindly but
must be directed toward finding a model which is both easy
to solve and not too far from the original.

This begs the following question: Can the program tell
an easy problem from a hard one without actually trying to
solve them? This will be discussed the t,he next section.

Can a Program Tell an
Easy Problem When It Sees One?

We now come to the key issue in our heuristic-generation
scheme. We have seen how problem models can be relaxed
with various degrees of refinements. We have also seen
that relaxation without simplification is a futile excursion.
Ideally, then, we would like to have a program that, evaluates
the degree of simplification provided by any candidat,e relaxa-
tion and uses this evaluation to direct the search in modcl-
space toward a model which is both simple and close to t,he
original. This, however, may he asking for too much. The
most we may be able to obtain is a program that, recognizes
a simple model when such a one happens to be generated
by some relaxation. Of course, we do not expect 1,o lx able
to prove mechanically propositions such as “This class of
problems cannot, be solved in polynomial-t,ime ” Instead, we
should be able to recognize a subclass of easy problems, those
possessing salient feature advertising their simplicity.

Most of the examples discussed above possess such fea-
tures. They can be solved by “greedy,” hill-climbing met,hods
without backtracking, and the feature that makes them
amenable to such methods is their decomposnhzlety ‘l’akc,
for instance, the most relaxed model for the S-puzzle, where
each tile can be lifted and placed on any cell with no restrir-
tions. WC know that this problem is simple, without actually
solving it, by virtue of the fact that all the goal condit,ions,

‘1’1115 AI MAGRZINlZ Winter/Spring 1983 31

ON(X1, Cl), ON(X2, C2), . . ., can be satisfied independently
of each other. Each element in this list of subgoals can be
satisfied by one operator without undoing the effect of pre-
vious operators and without affecting the applicability of fu-
ture operators.

Similar conditions prevail in the model corresponding
to hz, except where a sequence of operators is required
to satisfy each of the goal conditions. The sequences,
however, are again independent in both applicability and
effects, a fact which is discernible mechanically from the
formal specification of the model, since the subgoals them-
selves define the desired partition of the operators. Any
operator whose add-list contains the predicate ON(X;, y) will
bc directed only toward satisfying the subgoal ON(Xi, Ci)
and can be proven to be non-interfering with any operator
containing the predicate ON(X,, y) in its add-list.

Most automatic problem-solvers are driven by mecha-
nisms which attempt to break down a given problem into
its constituent subproblems as dictated by the goal descrip-
tion. For example, the General-Problem-Solver (Ernst and
Newell, 1969) is controlled by “differences,” a set of features
which make the goal different from the current state. The
programmer has to specify, though, along what dimensions
these differences are measured, which difference arc easier to
remove, what operators have the potential of reducing each
of the differences, and under what conditions each reduction
operator is applicable. In STRIPS, most, of these decisions are
made mechanically on the basis of the 3-list description of
operators. Actions are brought up for consideration by virtue
of their add-list containing predicates which can bridge the
gap between the desired goal and the current state. If the
current state does not possess the conditions necessary for
enacting a useful difference-reducing transformation, a new
subgoal must be created to satisfy the missing conditions
Thus the complexity of this “end-means” strategy increases
sharply when subgoals begin to interact with each other.

The simplicity of decomposable problems, on the other
hand, stems from the fact that each of the s11bgoals can be
satisfied independently of each other; thus the overall goal
can be achieved in a time equal to the number of conjunct,s
in the goal description multiplied by the time required for
satisfying a single conjunct in isolation It is a version of the
celebrated ‘divide-and-conquer’ principle, where the division
is dictated by the primitive conjuncts defining the goal con-
ditions. For example, in an NzN-puzzle we have N2 con-
,j1mcts defining the goal state configuration, and the solution
of each subproblem, namely finding the shortest path for one
tile using a relaxed model with single-cell moves, can be ob-
tained in O(N’) steps even by an uninformed, breadthfirst,,
a!gorithm. Thus the optimal solution for the overall relaxed
NzN-puzzle can be obtained in O(N4) steps, which is sub-
stantially better than t,he exponential complexity normally
encountered in the non-relaxed version of the NzN-puzzle.

The rclaxcd NzN-puzzle is an example of a complete
independence between the subgoals, where an operator lead-
ing toward a given subgoal is neither hindered nor assisted

by any operator leading toward another subgoal. Such com-
plete independence is a rare case in practice and can only be
achieved after deleting a large fraction of the applicability
constraints. It turns out, however, that simplicity can also
be achieved in much weaker forms of independence which we
shall call semi-decomposable models.

Take, for example, the minimum-spanning-tree problem.
If the goal is defined as a conjunction of N-l conditions:

CONNECTED (city i, city 1) i = 2,3, . . ., N
and each elementary operator consists of adding an edge he-
tween a connected and an unconnected city, we have a semi-
decomposable structure. Even though no operator may undo
the labor of previous operators or hinder the applicability
of future operators, some degree of coupling remains since
each operator enables a different set of applicable operators
This form of coupling, which was not present in the relaxed
8-puzzle, may make the cost of the solution depend on
the order in which the operators are applied. Fortunately,
the MST problem possesses another feature, commutatwity,
which renders the greedy algorithm “cheapest-subgoal-first”
optimal. Commutativity implies that the internal order at
which a given set of operators is applied dots not alter the
set of operators applicable in the future. This property, too,
should he discernible from the formal specification of the
domain model and, once verified, would identify the “greedy”
strategy which yields an optimal solution.

Another type of semi-decomposable problem is exeml)li-
ficd by the swap-sort model of the 8-puzzle where the sub-
goals interact with respect to both applicability and effects.
Moving a given tile into the empty cell clearly disqualifies
the applicability of all operators which move other tiles into
that particular cell. Additionally, if at a certain stage the
predicate specifying the correct position of the empty cell is
already satisfied, it would be impossible to satisfy additional
subgoals without first falsifying this predicate, hopefully on
a temporary basis only

In spite of these couplings, the feature which rcndcrs
this puzzle simple, admitting a greedy algorithm, is the exis-
tencc of a part,ial order on the subgoals and their associated
operators such that the operators designated for any subgoal
g may inU11encc only s11bgoals of lower order than g, leaving
all other subgoals unaffected. In our simple example, estab-
lishing the correct position of the blank is a subgoal of a
higher order than all the other subgoals and should, thcrc-
fore, be attempted last. To find such a partial order of sub-
goals from the problem specification is similar to finding a
triangular connection matrix in GPS; programs for comput-
ing this task have been reported in the literature (Ernst, and
Goldstein, 1982).

Conclusions

This paper outlined a natural scheme for devising heuris-
tics for combinatorial problems. First, the problem domain
is formulated in terms of the 3-list. operal)ors which transform
the states in the domain and the conditions which define
the goal states. Next, the preconditio1ls which limit the ap-

3” TIIE AI MAGAZINl< Winter/Spring 1983

plicability of the operators arc refinccl and partially dclctcd,
and a relaxed n~odel suhmit,t,ed to an evaluat,or which dctcr-
mints whcthcr il is scnii-decomposable. The space of all such
deletions constit,utes a meta-search-space of relaxed models
from which Ihc most r&rictive sem-decomposable element,
is t,o 1~ selcctcd The scarcli st,arts cithcr at. the original
model from which precondition conjuncts are delet,ed one at
a t.imc:, or at, the t,rivial model cont,aining no preconditions
t.o which r&rict,ions are added sequentially until decom-
posability is destroyed. The model selected, together with
t,hc “greedy” strat,c:gy which exploits its decomposability,
const,itut.cs the heuristic for the original domain

Alt,hough the cfl’ort. invested in searching for an ap-
propriate relaxed model may seem heavy, the payoffs ex-
pect ed are rallier rewarding. Once a simplified model is
found, it. caan 1~ used t,o gcncratc heuristics for ~11 instances
of the original problem domain Phr example, if our scheme
is applird successfully to the TSP model, it, may discover
a O(N2) heuristic superior t.o (more constrained than) the
MST Sucsh a hcurist,ic: will l)c applicable to every instance
of the TSP problem and, when incorporat,ed into A*, will
yield optimal TSP solutions in shorter times than the MST
heurist.ic We cllrrent.ly do not, know if sllch heuristics ex-
ist. l~~qually challenging are routing problems encountered
in communication nct,works and VLSI designs which, unlike
the TSP, have not been the focus of a long t,hcoret,ical rc-
search, hilt whcrc t.hc problem of devising eflective heuristics
remains, nonet,helcss, a practical necessit,y.

Future progress in t.his area hinges on developing tech-
niques for recognizing simple, decomposable problems when
such arc prcscnt, and on manipulating the space of deletions
systematically in order that such problem be, in fact, syn-
thesized

Bibliographical and historical remarks

The ideas cxprcsscd in the preceding sections have been
developed indepentlent.ly by serveral people, including: J
Gaschnig, M Somalvico, M. Valtorla, D. Iiibler and myself

The not,ion of viewing heuristics as information provided
by simplified models was first, comrmmicated to mc by Stan
Rosenschein in 1979. Aside from its popular use in operations
research (Lawler and Wood, 1966), (Held and Karp, 1972),
the auxiliary problem approach was formally introduced to
AI-t.ype problems by Gaschnig (1979), Guida and Somalvico
(1979) and Ranerji (1980). Gaschnig described the spaces
of auxiliary problems as “subgraphs” and “supergraphs” oh-
tained by deleting or adding edges to the originial proh-
lem graph. Guida and Somalvico use propositional repre-
sentation of constraints similar to that of the “Mechanical
Generation of Admissible I heuristics” section and propose the
use of relaxed models for generating admissible heuristics. A
slightly diffcrcnt formulatio is also given in Kibler (1982).

Sacerdoti’s planning system RBSTRIPS (Sacerdoti, 1974)
also uses constraints relaxation for creating simplified prob-
lem spaces. AI%TRII’S first synthesizes a global abstract.
plan, then searches for a detailed mode of its implementation.

The a.hst.ract planning phase diflcrs from the fully det,ailcd
one in that the operators invoked bby the former lack some
of the preconditions spelled ollt in the lwltcr Although the
program does not, make explicit use of a numerical cvalua-
tion function, the search scedule is determined by progress
achieved in the ahst,ract. planning phase and so, in cffcct, it.
can he thought of as being guided by t,lie advice of a relaxed
model

Valtorla (1981) presents a proof of t,hc conist,cncy of
relaxation-based heuristics, and an analysis of Ihe overall
complexit,y of searching both the original and the auxiliary
problems He shows that, if the auxuliary prohelms are solbed
by the blind srarch, then the overall complexit,y will he worse
than simply exccut,ing a breadth-first search on t,hc original
problem. This result emphasizes the import,ance of searching
for decomposable structures where opt,imal solutions can hc
found by “greedy” algorithms wit,hout, resorting t,o hrcadth-
first search. The use of systematic delctiorls in search fol
decomposable problems was proposed by Pearl (1982) and is
currently pursued at IJCXA Other approaches t,o automatic
generation of heuristics are reported by Banerji (1980) and
Ernst, and Goldstein (1982)

References

nanerji, II I1 1980. Artificzal Intellrgence A Theoretzcal Approach,
hrrlstcrdaIll:North IIolland

Ernst, C, W and C;oltlstein, M M. 1982 Mechanical I)iscovery
of Classes of Problem-Solving St.rat,egies JACM, 29(1): 1 23.

Ernst, G. W. and Ncwcll, A. 1969 GI’,:$: A Case Study zn Cenemlity
and Problem Solvang, New York: Academic Press

Fikes, It E and Nilsson, N .J. 1971. “STRIPS: A New Approach
to the Application of Theorem l’roving t,o Problem Solving.”
Artzficial Intelligence, 2~184.208.

Gashnig, J 1979. A prohlcm similarity ;~ppr~~~~c:h t.o devising
heuristics: First, resl1lt.s I’roc IJCAI 6, 301-307

cuida, G and Somalvico, M 1979. A m&hod fo compnt,ing
heuristics in problem solving In/o?mc&on Sczences, 19:251-259

Hart, I’ , Nilsson, N , and Raphael, R. 1968 A formal basis for
heursitc determination of minimum cost paths IEEE Trnns
System Sci Gybernetzcs, 4: 100&l 07

IIeld, M and Karp, R 1971. The traveling salesman pro&m and
minimum spanning trees Operatzon Research, Vol I9

Karp, 1~ M and Pearl, J. 1983 Searching for the cheapest path in
a tree with random costs IJC~LA-ENC:-<!SI,-8275 (To appear
in Artificaal Intellzgence

Kiblcr, D 1982 Natural generation of admissible hcul istics
University of C:alifornia at Irvine, Dept of Complitcr Science

I,awler, E J, and Wood, D. E. 1966. Branch-and-bound methods:
A survey Operatrons Research, l/1:699-719

Ncwcll, A and Simon, H 1972 IIumnn problem solving New
York:l’rellt,ice-IIall

Nilsson, N. .J 1971 Problem solving methods 29~ artzficial antellzgence
New York:McCrsw-Hill

Pearl, .J 1982. On the discovery and generation of certain heuris-
tics. UCLA Computer Sczence Quarterly, Vol 2

Hacerdoti, E. D. 1974 Planning in a hierarchy of al)straction
spaces Artificial Intellrgence, 5: I 15-l 35

TIIE AI MAGAZINE Winter/Spring 1983 313

