TECHNICAL REPORT
Reprint #38
March 1983

ARTIFICIAL INTELLIGENCE 99

Searching for an Optimal Path
in a Tree with Random Costs™

Richard M. Karp
Computer Science Division, University of California, Berkeley,
CA, US. A.

Judea Pearl

Cognitive Systems Laboratory, School of Engineering and
Applied Science, University of California, Los Angeles, CA
90024, U.S.A.

ABSTRACT

We consider the problem of finding an optimal path leading from the root of a tree 1o any of its leaves.
The tree is known to be uniform, binary, and of height N, and each branch independently may have a
cost of 1 or 0 with probability p and 1— p, respectively.

We show that for p <4 the uniform cost algorithm can find a cheapest path in linear expected time.
By contrast, when p =% every algorithm which guarantees finding an exact cheapest path, or even a
path within a fixed cost ratio of the cheapest, must run in exponential average time. If, however, we
are willing to accept a near optimal solution almost always, then a pruning algorithm exists which
finds such a solution in linear expected time. The algorithm employs a depth-first strategy which stops
at regular intervals to appraise its progress and, if the progress does not meet a criterion based on
domain-specific knowledge, the current node is irrevocably pruned.

1. Introduction

It is often said that heuristic methods are unpredictable; they work wonders
most of the time, but may fail miserably some of the time. Indeed., some
heuristics greatly reduce search effort but occasionally fail to find an optimal or
even a near-optimal solution. Others work efficiently on most problems in a
given domain but a rare combination of conditions and data may cause the
search to continue forever.

Since the ultimate test for the success of heuristic methods is that they work

*This work was supported in part by The National Science Feundation, Grant MCS 8114209.

Artificial Intelligence 21 (1983) 99-116
0004-3702/83/0000-0000/303.00 © 1983 North-Holland

160 R.M. KARP AND J. PEARL

well ‘most of the time’, and since probability theory is our principal formalism
for quantifying concepts such as ‘most of the time’, it is only natural that
probabilistic models should provide a formal ground for evaluating the per-
formance of heuristic methods quantitatively. Moreover, it is equally natural
that probabilisﬁc models of the problem domain should participate in the
process of devising heuristic methods, or in selecting the parameters which
govern these methods so as to guarantee that only a small fraction of problem
instances will escape an adequate treatment.

In many practical problems we are interested in optimizing some per-
formance measure involving a combination of solution quality and search effort
averaged over all problems likely to be encountered. The average value of this
performance measure, however, is seldom actually computed, primarily
because it is difficult to define and analyze a probability distribution which
adequately represents the set of problems to be encountered.

Nevertheless, in order to understand what attributes make a candidate
search method suitable or unsuitable for a given class of problems some
analysis must be conducted. Toward this goal one normally starts with a
simplified synthetic model, containing the smallest number of parameters
required for representing the salient features of the problem domain, and then
analyzes the performance of various search algorithms on this synthetic model
as a function of the model’s parameters. If, as a result of such an exercise, it
becomes apparent that the value of a certain parameter has a dramatic
influence over the relative performances of the candidate search methods, then
that parameter becomes a focus of attention in empirical efforts to characterize
the problem environment. Alternatively, if a given search method appears to
exhibit superior performance over a wide range of model parameters, that
method then becomes the first candidate to be tried on actual problem
instances.

This paper presents a tractable simplified synthetic model for path optimiza-
tion problems and analyzes the performances of two search methods within this
model.

Problem. Find the cheapest path leading from the root of a tree to any of its
leaves. The tree is known to be uniform, binary, and of height N. Each branch
independently may have a cost of 1 or 0 with probability p and 1-p,
respectively.

The first search method involves a blind, uniform-cost algorithm [3] which, of
course, makes no use of heuristics regarding the unexplored portion of the
search tree. The second method is a version of staged-search [3] which
periodically uses heuristic information to prune away those ‘bad’ nodes which
do not perform in accordance with expectations.

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 101

Our analysis shows that the uniform-cost algorithm can be remarkably
efficient when the branch costs are more likely to assume the value zero. By
contrast, when the branch costs are more likely to have a unity cost,. the
uniform-cost algorithm requires exponential time while the pruning algorithm
runs in linear average time and almost always finds a near optimal solution.

2. Notation and Preliminaries

The problem statement defines a task to be executed over an ensemble of
problem instances. In each problem instance we have to find the cheapest
root-leaf path in a tree T" drawn from the sample space T(N, p) containing
uniform binary trees of height N with 0-1 edge costs. The probability that a
tree T with a specified assignment of edge costs is drawn from T(N, p) is given
by pM(1~p)™ where N, and N, are respectively the number of edges in T
with cost 1 and 0 (N, + Ny =2N*1-2),

We shall say that a node J in the tree has cost ¢ if ¢ is the sum of the costs of
the edges along the path from the root to J. Of particular interest to us are the
costs of leaves and especially the cost of the cheapest leaf, which is our target
of pursuit. Let the random variable C(N, p) be the minimum number of 1’s on
a root-leaf path in a tree T drawn from T(N, p). We shall see later that the
distribution of C(V, p) will vary significantly with p and will assume a different
character in the following three regions: p <3, p =3, and p >3. Moreover, the
nature of this distribution will dictate which algorithm is most suitable for
search and so, we will discuss these three regions separately.

We shall say that a node J' is a (@, L)-son of node J iff the following two
conditions hold:

(1) J’ is situated L levels below J, and

(2) the cost of the path connecting J and J’ does not exceed L.

A family line of ¢ successive (@, L)-sons represents a path in T consisting of ¢
consecutive segments each with cost at most al. We shall call such a path a
(@, L)-regular path, and families generated by this process (a, L)-regular famil-
ies. In order to keep our notation simple we shall still call a path terminating at
a leaf node (a, L)-regular even when its last segment contains fewer than L
nodes as long as the cost of that last segment is at most L. Clearly, any
root-leaf path which is (a, L)-regular may not cost more than a(N + Ly

We shall analyze the performance of two search algorithms which we shall
call A; and A, A, is a uniform-cost algorithm and will be analyzed for the
cases: p<% and p=3% A, is a hybrid of local and global depth-first search
strategies and will be analyzed for p >3.

Both algorithms start with a subtree containing the root of T and, at a
general step, expand some node on the frontier of the subtree. Expanding a
node J means creating its two children and the edges from J to these children.

102 R.M. KARP AND J. PEARL

Algorithm A,. At each step, expand the leftmost node among those frontier
nodes of minimum cost. The algorithm halts when it tries to expand a leaf of T.
That leaf then represents an optimal solution.

Algorithm A,. A, conducts a depth-first-search to find a (e, L)-regular path
from a level d node to a leaf where d, o, and L are three externally chosen
parameters. In other words, A, is a depth-first strategy which stops at regular
intervals of L levels to appraise its progress. If the cost increase from the last
appraisal is at most L, the search continues; if that cost increase is above «l,
the current node is irrevocably pruned, the program backtracks to a higher
level, and the search resumes. If it succeeds in finding a (¢, L)-regular path, A,
returns that path as a solution; its cost is at most d + (N —d + L). If it fails,
the search is repeated from another d-level node. If all the 2¢ nodes at level d
fail to root a (a, L)-regular path to a leaf, A, terminates with failure. The
probability of such an event, however, will be made vanishingly small by
an appropriate choice of the parameters d, a, and L.

This search is shown schematically in Fig. 1. It consists of two components:
(1) local depth-first search (with depth-bound L) to find (e, L)-sons, and (2)
global depth-first search on members of the («, L)-family, seeking a family line
extending to level N.

The rationale for Algorithm A, is as follows: probabilistic analysis reveals
(Theorem 3.3) that for p >3 and large N the optimal cost C(N, p) lies very near
a*N where a* is a constant dictated by p. If we settle for finding a near-
optimal solution, we may stop the search as soon as we find any leaf node with
cost below alN (a>a™) where « is chosen sufficiently close to «*. For-

L Z N

FiG. 1. Schematic representation of the search algorithm A, The triangles represent local
depth-first searches for {(«, L)-sons (solid circles).

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 103

tunately there are many leaves with costs between «*N and aN and so, we
are at liberty to confine our search to a special subset of these leaves which are
easy search targets. A convenient choice would be the set of leaves reachable
by («, L)-regular paths, along which the cost increases by not more than a fixed
increment al in every successive path segment of length L. Such paths are
convenient search targets because violations of the requirement for a gradual
cost increase (unlike violations of requirements posed on the overall cost of a
path) are detectable by local analysis. Indeed, we shall see later (Theorem 3.6)
that A, runs in linear expected time and, if the parameters d and L are chosen
appropriately, A; is guaranteed to find a near optimal solution with probability
approaching one.

3. Summary of Results

The results of our analysis are summarized in the following six theorems. The
first three theorems determine the asymptotic distribution of the optimal cost
C(N, p) while the later three quantify the expected complexities of algorithms
A, and A, in the three regions of p.
Theorem 3.1. If p <3, then

PIC(N,p)>k]l=@2p)*"'2 k=-1,0,1,...

Thus, the optimal cost is almost certain to remain bounded as N — oo,

Theorem 3.2. If p =3, then, for every unbounded monotone function H,

P[IC(N,)~ logalogaN| > H(N)] = 0.

This implies that the optimal cost is very likely to be near logylog,N.

Theorem 3.3. Let p >3 and

cran - (£ (122)"

(¢4

Define a* by the equation G(a*, p)=3.
Fora <a*

PIC(N,p)=aN]=0(c™), c.>1.

Fora>a*

P[C(N, p)>aN]=0®dz"), d,>1.

104 R.M. KARP AND J. PEARL

This theorem states that the optimal cost is proportional to N and that the
proportionality. factor is very likely to be near a*.

Let the random variables (N, p) and (N, p) be the number of nodes
expanded in the execution of algorithm A; and A, respectively, on a tree T
drawn from T(N, p).

Theorem 3.4. If p <<}, then E[t;(N, p)| = O(N), i.e., A, finds an optimal cost leaf
in linear expected time.

Theorem 3.5. If p =13, then E[,(N, 3] = O(N?), i.e., A, finds an optimal cost leaf
in quadratic expected time.

Theorem 3.6. If p>3 then every algorithm which guarantees finding a path
cheaper than (1+ &)C(N.p) must run in exponential average time. However, for
every ¢ >0 it 'is possible to choose the parameters d and L in such a way that
algorithm A, will find a solution costing at most (1+ e)C(N, p) with probability
approaching 1 and, moreover, E[t:(N, p)] = O(N).

4. Proofs of Theorems 3.1-3.6

The proofs of Theorems 3.1-3.6 depend on some results from the theory of
branching processes [1]. The basic notation and properties of branching pro-
cesses are summarized in Appendix A while additional results are contained in
the next two lemmas.

Lemma 4.1. Let Z, stand for the size of the nth generation in a branching process
for which m = E(Z,) # 1, then)

E[E Z, | extinction} = () < oo,

Lemma 4.1 states that the expected size of an extinct family is bounded for
both m <1 and m >1 even though the generation for which we can certify that
extinction has occurred may be arbitrarily deep. The proof is given in Ap-
pendix B.

Lemma 4.2. Let {p} determine a branching process such that only finitely many of
the pi’s are non-zero. Define the random variable D(N) as follows: let T, be the
family tree created in a run of this process, and let D(N) be the number of nodes
encountered in a depth-first search of T, which terminates as soon as a node at depth
N is reached. Then E{D(N)] = O(N).

Proof. If m =1, then for each k, E(Z,) = m* <1 [1, Theorem 5.1, p. 6], so

E[D(N)] < i E(Z,) = i mE<N+1.

k=0 k=0

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 105

Suppose m > 1. From Lemma 4.1 we know that E[D(N)| T, finite] < Q, so it is
only necessary to show that

Iv = E[D(N)|T, infinite] = O(N) .

Call a node J in T immortal if the subtree rooted at J is infinite; otherwise,
call J mortal. Assume J is immortal, and that J’ is leftmost among the immortal
sons of J. Then in searching the subtree rooted at J, J’ is the only immortal son
of J which is encountered. In addition to J', the search may also encounter all
the mortal sons of J situated to the left of J'. The expected number of nodes
encountered in searching the subtree rooted at J' is Iy_;, while that encoun-
tered in searching each of its mortal siblings is at most Q. Consequently, letting
M stand for the average number of mortal sons of an immortal father (M < =),
we have:

Iy=1+ Iy, + MO
from which it follows that

Ivs=1+(N-1MO.
Proof of Theorem 3.1. Let

F¥=P[C(N,py>k], k=-1,0,1,...,N—1. L
To establish a recurrence relation for F{ we condition the event C(N, p) >k

on the four possible events of the first generation, as shown in Table 1, and
obtain the recursion

FY ={(1-p)Fy 7+ pFyipP, Fh=1.)
We now take the limit as N —
Fk = }\}m FJ]\(] = [(1 e p)Fk + ka‘l]Z (3)

which, for p <3, has the non-trivial solution

TaBLE 1

cost of left arc 0 1 0 1
cost of right arc 0 0 1 1
probability (1-py p(l—p) (1-pp s

PIC(N, p)> k] FY Fioh e FY R (FRE)Y

106 R.M. KARP AND J. PEARL

B = Zi%}}? [1-2F p(1—p)~VI=4E_p(-p)l. @)
Using the inequality

VI-x=(1-x)1+ix) for0=x<I1 (3)
we obtain a bound on F; in (4)

F, =4p*(F). (6)
The boundary condition F., =1, together with (6) leads to the desired in-
equality

Fi = g GpF =),)

Note that for p =1 the only meaningful solution of (3) is F, =1 for all k,
implying that as N —co the cost of the cheapest path is almost surely un-
bounded.

Proof of Theorem 3.2. See Appendix C.

Proof of Theorem 3.3. Let Z(e, N) stand for the number of leaves in a tree of
height NV with costs not exceeding aN, 0 <« < 1. We first wish to show that the
average number of such leaves undergoes a critical jump at o = a* as N -» o,

There are a total of 2V root-leaf paths in the tree. The probability that the
cost of any one path does not exceed aN is given by the binomial distribution

A aN
P(path cost < aN)= B,y (aN)é > <]:]>pi(1 — pyN-i ®)
i=0

and therefore
E[Z(a, N)] = 2*B,(aN). ‘ ©

The binomial distribution can be bounded [2] between two entropy related
functions, provided « <p,

1

m G, p)=B,ny(aN)= GV (q,) (10)
where

o EF{E2)
or

log Gle, p)= (1~ a)log(1-p)+ a log p + H(a) (12)

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 107

where H(a) is the entropy function
H(a)=-|aloga+(1-a)og(l-a)l. (13)

Fig. 2 below depicts the dependence of logzG on « and p. For p >3, log,G
crosses the level of —1 at @ = a* < p and at this point E[Z(«, N)] undergoes an
abrupt jump:

a>at,

a <a*. (14)

lim E[Z(a, N)] = lim [2G (e, p)]¥ = 1{
i 0

N-seo
The critical value o* is defined by the equation:
Gla®,p)=} (15)

and it varies with p in the manner shown in Fig. 3.
The fact that E[Z (e, N)] vanishes for @ < a* implies that the cheapest path
has only vanishingly small probability of costing less than aN. In fact, from

E[{Z(a, N)] = P[C(N, p] = aN]
together with (9) and (10), we have
P[C(N, p)=aN]=[2G(a p)I* (16)

and, since 2G(a, p)< 1 for @ < a*, the first part of Theorem 3.3 is established.
The behavior of P{C(N, p)< aN] for e > a™ is not implied by (14), but can
be derived using a branching process argument on subtrees with depth L.
tog G

* e p ll
' i a

log p

-5+

-5+

log (1-p)
FiG. 2. The dependence of log;G on « and p.

108 R.M. KARP AND J. PEARL

¢}

FIG. 3. The dependence of «* on p. a*N is the most likely cost of the cheapest path in the tree.

From (9) and (10) we can write

ElZ(a, L) = RG(a, p)J* a7

1
V8La(l - a)
implying that if « >a*, one can always find an L large enough (but in-
dependent of N) such that the expected number of (a, L)-sons of the root
node is greater than unity. For each «, let us define the lowest possible value of
L which satisfies this condition

L, =min{L|E[Z(a, L)] > 1}, (18)

Le., L, is the lowest value of L such that the expected number of leaf nodes
costing at most «L in a tree drawn from T'(L, p) exceeds unity.

The family of (e, L,)-sons reproduces like a branching process for which
m > 1. Such a family has a non-zero probability 1~ ¢, of lasting forever and,
therefore, the probability of finding a («, L,)-regular path of length N (and cost
at most aN) is at least equal to 1 - g,.

We shall now show that the probability of finding a path costing at most aN
approaches unity if « >a* and N — . Choose a value B between a* and «,
a®<fB <a, and a depth Ly such that the expected number of (B, Ly)-sons of
each node be larger than unity. Any node at depth d of the tree has a
probability of at least 1 - g, of nucleating a (8, Lg)-regular path reaching level

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 109

N and costing at most (N — d + Lg). Since there are 2¢ such nodes at depth d,
the probability that at least one of them resides on top of a (8, L,)-regular path
to a leaf node is higher than 1— (qﬁ)zd. The total cost of such a path including
the portion from the root to depth d is at most B(N+ Lg)+ d(1 — 8). Thus, we
can write

P[C(N, p)>B(N + Lg)+d(1 - B)] = (g5} (19)
Choosing d to vary slowly with N, e.g., d = [log,N], yields
P[C(N, p)> BN + Lg) + (1= B)(1 + log N)] = (g5)".

Now, 8 was chosen strictly smaller than « and so, for sufficiently large N, we
have

PIC(N, p) > aN]=(gs)" (20)

which establishes the second part of Theorem 3.3.

The arguments used in this proof will dictate the appropriate choice of the
parameters d, «, and L for the A, algorithm (see Theorem 3.6).

Proof of Theorem 3.4. The execution of Algorithm A, involves a series of trials,
each of which consists of a depth-first search in the subtree of T rooted at some
vertex J, and containing those vertices reachable from J at cost zero. The
algorithm terminates as soon as some trial reaches a leaf of . T.

Consider the branching process 7 in which the birth of a son corresponds to
the discovery of a zero cost edge. For this process we have: Po=ph g =
2p(1-p) and p,= (1—-p). Since p <3, m =2(1 - p)>1, and so the extinction
probability g is less than 1. Each trial, starting at a node of depth 4,
corresponds to a depth-first search in a family tree associated with a run of the
process ; the search terminates when a (N — d)th generation node is reached
as in the conditions set for Lemma 4.2. The expected time for such a search is
D(N —d)=D(N) and the expected number of trials cannot exceed 1/(1-q),
which is the expected number of trials until encountering the first immortal
node. Hence, the expected number of nodes expanded by the algorithm is at
most D(N)/(1- g) and, using Lemma 4.2,

E[s(N, p)] = ON).

Proof of Theorem 3.5. The proof is similar to that of Theorem 3.4. The
expected time for each trial is still at most D(N), and the probability that a
trial succeeds is at least P[Zy >0] for the process . This process now has
m =1 and so (see Appendix A)

P[Zy >0]~2/No™ .

110 R.M. KARP AND J. PEARL

Hence, the expected number of trials is at most sNo? + O(N), and the expected
number of nodes expanded satisfies

E[1(N, p)] < D(N)GNo™ + o(N)) = O(N?).

Proof of Theorem 3.6. If a tree T &€ T(N, p) has a minimal cost C(T), then
every algorithm A which is guaranteed to return a path costing Cy(7)=
{1+ &)C(T) must examine every node at level |C(T)/(1+¢&")] of T, if ¢ >e&.
This is so because if A skips a node n at that level, it will also return the same
solution, costing Cr(T") = Cr(T) = C(T), on another tree T’ which is identical
to T in all respect but has an all zero’s extension to n. This would violate the
stated guarantee for A because the cheapest path of T’ can cost at most
LO(T)/(1+ &)] < C(T)/(1+ ¢) while A would return Cp(T") = Cp(T)= C(T) >
(1+¢e)C(T"). At the same time Theorem 3.3 states that trees with C(T)>
(1 8)a*N, 8 >0, occur with probability Ps > 0, hence the expected number of
nodes examined by A must be at least P;2((-8/0+=D="N] which is exponential in
N.

The second part of Theorem 3.6 is proven by the following construction.
Given N, p, and &, calculate o* from (15) and let d(N) be any unbounded
monotone function of N such that d{(N)=o(N). For N sufficiently large it is
possible to find an « between a* and (1+ £)a* satisfying

No+(1-a)d(N)+al, <0+ e)a*N.

Choose this a together with its associated L, (18) and with d(N) as the three
input parameters for algorithm A,.

From the proof of Theorem 3.3 we know that Algorithm A,, when governed
by these three parameters, will fail to reach a leaf of T with probability at most
(9.)*". Moreover, when the search succeeds, it returns a path costing at most
Na+ (1~ a)d(N)+al,=(1+¢&)a*N (see (19)). Thus, the probability that A,
would fail to return a solution within a cost factor (1 +2¢) of the optimal is at
most P(A, fails. to reach a leaf)+P{C(N, p)<(l—¢g)a*N] and, since both
terms tend to zero, the second part of Theorem 3.6 is established.

To show that A, runs in linear expected time, we consider the depth-first search
on an (a, L, }regular family. Let the existence of a (@, L,)-son for some node J be
regarded as a reproduction event in a branching process =, i.e., p. =
P{Z(a, L,) = k]. Our choice of L, (18) guarantees that for this process m > 1 and
g < 1. We shall for simplicity assume that d is chosen so that N — d is a multiple of
L,, which makes the (N — d)/L,)th generation of 7' coincide with the leaf nodes
of T. A trial in the execution of A,, is a depth-first search through a family tree
from #’, terminating as soon as a node at depth (N — d)/L, is reached. The
expected number of nodes in a family tree of 7' expanded in each trial is
D((N - d)/L,)= O(N). Each such node expansion involves creating at most
2k« — 1 nodes of T by the local search of A,. The expected number of trials until
Algorithm A, terminates is at most 1/(1 — ¢), and so the expected number of nodes

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 111

expanded in Algerithm A, is
N—-d\, , 1
B[N, p)l = D (S Je - (725) = o),

5. Conclusions

Finding a cheapest path in a tree, or even a path within a fixed cost ratio of the
cheapest, requires exponential time in the worst case. It is remarkable, therefore,
that subject to our probabilistic assumptions, both algorithms are executed in
linear or quadratic expected times.

The blind search uniform-cost algorithm (A;) derives its efficiency from the
smallness of the optimal cost in the range 0 <p <3 The solution path will
normally contain only a few 1’s. As a result a leaf node will be reached by A, after
‘peeling’ only a few cost layers. Moreover, backtracking from off-track excur-
sions is extremely cheap; Lemma 4.1 asserts that the average effort spent in failing
to find a zero-cost extension to any node is bounded (for p <3) or O(N) (for p = 3).

In the range p >3, A, becomes exponential. The optimal cost now grows
linearly with N, and so disappointing excursions will only be abandoned after
searching through a large number of cost layers. It is, in fact, possible to show that
in the range p >3 any admissible algorithm, i.e., one which is guaranteed to find an
exact optimal solution, must run in exponential average time. Therefore, the
transition from p <3 to p >3 should serve as an indicator to abandon admissible
search strategies altogether.

The success of the pruning Algorithm A; can be attributed to two factors: (1)
our willingness to accept a near optimal solution almost always, and (2) the
availability of probabilistic, domain-specific knowledge for determining the
appropriate pruning criterion (i.e., determining « and L,).

A, is another example in the class of ‘bounded look-ahead plus partial
backtrack’ search strategies which have been proposed for the determination of
near optimal solutions (almost everywhere) to certain NP-hard problems [3]. The
common idea in this class of strategies is to examine nodes to determine their
likelihood of yielding a near optimal solution and to prune away (irrevocably)
unpromising nodes. Probabilistic knowledge is required to fine-tune the pruning
criterion in such a way that the number of nodes generated grows linearly instead of
exponentially with problem size and, ar the same time, near optimal solutions are
obtained almost everywhere.

Although it is hard to circumscribe exactly the type of problems which lend
themselves to such a delicate tuning of the pruning criterion, the model analyzed
in this paper highlights three conditions which essentially guarantee the success of
this pruned depth-first method.

(1) The density of the optimal cost becomes highly concentrated about some
predetermined function K(N) of the problem size N.

(2) There exists a pruning criterion based on local information (i.e., each test
can be completed in constant time) that will detect and prune away every solution
which lies outside a specified neighborhood of K(N).

112 R.M. KARP AND J. PEARL

(3) In almost every problem instance, the neighborhood about K(N) should
contain at least one solution which will survive the pruning axe.

In our model (and for p >3) condition (1) is satisfied by virtue of C(N, p)
concentrating about «*N (Theorem 3.3). Condition (2) holds because by
discarding all but (@, L)-sons we guarantee that for any arbitrary L each surviving
path would cost at most a{N + L). Hence, choosing @ < (1 + &)a* assures the
a*N-neighborhood of all survivors. Finally, condition (3) is satisfied by our ability
to always find an L, such that E[Z(«, L,)] > 1, thus guaranteeing a non-zero
probability of survival which is further amplified to almost unity by postponing the
pruning until past depth d(N).

We hope that these local pruning strategies will find an increased popularity in
application areas such as speech processing and scene analysis.

Appendix A. Basic Properties of Branching Processes

Branching processes describe phenomena in which objects generate additional
objects of the same kind and where different objects reproduce independently of
one another. Search strategies are related to branching processes in that the
operation of node expansion can be viewed as a reproduction process; the node
expanded gives rise to a certain number of children nodes, a random number of
which will eventually be expanded.

Motation. A branching process is characterized by a set {p,} of probabilities,
where
P = Pla typical father has k sons]

or equivalently, by the associated generating function,
fls)= 2 pst.
e

Two important parameters dictated by {p.} are

m = mean number of sons (of a typical father)= f'(1),
o’ = variance of the number of sons = f'(1)+ m — m>.

Let Z, be the size of the nth generation (Z; = 1). We define the generating
function f(s) for Z, by

fuls)= > P[Z, = k]sk.

Basic facts [1]. The generating function for Z, is given by the nth iterate of f(s),
le.,

fm)(S) = fu(s)
where

fi($)=flaa()] and fi(s) = f(s).

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 113

If 0<p,<1, then f(s) is strictly convex on the unit interval and the sequence
{£,(0)} is strictly increasing.

Each branching process is characterized by a parameter g called the extinction
probability given by the least non-negative root of the equation f(s) = s. g stands
for the probability that after some finite number of generations the family will
cease to reproduce, i.e., Z,—0. Naturally, 1—g is called the probability of
immortality.

The influence of m on g is illustrated in Fig. 4.
1t is shown that

(1)if m <1, then g =1 and f'(g)<1;

@Qitm=1and p;#1,theng=1and f(g)=1;

3)if m>1, then g<1and fi(g)<1.

Moreover, it can be shown that if m =1 and ¢? <%, then P[Z, > 0] ~2/c’n.

Appendix B. The Expected Size of an Extinct Family

We show that the expected size of an extinct family is finite iff m # 1. By extinction
we mean the event that some generation is empty, i.e., U (£ = 0).

Lemma B.1.

E[zz U@ =-0)=1=5g-

i=1

f(s)

mo> i

|
|
0 t
q |
FIG. 4. The effect of the reproduction rate m on the shape of the generating function f(s) and on
the probability of extinction g.

114 R.M. KARP AND J. PEARL

Proof (by Bayes theorem).

Uii(Z =0)| Z, = k]
P[UL (Z = 0)]

= pq*lqg = pg* ™

Plz=k| Uz=0]-rpizi-u 2

Thus,
E|Z| Uz=0]=3 kpa' =),
=1 k=0
Similarly,
E[Z,, CJ(Z 0)} @)
and

@

[i fUZ O-=rg

The result now follows since
flgy<1 iff m#1.

Obviously, Lemma B.1 does not hold for the case m = 1, where f'(1) = 1 and so,
the expected size of an extinct family becomes infinite. It is possible to show,
however, that in this case the expected family size is proportional to the depth
of the shallowest generation for which extinction can be certified, i.e.,

E(EZ,-]ZN:O>~N/3.

i=0
Appendix C. Proof of Theorem 3.2

Theorem 3.2 follows from a result of Bramson [S] concerning branching
random walks. We present here a short proof, in the terminology of the present
paper, by reformulating the theorem in terms of infinite trees. Consider an
infinite uniform bmary tree in which each edge has cost 0 with probability 3 and
cost 1 with probability 5. Let C(N, 7) be the minimum cost of a path fromthe root to
a node at level N. Call a node an ith generation frontier node if its cost is i and its
father’s cost is i — 1, and let Z; be the number of ith generation frontier nodes.
Note that the level of each ith generation frontier node is at most Z;.

We prove below that the number of ith generation frontier nodes tends to be
approximately 2¥. More precisely,

P[Z; + 1 < (2¥)*] approaches a limit v(x), ()

SEARCHING FOR AN OPTIMAL PATH IN A TREE WITH RANDOM COSTS 115

where v{x)— 1 as x = c. Assuming this result we proceed as follows. Observe that
the event C(N, 3) =< i implies Z; = N because the former means that there exists an
ith generation frontier node at level at least N. But, by the above claim

PlZ ogpiogan-nony = N1 =0,
and hence,
P[C(N,) =loglogN — H(N)] - 0.

On the other hand, the existence of a zero-cost path of length N starting at an
ith generation frontier node is sufficient to insure that C(N, 1) < i. The probability
that a particular ith generation frontier node is the origin of such a path is
2/6?N + O(1/N), and thus, the probability that such a path fails to exist from any
of the Z; frontier nodes is

(-0l

In the case i=loglog,N +H(N), P[Z > N*—1 as N—« and hence the
probability that such a path fails to exist goes to zero as N — . Hence,

P[C(N,}) >loglogN + H(N)]—>0 as N—-x.

It remains to prove the claim (). The random variables Z; are determined by a
branching process {p} where py= p; =0, p, =14 and

k
Dy =i i, P, k=3
j=0
The generating function f(s) for this process satisfies f(s)— s> = isf(s) +3f3(s),
whence f(s)=2—s—-2V1—s and m = =,
We now invoke the following lemma.

Lemma C.1 [4]. Consider a branching process with m =« and f(s) =S, pis*. If
g(x), the inverse function of 1— f(1—s), satisfies g'(x) = ax* {1+ O(x*)) as x >0
for some a >0, b>1, 8 >0, then for every x P{b™"log(Z, + 1)< x| approaches a
limit v(x) as n — o,

In the present case g(x)=2-x -2V 1—x and g'(x) = ix(1+ O(x)) as x 0.
The conditions of Lemma C.1 are satisfied with a =3, b =2, and the claim is
proven.

ACKNOWLEDGMENT

The authors thank R. Arratia for reviewing the manuscript and pointing out the result of Bramson

{51

116 R.M. KARP AND J. PEARL

REFERENCES

ju—

- Harris, T., The Theory of Branching Processes (Springer, Berlin, 1963).
2. Peterson, W.W., Error Correcting Codes (MIT Press, Cambridge, MA, and Wiley, New York, 1961)
Appendix A.
. Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, New York,
1971).
4. Karp, R., The probabilistic analysis of some combinatorial search algorithms, in: J.F. Traub (Ed).
Algorithms and Complexity (Academic Press, New York, 1976) 1-19.
5. Bramson, M.D., Minimal displacement of branching random walk, Z. Wahrsch. Verw. Gebiete
45 (1978) 89-108.
6. Darling, D.A., The Galton-Watson process with infinite mean, J. Appl. Probab. 1(7){1970)455-456.

(%)

Received July 1982; revised version received October 1982

